
Journal of Dynamics and Games doi:10.3934/jdg.2020028
c©American Institute of Mathematical Sciences

Volume 7, Number 4, October 2020 pp. 365–386

REPLICATOR DYNAMICS: OLD AND NEW

Sylvain Sorin
Institut de Mathématiques Jussieu-PRG

Sorbonne Université, Campus P. & M. Curie
CNRS UMR 7586

4 Place Jussieu, 75005 Paris, France

(Communicated by Josef Hofbauer)

Abstract. We introduce the unilateral version associated to the replicator
dynamics and describe its connection to on-line learning procedures, in partic-
ular to the multiplicative weight algorithm. We show the interest of handling
simultaneously discrete and continuous time analysis.

We then survey recent results on extensions of this dynamics as maximiza-
tion of the cumulative outcome with alternative regularization functions and
variable weights. This includes no regret algorithms, time average version
and link to best reply dynamics in two person games, application to equilibria
and variational inequalities, convergence properties in potential and dissipative
games.
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1. Replicator dynamics.

1.1. Basic properties. We recall briefly the definition of the replicator dynamics,
for an in-depth analysis see Hofbauer and Sigmund (1998, 2003) [48, 49], and then
describe the unilateral version.

1.1.1. One population. The replicator dynamics was introduced by Taylor and Jonker
(1978) [80].

Consider the evolution in time of the composition of a single large population
with K types. The random interaction between her members occurs by couples and
the result depends only on the types. It is thus represented by a K × K fitness
matrix A: Ak` is the outcome of type “k" facing type “`" (amount of offsprings).

The corresponding discrete time dynamics, defined on the population size, is
then:

Nk
m+1 = Nk

m(1 + h ekAxm) (1)
with the following notations:
Nk

m : number of members of type k at stage m,
xk

m = Nk
m∑

`∈K
N`
m

: proportion of type k at stage m, xm = (xk
m)k∈K : vector of these

proportions hence xm ∈ ∆(K): simplex of RK ,
ek : k-th unit vector in RK ,
h : time step size.

Letting h → 0 leads to the continuous time version defined on the population
composition. xk

t is the proportion of type k at time t and the Replicator Dynamics
on the simplex ∆(K) of RK is given by:

ẋk
t = xk

t

(
ekAxt − xtAxt

)
, k ∈ K. (RD) (2)

An alternative useful formulation is:
d

dt
log(xk

t ) = ekAxt − xtAxt, k ∈ K. (3)

Note also that this defines a conservative dynamics: each face of the simplex is
preserved.

This dynamics has strong links with Evolutionary Stable Strategies, Maynard
Smith (1982) [55], see again the analysis in Hofbauer and Sigmund (1998, 2003)
[48, 49].

1.1.2. Two populations. Elements of population one (having P types) are randomly
matched with elements of population two (with Q types). The result of the inter-
action is specified by two P ×Q matrices A and B: cross-matching between types
(p, q) induces fitness Apq (resp. Bpq) for type p in population one (resp. q in two).
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Notice that the comparison between the fitness of a specific type and the average
fitness in her population involves now the composition of both populations. The
corresponding dynamics with xt ∈ ∆(P ), yt ∈ ∆(Q) is given by:

ẋp
t = xp

t [epAyt − xtAyt], p ∈ P
ẏq

t = yq
t [xtBe

q − xtByt], q ∈ Q. (4)

1.1.3. I populations. We consider here the framework of a finite set I of non atomic
populations, each with a finite set of types Si, i ∈ I. The interaction is represented
by a profile s = (si; i ∈ I) of types and the outcome is specified by functions
F i : S =

∏
j∈I S

j → R, i ∈ I (with multilinear extension to
∏

j ∆(Sj)). xi ∈ ∆(Si)
describes the composition of population i ∈ I, xip being the proportion of type
p ∈ Si in it.

The dynamics for xt = (xi
t; i ∈ I) is given by:

ẋip
t = xip

t [F i(eip, x−i
t )− F i(xi

t, x
−i
t )] p ∈ Si, i ∈ I. (5)

A natural alternative interpretation is to consider a game with a finite set of
players I, each i ∈ I having a finite set of choices Si and a payoff function F i.

Then xi
t ∈ ∆(Si) describes a mixed strategy of player i at time t and the replicator

dynamics models an evolutionary behavior of each player as a function of her own
past performance.

Remark that the set of rest points of the dynamics is:⋃
{NE(T );T i ⊂ Si, i ∈ I}

where NE(T ) is the set of equilibria in the game with pure strategy sets (T i; i ∈ I).

1.1.4. Unilateral replicator dynamics. This describes the evolution of the behavior
of one agent facing an unknown environment. At each time t, she chooses at random
an action k in a finite set K, its law xk

t is thus a mixed strategy. Alternatively the
choice set is the simplex ∆(K) and she controls the proportion of each k. The
vector outcome is given by a bounded measurable process u = {ut ∈ RK}.

The u-replicator dynamics (u − RD) is specified by the following equation on
∆(K):

ẋk
t = xk

t [uk
t − 〈xt, ut〉], k ∈ K. (u−RD) (6)

Notice that ut may depend on the previous trajectory {xs; s ≤ t}.
Clearly the previous versions with one, two or I populations can be written in

this form.

