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CHAPITRE 1

ANNEAUX

1. Définitions

Définition 1.1. — Un anneau (unitaire) est un triplet (A, +, X), oit + (I’« addition ») et x (la « multipli-
cation ») sont des lois internes sur A telles que
o (A, +) est un groupe abélien, dont I’élément neutre est noté 0 o (ou simplement 0);
e [a multiplication est associative et posséde un élément neutre est noté 1 4 (ou simplement 1) ;
o [a multiplication est distributive par rapport a I’addition :
Va,b,c € A ax(b+c)=axb+axc (b+c¢)xa=bxa+cxa.

L’anneau (A, +, -) est commutatif si la multiplication est commutative.

On note souvent ab au lieu de a x b. On note aussi —a 1’opposé de A, c’est-a-dire que a + (—a) = 04.
On a, pour tout ¢ dans A,
04a = (04 +04)a=04a+04aq,

d’ot, en ajoutant des deux cdtés —0 4a,

0ga =04.
De méme,

aOA = OA.
Pour tous éléments a et b de A, on a alors

ab+ (—a)b= (a+ (—a))b=04b=04,
donc
(—a)b = —ab,
ainsi que (« régle des signes »)
a(—b) = —ab (—a)(=b) = —(—a)b = —(—ab) = abd.
Sia € Aetm € Z, on définit ma (comme dans tout groupe abélien) par récurrence sur 1m en posant

0a:=04 , YmeZ (m+1)a=ma+a.

On a ainsi, pour tout m, n € Z,
(m 4+ n)a = ma + na.

Sia € Aetm € N, on définit o™ par récurrence sur m en posant
=14 , YmeN a"!'=amxa.

On a ainsi, pour tout m,n € N,

Exemple 1.2. — L’anneau nul A = {04} est un anneau commutatif. Un anneau A est nul si et seulement
si0 A = 1 A-

Exemple 1.3. — Les triplets (Z, +, x) et (Z/nZ,+, x) sont des anneaux commutatifs.
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Etant donnés un ou des anneaux, on peut en fabriquer d’autres.

Construction 1.4 (Produit d’anneaux). — Le produit direct [ [, ; A; d’une famille d’anneaux (A;, +, X )ier
est un anneau (pour les lois d’addition et de multiplication terme a terme).

Construction 1.5 (Matrices). — Soit A un anneau commutatif et soit n un entier strictement positif. On
définit I’anneau .#,,(A) des matrices carrées d’ordre n a coefficients dans A comme 1’ensemble A" des
tableaux (a;;)1<i,j<n d’éléments de A muni de I’addition terme & terme, la multiplication de matrices
(aij>1<i’j<n et (bij)lgi,jgn étant définie comme la matrice (Cij)lgi,jgna ol

n
Cij = E aikbkj.
k=1

L’anneau .#,,(A) n’est commutatif que si A est I’anneau nul ousi n = 1.

Définition 1.6. — Soit A un anneau.

(a) Un élément de A est inversible (on dit aussi que c’est une unité de A) s’il admet un inverse pour
la multiplication. L’ensemble des éléments inversibles, muni de la multiplication, est un groupe noté habi-
tuellement A*.

(b) L’anneau A est integre s’il est commutatif, non nul et si le produit de deux éléments non nuls de A est
encore non nul. C’est un corps s’il est commutatif, non nul et que tout élément non nul de A est inversible.

Un corps est un anneau intégre.
Exemple 1.7. — L’anneau Z est intégre et ses unités sont {—1, 1}.

Exemple 1.8. — Si n est un entier strictement positif, les unités de I’anneau Z/nZ sont les classes des
entiers premiers a n. On a

Z /nZ est un corps < Z/nZ est un anneau intégre < n est un nombre premier.

Exemple 1.9. — Soit A un anneau commutatif et soit n un entier strictement positif. Les unités de 1’an-
neau ./, (A) sont les matrices dont le déterminant est une unité de A.

En effet, si M € ., (A) est inversible, il existe une matrice N € .#,(A) telle que MN = I,.
En prenant les déterminants, on obtient dét(MN) = dét(M) dét(N) = 1 (le déterminant d’un produit
est le produit des déterminants, dans n’importe quel anneau), de sorte que dét(M) est inversible dans A
(d’inverse dét(N)).

Inversement, pour toute matrice M € .#,(A), on a ‘com(M)M = M ‘com(M) = dét(M)I,, ot
com (M) est la comatrice de M (dont les coefficients sont les cofacteurs de M). Si dét(M) est inversible
dans A, la matrice M est inversible dans .7, (A), d’inverse (dét(M))~! tcom(M).

Remarque 1.10 (Simplification dans les anneaux integres). — Soit A un anneau intégre et soient
a,b,c € Atels que ab = ac. Si a # 04, alors b = c. En effet, on peut réécrire I’hypothese a(b — ¢) = 04.
Comme a # 04 et que I’anneau A est intégre, on ab — ¢ = 0 4, c’est-a-dire b = c.

Définition 1.11. — Un sous-anneau d’un anneau A est un sous-ensemble B de A contenant 1 4, stable
par addition, opposé et multiplication. Muni de la restriction de I’addition et de la multiplication, B est un

anneau.

Définition 1.12. — Soient A et B des anneaux. Un morphisme (d’anneaux) entre A et B est une applica-
tion f: A — B qui vérifie f(14) = 1p et

Ve,ye A flz+y)=flx)+ fly) flzy) = f(@)f(y).
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Un isomorphisme entre A et B est un morphisme qui est bijectif (son inverse est alors automatiquement
aussi un morphisme).

Si f: A — B est un morphisme d’anneaux, f(A) est un sous-anneau de B. Si f est injectif, il induit un
isomorphisme de A sur f(A). On dit parfois qu’on identifie A a un sous-anneau de B.

Exemple 1.13. — Soit A un anneau. Il existe un unique morphisme Z — A : il envoie tout entier n
surnly.

Si un anneau A est intégre, on construit son corps des quotients (ou corps des fractions) K, comme
I’ensemble des classes d’équivalence (appelées « fractions ») des paires (a, b), avec a € Aetb € A~ {0},
pour la relation d’équivalence

(a,b) ~ (a',b) <= ab/ = a'b.
La classe d’équivalence de (a, b) est notée 7. Muni des opérations (addition et multiplication) habituelles
sur les fractions, on vérifie que K 4 est bien un corps.

2. Anneaux de polynomes

2.1. Polynomes en une indéterminée. — Soit A un anneau commutatif. On définit I’anneau des poly-
nomes & coefficients dans A de la fagon suivante. Considérons 1’ensemble A[X] (aussi noté AMN)) des
suites (a;);en d’éléments de A dont tous les termes, sauf un nombre fini, sont nuls. On définit I’addition
en additionnant terme a terme. Pour la multiplication, c’est plus compliqué : le produit des polynomes
(ai)ien et (bj)jen est le polyndme (cj)ren défini par ¢, = Zf:o a;by_;. On vérifie que ces deux opé-
rations vérifient les axiomes requis et font de A[X] un anneau commutatif, avec 041x] = (04,04, ...) et
1A[X} = (1A70A,OA, C )
On note X la suite (04, 14,04, ... ). Tout polyndme non nul s’écrit alors de fagon unique comme
P(X) :adXd—l—---—i-alX—i-ao,

avecd € N, ag,...,a1,a0 € Aetag # 04. Lentier d s’appelle le degré du polyndme P et a4 est son
coefficient dominant; on dit que P est unitaire si son coefficient dominant est 1 4. Il est pratique de décréter
que le degré du polyndme nul est —oo.

L’application A — A[X] qui envoie a sur la suite (a,04,04,...) est un morphisme injectif d’anneaux.
On identifie donc A a un sous-anneau de A[X] (celui des polyndmes nul ou de degré 0).

Proposition 2.1. — Soit A un anneau intégre.
(a) Si P,Q € A[X], ona deg(P + Q) < max{deg(P),deg(Q)}.

(b) Si P,Q € A[X] sont non nuls, le produit PQ est non nul et on a deg(PQ) = deg(P) + deg(Q). En
particulier, I'anneau A[X] est intégre.

(¢) Les unités de I’anneau A[X| sont les unités de I’anneau A (vues comme polynémes de degré 0).

Démonstration. — Le point (a) est facile a vérifier.

Si P(X)=agX%+ - +a1 X +ag,avec ag # 04 et d = deg(P), et Q(X) = b X+ -+ b1 X + by,
avec b, # 04 et e = deg(Q), on a (PQ)(X) = agb. X¥*¢ + ... Comme A est intégre, on a agb. # 04,
donc deg(PQ) = d + e = deg(P) + deg(Q). Cela montre (b).

Montrons (c). Si u € A est une unité, son inverse u~* dans A est aussi son inverse dans A[X]. Inverse-
ment, si P € A[X]*,ona PP~ =1 Arx] = la et, en prenant les degrés et en appliquant (b), on trouve
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deg(P) deg(P~!) = deg(14) = 0, donc deg(P) = deg(P~!) = 0. Les polyndmes P et P! sont ainsi
constants, donc éléments de A, et P! est ’inverse de P dans A, de sorte que P est une unité de A. O
Remarque 2.2. — Attention, le point (c) ci-desssus n’est plus vrai si A n’est pas intégre. Le polyndme
P(X) = 2X + 1 € (Z/4Z)[X] est inversible dans I’anneau (Z/4Z)[X], d’inverse lui-méme (puisque
P(X)? =4X? +4X + 1 = 1), mais il n’est pas constant.

Remarque 2.3. — Si K est un corps, I’anneau K [X| est integre (prop. 2.1(b)). On note K (X') son corps
des fractions. Ses éléments sont les fractions rationnelles a coefficients dans K.

2.2. Polynomes en plusieurs indéterminées. — Soit A un anneau commutatif et soit n un entier stric-
tement positif. On définit plus généralement I’anneau commutatif A[X7, ..., X,] des polynémes en n in-
déterminées a coefficients dans A de fagon analogue : c’est I’ensemble des suites (ay)renn» d’éléments
de A dont tous les termes, sauf un nombre fini, sont 04. On définit I’addition en additionnant terme
a terme et le produit de polynomes (as)renn et (by)jenn comme le polyndme (cx)xenn» défini par
CK = ZI,JeNn,H-J:K arby.

Pour i € {1,...,n}, on note X; la suite dont tous les éléments sont 04 sauf celui correspondant a

I’élément I de N" dont toutes les coordonnées sont nulles sauf la i-ieme qui vaut 1. Tout élément de
A[X;y, ..., X,] s’écrit alors comme une somme finie

Z i in
P(Xl,...7Xn) = ail,--<7inX11"'Xn ,
0<i;<d;

_____ i, € A. On identifie encore A a un sous-anneau de A[X, ..., X,].
On a des isomorphismes canoniques
AlXy, ..., X = (AXq])[ X2, .., Xn] = (A[ X7, .., X1 ) [ X

En appliquant la prop. 2.1 n fois, on en déduit que si I’anneau A est intégre, il en est de méme de 1’anneau
A[X1, ..., X,] et que ses unités sont celles de A.

3. Algebres

Définition 3.1. — Soit A un anneau commutatif. Une A-algebre (unitaire associative) est un quadruplet
(E,+, x,-), on + et x (I’addition et la multiplication) sont des lois internes sur E et - est une loi externe
A x E — E telles que

o (E,+, x) est un anneau (unitaire);

e on les relations

Va,be A Vr,y e FE lg-x =2,
a-(z+y)=a-z+a-y (a+bd)-z=a-xz+b-z,
a-(zxy)=(a-z)xy=zx(a-y).

La A-algébre (E,+, X, -) est commutative si la multiplication de E est commutative.

On définit de facon évidente les morphismes entre A-algebres.

On peut donner une définition alternative des A-algebres en disant qu’elles correspondent a la donnée
d’un anneau F et d’un morphisme d’anneaux p: A — E. L’application p est définie par

Va € A pla) =a-1g
et elle doit satisfaire

(1) Yac AVe e E pla) X =z x p(a)



4. IDEAUX 5

(eneffet, (a-1g) xx=a-(lgxz)=a-zetx X (a-1g)=a-(x x 1g) =a-x).

Inversement, on retrouve la multiplication externe a partir d’un morphisme p: A — E vérifiant la
propriété (1) par la formule
Vae AVee E  a-z:=p(a) X
Un morphisme entre des A-algébres pp: A — FE et pp: A — F est alors un morphisme d’anneaux
f+E— Ftelque pr = fopg.

Nous nous bornerons a donner des exemples d’algébres. Dans tous ces exemples, A est un anneau
commutatif.

Exemple 3.2. — L’anneau A[X1, ..., X,] des polyndmes a n indéterminées a coefficients dans A est une
A-algebre commutative. Elle a la propriété (universelle) suivante : pour toute A-algeébre commutative F
et tout z1,...,x, € F, il existe un unique morphisme de A-algebres f: A[X;,...,X,] — E tel que
f(X;) = x; pourtouts € {1,...,n}.

Exemple 3.3. — L’anneau .#,(A) des matrices carrées d’ordre n a coefficients dans A défini dans
I’ex. 1.5 est une A-algebre, qui n’est en général pas commutative.

4. Idéaux

Soit A un anneau commutatif. Un idéal de A est une partie I de A qui est un sous-groupe additif tel que,
pourtouta € Aettoutx € I,onaax € I. C’est exactement la propriété qu’il faut pour pouvoir mettre sur
le groupe additif A/I une structure d’anneau qui fait de la projection canonique A — A/ un morphisme
d’anneaux (1.

On notera le fait évident mais utile qu’un idéal I de A est égal a A si et seulementsi 14 € I.
Exemple 4.1. — Un anneau commutatif A est un corps si et seulement s’il n’est pas nul et que ses seuls

idéaux sont {04} et A.

L’intersection d’une famille quelconque d’idéaux de A est encore un idéal de A. Si S est une partie
de A, I'intersection de tous les idéaux de A contenant S est donc un idéal de A que I’on notera (.S), ou AS.
C’est I’ensemble des sommes finies Z?:l a;si,pourn € N,a; € Aets; € S.

Si I et J sont des idéaux d’un anneau commutatif A, on note I 4 J 1’idéal de A engendré par I U J et
IJ I'idéal de A engendré par {zy |z € I,y € J}.Ona

I+J = {z+y|lxzel,yeJ}
1J = {Zw,yl |neNz1,...,2n € L,y1,...,yn € J}.
i=1
Proposition 4.2. — Soit f: A — B un morphisme d’anneaux commutatifs.

(a) Le noyau de f est un idéal de A. Plus généralement, I’image réciproque par f d’un idéal de B est un
idéal de A.

(b) Si I est un idéal de A, le morphisme f se factorise par la projection A — A/I si et seulement si
I C Ker(f). Dans le cas I = Ker(f), le morphisme induit A/ Ker(f) — B est injectif.

L’image de f n’est en général pas un idéal de B.

1. Pour que la projection canonique soit un morphisme d’anneausx, il faut définir le produit de classes @, b € A/I comme la classe
de ab, mais il faut aussi vérifier que cette classe ab ne dépend pas des représentants a et b. Si on change a en a + z et ben b + v,
avec z,y € I, alors (a + x)(b+ y) = ab + xzb + ay + xy, qui est bien dans la méme classe que ab par définition des idéaux.
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Définition 4.3. — Soit A un anneau commutatif et soit I un idéal de A.
(a) L’idéal I est premier s’il est distinct de A et qu’il vérifie la propriété

Va,be A abel=(acloubel).

(b) L’idéal I est un maximal s’il est distinct de A et que ['unique idéal de A contenant strictement I est A.

Exemple 4.4. — On rappelle que les idéaux de I’anneau Z sont les nZ, avec n € N. L’idéal nZ est
maximal si et seulement si I’entier n est premier ; il est premier si et seulement si I’entier n est premier ou
nul.

Proposition 4.5. — Soit A un anneau commutatif et soit I un idéal de A.
(a) L’idéal I est premier si et seulement si ’anneau A/I est intégre.
(b) L’idéal I est maximal si et seulement si I’anneau A/ I est un corps.

En particulier, tout idéal maximal est premier.

Démonstration. — Pour le premier point, il suffit de réécrire la définition en tenant compte du fait que
a € I siet seulement si la classe @ dans A/ est nulle.

Pour le second point, supposons I maximal et soit @ un élément non nul de A/I. On a a ¢ I, donc
I’idéal I + (a) de A engendré par I et a contient strictement I. La maximalité de I entraine qu’il est égal
a A, c’est-a-dire qu’il contient 1 4. On peut donc écrire 14 = x + ab, avec x € [ et b € A. En prenant les
classes dans A/I, on obtient 1 4 /1= ab : I’élément @ de A/I est bien inversible dans A /I. Ceci montre
que I’anneau A/I est un corps.

Inversement, supposons que 1’anneau A/I est un corps. Soit J un idéal de A contenant strictement 7
et soit a un élément de J qui n’est pas dans I. Sa classe a dans A/ est alors non nulle et, comme A/T
est un corps, elle a un inverse b. On a ainsi 1 4 /= ab, ce qui est équivalent 2 14 — ab € I. En écrivant
la=ab+ (14 —ab) € J+ I =J,onvoit que J = A. Ceci montre que I’idéal I est maximal. O

Exemple 4.6. — L anneau commutatif A est integre si et seulement si {04} est un idéal premier de A.
C’est un corps si et seulement si {04} est un idéal maximal de A.

5. Divisibilité, éléments irréductibles

Soit A un anneau intégre et soient a et b des éléments de A. On dit que a divise b (ou que a est un
diviseur de b, ou que b est multiple de a), et on écrit a | b, s’il existe ¢ € A tel que b = aq (si a # 0,
on écrit parfois ¢ = b/a). En termes d’idéaux, c’est équivalent a (a) 2 (b). En particulier, 0 ne divise
que lui-méme, tout élément divise 0, et un élément de A est une unité si et seulement s’il divise tous les
éléments de A.

Ona(a | betbh| a)sietseulement s’il existe u € A* tel que a = ub; c’est aussi équivalent a I’égalité
d’idéaux (a) = (b). On dit alors que a et b sont associés.

On dit que des éléments de A sont premiers entre eux si leurs seuls diviseurs communs sont les unités
de A.

Un élément a de A est irréductible si a n’est pas inversible et que si a = zy, alors soit x, soit y est
inversible (il n’y a donc pas d’éléments irréductibles dans un corps). La seconde condition signifie que a
est non nul et que les seuls diviseurs de a sont ses associés et les unités de A.
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Exemple 5.1. — Les éléments irréductibles de Z sont les +p, avec p nombre premier. Ceux de C[X] sont
les polyndmes de degré 1. Ceux de R[X] sont les polyndmes de degré 1 et les polynomes de degré 2 sans
racine réelle, c’est-a-dire les polyndmes aX? + bX + c avec b? — dac < 0.

Soit a un élément non nul de A. Si I’idéal (a) est premier, a est irréductible :
e a n’est pas inversible, puisque (a) # A;
e sia =uzy,onaxy € (a), donc
—soit x € (a), c’est-a-dire a | z, et comme x | a, les éléments x et a sont associés et comme
ils sont non nuls, ¥ est une unité ;
—soity € (a) et, de la méme fagon, x est une unité.
La réciproque est fausse en général, comme le montre I’ex. 5.3 ci-dessous.

Exemple 5.2. — Sin > 1,1’anneau Z/nZ est intégre si et seulement si I’entier n est premier. C’est alors
un corps. On a

n est un nombre premier < 1’idéal (n) est premier < n est irréductible.
Exemple 5.3. — Dans le sous-anneau Z[zx/g] de C, le nombre 3 est irréductible (pourquoi?) mais
I’idéal (3) n’est pas premier, car 3 divise le produit (1 4 iv/5)(1 — i1/5) mais aucun des facteurs.

