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Abstract

Following recent work by E. Fuchs et al. [Fuc+22], we study the Brauer–Manin
obstruction for integral points on Wehler K3 surfaces of Markoff type. In particular,
we construct some families which fail the integral Hasse principle via the Brauer–Manin
obstruction with some counting results of similar nature to those in [GS22], [LM20]
and [CWX20]. We also give some counterexamples to strong approximation (where
integral points can exist) which can be explained by the Brauer–Manin obstruction,
and study a few aspects of rational points on affine surfaces.

1 Introduction

Let X be an affine variety over Q, and X an integral model of X over Z, i.e. an affine scheme
of finite type over Z whose generic fiber is isomorphic to X. Define the set of adelic points

X(AQ) :=
∏′

p
X(Qp), where p is a prime number or p = ∞ (with Q∞ = R). Similarly,

define X (AZ) :=
∏

pX (Zp) (with Z∞ = R). We say that X fails the Hasse principle if

X(AQ) ̸= ∅ but X(Q) = ∅

We say that X fails the integral Hasse principle if

X (AZ) ̸= ∅ but X (Z) = ∅.)

We say that X satisfies weak approximation if the image of X(Q) in
∏

v X(Qv) is dense, where
the product is taken over all places of Q. Finally, we say that X satisfies strong approximation
if X (Z) is dense in X (AZ)• :=

∏
p X (Zp) × π0(X(R)), where π0(X(R)) denotes the set of

connected components of X(R).
In general, few varieties satisfy the Hasse principle. In his 1970 ICM address [Man71],

Manin introduced a natural cohomological obstruction to the Hasse principle, namely the
Brauer–Manin obstruction (which has been extended to its integral version in [CX09]).
If BrX denotes the cohomological Brauer group of X, i.e. BrX := H2

ét(X,Gm), we have a
natural pairing from class field theory:

X(AQ) × BrX → Q/Z.
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If we define X(AQ)Br to be the left kernel of this pairing, then the exact sequence of Albert–
Brauer–Hasse–Noether gives us the relation:

X(Q) ⊆ X(AQ)Br ⊆ X(AQ).

Similarly, by defining the Brauer–Manin set X (AZ)Br, we also have that

X (Z) ⊆ X (AZ)Br ⊆ X (AZ).

This gives the so-called integral Brauer–Manin obstruction. We say that the Brauer–Manin
obstruction to the (resp. integral) Hasse principle is the only one if

X(AQ)Br ̸= ∅ ⇐⇒ X(Q) ̸= ∅.

(X (AZ)Br ̸= ∅ ⇐⇒ X (Z) ̸= ∅.)
We are interested particularly in the case where X is a hypersurface, defined by a poly-

nomial equation of degree d in an affine space. The case d = 1 is easy and elementary.
The case d = 2 considers the arithmetic of quadratic forms: for rational points, the Hasse
principle is always satisfied by the Hasse–Minkowski theorem, and for integral points, the
Brauer–Manin obstruction to the integral Hasse principle is the only one (up to an isotropy
assumption) due to work of Colliot-Thélène, Xu [CX09] and Harari [Har08].

However, the case d = 3 (of cubic hypersurfaces) is still largely open, especially for
integral points. Overall, the arithmetic of integral points on the affine cubic surfaces over
number fields is still little understood. An interesting example of affine cubic surfaces is
given by Markoff surfaces Um which are defined by

x2 + y2 + z2 − xyz = m,

where m is an integer parameter. In [GS22], Ghosh and Sarnak study the integral points on
those affine Markoff surfaces Um both from a theoretical point of view and from numerical
evidence. They prove that for almost all m, the integral Hasse principle holds, and that
there are infinitely many m’s for which it fails (Hasse failures). Furthermore, their numerical
experiments suggest particularly a proportion of integers m satisfying |m| ≤ M of the power
M0,8875···+o(1) for which the integral Hasse principle is not satisfied.

Subsequently, Loughran and Mitankin [LM20] proved that asymptotically only a pro-
portion of M1/2/(logM)1/2 of integers m such that −M ≤ m ≤ M presents an integral
Brauer–Manin obstruction to the Hasse principle. They also obtained a lower bound, asymp-
totically M1/2/ logM , for the number of Hasse failures which cannot be explained by the
Brauer–Manin obstruction. After Colliot-Thélène, Wei, and Xu [CWX20] obtained a slightly
stronger lower bound than the one given in [LM20], no better result than their number
M1/2/(logM)1/2 has been known until now. In other words, with all the current results,
one does not have a satisfying comparison between the numbers of Hasse failures which can
be explained by the Brauer–Manin obstruction and which cannot be explained by this ob-
struction. Meanwhile, for strong approximation, it has been proven to almost never hold
for Markoff surfaces in [LM20] and then absolutely never be the case in [CWX20]. Here we
recall an important conjecture given by Ghosh and Sarnak.
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Conjecture 1.1 (Conjecture 10.2 in [GS22]). The number of Hasse failures satisfies that

#{m ∈ Z : 0 ≤ m ≤ M, Um(AZ) ̸= ∅ but Um(Z) = ∅} ≈ C0M
θ,

for some C0 > 0 and some 1
2
< θ < 1.

The above conjecture also means that almost all counterexamples to the integral Hasse
principle for Markoff surfaces cannot be explained by the Brauer–Manin obstruction, thanks
to the result obtained by [LM20].

In recent work [Dao24], we study the set of integral points of a different Markoff-type
cubic surfaces whose origin is similar to that of the original Markoff surfaces Um, namely the
relative character varieties, using the Brauer–Manin obstruction as well. The surfaces are
given by the cubic equation:

x2 + y2 + z2 + xyz = ax + by + cz + d,

where a, b, c, d ∈ Z are parameters which satisfy some specific relations (see [CL09]). Due
to the similar appearance to the original Markoff surfaces, one may expect to find some
similarities in their arithmetic properties. One of the main results in that paper is the
following, saying that a positive proportion of these relative character varieties have no
(algebraic) Brauer–Manin obstruction to the integral Hasse principle as well as fail strong
approximation, and those failures can be explained by the Brauer–Manin obstruction.

Theorem 1.2. Let U be the affine scheme over Z defined by

x2 + y2 + z2 + xyz = ax + by + cz + d,

where 
a = k1k2 + k3k4

b = k1k4 + k2k3

c = k1k3 + k2k4

and d = 4 −
4∑

i=1

k2
i −

4∏
i=1

ki,

such that its natural compactification X is smooth over Q. Then we have

#{k = (k1, k2, k3, k4) ∈ Z4, |ki| ≤ M ∀ 1 ≤ i ≤ 4 : ∅ ≠ U(AZ)Br1 ̸= U(AZ)} ≍ M4

as M → +∞.

Finally, in this paper, we are going to study certain other analogous varieties, in the world
of K3 surfaces instead of cubic surfaces. Let K be a number field. Let X ⊂ P1 × P1 × P1 be
a (not necessarily smooth) surface over K, given by a (2, 2, 2) form

F (X1, X2;Y1, Y2;Z1, Z2) ∈ K[X1, X2;Y1, Y2;Z1, Z2].

Then X is called a Wehler surface. If X is smooth, X is an elliptic K3 surface whose
projections pi : X → P1 (i ∈ {1, 2, 3}) have fibers as curves of (arithmetic) genus 1.

A Markoff-type K3 surface W is a Wehler surface whose (2, 2, 2)-form F is invariant
under the action of the group G ⊂ Aut(P1×P1×P1) generated by (x, y, z) 7→ (−x,−y, z) and
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permutations of (x, y, z). By [Fuc+22], there exist a, b, c, d, e ∈ k so that the (2, 2, 2)-form F
that defines W has the affine form:

ax2y2z2 + b(x2y2 + y2z2 + z2x2) + cxyz + d(x2 + y2 + z2) + e = 0.

Our main results show the Brauer–Manin obstructions with respect to explicit elements
of the algebraic Brauer groups for the existence of integral points on three concrete families
of Markoff-type K3 (MK3) surfaces. One of them, as the most general one, is the following.

Theorem 1.3. For k ∈ Z, let Wk ⊂ P1 × P1 × P1 be the MK3 surfaces defined over Q by
the (2, 2, 2)-form

F3(x, y, z) = x2 + y2 + z2 + 4(x2y2 + y2z2 + z2x2) − 16x2y2z2 − k = 0. (1)

Let Uk be the affine open subscheme defined by Wk \ {rst = 0} and let Uk be the integral
model of Uk defined over Z by the same affine equation. If k satisfies the conditions:

1. k = −1
4
(1 + 27ℓ2) where ℓ ∈ Z such that ℓ ≡ ±1 mod 8, ℓ ≡ 1 mod 5, ℓ ≡ 3 mod 7,

and ℓ ̸≡ ±10 mod 37;

2. p ≡ ±1 mod 24 for any prime divisor p of ℓ,

then there is an algebraic Brauer–Manin obstruction to the integral Hasse principle on Uk

with respect to the subgroup A ⊂ Br1 Uk/Br0 Uk generated by the elements A1 = (4x2 +
1,−2(4k + 1)) and A2 = (4y2 + 1,−2(4k + 1)), i.e., Uk(Z) ⊂ Uk(AZ)A = ∅.

Our final result deals with the counting problem on the number of counterexamples to
the integral Hasse principle for Markoff-type K3 surfaces. Recall that for Markoff surfaces,
Loughran and Mitankin [LM20] proved that asymptotically a proportion of M1/2/(logM)1/2

of integers m such that |m| ≤ M presents an integral Brauer–Manin obstruction.

Theorem 1.4. For the above three families of MK3 surfaces, we have

#{k ∈ Z : |k| ≤ M, Uk(AZ) ̸= ∅, Uk(AZ)Br = ∅} ≫ M1/2

logM
,

as M → +∞.

The structure of the paper is as follows. In Section 2, we provide some background on
Wehler K3 surfaces and a recent study of the Markoff-type K3 (MK3) surfaces, as well as
introduce the three explicit families of MK3 surfaces that interest us. In Section 3, we first
discuss some geometry of Wehler K3 surfaces and their Brauer groups. After the general
setting, we turn our attention to a particular family of MK3 surfaces, where we explicitly
calculate the algebraic Brauer group of the projective closures, and then we complete the
analysis of the Brauer group by calculating the algebraic Brauer group of the affine surfaces.
In Section 4, we use the Brauer group to give explicit examples of Brauer–Manin obstructions
to the integral Hasse principle for three families of MK3 surfaces, and give some counting
results for the Hasse failures. Finally, in Section 5, we make some important remarks to com-
pare the main results in this paper to those of Markoff-type cubic surfaces in recent works,
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and we also give some counterexamples to strong approximation which can be explained by
the Brauer–Manin obstruction.

Notation. Let k be a field and k a separable closure of k. We let Gk := Gal(k/k)
be the absolute Galois group. A k-variety is a separated k-scheme of finite type. If X is a
k-variety, we write X = X ×k k. Let k[X] = H0(X,OX) and k[X] = H0(X,OX). If X is an
integral k-variety, let k(X) denote the function field of X. If X is a geometrically integral
k-variety, let k(X) denote the function field of X.

Let PicX = H1
Zar(X,Gm) = H1

ét(X,Gm) denote the Picard group of a scheme X. Let
BrX = H2

ét(X,Gm) denote the Brauer group of X. Let

Br1X := Ker[BrX → BrX]

denote the algebraic Brauer group of a k-variety X and let Br0X ⊂ Br1X denote the
image of Br k → BrX. The image of BrX → BrX is called the transcendental Brauer
group of X.

Given a field F of characteristic zero containing a primitive n-th root of unity ζ = ζn, we
have H2(F, µ⊗2

n ) = H2(F, µn)⊗µn. The choice of ζn then defines an isomorphism Br(F )[n] =
H2(F, µn) ∼= H2(F, µ⊗2

n ). Given two elements f, g ∈ F×, we have their classes (f) and (g) in
F×/F×n = H1(F, µn). We denote by (f, g)ζ ∈ Br(F )[n] = H2(F, µn) the class corresponding
to the cup-product (f) ∪ (g) ∈ H2(F, µ⊗2

n ). Suppose F/E is a finite Galois extension with
Galois group G. Given σ ∈ G and f, g ∈ F×, we have σ((f, g)ζn) = (σ(f), σ(g))σ(ζn) ∈ Br(F ).
In particular, if ζn ∈ E, then σ((f, g)ζn) = (σ(f), σ(g))ζn . For all the details, see Section 4.6,
4.7 in [GS17].

Let R be a discrete valuation ring with fraction field F and residue field κ. Let v denote
the valuation F× → Z. Let n > 1 be an integer invertible in R. Assume that F contains a
primitive n-th root of unity ζ. For f, g ∈ F×, we have the residue map

∂R : H2(F, µn) → H1(κ,Z/nZ) ∼= H1(κ, µn) = κ×/κ×n,

where H1(κ,Z/nZ) ∼= H1(κ, µn) is induced by the isomorphism Z/nZ ≃ µn sending 1 to ζ.
This map sends the class of (f, g)ζ ∈ Br(F )[n] = H2(F, µn) to

(−1)v(f)v(g)class(gv(f)/f v(g)) ∈ κ/κ×n.

For a proof of these facts, see [GS17]. Here we recall some precise references. Residues in
Galois cohomology with finite coefficients are defined in [GS17], Construction 6.8.5. Compar-
ison of residues in Milnor K-Theory and Galois cohomology is given in [GS17], Proposition
7.5.1. The explicit formula for the residue in Milnor’s group K2 of a discretely valued field
is given in [GS17], Example 7.1.5.
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during my PhD study at the Institute of Mathematics of Jussieu-Paris Rive Gauche. I thank
Yang Cao for his important remarks and suggestions on the nature of integral and rational
points on Wehler K3 surfaces. This project has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme under the Marie Sk lodowska-Curie grant
agreement No. 754362.
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2 Background

We give some notations and results about Wehler K3 surfaces and the so-called Markoff-type
K3 surfaces that we study in this paper.

