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Abstract The purpose of this survey is to describe some recent advances in zero-sum re-
peated games and in particular new connections to differential games. Topics include: ap-
proachability, asymptotic analysis: recursive formula and operator approach, dual game and
incomplete information, uniform approach.
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1 Introduction: Asymptotic and Uniform Approaches in RG, Quantitative and
Qualitative DG

This survey is a sequel to Sorin [81], and covers some recent advances in the theory of two-
person zero-sum repeated games (RG) and new connections with differential games (DG).
Alternative developments in the theory of differential games within a much more general
framework are treated in the companion paper by Buckdahn, Cardaliaguet and Quincam-
poix, [8] in this volume.

This section describes informally both models and some of the main issues. RG are
played in discrete time. There is a state space M and action sets I for Player 1 and J

for Player 2. At each stage n, the game is in some state mn ∈ M , each player chooses
an action (in ∈ I, jn ∈ J ) that, together with the current state, determines a stage payoff
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gn = g(mn, in, jn) and the joint law of the new state mn+1 and of the signals to the players
(see Section 3 for a formal description). The basic structure of the game is stationary (i.e. in-
dependent of the stage n) and we are interested in the way the players can guide the process
{gn} for large n.

DG are played in continuous time. There is a state space Z and control sets U for Player 1
and V for Player 2. At each time t , the game is in some state zt and each player chooses a
control (ut ∈ U,vt ∈ V ). This induces a current payoff γt = γ (zt , t, ut , vt ) and defines the
dynamics żt = f (zt , t, ut , vt ) followed by the state. Notice that in the autonomous case, if
the players use piecewise constant controls on intervals of size δ, the induced process is like
a RG.

Clearly the above description extends to the N -player case as well. Let us specify the
evaluation of the process in the zero-sum case.

1.1 RG Evaluations

For the RG framework there are basically three approaches.

1.1.1

We first introduce the compact case. For every probability distribution µ on the integers
n ≥ 1 (µn ≥ 0,

∑
n µn = 1), one defines a game G[µ] with evaluation 〈µ,g〉 = ∑

n gnµn.
Under standard assumptions on the basic data (for example if all sets involved in the defi-
nition of the game are finite), the natural product topology on plays specifies a game with
compact strategy sets and continuous payoff function, hence the value v[µ] will exist.

The asymptotic approach studies the family of such games as the expected length (the
mean of µ) goes to +∞. (Alternatively one could consider these games has being played
between time 0 and 1, the duration of stage n being µn.) Natural assumptions are that for
each µ, µn is decreasing and µ1 → 0 along the family.

The analysis concentrates on the corresponding family of values {v[µ]} and of (approxi-
mate) optimal strategies. Two typical examples correspond to:

• The finite n-stage game Gn with outcome given by the average of the first n stage payoffs:

gn = 1
n

n∑

m=1

gm.

• The λ-discounted game Gλ with outcome equal to the discounted sum of the payoffs:

gλ =
∞∑

m=1

λ(1− λ)m−1gm.

The values of these games are denoted by vn and vλ respectively. The asymptotic analysis
studies their behavior, as n goes to∞ or λ goes to 0. The main issues are (i) to check whether
the limit exists, (ii) is independent of the sequence of evaluations and (iii) to identify it.

Extensions consider games with random duration process where the weight µn is a ran-
dom variable which law depends upon the previous path on a random duration tree, Neyman
and Sorin [57], see Section 3.3.2. Note that the knowledge of the duration (i.e. of the evalu-
ation process) by the players is crucial in the choice of the strategies.

The main tool for this analysis is the recursive formula, see Section 3.
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1.1.2

An alternative analysis, called the uniform approach, considers the whole family of “long
games” without specifying the exact duration. Hence one looks for strategies exhibiting
asymptotic uniform properties in the following sense: they are almost optimal in any suffi-
ciently long game. Explicitly:

Definition 1.1 v is the (uniform) maxmin if the two following conditions are satisfied:

• Player 1 can guarantee v: for any ε > 0, there exists a strategy σ of Player 1 and an
integer N such that for any n≥N and any strategy τ of Player 2:

E(σ,τ )(gn)≥ v− ε.

• Player 2 can defend v: for any ε > 0 and any strategy σ of Player 1, there exist an integer
N and a strategy τ of Player 2 such that for all n≥N :

E(σ,τ )(gn)≤ v + ε.

A dual definition holds for the minmax v. Whenever v = v, the game has a uniform value,
denoted by v∞. Note that the existence of v∞ implies: v∞ = limn→∞ vn = limλ→0 vλ, and
similarly for any random duration processes, Neyman and Sorin [57].

This analysis relies on an explicit construction of the strategies and is very sensitive to
the information of the players: see e.g. stochastic games with known states and signals on
the actions, Section 7.4. and Zamir [91].

1.1.3

A third approach specifies directly an outcome associated to the sequence {gn}, like
lim inf 1

n

∑n
m=1gm or a measurable function defined on plays (see Maitra and Sudderth

[42, 43]). This describes an infinitely repeated game in normal form and the issue is the
existence of a value. We will not cover this direction in this survey but let us mention that
there are fascinating measurability issues and important connections with both the recursive
formula and the uniform approach.

1.2 DG Evaluations

We now turn to some definitions of the payoff in DG, but we will be far to cover all cases.

1.2.1

First note that in DG, the fact that time is continuous and the hypothesis that each player
knows the previous control of his opponent induce an issue in defining the strategies of the
players, in such a way that the induced process (zt , ut , vt ) is well specified. One manner to
proceed is as follows.

Let U (resp. V ) denote the sets of measurable control maps from R+ to U (resp. V ).
α ∈ A′ is a non anticipative strategy (NA) (resp. α ∈ A is non anticipative strategy with delay
(NAD)) if α maps v ∈ V to α(v) = u ∈ U such that if vs = v′s on [0, t] then α(v) = α(v′) on
[0, t], for all t ∈ R+ (resp. and there exists δ > 0 such that if vs = v′s on [0, t] then α(v) =
α(v′) on [0, t + δ], for all t ∈ R+). Note that a couple (α ∈ A′,v ∈ V) or (u ∈ U , β ∈ B′)
induces a pair of control maps, hence a well defined dynamics on Z. This was the initial
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procedure to introduce upper and lower games and values, see e.g. Souganidis [84], Bardi
and Capuzzo Dolcetta [3], Chapter VIII. It is more natural to work in a symmetric way with a
normal form game defined on A×B. A couple (α,β) defines a unique couple (u,v) ∈ U ×V
with α(v) = u and β(u) = v, thus the solution z is well defined. The map t ∈ [0,+∞[+→
(zt ,ut ,vt ) specifies the trajectory (z,u,v)(α,β), see e.g. Cardaliaguet [11], Cardaliaguet
and Quincampoix [14].

1.2.2

A differential game is with fixed duration (or a “quantitative” DG) if the total evaluation is
of the form

Γ (α,β)(z0) =
∫ T

0
γt dt + γ (zT ) (1)

where γ is some terminal payoff function, or

Γ ′(α,β)(z0) =
∫ ∞

0
γtµ(dt)

where µ is a probability on [0,+∞) like 1
T

1[0,T ] or λ exp(−λt).
The game is now well defined in normal form and the issues are the existence of a value,

its characterization and properties of optimal strategies.
The basic approach is to prove that the maxmin (resp. minmax) satisfies some dynamic

programming inequality which leads to viscosity supersolution (resp. subsolution) of an
Hamilton–Jacobi–Bellman equation and to use a comparison argument, see Appendix. Even
if the framework seems quite different, this analysis is deeply related to the asymptotic ap-
proach for RG.

1.2.3

Qualitative DG are concerned with asymptotic properties of the trajectories like zt staying
in some set C for all t ∈R+ or from some time T ≥ 0 on. By working on level sets for v this
approach is very similar to the uniform approach for RG. Basic references are Krasovskii
and Subbotin [32], Cardaliaguet [9], Cardaliaguet, Quincampoix and Saint-Pierre [15, 16].

1.2.4

Finally pursuit-evasion games or games of timing are more in the form of class 1.1.3.

1.3 Contents

We will first describe in Section 2 results related to approachability theory, since both as-
ymptotic and uniform analysis are available and the link with DG is especially explicit and
useful. The next Section 3 introduces the recursive structure and describes the extension
of the recursive formula in terms of state space and payoff evaluation. Section 4 builds on
Section 3 to develop the asymptotic approach. We recall the basic results, then present the
operator approach and related tools based on the (generalized) Shapley operator. Section 5
deals with games with incomplete information and their dual, a tool that is fundamental both
for RG and DG with incomplete information. Section 6, devoted to the uniform approach,
recalls the fundamental properties and describes some recent achievements. In Section 7 we
comment on several directions of research. Appendix is a brief presentation of basic results
of quantitative DG.
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2 Approachability

This section describes the exciting and productive interaction between RG and DG in a
specific area: approachability, introduced and studied by Blackwell [6].

2.1 Definitions

Given an I × J matrix A with coefficients in Rk , a two-person infinitely repeated game
form G is defined as follows. At each stage n = 1,2, . . . , each player chooses an element in
his set of actions: in ∈ I for Player 1 (resp. jn ∈ J for Player 2), the corresponding vector
outcome is gn = Ainjn ∈ Rk and the couple of actions (in, jn) is announced to both players.
gn = 1

n

∑n
m=1 gm is the average vector outcome up to stage n.

The aim of Player 1 is that gn approaches a target set C ⊂Rk . Approachability theory is
thus a generalization of max-min level in a (one shot) game with real payoff where C is of
the form [v,+∞).

Hn = (I × J )n is the set of possible histories at stage n + 1 and H∞ = (I × J )∞ is the
set of plays. Σ (resp. T ) is the set of strategies of Player 1 (resp. Player 2): mappings from
H = ⋃

n≥0 Hn to the sets of mixed actions U =∆(I) (probabilities on I ) (resp. V =∆(J )).
At stage n + 1, given the history hn ∈ Hn, Player 1 chooses an action in+1 ∈ I according
to the probability distribution σ(hn) ∈ U (and similarly for Player 2). A couple (σ, τ ) of
strategies induces a probability on H∞ and Eσ,τ denotes the corresponding expectation.

The asymptotic notion is

Definition 2.1 A nonempty closed set C in Rk is weakly approachable by Player 1 in G if,
for every ε > 0, there exists N ∈ N such that for any n≥N there is a strategy σ = σ(n, ε)

of Player 1 such that, for any strategy τ of Player 2

Eσ,τ
(
dC(gn)

)
≤ ε,

where dC stands for the distance to C.