Noter que la « bonne fagon » de voir I’anneau Z[iv/5] est de le considérer comme 1’anneau quotient
Z[X]/(X? +5) : inutile de construire C pour cela! On le note d’ailleurs plutdt Z[v/—5].

6. Anneaux principaux

Un anneau A est principal si A est intégre et que tout idéal de A est principal, c’est-a-dire qu’il peut
étre engendré par un élément (alors uniquement déterminé a multiplication par un élément inversible de A
pres). L’anneau Z est donc principal (ex. 4.4), mais pas I’anneau Z[ X ] des polyndmes a coefficients entiers,
ni I'anneau KX, Y] des polyndmes a deux indéterminées a coefficients dans un corps K (pourquoi ?).

Dans un anneau principal, les équivalences de 1’ex. 5.2 restent vraies.
Proposition 6.1. — Soit A un anneau principal et soit a un élément non nul de A. Les propriétés suivantes
sont équivalentes :
(1) l’idéal (a) est premier, ¢’est-a-dire que I’anneau quotient A/(a) est intégre;
(1) l’élément a est irréductible ;

(iii) l’idéal (a) est maximal, c’est-a-dire que I’anneau quotient A/(a) est un corps.

En d’autres termes, dans un anneau principal, le seul idéal premier non maximal est I’'idéal nul.

En particulier, I’anneau Z[+/—5] de 1’ex. 5.3 n’est pas principal. Nous verrons dans le § 8 que les pro-
priétés (i) et (ii) (mais pas (iii) en général) restent équivalentes pour une classe bien plus vaste d’anneaux,
celle des anneaux factoriels.

Démonstration. — On sait qu’en général (iii) = (i) = (ii). Supposons (ii), c’est-a-dire que a est irréduc-
tible. Tout d’abord, comme a n’est pas inversible, on a (a) # A.
Soit maintenant I un idéal de A contenant (a). Comme A est principal, on peut écrire I = (x), de sorte

qu’il existe y € A tel que @ = zy. Comme a est irréductible, soit x est inversible et I = A, soit y est
inversible et I = (a). L’idéal (a) est donc maximal. O
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Définition 6.2 (pged et ppcm). — Soient a et b des éléments d’un anneau principal A.

L’idéal {a, b) est engendré par un élément de A, uniquement déterminé a multiplication par un élément
inversible de A pres. On ’appelle un pged (« plus grand commun diviseur ») de a et b, parfois noté a A b.

L’idéal {a) N (b) est engendré par un élément de A, uniquement déterminé a multiplication par un
élément inversible de A preés, le ppcm (« plus grand commun multiple ») de a et b, parfois noté a '\ b.

Les pgcd (ou les ppcm) ne sont en général pas uniques, mais ils sont tous associés.

Onaparexemplea N0 =aetaV0=0,etaAb=0sietseulementsia =b=0.

Le lemme suivant justifie la terminologie employée.

Proposition 6.3. — Soit A un anneau principal et soient a et b des éléments de A.

(a) Le pged a Nb divise a et b et tout élément d de A qui divise a et b divise a A\ b. En particulier, a et b sont
premiers entre eux si et seulement si a AN'b = 1. Si d est un élément non nul de A qui divise a et b, on a de
plus 2 N b = afb,

(b) Le ppcm a V b est divisible par a et par b et tout élément de A qui est divisible par a et b est divisible
par a V b. En particulier, a V b divise ab. Si d est un élément non nul de A qui divise a et b, on a de plus

b _ avh
aVa=*T
Démonstration. — On a {(a) C {(a,b) = {a A b), donc a A b divise a. Il divise b pour la méme raison.

Inversement, si un élément d de A divise a et b, on a (d) D (a) et (d) D (b), donc (d) D (a,b) = (a Ab) et

d divise a A b. Ceci montre la premiere partie du point (a). Pour la seconde, on remarque que si d est non

nul,onax € (%, %) si et seulement si dx € (a, b), donc § A % = “TM’.

Ona (aVb) C (a), donc a divise a VV b et de méme, b divise a V b. Inversement, si un élément e de A est
divisible par a et b, on a (e¢) C (a) et (e) C (b), donc {e) C (a) N (b) = (a V b) et e est divisible par a A b.

Ceci montre la premiere partie du point (b). Pour la seconde, on remarque que comme d est non nul, on a
z € (%) N (L) sietseulementsi dz € (a) N (b), donc & v b = 2vb,

O

On peut définir la notion de pgcd et de ppcm dans les anneaux integres généraux (mais ils n’existent pas
toujours) en copiant les conclusions du lemme : on dit que d est un pged de a et de b si d divise a et b et que
tout diviseur commun de a et de b divise d; on dit que m est un ppcm de a et de b si m est un multiple de a
et de b et que tout multiple commun de a et de b est un multiple de m. Nous montrerons dans la prop. 8.4
que pgcd et ppcm existent dans la classe plus générale des anneaux factoriels.

On dira aussi que des éléments d’un anneau intégre sont premiers entre eux si leurs seuls diviseurs
communs sont les unités ; autrement dit, leur pged existe et est égal a 1.

Théoréme 6.4 (« Théoreme de Bézout »). — Soit A un anneau principal. Des éléments a et b de A sont
premiers entre eux si et seulement s’il existe x et y dans A tels que

ra+yb=1.
Démonstration. — L'existence de x et y équivaut a dire 1 € (a,b), c’est-a-dire a A b = 1. O
Voici maintenant un résultat classique.
Proposition 6.5 (« Lemme de Gauss »). — Soit A un anneau principal. Si a, b et ¢ sont des éléments de A

tels que a divise bc mais est premier avec b, alors a divise c.
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De facon équivalente, si a et b sont premiers entre eux et qu’un élément de A est divisible par a et par b,
il est divisible par ab; en d’autres termes, on a a N b = ab.

Démonstration. — Ecrivons be = ad (puisque @ divise be) et xa + yb = 1 (puisque @ et b sont premiers
entre eux). On a alors ¢ = (xa + yb)c = xac + yad, qui est bien divisible par a.

Pour la deuxieme formulation, si x est divisible par a et par b, on écrit x = bc (puisque b divise x).
Comme a aussi divise z, il divise c par la premiere formulation, donc ab divise z. O

Corollaire 6.6. — Soient a et b des éléments d’un anneau principal A. On a (a Ab)(a V b) = ab.

Démonstration. — Le corollaire est évident si @ = b = 0. Sinon, a A b # 0 et il résulte de la prop. 6.3(a)
que -%; et -2 sont premiers entre eux. Le lemme de Gauss entraine donc -%; V -2- = (-4.)(-2-). On

applique alors la prop. 6.3(b), qui donne _%5 %Ab = Z—Xg, d’ou (%Ab) (%Ab) = % et le résultat cherché

en multipliant les deux membres de cette égalité par (a A b)?2. O

Proposition 6.7. — Soit A un anneau principal et soient a, by, . .., b, des éléments de A.
(a) Si a est premier avec chacun des b;, alors a est premier avec by - - - b,.

(b) Si les b; sont premiers entre eux deux a deux et que a est divisible par chacun des b;, il est divisible par
by---by.

Démonstration. — Pour (a), on écrit le théoréme de Bézout pour chacune des paires (a,b;) : on a z;a +
y;01 = 1. En prenant le produit de toutes ces identités, on obtient

(x1a +y1by) -+ (vra + yeby) = 1.

Le membre de gauche s’écrit xa + y; - - - y-b1 - - - b, = 1 pour un certain x € A, ce qui montre que a est
premier avec by - - - b,..

Pour (b), on procede par récurrence sur r, le cas » = 1 étant trivial. Supposons r > 2. Le point (a) nous
dit que b est premier avec by - - - b,. et ’hypothése de récurrence que a est divisible par by - - - b, (et par by).
La deuxieme version du lemme de Gauss entraine que a est divisible par by - - - b,.. 0

Théoréme 6.8 (« Théoréme chinois des restes »). — Soit A un anneau principal et soient a1, . . . a, des
éléments de A premiers entre eux deux a deux. L’application

A — A/(a) x---x A/(ay)

x — (Z,...,T)

est un morphisme d’anneaux surjectif et son noyau est I’idéal (ay - - - a,). Il induit donc un isomorphisme
d’anneaux

Af(ar - ay) = Af(ar) x -+ x Af(ar).

Démonstration. — 11 est clair que I’application en question est un morphisme d’anneaux. Posons a =
ap - -+ a, et montrons que son noyau est I’idéal (a). Il est clair que cet idéal est contenu dans le noyau.
Inversement, si x est dans le noyau, il est divisible par a4, . .., a, donc par a (prop. 6.7(b)). Le théoreme
de factorisation donne donc un morphisme injectif

Af(ay---a.) = Af(ar) x - x A/(a,).

Notons que lorsqu’on a A = Z, on peut abréger le reste de la démonstration en remarquant que ces deux
ensembles sont finis (on peut supposer qu’aucun des a; n’est nul) et de méme cardinal. L’application est
donc bijective.
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Revenons au cas général pour montrer que I’application est surjective. Procédons par récurrence sur r.
Sir =2,onécrit1 = x1a1 + x2a5. Si by, by € A, I’image de z1a1bs + x2a9b1 dans A/(al) X A/(ag) est
alors (by, ba). L’application est donc surjective.

Pour passer de  — 1 a r, on remarque que a; est premier avec as - - - a, (prop. 6.7(a)). On a donc
(cas 7 = 2) une surjection
A— A/(ar) x Af(az---ay)
et on conclut avec I’hypothése de récurrence, qui donne un isomorphisme A/(as - - - a,.) = A/(az) X - - - X
A/(a,) : par composition, on obtient que le morphisme A — A/(a;) X - - - X A/(a,) est bien surjectif. [J

Le théoréme chinois des restes nous permet d’analyser la structure du groupe multiplicatif (Z/nZ)*
des unités de I’anneau Z/nZ. Commengons par un lemme.

Lemme 6.9. — Soit n un entier strictement positif. Le groupe (Z/nZ)* des unités de I’anneau Z /nZ est
formé des classes d’entiers premiers avec n. On note p(n) son cardinal.

Démonstration. — Les éléments inversibles de 1’anneau Z /nZ sont les classes Z telles qu’il existe une
classe 3 vérifiant #jj = 1 dans Z/nZ, c’est-d-dire zy = 1 (mod n). Par le théoreme de Bézout (th. 6.4),
c’est équivalent a dire que x et n sont premiers entre eux. O

On appelle ¢ la fonction indicatrice d’Euler. Une premiere conséquence du théoreme chinois des restes
est que si m et n sont des entiers premiers entre eux, on a
p(mn) = @(m)p(n).
Théoréme 6.10. — Soit n un entier strictement positif et soit n = pi* - - - pr sa décomposition en produit

de facteurs premiers.
(a) On a un isomorphisme d’anneaux
Z/nZ ~Z/p"Z x --- X Z]Zp]".
(b) On a un isomorphisme de groupes
(Z/nZ)* =~ (Z/py"Z)" x--- x (Z/p["Z)".
(c)Ona
e(n) =n(l—1/p1) - (L=1/py).

Démonstration. — Les points (la) et (b) résultent du théoréme chinois des restes, puisque les p;* sont
premiers entre eux deux a deux. Pour le point (c), il suffit de remarquer que le cardinal de (Z/p}*Z)*, qui
est le nombre d’entiers 1 premiers & p et tels que 1 < m < pi’, est pi — p¥i~ ! (il suffit de retirer les

multiples de p;). O

On peut aller plus loin dans cette analyse et étudier la structure du groupe multiplicatif (Z/p¥Z)* pour p
premier et v > 1. Le cas p > 3 est assez simple : les groupes (Z/p”Z)* sont tous cycliques ; mais ce n’est
plus le cas pour les groupes (Z/2YZ)* lorsque v > 3. Nous laissons ¢a en exercice (voir th. I1.2.18 pour
le cas de (Z/pZ)*).

} et un isomorphisme de groupes (Z/8Z)* =~ (Z/2Z)?,
2=1.

engendre le groupe multiplicatif (Z/9Z)*.
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7. Anneaux euclidiens

Dans la pratique, on montre souvent qu’un anneau intégre A est principal en exhibant une division
euclidienne sur A, ¢’est-a-dire une fonction ¢: A \ {04} — N telle que pour tous éléments a et b de A,
avec b £ 0, on puisse écrire a = bg+ 1 avec r = 0, our # 0 et p(r) < ¢(b) (on ne demande pas I’ unicité).
Un anneau est euclidien s’il est integre et qu’il existe une telle fonction ¢ (appelée « stathme euclidien »).

L’anneau Z est euclidien pour la fonction ¢(n) = |n|. Un autre exemple fondamental est celui de
I’anneau des polyndmes a une indéterminée a coefficients dans un corps (cor. 7.2). C’est une conséquence
du résultat suivant.

Théoréme 7.1 (Division euclienne des polyndomes). — Soit A un anneau intégre. Soient P,Q € A[X],
on Q est un polynome non nul dont le coefficient dominant est une unité de A. Alors, il existe un unique
couple B, R € A[X] tel que P = BQ + R et deg(R) < deg(Q).

Démonstration. — Montrons I’existence. On procede par récurrence sur deg(P), en commengant par le
cas deg(P) = —oo, c’est-a-dire P = 0 : on prend alors B = R = 0. Si P # 0, on écrit P(X) =
agX%+---+a1 X +ag,avec ag # 04 et d = deg(P), et Q(X) = b X®+---+b1 X + by, avec b, € A*
ete =deg(Q).Sid < e,onprend B=0et R=Q.Sid > e, le polyndme

Py(X) = P(X) —agh; ' X¥7°Q(X)
=ag X+ ar X +ag—aghT XD X+ - 4+ b1 X + b)
=ag X+t ar X +ag— (@ X+ +agh T X 4+ agb; by X )
= (ag—1 — adbglbd_l)ddel +...

est de degré < d. On peut donc lui appliquer I’hypothese de récurrence : il existe By, Ry € A[X] tels que
P, = B1Q + Ry etdeg(R;) < deg(®). On a ainsi

P(X) = Pi(X) + agb; ' X7°Q(X)
= B1(X)Q(X) + Ri(X) + agb, ' X" °Q(X)
= (B1(X) + aab, ' X" )Q(X) + Ra(X),
ce qui montre ce que I’on voulait.
Montrons "unicité. Si P = BQ+ R = B'Q+ R',ona(B—B)Q=R—R'.SiB# B’,onaR # R’
et, en prenant les degrés et en utilisant la prop. 2.1(b),
deg(R — R') = deg(B — B') deg(Q) > deg(Q).
Mais cela contredit la prop. 2.1(a), puisque max{deg(R), deg(R’)} < deg(Q).
Onaainsi B = B’,donc R = R'. O

Corollaire 7.2. — Si K est un corps, I’anneau K[ X| est euclidien pour la fonction degré.

Nous montrons maintenant le résultat principal de ce paragraphe.

Théoreme 7.3. — Tout anneau euclidien est principal.

Démonstration. — Soit A un anneau intégre muni d’un stathme euclidien ¢: A \ {04} — N. Soit I un
idéal de A. Si I est nul, il est engendré par 0,4. Sinon, soit  un élément non nul de I tel que ¢(x) soit
minimal. Nous allons montrer que [ est engendré par z.

Soit a un élément quelconque non nul de I. On écrit a = xq + r avecr = 0, our # 0 et () < ().
Comme a et x sont dans I, il en est de méme pour r = a — zq. Sir # 0, on a p(r) < ¢(x), ce qui est
impossible puisque ¢(x) est minimal. On a donc r = O et a € (z). O
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Il existe des anneaux principaux non euclidiens, mais ils sont difficiles a construire (c’est le cas de

I’anneau Z[(1 + /—19)/2)).

Dans un anneau euclidien A, la division permet d’écrire un algorithme (dit « d’Euclide ») qui, étant
donnés des éléments a et b non nuls de A, fournit un pged. Il fonctionne ainsi :
e on fait la division a = bq + r;

— sir = 0 (c’est-a-dire si b divise a), on arréte : a A b = b;

— sir # 0, on remplace le couple (a, b) par le couple (b, r) (avec p(r) < ¢(b)).
Comme la suite des entiers naturels ((b) est strictement décroissante, I”algorithme s’arréte en temps fini. A
chaque étape, le pged de a et b ne change pas (puisqu’on remplace (a, b) par (b, a—bq)) : on aboutit donc au
couple (a A b, 0). D’autre part, I”algorithme fournit aussi des éléments x et y de A tels que za+yb = aAb:
si on note (a;, b;) la paire obtenue a I’étape 4, avec (ag,by) = (a,b) et (ant1,bnt1) = (@ Ab,0), 0on a
a; =b;_yetb; =a;_1 —b;_1g;_1,donc a;11 = a;—1 — a;q;—1,d’olr

alNb = apy1
= QAp—1—0pQn—-1 = Tpn-10n—1 + Yn—10n

= ZTp_1Gp_1+ ynfl(an72 - anflqn72) = Tp_20n—2+ Yn_20n_1

= T1a0 + Y101 = T100 + Y1bo.

Exemple 7.4. — Calculons le pged de deux nombres de Fibonacci consécutifs (c’est 1a ou I’algorithme
est le plus long), par exemple 8 A 13. On écrit

8 = 13-0+48  (8,13)— (13,8)
13 = 8-1+5 (13,8) > (8,5)
8 = 5-1+3 (8,5) > (5,3)
5 = 3-1+42 (5,3) — (3,2)
3 = 2.1+1 (3,2) = (2,1)
2 1-240 (2,1) = (1,0),

de sorte que 8 A 13 = 1. Pour calculer les coefficients de Bézout, on écrit

1=3-2=3-(5-3)=2-3-5=2-(8—5)—5=2.8-3.5=2.8—-3-(13—-8)=5-8—3-13.

La division euclidienne est aussi utile pour décomposer une matrice a coefficients dans un anneau eu-
clidien comme produit de matrices élémentaires (ce qu’on ne peut pas toujours faire pour les matrices a
coefficients dans un anneau principal).

8. Anneaux factoriels

La notion de factorialité généralise la propriété de décomposition unique des nombres entiers en pro-
duit de nombres premiers. Le résultat principal de cette section est que tous les anneaux principaux sont
factoriels. Commencons par la définition formelle.

Définition 8.1. — Soit A un anneau. On dit que A est factoriel s’il vérifie les propriétés suivantes
(1) A est un anneau intégre;
(E) tout élément non nul de A s’écrit sous la forme upy ---p,, avec u € A*, r € N et p1,...,pr
irréductibles ;

(U) cette décomposition est unique, « a permutation et a multiplication par des inversibles pres » : si
upy - Pr =041 - Qs, avec u,v € A etp1,...,Dr,q1,- - -, qs irréductibles, on ar = s et il existe
une permutation o € &, tel que p; et q,(;) soient associés pour tout i € {1,...,r}
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Exemple 8.2. — Dans I’anneau Z[/—5] vu dans I’ex. 5.3, on a les décompositions 6 = 3 -2 =
(I + v/=5)(1 — /—5) et tous les facteurs de ces produits sont irréductibles dans I’anneau Z[v/—5]
(exerc. 11.17(3)). Cet anneau ne vérifie donc pas la propriété (U) (alors qu’il vérifie (I) et (E)).

