Regularity and stability in shape optimization under geometric constraint

Raphaël Prunier

PhD Thesis Defense, $22^{\text {nd }}$ June, 2023

Isoperimetric problem

Isoperimetric problem

Isoperimetric problem

Balls minimize the perimeter at fixed volume: for any set Ω of volume 1

$$
P(\Omega) \geq P(B)
$$

where B is a ball of volume 1 .

Stability for the isoperimetric problem: intuitive approach

Stability for the isoperimetric problem: intuitive approach

$$
\text { If }|\Omega|=1 \text { and } P(\Omega) \approx P(B) \Longrightarrow \Omega \approx \text { a ball? }
$$

Stability for the isoperimetric problem: intuitive approach

$$
\text { If }|\Omega|=1 \text { and } P(\Omega) \approx P(B) \Longrightarrow \Omega \approx \text { a ball? }
$$

Outline of the talk

(1) Stability of the ball in certain classes of shapes

- Stability
- Strategy
(2) Stability for isoperimetric problems
- Stability for $P-\lambda_{1}$
- Stronger stability for $P-\lambda_{1}$
(3) Stability for Faber-Krahn problems
(1) Stability of the ball in certain classes of shapes
- Stability
- Strategy
(2) Stability for isoperimetric problems
- Stability for $P-\lambda_{1}$
- Stronger stability for $P-\lambda_{1}$
(3) Stability for Faber-Krahn problems
(1) Stability of the ball in certain classes of shapes
- Stability
- Strategy
(2) Stability for isoperimetric problems
- Stability for $P-\lambda_{1}$
- Stronger stability for $P-\lambda_{1}$
(3) Stability for Faber-Krahn problems
- $\mathcal{S}_{\text {ad }}$: class of subsets of \mathbb{R}^{n} of volume $1(n \geq 2)$.
$-R: \mathcal{S}_{\mathrm{ad}} \rightarrow \mathbb{R}$.
- $B \subset \mathbb{R}^{n}$ a ball of volume 1 .
$-\lambda_{1}(\Omega): 1^{\text {st }}$ Dirichlet eigenvalue of the open set $\Omega \subset \mathbb{R}^{n}$.

$$
\begin{equation*}
\forall \Omega \subset \mathbb{R}^{n} \text { open with }|\Omega|=1, \lambda_{1}(\Omega) \geq \lambda_{1}(B) \tag{FK}
\end{equation*}
$$

- $\mathcal{S}_{\text {ad }}$: class of subsets of \mathbb{R}^{n} of volume $1(n \geq 2)$.
$-R: \mathcal{S}_{\text {ad }} \rightarrow \mathbb{R}$.
$-B \subset \mathbb{R}^{n}$ a ball of volume 1 .
$-\lambda_{1}(\Omega): 1^{\text {st }}$ Dirichlet eigenvalue of the open set $\Omega \subset \mathbb{R}^{n}$.

$$
\begin{equation*}
\forall \Omega \subset \mathbb{R}^{n} \text { open with }|\Omega|=1, \lambda_{1}(\Omega) \geq \lambda_{1}(B) \tag{FK}
\end{equation*}
$$

Definition (Stability of the ball)

Let $J=P$ or $J=\lambda_{1}$. We say that B is stable for $J+R$ in $\mathcal{S}_{\text {ad }}$ provided that for sufficiently small ε

$$
\begin{gathered}
B \text { is a minimizer of } J+\varepsilon R \text { in } \mathcal{S}_{a d} \\
\Longleftrightarrow \forall \Omega \in \mathcal{S}_{a d}, J(\Omega)-J(B) \geq \varepsilon(R(B)-R(\Omega))
\end{gathered}
$$

- $\mathcal{S}_{\text {ad }}$: class of subsets of \mathbb{R}^{n} of volume $1(n \geq 2)$.
$-R: \mathcal{S}_{\mathrm{ad}} \rightarrow \mathbb{R}$.
$-B \subset \mathbb{R}^{n}$ a ball of volume 1 .
$-\lambda_{1}(\Omega): 1^{\text {st }}$ Dirichlet eigenvalue of the open set $\Omega \subset \mathbb{R}^{n}$.

$$
\begin{equation*}
\forall \Omega \subset \mathbb{R}^{n} \text { open with }|\Omega|=1, \quad \lambda_{1}(\Omega) \geq \lambda_{1}(B) \tag{FK}
\end{equation*}
$$

Definition (Stability of the ball)

Let $J=P$ or $J=\lambda_{1}$. We say that B is stable for $J+R$ in $\mathcal{S}_{\text {ad }}$ provided that for sufficiently small ε

$$
\begin{gathered}
B \text { is a minimizer of } J+\varepsilon R \text { in } \mathcal{S}_{a d} . \\
\Longleftrightarrow \forall \Omega \in \mathcal{S}_{a d}, J(\Omega)-J(B) \gtrsim(R(B)-R(\Omega))
\end{gathered}
$$

Examples

Examples

Example 1: quantitative isoperimetric inequality [Fusco, Maggi, Pratelli, '08].
$\mathcal{A}(\Omega):=\inf \left\{|\Omega \Delta(B+x)|, x \in \mathbb{R}^{n}\right\}:$ Fraenkel asymmetry.

Examples

Example 1: quantitative isoperimetric inequality [Fusco, Maggi, Pratelli, '08].
$\mathcal{A}(\Omega):=\inf \left\{|\Omega \Delta(B+x)|, x \in \mathbb{R}^{n}\right\}:$ Fraenkel asymmetry.

$$
\forall|\Omega|=1, P(\Omega)-P(B) \gtrsim \mathcal{A}(\Omega)^{2}
$$

Examples

Example 1: quantitative isoperimetric inequality [Fusco, Maggi, Pratelli, '08].
$\mathcal{A}(\Omega):=\inf \left\{|\Omega \Delta(B+x)|, x \in \mathbb{R}^{n}\right\}:$ Fraenkel asymmetry.