If vn is the value of the n-stage game with payoff −E(dC(ḡn)), weak approachability
means vn → 0.

The uniform notion is

Definition 2.2 A nonempty closed set C in Rk is approachable by Player 1 in G if, for every
ε > 0, there exists a strategy σ = σ(ε) of Player 1 and N ∈ N such that, for any strategy τ
of Player 2 and any n≥N

Eσ,τ
(
dC(gn)

)
≤ ε.

In this case, asymptotically the average outcome remains close in expectation to the tar-
get C, uniformly with respect to the opponent’s behavior. The dual concept is excludability.

2.2 Preliminaries

The “expected deterministic” repeated game form G, is an alternative two-person infinitely
repeated game associated, as the previous one, to the matrix A. At each stage n = 1,2, . . . ,
Player 1 (resp. Player 2) chooses un ∈ U = ∆(I) (resp. vn ∈ V = ∆(J )), the outcome is
g,n = unAvn and (un, vn) is announced. Accordingly, a strategy σ , for Player 1 in G, is a
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map from H, = ⋃
n≥0 H,

n to U where H,
n = (U ×V )n. A strategy τ , for Player 2 is defined

similarly. A couple of strategies induces a play {(un, vn)} and a sequence of outcomes {g,n},
and g,n = 1

n

∑n
m=1 g,m denotes the average outcome up to stage n.

G, is the game played in “mixed actions” or in expectation. Weak ,approachability, v,n
and ,approachability are defined similarly.

2.3 Weak Approachability and Quantitative Differential Games

The next result is due to Vieille [87]. Recall that the aim is to obtain a good average outcome
at stage n.

First consider the game G,. Use as state variable the accumulated payoff and consider
the differential game Λ of fixed duration played on [0,1] starting from z0 = 0 ∈ Rk with
dynamics:

żt = utAvt = f (zt , ut , vt )

and terminal payoff −dC(z(1)). Thus the state variable is zt =
∫ t

0 γs ds, γs being the
payoff at time s. Note that Isaacs’s condition holds: maxu minv〈f (z,u, v), ξ 〉 =
minv maxu〈f (z,u, v), ξ 〉 = valU×V 〈f (z,u, v), ξ 〉 for all ξ ∈Rk . G,

n appears then as a dis-
crete time approximation of Λ and v,n = Vn(0,0) where Vn satisfies, for k = 0, . . . , n − 1
and z ∈Rk :

Vn

(
k

n
, z

)
= valU×V Vn

(
k + 1

n
, z + 1

n
uAv

)
(2)

with terminal condition V (1, z) =−dC(z).
Let Φ(t, z) be the value of the game played on [t,1] starting from z (i.e. with total out-

come z +
∫ 1

t
γs ds). Then basic results from DG implies, see Appendix (DΦ is the gradient

in z):

Theorem 2.1 (1) Φ(z, t) is the unique viscosity solution on [0,1] ×Rk of

∂tΦ(z, t) + valU×V

〈
DΦ(z, t), uAv

〉
= 0

with Φ(z,1) =−dC(z).
(2)

lim
n→∞

v,n =Φ(0,0).

The last step is to relate the values in G,
n and in Gn.

Theorem 2.2

limv,n = limvn.

The idea of the proof is to play by blocks in GLn and to mimic an optimal behavior
in G,

n. Inductively at the mth block of L stages in GLn Player 1 will play i.i.d. a mixed
action optimal at stage m in G,

n (given the past history) and y,m is defined as the empirical
distribution of actions of Player 2 during this block. Then the (average) outcome in GLn will
be close to the one G,

n for large L, hence the result.
The last property implies the following:

Corollary 2.1 Every set is weakly approachable or weakly excludable.
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2.4 Approachability and B-Sets

The main notion was introduced by Blackwell [6]:

Definition 2.3 A closed set C in Rk is a B-set for Player 1 ( for a given A), if for any a /∈ C,
there exists b ∈ πC(a) and a mixed action u = û(a) in U =∆(I) such that the hyperplane
through b orthogonal to the segment [ab] separates a from uAV :

〈uAv− b, a − b〉 ≤ 0, ∀v ∈ V

where πC(a) denotes the set of closest points to a in C.

The basic result of Blackwell, [6] is

Theorem 2.3 Let C be a B-set for Player 1. Then it is approachable in G and ,approachable
in G, by that player. An approachability strategy is given by σ(hn) = û(ḡn) (resp. σ ,(h,n) =
û(ḡ,n)).

An important consequence of Theorem 2.3 is the next result.

Theorem 2.4 A convex set C is either approachable or excludable.

A further result due to Spinat [86], see also Hou [29], characterizes minimal approachable
sets:

Theorem 2.5 A set C is approachable iff it contains a B-set.

2.5 Approachability and Qualitative Differential Games

We follow here as Soulamani, Quincampoix and Sorin [1].
To study ,approachability, consider an alternative differential game Γ where both the

dynamics and the payoff function differ from the previous differential game Λ. The aim
is to control asymptotically the average payoff, hence the discrete dynamics on the state
variable is of the form

ḡn+1 − ḡn = 1
n + 1

(gn+1 − ḡn).

The continuous counterpart is γ̄t = 1
t

∫ t

0 usAvs ds. A change of variable zt = γ̄et leads to

żt = utAvt − zt . (3)

which is the dynamics of an autonomous differential game Γ with f (z,u, v) = uAv − z,
that still satisfies Isaacs’s condition. In addition the aim of Player 1 is to stay in a certain
set C.

We recall the next definitions, following Cardaliaguet [9].

Definition 2.4 A nonempty closed set C in Rk is a discriminating domain for Player 1,
given f if:

∀a ∈ C, ∀p ∈ NPC(a), sup
v∈V

inf
u∈U

〈
f (a,u, v),p

〉
≤ 0, (4)

where NPC(a) = {p ∈RK ;dC(a + p) = ‖p‖} is the set of proximal normals to C at a.
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The interpretation is that, at any boundary point x ∈ C, Player 1 can react to any control
of Player 2 in order to keep the trajectory in the half space facing a proximal normal p.

The following theorem, due to Cardaliaguet [9], states that Player 1 can ensure remaining
in a discriminating domain as soon as he knows, at each time t , Player 2’s control up to
time t .

Theorem 2.6 Assume that f satisfies Isaacs’s condition, that f (x,U,v) is convex for
allx, v, and that C is a closed subset of Rk . Then C is a discriminating domain if and
only if for every z belonging to C, there exists a nonanticipative strategy α ∈ A′, such that
for any v ∈V, the trajectory z[α(v),v, z](t) remains in C for every t ≥ 0.

We shall say that such a strategy α preserves the set C. The link with approachability is
through the following result:

Theorem 2.7 Let f (z,u, v) = uAv − z. A closed set C ⊂ Rk is a discriminating domain
for Player 1, if and only if C is a B-set for Player 1.

It is easy to deduce that starting from any point, not necessarily in C one has:

Theorem 2.8 If a closed set C ⊂ Rk is a B-set for Player 1, there exists α ∈ A′, such that
for every v ∈V

∀t ≥ 1 dC

(
z
[
α(v),v

]
(t)

)
≤Me−t . (5)

The main result is now:

Theorem 2.9 A closed set C is ,approachable for Player 1 in G, if and only if it contains
a B-set for Player 1 (given A).

The direct part follows from Blackwell’s proof. The proof of converse implication is
as follows: first one defines a map Ψ from strategies of Player 1 in G, to nonanticipative
strategies in Γ . In particular given ε > 0 and a strategy σε that ε-approaches C in G,, its
image is αε = Ψ (σε). The next step is to show that the trajectories in the differential game
Γ compatible with αε approach asymptotically C up to ε. Finally one proves that the ω-
limit set of any trajectory compatible with some α is a discriminating domain. Explicitly, let
D(α) = ⋂

θ≥0 cl {x[x0, α(w),w](t); t ≥ θ, w ∈V}, where cl is the closure operator.

Lemma 2.1 D(α) is a nonempty compact discriminating domain for Player 1 given f .

In particular, approachability and ,approachability coincide.

2.6 On Strategies in the Differential and Repeated Games

This part describes explicitly the construction of an approachability strategy in the repeated
game G starting from a preserving strategy in Γ . The idea of the construction is the follow-
ing:

(a) Given a NA α′ ∈ A′, construct an approximation in term of range by a NAD α ∈ A.
(b) When applied to α′ preserving C (hence approaching C), this leads to α ∈ A approach-

ing C.
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(c) This NAD α generates an ,approachability strategy in the repeated game G,.
(d) Finally ,approachability strategies in G, induce approachability strategies in G.

For step (a), recall the definition of the range associated to a nonanticipative strategy
α′ ∈ A′:

R(α′, t) = cl
{
y ∈Rk ∃v ∈V, y = x

[
x0, α

′(v),v
]
(t)

}
.

The next result is due to Cardaliaguet [10] and is inspired by the “extremal aiming” method
of Krasovskii and Subbotin [32]. It is very much in the spirit of proximal normals and
approachability.

Proposition 2.1 For any ε > 0, T > 0 and any NA α′ ∈ A′, there exists some NAD α ∈ A
such that, for all t ∈ [0, T ] and all v ∈V:

dR(α′,t)
(
x
[
x0, α(v),v

]
(t)

)
≤ ε.

The efurther result relies explicitly on the specific form (3) of the dynamics f in Γ and
extends the approximation from a compact interval to R+.

Proposition 2.2 Fix z ∈ Rk . For any ε > 0 and any NA α′ ∈ A′ in the game Γ , there exists
some NAD α ∈ A such that, for all t ≥ 0 and all v ∈ V :

dR(α′,t)
(
zt

[
α(v),v, z

])
≤ ε.

In particular this leads to step (b)

Proposition 2.3 Let C be a B-set. For any ε > 0 there is some NAD α in the game Γ and
some T such that for any v in V

dC

(
γ
[
α(v),v

]
(t)

)
≤ ε, ∀t ≥ T .

Step (c) is now to use the delay to define a strategy that depends only on the past moves.
Hence α induces an ε-approachability strategy σ , for C in G,.

The last step (d) is

Proposition 2.4 Given σ , a strategy that ,approach C up to ε > 0 in the game G,, there
exists σ a strategy that approach C up to 2ε in the game G.

and the idea is to use a martingale inequality to compare the trajectory and the trajectory “in
law”.

2.7 Remarks

(1) In both cases, the main ideas to represent a RG as a DG is first to take as state variable
either the total payoff or the average payoff but in both cases the corresponding dynam-
ics is (asymptotically) smooth; the second aspect is to work with expectation so that the
trajectory is deterministic.