Il est pratique d’introduire un systeme de représentants & des éléments irréductibles de A, c’est-a-dire
un sous-ensemble & de A qui contient un et un seul élément irréductible par classe d’associés. Lorsque
A = Z, on peut prendre pour & I’ensemble des nombres premiers positifs. Lorsque A est I’anneau des
polyndmes & une indéterminée a coefficients dans un corps, on peut prendre pour & I’ensemble des poly-
ndmes irréductibles unitaires. Tout élément a d’un anneau factoriel s’écrit alors de facon unique comme

@ a=u[]p,
pEP

ol les vy (a) (la valuation p-adique de a) sont des entiers naturels presque tous nuls. On a la propriété
Va,b € AN {04} Vpe P vp(ab) = vp(a) + vp(b).

Proposition 8.3. — Soit A un anneau factoriel et soient a et b des éléments non nuls de A qu’on écrit
comme dans (2). Alors a divise b si et seulement si v,(a) < v, (b) pour toutp € 2.

Démonstration. — Sivp(a) < vp(b) pour tout p € 22, il est clair que a | b. Inversement, si a | b, on écrit
b=ac= (u H pvp(a)) (U H pvp(c)) = wv H pvp(a)Jrvp(c).
pe? peP peEP

On en déduit v, (b) = v,(a)+v,(c) par la propriété d’unicité (U), d’olt v, (b) > v,(a) pourtoutp € &2. [

Les pgcd et les ppcm, qu’on a définis dans tout anneau intégre (§ 6), mais dont on n’a montré I’existence
que dans les anneaux principaux, existent aussi dans les anneaux factoriels.

Proposition 8.4. — Soit A un anneau factoriel et soient a et b des éléments de A. Alors le pgcd a \b et le
ppcm a NV b existent : si a et b sont non nuls et que

a=u ] pe@ , b=v ][ »>®,

peEP peEP
ona
anb= [ prinl@n®) vy [ pretve@eso),
peEP peP

En particulier, on a, dans un anneau factoriel, (a A b)(a V b) = ab, une propriété qu’on avait déja établie
dans les anneaux principaux (exerc. 6.6).

On peut bien siir définir de facon analogue définir le pged a1 A--- Aa,, etleppcmay V- - -V a,, d’une
famille finie quelconque a1, ..., a,, d’éléments d’un anneau factoriel.

Démonstration. — Sia =0,ona0Ab=>bet0Vb=0.Supposons a et b non nuls. Avec les notations de
I’énoncé de la proposition, d == [] ¢ 5 pmin{vr(@).vp ()} divise a et b. Si x divise a et b, on a v, (x) < v,(a)
et vp(z) < v,(b) pour tout p € & (prop. 8.3), donc vy, (z) < v,(d), et z | d (prop. 8.3). Ceci montre que d
est bien un pged de a et b. On procede de fagon analogue pour le ppcm. U

Remarque 8.5. — Attention! Dans un anneau factoriel, on n’a pas nécessairement (a,b) = (a A b) et
(a) N (b) = (a Vv b) (comme c’est le cas dans les anneaux principaux). Par exemple, si K est un corps,
I’anneau K'[X,Y] est factoriel (th. 9.5).Ona X AY = 1, mais (X,Y) = {P € K[X,Y] | P(0,0) =
0} # (1).
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Dans la déf. 8.1, c’est la propriété (U) qui est la plus contraignante (cf. ex. 8.2); la propriété (E) est
en fait satisfaite dans une classe beaucoup plus vaste d’anneaux. Expliquons pourquoi. Soit A un anneau
integre et soit a un élément de A ne pouvant s’écrire comme dans (E). Il n’est alors ni inversible, ni irréduc-
tible, donc on peut I’écrire a = a1b1, ot ni a1, ni by n’est une unité, c’est-a-dire (a) < (a1) et (a) < (by).
Remarquons que a; et by ne peuvent s’écrire tous les deux comme dans (E) (sinon, a le pourrait aussi) ; on
peut supposer que aq ne peut s’écrire comme dans (E) et recommencer le processus, ce qui construit une
suite infinie strictement croissante d’idéaux

(a) € (a1) € (a2) S (a3) -
Il s’avere que de telles chaines infinies d’idéaux (pas nécessairement principaux) n’existent pas dans les
anneaux noethériens (on peut prendre ca comme leur définition), une classe trés vaste d’anneaux (qui
contient celle des anneaux principaux) nommés ainsi en ’honneur d’Emmy Noether, mathématicienne
allemande du début du XX¢ siecle, qui les a beaucoup étudiés. C’est par ailleurs clair dans I’anneau Z

(puisqu’on a alors |a;4+1] < |a;|), ou dans I’anneau des polyndmes a une indéterminée a coefficients dans
un corps (puisqu’on a alors deg(a;+1) < deg(a;)), ou plus généralement dans un anneau euclidien.

Théoréeme 8.6. — Tout anneau principal est factoriel.

Démonstration. — Nous allons procéder en deux temps, en montrant d’abord que les anneaux principaux
vérifient la propriété (E), puis en donnant une caractérisation des anneaux factoriels parmi les anneaux
integres vérifiant (E).

Lemme 8.7. — Tout anneau principal vérifie la propriété (E).

Démonstration. — Comme on 1’a remarqué plus haut, il suffit de montrer qu’il n’existe pas de suite infinie
(I)nen strictement croissante d’idéaux d’un anneau principal A. Soit I := | J,,n I ; ¢’est un idéal de A :
six,y € I,il existe m,n € Ntelsquex € I, ety € I,.Sia € A, onabien ax € I,,, C I.On a aussi
x,Y € Imax{m,n}7 doncx +y € Imax{m,n} CclI.

Comme A est principal, I’idéal I est engendré par un élément a de I. Il existe un entier » € N tel que
a € I.,desorte que I = (a) C I, C I,et I, = I, = I pour tout s > r, ce qui contredit I’hypothése que la
suite (I,,)neN est strictement croissante. O

Lemme 8.8. — Soit A un anneau integre et soit p un élément irréductible de A. Tout élément a de A est
ou bien premier avec p, ou bien divisible par p.

Démonstration. — Supposons a non divisible par p. Soit x un diviseur commun de p et de a; on écrit
p = xy. Remarquons que y n’est pas une unité : sinon, p diviserait z, donc a. Comme p est irréductible, on
en déduit que x est une unité : tout diviseur commun a p et a est donc une unité. O

Lemme 8.9. — Soit A un anneau intégre vérifiant la propriété (E). Les propriétés suivantes sont équiva-
lentes :
(i) I’anneau A est factoriel ;
(ii) pour tout élément irréductible p de A, I’idéal (p) est premier;
(iii) le lemme de Gauss (prop. 6.5) est vrai dans A : si a, b et ¢ sont des éléments de A tels que a divise
bc mais est premier avec b, alors a divise c.

Démonstration. — Supposons (iii). Soit p un élément irréductible de A. On a (p) # A car p n’est pas
inversible. Si ab € (p), alors p | ab. Par le lemme 8.8, soit p divise a, auquel cas a € (p), soit p est premier
avec a, auquel cas p divise b par le lemme de Gauss, ¢’est-a-dire b € (p). Donc (iii) = (ii).

Supposons (ii). Pour montrer que A est factoriel, il suffit de comparer des décompositions a =
ull,e P = v][],c5p*". Siwy, # vy, pourunpy € &, on a par exemple wy,, > vy, et py divise
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Hpe@ ptpo P Comme 1’idéal (pg) est premier, pg divise un p # pg. Ces deux éléments irréductibles
sont alors associés, ce qui contredit le choix de &?. On a donc une contradiction, de sorte que wy, = vp,
pour tout pg € &2, ce qui montre (ii) = (i).

Enfin, supposons I’anneau A factoriel et que a divise bc, avec a premier avec b. Si ¢ = 0, alors a divise c.
Supposons donc ¢ # 0. Si b = 0, alors a divise a et b, donc a est une unité : il divise bien c. On peut donc
supposer aussi b # 0, soit be # 0. Comme a divise be, on a aussi a # 0. On a alors v, (a) < vp(b) + vp(c)
pour tout p € & (par la prop. 8.3, car a divise bc). Comme a est premier avec b, on a, pour tout p, soit
vp(a) = 0, soit v,(b) = 0 (prop. 8.4). Dans les deux cas, on obtient v,(a) < v,(c), c’est-a-dire a | c.
Donc (i) = (iii). O

Le théoreme résulte alors de I’implication (i) = (i) et de la prop. 6.1. O

9. Factorialité des anneaux de polynomes

Soit A un anneau factoriel. Nous allons montrer que 1’anneau A[X] des polyndomes & une variable a
coefficients dans A est encore factoriel. Pour cela, nous identifions tout d’abord les éléments irréductibles
de I’anneau A[X] en les comparant & ceux de 1’anneau principal K 4[X], puis nous utilisons la factorialité
de I’anneau K 4[X] (th. 8.6). On rappelle que, comme A est integre, les unités de I’anneau A[X] sont celles
de A.

Définition 9.1. — Soit A un anneau factoriel. Le contenu d’un élément P de A[X], noté c¢(P), est le pgcd
(dans A) de ses coefficients. On dit que P est primitif si ¢(P) = 1.

Le contenu n’est défini qu’a multiplication par une unité pres. On a ¢(P) = 0 si et seulement si P = 0.
Si P est un polynéme non nul, ¢(P) est non nul et P/c(P) est un polyndme primitif.

Lemme 9.2 (Gauss). — Soit A un anneau factoriel. Si P,Q € A[X], on a ¢(PQ) = ¢(P)c(Q).

Démonstration. — On peut supposer P et () non nuls et il suffit, en considérant P/c(P) et Q/c(Q), de
montrer que le produit de polyndmes P et () primitifs est encore primitif.

Or si ¢(PQ) # 1, il est divisible par un élément irréductible p. Cela signifie que dans I’anneau intégre
A/(p)[X], on a PQ = 0 donc, par exemple P = 0. Tous les coefficients de P sont donc divisibles par p,
¢’est-a-dire p | ¢(P), ce qui contredit I’hypothése que P est primitif (2). O

Théoréeme 9.3. — Soit A un anneau factoriel de corps des fractions K 4. Les éléments irréductibles de
I’anneau A[X)] sont :

o les éléments irréductibles de A;

o les polyndmes primitifs de degré au moins 1 qui sont irréductibles dans K [ X).

Démonstration. — Soit P € A[X] un polyndme constant non nul (c’est-a-dire de degré 0, ou encore
dans A). S’il s’écrit P = QR, les polyndmes () et R sont aussi de degré 0, donc dans A. Comme A[X]* =
A* (prop. 2.1(c)), cela revient donc au méme, pour un polyndme constant, d’étre irréductible dans A ou
dans A[X].

Supposons maintenant P de degré au moins 1. Si P est irréductible dans A[X], il est primitif puisqu’on
peut toujours le décomposer en produit P = ¢(P)(P/c¢(P)) de deux éléments de A[X]. Montrons qu’il est

2. On peut aussi, pour éviter de considérer ’anneau A/(p)[X], regarder le coefficient de a; de X? dans P non divisible par p
avec ¢ minimal (il existe car, P étant primitif, tous ses coefficients ne peuvent pas étre divisibles par p) et le coefficient analogue b;
de Q. Le coefficient de X**7 dans PQ est alors congru a a;b; modulo p : il n’est donc pas divisible par p. Aucun élément irréductible
de A ne divise donc tous les coefficients de PQ, ce qui montre que ce polyndme est primitif.
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irréductible dans K 4[X]. Si P = QR, avec Q, R € K 4[X], on peut écrire Q = Q1 /g et R = Ry /r, avec
g, € Anonnuls et Q1, Ry € A[X], soit encore gr P = ()1 R;. En prenant les contenus, on obtient, par le
lemme de Gauss,

gr =c¢(Q1)c(R1) (mod A™),

QlRl QlRl Ql Rl X
P=qr==0 = o ~ aon) (Gy) (med 49

Comme P est irréductible dans A[X], I'un de ces facteurs est une unité dans A[X], donc est de degré 0.
L’un des facteurs Q ou R est alors de degré 0, donc inversible dans K 4[X]. On a donc bien montré que P
est irréductible dans K 4[X].

soit encore

Supposons inversement P primitif et irréductible dans K4[X]. Si P = QR, avec @, R € A[X], I'un
des facteurs, par exemple @, est une unité dans K 4[X], donc de degré 0. Comme ¢(P) = ¢(Q)c(R) est
une unité, () et R sont tous deux primitifs, et () est inversible dans A[X]. On a ainsi montré que P est
irréductible dans A[X]. O

Exemple 9.4. — Les polynomes 3 et 2X?2 + 1 sont donc irréductibles dans Z[X] et dans Q[X].
Le th. 9.3 dit que pour un polynoéme primitif de A[X], il revient au méme d’étre irréductible dans A[X]

que dans 1’anneau principal K 4[X] (ce n’est pas du tout évident, puisqu’il y a a priori plus de décomposi-
tions possibles dans K 4[X] que dans A[X]).

Théoréme 9.5. — Soit A un anneau factoriel. Les anneaux de polyndémes A[X1, ..., A,] sont aussi fac-
toriels.

Démonstration. — 11 suffit bien siir de traiter le cas n = 1, ¢’est-a-dire de montrer que 1’anneau A[X] est
factoriel.

Comme A est factoriel, il est integre, donc A[X] est aussi integre (prop. 2.1(b)). Montrons la pro-
priété (E) d’existence d’une décomposition de P € A[X] non nul en produit d’irréductibles. En écri-
vant P = ¢(P)(P/c(P)) et en décomposant ¢(P) en produit d’irréductibles de A (qui sont irréductibles
dans A[X] par le th. 9.3), on voit qu’il suffit de traiter le cas ol P est un polyndme primitif non constant.

L’anneau K 4 [X|] étant principal, donc factoriel, il existe une décomposition de P en produit de polyno-
mes irréductibles de K 4[X]. En chassant les dénominateurs, on peut écrire cette décomposition comme

aP=P,---P, oua€ AetPy,...,P. € A[X], irréductibles dans K 4[X].

En prenant les contenus, on obtient, par le lemme de Gauss, a = ¢(Py) - - - ¢(P,), d’ou

P P,

S dP) AP
Les P; /c(P;) sont des polyndmes primitifs de A[X] associés aux P; dans K 4[X], donc encore irréductibles
dans cet anneau. IIs sont donc irréductibles dans A[X] par le th. 9.3. Ceci établit bien la propriété (E).

Par le lemme 8.9, il suffit maintenant de montrer que si P € A[X] est irréductible, alors ’idéal (P) est
premier.

Si P est constant, c’est un élément irréductible de A ; comme A est factoriel, il engendre un idéal premier
dans A. Si P divise QR, avec Q,R € A[X],ona P = ¢(P) | ¢(QR) = ¢(Q)c(R) (lemme de Gauss).
Comme P engendre un idéal premier de A, on a par exemple P | ¢(Q) | Q. L’idéal (P) est donc bien
premier dans I’anneau A[X].

Supposons maintenant P de degré au moins 1. I est alors primitif, et irréductible dans K 4 [X] (th. 9.3).
Si P divise QR, avec @, R € A[X], il divise par exemple () dans K 4[X] (puisque P est irréductible dans
cet anneau principal). On peut donc écrire comme d’habitude aQ) = PS, avec a € Aet S € A[X]; en
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prenant les contenus, on obtient ac(Q) = ¢(S), donc a | ¢(S) et S/a € A[X]. Comme Q = P - (S/a), on
en déduit que P divise @ dans A[X]. Ceci montre que I’idéal (P) est bien premier dans A[X]. O

Le théoréme suivant est un critere d’irréductibilité bien pratique pour les polyndmes a coefficients dans
un anneau factoriel.

Théoréme 9.6 (Critere d’Eisenstein). — Soit A un anneau factoriel de corps des fractions K 4 et soit
P =a, X"+ -+ ag € A[X] un polynéme non constant. On suppose qu’il existe un élément irréducti-
ble p de A tel que

(a) p ne divise pas a,,;

(b) pdivise ap_1,...,a9;

(c) p? ne divise pas ay.
Alors P est irréductible dans K 5[ X| (et donc dans A[X] s’il est primitif).

Démonstration. — La propriété (a) entraine que le contenu ¢(P) n’est pas divisible par p. Le polyndme
primitif P/c(P) vérifie donc les propriétés (a), (b) et (c) et on peut supposer P primitif, de degré au moins 2
(puisqu’un polynéme de degré 1 est toujours irréductible dans K 4[X]).

Si P n’est pas irréductible dans K 4[X], il ne I’est pas non plus dans A[X] par le th. 9.3, donc il s’écrit
P=QR= (b,X"+---+bo)(cs X +---+co),

avec Q,R € AX]etQ,R ¢ A*,etn = r + s et a, = b.cs. En prenant les contenus, on obtient
1 =¢(Q)c(R), donc Q et R sont aussi primitifs et ne peuvent donc étre constants (puisque ce ne sont pas
des unités). On adonc r, s > 1.

Réduisons cela modulo p, ¢’est-a-dire que ’on regarde cette égalité dans 1’anneau integre (A/(p))[X].
On a par hypothése P = @, X", avec a,, # 0, de sorte que b,, ¢, # 0. Comme X est irréductible dans
I’anneau principal K 4 /() [X], c’est la décomposition de P en produit d’irréductibles dans cet anneau. Le
seul facteur irréductible de @ et de R est donc X, de sorte que Q = b, X" et R = ¢;X®. On en déduit
0 = by = &, ce qui signifie que by et ¢y sont tous les deux divisibles par p. Mais ag = bycy est alors

divisible par p?, ce qui contredit (c). On a donc bien montré que P est irréductible dans K 4[X] ). O
Exemple 9.7. — Pour tout entier n > 1 et tout nombre premier p, les polyndémes X ™ 4 p sont irréductibles
dans Q[X].

10. Compléments

10.1. Racines d’un polynéme a une variable. — Soit A un anneau commutatif et soit
PX)=a, X"+ - +ag
un élément de A[X]. Soit  un élément de A. On pose
P(z) =apz" +---+ap € A
L’application

est un morphisme d’anneaux appelé évaluation en x.

3. On peut aussi utiliser ’argument plus terre-a-terre suivant : comme ag = bpco n’est pas divisible par p2, les éléments by et co
de A ne peuvent étre tous les deux divisibles par p. Supposons donc p 1 bg. Comme p ne divise pas an, il ne divise pas non plus cs ;
on peut donc considérer le plus petit entier ¢ € {0, ..., s} tel que p { ¢¢, de sorte que ¢t—1, ct—2, . .. sont divisibles par p. Alors,
at = bocg +bici—1 + -+ = bocy Z0 (mod p), ce qui contredit I’hypothese (b), puisque t < s < n.
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On a pour tout entier m > 1 I’identité remarquable
m—1
XM —a™m=(X— m)(z xZXm_l_’).
i=0

En particulier, le polyndme X™ — x™ est divisible par X — z. Il s’ensuit que le polyndme
P(X)—-P(z) = (an X"+ -+ ag) — (anz" + -+ ap) = an(X" —2") + - + a1 (X — )
est aussi divisible par X — z ().

On dit qu’un élément x de A est une racine de P si P(x) = 04. Nous avons donc démontré le résultat
suivant.

Proposition 10.1. — Soit A un anneau commutatif, soit P un élément de A[X] et soit x un élément de A.
On a équivalence entre

(i) x est racine de P, c’est-a-dire P(x) =04,

(ii) le polynoéme P est divisible par X — x dans A[X].