2.1 Wehler K3 surfaces

Consider the variety M = P1×P1×P1 and let π1, π2, and π3 be the projections on the first,
second, and third factor: πi(z1, z2, z3) = zi. Denote by Li the line bundle π∗

i (O(1)) and set

L = L2
1 ⊗ L2

2 ⊗ L2
3 = π∗

1(O(2)) ⊗ π∗
2(O(2)) ⊗ π∗

3(O(2)).

Since KP1 = O(−2), this line bundle L is the dual of the canonical bundle KM . By definition,
|L| ≃ P(H0(M,L)) is the linear system of surfaces W ⊂ M given by the zeroes of global
sections P ∈ H0(M,L). Using affine coordinates (x1, x2, x3) on M = P1 × P1 × P1, such
a surface is defined by a polynomial equation F (x1, x2, x3) = 0 whose degree with respect
to each variable is ≤ 2. These surfaces will be referred to as Wehler surfaces; modulo
Aut(M), they form a family of dimension 17.

Fix k ∈ {1, 2, 3} and denote by i < j the other indices. If we project W to P1 × P1

by πij = (πi, πj), we get a 2 to 1 cover (the generic fiber is made of two points, but some
fibers may be rational curves). As soon as W is smooth, the involution σk that permutes the
two points in each (general) fiber of πij is an involutive automorphism of W ; indeed W is
a K3 surface and any birational self-map of such a surface is an automorphism (see [Bil97],
Lemma 1.2). By [CD22], Proposition 3.1, we have the following general result.

Proposition 2.1. There is a countable union of proper Zariski closed subsets (Si)i≥0 in |L|
such that:

(1) If W is an element of |L| \S0, then W is a smooth K3 surface and W does not contain
any fiber of the projections πij, i.e., each of the three projections (πij)|W : W → P1×P1

is a finite map;

(2) If W is an element of |L| \ (∪i≥0Si), the restriction morphism PicM → PicW is
surjective. In particular, the Picard number of W is equal to 3.

From the second assertion, we deduce that for a very general W , PicW is isomorphic to
PicM : it is the free Abelian group of rank 3, generated by the classes

Di := [(Li)|W ].

The elements of |(Li)|W | are the curves of W given by the equations zi = α for some
α ∈ P1. The arithmetic genus of these curves is equal to 1: in other words, the projection
(πi)|W : W → P1 is a genus 1 fibration (see [Bil97], Lemma 1.1). Moreover, for a general
choice of W in |L|, (πi)|W has 24 singular fibers of type I1, i.e. isomorphic to a rational
curve with exactly one simple double point. The intersection form is given by D2

i = 0 and
(Di.Dj) = 2 if i ̸= j, so that its matrix is given by0 2 2

2 0 2
2 2 0

 .
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By [Bil97], Proposition 1.5 or [CD22], Lemma 3.2, we have the following result about the
actions of the subgroup of Aut(W ) generated by σ1, σ2, σ3 on the geometry of W .

Proposition 2.2. Assume that W does not contain any fiber of the projection πij. Then the
involution σ∗

k preserves the subspace ZD1 ⊕ ZD2 ⊕ ZD3 of NSW and

σ∗
k(Di) = Di, σ∗

k(Dj) = Dj, σ∗
k(Dk) = −Dk + 2Di + 2Dj.

In other words, the matrices of the σ∗
i in the basis (D1, D2, D3) are:

σ∗
1 =

−1 0 0
2 1 0
2 0 1

 , σ∗
2 =

1 2 0
0 −1 0
0 2 1

 , σ∗
3 =

1 0 2
0 1 2
0 0 −1

 .

Combining these two propositions, we have the following (see [Bil97], Proposition 1.3 or
[CD22], Proposition 3.3):

Proposition 2.3. If W is a very general Wehler surface then:

(1) W is a smooth K3 surface with Picard number 3;

(2) Aut(W ) = ⟨σ1, σ2, σ3⟩, which is a free product of three copies of Z/2Z, and Aut(W )∗

is a finite index subgroup in the group of integral isometries of NSW .

Besides the three involutions σ1, σ2, σ3, depending on the symmetries of the defining
polynomial F , the automorphism group of a Wehler surface W may contain additional
automorphisms. Typical examples include symmetry in x, y, z that allows permutation of
the coordinates, and power symmetry that allows the signs of two of x, y, z to be reversed.
For example, the original Markoff equation permits these extra automorphisms; and hereafter
we consider analogous Markoff-type surfaces. Note that all the above results are true for
very general Wehler surfaces; as we will see, our examples of surfaces to study in this paper
are in fact very far from being general, which leads to many different results in the end.

2.2 Markoff-type K3 surfaces

Now let K be a field. A Wehler surface W over K is then a surface

W = {F = 0} ⊂ P1 × P1 × P1

defined by a (2, 2, 2)-form

F (x, r; y, s; z, t) ∈ K[x, r; y, s; z, t].

Using the affine coordinates (x, y, z), we let

F (x, y, z) = F (x, 1; y, 1; z, 1),

and then W is the closure in P1 × P1 × P1 of the affine surface, which by abuse of notation
we also denote by

W : F (x, y, z) = 0.

We say that W is non-degenerate if it satisfies the following two conditions:
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(i) The projection maps π12, π13, π23 are finite.

(ii) The generic fibers of the projection maps π1, π2, π3 are smooth curves, in which case the
smooth fibers are necessarily curves of genus 1, since they are (2, 2) curves in P1 × P1.

By analogy with the classical Markoff equation, we say that W is of Markoff type (MK3)
if it is symmetric in its three coordinates and invariant under double sign changes. An MK3
surface admits a group of automorphisms Γ generated by the three involutions, coordinate
permutations, and sign changes. Following the notations in [Fuc+22], we define:

Definition 2.1. We let S3, the symmetric group on 3 letters, act on P1 × P1 × P1 by
permuting the coordinates, and we let the group

(µ3
2)1 := {(α, β, γ) : α, β, γ ∈ µ2 andαβγ = 1}

act on P1 × P1 × P1 via sign changes,

(α, β, γ)(x, y, z) = (αx, βy, γz).

In this way we obtain an embedding

G := (µ3
2)1 ⋊S3 ↪→ Aut(P1 × P1 × P1).

Definition 2.2. A Markoff-type K3 (MK3) surface W is a Wehler surface whose (2, 2, 2)-
form F (x, y, z) is invariant under the action of G, i.e., the (2, 2, 2)-form F defining W satisfies

F (x, y, z) = F (−x,−y, z) = F (−x, y,−z) = F (x,−y,−z),

F (x, y, z) = F (z, x, y) = F (y, z, x) = F (x, z, y) = F (y, x, z) = F (z, y, x).

By [Fuc+22], Proposition 7.5, we have the following key result about the defining form
of MK3 surfaces.

Proposition 2.4. Let W/K be a (possibly degenerate) MK3 surface.

(a) There exist a, b, c, d, e ∈ K so that the (2, 2, 2)-form F that defines W has the form

F (x, y, z) = ax2y2z2 + b(x2y2 + x2z2 + y2z2) + cxyz + d(x2 + y2 + z2) + e = 0. (2)

(b) Let F be as in (a). Then W is a non-degenerate, i.e., the projections πij : W → P1×P1

are quasi-finite, if and only if

c ̸= 0, be ̸= d2, and ad ̸= b2.

Remark 2.3. We can recover the original Markoff equation for a surface Sk as a special
case of a form F with a = b = 0, c = −1, d = 1, e = −k. More precisely, Sk is given by the
affine equation

F (x, y, z) = x2 + y2 + z2 − xyz − k = 0.

We note, however, that the Markoff equation is degenerate, despite the involutions being
well-defined on the affine Markoff surface Sk. This occurs because the involutions are not
well-defined at some of the points at infinity in the closure of Sk in P1×P1×P1; for example,
the inverse image π−1

12 ([1 : 0], [1 : 0]) in Xk is a line isomorphic to P1.
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Now we are ready to introduce the three families of MK3 surfaces that we study in this
paper. For k ∈ Z, let Wk ⊂ P1 × P1 × P1 be the MK3 surface defined over Q by one of the
following (2, 2, 2)-forms:

F1(x, y, z) = x2 + y2 + z2 − 4x2y2z2 − k = 0; (3)

F2(x, y, z) = x2 + y2 + z2 − 4(x2y2 + y2z2 + z2x2) + 16x2y2z2 − k = 0; (4)

F3(x, y, z) = x2 + y2 + z2 + 4(x2y2 + y2z2 + z2x2) − 16x2y2z2 − k = 0. (5)

It is important to note that all these families of Markoff-type K3 surfaces are degenerate
in the sense that every member of each family contains a fiber (a line isomorphic to P1) of
the projection πij. Furthermore, there exist Q-rational points at infinity on every member
of each family of Markoff-type K3 surfaces considered above:

([1 : 0], [1 : 1], [1 : 2]) ∈ {F1 = 0};

([1 : 0], [1 : 0], [1 : 2]) ∈ {F2 = 0};

([1 : 0], [1 : 0], [1 : 2]) ∈ {F3 = 0}.

In this paper, we study some explicit cases when there are however no integral points
due to the Brauer–Manin obstruction.

3 The Brauer group of Markoff-type K3 surfaces

We are particularly interested in the geometry of the third Markoff-type K3 surfaces defined
by (5), as they are more complicated and general than the other two. In addition, under our
specific conditions, the first and second surfaces are always singular at infinity (for example,
at the points ([1 : 0], [0 : 1], [1 : 0]) and ([1 : 0], [1 : 2], [1 : 2]), respectively), but the third
one is smooth. Before studying the arithmetic problem of integral points, we will give some
explicit computations on the (geometric) Picard group and the (algebraic) Brauer group of
these surfaces. Recall that by [Bil97], Proposition 1.3 or [CD20], Proposition 3.3, for a very
general W , PicW is isomorphic to Pic(P1 × P1 × P1), i.e. PicW is generated by the classes
Di so the Picard number of W equals 3. However, as previously discussed, we will see in
this section that our example of MK3 surfaces is very special.

3.1 Geometry of K3 surfaces

Let k be a number field. Let W ⊂ P1 × P1 × P1 be a smooth Wehler surface over k defined
by a (2, 2, 2)-form F = 0. For distince i, j ∈ {1, 2, 3}, we keep the notations πi : W → P1

and πij : W → P1 × P1 of the various projections of W onto one or two copies of P1. Let
Di denote the divisor class represented by a fiber of πi. We find that (Di.Dj) = 2 for i ̸= j
and since any two different fibers of πi are disjoint, we have D2

i = 0. It follows that the
intersection matrix ((Di.Dj))i,j has rank 3, so the Di generates a subgroup of rank 3 of the
Néron–Severi group NSW .
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We have the following result for the Picard group of Wehler surfaces over an algebraically
closed field k.

Proposition 3.1. Let W ⊂ P1 × P1 × P1 be a smooth, projective, geometrically integral
Wehler surface over k. Suppose the three planes at infinity {rst = 0} cut out on W three
distinct fibers D1, D2, D3 over k. Let U ⊂ W be the complement of these fibers. Then

k
×

= k[U ]× and the natural sequence

0 −→
3⊕

i=1

ZDi −→ PicW −→ PicU −→ 0

is exact.

Proof. To show that the above sequence is exact, it suffices to prove that the second arrow
is an injective homomorphism. Let

a1D1 + a2D2 + a3D3 = 0 ∈ PicW

with a, b, c ∈ Z. By the assumption that (Di.Di) = 0 and (Di.Dj) = 2 for 1 ≤ i ̸= j ≤ 3,
one has

2a2 + 2a3 = 2a1 + 2a3 = 2a1 + 2a2 = 0,

so a1 = a2 = a3 = 0. In other words, this is another proof of the fact that D1, D2, D3 are

linearly independent in PicW and it also shows that k
×

= k[U ]× as desired.

Now let k be an arbitrary field. Recall that for a variety X over k there is a natural
filtration on the Brauer group

Br0X ⊂ Br1X ⊂ BrX

which is defined as follows.

Definition 3.1. Let

Br0X = Im[Br k → BrX], Br1X = Ker[BrX → BrX].

The subgroup Br1X ⊂ BrX is the algebraic Brauer group of X and the quotient BrX/Br1X
is the transcendental Brauer group of X.

From the Hochschild–Serre spectral sequence, we have the following spectral sequence:

Epq
2 = Hp

ét(k,H
q
ét(X,Gm)) =⇒ Hp+q

ét (X,Gm), (6)

which is contravariantly functorial in the k-variety X. It gives rise to the functorial exact
sequence of terms of low degree:

0 −→ H1(k, k[X]×) −→ PicX −→ PicX
Gk −→ H2(k, k[X]×) −→ Br1X

−→ H1(k,PicX) −→ Ker[H3(k, k[X]×) → H3
ét(X,Gm)].

(7)
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Let X be a variety over a field k such that k[X]× = k
×

. By Hilbert’s Theorem 90 we have

H1(k, k
×

) = 0, then by the above sequence there is an exact sequence

0 −→ PicX −→ PicX
Gk −→ Br k −→ Br1X

−→ H1(k,PicX) −→ Ker[H3(k, k
×

) → H3
ét(X,Gm)].

(8)

This sequence is also contravariantly functorial in X.

Remark 3.2. Let X be a variety over a field k such that k[X]× = k
×

. This assumption

k[X]× = k
×

holds for any proper, geometrically connected and geometrically reduced k-
variety X.