$$
\forall|\Omega|=1, P(\Omega)-P(B) \gtrsim \mathcal{A}(\Omega)^{2}
$$

Example 2: Payne-Weinberger inequality.
$\forall \Omega \subset \mathbb{R}^{2}$ open and simply connected with $|\Omega|=1$, it holds (locally)

$$
P(\Omega)-P(B) \gtrsim \lambda_{1}(\Omega)-\lambda_{1}(B)
$$

(1) Stability of the ball in certain classes of shapes

- Stability
- Strategy
(2) Stability for isoperimetric problems
- Stability for $P-\lambda_{1}$
- Stronger stability for $P-\lambda_{1}$
(3) Stability for Faber-Krahn problems
- X : space of "smooth" functions $h: \partial B \rightarrow \mathbb{R}$.
- X : space of "smooth" functions $h: \partial B \rightarrow \mathbb{R}$.
$-B_{h}:=\{t x(1+h(x)), x \in \partial B, t \in[0,1)\}$.
- X : space of "smooth" functions $h: \partial B \rightarrow \mathbb{R}$.
$-B_{h}:=\{t x(1+h(x)), x \in \partial B, t \in[0,1)\}$.
$-\mathcal{S}_{\text {reg }}:=\left\{\Omega \in \mathcal{S}_{\text {ad }}, \Omega=B_{h}, h \in X\right\} \subset \mathcal{S}_{\text {ad }}$.
- X : space of "smooth" functions $h: \partial B \rightarrow \mathbb{R}$.
$-B_{h}:=\{t x(1+h(x)), x \in \partial B, t \in[0,1)\}$.
$-\mathcal{S}_{\text {reg }}:=\left\{\Omega \in \mathcal{S}_{\text {ad }}, \Omega=B_{h}, h \in X\right\} \subset \mathcal{S}_{\text {ad }}$.
If

$$
\forall \Omega \in \mathcal{S}_{\text {reg }}, J(\Omega)-J(B) \gtrsim(R(B)-R(\Omega))
$$

does the same hold for $\mathcal{S}_{\text {ad }}$?

- X : space of "smooth" functions $h: \partial B \rightarrow \mathbb{R}$.
$-B_{h}:=\{t x(1+h(x)), x \in \partial B, t \in[0,1)\}$.
$-\mathcal{S}_{\text {reg }}:=\left\{\Omega \in \mathcal{S}_{\text {ad }}, \Omega=B_{h}, h \in X\right\} \subset \mathcal{S}_{\text {ad }}$.
If

$$
\forall \Omega \in \mathcal{S}_{\text {reg }}, J(\Omega)-J(B) \gtrsim(R(B)-R(\Omega))
$$

does the same hold for $\mathcal{S}_{\text {ad }}$?
Step 1: (Fuglede-type computations) Stability in $\mathcal{S}_{\text {reg }}$: Taylor-expansion of $(J+\varepsilon R)\left(B_{h}\right)$ in h around $h=0$.

- X : space of "smooth" functions $h: \partial B \rightarrow \mathbb{R}$.
$-B_{h}:=\{t x(1+h(x)), x \in \partial B, t \in[0,1)\}$.
$-\mathcal{S}_{\text {reg }}:=\left\{\Omega \in \mathcal{S}_{\text {ad }}, \Omega=B_{h}, h \in X\right\} \subset \mathcal{S}_{\text {ad }}$.

If

$$
\forall \Omega \in \mathcal{S}_{\mathrm{reg}}, J(\Omega)-J(B) \gtrsim(R(B)-R(\Omega))
$$

does the same hold for $\mathcal{S}_{\text {ad }}$?
Step 1: (Fuglede-type computations) Stability in $\mathcal{S}_{\text {reg }}$: Taylor-expansion of $(J+\varepsilon R)\left(B_{h}\right)$ in h around $h=0$.

Step 2: Stability in $\mathcal{S}_{\text {ad }}$: regularity theory inside $\mathcal{S}_{\text {ad }}$, i.e.
any minimizer Ω of $\min \left\{(J+\varepsilon R)(\Omega), \Omega \in \mathcal{S}_{\text {ad }}\right\}$
can be written $\Omega=B_{h}$ for some $h \in X$.
(1) Stability of the ball in certain classes of shapes

- Stability
- Strategy
(2) Stability for isoperimetric problems
- Stability for $P-\lambda_{1}$
- Stronger stability for $P-\lambda_{1}$
(3) Stability for Faber-Krahn problems

Stability under convexity constraint

We study $\mathcal{S}_{\text {ad }}=\left\{\Omega \subset \mathbb{R}^{n}\right.$ open and convex, $\left.|\Omega|=1\right\}$.
(1) Stability of the ball in certain classes of shapes

- Stability
- Strategy
(2) Stability for isoperimetric problems
- Stability for $P-\lambda_{1}$
- Stronger stability for $P-\lambda_{1}$
(3) Stability for Faber-Krahn problems

Main result: stability for $P-\lambda_{1}$

Main result: stability for $P-\lambda_{1}$

- $\mathcal{K}_{1}^{n}:=\left\{K \subset \mathbb{R}^{n}\right.$ convex body of volume 1$\}$.
$-\lambda_{1}(K): 1^{\text {st }}$ Dirichlet eigenvalue of $K \in \mathcal{K}_{1}^{n}$.

Main result: stability for $P-\lambda_{1}$

$-\mathcal{K}_{1}^{n}:=\left\{K \subset \mathbb{R}^{n}\right.$ convex body of volume 1$\}$.
$-\lambda_{1}(K): 1^{\text {st }}$ Dirichlet eigenvalue of $K \in \mathcal{K}_{1}^{n}$.
Theorem (P., '23)
The ball is locally stable for $P-\lambda_{1}$ in \mathcal{K}_{1}^{n} : for $\varepsilon \ll 1$

$$
\forall K \in \mathcal{K}_{1}^{n} \text { with }|K \Delta B| \ll 1,\left(P-\varepsilon \lambda_{1}\right)(K) \geq\left(P-\varepsilon \lambda_{1}\right)(B)
$$

Main result: stability for $P-\lambda_{1}$

$-\mathcal{K}_{1}^{n}:=\left\{K \subset \mathbb{R}^{n}\right.$ convex body of volume 1$\}$.
$-\lambda_{1}(K): 1^{\text {st }}$ Dirichlet eigenvalue of $K \in \mathcal{K}_{1}^{n}$.

Theorem (P., '23)

The ball is locally stable for $P-\lambda_{1}$ in \mathcal{K}_{1}^{n} : for $\varepsilon \ll 1$

$$
\forall K \in \mathcal{K}_{1}^{n} \text { with }|K \Delta B| \ll 1,\left(P-\varepsilon \lambda_{1}\right)(K) \geq\left(P-\varepsilon \lambda_{1}\right)(B)
$$

The proof adapts to other energies ($\lambda_{1} \rightsquigarrow$ capacity), which generalizes [Goldman, Novaga, Ruffini, '18] to dimension $n \geq 3$.