Définition 10.2. — Soit A un anneau commutatif, soit P un élément non nul de A[X] et soit x un élément

de A. On appelle multiplicité de x comme racine de P le plus grand entier m tel que P est divisible par
(X —a)™

Cette définition a un sens méme si A n’est pas intégre : le polyndme (X — x)™ étant unitaire, on a
m < deg(P) s’il divise P; la multiplicté de toute racine de P est donc < deg(P). On peut décider que la
multiplicité de n’importe quel élément de A comme racine du polyndme nul est infinie.

Proposition 10.3. — Soit A un anneau integre. Soit P un élément non nul de A[X)| et soient x1,...,x, €
A des racines distinctes de P, de multiplicités respectives my, ..., m,. Alors P est divisible par le poly-
nome (X — x1)™ ... (X — x,.)™r. En particulier, deg(P) > mq + - - - + m,.

Un polyndme a coefficients dans un anneau inteégre qui a un nombre infini de racines est donc nul.

La conclusion de la proposition ne subsiste pas dans un anneau non intégre : dans Z/8Z, le polyno-
me 4X, de degré 1, a 4 racines (simples), 0, 2, 4, et 6, tandis que le polyndme X 3. de degré 3, a comme
racines 0 (triple), 2, 4 (double), et 6.

Démonstration. — Plagons-nous dans 1’anneau principal K 4[X]. Soit ¢ # j; comme X — z; et X — z;
sont premiers entre eux (une relation de Bézout est —— (X — z;) — (X — z;)) = 1), il en est de méme

Tj—T4

de (X — ;)™ et (X —x;)™, par deux applications de la prop. 6.7(a). Comme P est divisible par chaque
(X — x;)™, il est divisible par leur produit (prop. 6.7(b)), dans I’anneau K 4[X]. Mais le quotient de P
par [ [,(X — x;)™ est en fait dans A[X], puisque [ [,(X — 2;)™ est un polynéme unitaire (th. 7.1). O

10.2. Polynome dérivé et formule de Taylor. —

Définition 10.4. — Soit A un anneau commutatif et soit P = a, X™ + - - - + ao un élément de A[X]. On
appelle polyndme dérivé de P le polynome

P(X)=na, X" '+ - +ay.

4. On peut aussi raisonner ainsi : comme le polyndme X — x est unitaire, on peut diviser P par X — x dans A[X] (th. 7.1). On
obtient P(X) = (X — 2)Q(X) + R(X), avec R = 0 ou deg(R) < deg(X — ) = 1, c’est-a-dire que R est une constante. En
« faisant X = z » (il faudrait dire « en prenant les images des deux membres de cette égalité par le morphisme d’anneaux evz »), on
obtient R(X) = P(z),dot P(X) = (X — 2)Q(X) + P(x) : le polyndme P(X) — P(x) est donc bien divisible par X — z.
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Il est clair que la dérivation est linéaire (c’est un morphisme de groupes abéliens de A[X] dans A[X]) :
ona (P + Q) = P+ @'. On vérifie par un calcul direct la formule de Leibniz

VP,Qe AIX] (PQ)'=PQ+PQ,
ainsi que
VP,Q € A[X] (PoQ) =(Po@)Q".

Lorsque A = R, la fonction polynomiale =z — P’(x) est bien la dérivée (au sens des fonctions réelles de
variable réelle) de la fonction polynomiale = — P(z), mais notre définition générale est purement formelle
et ne fait pas intervenir de notion de limite (qui n’aurait aucun sens dans un anneau général).

La dérivée d’un polyndme constant est nulle mais un polyndme de dérivée nulle peut ne pas étre
constant : si p est un nombre premier, ¢’est le cas du polyndéme X? dans (Z/pZ)[X].

On peut itérer 1’opération de dérivation en posant P’ := (P’)’, etc. On définit ainsi P("), la dérivée

r-iéme de P, pour tout entier naturel . Noter que P(") = 0 pour tout 7 > deg(P).

Proposition 10.5 (Formule de Taylor). — Soir A un anneau commutatif, soit P € A[X] un polynéme de
degré inférieur ou égal an, et soit © € A.

(@) Si n! - 14 est inversible dans A, on a®

P p)
P(X) = P(z) + ff”) (X —2) 4+ n,(x) (X — )"
(b) Soit m un entier positif. On a
& est racine de P de multiplicité >m = P(z)=--- = P™(z) = 0.

La réciproque est vraie si m! - 14 est inversible dans A.

En particulier, dans tous les cas, = est racine multiple (c’est-a-dire de multiplicité > 1) de P si et
seulement si P(z) = P’(x) = 0 (on applique (b) avec m = 1).

Démonstration. — 11 suffit de montrer la proposition pour x = 04 puis de I'appliquer au polyndéme
Q(X) = P(X + z), en notant que P(")(z) = Q") (0) pour tout entier positif r.

Le point (a) résulte alors du fait que, si Q = a, X" + - - - 4+ ag, on a Q" (0) = rla,..

Pour le point (b), si 04 est racine de ) de multiplicité > m, on a a,, = --- = ag = 0; inversement, si
Q(04) = =Q™)(04) = 0,0onamla,, =---=0lag =0,dota,, = =ay=0sim!-1,est
inversible dans A (il en est alors de méme de r! - 1 4 pour tout r < m). O
Exemple 10.6. — Soit p un nombre premier, de sorte que ’anneau Z/pZ est integre (c’est méme un

corps). Considérons le polynéme P(X) = XP — X € (Z/pZ)[X]. Comme (Z/pZ)* est un groupe
(multiplicatif) d’ordre p — 1, on a (théoréme de Lagrange) 2P~! = 1 pour tout x € (Z/pZ)*, donc 2P = x
pour tout & € Z/pZ. Le polyndme P a donc au moins p racines distinctes. Comme il est de degré p, ce
sont toutes ses racines, elles sont simples et (prop. 10.3)

xP-X= [[ (X-2)e(z/pz)X].
x€Z/pZ
On vérifie dans ce cas la prop. 10.5(b) : on a P’(X) = —1, donc P’ n’a aucune racine et toutes les racines
de P sont simples.

p(n) (z)
n!

5. Dans cette relation, signifie P(™) (z)(n! - 14)1.
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10.3. Décomposition en éléments simples des fractions rationnelles. — Soit K un corps. Une fraction
rationnelle (a coefficients dans K) est un élément du corps des fractions K (X) de ’anneau de polynd-
mes K[X]. Elle s’écrit donc P/Q, avec P, € K[X] et @ non nul. Comme I’anneau K[X] est factoriel,
on peut toujours supposer P et () premiers entre eux.

Le théoréeme suivant est parfois utile pour trouver des primitives des fractions rationnelles. C’est un
classique des programmes de classes préparatoires dont la vraie utilité mathématique est marginale. Il est
aussi au programme de 1’agrégation. L’énoncé théorique est simple a démontrer ; la mise en ceuvre pratique
de la décomposition donne lieu a des myriades d’astuces (mais les ordinateurs font ¢a tres bien).

Théoréme 10.7. — Soit K un corps. Soient P et Q) des éléments non nuls de K[X) premiers entre eux et
soit
T
o-Iler
i=1

la décomposition de Q) en produit de facteurs irréductibles dans K[X)|. Il existe une unique décomposition

P : Ail Aiv
—=F+ —= 44 7;)1
avec E, A; ; € K[X] et deg(A; ;) < deg(Q;).

Le polyndme F est appelé partie entiére de la fraction rationnelle P/Q). Il est obtenu comme quotient
de la division euclidienne de P par @ (th. 7.1).

Dans la pratique, on est souvent dans C, de sorte que les ); sont des polynomes de degré 1 et les A; ;
des constantes, ou dans R, auquel cas les (); sont des polyndmes de degré 1 ou 2 (il est souvent utile
de commencer par décomposer sur C : on regroupe ensuite les fractions dont les dénominateurs sont
conjugués).

Je ne donnerai qu’une seule astuce : si @1(X) = X — x et v; = 1 (c’est-a-dire x est racine simple
de Q), il est facile de déterminer la constante a = A; ;. Ecrivons Q(X) = (X — ) R(X), avec R(x) # 0;
on peut alors écrire

P a P1
__F -1
o "TxTw

On en déduit, en réduisant au méme dénominateur,

P(X) = E(X)Q(X) + aR(X) + (X — )1 (X)

+

d’oll on tire, « en faisant X = x », la relation ¢ = P(x)/R(x). On obtient d’autre part par dérivation
Q'(X)=R(X)+ (X — 2)R(X), soit R(z) = Q'(z), d’ou finalement

P

oo P@

Q' (z)
Exemple 10.8. — Soit P € C[X] et soit n > deg(P); on pose w = €*™/™, Cherchons la décomposition
en éléments simples

D’apres ce qui précede, on a
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Si P € R[X], on peut en déduire la décomposition en éléments simples sur R[X] : si on suppose pour
simplifier n impair (de sorte que —1 n’est pas racine), on a

P(X) ”i 1wk P(wh)
Xn—1 n X —wk
k=0
B L ("21:)/2 1 (Wkp(wk) . @kp(a;k))
(X —1) < n\X-wh o X ok
(n-1)/2 k P,k kY 1 ok Pk k
B 1 n 1 /w"P(w")(X —&") + 0" P(w )(X—w))
(X -1 — n (X —wF)(X — k)
(n-1)/2 k k k
B 1 n 2 (Re(w P(w"))X — Re(P(w )))
X -1 & on X2 —2(cos M) X + 1 '
10.4. Polynomes homogenes a plusieurs indéterminées. — Soit A un anneau commutatif et soit n
un entier naturel. On a construit dans I’ex. 2.2 I’anneau commutatif A[X}, ..., X,,] des polyndmes a n
indéterminées a coefficients dans A.
Un mondme est un polyndme du type Xfl -+ Xin avec iy,...,i, € N. Son degré (total) est I’entier

naturel ¢; + - -- 4 %,. Le degré (total) d’un polynome est le plus grand des degrés des mondmes qui le
composent.

Un polynéme P est homogeéne de degré d s’il est combinaison linéaire a coefficients dans A de monémes
de méme degré d (le polyndome nul est donc homogene de tous les degrés). C’est équivalent a dire qu’on a
I’égalité
P(YXy,...,YX,) =Y?P(Xy,...,X,)
dans I'anneau A[X;,..., X, Y].

Tout polyndéme P non nul s’écrit de facon unique comme somme
P:PO+"'+Pd,
ou d est le degré de P et P; est un polyndme homogene de degré .

Le produit de deux polyndmes homogenes de degré respectifs d et e est un polyndme homogene de
degré d + e. Toute somme de polyndémes homogenes de méme degré d est un polyndme homogene de
degré d.

Si K est un corps, les polynomes homogenes de degré d en n variables forment un K -espace vectoriel

de dimension ("Jrj*l).

Remarque 10.9. — On peut trées bien affecter aux indéterminées des degrés (entiers) différents,
deg(X;) = d;. Le degré du mondme X' - -- X' estalors iydy + - -+ + ipndy,.

Dans le cas deg(X;) = 4, on appelle ce degré le poids du polynéme.

10.5. Polynomes symétriques a plusieurs indéterminées. — Soit A un anneau commutatif et soit n
un entier naturel. On dit qu’un polyndme P € A[X;, ..., X,,] est symétrique si, pour toute permutation
oce€G,,ona

P(Xo(1ys- s Xom) = P(X1,..., X,).

L’ensemble des polyndmes symétriques forme une sous-A-algebre de la A-algebre A[X7, ..., X,].
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Définition 10.10. — Soit A un anneau commutatif et soient n et v des entiers strictement positifs. On
appelle r-iéme polyndme symétrique élémentaire le polynome
Se(Xy, ., X)) = Z X X

1< < <ip<n

On a en particulier

El(Xl,...,Xn):X1+"‘+Xn7 En(Xl,...,Xn):Xl“‘Xn, ZT(X17...,XH):OPOUI'T>TL.

La notation n’est pas entierement satisfaisante car il y manque ’entier n, mais ¢a ne pose en général
pas de probléme en pratique : une remarque essentielle est que si on annule un certain nombre des indéter-
minées X1, ..., X, dans un polyndéme 3., le polyndme qu’on obtient sera encore le polyndome X, en les
indéterminées restantes.

Ces polynomes sont a coefficients entiers. Le polyndme X,. est symétrique, homogene de degré r. On
peut aussi définir ces polyndmes par 1’identité
(3) H(Y — X)) =YY" =0 (X, L X)Y T e (), (X, X))
i=1
ou encore

YX, +1)=S,(X1,.... X)) YY"+ -+ 5 (Xq,..., Xp)Y +1
1

3

dans 'anneau A[X}, ..., X,,Y] (avec toujours X, = 0 pour r > n). On peut aussi poser Xy = 1.

n

Théoréme 10.11. — Soit A un anneau commutatif et soit n. un entier naturel. Pour tout polynéme symé-
trigue P € A[X,...,X,), il existe un unique polynome Q) € A[Y1,...,Y,] tel que

P=Q(S1,...,5).

De plus, on a

poids(Q) = deg(P).

Démonstration. — On va montrer I’existence de @ satisfaisant a poids(Q) < deg(P), en procédant par
récurrence sur le nombre n de variables, puis par une seconde récurrence sur le degré total de P. L’autre
inégalité deg(P) < poids(Q) est évidente, puisque les mondmes composant P proviennent de la décom-
position de polyndmes E’f -+ X provenant de @ : ils sont donc de degré >, ki) < poids(Q).

Lorsque n = 1, tous les polyndmes sont symétriques. Comme X1 = X7, le théoreme est évident.

Supposons la conclusion du théoreme vraie pour les polydomes en au plus n — 1 variables. On fait une
seconde récurrence sur deg(P). Si P est un polyndme constant, on prend pour ) la méme constante. Soit
P e A[Xy,...,X,] symétrique non nul de degré total d > 0.

Si X, | P, on peut écrire P = X,, P; et comme P est symétrique, on a
P(le v 7Xn) = P(XU(1)7 sy Xa(n)) = XU(TL)Pl(XO'(l)) s aXO'(n))

pour toute permutation ¢ € &,,. On a donc X; | P pour tout i € {1,...,n} : tous les mondmes compo-
sant P sont divisibles par chacun des X;, donc par X --- X,, = 3, donc P aussi. On peut donc écrire
P =%, P,, avec P, symétrique et deg(P,) = deg(P) — n < d. On conclut en appliquant I’hypothese de
récurrence (sur le degré) a Py : on écrit Py = Q2(X1,...,%,), avec poids(Q2) < deg(P2) =d —n, d’ou
P=Q(%,...,%,), avec Q = Q2Y,, et poids(Q) = poids(Q2) + n < d.

Traitons maintenant le cas général et posons P(Xy,..., X, 1) = P(Xy,...,X,_1,0), polynome
symétrique de A[X7, ..., X,_1]. Par hypothese de récurrence (sur le nombre n de variables), on peut donc
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I’écrire

P=Q(1,...,80 1),
ot X1,...,%,_1 sontles polyndmes symétriques élémentaires en n — 1 variables, dont on remarque que ce
sont aussi les polynémes X1 (X1, ..., Xp-1,0),...,2,-1(X1,...,Xn_1,0). On a aussi (par hypothese
de récurrence) poids(Q) < deg(P).

Considérons le polyndome symétrique
P; =P — Q(El, ey En—l) S A[Xl, - ,Xn].

Le polyndme Q(X1, ..., %, _1) est combinaison linéaire de polyndmes de type E‘fl e Ei":f avec dy +

-+ (n—1)d,—1 < poids(Q); vu comme polyndme en X1,...,X,, il est donc de degré au plus

poids(Q) < deg(P) < deg(P), donc deg(Ps) < deg(P).

Par construction, P3(X1,...,X,_1,0) = 0 donc, d’apres le cas déja traité, on peut 1’écrire P; =
Q3(Xq,...,2,), avec poids(Q3) < deg(Ps3). On a donc finalement

P = Q(Eh . ~7En—1) + Q3(Ela .. '7E7L)7

avec poids(Q + Q3) < max(poids(Q), poids(Q3)) < deg(P). Ceci conclut la preuve de I’existence d’un
@ de poids convenable.

Pour montrer Iunicité, il suffit de montrer que tout polyndme @ € A[Y,...,Y,] non nul vérifie
Q(X1,...,%,) # 0. On procede encore par récurrence sur n (le cas n = 1 étant trivial), puis par ré-
currence sur deg(Q) (le cas deg(Q) = 0 étant trivial). Si Y,, | @, on écrit Q = Y,,Q1, avec @J1 non nul
de degré deg(Q) — 1. Par hypothese de récurrence, on a Q1(X1,...,%,) # 0, donc Q(Xq,...,%,) =
2,012, ..., X,) #0.

Supposons donc Y;, 1 Q, c’est-a-dire Q(Y71,...,Y, 1) = Q(Y1,...,Y,_1,0) # 0. L’hypothese de

récurrence (sur n) entraine Q(X1, ..., %, 1) # 0. On a alors
Q(Zla s 7Zn)(X1a s aXn—170) = Q(ila s ain—lao) = Q(Zh s 7277,—1) # 0,
donc en particulier Q(X21,...,%,) # 0. O

Certaines preuves fournissent un algorithme plus efficace pour trouver le polynéme @). L’exercice 11.53
propose une telle preuve.

Exemple 10.12. — Considérons le polyndome P(X1, X») = X{+X3.0na P(X;) = P(X31,0) = X§ =
¥3. On considére alors

P=%{=X{ + X7 — (X1 + X2)° = =3X1 X2(X1 + X3) = —35:%1.
On adonc Q(Y1,Y2) = Y — 3Y1Ya, qui est de poids 3 = deg(P).

10.6. Sommes de Newton. — Soit A un anneau commutatif et soit n un entier naturel. Les sommes de
Newton sont les polyndmes symétriques

Sa(X1,..., X)) =X+ 4 X¢

pour d > 0 (on ne définit pas Sy). D’apres le th. 10.11, ce sont des polyndmes a coefficients entiers en les
polyndmes symétriques élémentaires. On a par exemple S; = ¥ et So = X2 — 235,

Pour le théoréme suivant, on rappelle que X, = 0 pour r > n.
Théoréeme 10.13 (Formules de Newton—-Girard—Waring). — On a, pour tout d € N*,
Sqg— 21841+ -+ (—1)d_12d,151 + (—1)dd2d =0.



24 CHAPITRE 1. ANNEAUX

Ces relations permettent d’exprimer de proche en proche les .S; comme polyndmes a coefficients entiers
enXq,..., 2y (comme prédit par le th. 10.11). On remarque que la formule ne dépend pas du nombre n de
variables. Cela peut se comprendre en remarquant que toute formule de ce type pour n variables entraine
la méme formule pour m < n variables en évaluant simplement en X,,,41 = --- = X,, = 0 (en utilisera
une démarche inverse dans la preuve).

Pour d > n, la formule se réduit a
Sq—%18q-1+ -+ (-1)"2,S4—n = 0.

tandis que pour d = n, on a
Sp— X181+ -+ (—1)”n2n =0.

Démonstration. — En substituant Y = X; dans (3), on obtient
X' =S X (1), = 0.
Si d > n, on multiplie par X f*" et on somme sur ¢, ce qui nous donne la formule cherchée.

Supposons maintenant d < n. Il s’agit de montrer que le polyndme Sy — £1Sq_1 + --- + (—1)4d3y
est nul. Or, chaque mondme qui pourrait apparaitre dans ce polyndme est de degré d; il implique donc au
plus d des variables X1, ..., X,. On voit aussi qu’il ne change pas si on annule les autres variables. Si
on écrit, en degré d, I’identité de Newton (qu’on vient de démontrer) pour ces d variables, on voit que le
coefficient de ce mondme est en fait nul. O

On a par exemple
So — 2151 +2¥,=0
et on retrouve Sy = Ef — 235. On a ensuite
S3 — X185 + 3251 — 3¥3 =0,
d’ou on déduit
S3 = X155 — X951 +3¥3
=2(22 - 2%) — Ep%; + 383
=X} — 35,2, + 3%s.

