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CHAPITRE I

ANNEAUX

1. Définitions

Définition 1.1. — Un anneau (unitaire) est un triplet (A,+,×), où + (l’« addition ») et × (la « multipli-
cation ») sont des lois internes sur A telles que
• (A,+) est un groupe abélien, dont l’élément neutre est noté 0A (ou simplement 0) ;
• la multiplication est associative et possède un élément neutre est noté 1A (ou simplement 1) ;
• la multiplication est distributive par rapport à l’addition :

∀a, b, c ∈ A a× (b+ c) = a× b+ a× c (b+ c)× a = b× a+ c× a.

L’anneau (A,+, ·) est commutatif si la multiplication est commutative.

On note souvent ab au lieu de a× b. On note aussi −a l’opposé de A, c’est-à-dire que a+ (−a) = 0A.
On a, pour tout a dans A,

0Aa = (0A + 0A)a = 0Aa+ 0Aa,

d’où, en ajoutant des deux côtés −0Aa,
0Aa = 0A.

De même,
a0A = 0A.

Pour tous éléments a et b de A, on a alors

ab+ (−a)b = (a+ (−a))b = 0Ab = 0A,

donc
(−a)b = −ab,

ainsi que (« règle des signes »)

a(−b) = −ab (−a)(−b) = −(−a)b = −(−ab) = ab.

Si a ∈ A et m ∈ Z, on définit ma (comme dans tout groupe abélien) par récurrence sur m en posant

0a := 0A , ∀m ∈ Z (m+ 1)a = ma+ a.

On a ainsi, pour tout m,n ∈ Z,
(m+ n)a = ma+ na.

Si a ∈ A et m ∈ N, on définit am par récurrence sur m en posant

a0 := 1A , ∀m ∈ N am+1 = am × a.

On a ainsi, pour tout m,n ∈ N,
am+n = aman.

Exemple 1.2. — L’anneau nul A = {0A} est un anneau commutatif. Un anneau A est nul si et seulement
si 0A = 1A.

Exemple 1.3. — Les triplets (Z,+,×) et (Z/nZ,+,×) sont des anneaux commutatifs.
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Étant donnés un ou des anneaux, on peut en fabriquer d’autres.

Construction 1.4 (Produit d’anneaux). — Le produit direct
∏
i∈I Ai d’une famille d’anneaux (Ai,+,×)i∈I

est un anneau (pour les lois d’addition et de multiplication terme à terme).

Construction 1.5 (Matrices). — Soit A un anneau commutatif et soit n un entier strictement positif. On
définit l’anneau Mn(A) des matrices carrées d’ordre n à coefficients dans A comme l’ensemble An

2

des
tableaux (aij)16i,j6n d’éléments de A muni de l’addition terme à terme, la multiplication de matrices
(aij)16i,j6n et (bij)16i,j6n étant définie comme la matrice (cij)16i,j6n, où

cij =

n∑
k=1

aikbkj .

L’anneau Mn(A) n’est commutatif que si A est l’anneau nul ou si n = 1.

Définition 1.6. — Soit A un anneau.

(a) Un élément de A est inversible (on dit aussi que c’est une unité de A) s’il admet un inverse pour
la multiplication. L’ensemble des éléments inversibles, muni de la multiplication, est un groupe noté habi-
tuellement A×.

(b) L’anneauA est intègre s’il est commutatif, non nul et si le produit de deux éléments non nuls deA est
encore non nul. C’est un corps s’il est commutatif, non nul et que tout élément non nul de A est inversible.

Un corps est un anneau intègre.

Exemple 1.7. — L’anneau Z est intègre et ses unités sont {−1, 1}.

Exemple 1.8. — Si n est un entier strictement positif, les unités de l’anneau Z/nZ sont les classes des
entiers premiers à n. On a

Z/nZ est un corps⇔ Z/nZ est un anneau intègre⇔ n est un nombre premier.

Exemple 1.9. — Soit A un anneau commutatif et soit n un entier strictement positif. Les unités de l’an-
neau Mn(A) sont les matrices dont le déterminant est une unité de A.

En effet, si M ∈ Mn(A) est inversible, il existe une matrice N ∈ Mn(A) telle que MN = In.
En prenant les déterminants, on obtient dét(MN) = dét(M) dét(N) = 1 (le déterminant d’un produit
est le produit des déterminants, dans n’importe quel anneau), de sorte que dét(M) est inversible dans A
(d’inverse dét(N)).

Inversement, pour toute matrice M ∈ Mn(A), on a tcom(M)M = M tcom(M) = dét(M)In, où
com(M) est la comatrice de M (dont les coefficients sont les cofacteurs de M ). Si dét(M) est inversible
dans A, la matrice M est inversible dans Mn(A), d’inverse (dét(M))−1 tcom(M).

Remarque 1.10 (Simplification dans les anneaux intègres). — Soit A un anneau intègre et soient
a, b, c ∈ A tels que ab = ac. Si a 6= 0A, alors b = c. En effet, on peut réécrire l’hypothèse a(b− c) = 0A.
Comme a 6= 0A et que l’anneau A est intègre, on a b− c = 0A, c’est-à-dire b = c.

Définition 1.11. — Un sous-anneau d’un anneau A est un sous-ensemble B de A contenant 1A, stable
par addition, opposé et multiplication. Muni de la restriction de l’addition et de la multiplication, B est un
anneau.

Définition 1.12. — Soient A et B des anneaux. Un morphisme (d’anneaux) entre A et B est une applica-
tion f : A→ B qui vérifie f(1A) = 1B et

∀x, y ∈ A f(x+ y) = f(x) + f(y) f(xy) = f(x)f(y).
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Un isomorphisme entre A et B est un morphisme qui est bijectif (son inverse est alors automatiquement
aussi un morphisme).

Si f : A→ B est un morphisme d’anneaux, f(A) est un sous-anneau de B. Si f est injectif, il induit un
isomorphisme de A sur f(A). On dit parfois qu’on identifie A à un sous-anneau de B.

Exemple 1.13. — Soit A un anneau. Il existe un unique morphisme Z → A : il envoie tout entier n
sur n1A.

Si un anneau A est intègre, on construit son corps des quotients (ou corps des fractions) KA comme
l’ensemble des classes d’équivalence (appelées « fractions ») des paires (a, b), avec a ∈ A et b ∈ Ar {0},
pour la relation d’équivalence

(a, b) ∼ (a′, b′)⇐⇒ ab′ = a′b.

La classe d’équivalence de (a, b) est notée a
b . Muni des opérations (addition et multiplication) habituelles

sur les fractions, on vérifie que KA est bien un corps.

2. Anneaux de polynômes

2.1. Polynômes en une indéterminée. — Soit A un anneau commutatif. On définit l’anneau des poly-
nômes à coefficients dans A de la façon suivante. Considérons l’ensemble A[X] (aussi noté A(N)) des
suites (ai)i∈N d’éléments de A dont tous les termes, sauf un nombre fini, sont nuls. On définit l’addition
en additionnant terme à terme. Pour la multiplication, c’est plus compliqué : le produit des polynômes
(ai)i∈N et (bj)j∈N est le polynôme (ck)k∈N défini par ck =

∑k
i=0 aibk−i. On vérifie que ces deux opé-

rations vérifient les axiomes requis et font de A[X] un anneau commutatif, avec 0A[X] = (0A, 0A, . . . ) et
1A[X] = (1A, 0A, 0A, . . . ).

On note X la suite (0A, 1A, 0A, . . . ). Tout polynôme non nul s’écrit alors de façon unique comme

P (X) = adX
d + · · ·+ a1X + a0,

avec d ∈ N, ad, . . . , a1, a0 ∈ A et ad 6= 0A. L’entier d s’appelle le degré du polynôme P et ad est son
coefficient dominant ; on dit que P est unitaire si son coefficient dominant est 1A. Il est pratique de décréter
que le degré du polynôme nul est −∞.

L’application A→ A[X] qui envoie a sur la suite (a, 0A, 0A, . . . ) est un morphisme injectif d’anneaux.
On identifie donc A à un sous-anneau de A[X] (celui des polynômes nul ou de degré 0).

Proposition 2.1. — Soit A un anneau intègre.

(a) Si P,Q ∈ A[X], on a deg(P +Q) 6 max{deg(P ),deg(Q)}.

(b) Si P,Q ∈ A[X] sont non nuls, le produit PQ est non nul et on a deg(PQ) = deg(P ) + deg(Q). En
particulier, l’anneau A[X] est intègre.

(c) Les unités de l’anneau A[X] sont les unités de l’anneau A (vues comme polynômes de degré 0).

Démonstration. — Le point (a) est facile à vérifier.

Si P (X) = adX
d+ · · ·+a1X+a0, avec ad 6= 0A et d = deg(P ), et Q(X) = beX

e+ · · ·+ b1X+ b0,
avec be 6= 0A et e = deg(Q), on a (PQ)(X) = adbeX

d+e + · · · . Comme A est intègre, on a adbe 6= 0A,
donc deg(PQ) = d+ e = deg(P ) + deg(Q). Cela montre (b).

Montrons (c). Si u ∈ A est une unité, son inverse u−1 dans A est aussi son inverse dans A[X]. Inverse-
ment, si P ∈ A[X]×, on a PP−1 = 1A[X] = 1A et, en prenant les degrés et en appliquant (b), on trouve
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deg(P ) deg(P−1) = deg(1A) = 0, donc deg(P ) = deg(P−1) = 0. Les polynômes P et P−1 sont ainsi
constants, donc éléments de A, et P−1 est l’inverse de P dans A, de sorte que P est une unité de A.

Remarque 2.2. — Attention, le point (c) ci-desssus n’est plus vrai si A n’est pas intègre. Le polynôme
P (X) = 2̄X + 1̄ ∈ (Z/4Z)[X] est inversible dans l’anneau (Z/4Z)[X], d’inverse lui-même (puisque
P (X)2 = 4̄X2 + 4̄X + 1̄ = 1̄), mais il n’est pas constant.

Remarque 2.3. — Si K est un corps, l’anneau K[X] est intègre (prop. 2.1(b)). On note K(X) son corps
des fractions. Ses éléments sont les fractions rationnelles à coefficients dans K.

2.2. Polynômes en plusieurs indéterminées. — Soit A un anneau commutatif et soit n un entier stric-
tement positif. On définit plus généralement l’anneau commutatif A[X1, . . . , Xn] des polynômes en n in-
déterminées à coefficients dans A de façon analogue : c’est l’ensemble des suites (aI)I∈Nn d’éléments
de A dont tous les termes, sauf un nombre fini, sont 0A. On définit l’addition en additionnant terme
à terme et le produit de polynômes (aI)I∈Nn et (bJ)J∈Nn comme le polynôme (cK)K∈Nn défini par
cK =

∑
I,J∈Nn, I+J=K aIbJ .

Pour i ∈ {1, . . . , n}, on note Xi la suite dont tous les éléments sont 0A sauf celui correspondant à
l’élément I de Nn dont toutes les coordonnées sont nulles sauf la i-ième qui vaut 1. Tout élément de
A[X1, . . . , Xn] s’écrit alors comme une somme finie

P (X1, . . . , Xn) =
∑

06ij6dj

ai1,...,inX
i1
1 · · ·Xin

n ,

avec ai1,...,in ∈ A. On identifie encore A à un sous-anneau de A[X1, . . . , Xn].

On a des isomorphismes canoniques

A[X1, . . . , Xn] = (A[X1])[X2, . . . , Xn] = (A[X1, . . . , Xn−1])[Xn].

En appliquant la prop. 2.1 n fois, on en déduit que si l’anneau A est intègre, il en est de même de l’anneau
A[X1, . . . , Xn] et que ses unités sont celles de A.

3. Algèbres

Définition 3.1. — Soit A un anneau commutatif. Une A-algèbre (unitaire associative) est un quadruplet
(E,+,×, ·), où + et × (l’addition et la multiplication) sont des lois internes sur E et · est une loi externe
A× E → E telles que
• (E,+,×) est un anneau (unitaire) ;
• on les relations

∀a, b ∈ A ∀x, y ∈ E 1A · x = x,

a · (x+ y) = a · x+ a · y (a+ b) · x = a · x+ b · x,
a · (x× y) = (a · x)× y = x× (a · y).

La A-algèbre (E,+,×, ·) est commutative si la multiplication de E est commutative.

On définit de façon évidente les morphismes entre A-algèbres.