1.2. Logit representation. Recall that the logit map L from RK to ∆(K) is
defined by:

Lk(V ) = expV k∑
j∈K expV j

. (7)

Then the following explicit representation holds, Rustichini (1999) [66], Hofbauer,
Sorin and Viossat (2009) [51]:

Proposition 1.1.

xt = L(
∫ t

0
usds) follows (u−RD). (8)
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More generally, starting from x0 at time 0 one has :

xk
t =

xk
0 exp

∫ t

0 u
k
sds∑

j∈K xj
0 exp

∫ t

0 u
j
sds

.

Let H(x) =
∑

k x
k log xk be the entropy function on ∆(K). Then the logit map

satisfies the following maximization property:

Proposition 1.2.

L(V ) is the argmax of [ 〈V, x〉 −H(x); x ∈ ∆(K)]. (9)

2. On line learning.

2.1. Model and definitions. {un;n ≥ 1} is a discrete time process of vectors in
U = [− 1, 1]K .
At each stage n, an agent having observed the past realizations of the vectors
u1, ..., un−1, chooses a component kn in K.
The outcome at that stage is :

ωn = ukn
n

and the past history is given by:

hn−1 = (u1, k1, ..., un−1, kn−1) ∈ Hn−1.

A strategy σ in this prediction problem is defined by the collection of vectors:

σ(hn−1) ∈ ∆(K), ∀hn−1 ∈ Hn−1,∀n ≥ 1,

where σ(hn−1) denotes the probability distribution of the choice at stage n, kn,
given the past history hn−1.
Note that here again un may depend on the past history hn−1 and on σ(hn−1).

2.1.1. External regret. The External Regret, ER, given k ∈ K and u ∈ RK , is the
vector R(k, u) ∈ RK with components:

R`(k, u) = u` − uk, ` ∈ K.

The evaluation at stage n is given by Rn = R(kn, un) i.e. R`
n = u`

n − ωn, ` ∈ K.
The average ER vector at stage n is Rn, thus:

R
`

n = u`
n − ωn, ` ∈ K.

(Given a sequence (um), un denotes the average: un = 1
n

∑n
m=1 um)

It compares, given a realization of the process (um), the actual (average) payoff -
induced by the trajectory (km) in the set K - to the payoff corresponding to the
choice of a constant component, see Hannan (1957) [34], Foster and Vohra (1999)
[27], Fudenberg and Levine (1995) [29].

Definition 2.1. A strategy σ satisfies external consistency (or has no ER) if, for
every process {um}:

max
k∈K

[Rk

n]+ −→ 0 a.s., as n→ +∞

where, as usual v+ = max(v, 0); or equivalently
n∑

m=1
(uk

m − ωm) ≤ o(n), ∀k ∈ K.
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2.1.2. Internal regret. The Internal Regret, IR, given (k, u) is the K × K matrix
S(k, u) with components:

Sj`(k, u) = (u` − uj) I{j=k}.

where I{j=.} denotes the indicator function.
The evaluation at stage n is Sn = S(kn, un), explicitly:

Sk`
n =

{
u`

n − uk
n for k = kn

0 otherwise.

The average IR Sn takes thus the form:

S
k`

n = 1
n

n∑
m=1,km=k

(u`
m − uk

m).

It compares, on average and for each component k ∈ K, the outcome computed on
the dates where k was played, to the outcome for an alternative choice ` ∈ K on the
same dates, see Foster and Vohra (1999), [27], Fudenberg and Levine (1999), [31].
(Note that one can ignore the moves played on a vanishing proportion of stages, and
then the above quantities are rescaled averages computed on the pertinent dates.)

Definition 2.2. A strategy σ satisfies internal consistency (or has no IR) if, for
every process {um} and every couple k, `:

[Sk`

n ]+ −→ 0 a.s., as n→ +∞

2.1.3. From ER to IR. Note that one can construct from no ER procedures a no
IR procedure: this involves several algorithms run in parallel with different inputs
and at each stage the output implemented is some “invariant distribution".

Consider K parallel algorithms (φ(k), k ∈ K), that are externally consistent and
generate each, at each stage m, a (row) vector qm(k) ∈ ∆(K). Let Qm be the
K ×K matrix whose k line is qm(k). Finally define the strategy σ at that stage m
given this history, as a Qm invariant measure pm ∈ ∆(K), i.e. satisfying:

pm = pmQm.

Given the outcome um ∈ RK , let for each k, pk
mum be the entry of algorithm φ(k),

at that stage, which then produces a new vector qm+1(k) and so on. Expressing the
fact that φ(k) satisfies the no ER condition gives for all j ∈ K:

[
n∑

m=0
pk

mu
j
m − 〈qm(k), pk

mum〉] ≤ o(n)

Note that this corresponds to an “expected version” (see Section 2.2.1. below).
Remark that

∑
k〈qm(k), pk

mum〉 =
∑

k〈pk
mqm(k), um〉 = 〈pm, um〉. Hence by sum-

ming over k, for any function F : K 7→ K, inducing a potential competitor σF of σ
with j = F (k), the difference between the performances of σF and σ will satisfy as
well:

[
n∑

m=0

∑
k

pk
mu

F (k)
m − 〈pm, um〉] ≤ o(n)

which implies no IR or internal consistency.
Basic references are Stoltz and Lugosi (2005) [78], Blum and Mansour (2007)

[12].
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Note also that there are strong links between no IR and calibration, see e.g.
Perchet (2014) [61].

2.2. Exponential weight algorithm.

2.2.1. Conditional expectation. Recall that the total regret at stage n that one wants
to control is a vector of the form:

n∑
m=1

uk
m − ωm, k ∈ K

where ωm = ukm
m is the random payoff at stage m.