On trouvera dans I’exerc. 11.54 un moyen général d’exprimer .S,, comme polyndme en Xi,...,3%, en
utilisant des déterminants.

10.7. Relations entre coefficients et racines d’un polynéme a une indéterminée. — Soit A un anneau
intégre. On dit qu’un élément P de A[X] est scindé (dans A[X]) si

PX)=a(X —x1) (X —x,),
avec a, x1, ..., Ty € A (pas nécessairement distincts).

Proposition 10.14. — Soit A un anneau intégre. Soit P(X) = a, X™ + - - - + ag un polyndme scindé de
degré n dans A[X], de racines x1, ..., x, (pas nécessairement distinctes). Pour toutr € {1,...,n}, ona

anzr(l‘la s axn) = (_1)Tan—r-

Démonstration. — 11 suffit de développer 1’expression P(X) = a,(X — z1) - - - (X — x,,) et d’identifier
les coefficients de X" O
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Par exemple, si n = 3, que A est un corps et que et agaz # 0, on a

1 n 1 n 1 ToX3 + T1T3 + T1T2 al/ag a1
Z1 T2 I3 L1273 —ap /a3 ag
ainsi que
2
2, .2, .2 2 2 aj + 2asa3
x] + a5+ x5 = (21 + 22+ x3)° — 2(x122 + T2x3 + x321) = (a1/a3)® — 2(—az/a3) = 2
3

On peut ainsi calculer ces expressions, qui sont symétriques en les racines, sans effectivement connaitre
celles-ci.
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11. Exercices

Les étoiles signalent des questions ou exercices un peu plus difficiles.

11.1. Généralités. —

Exercice 11.1. — Montrer qu’il y a exactement (2 isomorphisme pres) seulement quatre anneaux (com-
mutatifs unitaires) de cardinal 4 :
— un dont le groupe additif est Z/4Z (c’est ’anneau Z/47Z);
— un dont le groupe additif est Z/2Z x Z/2Z et qui a trois éléments inversibles (c’est le corps F4 a
quatre éléments) ;
— un dont le groupe additif est Z/2Z x Z/2Z et qui a deux éléments inversibles (c’est I’anneau
(2/22)[X)/(X?)):
— un dont le groupe additif est Z/2Z x Z/27Z et qui n’a qu’un élément inversible (c’est ’anneau
Z/27 x 7./27).
Exercice 11.2. — Soit A un anneau commutatif.

(1) Soit I un idéal de A. Relier les idéaux de I’anneau A/T a ceux de A. Méme question pour les idéaux
premiers et maximaux.

(2) Soit f: A — B un morphisme d’anneaux. Montrer que 1’image réciproque par f d’un idéal premier est
un idéal premier. Que se passe-t-il pour les idéaux maximaux ?

(3) Soient I C J des idéaux de A. Montrer que I’anneau A/J est canoniquement isomorphe au quotient
de ’anneau A/T par I'idéal J/1I.

(4) Soient I et J des idéaux de A. Montrer que I.J est inclus dans I N J. A-t-on toujours égalité ?

(5) Soient m et n des entiers naturels et soient I = mZ et J = nZ les idéaux qu’ils engendrent dans
I’anneau Z. Déterminer les idéaux IJ, INJetl + J.

Exercice 11.3 (Généralisation du théoréme chinois des restes (th. 6.8)). — Soit A un anneau commu-
tatif et soient [, . .., I, des idéaux de A, avec r > 2, qui vérifient [; + [; = Apourtout 1 <7 < j < 7.

(1) Montrer I’égalité Iy + I --- I, = A.

(2) Montrer I’égalité I - -- I, = I, N --- N L.

(3) Montrer qu’on a un isomorphisme d’anneaux
A/(Ln---NL) = A/ x--- x A/I.

Exercice 11.4. — Montrer qu’un anneau integre fini est un corps.

Exercice 11.5. — Soit A un anneau commutatif.
(1) Soit n un entier naturel. Etablir la formule
n n ) ]
v b n — 11N —1
a,be A (a+b) Z(i)ab
1=0
dite du « bindbme de Newton ».

(2) On dit qu’un élément a de A est nilpotent s’il existe un entier naturel n tel que a™ = 0 4. Montrer que
I’ensemble des éléments nilpotents de A est un idéal de A.

(3) Quels sont les éléments nilpotents de I’anneau Z/1000Z?
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Exercice 11.6. — Montrer qu’un nombre réel est rationnel si et seulement si son développement décimal
est périodique a partir d’un certain rang.

Inversement, si z = p/q = p'/(10%¢') > O avec 10 A ¢’ = 1,ona 10% = b+ p”/q' avec b € N et
0 < p’ < ¢.Comme 10 A ¢’ =1, 10 est une unité dans Z/¢'Z et il existe n > 0 tel que 10™ = 1 dans

Z/q'Z. On peut écrire 10" — 1 = ¢'¢" et p" /¢’ = 20" st < 1 donc s°écrit avec 0 < ¢ < 10™.

17 c
10m—1 10m—1

Exercice 11.7 (MG2023). — Soit ¢ un entier naturel non nul. On considere le groupe G = (Z/4¢Z)*
des éléments inversibles de 1’anneau Z /4¢Z.

(1) Déterminer les ordres respectifs dans G des classes modulo 4¢ de 2g — 1 et 2¢ + 1.

(2) Le groupe G est-il cyclique ?

Exercice 11.8 (MG2023). — (1) Déterminer 1’ensemble des couples (z,y) dans (Z/3Z)? tels que 2% +
2
ye =0.

(2) Déterminer I’ensemble des couples (z,y) dans Z? tels que 22 — 5y2 = 33.

(2) Déterminer I’ensemble des couples (z,y) dans Q? tels que 2% — 5y? = 33.

11.2. Anneaux principaux et euclidiens. —

Exercice 11.9 (Entiers de Gauss). — Le but de cet exercice est de montrer que
Zjil ={a+ib|a,beZ}

est un anneau enclidien (donc principal) (6).

(1) Vérifier que Z[i] est un anneau intégre.

(2) On définit une fonction ¢ := Z[i] \ {0} — N en posant ¢(a + ib) = a? + b%. Montrer que ¢ est un
stathme euclidien (Indication : si x,y € Z[i], avec y # 0, on pourra considérer le complexe z = z/y € C
et 1’élément a + ib de Z]i], ol a est I’entier le plus proche de la partie réelle de z et b I’entier le plus proche
de sa partie imaginaire).

Exercice 11.10 (Suite de Fibonacci). — Soit (F},),en la suite d’entiers définie par les relations
FOZOa F1:17 VneN Fn+2:Fn+1+Fn~

(1) Calculer Fy, ..., Fig.

0 1
> . Montrer que pour toutn > 1, on a

1 1
A" = anl Fn )
Fn F7L+1

En déduire que pour tout n € N, les entiers F}, et F}, 1 sont premiers entre eux.

(2) On pose A := (

(3) Montrer que pour tout m,n € N, on a
Fm+n+1 = Fm+1Fn+1 + FnF.

En déduire

Fm/\Fn:Fm/\n-

6. On peut le définir comme Z2 muni de I’addition terme & terme et de la multiplication (a, b) - (¢,d) = (ac — bd, ad + bc).
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Exercice 11.11. — Une bande de 17 pirates possede un trésor constitué de pieces d’or d’égale valeur. Ils
projettent de se les partager également et de donner le reste au cuisinier. Celui-ci recevrait alors 3 pieces.
Mais les pirates se querellent et six d’entre eux sont tués. Un nouveau partage donnerait au cuisinier 4
pieces. Dans un naufrage ultérieur, seuls le trésor, six pirates et le cuisinier sont sauvés, et le partage
donnerait alors 5 pieces d’or a ce dernier. Quelle est la fortune minimale que peut espérer le cuisinier s’il
décide d’empoisonner le reste des pirates ?

Exercice 11.12. — Soit A un anneau commutatif qui n’est pas un corps. Montrer que I’anneau A[X| n’est
pas principal.

Exercice 11.13. — Soient m et n des entiers naturels et soit g un entier strictement positif. Montrer I’éga-
lit€ (¢™ — 1) A (¢" — 1) = g™ — 1.

Exercice 11.14 (Nombres de Mersenne). — (1) Soient m et n des entiers avec m,n > 2, telsque m™ —1
est premier. Montrer que m = 2 et que n est premier (7).

(2) Soit p un entier premier et soit g un diviseur premier de 27 — 1. Montrer que p divise ¢ — 1.

Exercice 11.15 (Nombres de Fermat). — (1) Soit n un entier strictement positif tel que 2" 4 1 est un
nombre premier. Montrer que 7 est une puissance de 2. On pose F),, := 22" + 1.

(2) Soient m et n des entiers strictement positifs distincts. Montrer que F),, et F}, sont premiers entre
(®)
eux '/,

Exercice 11.16. — Soit n un entier strictement positif. Si ¢ est I’indicatrice d’Euler, montrer la relation
n= Z w(d).
d|n

11.3. Anneaux factoriels. —

Exercice 11.17. — On consideére I’anneau
Z[v—-5] ={a+bvV-5|a,be Z}.
Siz=a-+by—5,onnote T =a — by/—>.

(1) Montrer que les unités de I’anneau Z[+/—5| sont +1 (Indication : si x est une unité, d’inverse y, on
pourra calculer xZyy).

(2) Montrer que 3 est irréductible dans I’anneau Z[v/—5].

(3) Montrer que I'idéal (3) n’est pas premier et que I’anneau Z[/—5] n’est pas factoriel (Indication : on
pourra considérer 1’égalité (1 + /—5)(1 — /—5) =2 3).

(4) On considére maintenant 1’anneau
Z[V5] == {a+bV5 | a,b € Z}.
Montrer que 2 + /5 en est une unité et que le groupe des unités de I’anneau Z[\/S] est infini.

(5) Montrer que I’anneau Z[+/5] n’est pas factoriel.

7. Les nombres de Mersenne sont les entiers de la forme 2™ — 1. Si ce nombre est premier, n est donc premier. La réciproque est
fausse car 211 — 1 = 23 - 89. Seuls 51 nombres de Mersenne premiers sont connus, le plus grand étant 2282589933 _ 1 QOn ne sait
pas s’il en existe une infinité.

8. Onsaitque Fp = 3, F1 = 5, Fo» = 17, F3 = 257 et F4 = 65537 sont premiers (on n’en connait aucun autre !) mais que 641
divise F5 (Euler). On sait aussi que Fg, . .., F32, Fa543548 €t Fa747497 ne sont pas premiers.
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Exercice 11.18. — (1) Soit A un anneau factoriel de corps des fractions K 4. Soit x € K 4 tel que P(z) =
0, ot P € A[X] est unitaire. Montrer que = € A (on dit que A est intégralement clos).

(2) En déduire que ’anneau Z[v/5] n’est pas factoriel (Indication : on pourra considérer le polynome
X2 4 X — 1). Généraliser aux anneaux Z[v/d] avec d € Z non carré parfaitet d = 1 (mod 4).

Exercice 11.19 (Bézout). — * Soit K un corps et soient P et () des éléments de K[X,Y] sans facteur
irréductible commun.

(1) Montrer qu’il existe A, B € K[X,Y] et D € K[X] non nul tels que D = AP 4+ BQ (Indication : on
pourra travailler dans 1’anneau principal K (X)[Y]).

(2) En déduire que I’ensemble

{(z,y) € K* | (P(2,y) = Q(z,y) = 0}

est fini.

(3) Montrer que le K -espace vectoriel K[X,Y]/(P, Q) est de dimension finie.

11.4. Polynomes. —

Exercice 11.20. — Sile polyndme a,, X"+ - -+a1 X +ag € Z[X], avec a,, # 0, a une racine rationnelle,
que I’on écrit sous forme de fraction réduite a/b, alors a | ag et b | ay,.

Exercice 11.21. — Montrer que le polyndme X 163 4 24X57 — 6 a exactement une racine réelle. Est-elle
rationnelle ? Montrer que ce polyndme est en fait irréductible dans Q[X].

Exercice 11.22. — Soit K un corps. Montrer qu’il y a un infinité de polyndmes irréductibles dans K [X]
(Indication : on pourra copier la preuve qu’il existe une infinité de nombres premiers).

Exercice 11.23. — Factoriser le polyndme X* + 4 en produit de facteurs irréductibles dans (Z/5Z)[X].

Exercice 11.24. — Montrer que le polyndme X* + 1 est irréductible dans Q[X].

Exercice 11.25. — Soit a un entier non nul. Montrer que le polynome X* + aX — 1 est irréductible dans
Q[X].
Exercice 11.26. — Factoriser le polyndome X° + 1 en produit de facteurs irréductibles dans C[X], dans

R[X], puis dans Q[X].
Exercice 11.27. — Trouver toutes les racines complexes du polyndme 2X3 — X2 +5X + 3.
Exercice 11.28. — Soient p, ¢ € R. Montrer que le polynome X" + pX + ¢ a au plus 3 racines réelles.

Exercice 11.29. — Soit a, X" + --- + ak_HXk“ +ar 1 XF 14+ 4 apun polyndme a coefficients
réels avec 0 < k < netagyiar—1 > 0. Montrer que ses n racines ne sont pas toutes réelles.

Exercice 11.30. — Soit P € R[X] tel que P(x) > 0 pour tout z € R.. Montrer qu’il existe des polyndmes
Q et R dans R[X] tels que P = Q% + R2.

Exercice 11.31. — Soit § € R. Déterminer le reste de la division euclidienne du polyndome ((sin )X +
cos 0)™ par le polyndme X2 + 1.

Exercice 11.32. — Factoriser le polyndme X™ — 1 en produit de facteurs irréductibles dans C[X] puis
dans R[X].
Exercice 11.33. — Soient m et n des entiers positifs.

(1) Calculer les pged des polyndmes X™ — 1 et X" — 1.
(2) Calculer le pged des polynomes X™ !+ ... + X +1let X" L+  + X + 1.
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m

Exercice 11.34. — Soit g un entier strictement positif. Pour tout m € N, on pose P,,(X) = X7 — X.
Montrer P,,, A P, = Pyan.

Exercice 11.35. — (1) Déterminer tous les polyndmes irréductibles de degré 2 dans (Z/2Z)[X].
(2) Déterminer tous les polynomes irréductibles de degré 3 dans (Z/2Z)[X].
(3) Déterminer tous les polynomes irréductibles de degré 4 dans (Z/2Z)[X].

(4) Montrer que le polyndme X*+ a3X? 4+ as X? + a1 X + ag, ol as et a, sont des entiers pairs et a; et
ap des entiers impairs, est irréductible dans Q[X].

Exercice 11.36. — Soit p un nombre premier.

(1) Montrer que le polyndme ®,(X) = XP~! + ... + X + 1 est irréductible dans Q[X] (Indication : on
pourra appliquer le critére d’Eisenstein (th. 1.9.6) au polyndme ®,(X + 1)).

(2) Soit r un entier positif. Montrer plus généralement que le polyndme

D1 (X) 1= Bp(XP) = XPT 0D xP =) o X g

(voir ex. 11.2.20) est irréductible dans Q[X] (Indication : on pourra appliquer le critere d’Eisenstein au
polyndome ®,,-+1(X + 1)).
Exercice 11.37. — Montrer que le polyndme X% + Y2X5 4 Y est irréductible dans C[X, Y].

Exercice 11.38 (Ram Murty). — Soit P(X) = a, X™ + - - - + ag un polyndme de degré n > 1 a coeffi-
cients entiers. On pose

1
= — max{|an_1l, ..., |ao|}-
|an|

(1) Soit z une racine complexe de P. Montrer 1’inégalité

x| < M+1.

(2) On suppose qu’il existe un nombre entier m > M + 2 tel que P(m) soit un nombre premier. Montrer
que le polyndme P est irréductible dans Q[X].

(3) Montrer que le polyndme P(X) = X* 4+ 6X2 + 1 est irréductible dans Q[X] (Indication : on pourra
calculer P(8)).

(4) Montrer que le polynéme P(X) = 4X* + 7X3 + 7X? + 1 est irréductible dans Q[X] (Indication : on
pourra calculer P(10)).

Exercice 11.39. — (1) Soit r un entier positif. Montrer que le polyndme
X XX-1)--(X-r+1
P.(X) = (r) = ( ) r'( ) € Q[X]

prend des valeurs entieres sur tous les entiers.

*(2) Soit P € Q[X] un polynéme qui prend des valeurs entiéres sur tous les entiers assez grands. Montrer
que P est combinaison linéaire a coefficients entiers des polyndmes Py, Py, ... (Indication : on pourra
procéder par récurrence sur le degré de P et considérer le polyndéme P(X + 1) — P(X)).

Exercice 11.40. — Soit A un anneau intégre. Montrer qu’un polynéme P € A[X] non constant est de
dérivée nulle si et seulement s’il existe un nombre premier p tel que p- 14 = 04 (on dit que I’anneau A est
de caractéristique p; ¢f. § IL.1.1) et un polynome @ € A[X] tels que P(X) = Q(XP).

Exercice 11.41. — Soit P € C[X]. Exprimer P A P’ en fonction des racines de P et de leur multiplicité.

Exercice 11.42. — Décomposer en éléments simples la fraction rationnelle m dans C(X),
dans R(X), puis dans Q(X).
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Exercice 11.43. — Décomposer en éléments simples la fraction rationnelle X%H et en déduire sa dérivée
nieéme pour tout entier n > 0.

Exercice 11.44. — * (1) Soit A un anneau intégre et soient F, G € A[Xq,...,X,] des polyndmes pre-
miers entre eux, homogenes de degrés respectifs d et d+ 1. Montrer que le polyndme F'+ G est irréductible
dans A[X1, ..., X,].

(2) A quelle condition nécessaire et suffisante sur les entiers naturels m et n le polyndme X — Y™ est-
il irréductible dans C[X,Y']? (Indication : on pourra attribuer & X et 2 Y des degrés bien choisis pour
pouvoir appliquer (1); cf. rem. 10.9.)

Exercice 11.45. — Soit A un anneau integre et soit ' € A(X7,...,X,,) une fraction rationnelle symé-
trique. Montrer qu’il existe des polyndmes symétriques P, Q) € A[X4,..., X, ] telsque F = P/Q.

Exercice 11.46. — Exprimer a 1’aide des polynomes symétriques élémentaires, lorsque cela est possible,
les expressions suivantes :
o X1 Xo+ XoX3+ X3 Xy + Xy Xy

i Z?,j:llX?Xj 5
>t X
Exercice 11.47. — Soit p un nombre premier impair.
(1) Montrer que
H r=-1
z€Z/pZ, 1<z<p—1
(2) En déduire

©€Z/pZ, 1<a< Bt

puis que, si p = 1 (mod 4), alors —1 est un carré (explicite) modulo p.
Exercice 11.48. — Soit p un nombre premier impair.
(1) Montrer que si x est un carré non nul dans Z/pZ, il vérifie 25 = 1.

(2) En déduire que si z € Z/pZ*, ona
x estun carré <—- xprl =1

et
s £ p_1
rzn'estpasuncarré < x 2z = —1.

En déduire que —1 est un carré modulo p si et seulement si p = 1 (mod 4).