On peut donner une définition alternative des A-algèbres en disant qu’elles correspondent à la donnée
d’un anneau E et d’un morphisme d’anneaux ρ : A→ E. L’application ρ est définie par

∀a ∈ A ρ(a) := a · 1E
et elle doit satisfaire

(1) ∀a ∈ A ∀x ∈ E ρ(a)× x = x× ρ(a)
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(en effet, (a · 1E)× x = a · (1E × x) = a · x et x× (a · 1E) = a · (x× 1E) = a · x).

Inversement, on retrouve la multiplication externe à partir d’un morphisme ρ : A → E vérifiant la
propriété (1) par la formule

∀a ∈ A ∀x ∈ E a · x := ρ(a)× x.
Un morphisme entre des A-algèbres ρE : A → E et ρF : A → F est alors un morphisme d’anneaux
f : E → F tel que ρF = f ◦ ρE .

Nous nous bornerons à donner des exemples d’algèbres. Dans tous ces exemples, A est un anneau
commutatif.

Exemple 3.2. — L’anneau A[X1, . . . , Xn] des polynômes à n indéterminées à coefficients dans A est une
A-algèbre commutative. Elle a la propriété (universelle) suivante : pour toute A-algèbre commutative E
et tout x1, . . . , xn ∈ E, il existe un unique morphisme de A-algèbres f : A[X1, . . . , Xn] → E tel que
f(Xi) = xi pour tout i ∈ {1, . . . , n}.

Exemple 3.3. — L’anneau Mn(A) des matrices carrées d’ordre n à coefficients dans A défini dans
l’ex. 1.5 est une A-algèbre, qui n’est en général pas commutative.

4. Idéaux

SoitA un anneau commutatif. Un idéal deA est une partie I deA qui est un sous-groupe additif tel que,
pour tout a ∈ A et tout x ∈ I , on a ax ∈ I . C’est exactement la propriété qu’il faut pour pouvoir mettre sur
le groupe additif A/I une structure d’anneau qui fait de la projection canonique A→ A/I un morphisme
d’anneaux (1).

On notera le fait évident mais utile qu’un idéal I de A est égal à A si et seulement si 1A ∈ I .

Exemple 4.1. — Un anneau commutatif A est un corps si et seulement s’il n’est pas nul et que ses seuls
idéaux sont {0A} et A.

L’intersection d’une famille quelconque d’idéaux de A est encore un idéal de A. Si S est une partie
de A, l’intersection de tous les idéaux de A contenant S est donc un idéal de A que l’on notera (S), ou AS.
C’est l’ensemble des sommes finies

∑n
i=1 aisi, pour n ∈ N, ai ∈ A et si ∈ S.

Si I et J sont des idéaux d’un anneau commutatif A, on note I + J l’idéal de A engendré par I ∪ J et
IJ l’idéal de A engendré par {xy | x ∈ I, y ∈ J}. On a

I + J = {x+ y | x ∈ I, y ∈ J}

IJ = {
n∑
i=1

xiyi | n ∈ N, x1, . . . , xn ∈ I, y1, . . . , yn ∈ J}.

Proposition 4.2. — Soit f : A→ B un morphisme d’anneaux commutatifs.

(a) Le noyau de f est un idéal de A. Plus généralement, l’image réciproque par f d’un idéal de B est un
idéal de A.

(b) Si I est un idéal de A, le morphisme f se factorise par la projection A → A/I si et seulement si
I ⊆ Ker(f). Dans le cas I = Ker(f), le morphisme induit A/Ker(f)→ B est injectif.

L’image de f n’est en général pas un idéal de B.

1. Pour que la projection canonique soit un morphisme d’anneaux, il faut définir le produit de classes ā, b̄ ∈ A/I comme la classe
de ab, mais il faut aussi vérifier que cette classe ab ne dépend pas des représentants a et b. Si on change a en a + x et b en b + y,
avec x, y ∈ I , alors (a + x)(b + y) = ab + xb + ay + xy, qui est bien dans la même classe que ab par définition des idéaux.
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Définition 4.3. — Soit A un anneau commutatif et soit I un idéal de A.

(a) L’idéal I est premier s’il est distinct de A et qu’il vérifie la propriété

∀a, b ∈ A ab ∈ I ⇒ (a ∈ I ou b ∈ I).

(b) L’idéal I est un maximal s’il est distinct de A et que l’unique idéal de A contenant strictement I est A.

Exemple 4.4. — On rappelle que les idéaux de l’anneau Z sont les nZ, avec n ∈ N. L’idéal nZ est
maximal si et seulement si l’entier n est premier ; il est premier si et seulement si l’entier n est premier ou
nul.

Proposition 4.5. — Soit A un anneau commutatif et soit I un idéal de A.

(a) L’idéal I est premier si et seulement si l’anneau A/I est intègre.

(b) L’idéal I est maximal si et seulement si l’anneau A/I est un corps.

En particulier, tout idéal maximal est premier.

Démonstration. — Pour le premier point, il suffit de réécrire la définition en tenant compte du fait que
a ∈ I si et seulement si la classe ā dans A/I est nulle.

Pour le second point, supposons I maximal et soit ā un élément non nul de A/I . On a a /∈ I , donc
l’idéal I + (a) de A engendré par I et a contient strictement I . La maximalité de I entraîne qu’il est égal
à A, c’est-à-dire qu’il contient 1A. On peut donc écrire 1A = x+ ab, avec x ∈ I et b ∈ A. En prenant les
classes dans A/I , on obtient 1A/I = āb̄ : l’élément ā de A/I est bien inversible dans A/I . Ceci montre
que l’anneau A/I est un corps.

Inversement, supposons que l’anneau A/I est un corps. Soit J un idéal de A contenant strictement I
et soit a un élément de J qui n’est pas dans I . Sa classe ā dans A/I est alors non nulle et, comme A/I
est un corps, elle a un inverse b̄. On a ainsi 1A/I = āb̄, ce qui est équivalent à 1A − ab ∈ I . En écrivant
1A = ab+ (1A − ab) ∈ J + I = J , on voit que J = A. Ceci montre que l’idéal I est maximal.

Exemple 4.6. — L’anneau commutatif A est intègre si et seulement si {0A} est un idéal premier de A.
C’est un corps si et seulement si {0A} est un idéal maximal de A.

5. Divisibilité, éléments irréductibles

Soit A un anneau intègre et soient a et b des éléments de A. On dit que a divise b (ou que a est un
diviseur de b, ou que b est multiple de a), et on écrit a | b, s’il existe q ∈ A tel que b = aq (si a 6= 0,
on écrit parfois q = b/a). En termes d’idéaux, c’est équivalent à (a) ⊇ (b). En particulier, 0 ne divise
que lui-même, tout élément divise 0, et un élément de A est une unité si et seulement s’il divise tous les
éléments de A.

On a (a | b et b | a) si et seulement s’il existe u ∈ A× tel que a = ub ; c’est aussi équivalent à l’égalité
d’idéaux (a) = (b). On dit alors que a et b sont associés.

On dit que des éléments de A sont premiers entre eux si leurs seuls diviseurs communs sont les unités
de A.

Un élément a de A est irréductible si a n’est pas inversible et que si a = xy, alors soit x, soit y est
inversible (il n’y a donc pas d’éléments irréductibles dans un corps). La seconde condition signifie que a
est non nul et que les seuls diviseurs de a sont ses associés et les unités de A.
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Exemple 5.1. — Les éléments irréductibles de Z sont les ±p, avec p nombre premier. Ceux de C[X] sont
les polynômes de degré 1. Ceux de R[X] sont les polynômes de degré 1 et les polynômes de degré 2 sans
racine réelle, c’est-à-dire les polynômes aX2 + bX + c avec b2 − 4ac < 0.

Soit a un élément non nul de A. Si l’idéal (a) est premier, a est irréductible :
• a n’est pas inversible, puisque (a) 6= A ;
• si a = xy, on a xy ∈ (a), donc

– soit x ∈ (a), c’est-à-dire a | x, et comme x | a, les éléments x et a sont associés et comme
ils sont non nuls, y est une unité ;

– soit y ∈ (a) et, de la même façon, x est une unité.
La réciproque est fausse en général, comme le montre l’ex. 5.3 ci-dessous.

Exemple 5.2. — Si n > 1, l’anneau Z/nZ est intègre si et seulement si l’entier n est premier. C’est alors
un corps. On a

n est un nombre premier ⇔ l’idéal (n) est premier ⇔ n est irréductible.

Exemple 5.3. — Dans le sous-anneau Z[i
√

5] de C, le nombre 3 est irréductible (pourquoi ?) mais
l’idéal (3) n’est pas premier, car 3 divise le produit (1 + i

√
5)(1− i

√
5) mais aucun des facteurs.

Noter que la « bonne façon » de voir l’anneau Z[i
√

5] est de le considérer comme l’anneau quotient
Z[X]/(X2 + 5) : inutile de construire C pour cela ! On le note d’ailleurs plutôt Z[

√
−5].

6. Anneaux principaux

Un anneau A est principal si A est intègre et que tout idéal de A est principal, c’est-à-dire qu’il peut
être engendré par un élément (alors uniquement déterminé à multiplication par un élément inversible de A
près). L’anneau Z est donc principal (ex. 4.4), mais pas l’anneau Z[X] des polynômes à coefficients entiers,
ni l’anneau K[X,Y ] des polynômes à deux indéterminées à coefficients dans un corps K (pourquoi ?).

Dans un anneau principal, les équivalences de l’ex. 5.2 restent vraies.

Proposition 6.1. — SoitA un anneau principal et soit a un élément non nul deA. Les propriétés suivantes
sont équivalentes :

(i) l’idéal (a) est premier, c’est-à-dire que l’anneau quotient A/(a) est intègre ;

(ii) l’élément a est irréductible ;

(iii) l’idéal (a) est maximal, c’est-à-dire que l’anneau quotient A/(a) est un corps.

En d’autres termes, dans un anneau principal, le seul idéal premier non maximal est l’idéal nul.

En particulier, l’anneau Z[
√
−5] de l’ex. 5.3 n’est pas principal. Nous verrons dans le § 8 que les pro-

priétés (i) et (ii) (mais pas (iii) en général) restent équivalentes pour une classe bien plus vaste d’anneaux,
celle des anneaux factoriels.

Démonstration. — On sait qu’en général (iii)⇒ (i)⇒ (ii). Supposons (ii), c’est-à-dire que a est irréduc-
tible. Tout d’abord, comme a n’est pas inversible, on a (a) 6= A.

Soit maintenant I un idéal de A contenant (a). Comme A est principal, on peut écrire I = (x), de sorte
qu’il existe y ∈ A tel que a = xy. Comme a est irréductible, soit x est inversible et I = A, soit y est
inversible et I = (a). L’idéal (a) est donc maximal.



8 CHAPITRE I. ANNEAUX

Définition 6.2 (pgcd et ppcm). — Soient a et b des éléments d’un anneau principal A.

L’idéal 〈a, b〉 est engendré par un élément de A, uniquement déterminé à multiplication par un élément
inversible de A près. On l’appelle un pgcd (« plus grand commun diviseur ») de a et b, parfois noté a ∧ b.

L’idéal 〈a〉 ∩ 〈b〉 est engendré par un élément de A, uniquement déterminé à multiplication par un
élément inversible de A près, le ppcm (« plus grand commun multiple ») de a et b, parfois noté a ∨ b.

Les pgcd (ou les ppcm) ne sont en général pas uniques, mais ils sont tous associés.

On a par exemple a ∧ 0 = a et a ∨ 0 = 0, et a ∧ b = 0 si et seulement si a = b = 0.

Le lemme suivant justifie la terminologie employée.

Proposition 6.3. — Soit A un anneau principal et soient a et b des éléments de A.

(a) Le pgcd a∧ b divise a et b et tout élément d de A qui divise a et b divise a∧ b. En particulier, a et b sont
premiers entre eux si et seulement si a ∧ b = 1. Si d est un élément non nul de A qui divise a et b, on a de
plus a

d ∧
b
d = a∧b

d .

(b) Le ppcm a ∨ b est divisible par a et par b et tout élément de A qui est divisible par a et b est divisible
par a ∨ b. En particulier, a ∨ b divise ab. Si d est un élément non nul de A qui divise a et b, on a de plus
a
d ∨

b
d = a∨b

d .

Démonstration. — On a 〈a〉 ⊆ 〈a, b〉 = 〈a ∧ b〉, donc a ∧ b divise a. Il divise b pour la même raison.
Inversement, si un élément d de A divise a et b, on a 〈d〉 ⊇ 〈a〉 et 〈d〉 ⊇ 〈b〉, donc 〈d〉 ⊇ 〈a, b〉 = 〈a∧ b〉 et
d divise a ∧ b. Ceci montre la première partie du point (a). Pour la seconde, on remarque que si d est non
nul, on a x ∈ 〈ad ,

b
d 〉 si et seulement si dx ∈ 〈a, b〉, donc a

d ∧
b
d = a∧b

d .