(1) If X has a k-point, which defined a section of the structure morphism X → Spec k,

then each of the maps Br k −→ Br1X and H3(k, k
×

) → H3
ét(X,Gm) has a retraction,

hence is injective. (Then PicX −→ PicX
Gk

is an isomorphism.) Therefore, we have
an isomorphism

Br1X/Br k ∼= H1(k,PicX).

(2) If k is a number field, then H3(k, k
×

) = 0 (see [CF67], Chapter VII, Section 11.4, p.

199). Thus for a variety X over a number field k such that k[X]× = k
×

, we have an
isomorphism

Br1X/Br0X ∼= H1(k,PicX).

If X is a K3 surface, or more generally, X is a smooth, projective and geometrically
integral k-variety such that H1(X,OX) = 0, then the Picard group PicX and the Néron–
Severi group NSX are equal (see [CS21], Corollary 5.1.3). Therefore, we have the following
result (see [CS21], Theorem 5.5.1).

Theorem 3.2. Let X be a smooth, projective and geometrically integral variety over a field k.
Assume that H1(X,OX) = 0 and NSX is torsion-free. Then H1(k,PicX) and Br1X/Br0X
are finite groups.

The assumption of the above theorem is always true if X is a K3 surface. Furthermore,
by Skorobogatov and Zarhin, we have a stronger result for the Brauer group of K3 surfaces
(see [CS21], Theorem 16.7.2 and Collorary 16.7.3).

Theorem 3.3. Let X be a K3 surface over a field k finitely generated over Q. Then (BrX)Γ

is finite. Moreover, the group BrX/Br0X is finite.

Next, we will give an explicit computation of the geometric Picard group and the algebraic
Brauer group for the family of Markoff-type K3 surfaces defined by (5).

11



3.2 The geometric Picard group

Using the explicit equations, we compute the geometric Picard group of the Markoff-type K3
surfaces in question. To bound the Picard number we use the method described in [Lui07b].
Let X be any smooth surface over a number field K and let p be a prime of good reduction
with residue field k. Let X be an integral model for X over the localization Op of the ring
of integers O of K at p for which the reduction is smooth. Let k′ be any extension field
of k. Then by abuse of notation, we will write Xk′ for X ×SpecOp Spec k′. We need the
following important result which describes the behavior of the Néron–Severi group under
good reduction.

Proposition 3.4. Let X be a smooth surface over a number field K and let p be a prime of
good reduction with residue field k. Let l be a prime not dividing q = #k. Let F denote the
automorphism on H2

ét(Xk,Ql(1)) induced by q-th power Frobenius. Then there are natural
injections

NS(XK) ⊗Ql ↪→ NS(Xk) ⊗Ql ↪→ H2
ét(Xk,Ql)(1),

that respect the intersection pairing and the action of Frobenius respectively. The rank of
NS(Xk) is at most the number of eigenvalues of F that are roots of unity, counted with
multiplicity.

Proof. See [Lui07a], Proposition 6.2 and Corollary 6.4; or [BL07], Proposition 2.3.

Recall that if X is a K3 surface, then linear, algebraic, and numerical equivalence all
coincide. This means that the Picard group PicX and the Néron–Severi group NSX of
X := XQ are naturally isomorphic, finitely generated, and free. Their rank is called the

geometric Picard number of X or the Picard number of X. By the Hodge Index Theorem,
the intersection pairing on PicW is even, non-degenerate, and of signature (1, rk NSW − 1).

Proposition 3.5. Let W ⊂ P1 × P1 × P1 be a surface defined over Q by the (2, 2, 2)-form

F (x, y, z) = x2 + y2 + z2 + 4(x2y2 + y2z2 + z2x2) − 16x2y2z2 − k = 0,

where k ∈ Z. Consider the field extension K := Q(
√
−1,

√
α,

√
ᾱ) where ∆ = (4k−5)2−32

64
,

α = 1
2

(
4k−1
8

+
√

∆
)
and ᾱ = 1

2

(
4k−1
8

−
√

∆
)
. If k satisfies the following conditions:

1. None of 2(4k + 1),∆, 2(4k + 1)∆ is a square in Q;

2. k ≡ 3 mod 5,

such that G := Gal(K/Q) ∼= D4 × Z/2Z, then W is a smooth K3 surface and the Picard
number of W = WQ equals 18.

Proof. Since the surface W ⊂ P1 × P1 × P1 is defined over Q by a (2, 2, 2)-form F = 0 with
k(4k + 1)((4k − 5)2 − 32) ̸= 0, it is clear that W is a smooth K3 surface. For i = 1, 2, 3,
let πi : W → P1 be the projection from W to the i-th copy of P1 in P1 × P1 × P1. Let Di

denote the divisor class represented by a smooth fiber of πi. By considering all the smooth
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fibers and the singular fibers, the corresponding divisor classes on W are given explicitly as
follows (denote by [x : r], [y : s], [z : t] the coordinates for each point in P1 × P1 × P1):

D1 : [x : r] = [1 : 0], s2t2 + 4y2t2 + 4z2s2 − 16y2z2 = 0,

D2 : [y : s] = [1 : 0], r2t2 + 4x2t2 + 4z2r2 − 16x2z2 = 0,

D3 : [z : t] = [1 : 0], r2s2 + 4x2s2 + 4y2r2 − 16x2y2 = 0;


A1 : [x : r] = [±

√
k : 1], (4k + 1)y2t2 + (4k + 1)z2s2 − (16k − 4)y2z2 = 0,

A2 : [y : s] = [±
√
k : 1], (4k + 1)x2t2 + (4k + 1)z2r2 − (16k − 4)x2z2 = 0,

A3 : [z : t] = [±
√
k : 1], (4k + 1)x2s2 + (4k + 1)y2r2 − (16k − 4)x2y2 = 0;

B1 : [x : r] = [±1
2

: 1], y2t2 + z2s2 − 4k−1
8

s2t2 = 0,

B2 : [y : s] = [±1
2

: 1], x2t2 + z2r2 − 4k−1
8

r2t2 = 0,

B3 : [z : t] = [±1
2

: 1], x2s2 + y2r2 − 4k−1
8

r2s2 = 0;
C±±

1 : [x : r] = [±
√

−1
4

: 1], yz = ±
√

4k+1
32

st,

C±±
2 : [y : s] = [±

√
−1
4

: 1], xz = ±
√

4k+1
32

rt,

C±±
3 : [z : t] = [±

√
−1
4

: 1], xy = ±
√

4k+1
32

rs;

and for 1 ≤ i ̸= j ≤ 3,

1. ℓ±±
ij : [xi : ri] = [±

√
α : 1], [xj : rj] = [±

√
ᾱ : 1],

2. ℓ±±
ij : [xi : ri] = [±

√
ᾱ : 1], [xj : rj] = [±

√
α : 1],

where [x1 : r1], [x2 : r2], [x3 : r3] denote [x : r], [y : s], [z : t] respectively, while (±
√
α,±

√
ᾱ)

are the solutions of the polynomial system{
1 + 4a2 + 4b2 − 16a2b2 = 0,

a2 + b2 + 4a2b2 − k = 0;

i.e., they are deduced from the solutions of the polynomial equation

T 4 − 4k − 1

8
T 2 +

4k + 1

32
= 0,

where α = 1
2

(
4k−1
8

+
√

∆
)
, ᾱ = 1

2

(
4k−1
8

−
√

∆
)

and ∆ = (4k−5)2−32
64

is the discriminant of

the associated quadratic polynomial.
We will now find explicit generators for the geometric Picard group of W . It is clear that

W is a K3 surface admitting an elliptic fibration π1 : W → P1 with a zero section defined
by ℓ+23 ≃ P1. The Néron–Severi group of an elliptic fibration on the K3 surface is the lattice
generated by the class of a (smooth) fiber, the class of the zero section, the classes of the
irreducible components of the reducible fibers which do not intersect the zero section, and
the Mordell–Weil group (the set of the sections). Following this property, we find a set of 18
linearly independent divisor classes consisting of:

13



(i) D1 (a smooth fiber), ℓ++
23 (a zero section),

(ii) {ℓ++
12 , ℓ+−

12 , ℓ+−
13 , ℓ−−

12 , ℓ−+
12 , ℓ−−

13 , ℓ++
12 , ℓ+−

12 , ℓ+−
13 , ℓ−−

12 , ℓ−+
12 , ℓ−−

13 } (the classes of singular fibers
not intersecting the zero section),

(iii) {ℓ++
23 , ℓ+−

23 , C+−
2 , C+−

3 } (the set of some other sections).

Their Gram matrix of the intersection pairing on PicW has determinant −192, which is
nonzero, so they are indeed linearly independent as the intersection pairing is non-degenerate.
However, after considering the other divisor classes and their linear relations with this set of
classes, we are able to find and work with another lattice of 18 classes for technical reasons,
such as symmetry for the (general) smooth fibers and the Gram determinant of smaller
absolute value (in fact, the former lattice is a sublattice). More precisely, the intersection
matrix associated to the sequence of classes

S = {D1, D2, D3, ℓ
++
12 , ℓ+−

12 , ℓ++
13 , ℓ++

23 , ℓ−+
12 , ℓ−+

13 , ℓ−−
23 , ℓ++

12 , ℓ+−
12 , ℓ++

13 , ℓ++
23 , ℓ−+

12 , ℓ−+
13 , C+−

1 , C+−
2 }

is 

0 2 2 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1
2 0 2 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0
2 2 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1
0 0 1 −2 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 −2 0 1 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 −2 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 1 −2 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 −2 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 −2 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 1 −2 1 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0 1 −2 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 −2 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 −2 0 1
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1
1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 −2



,

so it has determinant −48, which is nonzero. Consequently, the above classes are also lin-
early independent, so the Picard number of W is at least 18.

Under our assumption on k, one can check easily that W5 is smooth, so W has good
reduction at p = 5. We will now show that the Picard number of W 5 equals exactly 18. Let
W 5 be the base change of W5 to an algebraic closure of F5, and F : W 5 → W 5 the geomet-
ric Frobenius morphism, defined by ([x : r], [y : s], [z : t]) 7→ ([x5 : r5], [y5 : s5], [z5 : t5]).
Choose a prime l ̸= 5 and let F ∗ be the endomorphism of H2

ét(W 5,Ql(1)) induced by F . By
Proposition 3.4, the Picard rank of W is bounded above by that of W 5, which in turn is at
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most the number of eigenvalues of F ∗ that are roots of unity. As in [Lui07a], we find the
characteristic polynomial of F ∗ by counting points on W5. Almost all fibers of the fibration
π1 are smooth curves of genus 1. Using Magma we can count the number of points over
small fields fiber by fiber. The first three results are:

W5(F5) = 42, W5(F52) = 1032, W5(F53) = 16122.

From the Lefschetz fixed point formula, we find that the trace of the n-th power of
Frobenius acting on H2

ét(W 5,Ql) equals #W5(F5n) − 52n − 1; the trace on the Tate twist
H2

ét(W 5,Ql(1)) is obtained by dividing by 5n. Meanwhile, on the subspace V ⊂ H2
ét(W 5,Ql(1))

generated by the above 18 divisor classes, as the characteristic polynomial of the Frobenius
acting on V is (t− 1)11(t + 1)7, the trace tn is equal to 18 if n is even, and equal to 4 if n is
odd. Hence, on the 4-dimensional quotient Q = H2

ét(W 5,Ql(1))/V , the trace equals

#W5(F5n)

5n
− 5n − 1

5n
− tn.

These traces are sums of powers of eigenvalues, and we use the Newton identities to compute
the elementary symmetric polynomials in these eigenvalues, which are the coefficients of the
characteristic polynomial f of the Frobenius acting on Q (see [Lui07b], Lemma 2.4). This
yields the first half of the coefficients of f , including the middle coefficient, which turns out
to be non-zero. This implies that the sign in the functional equation t4f(1/t) = ±f(t) is +1,
so this functional equation determines f , which we calculate to be

f(t) = t4 +
4

5
t3 +

6

5
t2 +

4

5
t + 1.

As a result, we find that the characteristic polynomial of Frobenius acting on H2
ét(W 5,Ql(1))

is equal to (t − 1)11(t + 1)7f . The polynomial 5f ∈ Z[t] is irreducible, primitive and not
monic, so its roots are not roots of unity. Thus we obtain an upper bound of 18 for the
Picard number of W .

Therefore, we deduce that rk PicW = 18, and the sequence S of 18 divisor classes form a
sublattice Λ ⊂ NSW = PicW . We now verify that this is actually the whole lattice. Indeed,
assume that Λ is a proper sublattice of NSW , hence their discriminants differ by a square
factor. We know that disc(Λ) = −48 = −3.24, so Λ would be a sublattice of index 2 or 4.
In other words, there would exist a divisor class of the form

E =
1

2

∑
Ei∈S

aiEi, ai ∈ {0, 1},

in PicW . With the condition that all the intersection pairings between E and every divisor
class in S give integer values, we find that there are only two possibilities:

(a) E = 1
2
(D1 + ℓ+−

12 + ℓ++
23 + ℓ−+

12 + ℓ−−
23 + ℓ++

12 + ℓ+−
12 + ℓ++

13 + ℓ−+
13 );

(b) E = 1
2
(D2 + D3 + ℓ++

13 + ℓ++
23 + ℓ−+

13 + ℓ−−
23 + ℓ++

12 + ℓ−+
12 ).
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In the first case, we can check that E2 = −1 is odd, which is a contradiction since the
intersection pairing on PicW is even. In the second case, we have E2 = 2, which is even.
However, using the fact that in PicW :

D3 = ℓ++
13 + ℓ−+

13 + ℓ++
23 + ℓ−+

23

and
D2 = ℓ−+

21 + ℓ−−
21 + ℓ−+

23 + ℓ−−
23 = ℓ+−

12 + ℓ−−
12 + ℓ−+

23 + ℓ−−
23 ,

we can rewrite

E = D3 + ℓ−−
23 +

1

2
(ℓ++

12 + ℓ+−
12 + ℓ−+

12 + ℓ−−
12 ).