(3) On suppose maintenant p = 1 (mod 4) et soit = un entier tel que 22 + 1 soit divisible par p. Soit Z[i]
I’anneau des entiers de Gauss ; on admettra le résultat montré dans I’exerc. 11.9 que cet anneau est principal.
Montrer que p n’est pas irréductible dans Z[i] (Indication : on pourra remarquer que p | (x +4)(x — 7)) et
qu’il se décompose en p = (a+1ib)(a—ib), avec a, b € Z. Cela montre que p est somme de deux carrés ().
(4) Montrer que si des entiers sont sommes de deux carrés, il en est de méme de leur produit. En déduire
qu’un entier positif tel que tous les nombres premiers p qui apparaissent dans sa décomposition en produit
d’irréductibles avec une puissance impaire vérifient p = 1 (mod 4) sont somme de deux carrés.

9. Cette preuve n’est pas constructive : elle ne dit pas comment trouver explicitement les entiers a et b tels que p = a® + b2.
L algorithme d’Euclide donne un tel moyen : I’entier z tel que p | =2 + 1 est premier avec p et on peut le choisir < p/2; on exécute
I’algorithme d’Euclide pour trouver le pged de p et de = (qui est bien siir 1) et on peut prendre pour a et b les deux premiers restes
qui sont < /p. Si par exemple p = 73, on peut prendre x = 27, puis 73 = 2 x 27+ 19,27 =1x 19+ 8,19 =2 x 8 + 3eton
abien 73 = 82 4 32. La preuve que cet algorithme fonctionne, bien qu’élémentaire, n’est pas triviale (Wagon, S., Editor’s Corner :
The Euclidean Algorithm Strikes Again, The American Mathematical Monthly 97 (1990), 125-129).
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(5) Montrer qu’un entier n = 3 (mod 4) n’est pas somme de deux carrés.

Exercice 11.49. — Résoudre le systeme

zr + vy + =z = 1,

22+ oy 4+ 22 = 21,

1)z + 1/y + 1/z = L
Exercice 11.50. — Soit P un polyndme scindé qui n’a que des racines simples x ;. Calculer j ﬁ%)
Exercice 11.51. — Trouver un polyndme unitaire dont les racines sont les carrés de celles du polyndme
X3 +aX?+bX +c
Exercice 11.52. — Soient p et ¢ des nombres complexes et soient z1, z2 et x3 les racines du polyndme

X? + pX + q. Trouver un polyndme unitaire dont les racines sont 2 + 23, 23 + 22 et 22 + 27

Exercice 11.53. — Soient i,j € N". Nous dirons que i = (i1, ..., y,) est plus petit que j = (j1,...,Jn)
si

® soit ZZ:l i < Z:zljk,

e SOitY . ip = p_qJretilexistek € {1,...,n}telque iy = j1,..., 051 = jr—1 €tix < jk.
(1) Montrer que si i, j € N"™ sont distincts, alors soit i est plus petit que j, soit j est plus petit que i.

(2) On se donne i € N™. Montrer que I’ensemble des j € N™ qui sont plus petits que i est fini.

Soit A un anneau commutatif. Soit P € A[X7,..., X,] un polyndme symétrique non nul et soit i =:
ht(P) le plus grand (au sens de la définition précédente) élément de N™ tel que le coefficient de X;* - - - X i
dans P soit non nul; on note ce coefficient dom(P).

(3) Montrer ¢1 > - -+ > iy,.
(4) On pose
d1 =1 —ig, dQ =19 —i3,...,dn_1 =1lp_1 —in, dn = in-
Montrer que
e soit P = dom(P)X{ - .- %dn;
e soit ht(P — dom(P)X{" - .- %9 ) est plus petit que ht(P).
(5) En déduire le th. 10.11.

Exercice 11.54. — On garde les notations du § 10.6. Montrer les relations
3 1 0 o --- 0
239 b 1 o --- 0
5, — 3% Y :
: . . .0
(TL — 1)En_1 Zn_g s EQ 21 1
nEn Zn,1 En,Q tee 22 21
et
S1 1 0 o - 0
S Sh 2 o - 0
n!y, = S5 52 .
: ) . ) 0
Spn-1 Sn—2 t Sy 51 n—-1
Sp Sn—1 Snh—2 So S1




CHAPITRE 1I

CORPS

1. Généralités

On rappelle qu’un corps est un anneau /& commutatif non nul (c’est-a-dire que 1x # O ) dans lequel
tout élément non nul est inversible. Ses seuls idéaux sont donc {0k} et K, et tout morphisme d’anneaux
d’origine K vers un anneau (unitaire) non nul est injectif.

Si K et L sont des corps, un morphisme (de corps) de K vers L est un morphisme d’anneaux (unitaires)
de K vers L; il est nécessairement injectif et I’on dit que L est une extension de K. On identifiera souvent
une extension K < L avec une inclusion X C L.

1.1. Caractéristique d’un corps. — Soit K un corps. Il existe un plus petit sous-corps de K, appelé
sous-corps premier de K : c’est le sous-corps engendré par 1. Il est isomorphe soit a QQ, auquel cas on
dit que K est de caractéristique 0, soit a un corps de la forme Z/pZ (que I’on note le plus souvent F,);
I’entier p est alors premier et I’on dit que K est de caractéristique p. Dans ce dernier cas,onap-1xg = O
et la formule magique ()

4) Vo,y € K (x +y)P =P + 4~
Autrement dit, I’application de Frobenius

Frg: K — K

r — P

est un morphisme de corps (injectif, car zP = 0 entraine z = 0, mais pas nécessairement surjectif). On note
en général KP son image. Si K = F,, le morphisme de Frobenius est I'identité et K? = K. Plus généra-
lement, si K est un corps fini, on a K? = K (puisque Frx est une application injective entre ensembles
de méme cardinal, donc surjective). En revanche, si K est le corps F,,(X) (infini de caractéristique p), on
aKP =F,(X?) ¢ K.

2. Extensions de corps

Soit K C L une extension de corps. Son degré est la dimension du K -espace vectoriel L, notée [L : K].
L’extension est dite finie si ce degré 1’est, infinie sinon.

1. On peut ’obtenir en remarquant que la dérivée du polyndme (X + y)P € K[X] est nulle, de sorte que le coefficient de X?,
pour chaque 0 < i < p, est nul (puisque la dérivée de X? ne I’est pas). Il ne reste donc que le terme de degré p, qui est XP, et le
terme de degré 0, qui est yP. On a donc montré (X + y)P = XP + yP.
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Exemple 2.1. — Ona[C:R]=2,[K(X): K] =occet[C: Q] = oo (cf ex. 2.8) ).

Théoréeme 2.2. — Soient K C L et L. C M des extensions de corps. On a

(5) [M:K]=[M:L]L:K]

En particulier, 'extension K C M est finie si et seulement si les extensions K C L et L C M le sont.
Démonstration. — Soit (1;);er une base du K-espace vectoriel L et soit (m;),ec.; une base du L-espace
vectoriel M. Nous allons montrer que la famille (1;172;)(; j)crx.; est une base du K -espace vectoriel M.

Cette famille est libre. Supposons que 1’on ait une relation Z(
presque tous nuls. On a

i) EIxT k’i)]‘limj = 0, avec des k‘iyj e K

0= 3 kiglim; = (D kil ).

(i,5)eIxJ jeJ el
Comme la famille (m;) e est libre, on en déduit que pour chaque j € J,ona

> kijli=0.
iel
Comme la famille (I;);c est libre, on en déduit que pour chaque ¢ € I et chaque j € J,onak; ; = 0.
Cette famille est génératrice. Soit y un élément de M. Comme la famille (m;);c; est génératrice, il
existe des z; € L presque tous nuls tels que y = > jeg Timy. Comme la famille (I;);c; est génératrice,
il existe pour chaque j € J des k; ; € K presque tous nuls tels que z; = > . _; k; ;{;. On a donc

el Fi,j
Y =2 ey 2ier kijli.
On en déduit
[M : K] = Card(I x J) = Card(I) Card(J) = [M : L][L : K],

ce qui termine la démonstration du théoreme. O

Remarque 2.3. — L’existence de bases pour un espace vectoriel n’est au programme de 1’agrégation que
pour les espaces vectoriels de dimension finie. Pour le théoréme, il est donc sage de se restreindre, dans le
cadre d’une lecon, au cas ou les extensions K C L et L C M sont finies. On montre alors par la preuve
ci-dessus que I’extension K C M est finie et 1’égalité (5). Inversement, si I’extension K C M est finie,
I’extension K C L D’est aussi (puisque L est alors un sous-K -espace vectoriel du K-espace vectoriel de
dimension finie M), ainsi que 1’extension L C M, puisque toute partie génératrice finie du K-espace
vectoriel M est encore génératrice de M comme L-espace vectoriel.

2.1. Eléments algébriques et transcendants. —

Définition 2.4. — Soit K C L une extension de corps et soit x un élément de L. On dit que x est algé-
brique sur K s’il existe un polynome non nul P € K|[X] tel que P(x) = 0. Dans le cas contraire, on dit
que x est transcendant sur K.

L’extension K C L est dite algébrique si tous les éléments de L sont algébriques sur K.

Exemple 2.5. — Le corps C est une extension algébrique de R. Le réel v/2 est algébrique sur Q. L’en-
semble des nombres réels algébriques sur Q est dénombrable (pourquoi?) : il existe donc des nombres
réels transcendants sur Q (on dit souvent simplement « transcendants »). Le nombre réel Zn>0 10~ est
transcendant (Liouville, 1844 ; cf. exerc. 5.18), ainsi que 7 (Lindemann, 1882). L’extension Q C R n’est
donc pas algébrique.

2. On ne se préoccupera pas ici des différentes « sortes » d’infini dans ce cours; mais ce degré devrait bien sir étre considéré
comme un cardinal.
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Soit K C L une extension de corps et soit S une partie de L. L’intersection de tous les sous-anneaux
de L contenant K et S est un sous-anneau de L que ’on notera K[S], appelé sous-K-algébre de L
engendrée par S. Ses éléments sont tous les éléments de L de la forme P(sy,...,s,), ot n € N,
P € K[X;,...,X,] est un polyndme a coefficients dans K, et s1,...,s, € S. De méme, I'intersec-
tion des sous-corps de L contenant K et S est un sous-corps de L, noté K (S); c’est le corps des fractions
de K[9].

Si z € L, la sous-K-algébre K |[z] de L engendrée par x est donc 1’image du morphisme d’anneaux
K-linéaire
vr: K[X] — L

Le théoréme suivant est fondamental.
Théoréme 2.6. — Soit K C L une extension de corps et soit © un élément de L.

(a) Si x est transcendant sur K, le morphisme o, est injectif, le K-espace vectoriel K [x] est de dimension
infinie et I'extension K C K (x) est infinie.

(b) Si x est algébrique sur K, il existe un polynome unitaire P € K [X| de degré minimal vérifiant P(x) =
0. Ce polynome est irréductible et c’est 'unique polynéme unitaire, irréductible dans K[X|, dont x est
racine dans L. On appelle P le polyndme minimal de = sur K. On a K[x] = K (x) et cette extension de K
est finie de degré deg(P). La famille (1, z, . .., z%¢(P)=1) forme une base du K -espace vectoriel K z].

Démonstration. — La transcendance de z est équivalente par définition a I’injectivité de .. Si ¢, est
injectif, le sous-anneau K[z] de L engendré par x est isomorphe & K [X] donc c’est un K-espace vectoriel
de dimension infinie. De méme, le sous-corps K (x) de L engendré par = est isomorphe & 1’anneau des
fractions rationnelles K (X) (corps des fractions de K[X]) donc c’est un K-espace vectoriel de dimension
infinie. Ceci montre (a).

Si x est algébrique sur K, le noyau de ¢, est un idéal non nul de K[X], qui est donc principal (§ 1.6),
engendré par un polyndme non nul de degré minimal P qui annule z (c’est-a-dire P(x) = 0). II est
unique si on le prend unitaire. L’anneau K [z] est alors isomorphe a I’anneau quotient K [X]/(P) (§ 1.4).
Or ’anneau K [z] est intégre car c’est un sous-anneau de L ; il s’ensuit que 1’idéal (P) est premier, donc P
est un polynoéme irréductible. De plus, ’anneau K[X]/(P) est un corps (prop. 1.6.1) et il en est de méme
pour K[z], donc K[z] = K(z). On termine la preuve en montrant que la famille (1,z,. .., zd(")-1)
forme une base du K -espace vectoriel K |[z].

C’est une famille libre : toute combinaison linéaire nulle non triviale de 1, z, . .., 29°€(P) =1 fournirait
un polyndme annulateur de degré < deg(P), ce qui contredit le choix de P.

C’est une famille génératrice : si y = Q(z) € K|[z], on fait la division euclidienne @ = PS + R de Q
par P, avec deg(R) < deg(P). Comme P(z) = 0,onay = Q(z) = R(z), qui est bien combinaison

linéaire de 1, z, . .., zdes(P)—1, O
Exemple 2.7. — Si a + ib est un nombre complexe avec b # 0, son polyndme minimal sur R est
(X — a)? + b?. Le polyndme minimal de v/2 sur Q est X2 — 2. Le sous-anneau Q[v/2] = {z + yv/2 |

;L'—y\/i

z,y € Q} de R est un corps; I'inverse de « + y/2, si z et i ne sont pas tout deux nuls, est 22

Plus généralement, pour tout entier n > 1, le polyndme minimal de V2 sur Qest X™ —2(ex.1.9.7) et
le sous-anneau Q| %] ={xo+ 1 V24t a1 V21 | zg,...,xn—1 € Q} de R est un corps.

Exemple 2.8. — Soit p un nombre premier. Le polyndme minimal de w = €2™/P sur Q est P(X) =
XP~1 4+ ...+ X +1, de sorte que w est de degré p — 1 sur Q. En effet, P est irréductible (exerc. 1.11.44)
etw en est racine. Si p > 3, le polyndme minimal de w sur Reest (X —w)(X —@) = X2 —2X cos 27“ +1
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et c’est aussi son polyndme minimal sur le corps Q(cos 27); en particulier, [Q(cos 27) : Q(w)] = 2 et le

2 2
A 27 . _ p—1
th. 2.2 entraine alors [Q(cos <F) : Q] = =

Comme il existe des nombres premiers arbitrairement grands, on en déduit [R : Q] = co. On peut aussi
déduire cette égalité du fait qu'une extension finie d’un corps dénombrable est dénombrable (alors que R
n’est pas dénombrable).

Corollaire 2.9. — Toute extension finie de corps est algébrique.

Attention ! La réciproque est fausse (cf. ex. 2.14).

Démonstration. — Soit K C L une extension finie de corps et soit x € L. Le K-espace vectoriel K [x]
est un sous-espace vectoriel de L, donc est de dimension finie. Le th. 2.6 entraine que = est algébrique
sur K. O

On peut aussi facilement démontrer le corollaire directement : si ' C L est une extension finie de corps
de degré n et si x € L, alors la famille 1, x,...,2™ an + 1 éléments donc est une famille liée dans le
K -espace vectoriel L, et une combinaison linéaire nulle non triviale de ces éléments est un polyndéme non
nul de K'[X] dont x est racine. Donc L est une extension algébrique de K.

Corollaire 2.10. — Toute extension de corps K C L engendrée par un nombre fini d’éléments x1, ..., %y
algébriques sur K est finie, donc algébrique. On a de plus L = K|x1, ..., Ty].

Démonstration. — On proceéde par récurrence sur n.

Sin =0, c’est évident. Sin > 1, on pose L' = K(xa,...,x,). Uhypothese de récurrence entraine que
I’extension K C L’ est finie et L' = K[z, ...,x,]. Comme z; est algébrique sur K, il I’est sur L', donc
I’extension L’ C L = L/(x) est finie par le th. 2.6 et L = L'[x1]. Le corollaire résulte alors du th. 2.2 et
du cor. 2.9. O
Théoréeme 2.11. — Soit K C L une extension de corps. L’ensemble des éléments de L algébriques sur K

est un sous-corps de L contenant K. C’est une extension algébrique de K.

Démonstration. — Soient x et y des éléments non nuls de L algébriques sur K. Le cor. 2.10 entraine que
I’extension K C K (x,y) est finie, donc algébrique. Les éléments 2 — y et 2:/y de L sont donc algébriques
sur K. O
Corollaire 2.12. — Toute extension de corps K C L engendrée par des éléments algébriques sur K est
algébrique.

Démonstration. — Soit S C L un ensemble d’éléments de L algébriques sur K et engendrant L. Par

le théoreme, 1’ensemble des éléments de L algébriques sur K est un sous-corps de L, et il contient S.
Comme S engendre L, c’est donc L, qui est ainsi une extension algébrique de K, de nouveau par le
théoreme. O

Exemple 2.13. — Le réel /2 + /3 + /5 est algébrique (sur Q), de méme que le nombre complexe
V2 + V3 +iV5.

Exemple 2.14. — L’ensemble Q C C des nombres algébriques (sur Q) est un corps qui est une extension
algébrique de Q. Elle est de degré infini parce qu’il existe des polyndmes irréductibles dans Q[X ] de degré
arbitrairement grand (exerc. 1.11.44 et ex. 2.8).
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Théoreme 2.15. — Soient K C L et L C M des extensions de corps. Si un élément x de M est algébrique
sur L et que L est une extension algébrique de K, alors x est algébrique sur K.

En particulier, si L est une extension algébrique de K et que M est une extension algébrique de L,
alors M est une extension algébrique de K.

Démonstration. — Si un élément x de M est algébrique sur L, il est racine d’un polyndme P € L[X].
Si I’extension K C L est algébrique, I’extension L’ C L de K engendrée par les coefficients de P est
alors finie (cor. 2.10). Comme z est algébrique sur L', I'extension L' C L'(z) est finie (th. 2.6). Le th. 2.2
entraine que I’extension K C L'(x) est finie, donc algébrique (cor. 2.9), et = est algébrique sur K. O

Remarque 2.16. — Si K C Let L C M sont des extensions de corps, on a donc (th. 2.2 et th. 2.15)

K CLetL C M finies <— K C M finie,
K C LetL C M algébriques <= K C M algébrique.

2.2. Racines de I'unité. — Soit K un corps et soit n un entier > 1. On appelle groupe des racines
n-iemes de 'unité dans K le groupe multiplicatif

pn(K)={Ce K| (" =1}
C’est I’ensemble des racines du polyndme P(X) = X™ — 1 et il a donc au plus n éléments (prop. 1.6.9).
Un élément ¢ de p,, (K) est dit racine primitive n-ieme de I'unité si (* # 1 pour toutd € {1,...,n — 1};
en d’autres termes, si ¢ est d’ordre n dans le groupe p., (K). S’il existe une racine primitive n-iéme de
I'unité ¢ dans K, elle engendre le groupe p,, (K), qui est alors isomorphe & Z/nZ. 1l y a alors

p(n) = Card((Z/nZ)*) = Card{d € {0,...,n — 1} | dAn =1}
différentes racines primitives n-iemes de 1’unité, a savoir les (¢ pour d An = 1.
Exemple 2.17. — On a

{1} si n est impair;
Mn(R) = Mn(Q) = . .
{1,—1} sin estpair.
Il n’y a donc de racines primitives n-ieémes de I'unité dans R ou dans Q que si n € {1, 2}. En revanche,
ona
pn(C) = Z/nZ

pour tout n > 1.

Théoréme 2.18. — Pour tout corps K et tout entier n > 1, le groupe 1, (K) est cyclique d’ordre un
diviseur de n. Plus généralement, tout sous-groupe fini de (K>, x) est cyclique.

En particulier, le groupe multiplicatif d’un corps fini est cyclique.