Let xm ∈ ∆(K) be the law of km i.e. the mixed strategy given the history at
stage m, then:

E(ωm|hm−1) = 〈um, xm〉
so that ωm − 〈um, xm〉 is a bounded martingale difference.

Hoeffding-Azuma’s concentration inequality for a process (Zn) of martingale dif-
ferences with |Zn| ≤ L, see e.g. Cesa-Bianchi and Lugosi (2006) [19], states that:

P{|Zn| ≥ ε} ≤ 2 exp(−n ε
2

2L2 ).

In particular Zn → 0 a.s. and the difference between the regret and its conditional
expectation is controlled. Now we aim to bound quantities of the form:

n∑
m=1

uk
m − 〈um, xm〉, k ∈ K

or equivalently:
n∑

m=1
〈um, x〉 − 〈um, xm〉, x ∈ ∆(K)

by linearity.
The no ER condition becomes:

ERn(x) =
n∑

m=1
〈um, x− xm〉 ≤ o(n), ∀x ∈ ∆(K). (10)

2.2.2. Exponential weight algorithm in discrete time. The strategy is defined as
follows:

σk(hn) = xk
n+1 =

exp(A
∑n

m=1u
k
m)∑

j∈K exp(A
∑n

m=1u
j
m)

= Lk(A
∑n

m=1
um)

(11)

where A is a positive parameter, recall (7).
This procedure, exponential weight algorithm, EW, was introduced by Vovk

(1990) [84], see also Littlestone and Warmuth (1994) [54], Freund and Schapire
(1999) [28]. A nice survey is Arora, Hazan and Kale (2012) [4].

The main result is the following:
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Proposition 2.1. Auer, Cesa-Bianchi, Freund, Shapire (1995) [5]
For A = 1/

√
n, the exponential weight algorithm satisfies:

ERn(x) ≤M
√
n.

2.2.3. Continuous time approach. Given a measurable process {ut, t ≥ 0}, with
values in [0, 1]K , define the continuous time exponential weight algorithm, CTEW,
Sorin (2009) [75], as the measurable process xt ∈ ∆(K) satisfying:

xk
t =

exp
∫ t

0 u
k
sds∑

j∈K exp
∫ t

0 u
j
sds

(12)

Note, using (8), that this corresponds to the unilateral replicator dynamics, defined
by (6), with initial condition the barycenter of the simplex.

For similar continuous time approaches, see Cesa-Bianchi and Lugosi (2003) [18],
Hart and Mas-Colell (2003) [39].

Proposition 2.2. Sorin (2009) [75]
Conditional expected external consistency holds for CTEW in the sense that:∫ T

0
〈us, x− xs〉ds ≤ C.

A simple proof follows from (3) by integration, taking x0 with full support, see
Hofbauer, Sorin and Viossat (2009) [51]:∫ T

0
uk

s − 〈us, xs〉ds =
∫ t

0

ẋk
s

xk
s

ds = log(x
k
t

xk
0

) ≤ − log(xk
0).

2.2.4. Application for discrete time process. Given a discrete time process {um} and
a corresponding EW algorithm {xm} the aim is to get a bound on:

1
n

n∑
m=1
〈um, x− xm〉

from an evaluation of:
1
T

∫ T

0
〈vs, y − ys〉ds

where {vt} is a continuous process constructed from {um} and {yt} is the CTEW
algorithm associated to {vt}.

This approach provides an alternative proof of the speed of convergence:
1
n

n∑
m=1
〈um, x− xm〉 ≤Mn−1/2

as follows, see Sorin (2009) [75].
Given n, choose T =

√
n so that:

- the bound in the continuous time version is of the order 1/T = 1/
√
n

1
T

∫ T

0
〈vs, y − ys〉ds ≤

M1√
n

- the error term with the discrete algorithm with step size T/n = 1/
√
n is:

| 1
n

n∑
m=1
〈um, xm〉 −

1
T

(
∫ T

0
〈vt, yt〉dt)| ≤

M2√
n
.
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2.3. Extensions: Penalization and variable parameter.
Recall from equations (8) and (9) that the replicator dynamics xt maximizes on

the simplex ∆(K) the amount:

〈
∫ t

0
usds, x〉 −H(x)

which appears as a relaxation/regularization of argmax{
∫ t

0 u
k
sds; k ∈ K}.

We follow the analysis in Kwon and Mertikopoulos (2017) [53] which:
- extends the analysis from ∆(K) to any compact convex set X ⊂ RK ,
- replaces the entropy function by any bounded strictly convex lower semi-continuous
penalization/regularization function F with domain X,
- uses time variable parameters
and keeps the consistency properties of the dynamics.

Let us define:

SF (V ) = argmax{〈V, x〉 − F (x); x ∈ RK} = argmax{〈V, x〉 − F (x); x ∈ X} (13)

then the procedure is given by:

xt = SF (ηt

∫ t

0
usds) (14)

where {ηt} is a positive weight process.
Alternatively, using the strict convexity of F , hence the differentiability of its

Fenchel conjugate F ∗, defined on RK by:

F ∗(v) = sup
y∈RK

[〈v, y〉 − F (y)]

see Rockafellar (1970) [64] (Sections 12 and 26), one has:

xt = ∇F ∗(ηt

∫ t

0
usds). (15)

2.3.1. Continuous time bound. Assume ηt decreasing and let rX(F ) = supX F (x)−
infX F (x) be the range of F on X.

Proposition 2.3. Kwon and Mertikopoulos (2017) [53]

ERt(x) =
∫ t

0
〈us|x− xs〉ds ≤

1
ηt
rX(F ).

