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Abstract

An explicit inversion formula for general integral transforms is given in the framework
of constructible functions. It applies in particular to the real Radon transform in any
dimension or the real X-rays transform in even dimension. For example, it allows us to
reconstruct a body in a three dimensional vector space from the knowledge of the number
of connected components and the number of holes of all its intersection by two dimensional
affine slices.
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1 Introduction

A constructible function on a manifold X is a Z-valued function which is constant on a strat-
ification. This stratification may be algebraic, complex analytic, P-L linear, etc. according to
the situation. Here we shall work with real analytic manifolds and subanalytic stratifications.
In [6, 7, 8], a “Euler calculus” for constructible functions is developed, and its applications
to computational geometry (“the piano mover problem”) is emphazised. In this paper, we
treat general integral transforms. More precisely, consider a double morphism of real analytic
manifolds:

S

�� ��
X Y
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and let ϕ be a constructible function on X. Define its “Radon transform” R(ϕ) by the
formula:

R(ϕ) =

∫
g
f∗(ϕ).

Under suitable hypotheses, we give a reconstruction formula which allows us to recover ϕ from
R(ϕ). Note that the integral should be understood in the sense of constructible functions,
and for example, the integral of the characteristic function of a subanalytic compact set is
nothing but its Euler-Poincaré index. This is a purely topological invariant. Our hypotheses
are satisfied in some cases of real flag correspondences. This includes in particular the usual
Radon transform in any dimension (which is nothing but real projective duality), or the
so-called X-rays transform (also called the Penrose transform in the complex case) in even
dimension. As an amazing application, consider a body (a compact subanalytic subset) in
R3. Then, one can reconstruct it from the knowledge of the integrals of the characteristic
functions of all its slices, that is, from the knowledge of the number of connected components
minus the number of holes of all its slices.

Note that in the complex case, the same calculus as ours was independently and at the
same period, introduced by Viro [9], who already gave an inversion formula for the complex
Radon transform of algebraic constructible functions. Let us also mention the paper [5]
which treats curved polygons, and the recent paper [2] which considers transformations of
flag manifolds.

2 Review on constructible functions

In this section we recall without proofs the main constructions and results on constructible
functions. For more details, we refer to [6, 8, 3].

Let X be a real analytic manifold. Recall that the family of subanalyitc subsets of X
contains the family of semi-analytic subsets (those locally defined by analytic inequalities),
and is stable by closure, complement, inverse images and proper direct images.

Definition 2.1. A function ϕ : X −→ Z is constructible if:

(i) for all m ∈ Z, ϕ−1(m) is subanalytic,

(ii) the family {ϕ−1(m)}m∈Z is locally finite.

It follows from Hardt triangulation theorem (a generalization of a theorem of Lojasiewicz)
that ϕ is constructible if and only if there exists a locally finite family of compact subanalytic
contractible subsets {Ki}i, such that:

ϕ =
∑
i

ci1Ki ,

where ci ∈ Z and 1A is the characteristic function of the subset A.
If ϕ has compact support, one may assume that the sum above is finite, and one checks

that the integer
∑

i ci depends only on ϕ, not on its decomposition. One sets:∫
X
ϕ =

∑
i

ci.
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Notice that if K is a compact subanalytic subset of X, then
∫
X 1K = χ(K), the Euler-Poincaré

index of K. In other words, if

bj(K) := dimQHj(K;QK),

is the j-th Betti number of K, then:

χ(K) =
∑
j

(−1)jbj(K)

=

∫
X

1K .

(Recall that QK denotes the constant sheaf on K with stalk Q.)
Let CF (X) denote the group of constructible functions on X, and let CFX denote the

presheaf U 7→ CF (U). This presheaf is actually a sheaf on X.
Let X and Y be two real analytic manifolds. One defines the external product of two

constructible functions by the formula:

(ϕ� ψ)(x, y) = ϕ(x)ψ(y).

By this formula, one gets a morphism of sheaves:

CFX � CFY −→ CFX×Y .

Now, let f : Y −→ X be a morphism of manifolds. One defines the inverse image of a
constructible function ϕ on X by the formula:

f∗ϕ(y) = ϕ(f(y)).

By this formula, one gets a morphism of sheaves:

f∗ : f−1CFX −→ CFY .

One defines the direct image, or integral, of a constructible function ψ on Y whose support
is proper over X by the formula:

(

∫
f
ψ)(x) =

∫
Y

(ψ · 1f−1(x)).

By this formula, one gets a morphism of sheaves:∫
f

: f!CFY −→ CFX .

(Recall that a section of f!CFY on an open subset U ⊂ X is a section of CFY on f−1(U) such
that f is proper on its support. Hence the integral makes sense.)