This implies that if (b) were true, then we would have 1
2
(ℓ++

12 +ℓ+−
12 +ℓ−+

12 +ℓ−−
12 ) ∈ PicW . By

contrast, using the argument in the proof of [Nik75], Lemma 3, one shows that the sum of
divisor classes of four non-singular, non-intersecting rational curves on a K3 surface cannot
be divisible by 2, since the total number of elements in such a set of classes can only be 0, 8,
or 16. This is a contradiction, so the lattice generated by S is indeed the whole Néron–Severi
lattice of W , thus completing our proof.

Remark 3.3. The above 18 divisor classes that form a basis of PicW are not unique, because

one can find other first 16 divisors in the set of Di and ℓ±±
ij , ℓ±±

ij for 1 ≤ i ̸= j ≤ 3, and
find the other 2 remaining divisors in the set of C±±

i for 1 ≤ i ≤ 3 with different indexes i.
Note that the divisors A1, A2, A3 and B1, B2, B3 defined by irreducible singular fibers have
the same classes as D1, D2, D3, respectively.

Next, we consider the geometric Picard group of the affine surface U defined by the same
equation.

Corollary 3.6. Let U ⊂ W be the affine surface defined by the same equation

x2 + y2 + z2 + 4(x2y2 + y2z2 + z2x2) − 16x2y2z2 = k,

where k ∈ Z. Then the Picard number of U = UQ equals 15.

Proof. By the exact sequence in Proposition 3.1, we obtain

PicU ∼= PicW/(ZD1 ⊕ ZD2 ⊕ ZD3),

so PicU is free and the Picard number of U is equal to 18 − 3 = 15.

3.3 The algebraic Brauer group

Now given the geometric Picard group, we can compute directly the algebraic Brauer group
of the Markoff-type cubic surfaces in question.

Theorem 3.7. For k ∈ Z, let W ⊂ P1 × P1 × P1 be the MK3 surface defined over Q by the
(2, 2, 2)-form

F (x, y, z) = x2 + y2 + z2 + 4(x2y2 + y2z2 + z2x2) − 16x2y2z2 − k = 0. (9)

Consider the field extension K := Q(
√
−1,

√
α,

√
ᾱ) where α, ᾱ are given as in the proof of

Proposition 3.5. If k satisfies the following conditions:
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1. None of 2(4k + 1),∆, 2(4k + 1)∆ is a square in Q;

2. k ≡ 3 mod 5,

such that G := Gal(K/Q) ∼= D4 × Z/2Z (this is the most general case of the field extension
over which all the divisor classes are defined), then

Br1W/Br0W ∼= (Z/2Z)3.

Furthermore, for the affine subscheme U = W \ {rst = 0}, we even have

Br1 U/Br0 U ∼= (Z/2Z)4.

Proof. Since W is smooth, projective, geometrically integral over K, we have Q[W ]× = Q×
.

One already has W (Q) ̸= ∅, so Br0W = BrQ. Since Q is a number field, by the Hochschild–
Serre spectral sequence, we have an isomorphism

Br1W/Br0W ≃ H1(Q,PicW ).

By Proposition 3.5, the geometric Picard number of W is equal to 18 and a basis of
PicW is given by

S = {D1, D2, D3, ℓ
++
12 , ℓ+−

12 , ℓ++
13 , ℓ++

23 , ℓ−+
12 , ℓ−+

13 , ℓ−−
23 , ℓ++

12 , ℓ+−
12 , ℓ++

13 , ℓ++
23 , ℓ−+

12 , ℓ−+
13 , C+−

1 , C+−
2 }

along with the intersection matrix. If we denote by (S) the column vector of elements of S,
then from the intersection pairings of the classes in S with the other classes in the list of
Proposition 3.5, we find that

ℓ−−
12

ℓ−−
12

ℓ−−
23

ℓ−−
13

ℓ−−
13

ℓ+−
13

ℓ+−
13

ℓ+−
23

ℓ+−
23

ℓ−+
23

ℓ−+
23



=



0 1 −1 0 0 1 1 0 1 −1 0 −1 0 0 0 0 0 0
2 1 −1 −1 −1 −1 −1 −1 −1 1 −1 0 0 0 −1 0 0 0
−2 0 0 1 0 1 1 1 1 −1 1 0 1 1 1 1 0 0
−1 −1 1 1 1 1 1 0 0 −1 1 0 0 0 1 0 0 0
1 −1 1 0 0 −1 −1 0 −1 1 0 1 0 0 −1 −1 0 0
1 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0
0 1 0 0 0 0 −1 0 0 0 −1 0 0 0 −1 0 0 0
0 1 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 −1 −1 0 −1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 −1 −1 0 −1 0 0


(S)

and also

D1 =
∑

ϵ=± fixed,δ=± varied

∑
j∈{2,3} ℓ

ϵδ
1j =

∑
ϵ=±fixed,δ=± varied

∑
j∈{2,3} ℓ

ϵδ
1j,

D2 =
∑

ϵ=± fixed,δ=± varied

∑
j∈{1,3} ℓ

ϵδ
1j =

∑
ϵ=± fixed,δ=± varied

∑
j∈{1,3} ℓ

ϵδ
1j,

D3 =
∑

ϵ=± fixed,δ=± varied

∑
j∈{1,2} ℓ

ϵδ
1j =

∑
ϵ=± fixed,δ=± varied

∑
j∈{1,2} ℓ

ϵδ
1j,

C−−
1 = C+−

1 ;C++
1 = D1 − C+−

1 ,

C−−
2 = C+−

2 ;C++
2 = D2 − C+−

2 ,

C−−
3 = C+−

3 = ℓ++
12 + ℓ++

13 + ℓ++
23 + ℓ++

12 + ℓ++
13 + ℓ++

23 − C+−
1 − C+−

2 ;C++
3 = D3 − C+−

3 .

(10)
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Now we study the action of the absolute Galois group on PicW , which can be reduced
to the action of G = Gal(K/Q). One clearly has G ∼= D4 ×Z/2Z ∼= (⟨σ⟩⋊ ⟨τ⟩)× ⟨ρ⟩, where

σ(α) = ᾱ, σ(ᾱ) = −α,

τ(α) = α, τ(ᾱ) = −ᾱ,

ρ(
√
−1) = −

√
−1.

Note that for 1 ≤ i ̸= j ≤ 3, σ(ℓ±±
ij ) = ℓ±∓

ij , σ(ℓ±±
ij ) = ℓ∓±

ij ; τ(ℓ±±
ij ) = ℓ±∓

ij , τ(ℓ±±
ij ) = ℓ∓±

ij ;
ρ(C±±

i ) = C∓±
i and σ(C±±

i ) = C±∓
i = Di − C±±

i . For technical reasons, we consider the
following matrices of ⟨σ⟩ and ⟨τ⟩ acting stably on the first 16 divisor classes of PicW in a
specific permutation of the ordered basis given by (S) as follows.

{D1, D2, D3, ℓ
++
12 , ℓ+−

12 , ℓ−+
12 , ℓ++

12 , ℓ+−
12 , ℓ−+

12 , ℓ++
13 , ℓ−+

13 , ℓ++
13 , ℓ−+

13 , ℓ++
23 , ℓ−−

23 , ℓ++
23 }

gives the corresponding matrices for the action of σ and τ respectively on PicW :

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 −1 0 1 1 0 0 1 −1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 1 −1 −1 −1 −1 −1 0 −1 −1 −1 0 0 −1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 −1 −1 0 0 0 −1 0 0 0 0
1 −1 1 0 0 0 0 1 −1 −1 −1 0 −1 −1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 −1 0 −1 0 0 0 0 0 0 0 0 0 −1
0 0 1 0 0 0 0 0 0 0 0 −1 −1 0 0 −1
0 0 1 0 0 0 0 0 0 −1 −1 0 0 −1 0 0



,

18



and 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 −1 −1 −1 −1 −1 0 −1 −1 −1 0 0 −1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 −1 0 1 1 0 0 1 −1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 −1 −1 0 0 0 0 −1 0 0 0 0 0 0
−1 −1 1 1 1 0 1 0 1 1 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 −1 0 −1 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0 0 −1 −1 0 0 −1 0 0
0 0 1 0 0 0 0 0 0 0 0 −1 −1 0 0 −1



,

As a result, we obtain

Ker(1 + ρ) = ⟨C+−
1 − C−−

1 , C+−
2 − C−−

2 ⟩,

and Ker(1+σ+σ2+σ3) = ⟨D1−ℓ−+
12 −ℓ++

12 −ℓ++
13 −ℓ−+

13 , D2−ℓ−+
12 −ℓ++

12 −ℓ−−
23 −ℓ++

23 , D3−ℓ++
13 −

ℓ−+
13 −ℓ−−

23 −ℓ++
23 , ℓ++

12 −ℓ−+
12 , ℓ+−

12 −ℓ++
12 , ℓ−+

12 −ℓ++
12 , ℓ+−

12 −ℓ−+
12 , ℓ++

13 −ℓ−+
13 , ℓ−+

13 −ℓ++
13 , ℓ++

23 −ℓ−−
23 ⟩.

We also have

Ker(1 − ρ) = ⟨D1, D2, D3, ℓ
++
12 , ℓ+−

12 , ℓ++
13 , ℓ++

23 , ℓ−+
12 , ℓ−+

13 , ℓ−−
23 , ℓ++

12 , ℓ+−
12 , ℓ++

13 , ℓ++
23 , ℓ−+

12 , ℓ−+
13 ⟩,

and Ker(1−σ)∩PicW
⟨ρ⟩

= ⟨D1, D2, D3, ℓ
+−
12 + ℓ++

12 − ℓ+−
12 + ℓ−+

12 + 2ℓ++
13 − ℓ++

13 + ℓ−+
13 + ℓ++

23 −
ℓ−−
23 , ℓ−+

12 + ℓ++
12 + ℓ++

13 + ℓ−+
13 − ℓ++

23 − ℓ−−
23 + 2ℓ++

23 , ℓ++
12 − 2ℓ++

12 − ℓ−+
12 − ℓ++

13 + ℓ−+
13 − 2ℓ−+

13 +

ℓ++
23 + ℓ−−

23 − 2ℓ++
23 ⟩.

Given a finite cyclic group G = ⟨σ⟩ and a G-module M , by [NSW15], Proposition 1.7.1,

recall that we have isomorphisms H1(G,M) ∼= Ĥ
−1

(G,M), where the latter group is the
quotient of NG

M , the set of elements of M of norm 0, by its subgroup (1 − σ)M .
By [NSW15], Proposition 1.6.7, we have

H1(Q,PicW ) = H1(G,PicW ),

where G = (⟨σ⟩⋊ ⟨τ⟩)×⟨ρ⟩ ∼= D4×Z/2Z. Then one has the following (inflation-restriction)
exact sequence

0 → H1((⟨τ⟩⋉ ⟨σ⟩),PicW
⟨ρ⟩

) → H1(G,PicW ) → H1(⟨ρ⟩,PicW ) =
Ker(1 + ρ)

(1 − ρ)PicW
= 0,
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so H1(G,PicW ) ∼= H1(⟨τ⟩⋉ ⟨σ⟩,PicW
⟨ρ⟩

). Now we are left with

0 → H1(⟨τ⟩,PicW
⟨σ,ρ⟩

) → H1(G,PicW )

→ H1(⟨σ⟩,PicW
⟨ρ⟩

) =
Ker(1 + σ + σ2 + σ3) ∩ PicW

⟨ρ⟩

(1 − σ)PicW
⟨ρ2⟩

= 0,

so H1(G,PicW ) ∼= H1(⟨τ⟩,PicW
⟨σ,ρ⟩

). The latter group can be computed as follows. We
already have

PicW
⟨σ,ρ⟩

= Ker(1 − σ) ∩ PicW
⟨ρ⟩
.

We find that H1(Q,PicW ) = H1(G,PicW )
∼= [Ker(1 + τ) ∩ PicW

⟨σ,ρ⟩
]/(1 − τ)PicW

⟨σ,ρ⟩

= ⟨ℓ+−
12 + ℓ++

12 − ℓ+−
12 + ℓ−+

12 + 2ℓ++
13 − ℓ++

13 + ℓ−+
13 + ℓ++

23 − ℓ−−
23 −D1, ℓ

−+
12 + ℓ++

12 + ℓ++
13 + ℓ−+

13 −
ℓ++
23 − ℓ−−

23 + 2ℓ++
23 −D1, ℓ

++
12 − 2ℓ++

12 − ℓ−+
12 − ℓ++

13 + ℓ−+
13 − 2ℓ−+

13 + ℓ++
23 + ℓ−−

23 − 2ℓ++
23 + D1⟩

/2⟨ℓ+−
12 + ℓ++

12 − ℓ+−
12 + ℓ−+

12 + 2ℓ++
13 − ℓ++

13 + ℓ−+
13 + ℓ++

23 − ℓ−−
23 −D1, ℓ

−+
12 + ℓ++

12 + ℓ++
13 + ℓ−+

13 −
ℓ++
23 − ℓ−−

23 + 2ℓ++
23 −D1, ℓ

++
12 − 2ℓ++

12 − ℓ−+
12 − ℓ++

13 + ℓ−+
13 − 2ℓ−+

13 + ℓ++
23 + ℓ−−

23 − 2ℓ++
23 + D1⟩

∼= (Z/2Z)3.