(2) For recent extension of approachability conditions for games with signals on the out-
come, see Perchet [59] or on more general spaces, see Lehrer [39], Perchet and Quin-
campoix [60].
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3 Recursive Structure of Compact Repeated Games and Shapley Operator

The simplest incarnation of the recursive formula for repeated games is the following equa-
tion, due to Shapley [72], involving the discounted value of finite stochastic game

vλ(ω) = valX×Y

{
λg(ω,x, y) + (1− λ)

∑

ω′
Q(ω,x, y)[ω′]vλ(ω′)

}
, ∀ω ∈Ω (6)

where Q stands for the transition probability on the state space Ω , X = ∆(I) (the set of
probabilities on X), Y = ∆(J ) and for h : I × J → R, h(x, y) = Ex,yh. It expresses the
value of the game today as a function of the current payoff and the value from tomorrow on.
Two ingredients are concerned. First, the play of the game: the initial state ω is known by
both players and also the new state will be, hence one can perform the analysis for each state
separately: the “state” of the stochastic game is the natural “state variable” for the recursive
formula. Second, the evaluation measure today and its decomposition between the weight
today and the conditional distribution on stages from tomorrow on.

We will describe several extensions: first to general repeated game forms that correspond
to point one above, then to general evaluation measures, point two.

3.1 Recursive Formula

We recall briefly that a recursive structure leading to an expression similar to (6) holds in
general for two-person zero-sum repeated games described as follows:

M is a parameter space and g a function from I × J ×M to R. For each m ∈M this
defines a two-person zero-sum game with action spaces I and J for Player 1 and 2 respec-
tively and payoff function g(m, ·). (Again to simplify the presentation we will consider the
case where all sets are finite, avoiding in particular measurability issues.)

The initial parameter m1 is chosen at random and the players receive some initial infor-
mation about it, say a1 (resp. b1) for Player 1 (resp. Player 2). This choice is performed
according to some initial probability π on M ×A×B , where A and B are the signal sets of
both players.

At each stage n, Player 1 (resp. 2) chooses an action in ∈ I (resp. jn ∈ J ). This determines
a stage payoff gn = g(mn, in, jn), where mn is the current value of the parameter. Then a new
value of the parameter is selected and the players get some information. This is generated
by a map Q from M × I × J to probabilities on M × A × B . Hence at stage n a triple
(mn+1, an+1, bn+1) is chosen according to the distribution Q(mn, in, jn). The new parameter
is mn+1, and the signal an+1 (resp. bn+1) is transmitted to Player 1 (resp. Player 2). Note that
each signal may reveal some information about the previous choice of actions (in, jn) and
both the previous (mn) and the new (mn+1) values of the parameter.

Stochastic games correspond to public signals including the parameter, see Sorin [77],
Neyman and Sorin [56], for a general presentation. Incomplete information games corre-
spond to absorbing transition on the parameter and no further information (after the initial
one) on the parameter (that remains fixed), see Aumann and Maschler [2], Sorin [77].

A play of the game induces a sequence m1, a1, b1, i1, j1,m2, a2, b2, i2, j2, . . . while the
information of Player 1 before his play at stage n is a 1-private history of the form
(a1, i1, a2, i2, . . . , an) and similarly for Player 2. The corresponding sequence of payoffs
is g1, g2, . . . . Note that it is not known to the players except if included in the signals.

A strategy σ for Player 1 is a map from 1-private histories to ∆(I), the space of prob-
abilities on the set I of actions: it defines the probability distribution of the stage action
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as a function of the past known to Player 1; τ is defined similarly for Player 2. Such a
couple (σ, τ ) induces, together with the components of the game, π and Q, a probability
distribution on plays, hence on the sequence of payoffs.

The recursive structure relies on the construction of the universal belief space, Mertens
and Zamir [52], that represents the infinite hierarchy of beliefs of the players: Ω =
M×Θ1×Θ2, whereΘi , homeomorphic to∆(M×Θ−i ), is the type set of Player i. A consis-
tent probability ρ on Ω is such that the conditional probability induced by ρ at θ i coincides
with θ i itself, as elements of ∆(M×Θ−i ). The set of consistent probabilities is P⊂∆(Ω).
The signaling structure in the game, just before the actions at stage n, describes an infor-
mation scheme (basically a probability on M × Â× B̂ where Â is a general signal space
to Player 1 and the same for Player 2) that induces a consistent probability Pn ∈ P, see
Mertens, Sorin and Zamir [49], Sections III.1, III.2, IV.3. This is referred to as the “entrance
law”. Taking into account the existence of a value for the repeated game, we suppose that
the strategies used are announced to the players. The entrance law Pn and the (behavioral)
strategies at stage n (say αn and βn), which are maps from type set to mixed action set, deter-
mine the current payoff and the new entrance law Pn+1 = H(Pn, αn,βn). This updating rule
is the basis of the recursive structure and P is the “state space” for the recursive structure.
The stationary aspect of the repeated game is expressed by the fact that H does not depend
on the stage n.

The (generalized) Shapley operator is defined on the set of real bounded functions on P
by:

Ψ (f )(P) = sup
α

inf
β

{
g(P, α,β) + f

(
H(P, α,β)

)}
. (7)

It is natural to introduce also the projective version

Ψ (f )(P) = sup
α

inf
β

{
f

(
H(P, α,β)

)}
(8)

that will be crucial in the asymptotic analysis.
Then the usual relations hold, see Mertens, Sorin and Zamir, (1994) Section IV.3, for the

finitely repeated game:

(n + 1)vn+1(P) = valα×β
{
g(P, α,β) + nvn

(
H(P, α,β)

)}
(9)

and the discounted game:

vλ(P) = valα×β
{
λg(P, α,β) + (1− λ)vλ

(
H(P, α,β)

)}
(10)

where valα×β = supα infβ = infβ supα is the value operator for the “one stage game at P ”.
This representation corresponds to a “deterministic” stochastic game on the state space P⊂
∆(Ω). Hence to each compact repeated game G one can associate an auxiliary game Γ
having the same values that satisfy the recursive equation. However the play, hence the
strategies in both games differ.

In the framework of a stochastic game with state space Ω , this representation would
correspond to the level of probabilities on the state space P⊂∆(Ω). One recovers the initial
Shapley formula (6) with P being the Dirac mass at ω, then (α,β) reduces to (x, y) (i.e. only
the ω component of (∆(I)×∆(J ))Ω is relevant), H(P, α,β) corresponds to Q(ω,x, y) and
finally vλ(H(P, α,β)) = EQ(ω,x,y)vλ(.). The projective version is

Ψ (f )(ω) = valX×Y

{∑

ω′
Q(ω,x, y)[ω′]f (ω′)

}
. (11)
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Let us describe the framework of repeated games with incomplete information (indepen-
dent case with perfect monitoring). M is a product space K ×L, π is a product probability
p ⊗ q with p ∈ ∆(K), q ∈ ∆(L) and in addition a1 = k and b1 = 8. Given the parameter
m = (k, 8), each player knows his own component and holds a prior on the other player’s
component. From stage 1 on, the parameter is fixed and the information of the players after
stage n is an+1 = bn+1 = {in, jn}.

The auxiliary stochastic game Γ ′ corresponding to the recursive structure can be taken as
follows: the “state space” M ′ is∆(K)×∆(L) and is interpreted as the space of beliefs on the
true parameter. X =∆(I)K and Y =∆(J )L are the type-dependent mixed action sets of the
players; g is extended on X× Y×M ′ by g(p,q, x, y) = ∑

k,8 pkq8g(k, 8, xk, y8). Given
(p, q, x, y), let x(i) = ∑

kx
k
i p

k be the probability of action i and p(i) be the conditional

probability on K given the action i, explicitly pk(i) = pkxk
i

x(i)
(and similarly for y and q).

Since the actions are announced in the original game, and the strategy are known in the
auxiliary game, these posterior probabilities are known by the players and we can work
with Ω = M ′ and take as P the set ∆(M ′). Finally the transition Q (from M ′ to ∆(M ′)) is
defined by the following procedure: Q(p,q, x, y)(p′, q ′) = ∑

i,j ;(p(i),q(j))=(p′,q ′) x(i)y(j).
The resulting form of the Shapley operator is

Ψ (f )(p, q) = sup
x∈X

inf
y∈Y

{∑

k,8

pkq8g
(
k, 8, xk, y8

)
+

∑

i,j

x(i)y(j)f
(
p(i), q(j)

)}
(12)

where with the previous notations

∑

i,j

x(i)y(j)f
(
p(i), q(j)

)
= EQ(x,y,p,q)

[
f (p′, q ′)

]
= f

(
H(p,q, x, y)

)

and the projective version writes

Ψ (f )(p, q) = sup
x∈X

inf
y∈Y

{∑

i,j

x(i)y(j)f
(
p(i), q(j)

)}
. (13)

The corresponding equations for vn and vλ are due to Aumann and Maschler, see [2], and
Mertens and Zamir [50]. Recall that the auxiliary game Γ ′ is “equivalent” to the original
one in terms of values but uses different strategy spaces. In fact in the original game the
strategy of the opponent is unknown, hence the computation of the posterior distribution is
not feasible.

3.2 General Partition and Games in Continuous Time

Similarly the recursive structure extends to arbitrarily evaluation of the stream of stage pay-
offs. First notice that the generalized Shapley operator can be used to describe any positive
combination of weights between the past and the future like

S[c, c′](f )(P) = sup
α

inf
β

{
cg(P, α,β) + c′f

(
H(P, α,β)

)}
(14)

with c > 0, c′ > 0, since one has

S[c, c′](f ) = cΨ

(
c′

c
f

)
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and Ψ = S[1,1]. Note also that the projective operator Ψ = S[0,1] appears as the recession
operator associated to Ψ . Following this line, one has the classical fixed point formula for
the discounted value

vλ = S[λ,1− λ](vλ) (15)

and the recursive formula for the n stage value

vn = S
[

1
n

,1− 1
n

]
(vn−1) (16)

with obviously v0 = 0.
Consider now an arbitrarily evaluation probability µ on N,. We can approximate the

corresponding value uniformly by considering measures with finite support. Then µ induces
a finite partition Π of [0,1] with t0 = 0, tk = ∑k

m=1 µm, tN = 1. Thus the repeated game is
naturally represented as a game played between times 0 and 1, where the actions are constant
on each subinterval (tk−1, tk): its length µk is the weight of stage k in the original game. Let
vΠ be its value. The recursive equation is

vΠ = val
{
t1g + (1− t1)EvΠt1

}
= S[t1,1− t1](vΠt1

)

whereΠt1 is the normalization on [0,1] of the trace of the partitionΠ on the interval [t1,1].
Define now VΠ(tk) as the value of the game starting at time tk , hence with N − k stages and
total weight

∑N
m=k+1 µm. One obtains the alternative recursive formula

VΠ(tk) = val
{
(tk+1 − tk)g + EVΠ(tk+1)

}
= S[tk+1 − tk,1]

(
VΠ(tk+1)

)
. (17)

The stationarity property of the game form induces time homogeneity

VΠ(tk) = (1− tk)VΠtk
(0) (18)

where, as above, Πtk stands for normalization of Π restricted to the interval [tk,1]. By
taking the linear extension we define this way for every finite partition Π , a function VΠ(t)

on [0,1].