Sketch of proof

Step 1: stability for Lipschitz perturbations.

Sketch of proof

Step 1: stability for Lipschitz perturbations.

Lemma (P.)
For $h \in W^{1, \infty}(\partial B)$ with $\|h\|_{W^{1, \infty}} \ll 1$ and $\left|B_{h}\right|=1$ it holds

$$
\lambda_{1}\left(B_{h}\right)-\lambda_{1}(B) \lesssim\|h\|_{H^{1}}^{2}
$$

Sketch of proof

Step 1: stability for Lipschitz perturbations.

Lemma (P.)

For $h \in W^{1, \infty}(\partial B)$ with $\|h\|_{W^{1, \infty}} \ll 1$ and $\left|B_{h}\right|=1$ it holds

$$
\lambda_{1}\left(B_{h}\right)-\lambda_{1}(B) \lesssim\|h\|_{H^{1}}^{2}
$$

Key idea: use an appropriate test function in

$$
\lambda_{1}\left(B_{h}\right)=\inf \left\{\int_{B_{h}} \frac{|\nabla u|^{2}}{|u|^{2}}, u \in H_{0}^{1}\left(B_{h}\right) \backslash\{0\}\right\}
$$

Sketch of proof

Step 1: stability for Lipschitz perturbations.

Lemma (P.)

For $h \in W^{1, \infty}(\partial B)$ with $\|h\|_{W^{1, \infty}} \ll 1$ and $\left|B_{h}\right|=1$ it holds

$$
\lambda_{1}\left(B_{h}\right)-\lambda_{1}(B) \lesssim\|h\|_{H^{1}}^{2}
$$

Key idea: use an appropriate test function in

$$
\lambda_{1}\left(B_{h}\right)=\inf \left\{\int_{B_{h}} \frac{|\nabla u|^{2}}{|u|^{2}}, u \in H_{0}^{1}\left(B_{h}\right) \backslash\{0\}\right\}
$$

(i) Thanks to the Lemma,

$$
\lambda_{1}\left(B_{h}\right)-\lambda_{1}(B) \lesssim\|h\|_{H^{1}}^{2}
$$

Sketch of proof

Step 1: stability for Lipschitz perturbations.

Lemma (P.)

For $h \in W^{1, \infty}(\partial B)$ with $\|h\|_{W^{1, \infty}} \ll 1$ and $\left|B_{h}\right|=1$ it holds

$$
\lambda_{1}\left(B_{h}\right)-\lambda_{1}(B) \lesssim\|h\|_{H^{1}}^{2}
$$

Key idea: use an appropriate test function in

$$
\lambda_{1}\left(B_{h}\right)=\inf \left\{\int_{B_{h}} \frac{|\nabla u|^{2}}{|u|^{2}}, u \in H_{0}^{1}\left(B_{h}\right) \backslash\{0\}\right\}
$$

(i) Thanks to the Lemma,

$$
\lambda_{1}\left(B_{h}\right)-\lambda_{1}(B) \lesssim\|h\|_{H^{1}}^{2}
$$

(ii) [Fuglede, '89]:

$$
P\left(B_{h}\right)-P(B) \gtrsim\|h\|_{H^{1}}^{2}
$$

Sketch of proof

Step 1: stability for Lipschitz perturbations.

Lemma (P.)

For $h \in W^{1, \infty}(\partial B)$ with $\|h\|_{W^{1, \infty}} \ll 1$ and $\left|B_{h}\right|=1$ it holds

$$
\lambda_{1}\left(B_{h}\right)-\lambda_{1}(B) \lesssim\|h\|_{H^{1}}^{2}
$$

Key idea: use an appropriate test function in

$$
\lambda_{1}\left(B_{h}\right)=\inf \left\{\int_{B_{h}} \frac{|\nabla u|^{2}}{|u|^{2}}, u \in H_{0}^{1}\left(B_{h}\right) \backslash\{0\}\right\}
$$

(i) Thanks to the Lemma,

$$
\lambda_{1}\left(B_{h}\right)-\lambda_{1}(B) \lesssim\|h\|_{H^{1}}^{2}
$$

(ii) [Fuglede, '89]:

$$
P\left(B_{h}\right)-P(B) \gtrsim\|h\|_{H^{1}}^{2}
$$

$\Longrightarrow\left(P-\varepsilon \lambda_{1}\right)\left(B_{h}\right) \geq\left(P-\varepsilon \lambda_{1}\right)(B)$ for Lipschitz perturbations.

Step 2.

Any convex set is Lipschitz \rightsquigarrow Step 1 is enough to conclude.
(1) Stability of the ball in certain classes of shapes

- Stability
- Strategy
(2) Stability for isoperimetric problems
- Stability for $P-\lambda_{1}$
- Stronger stability for $P-\lambda_{1}$
(3) Stability for Faber-Krahn problems

Main result: strong stability for $P-\lambda_{1}$

Main result: strong stability for $P-\lambda_{1}$

Theorem (P., '23)
There exists $c^{*}>0$ s.t.

- For $c \in\left(0, c^{*}\right)$, the ball is a local minimizer of $P-c \lambda_{1}$ in \mathcal{K}_{1}^{n} :

$$
\forall K \in \mathcal{K}_{1}^{n} \text { with }|K \Delta B| \ll 1,\left(P-c \lambda_{1}\right)(K) \geq\left(P-c \lambda_{1}\right)(B)
$$

with equality iff (up to translation) $K=B$.

- For $c \in\left(c^{*}, \infty\right)$, the ball is not a local minimizer of $P-c \lambda_{1}$ in \mathcal{K}_{1}^{n}.

Sketch of proof

Sketch of proof Space X from Step 1?