Démonstration. — Posons m = Card (s, (K)). Tout élément ¢ de p,, (K) est d’ordre un diviseur d de m
(par le théoréeme de Lagrange) et de n (puisque ("™ = 1); c’est alors une racine primitive d-ieéme de 1’unité.
On a vu plus haut que I’ensemble Py C i, (K) des racines primitives d-ieémes de 1’unité est soit vide, soit
de cardinal ¢(d). Comme
pn(K) = U Py,
dlmAn

onadonc m < -4 ,,n, ©(d). Or (exerc. 1.11.16), pour tout entier e > 1,ona -, ¢(d) = e. On en
déduit m < m An, doncm | n, et P, # &. Il existe donc un élément d’ordre m dans ., (K), qui est ainsi
un groupe cyclique d’ordre un diviseur de n. Ceci montre le premier point.
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Si G est un sous-groupe de (K™, x) de cardinal m, il est contenu par le théoreme de Lagrange dans le
groupe cyclique i, (K), qui est de cardinal au plus m. On a donc G = p,,, (K) =~ Z/mZ. Ceci termine la

démonstration de la proposition. O
2.3. Polynomes cyclotomiques complexes. — Soit 7 un entier strictement positif. On définit le n-ieme
polynome cyclotomique (complexe) par

©) e.(X)= I -0

¢ racine primitive
n-ieme de 1 dans C

D’apres ce qui précéde, c’est un polyndme unitaire de degré ¢(n) a coefficients complexes. On a par
exemple

(I)l(X) = X- 15
Dy(X) = X +1,
P3(X) = X2+ X 41,
PyX) = X241
Pour tout entier premier p, on a
p—1
. XP 1
_ _ 2ikm/py _ 2 T & yp—1 L.
o,(X)=[[(X —e )= =X XL
k=1
Proposition 2.19. — Pour tout entiern > 1, ona
(7 X" —1= chd(X).
d|
Le polynome ®,, est unitaire a coefficients entiers.
Démonstration. — Ona X" —1 = Hceun(C)(X — (). Comme dans la preuve du th. 2.18, on remarque

que (i, (C) est la réunion disjointe de ses parties Py, pour d | n. On a donc
xt—1=]] [] & -0 =]]2aX).
dln (EPy d|n
Pour montrer que le polyndme unitaire ®,, est a coefficients entiers, on proceéde par récurrence sur 7 :
par (7), ®,, est le quotient de X™ — 1 par le polyndme unitaire [ din, dsn D ,(X), qui est a coefficients
entiers par hypothese de récurrence. C’est donc un polynome a coefficients entiers (th. 1.7.1). U

Exemple 2.20. — Pour tout entier premier p, ona X? —1 = D2 (X)P,(X)P1(X) = P2 (X)(XP—1),

donc
2

XP -1 -1 -2

D2 (X) = ﬁ:)(p(p )y xp(P=2) L ... XP 41,
Plus généralement, pour tout entier r > 1, on a

Xpr -1 =10 r=1l0, o r—1 r—1

P, (X) = b =xP =) 4 xp(p-2) 4 xP +1=2a,(X? ).
En particulier, on a
Dor(X) = X2 41

Théoréme 2.21. — Pour tout entier n. > 1, le polyndéme ®,, est irréductible dans Q[X]. En particulier,

[Q(e*™/™) - Q] = p(n).

La preuve de ce théoréme (qu’on ne donnera pas ici) est un peu compliquée mais reste du niveau de
I’agrégation. C’est un développement classique pour 1’oral.
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Exercice 2.22. — Montrer qu’une extension finie de Q ne contient qu’un nombre fini de racines de 1’unité.

2.4. Constructions a la regle et au compas. — Ce paragraphe est un classique de I’agrégation et les
problémes qui y sont traités ont un intérét historique, méme si leur intérét mathématique est tres limité.

Définition 2.23. — Soit X un sous-ensemble de R?. On dit qu’un point P € R? est constructible (3
la regle et au compas) a partir de X si on peut obtenir P a partir des points de X par une suite finie
d’opérations de 'un des types suivants :

e prendre l'intersection de deux droites non paralléles passant chacune par deux points distincts déja
construits;

e prendre 'un des points d’intersection d’une droite passant par deux points distincts déja construits
et d’un cercle de rayon joignant deux points distincts déja construits;

e prendre I'un des points d’intersection de deux cercles distincts dont les rayons joignent chacun deux
points distincts déja construits.

On dira qu’une droite est constructible (a partir de X)) si elle passe par deux points constructibles dis-
tincts, et qu’un cercle est constructible si son centre I’est et qu’il passe par un point constructible. On
montre que la perpendiculaire et la paralleéle a une droite constructible passant par un point constructible
sont constructibles, et que le cercle de centre un point constructible et de rayon la distance entre deux points
constructibles est constructible.

Si ¥ est un sous-ensemble de R contenant 0 et 1, on dit qu’un réel x est constructible a partir de X si
c’est I’abcisse d’un point P constructible a partir de 3 x {0} au sens de la définition ci-dessus. Cela revient
au méme de dire que les points (z, 0) et (0, ) sont constructibles a partir de ¥ x {0}.

Théoréme 2.24. — Soit > un sous-ensemble de R contenant O et 1. L’ensemble €, des réels construc-
tibles a partir de 3 est un sous-corps de R tel que, si © € 6, alors \/|z| € Cx.

Démonstration. — L’addition et I’opposé sont évidents (utiliser des cercles). Le produit xy est I’ordonnée
de U'intersection de la droite joignant I’origine au point (1, x) avec la verticale passant par (y,0) ; ’inverse
de z non nul est I’ordonnée de ’intersection de la droite joignant 1’origine au point (x, 1) avec la verticale
passant par (1, 0). La racine carrée d’un élément positif = de %% s’obtient par le théoréme de Pythagore en
construisant un triangle rectangle dont un des cotés est %|x — 1] et dont I’hypothénuse est %(x +1). O

En particulier, étre constructible a partir de {0, 1} est la méme chose qu’étre constructible a partir de Q ;
on dit simplement « constructible ».

Théoréme 2.25 (Wantzel, 1837). — Soit K un sous-corps de R. Un réel x est constructible a partir de K
si et seulement s’il existe une suite d’extensions

K=K¢CK,C---CK,CR
telle que [K; : K;_1]) =2etx € K,,.

Avant de démontrer le théoréme, on va décrire en général les extensions de degré 2.
Lemme 2.26. — Soit K un corps de caractéristique différente de 2 et soit K C L une extension de
degré 2. Il existe v € L \ K tel que 7° € K et L = K|x].
Démonstration. — Siy € L~ K, la famille (1,y) est K-libre, donc c’est une base du K -espace vecto-
riel L. Il existe donc a et b dans K tels que

y? =ay+b.
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Comme la caractéristique de K est différente de 2, on peut poser z = y — 5. On a alors

2 2
9 9 a a
=y — —=b+—€K
T Y ay + 1 + 1 € K,
et L = K[y = K|x]. O
Démonstration du théoréeme. — Soit L un sous-corps de R. On vérifie par des calculs directs que :

e les coordonnées du point d’intersection de deux droites non paralleles passant chacune par deux
points distincts a coordonnées dans L, sont dans L;

e les coordonnées de chacun des points d’intersection d’une droite passant par deux points a coor-
données dans L et d’un cercle de rayon joignant deux points distincts a coordonnées dans L sont
solutions d’une équation de degré 2 a coefficients dans L;

e les coordonnées de chacun des points d’intersection de deux cercles distincts, chacun de rayon joi-
gnant deux points distincts a coordonnées dans L, sont solutions d’une équation de degré 2 a coeffi-
cients dans L.

Par récurrence, on voit que les coordonnées d’un point constructible a partir de K sont dans un corps du
type K,, décrit dans I’énoncé du théoreme.

Inversement, pour montrer que tout point dans un corps de type K, est constructible a partir de K, il
suffit de montrer que tout réel dans une extension quadratique d’un corps L contenue dans R est construc-
tible a partir de L. Une telle extension est engendrée par un réel x tel que 22 € L (lemme 2.26 ). Mais alors
x = +/22 est constructible a partir de L (th. 2.24). ]

Corollaire 2.27. — Soit x un réel constructible sur un sous-corps K de R. Alors x est algébrique sur K
de degré une puissance de 2.

Démonstration. — Si x est un réel constructible, il est dans une extension K,, du type décrit dans le
théoreme de Wantzel (th. 2.25), pour laquelle [K,, : K] = 2" (th. 2.2). En considérant la suite d’extensions
K C K(z) C K,, on voit que [K(x) : K] est une puissance de 2 (th. 2.2). O

Remarque 2.28. — Attention, la réciproque du corollaire est fausse telle quelle (exerc. 5.19). On peut
montrer qu’un nombre réel x est constructible si et seulement s’il vérifie la propriété suivante : x est algé-
brique sur Q et si P est son polynome minimal (sur Q) et si z1, ..., 4 sont toutes les racines (complexes)
de P, alors le degré de I’extension Q C Q(x1,...,x4) est une puissance de 2.

Corollaire 2.29 (Duplication du cube). — Le réel {0’/5 n’est pas constructible (sur Q).

Démonstration. — C’est une racine du polyndme X3 — 2. Si ce dernier est réductible sur Q, il a un
facteur de degré 1, donc une racine rationnelle que 1’on écrit sous forme de fraction réduite a/b. On a alors
a3 = 2b3, donc a est pair. On écrit a = 2a’ avec 4a’> = b3, donc b est pair, contradiction (voir aussi
I’exerc. 1.11.20 ou appliquer le critere d’Eisenstein (th. 1.9.6)).

Ainsi, le degré de V2 sur Q est 3 : il n’est donc pas constructible par cor. 2.27. O
Corollaire 2.30 (Quadrature du cercle). — Le réel \/m n’est pas constructible.
Démonstration. — Ici, on triche : il faut savoir que 7 est transcendant (ex. 2.5), donc aussi /7. O

On dit qu’un angle « est constructible & partir d’un angle 6 si le point (cos ¢, sin «) est constructible a
partir de {(0,0), (0,1), (cosf,sin#)}. Comme sin « est constructible a partir de cos a, ¢’est équivalent a
dire que cos a est constructible a partir de {0, 1, cos 6}.
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Corollaire 2.31 (Trisection de I’angle). — L’angle 0/3 est constructible a partir de ’angle 0 si et seule-
ment si le polynéme X3 — 3X — 2 cos 0 a une racine dans Q(cos 0).

En particulier, I'angle 2w /9 n’est pas constructible a la régle et au compas.

Démonstration. — Comme cos 3u = 4 cos® u — 3 cos u, le réel cos /3 est racine du polyndme
P(X) =4X® - 3X — cosf.

Si P est irréductible sur Q(cos §), il n’a pas de racine dans ce corps, le réel cos /3 est de degré 3 sur ce
corps et ne peut y étre constructible par cor. 2.27.

Si P est réductible sur Q(cos ), étant de degré 3, il doit avoir une racine dans ce corps et se factoriser sur
ce corps en le produit d’un polyndme de degré 1 et d’un polynéme de degré 2. Le réel cos /3 est racine
de I'un de ces deux polynémes, donc est constructible sur Q(cos ) (lemme 2.26 et th. 2.25). Comme
2P(X/2) = X3 — 3X — 2cos 6, cela montre la premiere partie de 1’énoncé.

On a Q(cos 27/3) = Q, donc I’angle 27 /9 est constructible si et seulement si le polyndme X3 —3X —1
a une racine dans Q, ce qui n’est pas le cas (exerc. [.11.20). O

On peut aussi s’intéresser plus généralement, apres Fermat, aux polygones réguliers constructibles a la
régle et au compas. Soit .4” I’ensemble des nombres entiers n > 1 tels que le polygone régulier a n cotés,
inscrit dans le cercle unité et dont ’'un des sommets est (0, 1), soit constructible a la régle et au compas,
¢’est-a-dire tels que e2™/™ (ou, de facon équivalente, 1’angle 27/n) soit constructible. On vient de voir
que 9 n’est pas dans .A".

Rappelons qu’un nombre premier de Fermat est un nombre premier de la forme F,, := 22" + 1.

Théoréme 2.32. — Si un polygone régulier a n cotés est constructible a la régle et au compas, n est le
produit d’une puissance de 2 et de nombres premiers de Fermat distincts.

La réciproque est vraie, mais sa preuve nécessite de connaitre la théorie de Galois. En particulier, le
polygone régulier a 17 cotés est constructible a la regle et au compas (Gauss, 1796).
Démonstration. — Sin € A, le degré de €™/™ sur Q est une puissance de 2 (cor. 2.31). De plus,
2n € 4 (on peut bissecter n’importe quel angle constructible) et tout diviseur de n est dans 4. Il suffit
donc de montrer que si un nombre premier impair p appartiennent a .4, ¢’est un nombre premier de Fermat,
et que le carré d’un nombre premier impair n’est pas dans .4,

Soit p un nombre premier impair. Le degré de exp(2im/p) sur Q est p — 1 (ex. 2.8). Sip € A,
I’entier p — 1 est donc une puissance de 2, et p est un nombre premier de Fermat (exerc. I.11.15).

Pour montrer que p? n’est jamais dans .4/, rappelons (ex. 2.20 et th. 2.21) que le degré de exp(2i7/p?)
sur Q est o(p?) = p(p — 1), qui n’est pas une puissance de 2 (il est divisible par p). O

3. Construction d’extensions

On prend maintenant le probleme dans 1’autre sens : au lieu de se donner une extension d’un corps K et
de regarder si les éléments de cette extension sont, ou non, racines de polyndmes a coefficients dans K, on
part d’un polynéme P € K|[X] et I’on cherche a construire une extension de corps de K dans laquelle P
aura une racine, ou méme, sera scindé (produit de facteurs du premier degré).
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3.1. Corps de rupture. — Etant donné un polyndme irréductible, on commence par construire une ex-
tension dans lequel P a une racine.

Définition 3.1. — Soit K un corps et soit P € K[X] un polyndéme irréductible. On appelle corps de
rupture de P sur K une extension K C L telle que L = K (x), avec x € L et P(z) = 0.

Exemple 3.2. — Le corps C est un corps de rupture du polyndme irréductible X2 + 1 € R[X]. De
méme, le polyndme X2 + X + 1 est aussi irréductible sur R et C est encore un corps de rupture. Plus
généralement, C est le corps de rupture de n’importe quel polyndme de R[X] de degré deux sans racine
réelle (cf. ex. 5.1).

Exemple 3.3. — Le corps Q( \3@) est un corps de rupture du polyndme irréductible X3 — 2 € Q[X]; le
corps Q(j \3/5) en est un autre. Remarquons que le polynome X3 — 2 n’est pas scindé dans ces corps.

Théoréme 3.4. — Soit K un corps et soit P € K|[X| un polynome irréductible. Il existe un corps de
rupture de P sur K.

Démonstration. — L’anneau K [X] étant principal, I’anneau quotient Kp = K[X]/(P) est un corps
(prop. 6.1). Soit zp € Kp I'image de X dans Kp. On a alors P(xp) = 0et Kp = K(xp), donc Kp est
un corps de rupture de P sur K. O

Nous allons maintenant nous intéresser a I’unicité du corps de rupture.

Définition 3.5. — Soient K C L et K C L' des extensions de corps. On appelle K -morphisme de L dans
L' un morphisme de corps L — L' qui est Iidentité sur K.

Proposition 3.6. — Soit P € K[X] un polynéme irréductible. Pour toute extension K C L et toute racine
x de P dans L, il existe un unique K-morphisme Kp — L qui envoie xp sur .

Démonstration. — Le morphisme K[X] — L qui envoie X sur z est nul sur P, donc définit par passage
au quotient I’'unique K -morphisme de K p vers L qui envoie x p sur z. O

Corollaire 3.7. — Soit P € K|[X] un polynéme irréductible. Deux corps de rupture de P sont K-
isomorphes.

On remarquera que 1I’isomorphisme entre deux corps de rupture n’est en général pas unique. Plus préci-
sément, étant donnés des corps de rupture K C Let K C L' de P, etdesracinesz € Letaz’ € L' de P,
il existe un unique K-isomorphisme o: L = L' tel que o(z) = a'.

3.2. Corps de décomposition. — Etant donné un polynéme P 2 coefficients dans K, on cherche mainte-
nant a construire une extension de K dans laquelle P est scindé, c¢’est-a-dire produit de facteurs du premier
degré.

Théoréme 3.8. — Soit K un corps et soit P € K[X] un polynéme non nul de degré d.

(a) 1l existe une extension K C L dans laquelle le polynéme P est scindé, de racines 1, . .., xq, telle que
L=K(x1,...,2q)-

(b) Deux telles extensions sont K-isomorphes.

Une telle extension s’appelle un corps de décomposition de P. C’est une extension finie de K (cor. 2.10).
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Démonstration. — On procede par récurrence sur le degré d de P. Sid = 0, le corps L = K est le seul
qui convient.

Sid > 1, soit @ un facteur irréductible de P dans K [X] (cf: th. 1.8.6) et soit K le corps de rupture
de @ construit plus haut. Le polynéme P admet la racine g dans K, donc s’écrit

PX) = (X - 20)R(X),

avec R € Kg[X] de degré d — 1. L’hypothese de récurrence appliquée a R fournit un corps de décompo-
sition K C L de R sur Kg. Alors R est scindé dans L[X], de racines z1,...,24_1, donc aussi P, de
racines xq, Z1,...,Z4—1. Deplus, L = Kg(x1,...,2q4-1) = K(2g,1,...,2q—1), donc L est un corps
de décomposition de P, et ceci montre (a).

Soient K C L et K C L’ des corps de décomposition de P, et soient = une racine de @ (un facteur
irréductible de P dans K[X]) dans L et 2’ une racine de @Q dans L'. Le corps K(z) C L est un corps
de rupture pour @ sur K, et il en est de méme pour le corps K(z') C L’. 1l existe donc (cor. 3.7) un
K-isomorphisme K (z) = K (x') qui envoie x sur z’. Il permet de considérer L’ comme une extension de
K (x) via le morphisme composé K (z) = K (') C L'.

Ecrivons comme plus haut P(X) = (X —z)R(X) avec R € K (x)[X] de degré d — 1. Les extensions L
et L’ de K (x) sont alors des corps de décomposition de R sur K (x). L’hypothése de récurrence appliquée
a R entraine que L et L' sont K (x)-isomorphes, donc K -isomorphes. Ceci prouve (b). U

Exemple 3.9. — Pour tout d > 3, le corps C est un corps de décomposition pour le polynome X — 1 €
R[X].

Exemple 3.10. — Le corps Q( V2,5 ) est un corps de décomposition pour le polynome X? — 2 € Q[X].
En considérant la suite d’extensions Q C Q( \3/5) C Q( f@, 7), on voit que c’est une extension de degré 6

de Q.

Remarque 3.11. — Soit K un corps de caractéristique 0 et soit P € K[X] un polyndme irréductible. Son
polynome dérivé P’ est alors non nul et est donc premier avec P. En particulier, P n’a que des racines
simples dans un corps de décomposition (prop. 1.10.5).

Cela n’est plus nécessairement vrai en caractéristique p > 0 (voir cependant la rem. 4.3). Posons L =
F,(Y), vu comme extension de K’ = L? = F,(Y?). Le polyndme P(X) = XP —Y? € K[X] est irréduc-
tible (Eisenstein). Un corps de décomposition est L et dans ce corps, il se décompose en P(X) = (X —Y)?.
Il a donc une unique racine, d’ordre p.