3.3 Further Extensions

3.3.1 Non Expansive Maps

Given a non expansive map T on a Banach space, one defines inductively

Wn = T(Wn−1) = Tn(0)

and for λ ∈]0,1[:

Wλ = T
(
(1− λ)Wλ

)
.

Then Wn
n

and λWλ play the role of vn and vλ, see (16), (15).
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3.3.2 Random Duration (Neyman and Sorin [57])

An uncertain duration process Θ = 〈(A, B,µ), (sn)n≥0, θ〉 is a triple where θ is an integer-
valued random variable defined on a probability space (A, B,µ) with finite expectation
E(θ), and each signal sn is a measurable function defined on the probability space (A, B,µ)

with finite range S. An equivalent representation is through a random tree with finite ex-
pected length where the nodes at distance n correspond to the information sets at stage n.
Given ζn, known to the players, its successor at stage n + 1 is chosen at random according
to the subtree defined by Θ at ζn. One can define the random iterate TΘ of a non expansive
map, Neyman [54]. Then a recursive formula analogous to (17) holds.

3.3.3 Non Stationary Set Up

Note that some of the results above like (17) have a natural extension to a non stationary set
up and are very similar to the value of time discretization of a quantitative differential game.

4 Asymptotic Approach

We consider now the asymptotic behavior of vn as n goes to ∞, or vλ as λ goes to 0.

4.1 Basic Results

Concerning games with incomplete information on one side the first results proving
the existence of limn→∞ vn and limλ→0 vλ are due to Aumann and Maschler (1966),
see [2], including in addition an identification of the limit as Cav∆(K)u. Here u(p) =
val∆(I)×∆(J)

∑
k pkg(k, x, y) is the value of the one shot non revealing game, where the

informed player does not use his information and CavC is the concavification operator:
given φ, a real bounded function defined on a convex set C, CavC(φ) is the smallest func-
tion greater than φ and concave, on C.

Extensions of these results to games with lack of information on both sides were achieved
by Mertens and Zamir [50]. In addition they identified the limit as the only solution of the
system of implicit functional equations with unknown φ:

φ(p,q) = Cavp∈∆(K) min{φ,u}(p, q),
(19)

φ(p,q) = Vexq∈∆(L) max{φ,u}(p, q).

Here again u stands for the value of the non revealing game: u(p,q) =
valX×Y

∑
k,8 p

kq8g(k, 8, x, y) and we will write MZ for the operator corresponding to (19)

φ = MZ(u). (20)

Mertens and Zamir provided two proofs for this result: the first part is the same and
shows by using the recursive structure and constructing sophisticated reply strategies that
h = lim infvn satisfies

h(p,q)≥ Cavp∈∆(K)Vexq∈∆(L) max{h,u}(p, q). (21)
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Then one proof shows that Player 2 can achieve asymptotically any function satisfying (21).
The second proof constructs inductively dual sequences of functions {cn} with c0 ≡ −∞
and

cn+1(p, q) = Cavp∈∆(K)Vexq∈∆(L) max{cn, u}(p, q)

and similarly {dn}, that converges respectively to c and d satisfying

c(p, q) = Cavp∈∆(K)Vexq∈∆(L) max{c,u}(p, q),
(22)

d = Vexq∈∆(L)Cavp∈∆(K) min{d,u}(p, q).

Now a comparison principle is used to deduce c ≥ d . By contradiction, otherwise consider
an extreme point (p0, q0) of the (convex hull of the) set where d − c is maximal. Then one
shows that the Vex and Cav operators in the above formula (19) at (p0, q0) are trivial which
implies c(p0, q0)≥ u(p0, q0)≥ d(p0, q0).

Recall that in this framework the uniform value may not exists, see Section 6.1.
As for stochastic games, the existence of limλ→0 vλ in the finite case (Ω,I,J finite) is

due to Bewley and Kohlberg [4] using algebraic arguments: the equation (6) can be written
as a finite set of polynomial equalities and inequalities involving {xk

λ, y
k
λ, vλ(k), λ} thus it

defines a semi-algebraic set in some Euclidean space RN , hence by projection vλ has an
expansion in power series. The existence of limn→∞ vn is obtained by comparison, Bewley
and Kohlberg [5], see Theorem (4.1).

4.2 Operator Approach

4.2.1 Non-Expansive Monotone Maps

As in Section 3.3.1 we define similar iterates for an operator T mapping F to itself, where
F is a subset of the set F0 of real bounded functions on some set Ω . Assume:

(1) F is a convex cone, containing the constants and closed for the uniform norm.
(2) T is monotonic and translates the constants. (In particular T is non expansive.)

Define

Vn = Tn[0], Vλ = T[(1− λ)Vλ]
hence by normalizing Vn = nvn, vλ = λVλ and introducing

Φ(ε, f ) = εT
[

1− ε
ε

f

]

one obtains as before

vn = Φ

(
1
n

, vn−1

)
, vλ = Φ(λ, vλ)

and we consider the asymptotic behavior of these families of functions which thus relies on
the properties of Φ(ε, ·), as ε goes to 0. Recall that in the case of a Shapley operator one has
S[ε,1− ε](f ) = Φ(ε, f ). Obviously any accumulation point w of the family vn or vλ will
satisfy

w = Φ(0,w) (23)

hence is a fixed point of the projective operator (8).
A general result in this framework is due to Neyman [54]:
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Theorem 4.1 If vλ is of bounded variation in the sense that for any sequence λi decreasing
to 0

∑

i

‖vλi+1 − vλi
‖<∞ (24)

then limn→∞ vn = limλ→0 vλ.

Let us define sets of functions that will correspond to upper and lower bounds on the
families of values following Rosenberg and Sorin [70], Sorin [80].

4.2.2 Uniform Domination

Let L+ be the set of functions f ∈ F that satisfy: there exists R0 ≥ 0 such that R ≥ R0

implies

T(Rf )≤ (R + 1)f. (25)

L+ is defined in a dual way.

Theorem 4.2 If f ∈ L+, lim supn→∞ vn and lim supλ→0 vλ are less than f .

Note that the above condition is equivalent to

Φ(ε, f )≤ f

for ε > 0 small enough.

Corollary 4.1 In particular if the intersection of the closure of L+ and L− is not empty,
then both limn→∞ vn and limλ→0 vλ exist and coincide.

4.2.3 Pointwise Domination

More generally, when the set Ω is not finite, one can introduce the larger class S + of func-
tions satisfying

θ+(f )(ω) = lim sup
R→∞

{
T(Rf )(ω)− (R + 1)f (ω)

}
≤ 0, ∀ω ∈Ω.

S− is defined similarly with θ−(f )≥ 0.

Theorem 4.3 Assume Ω compact. Let S +
0 (resp. S−

0 ) be the set of continuous functions in
S + (resp. S−). Then

f + ≥ f −

for any f + ∈ S +
0 and f − ∈ S−

0 . Hence the intersection of the closures of S +
0 and S−

0 contains
at most one point.

T has the recession property if limε→0 Φ(ε, f )(ω) = limε→0 εT( f
ε
)(ω) = RT(f )(ω) ex-

ists. The next result is due to Vigeral [89].

Theorem 4.4 Assume that T has the recession property and is convex. Then the family {vn}
(resp. {vλ}) has at most one accumulation point.
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The proof uses the inequality RT(x + y)≤ T(x) + RT(y) and relies on properties of the
family of operators Tm defined by

Tm(f ) = 1
m

Tm(mf ).

4.2.4 Application to Games

The uniform domination property allows to prove existence and equality of limvn and limvλ
in the following classes:

Theorem 4.5 (Rosenberg and Sorin [70]) Absorbing games with compact action spaces.

These are stochastic games where the state changes at most once. Notice that the alge-
braic approach cannot be used.

Theorem 4.6 (Sorin [79], Vigeral [90]) Recursive games with finite state space and compact
action spaces.

These are stochastic games where the payoff is zero on non absorbing states, Everett [27].
The pointwise domination property is used to prove existence and equality of limvn and

limvλ through the derived game, see Section 4.2.3, in the following cases:

Theorem 4.7 (Rosenberg and Sorin [70]) Games with incomplete information on both
sides.

Recall that the first proof is due to Mertens and Zamir [50]. Any accumulation point w

of the family vλ (resp. vn) as λ→0 belongs to the closure of S +, hence by symmetry the
existence of a limit follows.

Theorem 4.8 (Rosenberg [65]) Finite absorbing games with incomplete information on one
side.

This is the first proof in this area where both stochastic and information aspects are
present.

Theorem 4.9 (Vigeral [89]) Existence of limvn (resp. limvλ) in all games where one player
controls the transition and the family {vn} (resp. {vλ}) is relatively compact.

This follows from the property for convex T and applies in particular for (finite) dynamic
programming, games with incomplete information on one side and mixture of those.

4.2.5 Derived Game (Rosenberg and Sorin [70])

Still dealing with the Shapley operator, one can use the existence of a pointwise limit:

ϕ(f )(ω) = lim
ε→0+

Φ(ε, f )(ω)−Φ(0, f )(ω)

ε
.
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ϕ(f )(ω) is the value of the “derived game” with payoff g(ω,x, y)− E(ω,x,y)f , played on
the product of the subsets of optimal strategies in the game Φ(0, f ).

In the setup of games with incomplete information on both sides (as well as in absorbing
games, following an idea of Kohlberg [30]), any accumulation point of the sequence of
values is close to a function f with ϕ(f )≤ 0. This implies the existence, by Theorem 4.3,
and the characterization of the asymptotic value as follows:

Let E f be the projection of the extreme points of the epigraph of f . Then v = limvn =
limvλ is a saddle continuous function satisfying both inequalities:

p ∈ E v(·, q) ⇒ v(p,q)≤ u(p,q), q ∈ E v(p, ·) ⇒ v(p,q)≥ u(p,q) (26)

where u is the value of the non revealing game.
Then one shows that this recovers the characterization of Mertens and Zamir, (19), see

also Laraki [33].

