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Abstract
The purpose of this work is the comparison of learning algorithms in continuous time used in
optimization and game theory. The first three are issued from no-regret dynamics and cover
in particular “Replicator dynamics” and “Local projection dynamics”. Then we study “Con-
ditional gradient” versus “Global projection” dynamics and finally “Frank-Wolfe” versus
“Best reply” dynamics. Important similarities occur when considering potential or dissipa-
tive games.
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1 Presentation

Wewill underline several links between first order convex optimization algorithms and game
learning dynamics.

The first processes aim at minimizing a function by using information on its gradient while
the second class describe trajectories generated by the joint choices of the players. However
we will see that, often under different names, similar ideas appear and analogous properties
hold.

A first group contains three variants of the extension to continuous time of the “projected
gradient dynamics” used with different regularization functions in optimization (Polyak [48];
Nemirovski and Yudin [43]; Nesterov [44]) under the names “Mirror descent” and “Dual
averaging”.
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We will describe the connection with replicator dynamics (Taylor and Jonker [65]) and
local projection dynamics in games (Dupuis and Nagurney [18]; Lakhar and Sandholm
[31]) and further properties (see e.g. Mertikopoulos and Sandholm [34]). Note that all these
dynamics satisfy the so-called “no-regret property”.

The next example of dynamics corresponds to “conditional gradient dynamics” in opti-
mization (Antipin [3]; Bolte [11]) and “global projection dynamics” in game theory (Friesz
et al. [22]; Tsakas and Voorneveld [66]).

In the last case we compare the famous “Frank-Wolfe algorithm” [21] and a version of
the “Best-reply dynamics” (Gilboa and Matsui [23]) applied to the linearized game.

2 Optimum and Equilibria

We will work under the following framework:

V is a normed vector space, finite dimensional, with dual V ∗ and duality map 〈V ∗|V 〉,
X is a compact convex subset of V (the compactness property is not necessary in opti-
mization but almost unavoidable when dealing with games).

2.1 Convex Optimization

Let us recall the basic property of convex optimization under constraints.
Given f convex and C1, the elements x̂ achieving:

min
X

f (x)

are given by the solutions of:

〈∇ f (x̂)|x̂ − y〉 ≤ 0, ∀y ∈ X . (1)

2.2 Variational Inequalities

We generalize the previous characterization to a definition for vector fields as follows:

Definition 1 Given g a continuous vector field from V to V ∗ (that will play the rôle of
−∇ f ) we introduce Sint (int is for internal) as the set of solutions, x̂ ∈ X , of the variational
inequality:

〈g(x̂)|x̂ − y〉 ≥ 0, ∀y ∈ X . (2)

Remark Note that in an Hilbertian framework, the solutions of (2) are equivalently the solu-
tions of:

�X (x̂ + g(x̂)) = x̂ (3)

where �C denotes the projection operator on a closed convex set C ; or the solutions of:

�T X(x̂)(g(x̂)) = 0 (4)

where TC(x) is the tangent cone to a closed convex set C at x ∈ C .
Recall also that:

�T X(x)(y) = lim
h→0

�X (x + hy) − x

h
.
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2.3 Product Case

The product case, which is the natural framework for games, is as follows:
V and V ∗ are product sets: V = ∏

i V
i , V ∗ = ∏

i V
i∗, i ∈ I (finite).

For each i ∈ I , the vector field gi maps the product X = ∏
i X

i to the dual space V i∗ and
one has:

〈g(x)|y〉 =
∑

i

〈gi (x)|yi 〉

so that x̂ ∈ Sint if and only if:

〈gi (x̂)|x̂ i − yi 〉 ≥ 0, ∀yi ∈ Xi ,∀i ∈ I , (5)

which corresponds to the representation in games, see below.

2.4 Games, Equilibria andVariational Inequalities

We will consider games where equilibria are solutions of variational inequalities.
Three basic classes where this is the case are as follows, see e.g. Sorin and Wang [63]:

(A) Finite games

I is the finite set of players.
Ai is the finite set of actions of player i and Xi = �(Ai ) is the simplex of mixed
strategies.
Player i’s payoff Gi is a map from A = ∏

j∈I A j → R, extended by multilinearity to

X = ∏
j∈I X j .

VGi denotes the associated vector payoff function from X−i to R
Ai
, VGi,p(x−i ) =

Gi (p, x−i ), for all p ∈ Ai , i ∈ I , so that Gi (x) = 〈xi , VGi (x−i )〉.
An equilibrium, Nash [41], is given by:

Gi (x) ≥ Gi (yi , x−i ), ∀yi ∈ Xi , ∀i ∈ I , (6)

thus is a solution of :

〈VG(x), x − y〉 =
∑

i∈I
〈VGi (x−i ), xi − yi 〉 ≥ 0, ∀y ∈ X . (7)

This corresponds to the set Sint for the vector field g(x) = (gi (x) = VGi (x−i ), i ∈ I ).

(B) Concave C1 games
I is the finite set of players with action sets {Xi , i ∈ I } and payoff functions {Hi , i ∈ I }.