On a 〈a∨ b〉 ⊆ 〈a〉, donc a divise a∨ b et de même, b divise a∨ b. Inversement, si un élément e de A est
divisible par a et b, on a 〈e〉 ⊆ 〈a〉 et 〈e〉 ⊆ 〈b〉, donc 〈e〉 ⊆ 〈a〉 ∩ 〈b〉 = 〈a ∨ b〉 et e est divisible par a ∧ b.
Ceci montre la première partie du point (b). Pour la seconde, on remarque que comme d est non nul, on a
x ∈ 〈ad 〉 ∩ 〈

b
d 〉 si et seulement si dx ∈ 〈a〉 ∩ 〈b〉, donc a

d ∨
b
d = a∨b

d .

On peut définir la notion de pgcd et de ppcm dans les anneaux intègres généraux (mais ils n’existent pas
toujours) en copiant les conclusions du lemme : on dit que d est un pgcd de a et de b si d divise a et b et que
tout diviseur commun de a et de b divise d ; on dit que m est un ppcm de a et de b si m est un multiple de a
et de b et que tout multiple commun de a et de b est un multiple de m. Nous montrerons dans la prop. 8.4
que pgcd et ppcm existent dans la classe plus générale des anneaux factoriels.

On dira aussi que des éléments d’un anneau intègre sont premiers entre eux si leurs seuls diviseurs
communs sont les unités ; autrement dit, leur pgcd existe et est égal à 1.

Théorème 6.4 (« Théorème de Bézout »). — Soit A un anneau principal. Des éléments a et b de A sont
premiers entre eux si et seulement s’il existe x et y dans A tels que

xa+ yb = 1.

Démonstration. — L’existence de x et y équivaut à dire 1 ∈ (a, b), c’est-à-dire a ∧ b = 1.

Voici maintenant un résultat classique.

Proposition 6.5 (« Lemme de Gauss »). — SoitA un anneau principal. Si a, b et c sont des éléments deA
tels que a divise bc mais est premier avec b, alors a divise c.
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De façon équivalente, si a et b sont premiers entre eux et qu’un élément de A est divisible par a et par b,
il est divisible par ab ; en d’autres termes, on a a ∨ b = ab.

Démonstration. — Écrivons bc = ad (puisque a divise bc) et xa + yb = 1 (puisque a et b sont premiers
entre eux). On a alors c = (xa+ yb)c = xac+ yad, qui est bien divisible par a.

Pour la deuxième formulation, si x est divisible par a et par b, on écrit x = bc (puisque b divise x).
Comme a aussi divise x, il divise c par la première formulation, donc ab divise x.

Corollaire 6.6. — Soient a et b des éléments d’un anneau principal A. On a (a ∧ b)(a ∨ b) = ab.

Démonstration. — Le corollaire est évident si a = b = 0. Sinon, a ∧ b 6= 0 et il résulte de la prop. 6.3(a)
que a

a∧b et b
a∧b sont premiers entre eux. Le lemme de Gauss entraîne donc a

a∧b ∨
b
a∧b =

(
a
a∧b
)(

b
a∧b
)
. On

applique alors la prop. 6.3(b), qui donne a
a∧b ∨

b
a∧b = a∨b

a∧b , d’où
(
a
a∧b
)(

b
a∧b
)

= a∨b
a∧b et le résultat cherché

en multipliant les deux membres de cette égalité par (a ∧ b)2.

Proposition 6.7. — Soit A un anneau principal et soient a, b1, . . . , br des éléments de A.

(a) Si a est premier avec chacun des bi, alors a est premier avec b1 · · · br.

(b) Si les bi sont premiers entre eux deux à deux et que a est divisible par chacun des bi, il est divisible par
b1 · · · br.

Démonstration. — Pour (a), on écrit le théorème de Bézout pour chacune des paires (a, bi) : on a xia +

yib1 = 1. En prenant le produit de toutes ces identités, on obtient

(x1a+ y1b1) · · · (xra+ yrbr) = 1.

Le membre de gauche s’écrit xa + y1 · · · yrb1 · · · br = 1 pour un certain x ∈ A, ce qui montre que a est
premier avec b1 · · · br.

Pour (b), on procède par récurrence sur r, le cas r = 1 étant trivial. Supposons r > 2. Le point (a) nous
dit que b1 est premier avec b2 · · · br et l’hypothèse de récurrence que a est divisible par b2 · · · br (et par b1).
La deuxième version du lemme de Gauss entraîne que a est divisible par b1 · · · br.

Théorème 6.8 (« Théorème chinois des restes »). — Soit A un anneau principal et soient a1, . . . ar des
éléments de A premiers entre eux deux à deux. L’application

A −→ A/(a1)× · · · ×A/(ar)
x 7−→ (x̄, . . . , x̄)

est un morphisme d’anneaux surjectif et son noyau est l’idéal (a1 · · · ar). Il induit donc un isomorphisme
d’anneaux

A/(a1 · · · ar) ∼−→A/(a1)× · · · ×A/(ar).

Démonstration. — Il est clair que l’application en question est un morphisme d’anneaux. Posons a =

a1 · · · ar et montrons que son noyau est l’idéal (a). Il est clair que cet idéal est contenu dans le noyau.
Inversement, si x est dans le noyau, il est divisible par a1, . . . , ar donc par a (prop. 6.7(b)). Le théorème
de factorisation donne donc un morphisme injectif

A/(a1 · · · ar) ↪→ A/(a1)× · · · ×A/(ar).

Notons que lorsqu’on a A = Z, on peut abréger le reste de la démonstration en remarquant que ces deux
ensembles sont finis (on peut supposer qu’aucun des ai n’est nul) et de même cardinal. L’application est
donc bijective.
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Revenons au cas général pour montrer que l’application est surjective. Procédons par récurrence sur r.
Si r = 2, on écrit 1 = x1a1 + x2a2. Si b1, b2 ∈ A, l’image de x1a1b2 + x2a2b1 dans A/(a1)×A/(a2) est
alors (b̄1, b̄2). L’application est donc surjective.

Pour passer de r − 1 à r, on remarque que a1 est premier avec a2 · · · ar (prop. 6.7(a)). On a donc
(cas r = 2) une surjection

A� A/(a1)×A/(a2 · · · ar)
et on conclut avec l’hypothèse de récurrence, qui donne un isomorphisme A/(a2 · · · ar) ∼→A/(a2)×· · ·×
A/(ar) : par composition, on obtient que le morphismeA→ A/(a1)×· · ·×A/(ar) est bien surjectif.

Le théorème chinois des restes nous permet d’analyser la structure du groupe multiplicatif (Z/nZ)×

des unités de l’anneau Z/nZ. Commençons par un lemme.

Lemme 6.9. — Soit n un entier strictement positif. Le groupe (Z/nZ)× des unités de l’anneau Z/nZ est
formé des classes d’entiers premiers avec n. On note ϕ(n) son cardinal.

Démonstration. — Les éléments inversibles de l’anneau Z/nZ sont les classes x̄ telles qu’il existe une
classe ȳ vérifiant x̄ȳ = 1̄ dans Z/nZ, c’est-à-dire xy ≡ 1 (mod n). Par le théorème de Bézout (th. 6.4),
c’est équivalent à dire que x et n sont premiers entre eux.

On appelle ϕ la fonction indicatrice d’Euler. Une première conséquence du théorème chinois des restes
est que si m et n sont des entiers premiers entre eux, on a

ϕ(mn) = ϕ(m)ϕ(n).

Théorème 6.10. — Soit n un entier strictement positif et soit n = pv11 · · · pvrr sa décomposition en produit
de facteurs premiers.

(a) On a un isomorphisme d’anneaux

Z/nZ ' Z/pv11 Z× · · · × Z/Zpvrr .

(b) On a un isomorphisme de groupes

(Z/nZ)× ' (Z/pv11 Z)× × · · · × (Z/pvrr Z)×.

(c) On a
ϕ(n) = n(1− 1/p1) · · · (1− 1/pr).

Démonstration. — Les points (1a) et (b) résultent du théorème chinois des restes, puisque les pvii sont
premiers entre eux deux à deux. Pour le point (c), il suffit de remarquer que le cardinal de (Z/pvii Z)×, qui
est le nombre d’entiers m premiers à pvii et tels que 1 6 m 6 pvii , est pvii − p

vi−1
i (il suffit de retirer les

multiples de pi).

On peut aller plus loin dans cette analyse et étudier la structure du groupe multiplicatif (Z/pvZ)× pour p
premier et v > 1. Le cas p > 3 est assez simple : les groupes (Z/pvZ)× sont tous cycliques ; mais ce n’est
plus le cas pour les groupes (Z/2vZ)× lorsque v > 3. Nous laissons ça en exercice (voir th. II.2.18 pour
le cas de (Z/pZ)×).

Exemple 6.11. — On a (Z/8Z)× = {1̄, 3̄, 5̄, 7̄} et un isomorphisme de groupes (Z/8Z)× ' (Z/2Z)2,
puisque 3̄2 = 9̄ = 1̄, 5̄2 = 25 = 1̄ et 7̄2 = (−1̄)2 = 1̄.

On a (Z/9Z)× = {1̄, 2̄, 4̄, 5̄, 7̄, 8̄} et un isomorphisme de groupes (Z/9Z)× ' Z/6Z, puisque c’est le
seul groupe abélien d’ordre 6. Remarquons que les puissances successives de 2̄ sont 2̄, 4̄, 8̄, 7̄, 5̄, 1̄, donc 2̄

engendre le groupe multiplicatif (Z/9Z)×.
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7. Anneaux euclidiens

Dans la pratique, on montre souvent qu’un anneau intègre A est principal en exhibant une division
euclidienne sur A, c’est-à-dire une fonction ϕ : A r {0A} → N telle que pour tous éléments a et b de A,
avec b 6= 0, on puisse écrire a = bq+r avec r = 0, ou r 6= 0 et ϕ(r) < ϕ(b) (on ne demande pas l’unicité).
Un anneau est euclidien s’il est intègre et qu’il existe une telle fonction ϕ (appelée « stathme euclidien »).

L’anneau Z est euclidien pour la fonction ϕ(n) = |n|. Un autre exemple fondamental est celui de
l’anneau des polynômes à une indéterminée à coefficients dans un corps (cor. 7.2). C’est une conséquence
du résultat suivant.

Théorème 7.1 (Division euclienne des polynômes). — Soit A un anneau intègre. Soient P,Q ∈ A[X],
où Q est un polynôme non nul dont le coefficient dominant est une unité de A. Alors, il existe un unique
couple B,R ∈ A[X] tel que P = BQ+R et deg(R) < deg(Q).

Démonstration. — Montrons l’existence. On procède par récurrence sur deg(P ), en commençant par le
cas deg(P ) = −∞, c’est-à-dire P = 0 : on prend alors B = R = 0. Si P 6= 0, on écrit P (X) =

adX
d + · · ·+ a1X + a0, avec ad 6= 0A et d = deg(P ), et Q(X) = beX

e + · · ·+ b1X + b0, avec be ∈ A×
et e = deg(Q). Si d < e, on prend B = 0 et R = Q. Si d > e, le polynôme

P1(X) := P (X)− adb−1
e Xd−eQ(X)

= adX
d + · · ·+ a1X + a0 − adb−1

e Xd−e(beX
e + · · ·+ b1X + b0)

= adX
d + · · ·+ a1X + a0 − (adX

d + · · ·+ adb
−1
e b1X

d−e+1 + adb
−1
e b0X

d−e)

= (ad−1 − adb−1
e bd−1)dXd−1 + . . .

est de degré < d. On peut donc lui appliquer l’hypothèse de récurrence : il existe B1, R1 ∈ A[X] tels que
P1 = B1Q+R1 et deg(R1) < deg(Q). On a ainsi

P (X) = P1(X) + adb
−1
e Xd−eQ(X)

= B1(X)Q(X) +R1(X) + adb
−1
e Xd−eQ(X)

= (B1(X) + adb
−1
e Xd−e)Q(X) +R1(X),

ce qui montre ce que l’on voulait.

Montrons l’unicité. Si P = BQ+R = B′Q+R′, on a (B−B′)Q = R−R′. Si B 6= B′, on a R 6= R′

et, en prenant les degrés et en utilisant la prop. 2.1(b),

deg(R−R′) = deg(B −B′) deg(Q) > deg(Q).