For the case ηt ≡ 1 the proof proceeds as follows:
From (15) one deduces:

d

dt
F ∗(

∫ t

0
us ds) = 〈ut, xt〉

hence, with Wt =
∫ t

0 us ds, one obtains:

ERt(x) =
∫ t

0
〈us, x− xs〉 = 〈Wt, x〉 −F ∗(Wt) +F ∗(0) ≤ F (x)− inf

y∈X
F (y) ≤ rX(F )

using Fenchel inequality: F (y) + F ∗(v) ≥ 〈v, y〉.
The function α(t) = 〈Wt, x〉 − F ∗(Wt) plays the role of a potential.
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2.3.2. Discrete time bound. Assume now that F is L strongly convex for some norm
‖.‖ on V = RK (F − L

2 ‖.‖
2 is convex).

Consider a decreasing sequence {ηk} and a process {uk} ∈ V ∗. Let:

xk+1 = SF (ηk

k∑
j=1

uj).

Then one has the bound:

Proposition 2.4. Kwon and Mertikopoulos (2017) [53]

ERk(x) =
k∑

j=1
〈uj |x− xj〉 ≤

rX(F )
ηk

+
∑k

j=1 ηj−1‖uj‖2∗
2L

where the first term corresponds to a bound arising from the continuous time trajec-
tory and the second to the approximation error between the continuous and discrete
time processes.

For a precise analysis of the impact of the choice of the parameters, see again
Kwon and Mertikopoulos (2017) [53] .

Notice the following, assuming (‖uj‖∗) bounded:
i) ηk = k−1/2 gives convergence of the mean regret ERk/k to 0 with speed

O(k−1/2).
ii) ηk = 1 corresponds to the replicator dynamics with best continuous time

convergence speed but bad discrete approximation:
∑k

j=1 ηj−1 ∼ k.
iii) ηk = 1

kε gives ERk/k of the order of ε.
It corresponds to the continuous time process:

xt = ∇F ∗(1
ε
× 1
t

∫ t

0
usds)

and the discrete associated dynamics is smooth fictitious play since with uk =
1
k

∑k
j=1 uj , xk+1 maximizes:

〈x, uk〉 − εF (x).
One recovers the bound of Fudenberg and Levine (1995) [29], see also Hofbauer,
Sorin and Viossat (2009) [51].

2.4. Comments. The literature on algorithms satisfying no regret properties is
huge and the approaches are diverse.

The precursors are Hannan (1957) [34] and Blackwell (1956) [13]. A good sample
contains Cover (1991) [22], Foster and Vohra (1993, 1999)[26, 27], Fudenberg and
Levine (1995, 1999) [29, 31], Hart and Mas Colell (2000, 2001, 2003) [37, 38, 39],
Kalai and Vempala (2005) [52]; the books by Cesa-Bianchi and Lugosi (2006) [19],
Fudenberg and Levine (1998) [30], Hart and Mas Colell (2013) [41]; and the surveys
by Hart (2005) [36] and Perchet (2014) [61].

Benaim, Hofbauer and Sorin (2005, 2006) [9, 10] extends the tools of stochastic
approximation, see Benaim (1999) [7], and apply them to prove no-regret properties,
see also Benaim and Faure (2013), [8].
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3. Learning in finite games.

3.1. Finite games. The framework is as follows: there is a finite set of players I
having finite action spaces (Si, i ∈ I) and payoff functions (Gi : S = Si × S−i →
R, i ∈ I) with multilinear extension to ∆(S).

We consider a repeated interaction in discrete time and with standard signalling:
after each stage n all the players know the profile sn = (si

n, i ∈ I) used at that
stage.

In addition each player i knows her own payoff function Gi.
Fix a player i and let K = Si. From a unilateral point of view, player i knows:

- the stage payoff ωn = Gi(kn, s
−i
n ) as well as

- the vector payoff un = Gi(., s−i
n )∈ RK .

and the analysis of the previous Section 2 applies.

3.2. Consistent procedures and plays.

3.2.1. External consistency and Hannan set. Introduce the empirical distribution
on moves up to stage n, zn = 1

n

∑n
m=1 sm ∈ ∆(S), with sm = (sj

m, j ∈ I).
Hence by linear extension, for each k ∈ K:

R
k

n = 1
n

n∑
m=1

uk
m − ωm

= 1
n

n∑
m=1
{Gi(k, s−i

m )−Gi(sm)}

= Gi(k, 1
n

n∑
m=1

s−i
m )−Gi( 1

n

n∑
m=1

sm)

= Gi(k, z−i
n )−Gi(zn)

Thus σi, strategy of player i satisfies external consistency, definition 2.1, is equiva-
lent to :

d(zn, H
i)→ 0 a.s.,

where d is the Euclidean distance in RK and:
Hi = {z ∈ ∆(S);Gi(k, z−i)−Gi(z) ≤ 0,∀k ∈ Si}

is Hannan’s set for player i, Hannan (1957) [34].
Define H = ∩iH

i as the Hannan’s set.

Proposition 3.1. If each player follows some externally consistent procedure, the
empirical distribution of moves converges a.s. to the Hannan set H.

Note that no coordination among the players is required, the result follows from the
properties of unilateral procedures.