4.2.6 Random Duration Process (Neyman and Sorin [57])

The recursive formula for random duration processes implies that vΘ = TΘ(0)
E(θ)

has a limit,
as E(θ) goes to ∞ either in finite stochastic games with signals and absorbing or recursive
games with compact action sets.

The uniform domination Theorem 4.2 is true for vΘ . Similarly limE(θ)→∞ vΘ exists
and equals MZ(u) for games with lack of information on both sides. Finally, assume Θ
monotonic in the sense that the conditional expected duration decreases with time. Then
Theorem 4.1 still holds.

4.3 Comparison Principle

The operator approach using the generalized Shapley operator allows for an alternative proof
of existence and characterization of the asymptotic value limvλ for games with incomplete
information on both sides, due to Laraki [33]. The recursive equation is

Φ(λ, vλ)(p, q) = sup
x∈X

inf
y∈Y

{
λg(p,q, x, y) + (1− λ)

∑

i,j

x(i)y(j)vλ
(
p(i), q(j)

)}

= vλ(p, q). (27)

Remark that the family of functions {vλ(p, q)} is uniformly Lipschitz, hence relatively com-
pact. To prove convergence it is enough to show that there is only one accumulation point.
Note first that any accumulation point w satisfies

Φ(0,w) = w (28)

i.e. is a fixed point of the projective operator (13). Assume now that w1 and w2, w1 ≥w2 are
two different accumulation points and let (p0, q0) an extreme point of the (convex hull of)
the set where the difference w1 −w2 is maximal. Using (28) and the fact that all functions
involved are saddle, this implies that the set X(0,w1)(p0, q0) of profile of mixed actions
x ∈ X optimal in Φ(0,w1) is included in the set NRX(p0) of non revealing actions at p0

(meaning that for any move i having positive probability p(i) = p0). Consider a family vλn

converging to w1 and let xn be optimal for Φ(λn, vλn)(p0, q0). Jensen’s inequality leads to

vλn(p0, q0)≤ λng(p0, q0, xn, j) + (1− λn)vλn(p0, q0), ∀j ∈ J
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thus vλn(p0, q0)≤ g(p0, q0, xn, j) hence letting x̄ being an accumulation point of the family
{xn}, thus in NRX(p0) (by upper semi continuity) one obtains as λn goes to 0:

w1(p0, q0)≤ g(p0, q0, x̄, j), ∀j ∈ J

which implies w1(p0, q0) ≤ u(p0, q0). The dual property implies convergence. Moreover
one recovers the characterization through the variational inequalities (26) hence one identi-
fies the limit as MZ(u).

Consider the framework of splitting games, Sorin [77]. Recall that given H from∆(K)×
∆(L) to R the corresponding Shapley operator is defined on real functions f on ∆(K)×
∆(L) by

Ψ (f )(p, q) = sup
µ∈MK

p

inf
ν∈ML

q

∫

∆(K)×∆(L)

[
H(p,q) + f (p,q)

]
µ(dp)ν(dq)

where MK
p stands for the set of probabilities on ∆(K) with expectation p (and similarly for

ML
q ). A procedure analogous to the previous one has been developed by Laraki [33, 34, 36].

It allows, by introducing a family of discounted games and identifying the limit of the val-
ues, to extend the range and the properties of the MZ operator, in particular to product of
polytopes and Lipschitz functions.

4.4 The Limit Game

In addition to the convergence of the values, one could look for a normal form game G on
[0,1] with strategy sets U and V and value w such that:

(1) the play at time t in G would be similar to the play at stage [tn] in Gn (or at the fraction
t of the total weight of the game for general evaluation)

(2) ε-optimal strategies in G would induce 2ε-optimal strategies in Gn, for large n.

Obviously then, limvn exists and is w.
One example was explicitly described (strategies and payoff) for the Big Match with

incomplete information on one side in Sorin [74]. V is the set of measurable maps f from
[0,1] to ∆(J ). Hence Player 2 plays f (t) at time t and the associated strategy in Gn is a
piecewise constant approximation. U is the set of profiles of stopping times {ρk}, k ∈K , i.e.
increasing maps from [0,1] to [0,1] and ρk(t) is the probability to stop the game before
time t if the private information is k. The corresponding strategy of Player 1 in Gn has to
satisfy the property that the probability of stopping the game before stage m is ρ(m

n
). In

the initial Big Match of Blackwell and Ferguson [7] (with complete information) one has
f (t)≡ 1

2 and ρ(t) = t .
The auxiliary differential games introduced by Vieille [87] to study in weak approacha-

bility, Section 2.3 is also an example of a limit game.
The procedure is very similar to the approximation scheme of Souganidis [83] with

F(ρ,f ) = val{ρg + Ef } = ρΦ( f
ρ
), however the limit game is not given a priori and the

operator is not smooth.
A recent example is in Laraki [37] and deals with absorbing games. Let f (i, j) be

the non absorbing payoff, g(i, j) the absorbing payoff, p(i, j) the probability of non ab-
sorption and p, = 1 − p. For h : I → R define h on RI by linear interpolation h(ζ ) =∑

i∈I ζ(i)h(i). Given a stationary strategy x ∈X =∆(I) and a stationary pure strategy j ∈
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J the payoff in the discounted game is r(λ, x, j) = λf (x, j) + (1− λ)[p(x, j)r(λ, x, j) +∑
i x(i)p,(i, j)g(i, j)]. Define the absorbing part of the payoff a(i, j) = p,(i, j)g(i, j) then

r(λ, x, j) = λf (x, j) + (1− λ)a(x, j)

λp(x, j) + p,(x, j)

and

vλ = max
x∈∆(I)

min
j∈J

r(λ, x, j).

Let w = limvλn an accumulation point of the values and xn an optimal stationary strategy
of Player 1 in Gλn . Thus

vλn ≤
λnf (xn, j) + (1− λn)a(xn, j)

λnp(xn, j) + p,(xn, j)
, ∀j ∈ J. (29)

Assume that xn converges to x.
If p,(x, j) > 0, going to the limit in (29) implies w ≤ a(x,j)

p,(x,j)
.

Otherwise, letting αn = xn
λn

one has

vλn ≤
f (xn, j) + (1− λn)a(αn, j)

p(xn, j) + p,(αn, j)

hence for every ε, there exists α ∈ A = (R+)I such that

w ≤ f (x, j) + a(α, j)

1 + p,(α, j)
+ ε.

Thus

w ≤ sup
x∈X,α∈A

min
j∈J

[
a(x, j)

p,(x, j)
1p,(x,j)>0 + f (x, j) + a(α, j)

1 + p,(α, j)
1p,(x,j)=0

]
= W. (30)

On the other hand let (x,α), ε-optimal in (30). Consider now x[λ] proportional to x + λα,
as a strategy of Player 1 in Gλ, for λ small enough and let j be a best reply, that one can
take constant on a subsequence of λn. Then vλn ≥ r(λn, x[λn], j) with

r
(
λn, x[λn], j

)
= λnf (x[λn], j) + (1− λn)a(x[λn], j)

λnp(x[λn], j) + p,(x[λn], j)

which is

r
(
λn, x[λn], j

)
= λnf (x, j) + (λn)

2f (α, j) + (1− λn)[a(x, j) + λna(α, j)]
λnp(x, j) + (λn)2p(α, j) + p,(x, j) + λnp,(α, j)

.

Hence if p,(x, j) > 0, the limit of r(λn, x[λn], j) is a(x,j)
p,(x,j)

and is otherwise f (x,j)+a(α,j)
1+p,(α,j)

, if
p,(x, j) = 0.

It follows that w ≥W .
Note that the proof shows that limvλ exists and is the value of the auxiliary game G with

U = X× A, V = Y × B and payoff function

L(x,α, y,β) = a(x, y)

p,(x, y)
1p,(x,y)>0 + f (x, y) + a(α, y) + a(x,β)

1 + p,(α, y) + p,(x,β)
1p,(x,y)=0.

Given a strategy (x,α) in G , its image in Gλ is x + λα (normalized).
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4.5 Repeated Games and Evolution Equations

We follow Vigeral [88]. Consider again a non expansive mapping T from a Banach space X

to itself.
The not-normalized values satisfy Vn = Tn(0) and

Vn − Vn−1 =−(Id−T)(Vn−1)

which can be considered as a discretization of the differential equation

ẋ =−Ax (31)

where the maximal monotone operator A is Id−T.
The comparison between the iterates of T and the solution of (31) is as follows:

Theorem 4.10 (Chernoff’s formula) Let U(t) be the solution of (31). Then:

∥∥U(t)−Tn
(
U(0)

)∥∥≤
∥∥U ′(0)

∥∥
√

t + (n− t)2.

In particular with U(0) = 0 and t = n

∥∥∥∥
U(n)

n
− vn

∥∥∥∥≤
‖T(0)‖√

n
.

It is thus natural to consider u(t) = U(t)
t

which satisfies an equation of the form

ẋ(t) = Φ
(
ε(t), x(t)

)
− x(t) (32)

where as usual Φ(ε, x) = εT( 1−ε
ε

x). Notice that (32) is no longer autonomous.
Define the condition (C) by

∥∥Φ(λ, x)−Φ(µ,x)
∥∥≤ |λ−µ|

(
C + ‖x‖

)
.

Theorem 4.11 Let u(t) be the solution of (32), associated to ε(t).

(a) If ε(t) = λ, then ‖u(t)− vλ‖→ 0
(b) If ε(t)∼ 1

t
, then ‖u(n)− vn‖→ 0

Assume condition (C).

(c) If ε′(t)
ε2(t)

→ 0 then ‖u(t)− vε(t)‖→ 0.

Hence limvn and limvλ mimic solutions of similar perturbed evolution equations and in
addition one has the following robustness result:

Theorem 4.12 Let ū solution of (32) associated to ε̄. Then ‖u(t)− ū(t)‖→ 0 as soon as

(i) ε(t)∼ ε̄(t) as t →∞ or
(ii) |ε− ε̄| ∈ L1.
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5 The Dual of a Game with Incomplete Information

5.1 The Dual Game

Consider a two-person zero-sum game with incomplete information on one side defined by
sets of actions S and T , a finite parameter space K , a probability p ∈ P = ∆(K) and for
each k a real payoff function Gk on S×T . Assume S and T convex and for each k, Gk

bounded and bilinear on S×T .