Mais cela contredit la prop. 2.1(a), puisque max{deg(R),deg(R′)} < deg(Q).

On a ainsi B = B′, donc R = R′.

Corollaire 7.2. — Si K est un corps, l’anneau K[X] est euclidien pour la fonction degré.

Nous montrons maintenant le résultat principal de ce paragraphe.

Théorème 7.3. — Tout anneau euclidien est principal.

Démonstration. — Soit A un anneau intègre muni d’un stathme euclidien ϕ : A r {0A} → N. Soit I un
idéal de A. Si I est nul, il est engendré par 0A. Sinon, soit x un élément non nul de I tel que ϕ(x) soit
minimal. Nous allons montrer que I est engendré par x.

Soit a un élément quelconque non nul de I . On écrit a = xq + r avec r = 0, ou r 6= 0 et ϕ(r) < ϕ(x).
Comme a et x sont dans I , il en est de même pour r = a − xq. Si r 6= 0, on a ϕ(r) < ϕ(x), ce qui est
impossible puisque ϕ(x) est minimal. On a donc r = 0 et a ∈ (x).
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Il existe des anneaux principaux non euclidiens, mais ils sont difficiles à construire (c’est le cas de
l’anneau Z[(1 +

√
−19)/2]).

Dans un anneau euclidien A, la division permet d’écrire un algorithme (dit « d’Euclide ») qui, étant
donnés des éléments a et b non nuls de A, fournit un pgcd. Il fonctionne ainsi :
• on fait la division a = bq + r ;

— si r = 0 (c’est-à-dire si b divise a), on arrête : a ∧ b = b ;
— si r 6= 0, on remplace le couple (a, b) par le couple (b, r) (avec ϕ(r) < ϕ(b)).

Comme la suite des entiers naturels ϕ(b) est strictement décroissante, l’algorithme s’arrête en temps fini. À
chaque étape, le pgcd de a et b ne change pas (puisqu’on remplace (a, b) par (b, a−bq)) : on aboutit donc au
couple (a∧b, 0). D’autre part, l’algorithme fournit aussi des éléments x et y deA tels que xa+yb = a∧b :
si on note (ai, bi) la paire obtenue à l’étape i, avec (a0, b0) = (a, b) et (an+1, bn+1) = (a ∧ b, 0), on a
ai = bi−1 et bi = ai−1 − bi−1qi−1, donc ai+1 = ai−1 − aiqi−1, d’où

a ∧ b = an+1

= an−1 − anqn−1 =: xn−1an−1 + yn−1an

= xn−1an−1 + yn−1(an−2 − an−1qn−2) =: xn−2an−2 + yn−2an−1

...

= x1a0 + y1a1 = x1a0 + y1b0.

Exemple 7.4. — Calculons le pgcd de deux nombres de Fibonacci consécutifs (c’est là où l’algorithme
est le plus long), par exemple 8 ∧ 13. On écrit

8 = 13 · 0 + 8 (8, 13) 7→ (13, 8)

13 = 8 · 1 + 5 (13, 8) 7→ (8, 5)

8 = 5 · 1 + 3 (8, 5) 7→ (5, 3)

5 = 3 · 1 + 2 (5, 3) 7→ (3, 2)

3 = 2 · 1 + 1 (3, 2) 7→ (2, 1)

2 = 1 · 2 + 0 (2, 1) 7→ (1, 0),

de sorte que 8 ∧ 13 = 1. Pour calculer les coefficients de Bézout, on écrit

1 = 3− 2 = 3− (5− 3) = 2 · 3− 5 = 2 · (8− 5)− 5 = 2 · 8− 3 · 5 = 2 · 8− 3 · (13− 8) = 5 · 8− 3 · 13.

La division euclidienne est aussi utile pour décomposer une matrice à coefficients dans un anneau eu-
clidien comme produit de matrices élémentaires (ce qu’on ne peut pas toujours faire pour les matrices à
coefficients dans un anneau principal).

8. Anneaux factoriels

La notion de factorialité généralise la propriété de décomposition unique des nombres entiers en pro-
duit de nombres premiers. Le résultat principal de cette section est que tous les anneaux principaux sont
factoriels. Commençons par la définition formelle.

Définition 8.1. — Soit A un anneau. On dit que A est factoriel s’il vérifie les propriétés suivantes
(I) A est un anneau intègre ;
(E) tout élément non nul de A s’écrit sous la forme up1 · · · pr, avec u ∈ A×, r ∈ N et p1, . . . , pr

irréductibles ;
(U) cette décomposition est unique, « à permutation et à multiplication par des inversibles près » : si

up1 · · · pr = vq1 · · · qs, avec u, v ∈ A× et p1, . . . , pr, q1, . . . , qs irréductibles, on a r = s et il existe
une permutation σ ∈ Sr tel que pi et qσ(i) soient associés pour tout i ∈ {1, . . . , r}.
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Exemple 8.2. — Dans l’anneau Z[
√
−5] vu dans l’ex. 5.3, on a les décompositions 6 = 3 · 2 =

(1 +
√
−5)(1 −

√
−5) et tous les facteurs de ces produits sont irréductibles dans l’anneau Z[

√
−5]

(exerc. 11.17(3)). Cet anneau ne vérifie donc pas la propriété (U) (alors qu’il vérifie (I) et (E)).

Il est pratique d’introduire un système de représentants P des éléments irréductibles de A, c’est-à-dire
un sous-ensemble P de A qui contient un et un seul élément irréductible par classe d’associés. Lorsque
A = Z, on peut prendre pour P l’ensemble des nombres premiers positifs. Lorsque A est l’anneau des
polynômes à une indéterminée à coefficients dans un corps, on peut prendre pour P l’ensemble des poly-
nômes irréductibles unitaires. Tout élément a d’un anneau factoriel s’écrit alors de façon unique comme

(2) a = u
∏
p∈P

pvp(a),

où les vp(a) (la valuation p-adique de a) sont des entiers naturels presque tous nuls. On a la propriété

∀a, b ∈ Ar {0A} ∀p ∈P vp(ab) = vp(a) + vp(b).

Proposition 8.3. — Soit A un anneau factoriel et soient a et b des éléments non nuls de A qu’on écrit
comme dans (2). Alors a divise b si et seulement si vp(a) 6 vp(b) pour tout p ∈P .

Démonstration. — Si vp(a) 6 vp(b) pour tout p ∈P , il est clair que a | b. Inversement, si a | b, on écrit

b = ac =
(
u
∏
p∈P

pvp(a)
)(
v
∏
p∈P

pvp(c)
)

= uv
∏
p∈P

pvp(a)+vp(c).

On en déduit vp(b) = vp(a)+vp(c) par la propriété d’unicité (U), d’où vp(b) > vp(a) pour tout p ∈P .

Les pgcd et les ppcm, qu’on a définis dans tout anneau intègre (§ 6), mais dont on n’a montré l’existence
que dans les anneaux principaux, existent aussi dans les anneaux factoriels.

Proposition 8.4. — Soit A un anneau factoriel et soient a et b des éléments de A. Alors le pgcd a∧ b et le
ppcm a ∨ b existent : si a et b sont non nuls et que

a = u
∏
p∈P

pvp(a) , b = v
∏
p∈P

pvp(b),

on a

a ∧ b =
∏
p∈P

pmin{vp(a),vp(b)} , a ∨ b =
∏
p∈P

pmax{vp(a),vp(b)}.

En particulier, on a, dans un anneau factoriel, (a∧ b)(a∨ b) = ab, une propriété qu’on avait déjà établie
dans les anneaux principaux (exerc. 6.6).

On peut bien sûr définir de façon analogue définir le pgcd a1 ∧ · · · ∧ am et le ppcm a1 ∨ · · · ∨ am d’une
famille finie quelconque a1, . . . , am d’éléments d’un anneau factoriel.

Démonstration. — Si a = 0, on a 0∧ b = b et 0∨ b = 0. Supposons a et b non nuls. Avec les notations de
l’énoncé de la proposition, d :=

∏
p∈P pmin{vp(a),vp(b)} divise a et b. Si x divise a et b, on a vp(x) 6 vp(a)

et vp(x) 6 vp(b) pour tout p ∈P (prop. 8.3), donc vp(x) 6 vp(d), et x | d (prop. 8.3). Ceci montre que d
est bien un pgcd de a et b. On procède de façon analogue pour le ppcm.

Remarque 8.5. — Attention ! Dans un anneau factoriel, on n’a pas nécessairement (a, b) = (a ∧ b) et
(a) ∩ (b) = (a ∨ b) (comme c’est le cas dans les anneaux principaux). Par exemple, si K est un corps,
l’anneau K[X,Y ] est factoriel (th. 9.5). On a X ∧ Y = 1, mais (X,Y ) = {P ∈ K[X,Y ] | P (0, 0) =

0} 6= (1).
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Dans la déf. 8.1, c’est la propriété (U) qui est la plus contraignante (cf. ex. 8.2) ; la propriété (E) est
en fait satisfaite dans une classe beaucoup plus vaste d’anneaux. Expliquons pourquoi. Soit A un anneau
intègre et soit a un élément deA ne pouvant s’écrire comme dans (E). Il n’est alors ni inversible, ni irréduc-
tible, donc on peut l’écrire a = a1b1, où ni a1, ni b1 n’est une unité, c’est-à-dire (a) ( (a1) et (a) ( (b1).
Remarquons que a1 et b1 ne peuvent s’écrire tous les deux comme dans (E) (sinon, a le pourrait aussi) ; on
peut supposer que a1 ne peut s’écrire comme dans (E) et recommencer le processus, ce qui construit une
suite infinie strictement croissante d’idéaux

(a) ( (a1) ( (a2) ( (a3) ( · · ·

Il s’avère que de telles chaînes infinies d’idéaux (pas nécessairement principaux) n’existent pas dans les
anneaux noethériens (on peut prendre ça comme leur définition), une classe très vaste d’anneaux (qui
contient celle des anneaux principaux) nommés ainsi en l’honneur d’Emmy Noether, mathématicienne
allemande du début du XXe siècle, qui les a beaucoup étudiés. C’est par ailleurs clair dans l’anneau Z

(puisqu’on a alors |ai+1| < |ai|), ou dans l’anneau des polynômes à une indéterminée à coefficients dans
un corps (puisqu’on a alors deg(ai+1) < deg(ai)), ou plus généralement dans un anneau euclidien.

Théorème 8.6. — Tout anneau principal est factoriel.

Démonstration. — Nous allons procéder en deux temps, en montrant d’abord que les anneaux principaux
vérifient la propriété (E), puis en donnant une caractérisation des anneaux factoriels parmi les anneaux
intègres vérifiant (E).

Lemme 8.7. — Tout anneau principal vérifie la propriété (E).

Démonstration. — Comme on l’a remarqué plus haut, il suffit de montrer qu’il n’existe pas de suite infinie
(In)n∈N strictement croissante d’idéaux d’un anneau principalA. Soit I :=

⋃
n∈N In ; c’est un idéal deA :

si x, y ∈ I , il existe m,n ∈ N tels que x ∈ Im et y ∈ In. Si a ∈ A, on a bien ax ∈ Im ⊆ I . On a aussi
x, y ∈ Imax{m,n}, donc x+ y ∈ Imax{m,n} ⊆ I .

Comme A est principal, l’idéal I est engendré par un élément a de I . Il existe un entier r ∈ N tel que
a ∈ Ir, de sorte que I = (a) ⊆ Ir ⊆ I , et Ir = Is = I pour tout s > r, ce qui contredit l’hypothèse que la
suite (In)n∈N est strictement croissante.

Lemme 8.8. — Soit A un anneau intègre et soit p un élément irréductible de A. Tout élément a de A est
ou bien premier avec p, ou bien divisible par p.

Démonstration. — Supposons a non divisible par p. Soit x un diviseur commun de p et de a ; on écrit
p = xy. Remarquons que y n’est pas une unité : sinon, p diviserait x, donc a. Comme p est irréductible, on
en déduit que x est une unité : tout diviseur commun à p et a est donc une unité.

Lemme 8.9. — Soit A un anneau intègre vérifiant la propriété (E). Les propriétés suivantes sont équiva-
lentes :

(i) l’anneau A est factoriel ;
(ii) pour tout élément irréductible p de A, l’idéal (p) est premier ;
(iii) le lemme de Gauss (prop. 6.5) est vrai dans A : si a, b et c sont des éléments de A tels que a divise

bc mais est premier avec b, alors a divise c.