Remark In the case of a zero-sum game, the set H exhibits an important property:
Let z ∈ H with marginals z1, z2 and f be the payoff function. Then the external

consistency property for player 1 (z ∈ H1) implies:

f(z) ≥ f(s1, z2), ∀s1 ∈ S1.

Using the dual inequality for player 2 implies that f(z) is equal to the value of the
game and the marginals z1, z2 are optimal strategies.
Example For the zero-sum game:
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0 1 −1
−1 0 1
1 −1 0

the distribution:
1/3 0 0
0 1/3 0
0 0 1/3

belongs to the Hannan set.

3.2.2. Internal consistency and correlated equilibrium distributions. Similarly to
above, consider player i and introduce Sn = M(zn) with M being a K ×K matrix
defined on ∆(S) by:

Mk,j(z) =
∑

`∈S−i

[Gi(j, `)−Gi(k, `)]z(k, `).

Then σi satisfies internal consistency, definition 2.2, is equivalent to d(zn, C
i)→ 0

a.s. with:
Ci = {z ∈ ∆(S); Mk,j(z) ≤ 0,∀k, j ∈ Si}.

Note that C = ∩iC
i is the set of correlated equilibrium distributions, Aumann (1974)

[6].

Proposition 3.2. If all players follow some internally consistent procedure, the
empirical distribution of moves converges a.s. to C.

This provides an alternative proof of existence of correlated equilibrium distribu-
tions through the existence of internally consistent procedures.
No similar property can be expected for Nash equilibria, see Hart and Mas Colell
(2003) [40].

3.3. Time average RD and perturbed best reply. We extend here the analysis
done in Hofbauer, Sorin and Viossat (2009) [51] for the replicator dynamics, see also
Mertikopoulos and Sandholm (2016) [56].

3.3.1. Normalization. We use the notations of Section 2 and consider a procedure
satisfying (15).

Recall that SF (V ) denotes argmax{〈V, x〉 − F (x);x ∈ X} and define the payoff
best reply correspondence br defined on RK by:

br(V ) = argmax{〈V, x〉;x ∈ X}. (16)
Introduce finally brε(V ) as the argmaxX〈V, x〉 − εF (x). It is easy to see that for U
compact, there exists a map g : R+ → R+ with g(r)→ 0 as r → 0 such that: above
U the graph of brε is included in a g(ε)-neigborhood of the graph of br written
[br]g(ε).

Note also that brε(V ) = SF (V/ε).
Define Ut = 1

t

∫ t

0 us ds. Since one has:

xt = SF (ηt

∫ t

0
us ds) = SF (ηtt×

1
t

∫ t

0
us ds) = SF (ηtt Ut) (17)

remark that ηtt→∞ implies d(xt,br(Ut))→ 0.
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Introduce now the time average of the procedure:

Xt = 1
t

∫ t

0
xs ds

Then one obtains:
Ẋt = 1

t
[xt −Xt]

thus finally from (17):
Ẋt ∈

1
t
[[br]g( 1

ηtt
)(Ut)−Xt]. (18)

3.3.2. Two person games and best reply dynamics. Consider a finite 2 person game
with P ×Q bimatrix payoff functions (A,B).

Use the previous results for player 1 with the {ut} process being defined by
ut = Ayt with yt ∈ Y = ∆(Q), hence Ut = AYt.
Introduce the strategy best reply correspondence, BR1, defined on Y by:

BR1(y) = {x ∈ ∆(S); xAy ≥ x′Ay,∀x′ ∈ ∆(S)}.
Note the relation between payoff and strategy best replies:

br(Ay) = BR1(y), ∀y ∈ Y.
Hence the previous equation (18) is:

Ẋt ∈
1
t
[[BR1]g( 1

ηtt
)(Yt)−Xt] (19)

which is a perturbation of:

Ẋt ∈
1
t
[BR1(Yt)−Xt] (20)

that corresponds to the best reply dynamics BRD, up to a change of time.
Explicitly the best reply dynamics, Gilboa and Matsui (1991)[33], is the differen-

tial inclusion on M = X × Y defined by:
Ẋt ∈ BR1(Yt)−Xt, t ≥ 0
Ẏt ∈ BR2(Xt)− Yt, t ≥ 0. (BRD) (21)

Recall that this corresponds to a continuous time version (up to a change of time)
of the discrete time fictitious play procedure, Brown (1949, 1951) [15, 16], Robinson
(1951) [63], see e.g. Harris (1998) [35] Hofbauer and Sorin (2006) [50], Benaim,
Hofbauer and Sorin (2005, 2006) [9, 10].
Notation. Let P be the family of procedures satisfying (15), induced by a penal-
ization function F with moreover ηtt→∞ and P1 for ηt = 1.

The properties of stochastic approximation for differential inclusions, Benaim,
Hofbauer and Sorin (2005, 2006) [9, 10], lead to the following results:
Proposition 3.3. The limit set of every time average process Zt = (Xt, Yt), with
(xt, yt) ∈ P starting from an initial point (x0, y0) ∈ M , is a closed subset of M
invariant and internally chain transitive under BRD.

In particular this implies:
Proposition 3.4. Let A be the global attractor (i.e., the maximal invariant set) of
BRD. Then the limit set of every time average process Zt = (Xt, Yt), with (xt, yt) ∈
P is a subset of A.