Sketch of proof
Space X from Step 1?
Step 2: regularity of minimizers of $P-c \lambda_{1}$

Sketch of proof
Space X from Step 1?
Step 2: regularity of minimizers of $P-c \lambda_{1}$
What is the regularity of a local minimizer K^{*} of

$$
\min \left\{P(K)-c \lambda_{1}(K), K \in \mathcal{K}_{1}^{n}\right\} ?
$$

Sketch of proof
Space X from Step 1?
Step 2: regularity of minimizers of $P-c \lambda_{1}$
What is the regularity of a local minimizer K^{*} of

$$
\min \left\{P(K)-c \lambda_{1}(K), K \in \mathcal{K}_{1}^{n}\right\} ?
$$

If K^{*} is a minimizer,

Sketch of proof
Space X from Step 1?
Step 2: regularity of minimizers of $P-c \lambda_{1}$
What is the regularity of a local minimizer K^{*} of

$$
\min \left\{P(K)-c \lambda_{1}(K), K \in \mathcal{K}_{1}^{n}\right\} ?
$$

If K^{*} is a minimizer,

$$
\begin{aligned}
P\left(K^{*}\right) & \leq P(K)+c\left(\lambda_{1}\left(K^{*}\right)-\lambda_{1}(K)\right) \\
\Longrightarrow P\left(K^{*}\right) & \leq P(K)+\Lambda\left|K^{*} \Delta K\right|, \text { if }\left|K^{*} \Delta K\right| \ll 1
\end{aligned}
$$

Sketch of proof

Space X from Step 1?
Step 2: regularity of minimizers of $P-c \lambda_{1}$
What is the regularity of a local minimizer K^{*} of

$$
\min \left\{P(K)-c \lambda_{1}(K), K \in \mathcal{K}_{1}^{n}\right\} ?
$$

If K^{*} is a minimizer,

$$
\begin{aligned}
& P\left(K^{*}\right) \leq P(K)+c\left(\lambda_{1}\left(K^{*}\right)-\lambda_{1}(K)\right) \\
\Longrightarrow & P\left(K^{*}\right) \leq P(K)+\Lambda\left|K^{*} \Delta K\right|, \text { if }\left|K^{*} \Delta K\right| \ll 1
\end{aligned}
$$

$\rightsquigarrow K^{*}$ is a minimizer of P up to a volume term.

Sketch of proof

Space X from Step 1?
Step 2: regularity of minimizers of $P-c \lambda_{1}$
What is the regularity of a local minimizer K^{*} of

$$
\min \left\{P(K)-c \lambda_{1}(K), K \in \mathcal{K}_{1}^{n}\right\} ?
$$

If K^{*} is a minimizer,

$$
\begin{aligned}
P\left(K^{*}\right) & \leq P(K)+c\left(\lambda_{1}\left(K^{*}\right)-\lambda_{1}(K)\right) \\
\Longrightarrow & P\left(K^{*}\right) \leq P(K)+\Lambda\left|K^{*} \Delta K\right|, \text { if }\left|K^{*} \Delta K\right| \ll 1
\end{aligned}
$$

$\rightsquigarrow K^{*}$ is a minimizer of P up to a volume term.
Definition (q.m.p.c.c.)
$K \in \mathcal{K}^{n}$ is a quasi-minimizer of the perimeter under convexity constraint if there exists $\wedge, \eta>0$ s.t.

$$
\forall\left(\widetilde{K} \in \mathcal{K}^{n},|K \Delta \widetilde{K}| \leq \eta\right), P(K) \leq P(\widetilde{K})+\Lambda|K \Delta \widetilde{K}|
$$

In the classical GMT setting, one can prove that q.m.p. are $\mathcal{C}^{1, \frac{1}{2}}$.

In the classical GMT setting, one can prove that q.m.p. are $\mathcal{C}^{1, \frac{1}{2}}$.
Theorem 1 (Lamboley, P., '23)
Any q.m.p.c.c. K^{*} is $\mathcal{C}^{1,1}$.

In the classical GMT setting, one can prove that q.m.p. are $\mathcal{C}^{1, \frac{1}{2}}$.

Theorem 1 (Lamboley, P., '23)
 Any q.m.p.c.c. K^{*} is $\mathcal{C}^{1,1}$.

Ideas of proof.

In the classical GMT setting, one can prove that q.m.p. are $\mathcal{C}^{1, \frac{1}{2}}$.

Theorem 1 (Lamboley, P., '23)

Any q.m.p.c.c. K^{*} is $\mathcal{C}^{1,1}$.
Ideas of proof.

In the classical GMT setting, one can prove that q.m.p. are $\mathcal{C}^{1, \frac{1}{2}}$.
Theorem 1 (Lamboley, P., '23)
Any q.m.p.c.c. K^{*} is $\mathcal{C}^{1,1}$.
Ideas of proof.

One cannot perturb K^{*} locally around $x_{0} \in \partial K^{*}$.

In the classical GMT setting, one can prove that q.m.p. are $\mathcal{C}^{1, \frac{1}{2}}$.

Theorem 1 (Lamboley, P., '23)

Any q.m.p.c.c. K^{*} is $\mathcal{C}^{1,1}$.
Ideas of proof.

One cannot perturb K^{*} locally around $x_{0} \in \partial K^{*}$.

- Cutting procedure :

Use $K^{*} \cap H^{+}$as a competitor.

Competitors:

$$
\forall r>0, K_{r}:=K^{*} \cap \operatorname{Epi}\left(\sigma_{r}\right)
$$

where σ_{r} is a well-chosen affine function ([Carlier, Caffarelli, Lions]).

Competitors:

$$
\forall r>0, K_{r}:=K^{*} \cap \operatorname{Epi}\left(\sigma_{r}\right)
$$

where σ_{r} is a well-chosen affine function ([Carlier, Caffarelli, Lions]).

Competitors:

$$
\forall r>0, K_{r}:=K^{*} \cap \operatorname{Epi}\left(\sigma_{r}\right)
$$

where σ_{r} is a well-chosen affine function ([Carlier, Caffarelli, Lions]).

By quasi-minimality,

$$
P\left(K^{*}\right)-P\left(K_{r}\right) \leq \Lambda\left|K^{*} \backslash K_{r}\right|
$$

Competitors:

$$
\forall r>0, K_{r}:=K^{*} \cap \operatorname{Epi}\left(\sigma_{r}\right)
$$

where σ_{r} is a well-chosen affine function ([Carlier, Caffarelli, Lions]).

By quasi-minimality,

$$
P\left(K^{*}\right)-P\left(K_{r}\right) \leq \Lambda\left|K^{*} \backslash K_{r}\right|
$$

\rightsquigarrow Interpret $P\left(K^{*}\right)-P\left(K_{r}\right)$ and $\left|K \backslash K_{r}\right|$ in a calculus of var. framework.

End of Step 2: selection principle.

End of Step 2: selection principle.

$c \in\left(0, c^{*}\right) ;$
Deny minimality of B : by contradiction, there exists $\left(K_{j}\right) \in \mathcal{K}_{1}^{n}$ s.t.

$$
\left\{\begin{array}{l}
\left(P-c \lambda_{1}\right)\left(K_{j}\right)<\left(P-c \lambda_{1}\right)(B), \forall j \in \mathbb{N} \tag{1}\\
\left|K_{j} \Delta B\right| \rightarrow 0
\end{array}\right.
$$

End of Step 2: selection principle.