Assume that each Xi is convex compact and that each Hi : X = ∏
j∈I X j → R is of class

C1 and concave with respect to xi .
An equilibrium is as above a profile x ∈ X satisfying:

Hi (x) ≥ Hi (yi , x−i ), ∀yi ∈ Xi , ∀i ∈ I , (8)

which under our hypotheses is equivalent to:

〈 ∇ i H i (x), xi − yi 〉 ≥ 0, ∀yi ∈ Xi , ∀i ∈ I , (9)

where ∇ i is the gradient w.r.t. xi .
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In this framework the vector field is given by : g(x) = {gi (x) = ∇ i H i (x), i ∈ I }.
(C) Population games
Consider a non atomic population with a finite set T of types. A configuration is a vector

x ∈ X = �(T ) specifying the proportion of each type in the population.
The payoff is defined by a continuous function φ from T × X → R where φ(p, x) is the

outcome of a member of the population, being of type p ∈ T , given the configuration x ∈ X .
AWardrop equilibrium, Wardrop [68], is a profile x ∈ X satisfying:

x p > 0 ⇒ φ(p, x) ≥ φ(q, x), ∀p, q ∈ T , (10)

meaning that if p is used by a positive fraction of the population, it is a best choice at x .
An equivalent characterization of (10) is through the solutions of the variational inequality:

∑

p∈T
φ(p, x)(x p − y p) = 〈φ(., x), x − y〉 ≥ 0, ∀y ∈ X ,

so that the corresponding vector field is g(x) = φ(., x).
The extension to a finite set I of populations, each of which having a finite set of types

T i is standard.
We denote by �(g) a game where the equilibrium set is defined through the vector field

g.
Note that this representation of equilibria via variational inequalities is usual in transporta-

tion and congestion models, e.g. Dafermos [17], Dupuis and Nagurney [18], Smith [58] and
in evolutionary game theory, e.g. Sandholm [54].

Recall that the minimization of a C1 convex function f on X corresponds to a variational
inequality with g = −∇ f . This implies two properties:

(i) g is dissipative,
(ii) g is a gradient.

These properties define two classes of vector fields that we consider now.

2.5 Dissipative Case

Let us first consider an alternative variational inequality associated to a vector field g.

Definition 2 Given a continuous vector field g, introduce the set Sext (ext is for external) of
solutions x̂ ∈ X of

〈g(y)|x̂ − y〉 ≥ 0, ∀y ∈ X . (11)

Observe that Sext is convex but can be empty. If g is continuous then Sext ⊂ Sint and if g is
dissipative (−g is monotone) in the sense that:

〈g(y) − g(x)|x − y〉 ≥ 0, ∀y ∈ X ,

then Sint ⊂ Sext, see Kinderlehrer and Stampacchia [29], Facchinei and Pang [19].
In particular if g is continuous and dissipative (like −∇ f ), Sint = Sext and we will write

simply S.
A game �(g) is dissipative if g is dissipative.
This notion is related to the monotonicity requirement in Rosen [51]. The terminology is

“stable” in Hofbauer and Sandholm [25] and “contractive” in Sandholm [55].
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Fundamental example
If F : X = X1 × X2 → R is C1 and concave/convex, the vector field g = (∇1F,−∇2F)

is dissipative, Rockafellar [50]. The elements of Sext = Sint = S are the optimal strategies
for the corresponding 0-sum game.

The proof of the non emptiness of Sint is equivalent to the fixed point theorem. On the other
hand, if g is dissipative, the proof that Sext is non-empty follows from the min-max theorem,
Minty [37], or equivalently from a separation argument (Hahn-Banach), see Appendix.

2.6 Potential

We now consider the gradient property.

2.6.1 Potential Fields and Games

We first define a potential for a vector field, see e.g. Sorin and Wang [63].

Definition 3 A real functionW of class C1 on X = ∏
i∈I Xi is a potential for g if there exist

strictly positive functions μi on X , i ∈ I , such that:
〈∇ iW (x) − μi (x)gi (x), yi − xi

〉 = 0, ∀x ∈ X ,∀yi ∈ Xi , ∀i ∈ I . (12)

A simple requirement would be gi = ∇ iW , ∀i ∈ I , (g is a gradient), but it is enough to have
positive proportionality and this only on the tangent space.

The game �(g) corresponding to such g is a potential game. Alternative previous defi-
nitions include: Monderer and Shapley [38] for finite games, Sandholm [53] for population
games.

The following result is classical, see e.g. Sandholm [54].

Proposition 1 Let �(g) be a game with potential W .

1. Every local maximum of W is an equilibrium of �(g).
2. If W is concave on X, then any equilibrium of �(g) is a global maximum of W on X.

Proof Since a local maximum x of W on the convex set X satisfies:

〈∇W (x), x − y〉 ≥ 0, ∀y ∈ X , (13)

it follows from (12) that 〈μi (x)gi (x), xi −yi 〉≥0 for all i ∈ I and all y ∈ X .
On the other hand, if W is concave on X , a solution x of (13) is a global maximum of W

on X . �

2.6.2 Positive Correlation

Given a first order dynamics xt , f decreases on trajectories if:

d

dt
f (xt ) = 〈∇ f (xt )|ẋt 〉 ≤ 0.

The analogous property for a vector field g is:

〈g(xt )|ẋt 〉 ≥ 0.