Démonstration. — Supposons (iii). Soit p un élément irréductible de A. On a (p) 6= A car p n’est pas
inversible. Si ab ∈ (p), alors p | ab. Par le lemme 8.8, soit p divise a, auquel cas a ∈ (p), soit p est premier
avec a, auquel cas p divise b par le lemme de Gauss, c’est-à-dire b ∈ (p). Donc (iii)⇒ (ii).

Supposons (ii). Pour montrer que A est factoriel, il suffit de comparer des décompositions a =

u
∏
p∈P pvp = v

∏
p∈P pwp . Si wp0 6= vp0 pour un p0 ∈ P , on a par exemple wp0 > vp0 et p0 divise
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∏
p∈P,p6=p0 p

vp . Comme l’idéal (p0) est premier, p0 divise un p 6= p0. Ces deux éléments irréductibles
sont alors associés, ce qui contredit le choix de P . On a donc une contradiction, de sorte que wp0 = vp0
pour tout p0 ∈P , ce qui montre (ii)⇒ (i).

Enfin, supposons l’anneauA factoriel et que a divise bc, avec a premier avec b. Si c = 0, alors a divise c.
Supposons donc c 6= 0. Si b = 0, alors a divise a et b, donc a est une unité : il divise bien c. On peut donc
supposer aussi b 6= 0, soit bc 6= 0. Comme a divise bc, on a aussi a 6= 0. On a alors vp(a) 6 vp(b) + vp(c)

pour tout p ∈ P (par la prop. 8.3, car a divise bc). Comme a est premier avec b, on a, pour tout p, soit
vp(a) = 0, soit vp(b) = 0 (prop. 8.4). Dans les deux cas, on obtient vp(a) 6 vp(c), c’est-à-dire a | c.
Donc (i)⇒ (iii).

Le théorème résulte alors de l’implication (ii)⇒ (i) et de la prop. 6.1.

9. Factorialité des anneaux de polynômes

Soit A un anneau factoriel. Nous allons montrer que l’anneau A[X] des polynômes à une variable à
coefficients dans A est encore factoriel. Pour cela, nous identifions tout d’abord les éléments irréductibles
de l’anneau A[X] en les comparant à ceux de l’anneau principal KA[X], puis nous utilisons la factorialité
de l’anneauKA[X] (th. 8.6). On rappelle que, commeA est intègre, les unités de l’anneauA[X] sont celles
de A.

Définition 9.1. — Soit A un anneau factoriel. Le contenu d’un élément P de A[X], noté c(P ), est le pgcd
(dans A) de ses coefficients. On dit que P est primitif si c(P ) = 1.

Le contenu n’est défini qu’à multiplication par une unité près. On a c(P ) = 0 si et seulement si P = 0.
Si P est un polynôme non nul, c(P ) est non nul et P/c(P ) est un polynôme primitif.

Lemme 9.2 (Gauss). — Soit A un anneau factoriel. Si P,Q ∈ A[X], on a c(PQ) = c(P )c(Q).

Démonstration. — On peut supposer P et Q non nuls et il suffit, en considérant P/c(P ) et Q/c(Q), de
montrer que le produit de polynômes P et Q primitifs est encore primitif.

Or si c(PQ) 6= 1, il est divisible par un élément irréductible p. Cela signifie que dans l’anneau intègre
A/(p)[X], on a P̄ Q̄ = 0 donc, par exemple P̄ = 0. Tous les coefficients de P sont donc divisibles par p,
c’est-à-dire p | c(P ), ce qui contredit l’hypothèse que P est primitif (2).

Théorème 9.3. — Soit A un anneau factoriel de corps des fractions KA. Les éléments irréductibles de
l’anneau A[X] sont :
• les éléments irréductibles de A ;
• les polynômes primitifs de degré au moins 1 qui sont irréductibles dans KA[X].

Démonstration. — Soit P ∈ A[X] un polynôme constant non nul (c’est-à-dire de degré 0, ou encore
dansA). S’il s’écrit P = QR, les polynômesQ etR sont aussi de degré 0, donc dansA. CommeA[X]× =

A× (prop. 2.1(c)), cela revient donc au même, pour un polynôme constant, d’être irréductible dans A ou
dans A[X].

Supposons maintenant P de degré au moins 1. Si P est irréductible dans A[X], il est primitif puisqu’on
peut toujours le décomposer en produit P = c(P )(P/c(P )) de deux éléments de A[X]. Montrons qu’il est

2. On peut aussi, pour éviter de considérer l’anneau A/(p)[X], regarder le coefficient de ai de Xi dans P non divisible par p
avec i minimal (il existe car, P étant primitif, tous ses coefficients ne peuvent pas être divisibles par p) et le coefficient analogue bj
de Q. Le coefficient de Xi+j dans PQ est alors congru à aibj modulo p : il n’est donc pas divisible par p. Aucun élément irréductible
de A ne divise donc tous les coefficients de PQ, ce qui montre que ce polynôme est primitif.
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irréductible dans KA[X]. Si P = QR, avec Q,R ∈ KA[X], on peut écrire Q = Q1/q et R = R1/r, avec
q, r ∈ A non nuls et Q1, R1 ∈ A[X], soit encore qrP = Q1R1. En prenant les contenus, on obtient, par le
lemme de Gauss,

qr = c(Q1)c(R1) (mod A×),

soit encore
P = QR =

Q1R1

qr
=

Q1R1

c(Q1)c(R1)
=
( Q1

c(Q1)

)( R1

c(R1)

)
(mod A×).

Comme P est irréductible dans A[X], l’un de ces facteurs est une unité dans A[X], donc est de degré 0.
L’un des facteurs Q ou R est alors de degré 0, donc inversible dans KA[X]. On a donc bien montré que P
est irréductible dans KA[X].

Supposons inversement P primitif et irréductible dans KA[X]. Si P = QR, avec Q,R ∈ A[X], l’un
des facteurs, par exemple Q, est une unité dans KA[X], donc de degré 0. Comme c(P ) = c(Q)c(R) est
une unité, Q et R sont tous deux primitifs, et Q est inversible dans A[X]. On a ainsi montré que P est
irréductible dans A[X].

Exemple 9.4. — Les polynômes 3 et 2X2 + 1 sont donc irréductibles dans Z[X] et dans Q[X].

Le th. 9.3 dit que pour un polynôme primitif de A[X], il revient au même d’être irréductible dans A[X]

que dans l’anneau principal KA[X] (ce n’est pas du tout évident, puisqu’il y a a priori plus de décomposi-
tions possibles dans KA[X] que dans A[X]).

Théorème 9.5. — Soit A un anneau factoriel. Les anneaux de polynômes A[X1, . . . , An] sont aussi fac-
toriels.

Démonstration. — Il suffit bien sûr de traiter le cas n = 1, c’est-à-dire de montrer que l’anneau A[X] est
factoriel.

Comme A est factoriel, il est intègre, donc A[X] est aussi intègre (prop. 2.1(b)). Montrons la pro-
priété (E) d’existence d’une décomposition de P ∈ A[X] non nul en produit d’irréductibles. En écri-
vant P = c(P )(P/c(P )) et en décomposant c(P ) en produit d’irréductibles de A (qui sont irréductibles
dans A[X] par le th. 9.3), on voit qu’il suffit de traiter le cas où P est un polynôme primitif non constant.

L’anneau KA[X] étant principal, donc factoriel, il existe une décomposition de P en produit de polynô-
mes irréductibles de KA[X]. En chassant les dénominateurs, on peut écrire cette décomposition comme

aP = P1 · · ·Pr où a ∈ A et P1, . . . , Pr ∈ A[X], irréductibles dans KA[X].

En prenant les contenus, on obtient, par le lemme de Gauss, a = c(P1) · · · c(Pr), d’où

P =
P1

c(P1)
· · · Pr

c(Pr)
.

Les Pi/c(Pi) sont des polynômes primitifs deA[X] associés aux Pi dansKA[X], donc encore irréductibles
dans cet anneau. Ils sont donc irréductibles dans A[X] par le th. 9.3. Ceci établit bien la propriété (E).

Par le lemme 8.9, il suffit maintenant de montrer que si P ∈ A[X] est irréductible, alors l’idéal (P ) est
premier.

Si P est constant, c’est un élément irréductible deA ; commeA est factoriel, il engendre un idéal premier
dans A. Si P divise QR, avec Q,R ∈ A[X], on a P = c(P ) | c(QR) = c(Q)c(R) (lemme de Gauss).
Comme P engendre un idéal premier de A, on a par exemple P | c(Q) | Q. L’idéal (P ) est donc bien
premier dans l’anneau A[X].

Supposons maintenant P de degré au moins 1. Il est alors primitif, et irréductible dans KA[X] (th. 9.3).
Si P divise QR, avec Q,R ∈ A[X], il divise par exemple Q dans KA[X] (puisque P est irréductible dans
cet anneau principal). On peut donc écrire comme d’habitude aQ = PS, avec a ∈ A et S ∈ A[X] ; en
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prenant les contenus, on obtient ac(Q) = c(S), donc a | c(S) et S/a ∈ A[X]. Comme Q = P · (S/a), on
en déduit que P divise Q dans A[X]. Ceci montre que l’idéal (P ) est bien premier dans A[X].

Le théorème suivant est un critère d’irréductibilité bien pratique pour les polynômes à coefficients dans
un anneau factoriel.

Théorème 9.6 (Critère d’Eisenstein). — Soit A un anneau factoriel de corps des fractions KA et soit
P = anX

n + · · · + a0 ∈ A[X] un polynôme non constant. On suppose qu’il existe un élément irréducti-
ble p de A tel que

(a) p ne divise pas an ;
(b) p divise an−1, . . . , a0 ;
(c) p2 ne divise pas a0.

Alors P est irréductible dans KA[X] (et donc dans A[X] s’il est primitif).

Démonstration. — La propriété (a) entraîne que le contenu c(P ) n’est pas divisible par p. Le polynôme
primitif P/c(P ) vérifie donc les propriétés (a), (b) et (c) et on peut supposer P primitif, de degré au moins 2

(puisqu’un polynôme de degré 1 est toujours irréductible dans KA[X]).

Si P n’est pas irréductible dans KA[X], il ne l’est pas non plus dans A[X] par le th. 9.3, donc il s’écrit

P = QR = (brX
r + · · ·+ b0)(csX

s + · · ·+ c0),

avec Q,R ∈ A[X] et Q,R /∈ A×, et n = r + s et an = brcs. En prenant les contenus, on obtient
1 = c(Q)c(R), donc Q et R sont aussi primitifs et ne peuvent donc être constants (puisque ce ne sont pas
des unités). On a donc r, s > 1.

Réduisons cela modulo p, c’est-à-dire que l’on regarde cette égalité dans l’anneau intègre (A/(p))[X].
On a par hypothèse P̄ = ānX

n, avec ān 6= 0, de sorte que b̄r, c̄s 6= 0. Comme X est irréductible dans
l’anneau principal KA/(p)[X], c’est la décomposition de P̄ en produit d’irréductibles dans cet anneau. Le
seul facteur irréductible de Q̄ et de R̄ est donc X , de sorte que Q̄ = b̄rX

r et R̄ = c̄sX
s. On en déduit

0 = b̄0 = c̄0, ce qui signifie que b0 et c0 sont tous les deux divisibles par p. Mais a0 = b0c0 est alors
divisible par p2, ce qui contredit (c). On a donc bien montré que P est irréductible dans KA[X] (3).

Exemple 9.7. — Pour tout entier n > 1 et tout nombre premier p, les polynômesXn±p sont irréductibles
dans Q[X].

10. Compléments

10.1. Racines d’un polynôme à une variable. — Soit A un anneau commutatif et soit

P (X) = anX
n + · · ·+ a0

un élément de A[X]. Soit x un élément de A. On pose

P (x) := anx
n + · · ·+ a0 ∈ A.

L’application

evx : A[X] −→ A

P 7−→ P (x)

est un morphisme d’anneaux appelé évaluation en x.

3. On peut aussi utiliser l’argument plus terre-à-terre suivant : comme a0 = b0c0 n’est pas divisible par p2, les éléments b0 et c0
de A ne peuvent être tous les deux divisibles par p. Supposons donc p - b0. Comme p ne divise pas an, il ne divise pas non plus cs ;
on peut donc considérer le plus petit entier t ∈ {0, . . . , s} tel que p - ct, de sorte que ct−1, ct−2, . . . sont divisibles par p. Alors,
at = b0ct + b1ct−1 + · · · ≡ b0ct 6≡ 0 (mod p), ce qui contredit l’hypothèse (b), puisque t 6 s < n.
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On a pour tout entier m > 1 l’identité remarquable

Xm − xm = (X − x)
(m−1∑
i=0

xiXm−1−i
)
.

