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Abstract

In a 2-person Nash equilibrium, any pure strategy is evaluated
against the same mixed strategy of the opponent. The equilibrium
condition says that all pure strategies used at equilibrium are best
replies, hence they give the same payoff. We keep here the last two re-
quirements (best reply and same payoff) but relax the first one (facing
the same opponent’s strategy) in the spirit of correlated distributions.
We obtain a concept that has a natural interpretation in terms of
equilibrium of populations: the various active genotypes have specific
fitness and present also different norms of behavior.

Résumé

Dans un équilibre de Nash d’un jeu à deux joueurs, chaque stratégie
pure est évaluée contre la même stratégie mixte de l’adversaire. La condi-
tion d’équilibre dit que toutes les stratégies pures utilisées à l’équilibre sont
des meilleures réponses, donc donnent le même paiement. Nous conservons
ici les deux dernières propriétés (meilleure réponse et même paiement) mais
nous nous affranchissons de la première (confrontation à une stratégie mixte
identique), dans l’esprit des distributions corrélées. Nous obtenons un concept,
équilibre en distribution, qui a une interprétation naturelle en termes d’équilibre
de populations: les différents génotypes présentent des particularités au
niveau aussi bien de la “fitness” que des normes de comportement.
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1 Presentation

Consider a strategic form game defined by a finite set I of players and for
each i∈I, a finite strategy set Si and a payoff function gi from the product
S = ×i∈IS

i to IR. Let Σi = ∆(Si) be the corresponding set of mixed
strategies and denote Σ = ×i∈IΣ

i.
Let σ be a Nash equilibrium profile. If σi(si) > 0, si is best reply for player
i to the strategy used by the other players, when she is playing si. Call this
property (A).
Since in fact the strategy she is facing, namely σ−i∈Σ−i =

∏

j 6=iΣ
j , is inde-

pendent of her own move si (Property (B)), a consequence of (A) is: the
payoff of player i, gi(si, σ−i) is constant (and maximal) on the support of σi.
Call this last property (C).
When dealing with a correlated equilibrium distribution (Aumann, 1974)
Q∈∆(S), condition (A) is kept: if Q(si×S−i) > 0, then si is a best reply for
player i to the conditional distribution Q(.|si) on S−i. However usually the
corresponding payof:

γi(si; Q)≡
1

Q(si×S−i)

∑

s−i∈S−i
Q(si, s−i)g(si, s−i)

does vary with si.
We consider here a concept of equilibrium that does not require (B), but
keeps both Properties (A) and (C).

2 Definition

The formal definition is as follows:

Definition

A distribution equilibrium is a correlated equilibrium distribution indu-
cing for each player a payoff independent of her move. Formally:
DE = {Q∈∆(S) ; Q is a correlated equilibrium distribution and for all i
and all si, ti in Si, Q(si×S−i)Q(ti×S−i) > 0 implies γi(si; Q) = γi(ti; Q)}

The above requirements can be written in several ways like:
∃ci∈IR, such that:
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∑

s−i∈S−i

Q(si, s−i)gi(si, s−i) = ci
∑

s−i∈S−i

Q(si, s−i), ∀si

∑

s−i∈S−i

Q(si, s−i)gi(ti, s−i) ≤ ci
∑

s−i∈S−i

Q(si, s−i), ∀si, ti

where ci is the equilibrium payoff of player i and Q(si, .) is the (unnormalized)
strategy that she is facing, given si.

An alternative formulation is, with gi(Q) =
∑

s∈S Q(s)gi(s):

∑

s−i∈S−i

Q(si, s−i)(gi(ti, s−i) − gi(Q)) ≤ 0, ∀si, ti (1)

3 Interpretation

The interpretation is deeply related to the population (mass action) inter-
pretation of Nash equilibria (Nash (1950), see also Leonard (1994), the Nobel
seminar 1994 (1996) and Aumann (1997)).
Let us first consider the case of a two person symmetric game described by
an I×I matrix A: Aij is the fitness of type i meeting type j.
A mixed strategy represents the composition of the population and a sym-
metric Nash equilibrium satisfies simultaneously both requirements for long
term stability:
1) no mutation is advantageous (if type i present in equilibrium mutates to
type j he will not increase his (expected) fitness).
2) the expected fitness of each present type is equal, so that the composition
of the population does not change from one generation to the next one.
Note again that under the independence condition, property 1) implies prop-
erty 2). They are equivalent iff the equilibrium has full support: in this case
no “strategical” argument (like mutation, experimentation, ...) is needed.
Stability of the population implies equal expected fitness.
In our framework a symmetric distribution Q∈∆(I×I) describes the inter-
action of the population as a whole. More precisely we interpret the row
Q(i, .) as the (unnormalized) behavior of type i: he will match a type j with
frequency Q(i, j)/