3.3. Cloture algébrique. —

Définition 3.12. — On dit qu’un corps ) est algébriquement clos si tout polynéme non constant de Q[ X|
a une racine dans Q.

Une cloture algébrique d’un corps K est une extension algébrique de corps K C € telle que S est un
corps algébriquement clos.

Si §2 est un corps algébriquement clos, tout polyndme non constant de Q[ X] est scindé dans €2, comme
on le voit facilement en raisonnant par récurrence sur le degré du polyndme.

Exemple 3.13. — Le corps C est algébriquement clos (c’est le théoreme de d’ Alembert—Gauss, qui est
au programme de I’agrégation). C’est une cloture algébrique de R, mais pas de Q (car I’extension Q C C
n’est pas algébrique : il existe des nombres complexes transcendants).

Proposition 3.14. — Soit K C L une extension algébrique de corps. On suppose que tout polynéme
de K[X] est scindé dans L. Alors L est une cloture algébrique de K.
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La conclusion subsiste si on suppose seulement que tout polyndme de K[X] a une racine dans L, mais
c’est beaucoup plus difficile a montrer.

Démonstration. — Soit @ € L[X] un polyndme irréductible et soit z une racine de @) dans une extension
de L, de sorte que () est le polyndme minimal de x sur L. Alors x est algébrique sur L donc sur K (th. 2.15).
Soit P € K[X] son polyndme minimal sur K ; on a alors @ | P dans L[X]. Mais par hypothése faite dans
la proposition, P est scindé dans L, donc x € L, et Q a donc une racine dans L.

Comme tout élément de L[X] est produit de polyndmes irréductibles (th. 1.8.6), on a montré que tout
polyndme de L[X] a une racine dans L, donc que L est un corps algébriquement clos. C’est donc une
cloture algébrique de K. O

A partir d’un corps algébriquement clos, il est facile de construire une cldture algébrique pour n’importe
quel sous-corps.

Proposition 3.15. — Soit Q un corps algébriquement clos et soit K C ) un sous-corps. L’ensemble des
éléments de §) qui sont algébriques sur K est une cloture algébrique de K.

Démonstration. — On a déja vu que I’ensemble K des éléments de  qui sont algébriques sur K est
un sous-corps de 2 (th. 2.11), extension algébrique de K. Montrons qu’il est algébriquement clos. Soit
P € K[X] un polynéme non constant et soit = une racine de P dans (2. Alors x est algébrique sur K, donc
aussi sur K (th. 2.15), de sorte que x € K®), ]

Exemple 3.16. — Le corps Q C C des nombres algébriques (cf. ex. 2.14) est une cloture algébrique de Q.
C’est un corps dénombrable (pourquoi ?).

Théoreme 3.17 (Steinitz, 1910). — Soit K un corps. 1l existe une cloture algébrique de K. Deux clotures
algébriques de K sont K -isomorphes.

Démonstration. — La construction d’une cldture algébrique en général utilise 1’axiome du choix (par
exemple sous la forme de I’existence d’un idéal maximal dans un anneau que I’on construit). Pour simplifier
la démonstration, nous nous limiterons donc au cas ou le corps K est (au plus) dénombrable et nous ne
démontrons que Iexistence d’une cloture algébrique. Lensemble K[X] est alors dénombrable. On peut
donc numéroter ses éléments en une suite (P, ),en. On construit une suite (K, ),en de corps emboités en
posant Ky = K et en prenant pour K11 un corps de décomposition du polyndéme P,,, vu comme élément
de K,[X]. Posons
L= ] K

Il existe sur L une (unique) structure de corps faisant de chaque K, un sous-corps de L et K C L est une
extension algébrique.

Tout polynéme de K[X] est un des P, donc est par construction scindé dans L. Ce dernier est donc une
cloture algébrique de K par la prop. 3.14.

Nous ne démontrerons pas que deux clotures algébriques de K sont K-isomorphes (méme dans le cas
K = Q, on utilise I’axiome du choix). O

3. Pour prouver que K est algébriquement clos, on peut aussi utiliser la prop. 3.14 : tout polynéme P € K[X] non constant a
une racine dans €, et cette racine est dans K par définition de K.
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4. Corps finis

On dit qu’un corps K est fini s’il n’a qu’un nombre fini d’éléments. Sa caractéristique est alors un
nombre premier p et son sous-corps premier le corps F,, = Z/pZ. L'extension F,, — K est de degré
fini n, de sorte que K est de cardinal p”.

Théoréeme 4.1. — Soient p un entier premier et n un entier > 1.
(1) 1l existe un corps fini a p™ éléments.

(2) Tout corps fini a p™ éléments est un corps de décomposition du polynéme XP — X sur le corps F,.
En particulier, deux tels corps sont isomorphes.

On parlera souvent du corps a p™ éléments, noté F .

Démonstration. — Soit F,, C K un corps de décomposition du polynéme P(X) := XP" — X sur F, et
soit K C K I’ensemble des racines de P dans K. Par la formule magique (4), ¢’est un sous-corps de K,
qui lui est donc égal puisque K est engendré par ces racines. Ces racines sont toutes distinctes car sa dérivée
étant —1, le polyndme P n’a pas de racine multiple (prop. 1.10.5(2)). En particulier, Card(K) = p™. Ceci
montre (1).

Soit K un corps fini a p™ éléments. Le groupe (K *, x) étant d’ordre p™ — 1, tout élément non nul x
de K vérifie 2P~ = 1 (théoréme de Lagrange). En particulier, les p™ éléments de K sont exactement les
racines de P, qui est ainsi scindé dans K. Le corps K est donc un corps de décomposition de P sur F,,.
Par le th. 3.8, ceci montre (2). O

Remarque 4.2. — Si P € F,[X] estirréductible et de degré 2, son corps de rupture (qui est aussi un corps
de décomposition) est une extension de degré 2 de F,,, donc est de cardinal p? : c’est F 2. Il s’ensuit que
dans F2, tous les polynomes de degré 2 a coefficients dans F,, sont scindés (de la méme facon que dans
C, tous les polynomes a coefficient réels sont scindés).

Si —1 n’est pas un carré dans F,, (cela arrive si et seulement si p = 3 (mod 4)), le polyndme X2 + 1
est irréductible dans F,,[X] et on a F,» = F,[i], avec i* = —1. Cela peut étre utile pour faire des calculs
dans F2.

Remarque 4.3. — Soit P € F,,»[X]. Si P’ = 0, on peut écrire P(X) = 3, a; X"?. Comme le morphisme
de Frobenius Frppn est bijectif (§ 1.1), on peut écrire

P(X) = (Z Fre!, (a:)X')".

En particulier, P ne peut étre irréductible. Autrement dit, le polyndme dérivé d’un polyndme irréductible
P € Fyn[X] est non nul et est donc premier avec P. En particulier, comme dans la rem. 3.11, P n’a que
des racines simples dans un corps de décomposition.

4.1. Théoréme de I’élément primitif. — Le résultat suivant permet de simplifier la vision que I’on a des
extensions finies. Mais il n’est pas valable en toute généralité (voir ex. 4.6).

Théoréme 4.4. — Soit K un corps qui est soit fini, soit de caractéristique 0 et soit K C L une extension
finie. Il existe v € L tel que L = K (x).

Démonstration. — Si le corps K est fini, le corps L est aussi fini. Par le th. 2.18, le groupe multiplicatif
(L*, x) est engendré par un élément . On a alors L = K (z).

Supposons maintenant K de caractéristique O (donc infini). Comme L est une extension finie de K, on
peut faire une récurrence sur le nombre de générateurs de L sur K et on voit qu’il suffit de montrer le
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théoréme pour L = K (x,y). Le fait fondamental qu’on va utiliser est qu’un polyndme irréductible n’a que
des racines simples dans un corps de décomposition (rem. 3.11).

Soit P le polyndme minimal de = sur K, soit () le polyndme minimal de y sur K et soit M un corps
de décomposition du polyndme PQ. La rem. 3.11 entraine que P et (Q sont scindés a racines simples dans
M. On les écrit

m n

PX) =[x -z) , QX)=][(x -y,
i=1 j=1
ou les x; (resp. les y;) sont distincts deux a deux, avec 1 = x et y; = y. Comme K est infini, on peut
choisir t € K qui n’est égal a aucun des éléments zi:y? de M,pouri € {1,...,m}etje€{2,...,n},de
J

sorte que z := x + ty € L n’est égal a aucun des x; + ty;.

On a bien sir K(z) C K(x,y). Montrons qu’il y a égalité en prouvant y € K(z) (donc aussi x =
z — ty € K(z)). Notons que y est racine de Q(X) € K[X]etde R(X) := P(z —tX) € K(z)[X], donc
aussi de leur pged S(X) € K(z)[X]. Comme S | @, il est produit dans M[X] de facteurs distincts X —y;.
SiX —y; | Savecj € {2,...,n},alors 0 = S(y;) = R(y;) = P(z — ty;). Ceci entraine que z — ty;
est I'un des z;, ce qui contredit le choix de t. Comme S(y) = 0, on en déduit S(X) = X — y;, donc
y=1y1 € K(z)et K(z,y) = K(2). O

Corollaire 4.5. — Soit K un corps qui est soit fini, soit de caractéristique 0 et soit K C L une extension
finie. Il n’existe qu’un nombre fini d’extensions intermédiaires K C M C L.

L’énoncé est bien slir évident lorsque K est fini puisqu’il n’y a alors qu’un nombre fini de sous-
ensembles de L.

Démonstration. — Ecrivons L = K (z) (th. 4.4) et soit P € K[X] le polyndme minimal de z sur K. A
chaque extension intermédiaire K’ C M C L, associons le polyndme minimal Py; € M[X] de = sur M.
11 est unitaire et divise P dans L[X], donc il n’y a qu’un nombre fini de polyndmes possibles Py .

Il suffit maintenant de montrer que la sous-extension M est enticrement déterminée par le polyndme
Py =X+ac 1 X 1+---+a; X +ap.Onatoutd’abord a._1,...,a0 € M,donc K(a._1,...,a9) C
M. De plus, comme Py (z) =0et L = K(z) = K(ae—1,...,a0)(x),ona[L: K(ae_1,...,a0)] < e.
Comme e = [L : M] (puisque L = M (x)), on en déduit M = K(ae—1,...,ap), ce qui montre ce qu’on
voulait : M est le sous-corps de L engendré par les coefficients du polynéme Pp;. O

Exemple 4.6 (Une extension finie avec une infinité de sous-extensions). — Soit p un nombre premier.
Considérons le corps L = F,(X,Y) comme extension du corps K = L = F,(XP?,Y?) (infini de
caractéristique p). C’est une extension finie de K de degré p? (X et Y sont algébriques de degré p sur K).
Mais il n’existe pas d’élément F’' de L tel que L = K (F). En effet, pour tout F' € L, on a FP € K, donc
[K(F): K] <p.

Par ailleurs, considérons, pour chaque n € N, les extensions L,, := K(X + Y X"P) de K, toutes de
degré p et contenues dans L. Si L,,, = Ly, alors X + Y X™? et X + Y X™P sont dans L,,,, donc aussi leur
différence Y (X" — X™P). Si m # n, la différence X" — X™? est non nulle dans K, donc inversible.
On en déduit Y € L,,, puis X € L,,, donc L,,, = L, ce qui est absurde. Les sous-extensions (L, )neN
de L sont donc distinctes deux a deux et il y en a une infinité.

Corollaire 4.7. — Soit K un corps qui est soit fini, soit de caractéristique 0 et soit K C L une extension
algébrique. On suppose qu’il existe un entier C' tel que le degré sur K de tout élément de L est < C. Alors
K C L est une extension finie (de degré < C).

Démonstration. — Soit x un élément de L de degré maximal d sur K (ona d < C). Soity € L; I’ex-
tension K C K(x,y) est finie donc, par le th. 4.4, elle est engendrée par un élément z. Par choix de z,
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le degré de z sur K, c’est-a-dire le degré de I’extension K C K(z) = K(z,y), est < d. Comme elle
contient I’extension K C K(x), qui est de degré d, ces extensions sont égales et y € K (x). On a donc
L =K(z). O

Exemple 4.8. — Soit p un nombre premier et soit I un ensemble infini. Considérons le corps L =
F,((X;)ier) comme extension du corps K = LP = F,((X?);ecr). Tout élément F de L est de degré
< psur K, puisque F? € K, mais L est une extension infinie de K.

5. Exercices

5.1. Généralités. —

Exercice 5.1. — Soit K un corps de caractéristique 3. Montrer que les médianes de tout triangle dans K2
sont paralleles.

Exercice 5.2. — Pour tous nombres réels positifs a et b, montrer

Q(a,b,v/a,Vb) = Q(a,b,va+ Vb).

5.2. Extensions finies. —
Exercice 5.3. — Trouver le polyndme minimal de v/3 + i sur Q.
Exercice 5.4. — (1) Calculer le degré de I’extension Q(v/2,v/3) de Q.

(2) Calculer le degré de I’extension Q(v/2 + v/3) de Q.
(3) Calculer le degré de I’extension Q(\/i, {a’/i) de Q.

Exercice 5.5. — Soit K C L une extension de corps finie de degré premier. Pour tout € L~ K, montrer
que L = K(x).
Exercice 5.6. — Soit K C L une extension de corps finie de degré impair. On suppose qu’il existe € L

tel que L = K (). Montrer que L = K (2?).

Exercice 5.7. — Soit K C M une extension finie de corps et soient K C L C M et K C L' C M des
extensions intermédiaires. Notons LL’ le sous-corps de M engendré par L et L'. Montrer [LL' : L'] <
[L : K] (Indication : on pourra prendre une base de L sur K et montrer qu’elle engendre LL’ sur L’).

5.3. Racines de unité. —

Exercice 5.8. — Soit K un corps de caractéristique p > 0 et soit r un entier 2> 1. Quels sont les groupes
ppr (K) ?

Exercice 5.9. — Soit p un nombre premier. Déterminer selon les valeurs de ’entier n > 1 le groupe
1in(Z/pZ).

Exercice 5.10. — Soit K un corps infini. Montrer que le groupe (K *, x) n’est pas engendré par un élé-
ment.

Exercice 5.11. — Montrer que pour tout n > 2, on a ,,(0) = 1 et que le polynéme cyclotomique ®,, est

réciproque : X¥(M @, (1/X) = &, (X).

Exercice 5.12. — Montrer 1’égalité Q(e2™/®) = Q(v/2,1).
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Exercice 5.13. — Pour tout entier k strictement positif, on pose (j, == e*7/*_ Soient m et n des entiers
strictement positifs. On veut montrer 1’égalité

Q(Cm) N Q(Gn) = QGman)-
On pose K = Q(¢m) N Q(Cn)-
(1) Montrer que si m | n, on a Q(¢) € Q(¢n)- En déduire K 2 Q(Cman)-
(2) Montrer qu’on a K(¢m) = Q(¢m), K(¢n) = Q(¢n) et K(Gmvn) = Q(Cmvn)-
(3) Montrer Q(Cm, Cn) = Q(Gmvn)-

(4) En déduire [Q((m,Cn) @ Q(Cm)] = @(m V n)/e(m) puis, en utilisant I'exerc. 5.7, [Q((,) : K| >
p(mVn)/p(m).

(5) Démontrer la formule ¢(m)p(n) = ¢(m V n)p(m A n) et conclure.

(6) En déduire tous les entiers strictement positifs n tels que v/2 € Q(¢n) (Undication : on pourra utiliser
I’exerc. 5.12).

5.4. Extensions algébriques. —
Exercice 5.14. — Trouver toutes les extensions algébriques du corps C.
Exercice 5.15. — Montrer que tout corps algébriquement clos est infini.

Exercice 5.16. — On considere le corps K = Q(T) et ses sous-corps K1 = Q(T?) et Ko = Q(T?—-T).
Montrer que les extensions K; C K et Ko C K sont algébriques, mais pas ’extension K1 N Ko C K
(Indication : on pourra montrer K1 N Ky = Q).

Exercice 5.17. — Soit K un corps et soit L un corps tel que K C L C K(T).
(1) Si L est une extension algébrique de K, montrer que L = K.

(2) Si L # K, montrer que K (T') est une extension finie de L.

Exercice 5.18 (Nombres de Liouville). — Le but de cet exercice est de donner un exemple explicite de
nombre transcendant.

(1) Soit & un nombre réel algébrique irrationel. Montrer qu’il existe un réel C' strictement positif et un
entier positif n tels que

C

qTL

(Indication : on pourra introduire un polynéme a coefficients entiers qui annule « et appliquer judicieuse-
ment I’inégalité des accroissements finis).

VpeZ YgeN- {0} ’oﬁﬂz

(2) Montrer que le nombre réel Zn>1 10" est transcendant (sur Q).

5.5. Nombres constructibles. —

Exercice 5.19. — Considérons le polyndome P(X) = X% — X — 1 € Q[X].
(1) Montrer que P a exactement deux racines réelles distinctes x1 et zo.
(2) On écrit (X — z1)(X — 22) = X% + aX + bavec a, b € R. Montrer [Q(a?) : Q] = 3.

(3) Montrer que x; et x2 ne peuvent étre tous les deux constructibles, bien qu’ils soient de degré 4 sur Q.



5. EXERCICES 49

5.6. Corps de décomposition. —

Exercice 5.20. — Déterminer le corps de décomposition du polyndme X3 — 3 sur Q et en donner une
base sur Q.
Exercice 5.21. — Montrer que le corps de décomposition d’un polyndéme de degré d est une extension de

degré au plus d!.

Exercice 5.22. — Soit p un nombre premier, soit K un corps et soit a € K. Montrer que le polyndme
XP — g est irréductible dans K [X] si et seulement s’il n’a pas de racines dans K (Indication : on pourra
montrer que si X? — a = PQ, avec n := deg(P) et P € K[X] unitaire, on a a™ = ((—1)"P(0))?, en
décomposant X? — a en produit de facteurs de degré 1 dans un corps de décomposition).

5.7. Corps finis. —

Exercice 5.23. — FEcrire les tables d’addition et de multiplication du corps Fy (4),

Exercice 5.24. — Montrer que le polyndme P(X) = X+ X5+ X4 4+ X3+ X2 + X + 1 est irréductible
dans F3[X] (Indication : on pourra considérer le corps de rupture d’un facteur irréductible de P).

Exercice 5.25. — Quel est le groupe additif (Fp»,+)?

Exercice 5.26. — Soit p un nombre premier.

(1) Comparer les trois groupes additifs (F 2, +), (F3,+) et (Z/p®Z, +) : lesquels sont isomorphes ?
(2) Comparer les trois anneaux correspondants : lesquels sont isomorphes ?

(3) Pour les trois anneaux précédents, déterminer les groupes (multiplicatifs) formés des éléments inver-
sibles : lesquels sont isomorphes ?

Exercice 5.27. — Soient p et ¢ des nombres premiers. Montrer que F,~ est isomorphe a un sous-corps
de F» si et seulement si p = g et m divise n.

Exercice 5.28. — (1) Montrer que le polyndme X* — X — 1 n’a pas de racine dans le corps Fas.
(2) Montrer que le polyndme X* — X — 1 est irréductible dans F5[X].

Exercice 5.29. — Factoriser le polyndme X* — 2X?2 + 9 dans R[X], dans Q[X] et dans F,[X] (ol p est
un nombre premier quelconque) (Indication : on pourra utiliser les identités

X*—2X?49=(X*"-2X?+1)+8= (X" +6X?+9) - 8X? = (X* —6X%+9) +4X?

pour montrer que ce polyndme est réductible modulo tout p).

4. Voir exerc. I.11.1.