We keep the notation as above. Now PicU is given by the following quotient group

PicU ∼= PicW/(ZD1 ⊕ ZD2 ⊕ ZD3)

by Proposition 3.1. Here for any divisor D ∈ PicX, denote by [D] its image in PicU . By

Proposition 3.1, we also have Q×
= Q[U ]×. By the Hochschild–Serre spectral sequence, we

have the following isomorphism

Br1 U/Br0 U ∼= H1(Q,PicU)

as Q is a number field. Since PicU is free and Gal(Q/K) acts on PicU trivially, we obtain
that H1(Q,PicU) ∼= H1(G,PicU). With the action of G, we can compute in the quotient
group PicU :{

Ker(1 + ρ) = ⟨[C+−
1 ] − [C−−

1 ], [C+−
2 ] − [C−−

2 ]⟩,
Ker(1 − ρ) = ⟨[ℓ++

12 ], [ℓ+−
12 ], [ℓ++

13 ], [ℓ++
23 ], [ℓ−+

12 ], [ℓ−+
13 ], [ℓ−−

23 ], [ℓ++
12 ], [ℓ+−

12 ], [ℓ++
13 ], [ℓ++

23 ], [ℓ−+
12 ], [ℓ−+

13 ]⟩,

Ker(1 − σ) ∩ PicU
⟨ρ⟩

= ⟨[ℓ+−
12 ] + [ℓ++

12 ] − [ℓ+−
12 ] + [ℓ−+

12 ] + 2[ℓ++
13 ] − [ℓ++

13 ] + [ℓ−+
13 ] + [ℓ++

23 ] −
[ℓ−−

23 ], [ℓ−+
12 ] + [ℓ++

12 ] + [ℓ++
13 ] + [ℓ−+

13 ] − [ℓ++
23 ] − [ℓ−−

23 ] + 2[ℓ++
23 ], [ℓ++

12 ] − 2[ℓ++
12 ] − [ℓ−+

12 ] − [ℓ++
13 ] +

[ℓ−+
13 ] − 2[ℓ−+

13 ] + [ℓ++
23 ] + [ℓ−−

23 ] − 2[ℓ++
23 ]⟩,

and
Ker(1 + σ + σ2 + σ3) = ⟨[ℓ++

12 ] − [ℓ−+
12 ], [ℓ+−

12 ] + [ℓ−+
12 ], [ℓ−+

12 ] + [ℓ−+
12 ], [ℓ++

12 ] + [ℓ−+
12 ], [ℓ+−

12 ] −
[ℓ−+

12 ], [ℓ++
13 ] − [ℓ−+

13 ], [ℓ−+
13 ] + [ℓ−+

13 ], [ℓ++
13 ] + [ℓ−+

13 ], [ℓ++
23 ] + [ℓ++

23 ], [ℓ−−
23 ] + [ℓ++

23 ]⟩. Then

H1(⟨ρ⟩,PicU) =
Ker(1 + ρ)

(1 − ρ)PicU
= 0,
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H1(⟨σ⟩,PicU
⟨ρ⟩

)⟨τ⟩ =

(
Ker(1 + σ + σ2 + σ3) ∩ PicU

⟨ρ⟩

(1 − σ)PicU
⟨ρ⟩

)⟨τ⟩

=

(
⟨[ℓ++

12 ] + [ℓ−+
12 ]⟩

2⟨[ℓ++
12 ] + [ℓ−+

12 ]⟩

)⟨τ⟩

∼= Z/2Z,

and

H1(⟨τ⟩,PicU
⟨σ,ρ⟩

) ∼=
Ker(1 + τ) ∩ PicU

⟨σ,ρ⟩

(1 − τ)PicU
⟨σ,ρ⟩ =

PicU
⟨σ,ρ⟩

2PicU
⟨σ,ρ⟩

∼= (Z/2Z)3.

Since PicU
G

= 0, which gives H0(⟨τ⟩ ⋉ ⟨σ⟩,PicU
⟨ρ⟩

) = H2(⟨τ⟩ ⋉ ⟨σ⟩,PicU
⟨ρ⟩

) = 0, and

moreover H0(⟨τ⟩⋉ ⟨σ⟩,PicU
⟨ρ⟩
/2) ∼= (Z/2Z)4, then from the short exact sequence

0 −→ PicU
⟨ρ⟩ ×2−→ PicU

⟨ρ⟩ −→ PicU
⟨ρ⟩
/2 −→ 0

along with all the (similar as above) inflation-restriction exact sequences, we obtain the
following exact sequences:

0 → (Z/2Z)3 ∼= H1(⟨τ⟩,PicU
⟨σ,ρ⟩

) → H1(⟨τ⟩⋉⟨σ⟩,PicU
⟨ρ⟩

) → H1(⟨σ⟩,PicU
⟨ρ⟩

)⟨τ⟩ ∼= Z/2Z → 0,

and

0 → H0(⟨τ⟩⋉⟨σ⟩,PicU
⟨ρ⟩
/2) ∼= (Z/2Z)4 → H1(⟨τ⟩⋉⟨σ⟩,PicU

⟨ρ⟩
)

×2−→ H1(⟨τ⟩⋉⟨σ⟩,PicU
⟨ρ⟩

),

we conclude that

Br1 U/Br0 U ∼= H1(G,PicU) ∼= H1(⟨τ⟩⋉ ⟨σ⟩,PicU
⟨ρ⟩

) ∼= (Z/2Z)4.

Now we produce some concrete generators in Br1 U for Br1 U/Br0 U . The affine scheme
U ⊂ A3 is defined over Q by the equation

x2 + y2 + z2 + 4(x2y2 + y2z2 + z2x2) − 16x2y2z2 = k. (11)

This affine equation is equivalent to

(4x2 + 1)(4y2 + 1)(4z2 + 1) = (4k + 1) + 128x2y2z2, (12)

(4x2 + 1)(1 + 4y2 + 4z2 − 16y2z2) = (4k + 1) − 32y2z2, (13)

and also implies the following equation over {xyz ̸= 0}:

(16x2y2−4x2−4y2−1)(16x2z2−4x2−4z2−1) = 2

((
4x2 − 4k − 1

4

)2

− (4k − 5)2 − 32

16

)
,

(14)
as well as similar ones obtained by permutation of coordinates in all the above equations.
By Grothendieck’s purity theorem ([Poo17], Theorem 6.8.3), for any smooth integral variety
Y over a field L of characteristic 0, we have the exact sequence

0 → BrY → BrL(Y ) → ⊕D∈Y (1)H1(L(D),Q/Z),
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where the last map is given by the residue along the codimension-one point D. We consider
the following quaternion algebras:

A1 = (4x2 + 1,−2(4k + 1)),

A2 = (4y2 + 1,−2(4k + 1)),

B = (16x2y2 − 4x2 − 4y2 − 1, (4k − 5)2 − 32).

In order to prove that A1,A2,B come from a class in BrU , it suffices to show that all
their residues along the 15 divisor classes [ℓ++

12 ], . . . , [ℓ−+
13 ], [C+−

1 ], [C+−
2 ] generating PicU are

trivial. Indeed, in the function field of each one of those irreducible divisors, −2(4k + 1) or
(4k−5)2−32 is clearly a square; standard formulae for residues in terms of the tame symbol
[GS17], Example 7.1.5, Proposition 7.5.1 therefore show that A1,A2,B are unramified, so
they are elements of BrU and moreover they are clearly algebraic. Since

{4x2 + 1 = 0} ∩ {(4y2 + 1)(4z2 + 1) = 0},

{4x2 + 1 = 0} ∩ {16y2z2 − 4y2 − 4z2 − 1 = 0},

{16x2y2 − 4x2 − 4y2 − 1 = 0} ∩ {16x2z2 − 4x2 − 4z2 − 1 = 0}

are closed subsets of codimension 2 on U , we obtain that

(4x2+1,−2(4k+1)) = (2(4y2+1)(4z2+1),−2(4k+1)) = (2(16y2z2−4y2−4z2−1), 2(4k+1))

and

(16x2y2 − 4x2 − 4y2 − 1, (4k − 5)2 − 32) = (2(16x2z2 − 4x2 − 4z2 − 1), (4k − 5)2 − 32)

in Br1 U , as well as similar ones given by permutation of coordinates. Furthermore, the
residues of A1,A2 at the irreducible divisors D1, D2, D3 given by rst = 0 which form the
complement of U in W are easily seen to be trivial, while the residue of B at D1 is nontrivial.
One thus has A1,A2 ∈ Br1W and B ̸∈ Br1W . It is clear that B is non-constant; the elements
Ai (i = 1, 2) are non-constant by the Faddeev exact sequence (see [CS21], Theorem 1.5.2),
since their pull-backs π∗

i (Ai) ∈ BrQ(P1) = BrQ(t) are not constant as they give nontrivial
residues at the closed point (4t2+1) of P1

Q. Furthermore, the elements A1,A2 will contribute
to the Brauer–Manin obstruction to the integral Hasse principle later.

In conclusion, we have Br1W/Br0W ∼= (Z/2Z)3, which can be viewed as a subgroup
of Br1 U/Br0 U ∼= (Z/2Z)4 on using the vanishing of H1(G,⊕3

i=1ZDi) (and we also have
Br0W = Br0 U = BrQ since the natural composite map BrQ ↪→ Br1W ↪→ Br1 U is
injective).

Remark 3.4. One can hope to find more explicit generators for the quotient group Br1 U/Br0 U
by studying further the equation and its geometric nature. Furthermore, it would be more
interesting if one can compute the transcendental part of the Brauer group for this family
of Markoff-type K3 surfaces like what the authors in [LM20] and [CWX20] did for Markoff
surfaces, which in general should be difficult.
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4 The Brauer–Manin obstruction

4.1 Review of the Brauer–Manin obstruction

Here we briefly recall how the Brauer–Manin obstruction works in our setting, following
[Poo17], Section 8.2 and [CX09], Section 1. For each place v of Q there is a pairing

U(Qv) × BrU → Q/Z

coming from the local invariant map

invv : BrQv → Q/Z

from local class field theory (this is an isomorphism if v is a prime number). This pairing
is locally constant on the left by [Poo17], Proposition 8.2.9. Any element α ∈ BrW pairs
trivially on U(Qv) for almost all v, thus taking the sum of the local pairings gives a pairing∏

v

U(Qv) × BrW → Q/Z.

This factors through the group BrW/BrQ and pairs trivially with the elements of U(Q).
For B ⊆ BrW , let (

∏
v U(Qv))

B be the left kernel of this pairing with respect to B. We
have the inclusions U(Q) ⊆ (

∏
v U(Qv))

B ⊆
∏

v U(Qv). In particular, if (
∏

v U(Qv))
B = ∅

then B obstructs the Hasse principle on U , and if the latter inclusion is strict, then B gives
an obstruction to weak approximation on U .

For integral points, any element α ∈ BrU pairs trivially on U(Zp) for almost all primes
p, so we obtain a pairing U(AQ) × BrU → Q/Z. As the local pairings are locally constant,
we obtain a well-defined pairing

U(AZ)• × BrU → Q/Z.

For B ⊆ BrU , let U(AZ)B• be the left kernel with respect to B, and let U(AZ)Br
• = U(AZ)BrU

• .
By abuse of notation, from now on we write the reduced Brauer–Manin set U(AZ)B• in the
standard way as U(AZ)B. We have the inclusions U(Z) ⊆ U(AZ)B ⊆ U(AZ), so that B can
obstruct the integral Hasse principle or strong approximation on U .

Let V be dense Zariski open in U . As U is smooth, the set V (Qp) is dense in U(Qp) for
all places p. Moreover, U(Zp) is open in U(Qp), hence V (Qp) ∩ U(Zp) is dense in U(Zp). As
the local pairings are locally constant, we may restrict our attention to V to calculate the
local invariants of a given element in BrU .

4.2 Brauer–Manin obstruction from quaternion algebras

Now we consider the three explicit families of Markoff-type K3 (MK3) surfaces over Q as
introduced before. From now on, we always denote by Wk the projective MK3 surfaces, Uk

the affine open subscheme defined by Wk \{rst = 0} and Uk the integral model of Uk defined
by the same equation.
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4.2.1 Existence of local points

First of all, we study the existence of local integral points on the affine MK3 surfaces. It
is interesting to note that there always exist Q-points at infinity (when rst = 0) on these
surfaces.

Proposition 4.1 (Assumption I). For k ∈ Z, let Wk ⊂ P1 × P1 × P1 be the MK3 surface
defined over Q by the (2, 2, 2)-form

F1(x, y, z) = x2 + y2 + z2 − 4x2y2z2 − k = 0. (15)

Let Uk be the integral model of Uk defined over Z by the same equation. If k satisfies the
conditions:

1. k ≡ −1 mod 8;

2. k ̸≡ 0 mod 3, 5, 7,

then Uk(AZ) ̸= ∅.

Proof. For the place at infinity, it is clear that there exist real solutions: If k ≥ 0 then take
(x, y, z) = (

√
k, 0, 0); if k ≤ −1 then take x = y = z ≥ 1 which satisfies 3x2 − 4x6 = k as

the left hand side is a strictly decreasing continuous function of value ≤ −1 on [1,+∞). For
solutions at finite places p, with our specific conditions for k in the assumption, we have:

(i) Prime powers of p = 2: It is clear that every solution modulo 2 is singular. Thanks to
the condition (1), we find the non-singular solution (1, 1, 1) modulo 8, which then lifts
to a 2-adic integer solution by the multivariable Hensel’s lemma.

(ii) Prime powers of p ≥ 3: We need to find a non-singular solution modulo p of the
equations F1 = 0 which does not satisfy simultaneously

dF1 = 0 : 2x(1 − 4y2z2) = 0, 2y(1 − 4z2x2) = 0, 2z(1 − 4x2y2) = 0.