$c \in\left(0, c^{*}\right) ;$
Deny minimality of B : by contradiction, there exists $\left(K_{j}\right) \in \mathcal{K}_{1}^{n}$ s.t.

$$
\left\{\begin{array}{l}
\left(P-c \lambda_{1}\right)\left(K_{j}\right)<\left(P-c \lambda_{1}\right)(B), \forall j \in \mathbb{N} \tag{1}\\
\left|K_{j} \Delta B\right| \rightarrow 0
\end{array}\right.
$$

Replace K_{j} by \tilde{K}_{j} in (1), where \tilde{K}_{j} is a minimizer of $P-c \lambda_{1}$ (+ some vol. term involving $\left|K_{j} \Delta B\right|$, enforcing $\left.\left|\tilde{K}_{j} \Delta B\right| \rightarrow 0\right)$.

End of Step 2: selection principle.

$c \in\left(0, c^{*}\right) ;$
Deny minimality of B : by contradiction, there exists $\left(K_{j}\right) \in \mathcal{K}_{1}^{n}$ s.t.

$$
\left\{\begin{array}{l}
\left(P-c \lambda_{1}\right)\left(K_{j}\right)<\left(P-c \lambda_{1}\right)(B), \forall j \in \mathbb{N} \tag{1}\\
\left|K_{j} \Delta B\right| \rightarrow 0
\end{array}\right.
$$

Replace K_{j} by \tilde{K}_{j} in (1), where \tilde{K}_{j} is a minimizer of $P-c \lambda_{1}$ (+ some vol. term involving $\left|K_{j} \Delta B\right|$, enforcing $\left.\left|\tilde{K}_{j} \Delta B\right| \rightarrow 0\right)$.
$\Longrightarrow \tilde{K}_{j}$ is a q.m.p.c.c. and $\left|\tilde{K}_{j} \Delta B\right| \rightarrow 0$.

End of Step 2: selection principle.

$c \in\left(0, c^{*}\right) ;$
Deny minimality of B : by contradiction, there exists $\left(K_{j}\right) \in \mathcal{K}_{1}^{n}$ s.t.

$$
\left\{\begin{array}{l}
\left(P-c \lambda_{1}\right)\left(K_{j}\right)<\left(P-c \lambda_{1}\right)(B), \forall j \in \mathbb{N} \tag{1}\\
\left|K_{j} \Delta B\right| \rightarrow 0
\end{array}\right.
$$

Replace K_{j} by \tilde{K}_{j} in (1), where \tilde{K}_{j} is a minimizer of $P-c \lambda_{1}$ (+ some vol. term involving $\left|K_{j} \Delta B\right|$, enforcing $\left.\left|\tilde{K}_{j} \Delta B\right| \rightarrow 0\right)$.
$\Longrightarrow \tilde{K}_{j}$ is a q.m.p.c.c. and $\left|\tilde{K}_{j} \Delta B\right| \rightarrow 0$.
$\xrightarrow{\text { Reg.Theorem }} \tilde{K}_{j}=B_{h_{j}}$ for some $h_{j} \in \mathcal{C}^{1,1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ with $\left\|h_{j}\right\|_{\mathcal{C}^{1, \alpha}} \rightarrow 0$ for any $\alpha \in(0,1)$.

End of Step 2: selection principle.

$c \in\left(0, c^{*}\right) ;$
Deny minimality of B : by contradiction, there exists $\left(K_{j}\right) \in \mathcal{K}_{1}^{n}$ s.t.

$$
\left\{\begin{array}{l}
\left(P-c \lambda_{1}\right)\left(K_{j}\right)<\left(P-c \lambda_{1}\right)(B), \forall j \in \mathbb{N} \tag{1}\\
\left|K_{j} \Delta B\right| \rightarrow 0
\end{array}\right.
$$

Replace K_{j} by \tilde{K}_{j} in (1), where \tilde{K}_{j} is a minimizer of $P-c \lambda_{1}$ (+ some vol. term involving $\left|K_{j} \Delta B\right|$, enforcing $\left.\left|\tilde{K}_{j} \Delta B\right| \rightarrow 0\right)$.
$\Longrightarrow \tilde{K}_{j}$ is a q.m.p.c.c. and $\left|\tilde{K}_{j} \Delta B\right| \rightarrow 0$.
$\xrightarrow{\text { Reg.Theorem }} \tilde{K}_{j}=B_{h_{j}}$ for some $h_{j} \in \mathcal{C}^{1,1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ with $\left\|h_{j}\right\|_{\mathcal{C}^{1, \alpha}} \rightarrow 0$ for any $\alpha \in(0,1)$.
\rightsquigarrow Goal: prove stability for $X=\mathcal{C}^{1, \alpha}$ perturbations of the ball.

Step 1: stability for $X=\mathcal{C}^{1, \alpha}$ perturbations.

Step 1: stability for $X=\mathcal{C}^{1, \alpha}$ perturbations.

Theorem 2 (P., '23)
There exists $\alpha \in(0,1)$ s.t. for all $h \in \mathcal{C}^{1, \alpha}(\partial B)$ with $\|h\|_{\mathcal{C}^{1, \alpha}} \ll 1$:

$$
\lambda_{1}\left(B_{h}\right)=\lambda_{1}(B)+\lambda_{1}^{\prime}(B) \cdot h+\frac{1}{2} \lambda_{1}^{\prime \prime}(B) \cdot(h, h)+\omega\left(\|h\|_{\mathcal{C}^{1, \alpha}}\right)\|h\|_{H^{1}}^{2}
$$

$-\mathcal{J}_{c}:=P-c \lambda_{1}$.
$-\mathcal{J}_{c}:=P-c \lambda_{1}$.

Corollary (P.)

There exists $\alpha \in(0,1)$ s.t. for all $c \in\left(0, c^{*}\right)$ and $h \in \mathcal{C}^{1, \alpha}(\partial B)$ with $\|h\|_{\mathcal{C}^{1, \alpha}} \ll 1$,

$$
\mathcal{J}_{c}\left(B_{h}\right) \geq \mathcal{J}_{c}(B)
$$

$-\mathcal{J}_{c}:=P-c \lambda_{1}$.

Corollary (P.)