Note Obviously this covers the finite case where Gk is defined on I × J , S = ∆(I),T =
∆(J ) and Gk(s, t) = Es,tG

k . However even if one starts with real payoff functions Gk on
A× B where A and B are convex sets and valA×BGk exists, there is a need for a mixed
extension A =∆(A), B =∆(B) with Gk(α,β) = Eα,β Gk on A × B. Mixed actions are not
only used for convexification of the action sets but also to have a linear structure on the
payoff that allows to control the information (this aspect was known by Borel, see Sorin
[78]).

The game is played as follows: k ∈ K is selected according to p and told to Player 1
(the maximizer) while Player 2 only knows p. In normal form, Player 1 chooses s = {sk}
in SK , Player 2 chooses t in T and the payoff is Gp(s, t) = ∑

k pkGk(sk, t). Let v(p) =
supSK infT Gp(s, t) and v(p) = infT supSK Gp(s, t). Then both are concave in p on P , the
first thanks to the splitting procedure, the second as an infimum of linear functions, see e.g.
Sorin [77], Chapter 2.

Following De Meyer [22, 23], one introduces for each z ∈ Rk , the “dual game” G∗(z),
where Player 1 chooses k and plays s in S while Player 2 plays t in T and the payoff is

h[z](k, s; t) = Gk(s, t)− zk.

Define by w(z) and w(z) the corresponding maxmin and minmax. One has:

w(z) = sup
∆(K)×SK

inf
T

[
Gp(s, t)− 〈p, z〉

]
= sup

∆(K)

[
sup
SK

inf
T

(
Gp(s, t)

)
− 〈p, z〉

]
(33)

hence is convex in z. Similarly:

w(z) = inf
T

sup
∆(K)×SK

[
Gp(s, t)− 〈p, z〉

]
= inf

T
sup

S

[
sup

k

(
Gk(s, t)− zk

)]
. (34)

Let z = ∑
m α

mz(m) be a barycentric combination in Rk and for ε > 0, t (m) an ε-optimal
strategy of Player 2 in G,(z(m)). Thus:

Gk
(
s, t (m)

)
− zk(m)≤w

(
z(m)

)
+ ε, ∀s ∈ S, k ∈K.

Defining t = ∑
m α

mt (m) one obtains, by linearity:

Gk(s, t)− zk ≤
∑

m

αmw
(
z(m)

)
+ ε, ∀s ∈ S, k ∈K

which implies w(z)≤∑
m α

mw(z(m)) + ε, hence w is also convex in z.
Obviously, since G is bounded v and v are Lipschitz in p and w, w are 1-Lipschitz in z.
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Theorem 5.1 The following duality relations hold:

w(z) = max
p∈∆(K)

{
v(p)− 〈p, z〉

}
, (35)

v(p) = inf
z∈RK

{
w(z) + 〈p, z〉

}
, (36)

w(z) = max
p∈∆(K)

{
v(p)− 〈p, z〉

}
, (37)

v(p) = inf
z∈RK

{
w(z) + 〈p, z〉

}
. (38)

Proof

w(z) = max
∆(K)

[
max
SK

min
T

(
Gp(s, t)

)
− 〈p, z〉

]
= max

∆(K)

[
v(p)− 〈p, z〉

]

by definition, hence (35) and the dual equation (36) holds by Fenchel duality since v(p) is
concave and continuous.

Let us now prove (38). Given ε > 0 and t an ε-optimal strategy of Player 2 in G,(z) one
has:

Gk(s, t)− zk ≤w(z) + ε, ∀s ∈ S, k ∈K

which implies for all p ∈∆(K), s ∈ SK :

Gp(s, t)≤w(z) + ε+ 〈p, z〉

and in particular, for all z ∈Rk :

v(p)≤w(z) + 〈p, z〉

hence:

v(p)≤ inf
z∈RK

{
w(z) + 〈p, z〉

}
.

Let now t be ε-optimal in Gp and define z(t) to be the vector payoff that t guarantees to
Player 2: zk(t) = maxS Gk(s, t). Optimality of t implies

〈
p, z(t)

〉
≤ v(p) + ε.

On the other hand, by playing t in G,(z(t)) Player 2 obtains at most 0; hence w(z(t)) ≤ 0
which implies

〈
p, z(t)

〉
+ w

(
z(t)

)
≤ v(p) + ε

and equality in (38).
Finally (37) follows again by Fenchel duality since w(z) is convex and continuous. !

In terms of strategies one has the following correspondences:

Corollary 5.1 Let ε > 0.

(1) Given z, let p achieve the maximum in (35) and s be ε-optimal in Gp : then (p, s) is
ε-optimal in G∗(z).

(2) Given p, let z achieve the infimum up to ε in (37) and t be ε-optimal in G∗(z): then t is
also 2ε-optimal in Gp .
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5.2 The Recursive Equation for the Dual Game

Consider now a game with incomplete information on one side and recall the recursive
formula for Gn:

(n + 1)vn+1(p) = max
x∈XK

min
y∈Y

{∑

k

pkxkGky + n
∑

i

x̂(i)vn

(
p(i)

)}
(39)

with x̂(i) = ∑
k pkxk(i) and pk(i) = Prob (k|i). Note that, since Player 1 knows p(i), this

formula allows to construct inductively an optimal strategy for him in Gn(p) (and in addition
p(i) will be a “state variable”).

There are two issues here: first in the “true” game, Player 2 does not know p(i), second
the state variable is the martingale p(i). The use of the dual game will be of interest for
two purposes: construction of optimal strategies for the uninformed player and asymptotic
analysis, De Meyer [23], De Meyer and Rosenberg [25].

Given Gn, let us consider the dual game G,
n and its value wn. From (35) or (37) one has

wn(z) = max
p∈∆(K)

{
vn(p)− 〈p, z〉

}

which, by using (39), leads to the recursive equation in the dual game:

(n + 1)wn+1(z) = min
y∈Y

max
i∈I

nwn

(
n + 1

n
z− 1

n
Giy

)
. (40)

In particular Player 2 has an optimal strategy in G,
n+1(z) that depends only on z and the

previous moves of the players: at stage 1 play y optimal in (40) and from stage 2 on, given
the move i1 of Player 1 at stage 1, play optimally in G,

n(
n+1
n

z− 1
n
Gi1y). Here z plays the

role of a “state variable”. Obviously a similar analysis is valid for Gλ and its dual.

5.3 The Associated Differential Game

The second advantage of dealing with (40) rather than with (39) is that the state variable
evolves smoothly from z to z + 1

n
(z−Giy) while the martingale p(i) could have jumps.

We follow Laraki [35] in considering wn as the value of the time discretization with mesh
1
n

of a differential game on [0,1] with dynamic ζ(t) ∈RK given by:

dζ

dt
= xtGyt , ζ(0) =−z

xt ∈X, yt ∈ Y and terminal payoff maxk ζ
k(1). Basic results of differential games of fixed

duration, see Appendix, show that the game starting at time t from state ζ has a value
ϕ(t, ζ ), which is the only viscosity solution of the following partial differential equation
with boundary condition:

∂ϕ

∂t
+ u(Dϕ) = 0, ϕ(1, ζ ) = max

k
ζ k. (41)

Hence ϕ(0,−z) = limn→∞wn(z) = w(z). Using Hopf’s representation formula, one ob-
tains:

ϕ(1− t, ζ ) = sup
a∈RK

inf
b∈RK

{
max

k
bk + 〈a, ζ − b〉 + tu(p)

}
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and finally w(z) = supp∈∆(K){u(p) − 〈p, z〉}. Hence limvλ = limvn = Cav∆(K)u, by tak-
ing the Fenchel conjugate. An alternative identification of the limit is through variational
inequalities by translating in the primal the viscosity properties in the dual in terms of local
sub- and super-differentials. This leads to the properties (26).

5.4 Differential Games with Incomplete Information

Similar tools have been recently introduced by Cardaliaguet [11] to study differential games
of fixed duration and incomplete information on both sides Γ (p,q)[θ, t], see also the more
general case of stochastic differential games with incomplete information developed in
Cardaliaguet and Rainer [17], and in this issue by Buckdahn, Cardaliaguet and Quincam-
poix, [8].

K and L are finite sets and for each (k, 8) there is a differential game Γ k8 on [0, T ] with
control sets U and V (see Appendix for the hypotheses and a short reminder). The initial po-
sition is zk8

0 ∈Zk8, the dynamics is f k8(zk8, t, u, v), the running payoff is γ k8(zk8, t, u, v) and
the terminal payoff γ̄ k8(zk8). k ∈K is chosen according to p ∈∆(K) and told to Player 1,
similarly 8 ∈ L is chosen according to q ∈∆(L) and told to Player 2. Then Γ k8 is played.
The corresponding game is Γ (p,q)[z0,0]. Γ (p,q)[z, t] starting from z = {zk8} at time t is
defined similarly. Note that the players use their information in choosing a strategy but in
addition they have to use mixed strategies: α ∈ Ā is the choice at random of an element in A.
Hence a strategy for Player 1 is described by a profile α̂ = {αk} ∈ ĀK . The payoff induced by
a couple of profiles (α̂, β̂) in Γ (p,q)[z, t] is Gp,q[z, t](α̂, β̂) = ∑

k,8 p
kq8Gk8[z, t](αk,β8)

where Gk8[z, t](αk,β8) is the payoff in the game Γ k8 induced by the (random) strategies
(αk,β8).

Remark that Γ (p,q)[z, t] can be considered as a game with incomplete information on
one side where Player 1 knows which of the games Γ (k, q)[z, t] will be played, where k has
distribution p and Player 2 in uninformed. In particular the analysis of Section 5.1 applies.
Let us consider the minmax in Γ (p,q)[z, t]:

V (p,q)[z, t] = inf
β̂

sup
α̂

Gp,q[z, t](α̂, β̂) = inf
{β8}

sup
{αk }

∑

k

pk

{∑

8

q8Gk8[z, t]
(
αk,β8

)}
.

The dual game with respect to k and with parameter θ ∈RK has a minmax that satisfies (34)

W(θ,q)[z, t] = inf
β̂

sup
α∈Â

max
k

{∑

8

q8Gk8[z, t]
(
αk,β8

)
− θk

}

and (37)

W(θ,q)[z, t] = max
p∈∆(K)

{
V (p,q)[z, t] − 〈p, θ〉

}
.