For simplicity, we will try to find a non-singular solution whose z = 0. First, it is clear
that the equation F1 = 0 always has a solution when z = 0: indeed, take z = 0, then
F1 = 0 becomes x2 + y2 = 0, and every element in Fp can be expressed as the sum
of two squares. Note that such a solution is singular if and only if x = y = 0, which
means that p divides k. Hence, if p does not divide k, then we can find a non-singular
solution mod p which lifts to a p-adic integer solution by the multivariable Hensel’s
lemma. In particular, this is true for p = 3, 5, 7 thanks to the condition (2).

Next, consider the case when p ≥ 11 and p divides k. We will find instead a non-
singular solution whose z = 1. The equation becomes

F1(x, y, 1) = x2 + y2 − 4x2y2 + (1 − k) = 0

which defines an affine curve C ⊂ A2
(x,y) over Q. If we consider its projective closure

in P2
[x:y:t] defined by

t2(x2 + y2) − 4x2y2 + (1 − k)t4 = 0,
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then we can see that it has only two singularities which are ordinary of multiplicity 2,
namely [1 : 0 : 0] and [0 : 1 : 0]. By the genus–degree formula and the fact that the
geometric genus is a birational invariant, we obtain

g(C) =
(degC − 1)(degC − 2)

2
−

n∑
i=1

ri(ri − 1)

2
,

where n the number of ordinary singularities and ri is the multiplicity of each singularity
for i = 1, . . . , n; in particular, g(C) = 3 − 2 = 1.

Now we consider the original projective closure C1 ⊂ P1
[x:r] × P1

[y:s] defined by

x2s2 + y2r2 − 4x2y2 + (1 − k)r2s2 = 0.

The projective curve C1 is smooth over Fp under our assumption on k. Then by the
Hasse–Weil bound for smooth, projective and geometrically integral curves of genus 1,
we have

|C1(Fp)| ≥ p + 1 − 2
√
p = (

√
p− 1)2 > (3 − 1)2 = 4

since p ≥ 11, so |C1(Fp)| ≥ 5. As C1 has exactly 4 points at infinity (when rs = 0),
the affine curve C has at least one smooth Fp-point which then lifts to a p-adic integral
point by the multivariable Hensel’s lemma.

Proposition 4.2 (Assumption II). For k ∈ Z, let Wk ⊂ P1 × P1 × P1 be the MK3 surface
defined over Q by the (2, 2, 2)-form

F2(x, y, z) = x2 + y2 + z2 − 4(x2y2 + y2z2 + z2x2) + 16x2y2z2 − k = 0. (16)

Let Uk be the integral model of Uk defined over Z by the same equation. If k satisfies the
conditions:

1. k ≡ 2 mod 8, k ≡ −9 mod 27, k ≡ −2 mod 5, and k ≡ 2 mod 7;

2. p ≡ ±1 mod 8 for any odd prime divisor p of k,

then Uk(AZ) ̸= ∅.

Proof. For the place at infinity, it is clear that there exist real solutions: If k ≥ 0 then take

(x, y, z) = (
√
k, 0, 0); if k ≤ −1 then take y = 1, z = 0 and x =

√
1−k
3

. For solutions at finite

places p, with our specific conditions for k in the assumption, we have:

(i) Prime powers of p = 2: It is clear that every solution modulo 2 is singular. Thanks to
the condition (1), we find the non-singular solution (1, 1, 2) modulo 8, which then lifts
to a 2-adic integer solution by the multivariable Hensel’s lemma.

(ii) Prime powers of p = 3, 5: Thanks to the condition (1), we find the non-singular
solutions (3, 3, 0) modulo 27 and (1, 1, 0) modulo 5, which respectively lift to a 3-adic
and a 5-adic integer solution by the multivariable Hensel’s lemma.
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(iii) Prime powers of p ≥ 7: We need to find a non-singular solution modulo p of the
equations F2 = 0 which does not satisfy simultaneously

dF2 = 0 : 2x(1− 4y2)(1− 4z2) = 0, 2y(1− 4z2)(1− 4x2) = 0, 2z(1− 4x2)(1− 4y2) = 0.

First, note that the equation F2 = 0 is equivalent to

(4x2 − 1)(4y2 − 1)(4z2 − 1) = 4k − 1.

We observe that there are two special cases: if p divides k then there exists a non-
singular solution (a, b, 0) where 2a2 ≡ 2b2 ≡ 1 mod p thanks to the condition (2); if p
divides 4k − 1 then there clearly exists a non-singular solution (1

2
, 0, 0). In particular,

this is true for p = 7 thanks to the condition (1).

Next, consider the case when p ≥ 11 and p does not divide either k or 4k − 1. For
simplicity, we will try to find a non-singular solution whose z = 0. The equation
becomes

F2(x, y, 0) = x2 + y2 − 4x2y2 − k = 0

which defines an affine curve C ⊂ A2
(x,y) over Q. If we consider its projective closure

in P2
[x:y:t] defined by

t2(x2 + y2) − 4x2y2 − kt4 = 0,

then we can see that it has only two singularities which are ordinary of multiplicity 2,
namely [1 : 0 : 0] and [0 : 1 : 0]. By the genus–degree formula and the fact that the
geometric genus is a birational invariant, we obtain

g(C) =
(degC − 1)(degC − 2)

2
−

n∑
i=1

ri(ri − 1)

2
,

where n the number of ordinary singularities and ri is the multiplicity of each singularity
for i = 1, . . . , n; in particular, g(C) = 3 − 2 = 1.

Now we consider the original projective closure C1 ⊂ P1
[x:r] × P1

[y:s] defined by

x2s2 + y2r2 − 4x2y2 − kr2s2 = 0.

The projective curve C1 is smooth over Fp under our assumption on k. Then by the
Hasse–Weil bound for smooth, projective and geometrically integral curves of genus 1,
we have

|C1(Fp)| ≥ p + 1 − 2
√
p = (

√
p− 1)2 > (3 − 1)2 = 4

since p ≥ 11, so |C1(Fp)| ≥ 5. As C1 has exactly 4 points at infinity (when rs = 0),
the affine curve C has at least one smooth Fp-point which then lifts to a p-adic integral
point by the multivariable Hensel’s lemma.
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Proposition 4.3 (Assumption III). For k ∈ Z, let Wk ⊂ P1 × P1 × P1 be the MK3 surface
defined over Q by the (2, 2, 2)-form

F3(x, y, z) = x2 + y2 + z2 + 4(x2y2 + y2z2 + z2x2) − 16x2y2z2 − k = 0. (17)

Let Uk be the integral model of Uk defined over Z by the same equation. If k satisfies the
conditions:

1. k ≡ 1 mod 4, k ≡ 2 mod 3, k ≡ 3 mod 5;

2. k ̸≡ 0,−2 mod 7 and k ̸≡ 0 mod 37,

then Uk(AZ) ̸= ∅.

Proof. For the place at infinity, it is clear that there exist real solutions: If k ≥ 0 then take
(x, y, z) = (

√
k, 0, 0); if k ≤ −1 then take x = y = z ≥ 1 which satisfies 3x2+12x4−16x6 = k

as the left hand side is a strictly decreasing continuous function of value ≤ −1 on [1,+∞).
For solutions at finite places p, with our specific conditions for k in the assumption, we have:

(i) Prime powers of p = 2: It is clear that every solution modulo 2 is singular. Thanks
to the condition (1), we find the non-singular solutions (1, 0, 0) mod 8 if k ≡ 1 mod 8
and (1, 2, 0) mod 8 if k ≡ 5 mod 8, each of which then lifts to a 2-adic integer solution
by the multivariable Hensel’s lemma.

(ii) Prime powers of p = 3, 5: Thanks to the condition (1), we find the non-singular
solutions (1, 1, 1) for p = 3 if k ≡ 2 mod 3 and (1, 2, 1) for p = 5 if k ≡ 3 mod 5, which
then respectively lift to a 3-adic and a 5-adic integer solution by the multivariable
Hensel’s lemma.

(iii) Prime powers of p ≥ 7: We need to find a non-singular solution modulo p of the
equations F3 = 0 which does not satisfy simultaneously

dF3 = 0 : 2x(1+4y2+4z2−16y2z2) = 2y(1+4z2+4x2−16z2x2) = 2z(1+4x2+4y2−16x2y2) = 0.

For simplicity, we will try to find a non-singular solution whose z = 0. The equation
becomes

F3(x, y, 0) = x2 + y2 + 4x2y2 − k = 0

which defines an affine curve C ⊂ A2
(x,y) over Q. If we consider its projective closure

in P2
[x:y:t] defined by

t2(x2 + y2) + 4x2y2 − kt4 = 0,

then we can see that it has only two singularities which are ordinary of multiplicity 2,
namely [1 : 0 : 0] and [0 : 1 : 0]. By the genus–degree formula and the fact that the
geometric genus is a birational invariant, we obtain

g(C) =
(degC − 1)(degC − 2)

2
−

n∑
i=1

ri(ri − 1)

2
,
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where n the number of ordinary singularities and ri is the multiplicity of each singularity
for i = 1, . . . , n; in particular, g(C) = 3 − 2 = 1.

Now we consider the original projective closure C1 ⊂ P1
[x:r] × P1

[y:s] defined by

x2s2 + y2r2 + 4x2y2 − kr2s2 = 0.

If p does not divide either k or 4k + 1, then the projective curve C1 is smooth over
Fp under our assumption on k. Then by the Hasse–Weil bound for smooth, projective
and geometrically integral curves of genus 1, we have

|C1(Fp)| ≥ p + 1 − 2
√
p = (

√
p− 1)2,

so |C1(Fp)| ≥ 3 if p = 7 and |C1(Fp)| ≥ 5 if p ≥ 11. As C1 has exactly 2 and 4 points
at infinity (when rs = 0) if p ≡ 3 and 1 mod 4 respectively, the affine curve C has
at least one smooth Fp-point which then lifts to a p-adic integral point by the multi-
variable Hensel’s lemma. In particular, this is true for p = 7 thanks to the condition (2).

Next, consider the case when p ≥ 11 and p divides k or 4k + 1. We will find in-
stead a non-singular solution whose z = 1. The equation becomes

F3(x, y, 1) = 5x2 + 5y2 − 12x2y2 + (1 − k) = 0

which defines an affine curve D ⊂ A2
(x,y) over Q. If we consider its projective closure

in P2
[x:y:t] defined by

5t2(x2 + y2) − 12x2y2 + (1 − k)t4 = 0,

then we can see that it also has only two singularities which are ordinary of multiplicity
2, namely [1 : 0 : 0] and [0 : 1 : 0]. By the genus–degree formula and the fact that the
geometric genus is a birational invariant, we obtain

g(D) =
(degD − 1)(degD − 2)

2
−

n∑
i=1

ri(ri − 1)

2
,

where n the number of ordinary singularities and ri is the multiplicity of each singularity
for i = 1, . . . , n; in particular, g(D) = 3 − 2 = 1.

Now we consider the original projective closure D1 ∈ P1
[x:r] × P1

[y:s] defined by

5x2s2 + 5y2r2 − 12x2y2 + (1 − k)r2s2 = 0.

The projective curve D1 is smooth over Fp under our assumption on k, especially
the additional hypothesis k ̸≡ 0 mod 37. Then by the Hasse–Weil bound for smooth,
projective and geometrically integral curves of genus 1, we have |D1(Fp)| ≥ 5 since
p ≥ 11. As D1 has at most 4 points at infinity (when rs = 0), the affine curve D
has at least one smooth Fp-point which then lifts to a p-adic integral point by the
multivariable Hensel’s lemma. The proof is now complete.
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4.2.2 Integral Brauer–Manin obstructions

It is important to recall that there always exist Q-points (at infinity) on every member
Wk ⊂ P1 × P1 × P1 of each family of these Markoff-type K3 surfaces, hence they satisfy
the (rational) Hasse principle. Now we prove the Brauer–Manin obstructions to the integral
Hasse principle on the integral model Uk of the affine subscheme Uk ⊂ Wk by calculating the
local invariants for some quaternion algebra classes A in their Brauer groups:

invpA : Uk(Zp) → Z/2Z, u = (x, y, z) 7→ invpA(u).

Theorem 4.4. For k ∈ Z, let Wk ⊂ P1 × P1 × P1 be the MK3 surface defined over Q by the
(2, 2, 2)-form

F1(x, y, z) = x2 + y2 + z2 − 4x2y2z2 − k = 0. (18)

Let Uk be the integral model of Uk defined over Z by the same equation. If k satisfies the
conditions:

1. k = −(1 + 16ℓ2) where ℓ ∈ Z such that ℓ is odd and ℓ ̸≡ ±2 mod 5;

2. p ≡ 1 mod 4 for any prime divisor p of ℓ,

then there is an algebraic Brauer–Manin obstruction to the integral Hasse principle on Uk

with respect to the element A = (4x2y2 − 1, k + 1) = (4y2z2 − 1, k + 1) = (4z2x2 − 1, k + 1)
in Br1 Uk/Br0 Uk. In other words, Uk(Z) ⊂ Uk(AZ)A = ∅.

Proof. For any local point in Uk(AZ), we calculate its local invariants at every prime p ≤ ∞.
First of all, note that Uk is smooth over Q and the affine equation implies

(4x2y2 − 1)(4y2z2 − 1) = (2y2 + 1)2 − 4(k + 1)y2.

Therefore, we obtain the equality

A = (4x2y2 − 1, k + 1) = (4y2z2 − 1, k + 1) = (4z2x2 − 1, k + 1)

in Br1 Uk/Br0 Uk. Now by abuse of notation, at each place p we consider a local point denoted
by (x, y, z).

At p = ∞: From the equation z2(4x2y2 − 1) = x2 + y2 − k > 0 for all x, y, z ∈ R since
k ≤ −1 by our assumption, so 4x2y2 − 1 > 0 for every point (x, y, z) ∈ Uk(R). Hence we
have inv∞ A(x, y, z) = 0.