There exists $\alpha \in(0,1)$ s.t. for all $c \in\left(0, c^{*}\right)$ and $h \in \mathcal{C}^{1, \alpha}(\partial B)$ with $\|h\|_{\mathcal{C}^{1, \alpha}} \ll 1$,

$$
\mathcal{J}_{c}\left(B_{h}\right) \geq \mathcal{J}_{c}(B)
$$

Ideas of proof.
$-\mathcal{J}_{c}:=P-c \lambda_{1}$.

Corollary (P.)

There exists $\alpha \in(0,1)$ s.t. for all $c \in\left(0, c^{*}\right)$ and $h \in \mathcal{C}^{1, \alpha}(\partial B)$ with $\|h\|_{\mathcal{C}^{1, \alpha}} \ll 1$,

$$
\mathcal{J}_{c}\left(B_{h}\right) \geq \mathcal{J}_{c}(B)
$$

Ideas of proof. $2^{\text {nd }}$-order Taylor expansion of $\mathcal{J}_{c}\left(B_{h}\right)$ in h around $h=0$:

$$
\mathcal{J}_{c}\left(B_{h}\right)=\mathcal{J}_{c}(B)+\underbrace{\mathcal{J}_{c}^{\prime}(B) \cdot h}_{=0}+\frac{1}{2} \underbrace{\mathcal{J}_{c}^{\prime \prime}(B) \cdot(h, h)}_{\gtrsim\|h\|_{H^{1}}^{2}}+\omega\left(\|h\|_{\mathcal{C}^{1, \alpha}}\right)\|h\|_{H^{1}}^{2}
$$

$-\mathcal{J}_{c}:=P-c \lambda_{1}$.

Corollary (P.)

There exists $\alpha \in(0,1)$ s.t. for all $c \in\left(0, c^{*}\right)$ and $h \in \mathcal{C}^{1, \alpha}(\partial B)$ with $\|h\|_{\mathcal{C}^{1, \alpha}} \ll 1$,

$$
\mathcal{J}_{c}\left(B_{h}\right) \geq \mathcal{J}_{c}(B)
$$

Ideas of proof. $2^{\text {nd }}$-order Taylor expansion of $\mathcal{J}_{c}\left(B_{h}\right)$ in h around $h=0$:

$$
\mathcal{J}_{c}\left(B_{h}\right)=\mathcal{J}_{c}(B)+\underbrace{\mathcal{J}_{c}^{\prime}(B) \cdot h}_{=0}+\frac{1}{2} \underbrace{\mathcal{J}_{c}^{\prime \prime}(B) \cdot(h, h)}_{\gtrsim\|h\|_{H^{1}}^{2}}+\omega\left(\|h\|_{\mathcal{C}^{1, \alpha}}\right)\|h\|_{H^{1}}^{2}
$$

\rightsquigarrow Concludes Step 1 hence the proof.
(1) Stability of the ball in certain classes of shapes

- Stability
- Strategy
(2) Stability for isoperimetric problems
- Stability for $P-\lambda_{1}$
- Stronger stability for $P-\lambda_{1}$
(3) Stability for Faber-Krahn problems

Quantitative estimates of the spectrum of the Dirichlet Laplacian

Quantitative estimates of the spectrum of the Dirichlet Laplacian

If Ω is open with $|\Omega|=1, \lambda_{1}(\Omega) \approx \lambda_{1}(B) \Longrightarrow \lambda_{k}(\Omega) \approx \lambda_{k}(B)$?

Quantitative estimates of the spectrum of the Dirichlet Laplacian

If Ω is open with $|\Omega|=1, \lambda_{1}(\Omega) \approx \lambda_{1}(B) \Longrightarrow \lambda_{k}(\Omega) \approx \lambda_{k}(B)$?

We seek for quantitative inequalities
$\forall \Omega$ open with $|\Omega|=1,\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\gamma}$
for some exponent $\gamma=\gamma(k)>0$.

Quantitative estimates of the spectrum of the Dirichlet Laplacian

If Ω is open with $|\Omega|=1, \lambda_{1}(\Omega) \approx \lambda_{1}(B) \Longrightarrow \lambda_{k}(\Omega) \approx \lambda_{k}(B)$?

We seek for quantitative inequalities

$$
\forall \Omega \text { open with }|\Omega|=1,\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\gamma}
$$

for some exponent $\gamma=\gamma(k)>0$.
Several works with non-sharp exponents:
$-\gamma=\frac{1}{80 n}$ in [Bertrand, Colbois, '06],
$-\gamma=\frac{1}{12}$ in [Mazzoleni, Pratelli, '19].

Heuristics on γ

$\forall \Omega \subset \mathbb{R}^{n}$ open with $|\Omega|=1,\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\gamma}$

Heuristics on γ

$\forall \Omega \subset \mathbb{R}^{n}$ open with $|\Omega|=1,\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\gamma}$ If $\Omega=B_{h}$ and $h \rightarrow 0, \lambda_{1}\left(B_{h}\right)-\lambda_{1}(B)$ is of order 2 in h while

Heuristics on γ

$\forall \Omega \subset \mathbb{R}^{n}$ open with $|\Omega|=1,\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\gamma}$ If $\Omega=B_{h}$ and $h \rightarrow 0, \lambda_{1}\left(B_{h}\right)-\lambda_{1}(B)$ is of order 2 in h while

- If $\lambda_{k}(B)$ is a multiple eigenvalue, $\lambda_{k}\left(B_{h}\right)-\lambda_{k}(B)$ may be of order 1 .

Heuristics on γ

$\forall \Omega \subset \mathbb{R}^{n}$ open with $|\Omega|=1,\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\gamma}$ If $\Omega=B_{h}$ and $h \rightarrow 0, \lambda_{1}\left(B_{h}\right)-\lambda_{1}(B)$ is of order 2 in h while

- If $\lambda_{k}(B)$ is a multiple eigenvalue, $\lambda_{k}\left(B_{h}\right)-\lambda_{k}(B)$ may be of order 1 .
- If $\lambda_{k}(B)$ is a simple eigenvalue, B is a critical point of λ_{k} $\Longrightarrow \lambda_{k}\left(B_{h}\right)-\lambda_{k}(B)$ is of order 2 .