En particulier, le polynôme Xm − xm est divisible par X − x. Il s’ensuit que le polynôme

P (X)− P (x) = (anX
n + · · ·+ a0)− (anx

n + · · ·+ a0) = an(Xn − xn) + · · ·+ a1(X − x)

est aussi divisible par X − x (4).

On dit qu’un élément x de A est une racine de P si P (x) = 0A. Nous avons donc démontré le résultat
suivant.

Proposition 10.1. — Soit A un anneau commutatif, soit P un élément de A[X] et soit x un élément de A.
On a équivalence entre

(i) x est racine de P , c’est-à-dire P (x) = 0A ;
(ii) le polynôme P est divisible par X − x dans A[X].

Définition 10.2. — Soit A un anneau commutatif, soit P un élément non nul de A[X] et soit x un élément
de A. On appelle multiplicité de x comme racine de P le plus grand entier m tel que P est divisible par
(X − x)m.

Cette définition a un sens même si A n’est pas intègre : le polynôme (X − x)m étant unitaire, on a
m 6 deg(P ) s’il divise P ; la multiplicté de toute racine de P est donc 6 deg(P ). On peut décider que la
multiplicité de n’importe quel élément de A comme racine du polynôme nul est infinie.

Proposition 10.3. — Soit A un anneau intègre. Soit P un élément non nul de A[X] et soient x1, . . . , xr ∈
A des racines distinctes de P , de multiplicités respectives m1, . . . ,mr. Alors P est divisible par le poly-
nôme (X − x1)m1 . . . (X − xr)mr . En particulier, deg(P ) > m1 + · · ·+mr.

Un polynôme à coefficients dans un anneau intègre qui a un nombre infini de racines est donc nul.

La conclusion de la proposition ne subsiste pas dans un anneau non intègre : dans Z/8Z, le polynô-
me 4X , de degré 1, a 4 racines (simples), 0, 2, 4, et 6, tandis que le polynôme X3, de degré 3, a comme
racines 0 (triple), 2, 4 (double), et 6.

Démonstration. — Plaçons-nous dans l’anneau principal KA[X]. Soit i 6= j ; comme X − xi et X − xj
sont premiers entre eux (une relation de Bézout est 1

xj−xi

(
(X − xi)− (X − xj)

)
= 1), il en est de même

de (X − xi)mi et (X − xj)mj , par deux applications de la prop. 6.7(a). Comme P est divisible par chaque
(X − xi)mi , il est divisible par leur produit (prop. 6.7(b)), dans l’anneau KA[X]. Mais le quotient de P
par
∏
i(X − xi)mi est en fait dans A[X], puisque

∏
i(X − xi)mi est un polynôme unitaire (th. 7.1).

10.2. Polynôme dérivé et formule de Taylor. —

Définition 10.4. — Soit A un anneau commutatif et soit P = anX
n + · · ·+ a0 un élément de A[X]. On

appelle polynôme dérivé de P le polynôme

P ′(X) := nanX
n−1 + · · ·+ a1.

4. On peut aussi raisonner ainsi : comme le polynôme X − x est unitaire, on peut diviser P par X − x dans A[X] (th. 7.1). On
obtient P (X) = (X − x)Q(X) + R(X), avec R = 0 ou deg(R) < deg(X − x) = 1, c’est-à-dire que R est une constante. En
« faisant X = x » (il faudrait dire « en prenant les images des deux membres de cette égalité par le morphisme d’anneaux evx »), on
obtient R(X) = P (x), d’où P (X) = (X − x)Q(X) + P (x) : le polynôme P (X)− P (x) est donc bien divisible par X − x.
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Il est clair que la dérivation est linéaire (c’est un morphisme de groupes abéliens de A[X] dans A[X]) :
on a (P +Q)′ = P ′ +Q′. On vérifie par un calcul direct la formule de Leibniz

∀P,Q ∈ A[X] (PQ)′ = P ′Q+ PQ′,

ainsi que

∀P,Q ∈ A[X] (P ◦Q)′ = (P ′ ◦Q)Q′.

Lorsque A = R, la fonction polynomiale x 7→ P ′(x) est bien la dérivée (au sens des fonctions réelles de
variable réelle) de la fonction polynomiale x 7→ P (x), mais notre définition générale est purement formelle
et ne fait pas intervenir de notion de limite (qui n’aurait aucun sens dans un anneau général).

La dérivée d’un polynôme constant est nulle mais un polynôme de dérivée nulle peut ne pas être
constant : si p est un nombre premier, c’est le cas du polynôme Xp dans (Z/pZ)[X].

On peut itérer l’opération de dérivation en posant P ′′ := (P ′)′, etc. On définit ainsi P (r), la dérivée
r-ième de P , pour tout entier naturel r. Noter que P (r) = 0 pour tout r > deg(P ).

Proposition 10.5 (Formule de Taylor). — Soit A un anneau commutatif, soit P ∈ A[X] un polynôme de
degré inférieur ou égal à n, et soit x ∈ A.

(a) Si n! · 1A est inversible dans A, on a (5)

P (X) = P (x) +
P ′(x)

1!
(X − x) + · · ·+ P (n)(x)

n!
(X − x)n.

(b) Soit m un entier positif. On a

x est racine de P de multiplicité > m =⇒ P (x) = · · · = P (m)(x) = 0.

La réciproque est vraie si m! · 1A est inversible dans A.

En particulier, dans tous les cas, x est racine multiple (c’est-à-dire de multiplicité > 1) de P si et
seulement si P (x) = P ′(x) = 0 (on applique (b) avec m = 1).

Démonstration. — Il suffit de montrer la proposition pour x = 0A puis de l’appliquer au polynôme
Q(X) := P (X + x), en notant que P (r)(x) = Q(r)(0) pour tout entier positif r.

Le point (a) résulte alors du fait que, si Q = anX
n + · · ·+ a0, on a Q(r)(0) = r!ar.

Pour le point (b), si 0A est racine de Q de multiplicité > m, on a am = · · · = a0 = 0 ; inversement, si
Q(0A) = · · · = Q(m)(0A) = 0, on a m!am = · · · = 0!a0 = 0, d’où am = · · · = a0 = 0 si m! · 1A est
inversible dans A (il en est alors de même de r! · 1A pour tout r 6 m).

Exemple 10.6. — Soit p un nombre premier, de sorte que l’anneau Z/pZ est intègre (c’est même un
corps). Considérons le polynôme P (X) = Xp − X ∈ (Z/pZ)[X]. Comme (Z/pZ)× est un groupe
(multiplicatif) d’ordre p−1, on a (théorème de Lagrange) xp−1 = 1 pour tout x ∈ (Z/pZ)×, donc xp = x

pour tout x ∈ Z/pZ. Le polynôme P a donc au moins p racines distinctes. Comme il est de degré p, ce
sont toutes ses racines, elles sont simples et (prop. 10.3)

Xp −X =
∏

x∈Z/pZ

(X − x) ∈ (Z/pZ)[X].

On vérifie dans ce cas la prop. 10.5(b) : on a P ′(X) = −1, donc P ′ n’a aucune racine et toutes les racines
de P sont simples.

5. Dans cette relation, P (n)(x)
n!

signifie P (n)(x)(n! · 1A)−1.
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10.3. Décomposition en éléments simples des fractions rationnelles. — Soit K un corps. Une fraction
rationnelle (à coefficients dans K) est un élément du corps des fractions K(X) de l’anneau de polynô-
mes K[X]. Elle s’écrit donc P/Q, avec P,Q ∈ K[X] et Q non nul. Comme l’anneau K[X] est factoriel,
on peut toujours supposer P et Q premiers entre eux.

Le théorème suivant est parfois utile pour trouver des primitives des fractions rationnelles. C’est un
classique des programmes de classes préparatoires dont la vraie utilité mathématique est marginale. Il est
aussi au programme de l’agrégation. L’énoncé théorique est simple à démontrer ; la mise en œuvre pratique
de la décomposition donne lieu à des myriades d’astuces (mais les ordinateurs font ça très bien).

Théorème 10.7. — Soit K un corps. Soient P et Q des éléments non nuls de K[X] premiers entre eux et
soit

Q =

r∏
i=1

Qvii

la décomposition de Q en produit de facteurs irréductibles dans K[X]. Il existe une unique décomposition

P

Q
= E +

r∑
i=1

(Ai,1
Qi

+ · · ·+ Ai,vi
Qvii

)
avec E,Ai,j ∈ K[X] et deg(Ai,j) < deg(Qi).

Le polynôme E est appelé partie entière de la fraction rationnelle P/Q. Il est obtenu comme quotient
de la division euclidienne de P par Q (th. 7.1).

Dans la pratique, on est souvent dans C, de sorte que les Qi sont des polynômes de degré 1 et les Ai,j
des constantes, ou dans R, auquel cas les Qi sont des polynômes de degré 1 ou 2 (il est souvent utile
de commencer par décomposer sur C : on regroupe ensuite les fractions dont les dénominateurs sont
conjugués).

Je ne donnerai qu’une seule astuce : si Q1(X) = X − x et v1 = 1 (c’est-à-dire x est racine simple
de Q), il est facile de déterminer la constante a = A1,1. Écrivons Q(X) = (X −x)R(X), avec R(x) 6= 0 ;
on peut alors écrire

P

Q
= E +

a

X − x
+
P1

R
,

On en déduit, en réduisant au même dénominateur,

P (X) = E(X)Q(X) + aR(X) + (X − x)P1(X)

d’où on tire, « en faisant X = x », la relation a = P (x)/R(x). On obtient d’autre part par dérivation
Q′(X) = R(X) + (X − x)R′(X), soit R(x) = Q′(x), d’où finalement

a =
P (x)

Q′(x)
.

Exemple 10.8. — Soit P ∈ C[X] et soit n > deg(P ) ; on pose ω := e2iπ/n. Cherchons la décomposition
en éléments simples

P (X)

Xn − 1
=

n−1∑
k=0

ak
X − ωk

.

D’après ce qui précède, on a

ak =
P (ωk)

n(ωk)n−1
=

1

n
ωkP (ωk).
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Si P ∈ R[X], on peut en déduire la décomposition en éléments simples sur R[X] : si on suppose pour
simplifier n impair (de sorte que −1 n’est pas racine), on a

P (X)

Xn − 1
=

n−1∑
k=0

1

n

ωkP (ωk)

X − ωk

=
1

n(X − 1)
+

(n−1)/2∑
k=1

1

n

(ωkP (ωk)

X − ωk
+
ω̄kP (ω̄k)

X − ω̄k
)

=
1

n(X − 1)
+

(n−1)/2∑
k=1

1

n

(ωkP (ωk)(X − ω̄k) + ω̄kP (ω̄k)(X − ωk)

(X − ωk)(X − ω̄k)

)

=
1

n(X − 1)
+

(n−1)/2∑
k=1

2

n

(Re(ωkP (ωk))X − Re(P (ωk))

X2 − 2(cos 2kπ
n )X + 1

)
.

10.4. Polynômes homogènes à plusieurs indéterminées. — Soit A un anneau commutatif et soit n
un entier naturel. On a construit dans l’ex. 2.2 l’anneau commutatif A[X1, . . . , Xn] des polynômes à n
indéterminées à coefficients dans A.

Un monôme est un polynôme du type Xi1
1 · · ·Xin

n , avec i1, . . . , in ∈ N. Son degré (total) est l’entier
naturel i1 + · · · + in. Le degré (total) d’un polynôme est le plus grand des degrés des monômes qui le
composent.

Un polynôme P est homogène de degré d s’il est combinaison linéaire à coefficients dansA de monômes
de même degré d (le polynôme nul est donc homogène de tous les degrés). C’est équivalent à dire qu’on a
l’égalité

P (Y X1, . . . , Y Xn) = Y dP (X1, . . . , Xn)

dans l’anneau A[X1, . . . , Xn, Y ].

Tout polynôme P non nul s’écrit de façon unique comme somme

P = P0 + · · ·+ Pd,

où d est le degré de P et Pi est un polynôme homogène de degré i.

Le produit de deux polynômes homogènes de degré respectifs d et e est un polynôme homogène de
degré d + e. Toute somme de polynômes homogènes de même degré d est un polynôme homogène de
degré d.

Si K est un corps, les polynômes homogènes de degré d en n variables forment un K-espace vectoriel
de dimension

(
n+d−1

d

)
.

Remarque 10.9. — On peut très bien affecter aux indéterminées des degrés (entiers) différents,
deg(Xi) = di. Le degré du monôme Xi1

1 · · ·Xin
n est alors i1d1 + · · ·+ indn.