Finally, one defines the dual of a constructible function ϕ as follows. Let x0 ∈ X, and
choose a local chart in a neighborhood of x0. Let B(x0; ε) denote the open ball with center x0

and radius ε > 0 in this chart. Then the integral
∫
X ϕ.1B(x0;ε) neither depends on the local

chart nor on ε, for ε << 1, and defines (DXϕ)(x0). One gets a morphism of sheaves:

DX : CFX −→ CFX .
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Theorem 2.2. (i) The operations:
CFX � CFY −→ CFX×Y ,
f∗ : f−1CFX −→ CFY ,∫
f : f!CFY −→ CFX ,
DX : CFX −→ CFX
are well defined morphisms of sheaves.

(ii) Duality is an involution (DX ◦DX = idX) and commutes to integration:

DX(

∫
f
ψ) =

∫
f
DY (ψ).

(iii) Inverse and direct images are functorial, that is, if f : Y −→ X and g : Z −→ Y are
morphisms of manifolds, then:
g∗ ◦ f∗ = (f ◦ g)∗,∫
f◦g =

∫
f ◦
∫
g .

(iv) Consider a Cartesian square of morphisms of real analytic manifolds:

Y ′
f ′ //

h
��

X ′

g

��
Y

f
// X.

Then, if ψ is a constructible function on Y such that f is proper on its support, one
has:

g∗
∫
f
ψ =

∫
f ′

(h∗ψ).

Recall that the square in (iv) is Cartesian means that Y ′ is isomorphic to the submanifold
{(x′, y) ∈ X ′ × Y ; g(x′) = f(y)}.

The duality morphism is an important tool closely related to the notion of “link” in
algebraic topology (see [4]), but we shall not make use of it here.

3 Inversion formula

Let X and Y be two real analytic manifolds and let S ⊂ X×Y be a locally closed subanalytic
subset of X × Y . Denote by q1 and q2 the first and second projection defined on X × Y and
by f and g the restriction of q1 and q2 to S:

S

�� ��
X Y

We shall assume:

(3.1) q2 is proper on S, the closure of S in X × Y.
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Let ϕ be a constructible function on X. We define its Radon transform:

RS(ϕ) =

∫
g
f∗ϕ

=

∫
q2

(q∗1ϕ)1S .

This is a constructible function on Y . The aim of this section is to give an inversion formula
under general hypotheses.

Let S′ ⊂ Y ×X be another locally closed subanalytic subset, and denote again by q1 and
q2 the first and second projection defined on Y ×X. Denote by f ′ and g′ the restriction of q1

and q2 to S′, and by r the projection S ×Y S′ −→ X ×X.
We shall make the hypotheses:

(3.2) q2 is proper on S′, the closure of S′ in Y ×X,

(3.3) there exists λ 6= µ ∈ Z such that : χ(r−1(x, x′)) =

{
λ if x 6= x′

µ if x = x′.

Notice that λ 6= 0 implies r(S ×Y S′) = X ×X, and q2 being proper on this set, this implies
that X is compact.

Theorem 3.1. Assume (3.1), (3.2), (3.3) and let ϕ ∈ CF (X). Then:

RS′ ◦RS(ϕ) = (µ− λ)ϕ+ [

∫
X
λϕ] 1X .

Proof. Denote by h and h′ the projections from S×Y S′ to S and S′ respectively. We get the
diagram:

S ×Y S′

h

{{
r

��

h′

##
S

f

�� q1
##

X ×X
g

vv

g′

((

S′

q2
zz

f ′

  
X Y X

Since the square

S ×Y S′

h

{{

h′

##
S

q1

$$

S′

q2

zz
Y
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is Cartesian, we have:

RS′ ◦RS(ϕ) =

∫
f ′

(g′∗
∫
g
(f∗ϕ))

=

∫
f ′◦h′

(h ◦ f)∗ϕ

=

∫
q2

∫
r
r∗q∗1ϕ

=

∫
q2

k(x, x′)q∗1ϕ,

where

k(x, x′) =

∫
r
r∗1X×X

=

∫
r
1S×Y S′ .

Hence, it is enough to notice that, by the hypothesis,∫
r
1S×Y S′ = (µ− λ)δ∆ + λ1X×X ,

where δ∆ is the Dirac function (i.e. the characteristic function) of the diagonal.

4 Application: correspondences of real flag manifolds

Let E be a real (n+ 1)-dimensional vector space, and denote by Fn+1(p, q), (1 ≤ p ≤ q ≤ n)
the set of pairs {(l, h)} of linear subspaces of E with l ⊂ h,dim l = p,dimh = q. This
is a real compact submanifold of Fn+1(p) × Fn+1(q). We denote by Fn+1(q, p) its image
by the map Fn+1(p) × Fn+1(q) −→ Fn+1(q) × Fn+1(p), (x, y) 7→ (y, x). One sets for short,
Fn+1(p, p) = Fn+1(p). Denoting by f and g the natural projections, we get the diagram:

Fn+1(p, q)
f

xx

g

&&
Fn+1(p) Fn+1(q)

We shall write for short R(n+1;p,q)(ϕ) instead of RFn+1(p,q)(ϕ), the transform of a constructible
function ϕ on Fn+1(p) associated to this flag correspondence. In order to apply Theorem 3.1,
it is enough to calculate the Euler-Poincaré index of r−1(x, x′), where r is the projection:

r : Fn+1(p, q)×Fn+1(q) Fn+1(q, p) −→ Fn+1(p)× Fn+1(p).