In the framework of games, a similar condition was described in discrete time as Myopic
Adjustment Dynamics (Swinkels [64]) and writes as follows : if xin+1 �= xin then
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Hi (xin+1, x
−i
n ) > Hi (xin, x

−i
n ). Thus assuming that the other players do not change their

move, player i modifies her action only to increase strictly her payoff.
The corresponding property in continuous time corresponds to positive correlation (Sand-

holm [54]) defined next.

Definition 4 Given a vector field g, a dynamics satisfies positive correlation if:

ẋ it �= 0 �⇒ 〈gi (xt ), ẋ it 〉 > 0. (14)

The use of this notion in potential games is as follows:

Proposition 2 Consider a game �(g) with potential function W.
If the dynamics satisfies positive correlation, then W is a strict Lyapunov function.
All ω-limit points are rest points.

Proof Let Vt = W (xt ) for t ≥ 0. Then:

V̇t = 〈∇W (xt )|ẋt 〉 =
∑

i∈I
〈∇ iW (xt )|ẋ it 〉 =

∑

i∈I
μi (x)〈gi (xt )|ẋ it 〉 ≥ 0.

Moreover, 〈gi (xt )|ẋ it 〉 = 0 holds for all i if and only if ẋt = 0.
One concludes by using Lyapunov’s theorem (e.g. [26, Theorem 2.6.1]). �
This result is proved by Sandholm [53] for his version of a potential population game,

see extensions in Benaim, Hofbauer and Sorin [8]. A similar property for the fictitious play
process in discrete time is established in Monderer and Shapley [40].

We will show that this “positive correlation” property holds for all the dynamics consid-
ered in this paper.

2.7 Comparison: Optimization/Games

1. To be eligible in a game framework, an algorithm for a vector field g on a product space
X = ∏

i X
i has to be decentralized: explicitly, the (first order) dynamics for the component

xi ∈ Xi is only a function of the values of g(x) on V i∗, namely gi (x), i.e. it is uncoupled in
the sense of Hart and Mas-Colell [24], hence of the form:

ẋ it = T (xit , g
i (xt )),∀i ∈ I .

This is the way the impact of the actions of the other players on player i’s payoff is modelled
and this also corresponds to her information.

One could consider two extensions:

– one with less information which corresponds to the “bandit framework” in the one person
case, where statistical tools are used to handle the information,

– the other where more information leads to “coordination” and various extended notions
of equilibria (sunspot or correlated equilibria, common noise for mean field games).

Notice that a similar requirement (uncoupled) in discrete time makes the use of prox-like
procedures problematic.

2. In optimization one considers both criteria:

– convergence of f (xt ) to minX f , and
– convergence of the trajectory {xt } to Sint = Sext = S = argminX f with two arguments:

(i) the distance d(xt , S) goes to 0, or
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(ii) xt converges to a point x∗ ∈ S.

In games one considers usually only trajectories.
An alternative quantitative criteria could be defined, in the spirit of the Nikaido function

[45] as follows:

Eg(x) = sup
y∈X

∑

i

〈gi (x)|yi − xi 〉

hence Sint = {x ∈ X : Eg(x) = 0}.
For zero-sum games this evaluation is related to the duality gap.
We now start the presentation and analysis of the dynamics.

3 No-Regret Dynamics

The next three dynamics satisfy the no-regret criteria defined, in general, as follows.
We associate to a process {ut ∈ V ∗, t ≥ 0}, a procedure {xt ∈ X , t ≥ 0}, where xt is a

function of the past {(xs, us), 0 ≤ s < t}. The adequation of {xt } to {ut } is measured by a
regret function defined by:

Rt (x) =
∫ t

0
〈us |x − xs〉ds, t ≥ 0, x ∈ X (15)

and one will deal with procedures satisfying:

sup
x∈X

Rt (x) ≤ o(t) (16)

meaning that the time average regret vanishes asymptotically.

The algorithm is defined for a general bounded process {ut } ∈ V ∗ and we study here
its performance for two closed forms (where the process {ut } is actually produced by the
procedure {xt } itself):
(I) equilibria or variational inequalities where ut = g(xt ) for a continuous vector field

g : X → V ∗,
(II) convex optimization where ut = −∇ f (xt ), for a convex, C1 function f on X .

3.1 Basic properties

We establish here properties under the only assumption that the procedure satisfies the no-
regret criteria (16).

3.1.1 Class (I): General Vector Field

The first result identifies the set of possible limit points if the trajectory converges.

Lemma 1 If g is continuous and xs converges to x, then x ∈ Sint.

Proof
Rt (y)

t
= 1

t

∫ t

0
〈g(xs)|y − xs〉ds → 〈g(x)|y − x〉, ∀y ∈ X , (17)

and the quantity on the left vanishes, hence x ∈ Sint. �
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In particular if x is a stationary point for the dynamics, then x ∈ Sint.
Consider now the time average process defined as follows:

x̄t = 1

t

∫ t

0
xsds.

The next result characterizes the accumulation points of this process under a condition on g.

Lemma 2 If g is dissipative, the accumulation points of {x̄t } are in Sext.