At p = 2: Since k ≡ −1 mod 8, all the coordinates x, y, z are in Z×
2 , then 4x2y2 − 1 ≡ 3

mod 8 so inv2A(x, y, z) = (4x2y2 − 1, k + 1)2 = (3,−1)2 = 1
2
.

At p ≥ 3: Since k+1 = −16ℓ2 and every odd prime divisor p of it satisfies (−1, p)p = 0, if
p divides k+1 then invpA(x, y, z) = 0. Otherwise, if p divides 4x2y2−1 then p cannot divide
y and so by the above equation we have k+1 ∈ Z×2

p , which implies that (4x2y2−1, k+1)p = 0.
Finally, if 4x2y2 − 1 and k + 1 are both in Z×

p then the local invariant is trivial as well.
In conclusion, we have ∑

p≤∞

invpA(x, y, z) =
1

2
̸= 0,

so Uk(Z) ⊂ Uk(AZ)A = ∅.
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Theorem 4.5. For k ∈ Z, let Wk ⊂ P1 × P1 × P1 be the MK3 surface defined over Q by the
(2, 2, 2)-form

F2(x, y, z) = x2 + y2 + z2 − 4(x2y2 + y2z2 + z2x2) + 16x2y2z2 − k = 0. (19)

Let Uk be the integral model of Uk defined over Z by the same equation. If k satisfies the
conditions:

1. k = 18ℓ2 where ℓ ∈ Z such that ℓ ̸≡ 0 mod 2, 3, ℓ ≡ 1 mod 5, and ℓ ≡ 2 mod 7;

2. p ≡ ±1 mod 8 for any prime divisor p of ℓ,

then there is an algebraic Brauer–Manin obstruction to the integral Hasse principle on Uk

with respect to the subgroup A ⊂ Br1 Uk/Br0 Uk generated by the elements A1 = (4x2 − 1, k)
and A2 = (4y2 − 1, k), i.e., Uk(Z) ⊂ Uk(AZ)A = ∅.

Proof. For any local point in Uk(AZ), we calculate its local invariants at every prime p ≤ ∞.
First of all, note that Uk is smooth over Q and the affine equation implies

(4x2 − 1)(4y2 − 1)(4z2 − 1) = 4k − 1.

Therefore, we obtain the equality

(4x2 − 1, k) + (4y2 − 1, k) + (4z2 − 1, k) = 0

in Br1 Uk/Br0 Uk. Now by abuse of notation, at each place p we consider a local point denoted
by (x, y, z).

At p = ∞: For any ℓ ∈ R, we always have k = 18ℓ2 > 0, hence inv∞ A(x, y, z) = 0.
At p = 2: Since k ≡ 2 mod 8, exactly two of the coordinates x, y, z are in Z×

2 , so
without loss of generality let one of them be x, then 4x2 − 1 ≡ 3 mod 8 so inv2A(x, y, z) =
(4x2 − 1, k)2 = (3, 2)2 = 1

2
.

At p = 3: Since k = 18ℓ2, all of the coordinates x, y, z must be divisible by 3, so
inv3A(x, y, z) = (−1, 18)3 = 0.

At p ≥ 5: Since k = 18ℓ2 and every odd prime divisor p ̸= 3 satisfies (2, p)p = 0, if p
divides k then invpA(x, y, z) = 0. Otherwise, if p divides 4x2−1 then by the above equation
we have k ∈ Z×2

p , which implies that (4x2 − 1, k)p = 0. Finally, if 4x2 − 1 and k are both in
Z×

p then the local invariant is trivial as well.
In conclusion, we have ∑

p≤∞

invpA(x, y, z) =
1

2
̸= 0,

so Uk(Z) ⊂ Uk(AZ)A = ∅.

Theorem 4.6. For k ∈ Z, let Wk ⊂ P1 × P1 × P1 be the MK3 surface defined over Q by the
(2, 2, 2)-form

F3(x, y, z) = x2 + y2 + z2 + 4(x2y2 + y2z2 + z2x2) − 16x2y2z2 − k = 0. (20)

Let Uk be the integral model of Uk defined over Z by the same equation. If k satisfies the
conditions:
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1. k = −1
4
(1 + 27ℓ2) where ℓ ∈ Z such that ℓ ≡ ±1 mod 8, ℓ ≡ 1 mod 5, ℓ ≡ 3 mod 7,

and ℓ ̸≡ ±10 mod 37;

2. p ≡ ±1 mod 24 for any prime divisor p of ℓ,

then there is an algebraic Brauer–Manin obstruction to the integral Hasse principle on Uk

with respect to the subgroup A ⊂ Br1 Uk/Br0 Uk generated by the elements A1 = (4x2 +
1,−2(4k + 1)) and A2 = (4y2 + 1,−2(4k + 1)), i.e., Uk(Z) ⊂ Uk(AZ)A = ∅.

Proof. For any local point in Uk(AZ), we calculate its local invariants at every prime p ≤ ∞.
First of all, note that Uk is smooth over Q and the affine equation implies

(4x2 + 1)(4y2 + 1)(4z2 + 1) = (4k + 1) + 128x2y2z2.

Therefore, we obtain the equality

(4x2 + 1,−2(4k + 1)) + (4y2 + 1,−2(4k + 1)) + (4z2 + 1,−2(4k + 1)) = 0

in Br1 Uk/Br0 Uk. Now by abuse of notation, at each place p we consider a local point denoted
by (x, y, z).

At p = ∞: For any x ∈ R, we always have 4x2 + 1 > 0, hence inv∞ A(x, y, z) = 0.
At p = 2: Since k ≡ 1 mod 4, exactly two of the coordinates x, y, z are in 2Z2, so

without loss of generality let one of them be x, then 4x2 + 1 ≡ 1 mod 8 so inv2A(x, y, z) =
(4x2 + 1,−2(4k + 1))2 = 0.

At p = 3: Since k ≡ 2 mod 3, all of the coordinates x, y, z are in Z×
3 , so inv3A(x, y, z) =

(2, 54ℓ2)3 = (−1, 3)3 = 1
2
.

At p ≥ 5: Since −2(4k+1) = 54ℓ2 and every odd prime divisor p ̸= 3 satisfies (6, p)p = 0,
if p divides 4k + 1 then invpA(x, y, z) = 0. Otherwise, if p divides 4x2 + 1 then by the above
equation we have −2(4k + 1) ∈ Z×2

p , which implies that (4x2 + 1,−2(4k + 1))p = 0. Finally,
if 4x2 + 1 and 4k + 1 are both in Z×

p then the local invariant is trivial as well.
In conclusion, we have ∑

p≤∞

invpA(x, y, z) =
1

2
̸= 0,

so Uk(Z) ⊂ Uk(AZ)A = ∅.

Example 4.1. We give some explicit counterexamples to the integral Hasse principle for
the three families of Markoff-type K3 surfaces that we have discussed. Note that in theory,
there always exist primes ℓ which satisfy all the hypotheses for each family, thanks to the
well-known Dirichlet’s theorem on arithmetic progressions.

(1) For ℓ = 1, we have

x2 + y2 + z2 − 4x2y2z2 = −(1 + 16.12) = −17.

(2) For ℓ = 191, we have

x2 + y2 + z2 − 4(x2y2 + z2x2 + x2y2) + 16x2y2z2 = 18.1912 = 656658.
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(3) For ℓ = 241, we have

x2 + y2 + z2 + 4(x2y2 + z2x2 + x2y2) − 16x2y2z2 = −1

4
(1 + 27.2412) = −392047.

Remark 4.2. Note that in our first and third cases, we need k to be negative. In fact,
if k = 0 then we always have the trivial solution (0, 0, 0). And if k ≥ 0 and k satisfies
our assumption for each family of those Markoff-type K3 surfaces, then we can prove the
nonexistence of integral points via elementary arguments.

4.3 Counting the Hasse failures

In this part, we calculate the number of examples of existence for local integral points as
well as the number of counterexamples to the integral Hasse principle for our Markoff-type
K3 surfaces which can be explained by the Brauer–Manin obstruction. More precisely, we
compute the natural density of k ∈ Z satisfying the hypotheses in Assumptions I, II, III and
the three main Theorems about the Brauer–Manin obstruction.

Theorem 4.7. For the above three families of MK3 surfaces, we have

#{k ∈ Z : |k| ≤ M, Uk(AZ) ̸= ∅} ≍ M

and

#{k ∈ Z : |k| ≤ M, Uk(AZ) ̸= ∅, Uk(AZ)Br = ∅} ≫ M1/2

logM
,

as M → +∞.

Proof. For the first approximation, the result follows directly from the fact that Assumptions
I, II, III only give finitely many congruence conditions on k, so the total numbers of k are
always a proportion of M .

For the second approximation, we only give an asymptotic lower bound with the condition
that ℓ is a prime. The result follows from the fact that as M → +∞, |k| is approximately
a multiple of ℓ2, and the number of primes less than

√
N (here N is a proportion of M)

satisfying finitely many congruence conditions is asymptotically equal to

√
M

logM
, up to a

constant factor (see [Apt76], Section 7.9).

Remark 4.3. Continuing from a previous remark, it would be interesting if one can find a
way to include the transcendental Brauer group into the counting result, which would help
us consider the Brauer–Manin set with respect to the whole Brauer group instead of only its
algebraic part.

5 Further remarks

In this section, we compare the results that we obtain in this paper with those in the previous
papers studying Markoff surfaces, namely [GS22], [LM20], [CWX20], and [Dao24].

32



5.1 Existence of the Brauer–Manin obstruction

First of all, recall that in the case of Markoff surfaces, we see from [LM20] that the number of
counterexamples to the integral Hasse principle which can be explained by the Brauer–Manin
obstruction is asymptotically equal to M1/2/(logM)1/2; this number is also the asymptotic
lower bound for the number of Markoff surfaces such that there is no Brauer–Manin ob-
struction to the integral Hasse principle, as done in [CWX20] (slightly better than the result
M1/2/ logM in [LM20]).

We begin our study in the case of Markoff-type K3 surfaces by the following two results.

Proposition 5.1. For k ∈ Z, let Wk ⊂ P1 × P1 × P1 be the MK3 surface defined over Q by
the (2, 2, 2)-form

F3(x, y, z) = x2 + y2 + z2 + 4(x2y2 + y2z2 + z2x2) − 16x2y2z2 − k = 0. (21)

Denote by Uk the integral model of Uk defined over Z by the same equation. If k satisfies the
conditions:

1. k = ℓ(ℓ + 1) where ℓ ∈ Z such that ℓ ≡ 5 mod 8, ℓ ≡ 4 mod 27, ℓ ≡ 1 mod 35, and
ℓ ̸≡ 0,−1 mod 37;

2. p ≡ ±1, 3 mod 8 for any prime divisor p of 2ℓ + 1,

then there is a Brauer–Manin obstruction to the integral Hasse principle on Uk with respect
to the subgroup A ⊂ Br1 Uk/Br0 Uk generated by the elements A1 = (4x2 + 1, 2(4k + 1)) and
A2 = (4y2 + 1, 2(4k + 1)), i.e., Uk(Z) ⊂ Uk(AZ)A = ∅.

Proof. The proof is similar as usual, with notice that only the local invariant at p = 2 is
nonzero which makes the total sum of invariants nonzero, hence a contradiction.

Proposition 5.2. For k ∈ Z, let Wk ⊂ P1 × P1 × P1 be the MK3 surface defined over Q by
the (2, 2, 2)-form

F3(x, y, z) = x2 + y2 + z2 + 4(x2y2 + y2z2 + z2x2) − 16x2y2z2 − k = 0. (22)

Denote by Uk the integral model of Uk defined over Z by the same equation. If k satisfies the
conditions:

1. k = ℓ(ℓ + 1) where ℓ ∈ Z such that ℓ ≡ 3 mod 8, ℓ ≡ 4 mod 27, ℓ ≡ 1 mod 35, and
ℓ ̸≡ 0,−1 mod 37;

2. p ≡ ±1, 3 mod 8 for any prime divisor p of 2ℓ + 1,

then there is no Brauer–Manin obstruction to the integral Hasse principle on Uk with respect
to the subgroup A ⊂ Br1 Uk/Br0 Uk generated by the elements A1 = (4x2 + 1, 2(4k + 1)) and
A2 = (4y2 + 1, 2(4k + 1)), i.e., Uk(AZ)A ̸= ∅.

Proof. The proof is similar as above, except that with k = ℓ(ℓ + 1) ≡ 4 mod 8, the local
invariants at p = 2 are (0, 0), which makes the total sum of invariants always zero, hence the
conclusion. In fact, it even shows that Uk(AZ)A = Uk(AZ).
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Remark 5.1. The first Proposition is only used to give a different family of Markoff-type
K3 surfaces for which there is a Brauer–Manin obstruction and to make an interesting
comparison with the second Proposition. In fact, one may give an elementary proof for the
fact that the set of integral points is empty as follows.

Assume that there is an integral point (x, y, z) ∈ Uk(Z), then if |x|, |y|, |z| ≥ 1, F (x, y, z) <
0 as k = ℓ(ℓ + 1) > 0. Therefore, at least one of x, y, z must be zero, and without loss of
generality, we may assume that z = 0. The equation is equivalent to

(4x2 + 1)(4y2 + 1) = (2ℓ + 1)2.

As the right hand side is divisible by 3 since ℓ ≡ 4 mod 27, so is the left hand side. However,
this is a contradiction as −1 is not a square modulo 3.

The second Proposition only gives the result with respect to a proper subgroup of the
Brauer group since we are not able to determine the whole (algebraic) Brauer–Manin set to
prove whether it is nonempty or not. That is also the reason why we have not yet found a
similar counting result to the ones in [LM20] and [CWX20].