Now we shall assume p = 1, q > 1. Notice that Fn+1(1) = Pn, the n-dimensional real
projective space associated to E, and Fn+1(n) = P ∗n , the dual n-dimensional projective space.
For x 6= x′, r−1(x, x′) ' Fn−1(q − 2) and for x = x′, r−1(x, x′) ' Fn(q − 1). Set

µn(q) = χ(Fn(q))

.
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Proposition 4.1. Let ϕ ∈ CF (Pn). Then:

R(n+1;q,1) ◦R(n+1;1,q)(ϕ) = (µn(q − 1)− µn−1(q − 2))ϕ+ [µn−1(q − 2)

∫
Pn

ϕ] 1Pn .

Remark 4.2. 1 Using a cellular decomposition of the flag manifold Fn(p), (see for example
[1]), one can prove that:

µn(p) = 0if p(n− p) is odd

=

(
E(n/2)

2E(p/2)

)
if p(n− p) is even

where E(n/2) denotes the integral part of n/2,
(
a
b

)
is the binomial coefficient, and we have

assumed p ≤ E(n/2), which is not restrictive since µn(p) = µn(n− p).

5 Example: the Radon transform

Let V be a n-dimensional real vector space, Pn its projective compactification, Pn = V t h∞,
where h∞ is the hyperplane at infinity. Let P ∗n be the dual projective space. Then P ∗n \ {h∞}
is nothing but the set of affine hyperplanes of V . Let ϕ be a constructible function on V with
compact support, and denote by K its support. We set:

K∗ = {ξ ∈ P ∗n ; ξ ∩K 6= ∅}.

Then, clearly, K∗ is a compact subset of P ∗n which does not contains h∞. The Radon transform
of ϕ is defined by:

R(n+ 1; 1, n)(ϕ)(ξ) =

∫
V
ϕ.1ξ

and this function on P ∗n is supported by K∗. Hence, to calculate the Radon transform of ϕ,
it is enough to restrict to those hyperplanes ξ of K∗.

Recall that the Euler-Poincaré index of the n-dimensional real projective space Pn is given
by the formula:

(5.1) χ(Pn) =

{
1 if n is even,
0 if n is odd.

Corollary 5.1. Let ϕ ∈ CF (Pn). Then:

R(n+1;n,1) ◦R(n+1;1,n)(ϕ) =

{
ϕ if n is odd,
−ϕ+ [

∫
Pn
ϕ]1Pn if n is even and n > 0.

Now assume dimV = 3 and let us calculate the Radon transform of the characteristic
function 1K of a compact subanalytic subset K of V . First, consider a compact subanalytic
subset L of a two dimensional affine vector space W . By Poincaré’s duality, there is an
isomorphism H1

L(W ;QW ) ' H1(L;QL) and moreover there is a short exact sequence:

0 −→ H0(W ;QW ) −→ H0(W \ L;QW ) −→ H1
L(W ;QW ) −→ 0,

1We thank P. Polo for useful comments on the topology of real flags manifolds.
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from which one deduces that:
b1(L) = b0(W \ L)− 1.

Note that b0(W \ L) is the number of connected components of W \ L, hence b1(L) is the
“number of holes” of the compact set L. We may summarize:

Proposition 5.2. The value at ξ of the Radon transform of 1K is the number of connected
components of K ∩ ξ minus the number of its holes.

The inversion formula of the Radon transform tells us how to reconstruct the set K from
the knowledge of the number of connected components and holes of all its affine slices.

6 Example: the X-rays transform

Again, let V be a real n-dimensional vector space, Pn ' Fn+1(1) its projective compactifica-
tion, and consider the correspondence:

Fn+1(1, 2)
f

xx

g

&&
Fn+1(1) Fn+1(2)

Since µn(1) = 1 or 0 according whether n is odd or even, and µn−1(0) = 1, we can only apply
Proposition 4.1 (with q = 2) when n is even.

Corollary 6.1. Assume n is even and let ϕ ∈ CF (Pn). Then:

R(n+1;2,1) ◦R(n+1;1,2)(ϕ) = −ϕ+ [

∫
Pn

ϕ] 1Pn .
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Polytechnique (1988/89)

[7] P. Schapira, Operations on constructible functions. J. Pure Appl. Algebra 72, p. 83-93 (1991)

[8] P. Schapira, Constructible functions, Lagrangian cycles and computational geometry. The Gelfand Seminar
1990-92, L. Corwin, I. Gelfand, J. Lepowsky eds. Birkhaüser Boston (1993)
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