Recall that these similarities between RD and BRD were observed and the above
properties conjectured in Gaunersdorfer and Hofbauer (1995) [32].
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4. Global dynamics in games. Properties of dynamics in P have been studied
in the framework of finite games by Coucheney, Gaujal and Mertikopoulos (2015)
[21], Mertikopoulos and Sandholm (2016)[56] leading to several important exten-
sions of the “Folk Theorem of evolutionary games”. For population games see also
Mertikopoulos and Sandholm (2018)[57] and Mertikopoulos and Zhou (2019) [58]
for the continuous action case.

The replicator dynamics as well as dynamics in P can be extended to other
configurations were equilibrium conditions take the form of variational inequalities.

We follow here Sorin and Wan (2016), [77].

4.1. Variational inequalities.

4.1.1. Equilibrium and variational inequalities. Three basic classes of games where
equilibria are solutions of variational inequalities are as follows:

A) Finite games, see Section 3.1.
Let VGi denote the vector payoff associated to Gi. Explicitly, VGip(x−i) =

Gi(p, x−i), for all p ∈ Si, i ∈ I. Hence Gi(x) = 〈xi, VGi(x−i)〉. Let V G(x) =
(V Gi(x−i); i ∈ I).

An equilibrium is thus a solution of :

〈VG(x), x− y〉 =
∑
i∈I

〈VGi(x−i), xi − yi〉 ≥ 0, ∀y ∈ X. (22)

B) Concave C1 games.
Consider the case of I players with action sets (Xi; i ∈ I) and payoff functions

(Hi; i ∈ I).
Assume that each Xi is a convex compact subset of a Hilbert space Y i and that

each Hi : X =
∏

j∈I X
j → R is of class C1 and concave with respect to xi.

An equilibrium is as usual a profile x ∈ X satisfying:

Hi(x) ≥ Hi(yi, x−i), ∀yi ∈ Xi, ∀i ∈ I. (23)

which under our hypotheses is equivalent to:

〈∇iHi(x), xi − yi〉 ≥ 0, ∀yi ∈ Xi, ∀i ∈ I. (24)

where ∇i is the gradient w.r.t. xi.
C) Population games. Consider a finite set I of non atomic populations, each

with a finite set Si of types. A configuration is a vector x = (xi; i ∈ I) where each
xi ∈ Xi = ∆(Si) describes the composition of population i ∈ I. The payoffs are
defined by a family of continuous functions (gip, i∈ I, p∈Si), all from X =

∏
i X

i

to R, where gip(x) is the outcome of a member in population i choosing p, given
the configuration x. A Wardrop equilibrium, Wardrop (1952)[85], is a profile x ∈ X
satisfying:

xip > 0⇒ gip(x) ≥ giq(x), ∀p, q ∈ Si, ∀i ∈ I (25)
meaning that if p is used in population i, it is a best choice. An equivalent charac-
terization of (25) is through the solutions of the variational inequality:

〈gi(x), xi − yi〉 ≥ 0, ∀yi ∈ Xi,∀i ∈ I,

or alternatively:

〈g(x), x− y〉 =
∑
i∈I

〈gi(x), xi − yi〉 ≥ 0, ∀y ∈ X.
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This formulation is standard in transportation, see Dafermos (1980) [23], Dupuis
and Nagurney (1993), [24], Smith (1979) [73].

4.1.2. Dynamics for variational inequalities. Note that VG, ∇H and g play similar
roles in the three frameworks above.

We call them evaluation functions and denote them by Φ = {Φip}. By extension
one will speak of the game Γ(Φ) when a game has evaluation functions Φ. Assume
that Xi is a convex compact subset of RSi for each i ∈ I, X =

∏
i X

i and that
Φip : X =

∏
j∈I X

j −→ R is continuous for each i ∈ I, p ∈ Si. NE(Φ), set of
equilibria of Γ(Φ), is the set of profiles x ∈ X satisfying:

〈Φ(x), x− y〉 =
∑

i

〈Φi(x), xi − yi〉 ≥ 0, ∀y ∈ X. (26)

An equivalent representation is given by:

ΠX [x+ Φ(x)] = x. (27)

where ΠX is the projection operator on X.
Note that under our hypotheses, Brouwer’s fixed point theorem implies the ex-

istence of a solution.
Assume Xi = ∆(Si),∀i ∈ I, then the replicator dynamics has the form:

ẋip
t = xip

t [Φip
t (xt)− Φi(xt)], p ∈ Si, i ∈ I, (28)

where:
Φi(x) = 〈xi,Φi(x)〉 =

∑
p∈Si

xipΦip(x)

which allows for arbitrary continuous (not multilinear) functions Φ.
More generally for a strategy of player i in the class P1 the corresponding {ut}

process is {Φi(xt)}.
Note that if each of the players in I use any procedure in P1 and {xt} converges

to x∗, the property: ∫ t

0
〈Φ(xs), x− xs〉ds ≤ o(t), ∀x ∈ X

implies by taking the average that:

〈Φ(x∗), x− x∗〉 ≤ 0, ∀x ∈ X

hence x∗ ∈ NE(Φ).

Definition 4.1. A dynamics ẋt = BΦ(xt) satisfies positive correlation (PC), Sand-
holm (2010) [69], if:

Bi
Φ(x) 6= 0⇒ 〈Bi

Φ(x),Φi(x)〉 > 0, ∀i ∈ I, ∀x ∈ X. (29)

This corresponds to myopic adjustment dynamics, Swinkels (1993) [79] and extends
the gradient-like property.

Proposition 4.1. Replicator dynamics as well as dynamics in P1 satisfies (PC).