Proof

Rt (y)

t
= 1

t

∫ t

0
〈g(xs)|y − xs〉ds ≥ 1

t

∫ t

0
〈g(y)|y − xs〉ds = 〈g(y)|y − x̄t 〉.

Again the quantity on the left vanishes, hence any accumulation point x∗ of {x̄t } satisfies
〈g(y)|y − x∗〉 ≤ 0,∀y ∈ X . �

Note that this shows that the existence of no-regret dynamics implies that Sext is non
empty for a dissipative vector field g. In particular this corresponds to dynamical proofs of
the minmax theorem.

3.1.2 Class (II): Convex Optimization

We use the basic convexity property:

〈∇ f (xt )|y − xt 〉 ≤ f (y) − f (xt )

to get with ut = −∇ f (xt ) in (15):
∫ t

0
( f (xs) − f (y))ds ≤

∫ t

0
〈−∇ f (xs)|y − xs〉ds = Rt (y)

which implies by Jensen’s inequality:

f (x̄t ) − f (y) ≤ 1

t

∫ t

0
[ f (xs) − f (y)]ds ≤ Rt (y)

t
. (18)

In particular one obtains:

Lemma 3 (i) The accumulation points of {x̄t } belong to S = argminX f .
(ii) If f (xt ) is decreasing, the accumulation points of {xt } belong to S = argminX f .

3.1.3 Level Functions

We introduce here a basic tool to check the no-regret property (16).

Definition 5 P : R+ × X → R
+ is a level function for the dynamics (ut , xt ) if it satisfies:

〈ut , xt − y〉 ≥ d

dt
P(t; y). (19)

The existence of a level function allows to control the regret as follows:

Lemma 4 If there exists a level function, Rt (y)/t converges to 0 at a rate 1/t .
In particular the “no-regret” property holds.
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Proof Integrating (19) gives:

Rt (y) =
∫ t

0
〈us |y − xs〉ds ≤ P(0; y) − P(t; y) ≤ P(0; y).

�
Moreover in this framework, the use of points in Sext allow to obtain Lyapounov mono-

tonicity, in the following sense:

Lemma 5 Assume ŷ ∈ Sext, then t �→ P(t; ŷ) is decreasing.
Proof

d

dt
P(t; ŷ)) ≤ 〈g(xt ), xt − ŷ)〉 ≤ 0.

�

3.2 Projection Dynamics: Euclidean Framework

This dynamics is defined in the following set-up: V is an Euclidean space with scalar product
〈, 〉.

3.2.1 Dynamics

Recall the projected gradient descent, Polyak [48], defined in discrete time by:

xm+1 = argmaxX

[

〈um, x〉 − 1

2ηm
‖x − xm‖2

]

(20)

with um = −∇ f (xm) and decreasing step size ηm . The objective function is the linearization
of f and the penalization is the squared distance, both at xm .

Alternatively:

xm+1 = argminX

[

〈−um, x〉 + 1

2ηm
‖x − xm‖2

]

= argminX‖x − (xm + ηmum)‖2 (21)

which corresponds to the Euler algorithm (recall that �X is the projection):

xm+1 = �X [xm + ηmum] (22)

thus with variational characterization:

〈xm + ηmum − xm+1, y − xm+1〉 ≤ 0, ∀y ∈ X . (23)

The continuous time analog is given by:

〈ut − ẋt , y − xt 〉 ≤ 0, ∀y ∈ X (24)

which is also:

ẋt = �T X(xt )(ut ) (25)

since T X(xt ) is a cone.
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When ut = g(xt ) this corresponds to the local projection dynamics, Dupuis andNagurney
[18], Lahkar and Sandholm [31].

Note that the decomposition property writes:

ẋ it = �T Xi (xit )
(gi (xt )), ∀i ∈ I .

3.2.2 Level Function

A first series of properties of the dynamics follows from the existence of a level function. In
fact let:

V (t; y) = 1

2
‖xt − y‖2, y ∈ X . (26)

Proposition 3 V is a level function.

Proof One has:
d

dt
V (t; y) = 〈ẋt , xt − y〉 ≤ 〈ut , xt − y〉

by (24). �
Hence the results of 3.1.3. apply and the properties of 3.1.1. and 3.1.2 hold. In addition by
Lemma 5, the points in Sext are Lyapounov stable.

3.2.3 Trajectories

Compared to 3.1.3 one has the following stronger convergence result for the trajectory:

Proposition 4 Assume g dissipative.
Then {x̄t } converges to a point in Sext.

Proof The limit points of {x̄t } are in Sext by Lemma 2.
‖xt − ŷ‖ converges when ŷ ∈ Sext by Lemma 5 and Proposition 3.
Hence by Opial’s lemma [46] which states: “In an Hilbert space, if ‖xt − y‖ converges

for any y weak accumulation point of {xt } (resp.{x̄t }), then xt (resp. x̄t ) weakly converges”,
x̄t converges to a point in Sext. �
Lemma 6 Positive correlation holds.

Proof One has:

〈g(xt ), ẋt 〉 = ‖ẋt‖2
since 〈ut − ẋt , ẋt 〉 = 0 by (25) and Moreau’s decomposition, Moreau [40]. �

Consider now class (II), convex optimization.
Lemma 6 and Proposition 2 imply:

Lemma 7 f (xt ) is decreasing.