Dans le cas deg(Xi) = i, on appelle ce degré le poids du polynôme.

10.5. Polynômes symétriques à plusieurs indéterminées. — Soit A un anneau commutatif et soit n
un entier naturel. On dit qu’un polynôme P ∈ A[X1, . . . , Xn] est symétrique si, pour toute permutation
σ ∈ Sn, on a

P (Xσ(1), . . . , Xσ(n)) = P (X1, . . . , Xn).

L’ensemble des polynômes symétriques forme une sous-A-algèbre de la A-algèbre A[X1, . . . , Xn].
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Définition 10.10. — Soit A un anneau commutatif et soient n et r des entiers strictement positifs. On
appelle r-ième polynôme symétrique élémentaire le polynôme

Σr(X1, . . . , Xn) :=
∑

16i1<···<ir6n

Xi1 · · ·Xir .

On a en particulier

Σ1(X1, . . . , Xn) = X1+· · ·+Xn , Σn(X1, . . . , Xn) = X1 · · ·Xn , Σr(X1, . . . , Xn) = 0 pour r > n.

La notation n’est pas entièrement satisfaisante car il y manque l’entier n, mais ça ne pose en général
pas de problème en pratique : une remarque essentielle est que si on annule un certain nombre des indéter-
minées X1, . . . , Xn dans un polynôme Σr, le polynôme qu’on obtient sera encore le polynôme Σr en les
indéterminées restantes.

Ces polynômes sont à coefficients entiers. Le polynôme Σr est symétrique, homogène de degré r. On
peut aussi définir ces polynômes par l’identité

n∏
i=1

(Y −Xi) = Y n − Σ1(X1, . . . , Xn)Y n−1 + · · ·+ (−1)nΣn(X1, . . . , Xn)(3)

ou encore
n∏
i=1

(Y Xi + 1) = Σn(X1, . . . , Xn)Y n + · · ·+ Σ1(X1, . . . , Xn)Y + 1

dans l’anneau A[X1, . . . , Xn, Y ] (avec toujours Σr = 0 pour r > n). On peut aussi poser Σ0 = 1.

Théorème 10.11. — Soit A un anneau commutatif et soit n un entier naturel. Pour tout polynôme symé-
trique P ∈ A[X1, . . . , Xn], il existe un unique polynôme Q ∈ A[Y1, . . . , Yn] tel que

P = Q(Σ1, . . . ,Σn).

De plus, on a
poids(Q) = deg(P ).

Démonstration. — On va montrer l’existence de Q satisfaisant à poids(Q) 6 deg(P ), en procédant par
récurrence sur le nombre n de variables, puis par une seconde récurrence sur le degré total de P . L’autre
inégalité deg(P ) 6 poids(Q) est évidente, puisque les monômes composant P proviennent de la décom-
position de polynômes Σi11 · · ·Σinn provenant de Q : ils sont donc de degré

∑
k kik 6 poids(Q).

Lorsque n = 1, tous les polynômes sont symétriques. Comme Σ1 = X1, le théorème est évident.

Supposons la conclusion du théorème vraie pour les polyômes en au plus n − 1 variables. On fait une
seconde récurrence sur deg(P ). Si P est un polynôme constant, on prend pour Q la même constante. Soit
P ∈ A[X1, . . . , Xn] symétrique non nul de degré total d > 0.

Si Xn | P , on peut écrire P = XnP1 et comme P est symétrique, on a

P (X1, . . . , Xn) = P (Xσ(1), . . . , Xσ(n)) = Xσ(n)P1(Xσ(1), . . . , Xσ(n))

pour toute permutation σ ∈ Sn. On a donc Xi | P pour tout i ∈ {1, . . . , n} : tous les monômes compo-
sant P sont divisibles par chacun des Xi, donc par X1 · · ·Xn = Σn, donc P aussi. On peut donc écrire
P = ΣnP2, avec P2 symétrique et deg(P2) = deg(P )− n < d. On conclut en appliquant l’hypothèse de
récurrence (sur le degré) à P2 : on écrit P2 = Q2(Σ1, . . . ,Σn), avec poids(Q2) 6 deg(P2) = d− n, d’où
P = Q(Σ1, . . . ,Σn), avec Q = Q2Yn et poids(Q) = poids(Q2) + n 6 d.

Traitons maintenant le cas général et posons P̄ (X1, . . . , Xn−1) := P (X1, . . . , Xn−1, 0), polynôme
symétrique de A[X1, . . . , Xn−1]. Par hypothèse de récurrence (sur le nombre n de variables), on peut donc
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l’écrire
P̄ = Q̄(Σ̄1, . . . , Σ̄n−1),

où Σ̄1, . . . , Σ̄n−1 sont les polynômes symétriques élémentaires en n−1 variables, dont on remarque que ce
sont aussi les polynômes Σ1(X1, . . . , Xn−1, 0), . . . ,Σn−1(X1, . . . , Xn−1, 0). On a aussi (par hypothèse
de récurrence) poids(Q̄) 6 deg(P̄ ).

Considérons le polynôme symétrique

P3 := P − Q̄(Σ1, . . . ,Σn−1) ∈ A[X1, . . . , Xn].

Le polynôme Q̄(Σ1, . . . ,Σn−1) est combinaison linéaire de polynômes de type Σd11 · · ·Σ
dn−1

n−1 avec d1 +

· · · + (n − 1)dn−1 6 poids(Q̄) ; vu comme polynôme en X1, . . . , Xn, il est donc de degré au plus
poids(Q̄) 6 deg(P̄ ) 6 deg(P ), donc deg(P3) 6 deg(P ).

Par construction, P3(X1, . . . , Xn−1, 0) = 0 donc, d’après le cas déjà traité, on peut l’écrire P3 =

Q3(Σ1, . . . ,Σn), avec poids(Q3) 6 deg(P3). On a donc finalement

P = Q̄(Σ1, . . . ,Σn−1) +Q3(Σ1, . . . ,Σn),

avec poids(Q̄+Q3) 6 max(poids(Q̄),poids(Q3)) 6 deg(P ). Ceci conclut la preuve de l’existence d’un
Q de poids convenable.

Pour montrer l’unicité, il suffit de montrer que tout polynôme Q ∈ A[Y1, . . . , Yn] non nul vérifie
Q(Σ1, . . . ,Σn) 6= 0. On procède encore par récurrence sur n (le cas n = 1 étant trivial), puis par ré-
currence sur deg(Q) (le cas deg(Q) = 0 étant trivial). Si Yn | Q, on écrit Q = YnQ1, avec Q1 non nul
de degré deg(Q) − 1. Par hypothèse de récurrence, on a Q1(Σ1, . . . ,Σn) 6= 0, donc Q(Σ1, . . . ,Σn) =

ΣnQ1(Σ1, . . . ,Σn) 6= 0.

Supposons donc Yn - Q, c’est-à-dire Q̄(Y1, . . . , Yn−1) := Q(Y1, . . . , Yn−1, 0) 6= 0. L’hypothèse de
récurrence (sur n) entraîne Q̄(Σ̄1, . . . , Σ̄n−1) 6= 0. On a alors

Q(Σ1, . . . ,Σn)(X1, . . . , Xn−1, 0) = Q(Σ̄1, . . . , Σ̄n−1, 0) = Q̄(Σ1, . . . , Σ̄n−1) 6= 0,

donc en particulier Q(Σ1, . . . ,Σn) 6= 0.

Certaines preuves fournissent un algorithme plus efficace pour trouver le polynôme Q. L’exercice 11.53
propose une telle preuve.

Exemple 10.12. — Considérons le polynôme P (X1, X2) = X3
1 +X3

2 . On a P̄ (X1) = P (X1, 0) = X3
1 =

Σ̄3
1. On considère alors

P − Σ3
1 = X3

1 +X3
2 − (X1 +X2)3 = −3X1X2(X1 +X2) = −3Σ2Σ1.

On a donc Q(Y1, Y2) = Y 3
1 − 3Y1Y2, qui est de poids 3 = deg(P ).

10.6. Sommes de Newton. — Soit A un anneau commutatif et soit n un entier naturel. Les sommes de
Newton sont les polynômes symétriques

Sd(X1, . . . , Xn) := Xd
1 + · · ·+Xd

n

pour d > 0 (on ne définit pas S0). D’après le th. 10.11, ce sont des polynômes à coefficients entiers en les
polynômes symétriques élémentaires. On a par exemple S1 = Σ1 et S2 = Σ2

1 − 2Σ2.

Pour le théorème suivant, on rappelle que Σr = 0 pour r > n.

Théorème 10.13 (Formules de Newton–Girard–Waring). — On a, pour tout d ∈ N∗,

Sd − Σ1Sd−1 + · · ·+ (−1)d−1Σd−1S1 + (−1)ddΣd = 0.
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Ces relations permettent d’exprimer de proche en proche les Sd comme polynômes à coefficients entiers
en Σ1, . . . ,Σd (comme prédit par le th. 10.11). On remarque que la formule ne dépend pas du nombre n de
variables. Cela peut se comprendre en remarquant que toute formule de ce type pour n variables entraîne
la même formule pour m 6 n variables en évaluant simplement en Xm+1 = · · · = Xn = 0 (en utilisera
une démarche inverse dans la preuve).

Pour d > n, la formule se réduit à

Sd − Σ1Sd−1 + · · ·+ (−1)nΣnSd−n = 0.

tandis que pour d = n, on a

Sn − Σ1Sn−1 + · · ·+ (−1)nnΣn = 0.

Démonstration. — En substituant Y = Xi dans (3), on obtient

Xn
i − Σ1X

n−1
i + · · ·+ (−1)nΣn = 0.

Si d > n, on multiplie par Xd−n
i et on somme sur i, ce qui nous donne la formule cherchée.

Supposons maintenant d < n. Il s’agit de montrer que le polynôme Sd − Σ1Sd−1 + · · · + (−1)ddΣd
est nul. Or, chaque monôme qui pourrait apparaître dans ce polynôme est de degré d ; il implique donc au
plus d des variables X1, . . . , Xn. On voit aussi qu’il ne change pas si on annule les autres variables. Si
on écrit, en degré d, l’identité de Newton (qu’on vient de démontrer) pour ces d variables, on voit que le
coefficient de ce monôme est en fait nul.

On a par exemple

S2 − Σ1S1 + 2Σ2 = 0

et on retrouve S2 = Σ2
1 − 2Σ2. On a ensuite

S3 − Σ1S2 + Σ2S1 − 3Σ3 = 0,

d’où on déduit
S3 = Σ1S2 − Σ2S1 + 3Σ3

= Σ1(Σ2
1 − 2Σ2)− Σ2Σ1 + 3Σ3

= Σ3
1 − 3Σ1Σ2 + 3Σ3.

On trouvera dans l’exerc. 11.54 un moyen général d’exprimer Sn comme polynôme en Σ1, . . . ,Σn en
utilisant des déterminants.

10.7. Relations entre coefficients et racines d’un polynôme à une indéterminée. — Soit A un anneau
intègre. On dit qu’un élément P de A[X] est scindé (dans A[X]) si

P (X) = a(X − x1) · · · (X − xn),

avec a, x1, . . . , xn ∈ A (pas nécessairement distincts).

Proposition 10.14. — Soit A un anneau intègre. Soit P (X) = anX
n + · · · + a0 un polynôme scindé de

degré n dans A[X], de racines x1, . . . , xn (pas nécessairement distinctes). Pour tout r ∈ {1, . . . , n}, on a

anΣr(x1, . . . , xn) = (−1)ran−r.

Démonstration. — Il suffit de développer l’expression P (X) = an(X − x1) · · · (X − xn) et d’identifier
les coefficients de Xr.
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Par exemple, si n = 3, que A est un corps et que et a0a3 6= 0, on a
1

x1
+

1

x2
+

1

x3
=
x2x3 + x1x3 + x1x2

x1x2x3
=

a1/a3

−a0/a3
= −a1

a0

ainsi que

x2
1 + x2

2 + x2
3 = (x1 + x2 + x3)2 − 2(x1x2 + x2x3 + x3x1) = (a1/a3)2 − 2(−a2/a3) =

a2
1 + 2a2a3

a2
3

.

On peut ainsi calculer ces expressions, qui sont symétriques en les racines, sans effectivement connaître
celles-ci.
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11. Exercices

Les étoiles signalent des questions ou exercices un peu plus difficiles.