Heuristics on γ

$\forall \Omega \subset \mathbb{R}^{n}$ open with $|\Omega|=1,\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\gamma}$ If $\Omega=B_{h}$ and $h \rightarrow 0, \lambda_{1}\left(B_{h}\right)-\lambda_{1}(B)$ is of order 2 in h while

- If $\lambda_{k}(B)$ is a multiple eigenvalue, $\lambda_{k}\left(B_{h}\right)-\lambda_{k}(B)$ may be of order 1 .
- If $\lambda_{k}(B)$ is a simple eigenvalue, B is a critical point of λ_{k} $\Longrightarrow \lambda_{k}\left(B_{h}\right)-\lambda_{k}(B)$ is of order 2 .
$\rightsquigarrow \gamma=1 / 2$ if $\lambda_{k}(B)$ is multiple, $\gamma=1$ if $\lambda_{k}(B)$ is simple.

Main result: sharp quantitative estimates of the Dirichlet spectrum

Main result: sharp quantitative estimates of the Dirichlet spectrum

Theorem (Bucur, Lamboley, Nahon, P., '23)
Let $\mathcal{A}:=\left\{\Omega \subset \mathbb{R}^{n}\right.$ open with $\left.|\Omega|=1\right\}$.

Main result: sharp quantitative estimates of the Dirichlet spectrum

Theorem (Bucur, Lamboley, Nahon, P., '23)
Let $\mathcal{A}:=\left\{\Omega \subset \mathbb{R}^{n}\right.$ open with $\left.|\Omega|=1\right\}$.
(i) For all $k \geq 1$ it holds

$$
\forall \Omega \in \mathcal{A},\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim \lambda_{1}(\Omega)^{\frac{1}{2}}\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{2}}
$$

Main result: sharp quantitative estimates of the Dirichlet spectrum

Theorem (Bucur, Lamboley, Nahon, P., '23)
Let $\mathcal{A}:=\left\{\Omega \subset \mathbb{R}^{n}\right.$ open with $\left.|\Omega|=1\right\}$.
(i) For all $k \geq 1$ it holds

$$
\forall \Omega \in \mathcal{A},\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim \lambda_{1}(\Omega)^{\frac{1}{2}}\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{2}}
$$

(ii) If $k \geq 1$ is s.t. $\lambda_{k}(B)$ is simple,

$$
\forall \Omega \in \mathcal{A},\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim \lambda_{1}(\Omega)-\lambda_{1}(B)
$$

Main result: sharp quantitative estimates of the Dirichlet spectrum

Theorem (Bucur, Lamboley, Nahon, P., '23)
Let $\mathcal{A}:=\left\{\Omega \subset \mathbb{R}^{n}\right.$ open with $\left.|\Omega|=1\right\}$.
(i) For all $k \geq 1$ it holds

$$
\forall \Omega \in \mathcal{A},\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim \lambda_{1}(\Omega)^{\frac{1}{2}}\left(\lambda_{1}(\Omega)-\lambda_{1}(B)\right)^{\frac{1}{2}}
$$

(ii) If $k \geq 1$ is s.t. $\lambda_{k}(B)$ is simple,

$$
\forall \Omega \in \mathcal{A},\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim \lambda_{1}(\Omega)-\lambda_{1}(B)
$$

$\lambda_{1} \rightsquigarrow T^{-1}$ where $T(\Omega):=\int_{\mathbb{R}^{n}} w_{\Omega}$ with w_{Ω} the torsion function:

$$
\left\{\begin{array}{l}
-\Delta w_{\Omega}=1 \text { in } \Omega, \\
w_{\Omega}=0 \text { on } \partial \Omega,
\end{array}\right.
$$

Main result: sharp quantitative estimates of the Dirichlet spectrum

Theorem (Bucur, Lamboley, Nahon, P.)
Let $\mathcal{A}:=\left\{\Omega \subset \mathbb{R}^{n}\right.$ open with $\left.|\Omega|=1\right\}$.
(i) For all $k \geq 1$ it holds

$$
\forall \Omega \in \mathcal{A},\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim \lambda_{1}(\Omega)^{\frac{1}{2}}\left(T^{-1}(\Omega)-T^{-1}(B)\right)^{\frac{1}{2}}
$$

(ii) If $k \geq 1$ is s.t. $\lambda_{k}(B)$ is simple,

$$
\forall \Omega \in \mathcal{A},\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim T^{-1}(\Omega)-T^{-1}(B)
$$

$\lambda_{1} \rightsquigarrow T^{-1}$ where $T(\Omega):=\int_{\mathbb{R}^{n}} w_{\Omega}$ with w_{Ω} the torsion function:

$$
\left\{\begin{array}{l}
-\Delta w_{\Omega}=1 \text { in } \Omega, \\
w_{\Omega}=0 \text { on } \partial \Omega,
\end{array}\right.
$$

Steps of proof for the linear bound (ii)

Assume $\lambda_{k}(B)$ is simple.

Steps of proof for the linear bound (ii)

Assume $\lambda_{k}(B)$ is simple.
Goal: $\forall \Omega \in \mathcal{A},\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim T^{-1}(\Omega)-T^{-1}(B)$

Steps of proof for the linear bound (ii)

Assume $\lambda_{k}(B)$ is simple.

$$
\begin{aligned}
& \text { Goal: } \forall \Omega \in \mathcal{A},\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim T^{-1}(\Omega)-T^{-1}(B) \\
& \Longleftrightarrow B \text { minimizes } \Omega \in \mathcal{A} \mapsto T^{-1}(\Omega)+\delta \lambda_{k}(\Omega) \text { for }|\delta| \ll 1
\end{aligned}
$$

Steps of proof for the linear bound (ii)

Assume $\lambda_{k}(B)$ is simple.

$$
\begin{aligned}
& \text { Goal: } \forall \Omega \in \mathcal{A},\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim T^{-1}(\Omega)-T^{-1}(B) \\
& \Longleftrightarrow B \text { minimizes } \Omega \in \mathcal{A} \mapsto T^{-1}(\Omega)+\delta \lambda_{k}(\Omega) \text { for }|\delta| \ll 1
\end{aligned}
$$

Step 1. (Fuglede-type computations) B is the only (up to translation) minimizer of $T^{-1}+\delta \lambda_{k}$ among $\mathcal{C}^{2, \alpha}$ perturbations.

Steps of proof for the linear bound (ii)

Assume $\lambda_{k}(B)$ is simple.

$$
\begin{aligned}
& \text { Goal: } \forall \Omega \in \mathcal{A},\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim T^{-1}(\Omega)-T^{-1}(B) \\
& \Longleftrightarrow B \text { minimizes } \Omega \in \mathcal{A} \mapsto T^{-1}(\Omega)+\delta \lambda_{k}(\Omega) \text { for }|\delta| \ll 1
\end{aligned}
$$

Step 1. (Fuglede-type computations) B is the only (up to translation) minimizer of $T^{-1}+\delta \lambda_{k}$ among $\mathcal{C}^{2, \alpha}$ perturbations.