Lemma 8 (i) {xt } converges to a point in S.
(ii) f (xt ) decreases to min f with speed O(1/t).

Proof (i) Lemmas 3 and 7 imply that the accumulation points of xt are in S. Then using
Lemma 5, Opial’s lemma applies.

(ii) Follows from Lemma 4.
�
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3.2.4 Hilbert Case

All the previous results extend to the case where V is a Hilbert space, X is convex and closed
in V , if one assumes either Sext �= ∅ or X is bounded, and the convergence is weak.

3.3 Mirror Descent: Differential/Incremental Approach

The algorithm uses a regularization function H which is strictly convex, C1 and X ⊂ dom H .
The Bregman distance associated to H is:

DH (x, y) = H(x) − H(y) − 〈∇H(y)|x − y〉 (≥ 0). (27)

3.3.1 Dynamics

The discrete version corresponds to the mirror descent algorithm, Nemirovski and Yudin
[43], Beck and Teboulle [7] defined in convex optimization by:

xm+1 = argmaxX {〈um |x〉 − (1/ηm)DH (x, xm)} (28)

where um = −∇ f (xm) and ηm is the step size, which gives the first order condition:

〈∇H(xm) + ηmum − ∇H(xm+1)|x − xm+1〉 ≤ 0,∀x ∈ X . (29)

This is, like (23), an incremental property.
The continuous time procedure satisfies: xt ∈ X and:

〈ut − d

dt
∇H(xt )|x − xt 〉 ≤ 0, ∀x ∈ X (30)

which is, like (24), a differential characterization, with ut = g(xt ).
The previous analysis of Sect. 3.2 corresponds to the Euclidean case with regularization

function:

H(x) = 1

2
‖x‖2.

3.3.2 Level Function

The regularization function allows to construct a level function as follows:

Proposition 5 P(t; y) = DH (y, xt ) is a level function.

Proof Note the following relation:

d

dt
DH (y, xt ) = −

〈
d

dt
∇H(xt )|y − xt

〉

(31)

so that (30) implies:

d

dt
DH (y, xt ) ≤ 〈ut |xt − y〉. (32)

�
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3.3.3 Interior Trajectory

The use of a specific function H adapted to X , with ‖∇H(x)‖ → +∞ as x → ∂X allows to
produce a trajectory that remains in int X and has been much analyzed, Attouch and Teboulle
[4], Bolte and Teboulle [12].

In this case (30) leads to an equality:

d

dt
∇H(xt ) = ut (33)

thus:

∇H(xt ) =
∫ t

0
usds (34)

and then:

ẋt = ∇2H(xt )
−1ut . (35)

∇2H(x) induces a Hessian Riemannian metric as analyzed in Alvarez, Bolte and Brahic [2]
and in Mertikopoulos and Sandholm [35] for games.

Lemma 9 Positive correlation holds.

Proof One has:

〈g(xt )|ẋt 〉 = 〈g(xt )|∇2H(xt )
−1g(xt )〉 ≥ 0.

�
To prove convergence in the convex optimization case, one uses the following properties:

[H1] if zk → y∗ ∈ S then DH (y∗, zk) → 0.

For example H L-smooth and then:

0 ≤ DH (x, y) ≤ L

2
‖x − y‖2.

[H2] if DH (y∗, zk) → 0, y∗ ∈ S then zk → y∗.
For example H β-strongly convex and then:

DH (x, y) ≥ β

2
‖x − y‖2.

Proposition 6 If H is smooth and strongly convex, {xt } converges to some x∗ ∈ S.

Proof Consider an accumulation point x∗ of {xt }. Then x∗ ∈ S by Proposition 2, Lemmas
3 and 9. Thus DH (x∗, xt ) is decreasing by Lemma 5. Since this sequence is decreasing to 0
on a subsequence xtk → x∗ by [H1], it is decreasing to 0, hence by [H2] xt → x∗. �

3.4 Dual Averaging: Integral/Cumulative Approach

Athird alternative algorithmuses again a regularization function hwith the following assump-
tions: h is a bounded strictly convex s.c.i. function with dom h = X .
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3.4.1 Dynamics

The dynamics corresponds to the continuous time version of dual averaging, introduced in
optimization by Nesterov [44].

We follow the analysis in Kwon and Mertikopoulos [30] .
Notice that the approach is cumulative and relies on the quantity:

Ut =
∫ t

0
usds

where again us = g(xs).
Then xt is the argmax (on V or X ) of:

〈Ut |x〉 − h(x).

Let h∗(w) = supx∈V 〈w|x〉− h(x) be the Fenchel conjugate of h. h being strictly convex, h∗
is differentiable, Rockafellar [49].

The dynamics can be written as:

xt = ∇h∗(Ut ) ∈ X . (36)

Note the integral formulation, compared to (24) and (30).

3.4.2 Level Function

Here again we can exhibit a level function, constructed through the regularization function.
Note that it is defined via the dual space and using the cumulative process Ut .

Introduce, for y ∈ X :

W (t; y) = h∗(Ut ) − 〈Ut |y〉 + h(y). (37)

Proposition 7 W (t; y) is a level function.