Note that if F ∗ is C2 with Hessian ∇2F ∗ one has from (15):

ẋi
t = (∇2F ∗(

∫ t

0
Φi(xs)ds))Φi(xt)
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hence
〈ẋi

t,Φi(xt)〉 = ∇2F ∗(
∫ t

0
Φi(xs)ds)[Φi(xt),Φi(xt)]

(where A[x, x] denotes the bilinear form xAx) which is non negative by convexity
and positive if ẋi

t 6= 0

4.2. Potential games.

Definition 4.2. A real valued function W , of class C1 on a neighborhood Ω of X,
is a potential for Φ if for each i ∈ I, there exists a strictly positive function µi(x)
defined on X such that:

〈
∇iW (x)− µi(x)Φi(x), yi

〉
= 0, ∀x ∈ X,∀yi ∈ Xi

0, ∀i ∈ I,
(30)

where Xi
0 = {y ∈ R|Si|,

∑
p∈Si yp = 0} is the tangent space to Xi.

The game Γ(Φ) is then called a potential game, Monderer and Shapley (1996)
[59], Sandholm (2001, 2009), [67, 68].

The potential W allows to find equilibria since one has:

Proposition 4.2. Let Γ(Φ) be a game with potential W .
1. Every local maximum of W is an equilibrium of Γ(Φ).
2. If W is concave on X, then any equilibrium of Γ(Φ) is a global maximum of W
on X.

Moreover the potential enjoys also interesting dynamical properties:

Proposition 4.3. Consider a potential game Γ(Φ) with potential function W .
If the dynamics ẋ = BΦ(x) satisfies (PC), then W is a strict Lyapunov function

for BΦ. All ω-limit points are rest points of BΦ.

In fact, if xt is not a rest point:
d

dt
W (xt) =

∑
i

〈∇iW (xt), ẋi
t〉 =

∑
i

µi(xt)〈Φi(xt), ẋi
t〉 > 0. (31)

In particular this applies to RD and dynamics in P1.

4.3. Dissipative games.

Definition 4.3. The game Γ(Φ) is dissipative if Φ satisfies:
〈Φ(x)− Φ(y), x− y〉 ≤ 0, ∀ (x, y) ∈ X ×X. (32)

In the framework of population games, Hofbauer and Sandholm (2002) [47] stud-
ied this class under the name stable games.

Recall that this class extends zero-sum games, Rockafellar (1970 ) [65].
Let SNE(Φ) be the set of x ∈ X satisfying:

〈Φ(y), x− y〉 ≥ 0, ∀y ∈ X. (33)

Proposition 4.4. If Γ(Φ) is dissipative
SNE(Φ) = NE(Φ).

in particular NE(Φ) is convex.

Results similar to potential games hold for dissipative games and several evolu-
tionary dynamics but with ad hoc Lyapunov functions.
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Proposition 4.5. Consider a dissipative game Γ(Φ) and let x̄ ∈ NE(Φ).
For the replicator dynamics, H is a Lyapunov function with:

H(x) =
∑
i∈I

∑
p∈supp(x̄i)

x̄i
p log

x̄i
p

xi
p

.

More generally for dynamics in P1 with smooth F
H(x) = 〈∇F (x), x− x̄〉 − F (x)

or in the dual space of outcomes:
G(W ) = F ∗(W )− 〈W, x̄〉

with W i
t =

∫ t

0 Φi(xs)ds, are Lyapunov functions.

In fact one has:
d

dt
G(Wt) =

∑
i

〈Φi(xt),∇F ∗(W i
t )〉 − 〈Φi(xt), x̄i〉

=
∑

i

〈Φi(xt), xi
t − x̄i〉 ≤ 0

by using (33).

5. Smooth case: Hessian Riemannian metrics. Consider the initial one pop-
ulation model with in addition symmetric interaction: A =t A.

We follow Akin (1979) [1], Hofbauer and Sigmund (1998) [48].
Ax derives from the potential W (x) = 1

2xAx and the replicator dynamics is a
gradient for the Shahshahani metric, Shahshahani (1979) [71], (.|.)x, defined on the
tangent space, for x in the interior of ∆(K), by:

(u|v)x =
∑

k

1
xk
ukvk.

This means that RD writes:
ẋt = grad

xt

W (xt) (34)

In fact:
grad

xt

W (xt) = {xk
t [ekAxt − xtAxt]; k ∈ K}.

satisfies:

(grad
xt

W (xt)|v)xt =
∑

k

1
xk

t

xk
t [ekAxt − xtAxt]vk = 〈Axt, v〉 = DW (xt).v

where DW stands for the differential.
More generally for a dynamics in P1, assume F C2 strictly convex with ‖∇F (x)‖ →

∞ as x→ ∂X.
Then from:

xt = ∇F ∗(
∫ t

0
usds)

one obtains:
∇F (xt) =

∫ t

0
usds

and:
∇2F (xt)ẋt = ut
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finally :
ẋt = (∇2F (xt))−1ut

which corresponds when: ut = ∇f(xt) to the dynamics introduced and studied in
Alvarez, Bolte and Brahic (2004) [3]. ∇2F (xt) defines a Riemannian metric on the
interior of X and if ut is a gradient, xt is the corresponding Riemannian gradient.
For a precise analysis in the framework of population games, see Mertikopoulos and
Sandholm (2018) [57].

A similar property holds for potential games as defined in Section 4.2.