Note that V (p,q)[z, t] does not obey a dynamic programming equation: the players ob-
serve the controls not the profiles, but W(θ,q)[z, t] will satisfy a subdynamical program-
ming equation. First the max can be taken on A, then one obtains, if Player 2 ignores his
information:

Proposition 5.1

W(θ,q)[z, t] ≤ inf
β∈B

sup
α∈A

W
(
θ(t + δ), q

)
[zt+δ, t + δ] (42)

where zt+δ = zt+δ(α,β, z, t) and θk(t + δ) = θk −∑
8 q

8
∫ t+δ

t
γ k8(zk8

s , s,us ,vs) ds.
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Assume that the following Hamiltonian H satisfies Isaacs’s condition:

H(z, t, ξ,p, q) = inf
v

sup
u

{〈
f (z, t, u, v), ξ

〉
+

∑

k,8

pkq8γ k8
(
zk8, t, u, v

)}

= sup
u

inf
v

{〈
f (z, t, u, v), ξ

〉
+

∑

k,8

pkq8γ k8
(
zk8, t, u, v

)}
.

Here f (z, ·, ·, ·) stands for {f k8(zk8, ·, ·, ·)} and ξ = {ξk8}.
Given Φ ∈ C 2(Z × [0, T ] × RK), let L̄Φ(z, t, p̄) = max{〈D2

ppΦ(z, t, p̄)ρ,ρ〉;ρ ∈
Tp̄∆(K)} where Tp̄∆(K) is the tangent cone to ∆(K) at p̄.

The crucial idea is to use (37) to deduce from (42) the following property on V :

Proposition 5.2 V is a viscosity subsolution for H in the sense that: for any given q̄ ∈∆(L)

and any test functionΦ ∈ C 2(Z×[0, T ]×RK) such that the map (z, t,p) +→ V (z, t,p, q̄)−
Φ(z, t,p) has a local maximum on Z× [0, T ] ×∆(K)) at (z̄, t̄ , p̄) then

max
{
L̄Φ(z̄, t̄ , p̄); ∂tΦ(z̄, t̄ , p̄) + H

(
z̄, t̄ ,DzΦ(z̄, t̄ , p̄), p̄, q̄

)}
≥ 0. (43)

A similar dual definition, with L, holds for a viscosity supersolution.
Finally a comparison principle extending Theorem A.3 proves the existence of a value V .

Theorem 5.2 let F1 and F2: Z × [0, T ] × ∆(K) × ∆(L) +→ R be Lipschitz and saddle
(concave in p and convex in q). Assume that F1 is a subsolution and F2 a supersolution
with F1(·, T , ·, ·)≤ F2(·, T , ·, ·), then F1 ≤ F2 on Z× [0, T ] ×∆(K)×∆(L).

Using this characterization Souquière [85] shows that in the case where f and γ are inde-
pendent of z and the terminal payoff is linear, V = MZ(U) where U is the value of the non
revealing game and thus recovers Mertens–Zamir’s result through differential games. This
property does not hold in general, see examples in Cardaliaguet [12]. However one has the
following approximation procedure. Given a finite partition Π of [0,1] define inductively
VΠ by:

VΠ(z, tm,p, q) = MZ
[

sup
u

inf
v

{
VΠ

(
z + δm+1f (z, tm,u, v), tm+1,p, q

)

+ δm+1

∑

k8

pkq8γ k8
(
zk8, tm,u, v

)}]

where δm+1 = tm+1 − tm. Then using results of Laraki [34, 36], Souquière [85] proves that
VΠ converges uniformly to V , as the mesh of Π goes to 0. This extends a similar construc-
tion for games with lack of information on one side in Cardaliaguet [13], where moreover
an algorithm for constructing approximate optimal strategies is provided. Hence the MZ op-
erator (which is constant in the framework of repeated games: this is the time homogeneity
property) appears as the true infinitesimal operator in a non autonomous framework.

5.5 Continuous Time

In the same vein Cardaliaguet and Rainer [18] consider a continuous time game on [0, T ]
with incomplete information on one side and payoff function γ k(t, u, v). Let H(p, t) =
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valU×V

∑
k pkγ k(t, u, v). Then using the previous characterization they prove that the

value is given by

V (t,p) = sup
p∈M(p)

E
∫ T

t

H
(
s,p(s)

)
ds

where M(p) is the set of càdlàg time martingales in ∆(K) starting from p. In addition
they provide the construction of an optimal strategy for the informed player and explicit
computations. (Compare with the splitting game, Section 4.3). More on this can be found in
this issue, see Buckdahn, Cardaliaguet and Quincampoix, [8].

6 Uniform Approach

6.1 Basic Results

Concerning games with lack of information on one side, Aumann and Maschler (1966)
proved the existence of a uniform value, see [2] and the famous formula v(p) =
Cavp∈∆(K)u(p). For games with lack of information on both sides, Aumann and Maschler
(1967) proved that the maxmin and minmax exist, see [2], with moreover an explicit for-
mula:

v(p,q) = Cavp∈∆(K)Vexq∈∆(L)u(p, q),

v(p, q) = Vexq∈∆(L)Cavp∈∆(K)u(p, q).

They also construct games without a value. For several extensions to the dependent case and
signaling structure, mainly due to Mertens and Zamir, see Sorin [77].

In the framework of stochastic games with standard signaling (i.e. the moves are an-
nounced) the proof of the existence of a uniform value was obtained first for the “Big Match”
by Blackwell and Ferguson [7], then for absorbing games by Kohlberg [30]. The main proof
for general finite stochastic games is due to Mertens and Neyman [47]. This last result uses
properties obtained by Bewley and Kohlberg [4] through their algebraic approach for vλ to
build an ε-optimal strategy as follows. One constructs a map λ̄ and a sufficient statistics Ln

of the past history at stage n such that σ is, at that stage, an optimal strategy in the game
with discount parameter λ̄(Ln). In fact the result depends only on a property of the family
{vλ} and allow one to extend the proof to absorbing (resp. recursive) games with compact
action sets, Mertens, Neyman and Rosenberg [48] (resp. Vigeral [90]).

A first connection between incomplete information games and stochastic games is the so
called “symmetric case”. This corresponds to games where the state in M may not be known
by the players but their information is symmetric (hence includes their actions). The natural
state space is the set of probabilities on M and the analysis reduces to a stochastic game on
∆(M), which is no longer finite but the state process is very regular (martingale), Kohlberg
and Zamir [31].

A collection of results proving the existence of the maxmin and/or the minmax for
some classes of games includes Mertens and Zamir [51], Rosenberg and Vieille [71], Sorin
[74, 75], see Sorin [77], Chapter 6 for a survey.

6.2 Dynamic Programming and MDP

In the framework of general dynamic programming (one person stochastic game with a state
space Ω , a correspondence C from Ω to itself and a real bounded payoff g on Ω) Lehrer
and Sorin [41] gave an example where limn→∞ vn and limλ→0 vλ both exist and differ. They
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also proved that uniform convergence (on Ω) of vn is equivalent to uniform convergence of
vλ and then the limits are the same. However this condition alone does not imply existence
of the uniform value, v∞, see Lehrer and Monderer [40], Monderer and Sorin [53].

Recent advances have been obtained by Renault [63] introducing new notions like the
values vnm (resp. νnm) of the game where the payoff is the average between stage n + 1 and
n + m (resp. the minimum of all averages between stage n + 1 and n + 8 for 8≤m).

Theorem 6.1 Assume that the state space Ω is metric compact and the family of functions
vnm and νnm are uniformly equicontinuous. Then the uniform value v∞ exits.

Player 1 cannot get more than minm maxn νnm and under the above conditions this quan-
tity is also maxn minm νnm (and the same with ν replaced by v). In particular when applied to
Markov Decision Process (finite state space K , move space I , signal space A and transition
from K × I to K ×A) the previous result implies:

Theorem 6.2 General MDP processes with finite state space have a uniform value.

This extends previous result by Rosenberg, Solan and Vieille [66]. For further devel-
opment to the continuous time setup, see Quincampoix and Renault [61], Oliu-Barton and
Vigeral [58].

6.3 Games with Transition Controlled by One Player

Consider now a game where Player 1 controls the transition on the state: basic examples
are stochastic games where the transition is independent of the moves of Player 2, or games
with incomplete information on one side (with no signals); but this class also covers the case
where the state is random, its evolution independent of Player 2’s moves and Player 1 knows
more than Player 2.

Again here Player 1 cannot get more than minm maxn νnm. One reduces the analysis of
the game to a dynamic programming problem by looking at stage by stage best reply of
Player 2 (whose moves do not affect the future of the process) and the finiteness assumption
on the basic data implies

Theorem 6.3 (Renault [64]) In the finite case, games with transition controlled by one
player have a uniform value.

The result extends previous work of Rosenberg, Solan and Vieille [69] and also the model
of Markov game with lack of information on one side, Renault [62] for which explicit formu-
las are not yet available (Marino [44], Horner, Rosenberg, Solan and Vieille [28], Neyman
[55]).

6.4 Stochastic Games with Signals

Consider a stochastic game and assume here that the signal to each player reveals the current
stage but not necessarily the previous action of the opponent. By the recursive formula for
vλ and vn, or more generally vΘ , these quantities are the same than in the standard signal-
ing case since the state variable is not affected by the change in the information. However
for example in the Big Match, when Player 1 has no information on Player 2’s action the
max min is 0 (Kohlberg [30]) and the uniform value does not exist.

It follows that the existence of a uniform value for stochastic games depends on the
signaling structure on actions. However, one has the following property:
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Theorem 6.4 Maxmin and minmax exist in stochastic games with signals.

This recent result, due to Coulomb [19], and Rosenberg, Solan and Vieille [67] is ex-
tremely involved and relies on the construction of two auxiliary games. Consider the maxmin
and some discount factor λ. Introduce equivalence relation among the mixed actions y and y ′

of Player 2 facing the mixed action x of Player 1 by y ∼ y ′ if they induce the same transition
on the signals of Player 2 for each action i having significant weight (≥Lλ) under x. Define
now the maxmin value of a discounted game where the payoff is the minimum with respect
to an equivalence class of Player 2. This quantity will satisfy a fixed point equation defined
by a semialgebraic set and the same analysis than in Mertens and Neyman [47] applies. It
remains to show, for Player 1, that this auxiliary payoff indeed can be achieved in the real
game. As for Player 2, he will first follow a strategy realizing a best reply to σ of Player 1
up to a stage where the equivalence relation will allow for an indistinguishable switch in
action. He will then change his strategy to obtain a good payoff from this on, without being
detected.

An illuminating example, due to Coulomb [19], is as follows:

α β γ

a 1∗ 0∗ L

b 0 1 L

Payoffs (L large)

α β γ

a ? ? ?
b A B A

Signals to Player 1

Player 2 will start by playing (0, ε,1− ε) and switch to (1− ε, ε,0) when the probability
under σ of a in the future is small enough.

For an overview, see Rosenberg, Solan and Vieille [68].