Proof W (t; y) ≥ 0 by the Fenchel inequality.
Note that:

d

dt
h∗(Ut ) = 〈ut |∇h∗(Ut )〉 = 〈ut |xt 〉 (38)

by (36) thus:

d

dt
W (t; y) = 〈ut |xt − y〉.

�
Similarly one has:

Lemma 10 Positive correlation holds.

Proof

〈g(xt )|ẋt 〉 = 〈g(xt )|∇2h∗(Ut )(ut )〉
with ut = g(xt ). �

This, again by Proposition 2, implies that in convex optimization f (xt ) is decreasing.
Thus, using Lemma 3, the accumulation points of xt are in S.



Dynamic Games and Applications

3.4.3 Remark

In the interior smooth case, both level functions of Sects. 3.3 and 3.4 are the same, since:

xt = ∇h∗(Ut ), ∇h(xt ) = Ut , h∗(Ut ) + h(xt ) = 〈Ut |xt 〉,
so that:

Dh(y, xt ) = h(y) − h(xt ) − 〈∇h(xt )|y − xt 〉
= h(y) + h∗(Ut ) − 〈Ut |xt 〉 − 〈∇h(xt )|y − xt 〉
= h(y) + h∗(Ut ) − 〈Ut |y〉
= W (t; y)

For more properties see Mertikopoulos and Sandholm [34], Mertikopoulos and Zhou [36].

3.4.4 Comparison with Dynamic in Games

We describe here the connection with the replicator dynamics, Taylor and Jonker [65].
Given a finite set A and a A×AmatrixM the replicator dynamics is defined on X = �(A)

by:

ẋ st = xst (e
sMxt − xt Mxt ) (39)

where es is the s-unit vector, s ∈ A.
Consider now the entropy function h:

h(x) =
∑

p∈A

x pLog(x p)

as a regularization function and introduce the Logit function L defined on RA by:

L(V ) = argmaxX (〈V , x〉 − h(x))

which takes the form:

L(V )s = exp(V s)
∑

p∈S exp(V p)
, s ∈ A.

The main property is that:

xst = L

(∫ t

0
esMxu du

)

satisfies (39) on int X , see Rustichini [52], Hofbauer et al. [28].
More generally for a continuous vector field g defined on X , a finite product of simplex

Xi = �(Ai ), i ∈ I , with value in R
A, (A = ∏

Ai ), the replicator dynamics takes the
differential form (see (30)):

ẋ i pt = xipt [gipt (xt ) − 〈xi , gi (x)〉], p ∈ Ai , i ∈ I ,

or the integral form (see (36)):

xit = L

(∫ t

0
gi (xu) du)

)

, i ∈ I .
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The corresponding Riemannian metric is introduced in Shahshahani [57] and studied in Akin
[1].

More properties are described in Hofbauer and Sigmund [26], Sorin [64–67].
Recall (Sect. 3.2) that the regularization H(x) = 1

2‖x2‖ leads to the local/direct projection
dynamics, for a comparison with the replicator dynamics, see Sandholm, Dokumaci and
Lahkar [56].
The next two dynamics (Sects. 4 and 5) are of the form “aiming dynamics”, i.e.:

ẋ = y(x) − x (40)

for some map (or more generally correspondence) x �→ y(x) from X to itself. A general
analysis in optimization is in Bolte and Teboulle [12].

4 Conditional Gradient and Global Projection

4.1 Definition and General Properties

The same dynamics appears as conditional gradient in convex optimization (Antipin [3],
Bolte [11]) and as global/target projection dynamics in operations research and game theory
(Friesz et al. [22], Tsakas and Voorneveld [66]).

The dynamics is given in an Euclidean space by (40) with y(x) = �X (x + g(x)), thus
explicitly:

ẋ i = �Xi [xi + gi (x)] − xi , i ∈ I (41)

which comes from the discrete process with step size λn :

xin+1 − xin = λn[�Xi [xin + gi (xn)] − xin].
Compare with (22). Rather than following the vector field on a small time interval and then
projecting to X , one follows g during one time unit, then projects and this defines the ‘aiming
point” which is thus independent of the step size.

Obviously the rest points are still the set Sint (recall Sect. 2.2).
The variational expression of (41) is :

〈gi (xt ) − ẋ it , z
i − (ẋ it + xit )〉 ≤ 0, ∀zi ∈ Xi . (42)

Lemma 11 Positive correlation holds.

Proof Use (42) for zit = xit :

〈gi (xt ) − ẋ it ,−ẋ it )〉 ≤ 0

hence :

〈gi (xt ), ẋ it )〉 ≥ ‖ẋ it ‖2. (43)

�
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4.2 Convex Optimization

Consider the case of a convex function f . We follow Antipin [3] and Bolte [11] to reach
results similar to Sect. 3.

Proposition 8 (1) f (xt ) converges to the minimum of f with speed 1
t ,

(2) the trajectory {xt } converges to a point in S.