5.2 Failure of strong approximation

Next, we consider some cases when strong approximation, instead of the integral Hasse
principle, fails, while integral points can exist.

Proposition 5.3. For k ≡ 2 mod 8, let Wk ⊂ P1×P1×P1 be the MK3 surface defined over
Q by the (2, 2, 2)-form

F2(x, y, z) = x2 + y2 + z2 − 4(x2y2 + y2z2 + z2x2) + 16x2y2z2 − k = 0. (23)

Let Uk be the integral model of Uk defined over Z by the same equation. If Uk(Z) ̸= ∅,
while there is a Brauer–Manin obstruction to strong approximation on Uk with respect to the
element A1 = (4x2 − 1, k), i.e., Uk(AZ)A1 ̸= Uk(AZ).

To illustrate our choice of k, we can choose an integral point (x, y, z) = (1, 1, 8) ∈ Uk(Z)
to have k = 574.

Proof. Assume that we have (x, y, z) ∈ U(Z), so with k ≡ 2 mod 8 we can assume further
without loss of generality that x, y are odd and z = 2a is even. Since Uk(Z) ⊂ Uk(AZ)A1 , the
set Uk(AZ)A1 is nonempty, and so is Uk(AZ). Viewing (x, y, z) as an element of Uk(AZ) via
the diagonal embedding, we can find another local integral point (x′, y′, z′) with the 2-part
(x′

2, y
′
2, z

′
2) = (z2, x2, y2) and the same p-parts as those of (x, y, z) for every p ̸= 2, so that

inv2A1(x
′, y′, z′) = (4.4a2 − 1, k)2 = 0 ̸= 1/2 = (3, k))2 = (4x2

2 − 1, k)2. Consequently,∑
p

invpA1(x
′, y′, z′) ̸=

∑
p

invp A1(x, y, z) = 0.

Therefore, (x′, y′, z′) ̸∈ Uk(AZ)A1 and the result follows.
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Proposition 5.4. For k ≡ 1 mod 4, let Wk ⊂ P1×P1×P1 be the MK3 surface defined over
Q by the (2, 2, 2)-form

F3(x, y, z) = x2 + y2 + z2 + 4(x2y2 + y2z2 + z2x2) − 16x2y2z2 − k = 0. (24)

Let Uk be the integral model of Uk defined over Z by the same equation. If Uk(Z) ̸= ∅,
then there is a Brauer–Manin obstruction to strong approximation on Uk with respect to the
element A1 = (4x2 + 1,−2(4k + 1)), i.e., Uk(AZ)A1 ̸= Uk(AZ).

To illustrate our choice of k, we can choose an integral point (x, y, z) = (1, 4, 4) ∈ Uk(Z)
to have k = −2911.

Proof. Assume that we have (x, y, z) ∈ U(Z), so with k ≡ 1 mod 4 we can assume further
without loss of generality that x is odd and y = 2a, z = 2b are even. Since Uk(Z) ⊂ Uk(AZ)A1 ,
the set Uk(AZ)A1 is nonempty, and so is Uk(AZ). Viewing (x, y, z) as an element of Uk(AZ)
via the diagonal embedding, we can find another local integral point (x′, y′, z′) with the 2-
part (x′

2, y
′
2, z

′
2) = (y2, x2, z2) and the same p-parts as those of (x, y, z) for every p ̸= 2, so

that inv2A1(x
′, y′, z′) = (4.4a2 + 1,−2(4k + 1))2 = 0 ̸= 1/2 = (5,−2(4k + 1))2 = (4x2

2 +
1,−2(4k + 1))2. Consequently,∑

p

invpA1(x
′, y′, z′) ̸=

∑
p

invp A1(x, y, z) = 0.

Therefore, (x′, y′, z′) ̸∈ Uk(AZ)A1 and the result follows.

Remark 5.2. In the case of F1, let Wk ⊂ P1 × P1 × P1 be the MK3 surface defined over Q
by the (2, 2, 2)-form

F1(x, y, z) = x2 + y2 + z2 − 4x2y2z2 − k = 0 (25)

and Uk be the integral model of Uk defined over Z by the same equation. When Uk(Z) ̸= ∅, it
seems likely that the local invariant at p = 2 of the Brauer element A = (4x2y2− 1, k + 1) =
(4y2z2−1, k+ 1) = (4z2x2−1, k+ 1) is constant for various choices of 2-adic integral points.
In other words, we may need to work with other primes to (possibly) find a Brauer–Manin
obstruction to strong approximation.

Remark 5.3. For the third family of MK3 surfaces Wk defined by F3 = 0, from the previous
section we can see that the divisor K + D is big, where K is the (trivial) canonical divisor
on Wk and D := D1 +D2 +D3 is an ample divisor. Therefore, Uk = Wk \D is of log general
type, and Vojta’s Conjecture asserts that integral points on Uk are not Zariski-dense.

5.3 Rational points on affine surfaces

Finally, we study the existence of rational points on affine Markoff-type K3 surfaces. For
Markoff surfaces, we know from [Kol02], [LM20] and [CWX20] that there are always rational
points on smooth affine Markoff sufaces; this comes from the fact that any smooth cubic
surface over an infinite field k is k-unirational as soon as it has a k-rational point. However,
such a phenomenon does not happen for smooth affine MK3 surfaces, since their projective
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closures are elliptic surfaces and lie in (P1)3 instead of P3. We know that there are always
rational points at infinity for our families of MK3 surfaces, but we are not certain whether
there are also rational points on the affine open subschemes or not. As a modest contribution
to the existence problem of rational points, we have the following results.

Proposition 5.5. For k ∈ Z, let Wk ⊂ P1 × P1 × P1 be the MK3 surface defined over Q by
the (2, 2, 2)-form

F1(x, y, z) = x2 + y2 + z2 − 4x2y2z2 − k = 0. (26)

Let Uk be the integral model of Uk defined over Z by the same equation. If k satisfies the
conditions:

1. k = −(1 + 16ℓ2) where ℓ ∈ Z such that ℓ is odd and ℓ ̸≡ ±2 mod 5;

2. p ≡ 1 mod 4 for any prime divisor p of ℓ,

then there is no Brauer–Manin obstruction to the (rational) Hasse principle on Uk with
respect to the element A = (4x2y2 − 1, k + 1) = (4y2z2 − 1, k + 1) = (4z2x2 − 1, k + 1) in
Br1 Uk/Br0 Uk. In other words, Uk(AQ)A ̸= ∅.
Proof. The proof proceeds similarly as usual, with notice that for p = 2, besides the local
integral point lifted from (1, 1, 1) ∈ Uk(Z/8Z) which gives the local invariants (1/2, 1/2),
there exists another local point (x2, y2, z2) ∈ Uk(Q2) with v2(x2) = −1, v2(y2) = −3, and
v2(z2) = 0 which gives the local invariants (0, 0).

Proposition 5.6. For k ∈ Z, let Wk ⊂ P1 × P1 × P1 be the MK3 surface defined over Q by
the (2, 2, 2)-form

F2(x, y, z) = x2 + y2 + z2 − 4(x2y2 + y2z2 + z2x2) + 16x2y2z2 − k = 0. (27)

Let Uk be the integral model of Uk defined over Z by the same equation. If k satisfies the
conditions:

1. k = 18ℓ2 where ℓ ∈ Z such that ℓ ̸≡ 0 mod 2, 3, ℓ ≡ 1 mod 5, and ℓ ≡ 2 mod 7;

2. p ≡ ±1 mod 8 for any prime divisor p of ℓ,

then there is no Brauer–Manin obstruction to the (rational) Hasse principle on Uk with
respect to the subgroup A ⊂ Br1 Uk/Br0 Uk generated by the elements A1 = (4x2 − 1, k) and
A2 = (4y2 − 1, k), i.e., Uk(AQ)A ̸= ∅.
Proof. The proof proceeds similarly as usual, with notice that for p = 3, besides the local
integral point lifted from (3, 3, 0) ∈ Uk(Z/27Z) which gives the local invariants (0, 0), there
exists another local point (x3, y3, z3) ∈ Uk(Q3) with v3(x3) = v3(y3) = 0, v3(z3) = −1 and
2z3 = a

b
such that a ≡ 2, b ≡ 3, x3 ≡ −2, y3 ≡ 13 (mod 27): this gives the local invariants

(1/2, 1/2).

Proposition 5.7. For k ∈ Z, let Wk ⊂ P1 × P1 × P1 be the MK3 surface defined over Q by
the (2, 2, 2)-form

F3(x, y, z) = x2 + y2 + z2 + 4(x2y2 + y2z2 + z2x2) − 16x2y2z2 − k = 0. (28)

Let Uk ⊂ Wk be the affine open subscheme defined by {rst ̸= 0} over Q by the same equation.
If k satisfies the conditions:
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1. k = −1
4
(1 + 27ℓ2) where ℓ ∈ Z such that ℓ ≡ ±1 mod 8, ℓ ≡ 1 mod 5, ℓ ≡ 3 mod 7,

and ℓ ̸≡ ±10 mod 37;

2. p ≡ ±1 mod 24 for any prime divisor p of ℓ,

then there is no Brauer–Manin obstruction to the (rational) Hasse principle on Uk with
respect to the subgroup A ⊂ Br1 Uk/Br0 Uk generated by the elements A1 = (4x2 +1,−2(4k+
1)) and A2 = (4y2 + 1,−2(4k + 1)), i.e., Uk(AQ)A ̸= ∅.

Proof. The proof proceeds similarly as usual, with notice that for p = 3, besides the local
integral point lifted from (1, 1, 1) ∈ Uk(Z/3Z) which gives the local invariants (1/2, 1/2),
there exists another local point (x3, y3, z3) ∈ Uk(Q3) with v3(x3) < 0, v3(y3) < 0, and
v3(z3) = 0 which gives the local invariants (0, 0).

Remark 5.4. Once again, we do not know whether the Brauer–Manin set with respect to
the whole Brauer group is nonempty or not, but at least we know that there is no Brauer–
Manin obstruction to the existence of rational points with respect to the Brauer elements
that we are interested in. We believe that there should exist rational points on those families
of affine MK3 surfaces, but we do not know how to prove or disprove this claim in general.
Following Yang Cao’s suggestion, it seems that rational points of Wehler K3 surfaces should
have some similar phenomena as integral points of affine Markoff surfaces, since one side is
K3 and the other side is log K3. From Ghosh and Sarnak’s results in [GS22], we expect
that in a similar nature, our families of affine MK3 surfaces would satisfy the (rational)
Hasse principle and the Brauer–Manin obstruction would not be enough to explain almost
all counterexamples to the Hasse principle.

Example 5.5. We consider the first surface in Example 4.1 where the affine MK3 surface in
question contains no integral points (due to Brauer–Manin obstruction as previously shown)
but indeed contains rational points. Let W−17 ⊂ P1 × P1 × P1 be the MK3 surfaces defined
over Q by the (2, 2, 2)-form

F1(x, y, z) = x2 + y2 + z2 − 4x2y2z2 + 17 = 0. (29)

Denote by U−17 the integral model of U−17 defined over Z by the same equation. Then
U−17(Z) = ∅; however, we can find a few rational points of small height in U−17(Q) using
SageMath [SJ05]: (1/2, 49/24, 13/5), (1/3, 5/2, 29/8), (1/3, 15/8, 109/18), (1/5, 13/2,
77/24), (7/32, 46/15, 23/4), (22/25, 23/16, 23/12), (27/29, 47/34, 15/8).

Example 5.6. We consider an example of the second family of surfaces in Theorem 4.5
where the affine MK3 surface in question contains no integral points (due to Brauer–Manin
obstruction as previously shown) but indeed contains rational points. Let W18 ⊂ P1×P1×P1

be the MK3 surfaces defined over Q by the (2, 2, 2)-form

F2(x, y, z) = x2 + y2 + z2 − 4(x2y2 + y2z2 + z2x2) + 16x2y2z2 − 18 = 0. (30)

Denote by U18 the integral model of U18 defined over Z by the same equation. Note that
here we choose ℓ = 1 in Theorem 4.5, and although Assumption II is not satisfied when
considering k modulo 7, but we can find (2, 2, 2) ∈ U18(Z/7Z) which is non-singular and
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so can still lift to a point in U18(Z7). Therefore, U18(Z) = ∅; however, we can find a few
rational points of small height in U18(Q) using SageMath [SJ05]: (1/3, 1/3, 38/5), (1/7,
38/5, 11/27), (2/7, 37/3, 5/11), (3, 3, 18/35), (3/8, 3/8, 135/14), (3/44, 35/6, 259/760),
(5/6, 38/5, 13/24), (5/17, 11/49, 158/27), (6/5, 39/7, 9/17).

Example 5.7. We consider an example of the third family of surfaces in Theorem 4.6
where the affine MK3 surface in question contains no integral points (due to Brauer–Manin
obstruction as previously shown) but indeed contains rational points. Let W−7 ⊂ P1×P1×P1

be the MK3 surfaces defined over Q by the (2, 2, 2)-form

F3(x, y, z) = x2 + y2 + z2 + 4(x2y2 + y2z2 + z2x2) − 16x2y2z2 + 7 = 0. (31)

Denote by U−7 the integral model of U−7 defined over Z by the same equation. Note that
here we choose ℓ = 1 in Theorem 4.6, and although Assumption III is not satisfied when
considering k modulo 7, but we can find (0, 1, 2) ∈ U−7(Z/7Z) which is non-singular and so
can still lift to a point in U−7(Z7). Then U−7(Z) = ∅; however, we can find a rational point
of small height in U−7(Q) using SageMath [SJ05]: (29/4, 91/86, 631/988).
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