Step 2.

(a) Existence of a minimizer Ω^{*} of $T^{-1}+\delta \lambda_{k}$ among quasi-open sets.

Steps of proof for the linear bound (ii)

Assume $\lambda_{k}(B)$ is simple.

$$
\text { Goal: } \forall \Omega \in \mathcal{A},\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim T^{-1}(\Omega)-T^{-1}(B)
$$

$\Longleftrightarrow B$ minimizes $\Omega \in \mathcal{A} \mapsto T^{-1}(\Omega)+\delta \lambda_{k}(\Omega)$ for $|\delta| \ll 1$

Step 1. (Fuglede-type computations) B is the only (up to translation) minimizer of $T^{-1}+\delta \lambda_{k}$ among $\mathcal{C}^{2, \alpha}$ perturbations.

Step 2.

(a) Existence of a minimizer Ω^{*} of $T^{-1}+\delta \lambda_{k}$ among quasi-open sets.
(b) Ω^{*} is open, with Lipschitz and non-degenerate torsion function $w_{\Omega^{*}}$.

Steps of proof for the linear bound (ii)

Assume $\lambda_{k}(B)$ is simple.

$$
\text { Goal: } \forall \Omega \in \mathcal{A},\left|\lambda_{k}(\Omega)-\lambda_{k}(B)\right| \lesssim T^{-1}(\Omega)-T^{-1}(B)
$$

$\Longleftrightarrow B$ minimizes $\Omega \in \mathcal{A} \mapsto T^{-1}(\Omega)+\delta \lambda_{k}(\Omega)$ for $|\delta| \ll 1$

Step 1. (Fuglede-type computations) B is the only (up to translation) minimizer of $T^{-1}+\delta \lambda_{k}$ among $\mathcal{C}^{2, \alpha}$ perturbations.

Step 2.

(a) Existence of a minimizer Ω^{*} of $T^{-1}+\delta \lambda_{k}$ among quasi-open sets.
(b) Ω^{*} is open, with Lipschitz and non-degenerate torsion function $w_{\Omega^{*}}$.
(c) Ω^{*} is $\mathcal{C}^{1, \alpha}$, and then $\mathcal{C}^{2, \alpha}$.

Goal: B minimizes $\Omega \in \mathcal{A} \mapsto T^{-1}(\Omega)+\delta \lambda_{k}(\Omega)$ for $|\delta| \ll 1$.

Goal: B minimizes $\Omega \in \mathcal{A} \mapsto T^{-1}(\Omega)+\delta \lambda_{k}(\Omega)$ for $|\delta| \ll 1$. Step 2 (c): $\mathcal{C}^{1, \alpha}$ and higher regularity of a minimizer Ω^{*}.

$$
\text { Goal: } B \text { minimizes } \Omega \in \mathcal{A} \mapsto T^{-1}(\Omega)+\delta \lambda_{k}(\Omega) \text { for }|\delta| \ll 1 \text {. }
$$

Step 2 (c): $\mathcal{C}^{1, \alpha}$ and higher regularity of a minimizer Ω^{*}.

- We prove the optimality condition

$$
\left(\partial_{\nu} w_{\Omega^{*}}\right)^{2}+T\left(\Omega^{*}\right)^{2} \delta\left(\partial_{\nu} u_{k, \Omega^{*}}\right)^{2}=\text { constant, on } \partial \Omega^{*}
$$

in a viscosity sense.

$$
\text { Goal: } B \text { minimizes } \Omega \in \mathcal{A} \mapsto T^{-1}(\Omega)+\delta \lambda_{k}(\Omega) \text { for }|\delta| \ll 1 \text {. }
$$

Step 2 (c): $\mathcal{C}^{1, \alpha}$ and higher regularity of a minimizer Ω^{*}.

- We prove the optimality condition

$$
\left(\partial_{\nu} w_{\Omega^{*}}\right)^{2}+T\left(\Omega^{*}\right)^{2} \delta\left(\partial_{\nu} u_{k, \Omega^{*}}\right)^{2}=\text { constant, on } \partial \Omega^{*}
$$

in a viscosity sense.

- We interpret this as

$$
\begin{cases}-\Delta v_{1}=f_{1},-\Delta v_{2}=f_{2}, & \text { in }\left\{v_{1}>0\right\}=\left\{v_{2}>0\right\} \\ \left(\partial_{\nu} v_{1}\right)^{2}+\delta\left(\partial_{\nu} v_{2}\right)^{2}=g & \text { on } \partial\left\{v_{1}>0\right\}=\partial\left\{v_{2}>0\right\} .\end{cases}
$$

and get $\mathcal{C}^{1, \alpha}$ regularity using [Kriventsov, Lin,'18] if $\delta>0$ and [Maiale, Tortone, Velichkov,'21] if $\delta<0$.

$$
\text { Goal: } B \text { minimizes } \Omega \in \mathcal{A} \mapsto T^{-1}(\Omega)+\delta \lambda_{k}(\Omega) \text { for }|\delta| \ll 1 \text {. }
$$

Step 2 (c): $\mathcal{C}^{1, \alpha}$ and higher regularity of a minimizer Ω^{*}.

- We prove the optimality condition

$$
\left(\partial_{\nu} w_{\Omega^{*}}\right)^{2}+T\left(\Omega^{*}\right)^{2} \delta\left(\partial_{\nu} u_{k, \Omega^{*}}\right)^{2}=\text { constant, on } \partial \Omega^{*}
$$

in a viscosity sense.

- We interpret this as

$$
\begin{cases}-\Delta v_{1}=f_{1},-\Delta v_{2}=f_{2}, & \text { in }\left\{v_{1}>0\right\}=\left\{v_{2}>0\right\} \\ \left(\partial_{\nu} v_{1}\right)^{2}+\delta\left(\partial_{\nu} v_{2}\right)^{2}=g & \text { on } \partial\left\{v_{1}>0\right\}=\partial\left\{v_{2}>0\right\} .\end{cases}
$$

and get $\mathcal{C}^{1, \alpha}$ regularity using [Kriventsov, Lin,'18] if $\delta>0$ and [Maiale, Tortone, Velichkov,'21] if $\delta<0$.

Thank you for your attention!