Proof From convexity:

f (z) − f (xt ) ≥ 〈∇ f (xt ), z − xt 〉
one obtains:

f (xt ) − f (z) ≤ 〈∇ f (xt ),−ẋt 〉 + 〈∇ f (xt ), ẋt + xt − z〉
thus using (42) one deduces:

f (xt ) − f (z) ≤ 〈∇ f (xt ),−ẋt 〉 − 〈ẋt , ẋt + xt − z〉
which implies:

d

dt

[
1

2
‖xt − z‖2 + f (xt )

]

≤ f (z) − f (xt ). (44)

Integrating and using f (xt ) decreasing (from Lemma 11) gives:

1

2
‖xt − z‖2 + f (xt ) + t[ f (xt − f (z)] ≤ 1

2
‖x0 − z‖2 + f (x0)

hence the convergence of f (xt ) to the minimum of f with speed 1
t .

For ẑ ∈ S, (44) implies that 1
2‖xt − ẑ‖2 + f (xt ) is decreasing. Using that f (xt ) is

decreasing, ‖xt − ẑ‖2 converges.
Let now z∗ be an accumulation point of {xt }. Thus z∗ ∈ S and ‖xt − z∗‖ converges, hence

by Opial’s lemma, {xt } converges. �

4.3 Vector Field

Let M(x, y) = 1
2‖(x + g(x)) − y)‖2, L(x, y) = M(x, x) − M(x, y) so that L(x, y) =

〈y − x, g(x)〉 − 1
2‖y − x‖2 and finally H(x) = supy∈X L(x, y), for x, y ∈ X .

Proposition 9 Let g be a smooth dissipative vector field. Then H is a Lyapunov function for
S.

Proof Note that H(x) = L(x, y(x)) ≥ 0. By definition of the projection �X , equality holds
if and only if x = y(x).

Using the Enveloppe theorem, one obtains:

∇H(x) = ∇x L(x, y(x)) = −g(x) + (y(x) − x) + (y(x) − x)Jg(x)

where Jg is the Jacobian of g so that:

d

dt
H(xt ) = 〈∇H(xt ), ẋt 〉

= 〈−g(xt ) + (y(xt ) − xt ), y(xt ) − xt 〉 + (y(xt ) − xt )Jg(xt )(y(xt ) − xt )

≤ 0.
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The first term is negative as a property of �X . The second term is negative because g is
dissipative.

Thus H is a Lyapunov function.
Note that H is a strict Lyapunov function when g is strictly dissipative. �
This result is proved by Pappalardo and Passacantando [47] in the one-population game

setting.
All the results in this section extend to the Hilbertian framework, convergence being

understood as weak convergence.

5 Frank-Wolfe and Best Reply

5.1 Definition

Recall that the best reply dynamics is usually defined trough the best reply correspondence.
In the framework of a strategic game with payoff function Hi : X = ∏

j X
j → R for player

i , the definition is :

BRi (x) = {yi ∈ Xi ; Hi (yi , x−i ) ≥ Hi (zi , x−i ),∀zi ∈ Xi }
Note that it is independent of xi .

In our framework we will use the linearization of the payoff and the first order optimality
condition, thus introduce:

bri (x) = {yi ∈ Xi ; 〈yi − zi , gi (x)〉 ≥ 0,∀zi ∈ Xi }
where gi is the vector field used to define equilibria.

(Remark that in the case of a finite game - with multilinear extension - both definitions
agree).

The best reply dynamics (Gilboa and Matsui [23]) is defined by the differential inclusion:

ẋ i ∈ BRi (x) − xi , i ∈ I .

We consider here the version:

ẋ i ∈ bri (x) − xi , i ∈ I (45)

which can also be written as (40):

ẋ = y(x) − x

with y(x) ∈ br(x).
Note that in the framework of a vector field g = −∇ f this corresponds precisely to the

Frank-Wolfe algorithm [21]. In fact recall that the discrete time version is:

xn+1 − xn = λn[y(xn) − xn]
where y(x) ∈ argmin{〈∇ f (x), z〉, z ∈ X} and λn is the step size.
Notice again that the aiming point y(x) which minimizes the evaluation 〈∇ f (x), z〉 is inde-
pendent of the step size. Thus the continuous time analog, corresponding to λn = O( 1n ) is
of the form:

ẋt = 1

t
[y(xt ) − xt ] (46)
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which is (40) up to a time change.
A first property is:

Lemma 12 Positive correlation holds.

Proof

〈g(xt ), ẋt 〉 = 〈g(xt ), y(xt ) − xt 〉
≥ 0

and the inequality is strict if 0 /∈ br(xt ) − xt . �

5.2 Convex Optimization

The convergence result concerns the evaluation f (xt ).

Proposition 10 There is exponential convergence of f (xt ) to its minimum.

Proof Letting δt = f (xt ) − f (x̂) with x̂ ∈ S one has δt ≥ 0 and:

δ̇t = d

dt
f (xt )

= 〈∇ f (xt ), y(xt ) − xt 〉
≤ 〈∇ f (xt ), x̂ − xt 〉
≤ f (x̂) − f (xt )

hence :

δ̇t ≤ −δt

and δt ≤ δ0e−t , thus convergence of the order O( 1t ) before the time change in (46). �

5.3 Vector Field

The analysis is similar to the one in Sect. 5.3.
Introduce Q(x) = supy∈X R(x, y) with R(x, y) = 〈y − x, g(x)〉, for x, y ∈ X .