6. Concluding remarks.

6.1. Comments. Starting from evolution of populations, based on realized fitness,
one obtains a class of dynamics {xt} or {xn} adapted to a process {ut} or {un},
satisfying:
- no regret properties in on-line learning,
- convergence to Hannan set for finite games,
- convergence to equilibria for some classes of games (potential, dissipative).
Moreover the same mechanism applies:
- for general unknown process {ut} (the changing unpredictable environment),
- for continuous vector field {ut} = g(xt),
- for games when equilibrium conditions are expressed as variational inequalities.
The analysis shows the analogy between Exponential Weights and Replicator Dy-
namics (discrete/continuous time) similar to Fictitious Play versus Best Reply Dy-
namics, and the connection between the two groups through time averaging.

All the properties emerge from independent/autonomous or uncoupled dynamics.
The link between the individual dynamics of the players at time t is through the
past trajectory of moves {xs; s < t} that impact their outcomes {Φ(xs); s < t}. In
particular the knowledge of the other players payoff function is not assumed. As a
consequence a player i is unable to check whether a profile is an equilibrium. Even,
in discrete time, one could consider a sequence of players i (with the same character-
istics) where player in acting at stage n only knows the sequence of {Φi(xm);m < n}
and not the sequence of previous moves {xi

m;m < n}: the behavior at stage m is
only a function of the past vector outcomes up to stage m, and does not depend on
the past behavior up to that stage.

Convergence to the set of equilibria occurs in two classes:
a) potential games where the dynamics essentially mimick gradient dynamics (even
if the players do not know it),
b) dissipative games, that extend results for 0-sum games.

It is interesting to see that two properties of gradient of convex functions are
used for the evaluation Φ: gradient in case a), monotone operator in case b).

In fact the relation with minimization of convex functions is a very wide and
active area of research, see e.g. the recent books: Bubeck (2015) [17], Hazan (2011)
[42], Hazan (2019) [43], Shalev-Shwartz (2012) [72].

This corresponds to the case ut = −∇f(xt) for f convex.
A last remark is that the analysis of Replicator Dynamics can be performed at

two levels:
either using (6) which corresponds to the differential approach and an incremental
discrete dynamics: xk+1 − xk = δkT (uk)
or using (8) which is the integral approach and is linked to a cumulative discrete
dynamics of the form xk+1 = S(αk

∑k
j=1 uj).
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Using strategies in the class P follows the second formulation and is related to
the dual averaging procedures introduced by Nesterov (2009) [60].

6.2. Research directions and open problems.

6.2.1. Correlated equilibria. Recall that one can build from a family of no ER proce-
dures a no IR procedure. It would be interesting to see the impact of this construc-
tion on the underlying dynamics, for example starting with Replicator Dynamics
applied to several processes and then “mixed” through some invariant distribution.

In fact RD satisfies Hannan’s property but in general does not converge to the
set of correlated equilibria, Viossat (2007) [81] gives an example of a game with
a single (pure) correlated equilibrium and where replicator dynamics attributes a
vanishing weight to it, see also Viossat [82], Viossat and Zapechelnyuk (2013) [83].

6.2.2. Continuum of actions. We describe briefly the extension of the previous ap-
proach in the “simplex case” Xi = ∆(Si) from Si finite to Si compact. A first
study in this direction goes back to Bomze (1990) [14].

- Population game
Each Ai, i ∈ I is a compact subset of some euclidean space. Let Zi = ∆(Ai), Z =∏

i Z
i. Assume that each F i : Ai × Z → R, i ∈ I is continuous ( for the weak∗

topology on Z). F i(ai, z) is the payoff of a member of population i ∈ I with type
ai given the configuration z.

The equilibrium condition is:∑
i

∫
Ai
F i(u, z)[zi(du)− ζi(du)] ≥ 0, ∀ζ ∈ Z (35)

so that the evaluation function is: Φi(z) = F i(., z).
- I “atomic splitting" players
Let Gi : Z → R be the payoff function of player i. The evaluation function Φi

corresponds to the Gateaux derivative δiGi of Gi with respect to zi. Φi(z) is a
continuous function f i on Ai such that:

lim
t→0

Gi(zi + t(ζi − zi), z−i)−Gi(z)
t

=
∫

Ai
f i(u)[ζi(du)− zi(du)]

- Variational inequalities and dynamics
The equilibria z = {zi} ∈ Z are solutions of the varIational inequalities between
continuous functions Φ(z) and probabilities ζ on A:

[Φ(z), z − ζ] =
∑
i∈I

∫
Ai

Φi(z)(u)(zi(du)− ζi(du)) ≥ 0.

A potential function W on Z satisfies δiW = Φi, i ∈ I on the tangent space.
The dynamics are now defined on the set of measures, for example for RD:

żi
t(B) =

∫
B

Φi(u, zt)zi
t(du)− zi

t(B)
∫

Ai
Φi(u, zt)zi

t(du).

See e.g. the analysis in Cheung (2016) [20] and the references therein.
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6.2.3. Convergence. The convergence properties, either to the Hannan set, to cor-
related equilibria distribution or through a Lyapounov function are, in general,
convergence to a set.

In the framework of Section 5, more precise results are available, implying con-
vergence of the trajectories:
-for the replicator dynamics, in the one population symmetric case, Akin and Hof-
bauer (1982) [2],
- for the Hessian Riemannian gradient flows, Alvarez, Bolte and Brahic (2004) [3].

A natural research direction is to look for extensions.
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