∑

k∈IQ(i, k).
In case of a Nash equilibrium the “matching is uniform”, since every type
meets the average population; the difference between the types is thus only
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in the fitness characteristics.
In a distribution equilibrium the two previous requirements: stability versus
mutation and equal expected fitness are satisfied however the distribution
of matchings may be correlated. (In Mailath, Samuelson and Shaked (1997)
the fitness is not equal hence the composition of the population cannot be
stable).
Note however that the interpretation is very far from a correlated equilib-
rium (and from its use by Cripps (1991) or Shmida and Peleg (1997)). In
the latter case, once a signal is received, the only criteria is to maximize
the expected payoff and the payoff one could have obtained given another
signal is irrelevant. To be more explicit consider a canonical representation:
the private information to player i, namely her signal i hence the corres-
ponding conditional distribution Q(.|i), represents some information on the
opponent’s behavior that cannot be changed. A deviation would be a move
i′ different from the signal i.
On the other hand, in a distribution equilibrium the payoff of each type i is
specified by its own fitness function and the quantity Q(.|i) corresponding to
the matching behavior of type i.
Two kinds of deviations could be considered: in both cases the result is of
the form (i′, Q(.|i”)) with i′ 6=i” but the reference point, namely the initial
situation could be either (i′, Q(.|i′)) or (i”, Q(.|i”)).
Explicitely for each type i one obtains:
a) a deviation in terms of “imitation”: i joins the subpopulation of type i′

and follows their matching behavior Q(.|i′) (same fitness, new matching)
b) a deviation in term of “mutation”: i switches to type i′ while staying in
the i’s subpopulation (new fitness, same matching).
The distribution equilibrium condition (1) implies that none of these devi-
ation is profitable.
In addition condition (1) forces the composition of the population to be stable
. This is not a consequence of the two previous requirements (see Example
1). On the other hand under equal fitness property, robustness with respect
to deviations of kind a) or of kind b) are equivalent.
An correlated equilibrium distribution is robust with respect to deviations
of type b). (One could call “dual correlated equilibrium distributions” those
imune to deviation of type b)).

The extension of this idea to the general case is standard: it represents
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the interaction of I different populations and given the fitness characteristics
describes a “stable collection of behavior”: a distribution equilibrium .

4 Examples

The next first three examples deal with two person symmetric games.

4.1 Example 1

The game is described by:

A B
A
B

(

1 0
0 2

)

We will represent correlated distribution in tables. The Nash equilibria are:

1 0
0 0

0 0
0 1

4/9 2/9
2/9 1/9

A correlated equilibrium which is not a distribution equilibrium is given
by the classical public correlation:

1/2 0
0 1/2

In fact clearly type B meeting only type B will have a fitness of 2 hence will
invade the whole population.
(Note that this distribution is nevertheless also imune to deviations of type
a)).

A distribution equilibrium is given by the following probability distribu-
tion:
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12/20 3/20
3/20 2/20

Type A is facing:

4/5 1/5

hence is getting an average fitness of 4/5, while type B would obtain 2/5.
Similarly type B has the following norm of behavior:

3/5 2/5

and get the same fitness 4/5 while type A would realize 3/5.
The composition of the population is 3/4 of type A and 1/4 of type B.
The overall behavior process can be described as follows:

The interpretation is a follows. A large population consists of types A and
B with proportion (3/4, 1/4). The fitness of both types is described by the
initial matrix. At the distibution equilibrium a fraction 1/5 of individuals
of type A will match individuals of type B and a fraction 4/5 will match
individuals of type A. For type B the proportions are 3/5 to match A and
2/5 to match B.
For an individual of type A a deviation in terms of imitation would be to keep
the same fitness but to join the subpopulation B, hence to be matched with
a type A with probability 3/5 and B with probability 2/5. A deviation in
terms of mutation would be to have the fitness of type B while still following
the matching behavior of type A.
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In this example all distribution equilibria are symmetric and either BB
or of the form:

2t t(t − 1)
t(t − 1) t − 1

with 1 ≤ t ≤ 2, see Appendix.
A non-symmetric correlated equilibria is given by

2/3 0
1/6 1/6

4.2 Example 2

This example is due to Moulin and Vial (1978) and corresponds to the payoff:







0 1 3
3 0 1
1 3 0







The only Nash equilibrium is the symmetric uniform distribution (1/3, 1/3, 1/3)
with payoff 4/3 and the following is a distribution equilibrium:

0 1/6 1/6
1/6 0 1/6
1/6 1/6 0

which induces a payoff 2 that dominates the previous one.