Proposition 11 Assume g dissipative and smooth. Then Q is a strict Lyapounov function for
S.

Proof Note that Q(x) = R(x, y(x)) ≥ 0 with y(x) ∈ br(x). By the Enveloppe theorem:

∇Q(x) = ∇x R(x, y(x)) = −g(x) + (y(x) − x)Jg(x).

Hence:

〈∇Q(xt ), ẋt 〉 = 〈−g(xt ) + (y(xt ) − xt )Jg(xt ), y(xt ) − xt 〉
= −Q(xt ) + [y(xt ) − xt ]Jg(xt )[y(xt ) − xt ] ≤ 0.

The second term is negative because g is dissipative. Then equality to zero holds if and only
if Q(x) = 0, hence x ∈ S. Therefore Q is a strict Lyapunov function. More precisely if
αt = Q(xt ), one has α̇t ≤ αt and αt ≤ α0e−t . �

This result appears for population games in Hofbauer and Sandholm [25]. One recovers
the speed of convergence to 0 of the duality gap in the analysis of Fictitious Play for two
person zero-sum games, Hofbauer and Sorin [27].
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6 Final Comments

(A) There are strong analogies between several learning dynamics in both areas: convex
optimization and equilibria in games.

Properties holding in convex optimization are obviously a test for games (one person
case).

On the other hand properties for games are a proof of robustness for optimization (sensi-
tivity analysis).

(B) Properties were obtained only for the average processes {x̄t } in Sect. 3.
However recall that the Fictitious Play process (Brown [14]) defined on the moves in

discrete time by :

Y i
n+1 ∈ BRi (Yn), i ∈ I

with Yn = 1
n

∑n
k=1 Yk , leads to:

Y
i
n+1 − Y

i
n ∈ 1

n + 1
[BRi (Yn) − Y

i
n]

so that xt in the continuous time best reply dynamics (45) corresponds to the average Yn in
discrete time.

Explicit links for two person finite games between replicator dynamics and best reply
dynamics are analyzed in Hofbauer, Sorin and Viossat [28].

(C) Among the natural extensions one would like to deal with games satisfying Nash’s
conditions [42] for equilibrium: each Hi is continuous in x and quasi-concave in xi . Prelim-
inary results in this directions are in Hofbauer and Sorin [27], Barron, Goebel and Jensen
[6].

In the same spirit the link with subgradient dynamics and maximal monotone operators,
Brézis [13], Bruck [16] should be studied.

(D) Also we did not mention analysis on learning with stochastic perturbation in the spirit
of Foster and Young [20], see e.g. Avrachenkov and Borkar [5] for interesting connections.

(E) As a general comment one could summarize that positive results hold:

– for potential games when the dynamics satisfies the quite natural “positive correlation”
condition. The framework looks then similar to (pseudo) gradient dynamics.

– for dissipative games: this covers zero-sum games and appears as an extension of the
initial dynamics due toBrown and vonNeumann [15] and based on aLyapounov function.
Then convergence occurs to a set defined via “elementary properties” in particular convex.

Recall that one cannot expect in general convergence of dynamics in games to equilib-
ria, see Hart and Mas-Colell [24], even to correlated equilibria, Viossat [67]; for learning
algorithms see also Mazumdar, Ratliff and Sastry [33].

(F) Further study of learning dynamics in games could follow alternative approaches like:

– introduce a new notion of “selected profiles” in a game, that would play the role of
“equilibrium strategies”, and study the associated classes of dynamics and games.
Examples include: ESS and replicator dynamics, Maynard Smith [32], Hofbauer and
Sigmund [26], or in the same spirit: Mertikopoulos and Zhou [36].

– alternatively define “natural” dynamics associated to a game and study the induced attrac-
tors.

In this direction, analysis of Internally Chain Transitive sets, Benaim, Hofbauer and Sorin
[8–10] show that stable components may differ from subsets of rest points.
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7 Appendix

Assume g continuous and dissipative and recall that X is convex and compact. Let us prove
that Sext is non-empty. Define :

Syext = {x ∈ X; 〈g(y)|x − y〉 ≥ 0}
so that Sext = ∩y∈X Syext. Hence by compactness (weak-compactness in anHilbert framework)
it is enough to establish the following:
Claim
For any finite collection yi ∈ X , i ∈ I , there exists x ∈ co{yi , i ∈ I } such that:

〈g(yi )|x − yi 〉 ≥ 0, ∀i ∈ I . (47)

Consider the finite two-person zero-sum game defined by the following I × I matrix A:

Ai j = 〈g(y j )|yi − y j 〉.
Introduce B = 1

2 [A + t A] and C = 1
2 [A − t A].

The crucial point is that B has non negative coefficients since:

Bi j = 〈g(y j )|yi − y j 〉 + 〈g(yi )|y j − yi 〉 = 〈g(y j ) − g(yi )|yi − y j 〉 ≥ 0.

Hence an optimal strategy u ∈ �(I ) in the game C (which has value 0) gives uA j ≥ 0,∀ j ∈
I . Letting x = ∑

i ui yi this writes as (47).
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