7 Comments, Conjectures and Open Problems

7.1 Comments

The above analysis shows that the same tools can be used for vn and vλ, even for general
evaluation and presumably for all random duration processes . . . (Recall that Gn has finitely
many stages while Gλ has infinitely many; that vn satisfies a recurrence property while vλ
appears as a fixed point . . . ) By considering the associated game on [0,1] one obtains a
single point of view.

In a similar way, there is a unification in terms of structure of proofs from incomplete
information games to stochastic games and mixture of those.

Moreover several concepts introduced in RG extend to the non autonomous framework,
but at a differential level (on an interval of time on which the structure is essentially station-
ary).

Among the main relations between RG and DG (in addition to Section 2) one can note:

• The recursive formula which is a discrete version of the dynamic programming formula.
• RG with symmetric incomplete information on the state, Kohlberg and Zamir [31], are

similar to DG on the Wasserstein space, Cardaliaguet and Quincampoix [14].
• The use of comparison principles. We can distinguish 3 types: (1) in DG there are two

variational inequalities satisfied by the max minv(p) and by the min maxv(p) and one
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uses a comparison principle to prove that v(p)≥ v(p); (2) in RG one has a family of func-
tions satisfying a (parametrized) functional equation. Then the lim sup (resp. lim inf) of
this family obeys a functional inequality and a comparison principle applies, see Mertens
and Zamir [50]; (3) one shows uniqueness of the accumulation points of the family by
checking a comparison principle at specified points for a class of functions (fixed points
of the projective operator).

Formally the tools are very similar: in (43) the presence of L̄ localizes the point and one
works with the family of saddle functions.

The main differences are:

(1) In the RG framework one cannot directly go to the limit in time. The main obstacles are:
(i) the difficulty to define the strategies in continuous time while taking into account the
information structure (one has to find a finite dimensional summary, i.e. exhaustive sta-
tistics of the past history, see e.g. Mertens and Zamir [51]), (ii) the fact that the dynamics
of the state variable may not be smooth (see e.g. the double scale in Sorin [76]).

(2) For RG one has equality in the recursive formula for a family of functions then one
looks for the existence of a limit.

(3) In the DG framework the limit game is given but 2 equations are obtained for the
maxmin and the minmax. The time discretization is used to obtain equality.

Notice finally that, while even restricted to the zero-sum case, this survey is far to be
complete: among several very active domains not covered, let us mention stopping games
where the results and tools are quite similar to those considered here: see Laraki and Solan
[38] and the survey by Solan and Vieille [73].

7.2 Conjectures

Let us consider the general model of Section 3. Assume that all sets under consideration are
finite: M , A, B , I and J .

The first conjecture is that the asymptotic value exists in the following strong sense:

(1) limλ→0 vλ exists, similarly
(2) limn→∞ vn exists, or more generally for any admissible family of random duration

processes
(3) limE(Θ)→∞ vΘ exists, and in addition the limit is the same
(4) limλ→0 vλ = limn→∞ vn = limE(T )→∞ vT = v.

A second conjecture is that v and v exist in this framework. A third conjecture is that in
games where the information of Player 1 contains the information of Player 2, the maxmin
is equal to the asymptotic value: v = v, see Mertens [46], Mertens, Sorin and Zamir [49],
Coulomb [20]. A last one is that the asymptotic value exists in stochastic games with finite
state space, compact action sets and continuous payoff and transition function.

7.3 Open Problems

(1) Characterization of v: A basic problem is to identify the asymptotic value, namely to
find the analog of the MZ operator. A first class to consider is finite stochastic games
and one looks for an operator proof of existence of limλ→0 vλ.
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(2) Construction of the limit game: Note that in games with incomplete information one
can imagine 3 different limit games. The first one corresponds to the asymptotics of
the auxiliary game used in the generalized Shapley operator. Then there are two other
games related to each dual game.
When dealing with games with incomplete information on one side the auxiliary limit
game is also the dual limit game for Player 1 and the optimal strategy of Player 1 is
trivial: splitting at time 0 to realize the Cav. The extension to the non autonomous case
is in Cardaliaguet and Rainer [18]. The dual limit game for Player 2 corresponds to
the differential game introduced by Laraki [35]. Note that this is basically a game in
continuous time.
Among the important questions are the similar constructions for games with lack of
information on both sides, in particular to deduce properties of optimal strategies in
long games, see De Meyer [24].

(3) Given a pair of stationary optimal strategies in a discounted stochastic game xλ(ω) and
yλ(ω) the payoff in each state ω is determined, say zλ(ω). Given the transition matrix
Rλ(ω,ω′) = ∑

ij xi
λ(ω)y

j
λ(ω)Q(i, j,ω)(ω′), the occupation measure µλ starting from

state ω is defined by

µλ[ω](ω′) =
∞∑

n=1

λ(1− λ)n−1Rn−1
λ (ω,ω′)

and corresponds to the fraction of the length of the game spent in state ω′. Obviously
one has vλ(ω) = 〈µλ[ω](·), zλ(·)〉. If both state space and action spaces are finite all the
above quantities are semi-algebraic functions of λ hence limits as λ goes to 0 exist and
one obtains as well limλ→0 vλ(ω) = v(ω) = 〈µ[ω], z〉.
Is it possible to identify directly these quantities through variational inequalities??
What is the relation with the limit game?

(4) The stationary aspect of the RG implies that, in the limit games, optimal strategies will
be independent of the time: they will simply be a function of the current “state”. On
could also think that the corresponding stage payoff would be constant, hence equal to
v, see in this direction Sorin, Venel and Vigeral [82].

(5) Asymptotic approach with random duration process: The question is to find conditions
on the non expansive operator T to deduce from the existence of an asymptotic value
for deterministic evaluations the analog for the random case.

(6) Recursive structure with signals: Consider a game with lack of information on both
sides and assume that the signals on the actions are independent of the state. However
the natural belief space can be quite complex for example if Player 1 does not know the
signal of Player 2. Mertens [45] introduced then a majorant and a minorant game and
proved that they have the same asymptotic value. What would be the analog in terms of
recursive formula?

(7) Extension to the dependent case: Consider an incomplete information game where the
unknown parameter k ∈K is chosen according to p and the players have private infor-
mation described by private partitions K1 and K2. Define the dual games and construct
optimal strategies.

(8) Speed of convergence: For games with incomplete information the speed of conver-
gence of vn (resp. vλ) to its limit is 1√

n
(resp.

√
λ), Aumann and Maschler [2], Mertens

and Zamir [50]. What is the relation with the approximation schemes having the same
property in Souganidis [83]?
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Appendix: Quantitative DG and Viscosity Solutions

We describe very briefly the main tools in the proof of existence of a value, due to Evans
and Souganidis [26], but using NAD strategies.

Consider the case defined by (1) under the following assumptions:

(1) U and V are compact sets in RK .
(2) Z = RN .
(3) All functions f (dynamics), γ (running payoff), γ̄ (terminal payoff) are bounded, jointly

continuous and uniformly Lipschitz in z.
(4) Define the Hamiltonians H+(p, z, t) = infv supu{〈f (z, t, u, v),p〉 + γ (z, t, u, v)} and

H−(p, z, t) = supu infv{〈f (z, t, u, v),p〉+γ (z, t, u, v)} and assume that Isaacs’s condi-
tion holds: H+(p, z, t) = H−(p, z, t) = H(p, z, t), for all (p, z, t) ∈RN ×RN ×[0, T ].

For T ≥ t ≥ 0 and z ∈ Z, consider the game on [t, T ] starting from z and let v[z, t] and
v[z, t] denote the corresponding minmax and maxmin. Explicitly

v[z, t] = inf
β

sup
α

[∫ T

t

γs ds + γ̄ (ZT )

]

where γs = γ (zs , s,us ,vs) is the payoff at time s and (z,u,v) is the trajectory induced by
(α,β) and f on [t, T ] with zt = z. Hence us = us(α,β),vs = vs(α,β), zs = zs(α,β, z, t).
The first property is the following dynamic programming inequality:

Theorem A.1 For 0≤ t ≤ t + δ ≤ T , v satisfies:

v[z, t] ≤ inf
β

sup
α

{∫ t+δ

t

γ
(
zs(α,β, z, t), s,us(α,β),vs(α,β)

)
ds + v

[
zt+δ(α,β, z, t), t + δ

]}
.

(44)

In addition v is uniformly Lipschitz in z and t .
Property (44) implies in particular that for any C 1 function Φ on [0, T ] ×Z with Φ[t, z] =
v[t, z] and Φ ≥ v in a neighborhood of (t, z) one has, for all δ > 0 small enough:

inf
β

sup
α

{
1
δ

∫ t+δ

t

γ
(
zs(α,β, z, t), s,us(α,β),vs(α,β)

)
ds

+ Φ[zt+δ(α,β, z, t), t + δ] −Φ[t, z]
δ

}
≥ 0. (45)

Letting δ going to 0 implies that Φ satisfies the following property

inf
v

sup
u

{
γ (z, t, u, v) + ∂tΦ[z, t] +

〈
DΦ[z, t], f (z, t, u, v)

〉}
≥ 0

which gives the differential inequality:

Theorem A.2

∂tΦ[z, t] + H+(
DΦ[z, t], z, t

)
≥ 0. (46)

The fact that any smooth local majorant of v satisfies (46) can be express as: v is a viscosity
subsolution of the equation ∂tW [z, , t]+H+(DW [z, t], z, t) = 0. Obviously a dual property
holds. One use then Assumption (3) and the next comparison principle:
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Theorem A.3 Let W1 be a viscosity subsolution and W2 be a viscosity supersolution of

∂tW [z, t] + H
(
DW [z, t], z, t

)
= 0

then W1[T , ·] ≤W2[T , ·] implies W1[t, z] ≤W2[z, t],∀z ∈Z,∀t ∈ [0, T ],

to obtain finally:

Theorem A.4 The differential game has a value:

v[z, t] = v[z, t].

In fact the previous Theorem A.3 implies v[z, t] ≤ v[z, t].
Note that the comparison Theorem A.3 is much more general and applies to W1 s.c.s.,

W2 s.c.i., H uniformly Lipschitz in p and satisfying: |H(p, z1, t1)−H(p, z2, t2)| ≤ C(1 +
‖p‖)‖(z1, t1)− (z2, t2)‖. Also v is in fact, even without Isaacs’s condition, a viscosity solu-
tion of ∂tW [z, t] + H+(DW [z, t], z, t) = 0.

For complements see e.g. Souganidis [84] , Bardi and Capuzzo Dolcetta [3] and for
viscosity solutions Crandall, Ishii and Lions [21].
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