4.3 Example 3

The next game is defined by:
(

4 0
1 5

)

A distribution equilibrium is given by:

1/2 1/6
1/6 1/6
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4.4 Example 4

We consider here zero-sum games.
Every correlated equilibrium payoff being equal to the value of the game, all
correlated equilibria are distribution equilibria.
The next example is due to Forges (1990):







0 0 1
0 0 −1
−1 1 0







The following distribution equilibrium is not a product of optimal strategies:

1/3 1/3 0
1/3 0 0
0 0 0

Like example 2, example 4 was produced to illustrate a specific correlated
equilibrium property, which was actually obtained by a distribution equilib-
rium.

4.5 Example 5

This is an non symmetric example with payoffs:

(

(1, 1) (0, 0)
(1, 0) (2, 1)

)

All disribution equilibria are given by (Bottom, Left) or the (unnormalized)
distribution:

t(t2 − 2) t
t2 t2 − 2

with t ∈[2, +∞].
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5 Properties

Theorem

Any game has a distribution equilibrium
Any symmetric game has a symmetric distribution equilibrium

The result immediately follows from the similar one for Nash equilibria.

It is clear from equation (1) that the set of distribution equilibria is com-
pact.
However examples 1 and 5 show that, unlike for correlated equilibria the set
is not convex, not even connected.
In addition example 5 shows that it is not a finite union of convex polyhedra.
Other features including generic properties are of interest (Sorin, 1998).

6 Appendix

We consider Example 1.
A distribution equilibrium is a distribution of the form:

a b
c d

Either d = 1 and the payoff is 2 or the distribution equilibrium payoff, being
the same for type A and B is less than 1 for both players.
We now prove that any distribution equilibrium is symmetric. Note that the
equilibrium conditions are positively homogeneous hence one can work in the
corresponding positive cone, IR4

+.
Assume thus by contradiction b6=c, hence e.g. b = c+1 (and d < 1). Remark
that b = 0 and d 6=0 is impossible since player 2 playing B would get 2 and
similarly b > 0 and d = 0 is impossible.
The equalizing condition for player 1 gives now:

a

a + b
=

2d

c + d

hence:
ac = ad + 2cd + 2d
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Similarly for player 2 one has:

a

a + c
=

2d

b + d

so that:
ac + a = ad + 2cd

hence the contradiction:

ad + 2cd + 2d > ad + 2cd = ac + a > ac.

We use thus the following parametrization:

1 − (2t + 1)ε tε
tε ε

with t ≥ 0 and ε ≥ 0.
For tε > 0 the equilibrium conditions are:

1 − (2t + 1)ε

1 − (t + 1)ε
=

2

1 + t

t

1 + t
≤

2

1 + t

2tε

1 − (t + 1)ε
≤

2

1 + t

From the first inequality one deduces:

ε =
t − 1

(t + 1)(2t − 1)

and the two others give t ≤ 2, hence the following representation, up to
normalization:

2t t(t − 1)
t(t − 1) t − 1

11



with 1 ≤ t ≤ 2 and payoff 2
1+t

.
t = 2 corresponds to the mixed equilibrium and t = 1 to the homogeneous A
distribution.

We consider now Example 5 with the same notation:

a b
c d

Either d = 1 and the payoff is 2, 1 or the distribution equilibrium payoff,
being the same for type A and B is less than 1 for both players.
It is easy to see that for d < 1 either a = 1 or the distribution has full support
(first c > 0, then b > 0). The equalizing condition for player 1 gives now:

a

a + b
=

2d

c + d

hence:
ac = ad + 2bd

Similarly for player 2 one has:

a

a + c
=

d

b + d

so that:
ab = cd

If b = c, we obtain a = d hence c = a + 2b, a contradiction.
Let us write b = c + θ. If θ > 0, one obtains cd = ab = ac + aθ > ac =
ad + 2bd = ad + 2(c + θ)d = 2cd + ad + 2θd > dc. So that c > b.

We use thus the following parametrization: c = tb with t > 1. The
previous equations are now:

tab = ad + 2bd

and
ab = tbd
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Thus we obtain:
t2bd = ad + 2bd

hence:
c = tb, a = td, a = (t2 − 2)b

One representation is given by:

t(t2 − 2) t
t2 t2 − 2

and the correlated equilibrium conditions imply t ≥ 2.
The equilibrium payoffs are t2−2

t2−1
and t2−2

(t+2)(t−1)
for player 1 and 2, respectively.

The value t = 2 of the parameter corresponds to the completely mixed equi-
librium (2/3, 1/3); (1/2, 1/2) and t = +∞ gives the pure one (Top, Left).
For t = 3 one obtains a payoff (7/8, 7/10) wich is not a convex combination
of (1, 1) and (2/3, 1/2).
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