11.1. Généralités. —

Exercice 11.1. — Montrer qu’il y a exactement (à isomorphisme près) seulement quatre anneaux (com-
mutatifs unitaires) de cardinal 4 :

— un dont le groupe additif est Z/4Z (c’est l’anneau Z/4Z) ;
— un dont le groupe additif est Z/2Z × Z/2Z et qui a trois éléments inversibles (c’est le corps F4 à

quatre éléments) ;
— un dont le groupe additif est Z/2Z × Z/2Z et qui a deux éléments inversibles (c’est l’anneau

(Z/2Z)[X]/(X2)) ;
— un dont le groupe additif est Z/2Z × Z/2Z et qui n’a qu’un élément inversible (c’est l’anneau

Z/2Z× Z/2Z).

Exercice 11.2. — Soit A un anneau commutatif.

(1) Soit I un idéal de A. Relier les idéaux de l’anneau A/I à ceux de A. Même question pour les idéaux
premiers et maximaux.

(2) Soit f : A→ B un morphisme d’anneaux. Montrer que l’image réciproque par f d’un idéal premier est
un idéal premier. Que se passe-t-il pour les idéaux maximaux?

(3) Soient I ⊆ J des idéaux de A. Montrer que l’anneau A/J est canoniquement isomorphe au quotient
de l’anneau A/I par l’idéal J/I .

(4) Soient I et J des idéaux de A. Montrer que IJ est inclus dans I ∩ J . A-t-on toujours égalité ?

(5) Soient m et n des entiers naturels et soient I = mZ et J = nZ les idéaux qu’ils engendrent dans
l’anneau Z. Déterminer les idéaux IJ , I ∩ J et I + J .

Exercice 11.3 (Généralisation du théorème chinois des restes (th. 6.8)). — Soit A un anneau commu-
tatif et soient I1, . . . , Ir des idéaux de A, avec r > 2, qui vérifient Ii + Ij = A pour tout 1 6 i < j 6 r.

(1) Montrer l’égalité I1 + I2 · · · Ir = A.

(2) Montrer l’égalité I1 · · · Ir = I1 ∩ · · · ∩ Ir.

(3) Montrer qu’on a un isomorphisme d’anneaux

A/(I1 ∩ · · · ∩ Ir) ∼−→A/I1 × · · · ×A/Ir.

Exercice 11.4. — Montrer qu’un anneau intègre fini est un corps.

Exercice 11.5. — Soit A un anneau commutatif.

(1) Soit n un entier naturel. Établir la formule

∀a, b ∈ A (a+ b)n =

n∑
i=0

(
n

i

)
aibn−i

dite du « binôme de Newton ».

(2) On dit qu’un élément a de A est nilpotent s’il existe un entier naturel n tel que an = 0A. Montrer que
l’ensemble des éléments nilpotents de A est un idéal de A.

(3) Quels sont les éléments nilpotents de l’anneau Z/1000Z?
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Exercice 11.6. — Montrer qu’un nombre réel est rationnel si et seulement si son développement décimal
est périodique à partir d’un certain rang.

Inversement, si x = p/q = p′/(10aq′) > 0 avec 10 ∧ q′ = 1, on a 10ax = b + p′′/q′ avec b ∈ N et
0 6 p′′ < q′. Comme 10 ∧ q′ = 1, 10 est une unité dans Z/q′Z et il existe n > 0 tel que 10n = 1 dans
Z/q′Z. On peut écrire 10n − 1 = q′q′′ et p′′/q′ = p′′q′′

10n−1 est < 1 donc s’écrit c
10n−1 avec 0 6 c < 10n.

Exercice 11.7 (MG2023). — Soit q un entier naturel non nul. On considère le groupe G = (Z/4qZ)×

des éléments inversibles de l’anneau Z/4qZ.

(1) Déterminer les ordres respectifs dans G des classes modulo 4q de 2q − 1 et 2q + 1.

(2) Le groupe G est-il cyclique?

Exercice 11.8 (MG2023). — (1) Déterminer l’ensemble des couples (x, y) dans (Z/3Z)2 tels que x2 +

y2 = 0.

(2) Déterminer l’ensemble des couples (x, y) dans Z2 tels que x2 − 5y2 = 33.

(2) Déterminer l’ensemble des couples (x, y) dans Q2 tels que x2 − 5y2 = 33.

11.2. Anneaux principaux et euclidiens. —

Exercice 11.9 (Entiers de Gauss). — Le but de cet exercice est de montrer que

Z[i] := {a+ ib | a, b ∈ Z}

est un anneau enclidien (donc principal) (6).

(1) Vérifier que Z[i] est un anneau intègre.

(2) On définit une fonction ϕ := Z[i] r {0} → N en posant ϕ(a + ib) = a2 + b2. Montrer que ϕ est un
stathme euclidien (Indication : si x, y ∈ Z[i], avec y 6= 0, on pourra considérer le complexe z := x/y ∈ C

et l’élément a+ ib de Z[i], où a est l’entier le plus proche de la partie réelle de z et b l’entier le plus proche
de sa partie imaginaire).

Exercice 11.10 (Suite de Fibonacci). — Soit (Fn)n∈N la suite d’entiers définie par les relations

F0 = 0 , F1 = 1 , ∀n ∈ N Fn+2 = Fn+1 + Fn.

(1) Calculer F0, . . . , F10.

(2) On pose A :=

(
0 1

1 1

)
. Montrer que pour tout n > 1, on a

An =

(
Fn−1 Fn
Fn Fn+1

)
.

En déduire que pour tout n ∈ N, les entiers Fn et Fn+1 sont premiers entre eux.

(3) Montrer que pour tout m,n ∈ N, on a

Fm+n+1 = Fm+1Fn+1 + FmFn.

En déduire

Fm ∧ Fn = Fm∧n.

6. On peut le définir comme Z2 muni de l’addition terme à terme et de la multiplication (a, b) · (c, d) = (ac− bd, ad + bc).
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Exercice 11.11. — Une bande de 17 pirates possède un trésor constitué de pièces d’or d’égale valeur. Ils
projettent de se les partager également et de donner le reste au cuisinier. Celui-ci recevrait alors 3 pièces.
Mais les pirates se querellent et six d’entre eux sont tués. Un nouveau partage donnerait au cuisinier 4
pièces. Dans un naufrage ultérieur, seuls le trésor, six pirates et le cuisinier sont sauvés, et le partage
donnerait alors 5 pièces d’or à ce dernier. Quelle est la fortune minimale que peut espérer le cuisinier s’il
décide d’empoisonner le reste des pirates?

Exercice 11.12. — SoitA un anneau commutatif qui n’est pas un corps. Montrer que l’anneauA[X] n’est
pas principal.

Exercice 11.13. — Soient m et n des entiers naturels et soit q un entier strictement positif. Montrer l’éga-
lité (qm − 1) ∧ (qn − 1) = qm∧n − 1.

Exercice 11.14 (Nombres de Mersenne). — (1) Soientm et n des entiers avecm,n > 2, tels quemn−1

est premier. Montrer que m = 2 et que n est premier (7).

(2) Soit p un entier premier et soit q un diviseur premier de 2p − 1. Montrer que p divise q − 1.

Exercice 11.15 (Nombres de Fermat). — (1) Soit n un entier strictement positif tel que 2n + 1 est un
nombre premier. Montrer que n est une puissance de 2. On pose Fm := 22m

+ 1.

(2) Soient m et n des entiers strictement positifs distincts. Montrer que Fm et Fn sont premiers entre
eux (8).

Exercice 11.16. — Soit n un entier strictement positif. Si ϕ est l’indicatrice d’Euler, montrer la relation

n =
∑
d|n

ϕ(d).

11.3. Anneaux factoriels. —

Exercice 11.17. — On considère l’anneau

Z[
√
−5] := {a+ b

√
−5 | a, b ∈ Z}.

Si x = a+ b
√
−5, on note x̄ = a− b

√
−5.

(1) Montrer que les unités de l’anneau Z[
√
−5] sont ±1 (Indication : si x est une unité, d’inverse y, on

pourra calculer xx̄yȳ).

(2) Montrer que 3 est irréductible dans l’anneau Z[
√
−5].

(3) Montrer que l’idéal (3) n’est pas premier et que l’anneau Z[
√
−5] n’est pas factoriel (Indication : on

pourra considérer l’égalité (1 +
√
−5)(1−

√
−5) = 2 · 3).

(4) On considère maintenant l’anneau

Z[
√

5] := {a+ b
√

5 | a, b ∈ Z}.

Montrer que 2 +
√

5 en est une unité et que le groupe des unités de l’anneau Z[
√

5] est infini.

(5) Montrer que l’anneau Z[
√

5] n’est pas factoriel.

7. Les nombres de Mersenne sont les entiers de la forme 2n − 1. Si ce nombre est premier, n est donc premier. La réciproque est
fausse car 211 − 1 = 23 · 89. Seuls 51 nombres de Mersenne premiers sont connus, le plus grand étant 2282 589 933 − 1. On ne sait
pas s’il en existe une infinité.

8. On sait que F0 = 3, F1 = 5, F2 = 17, F3 = 257 et F4 = 65537 sont premiers (on n’en connaît aucun autre !) mais que 641
divise F5 (Euler). On sait aussi que F6, . . . , F32, F2543548 et F2747497 ne sont pas premiers.



11. EXERCICES 29

Exercice 11.18. — (1) SoitA un anneau factoriel de corps des fractionsKA. Soit x ∈ KA tel que P (x) =

0, où P ∈ A[X] est unitaire. Montrer que x ∈ A (on dit que A est intégralement clos).

(2) En déduire que l’anneau Z[
√

5] n’est pas factoriel (Indication : on pourra considérer le polynôme
X2 +X − 1). Généraliser aux anneaux Z[

√
d] avec d ∈ Z non carré parfait et d ≡ 1 (mod 4).

Exercice 11.19 (Bézout). — * Soit K un corps et soient P et Q des éléments de K[X,Y ] sans facteur
irréductible commun.

(1) Montrer qu’il existe A,B ∈ K[X,Y ] et D ∈ K[X] non nul tels que D = AP + BQ (Indication : on
pourra travailler dans l’anneau principal K(X)[Y ]).

(2) En déduire que l’ensemble

{(x, y) ∈ K2 | (P (x, y) = Q(x, y) = 0}

est fini.

(3) Montrer que le K-espace vectoriel K[X,Y ]/(P,Q) est de dimension finie.

11.4. Polynômes. —

Exercice 11.20. — Si le polynôme anXn+· · ·+a1X+a0 ∈ Z[X], avec an 6= 0, a une racine rationnelle,
que l’on écrit sous forme de fraction réduite a/b, alors a | a0 et b | an.

Exercice 11.21. — Montrer que le polynôme X163 + 24X57 − 6 a exactement une racine réelle. Est-elle
rationnelle ? Montrer que ce polynôme est en fait irréductible dans Q[X].

Exercice 11.22. — Soit K un corps. Montrer qu’il y a un infinité de polynômes irréductibles dans K[X]

(Indication : on pourra copier la preuve qu’il existe une infinité de nombres premiers).

Exercice 11.23. — Factoriser le polynôme X4 + 4 en produit de facteurs irréductibles dans (Z/5Z)[X].

Exercice 11.24. — Montrer que le polynôme X4 + 1 est irréductible dans Q[X].

Exercice 11.25. — Soit a un entier non nul. Montrer que le polynôme X4 + aX − 1 est irréductible dans
Q[X].

Exercice 11.26. — Factoriser le polynôme X6 + 1 en produit de facteurs irréductibles dans C[X], dans
R[X], puis dans Q[X].

Exercice 11.27. — Trouver toutes les racines complexes du polynôme 2X3 −X2 + 5X + 3.

Exercice 11.28. — Soient p, q ∈ R. Montrer que le polynôme Xn + pX + q a au plus 3 racines réelles.

Exercice 11.29. — Soit anXn + · · · + ak+1X
k+1 + ak−1X

k−1 + · · · + a0 un polynôme à coefficients
réels avec 0 < k < n et ak+1ak−1 > 0. Montrer que ses n racines ne sont pas toutes réelles.

Exercice 11.30. — SoitP ∈ R[X] tel que P (x) > 0 pour tout x ∈ R. Montrer qu’il existe des polynômes
Q et R dans R[X] tels que P = Q2 +R2.

Exercice 11.31. — Soit θ ∈ R. Déterminer le reste de la division euclidienne du polynôme ((sin θ)X +

cos θ)n par le polynôme X2 + 1.

Exercice 11.32. — Factoriser le polynôme Xn − 1 en produit de facteurs irréductibles dans C[X] puis
dans R[X].

Exercice 11.33. — Soient m et n des entiers positifs.

(1) Calculer les pgcd des polynômes Xm − 1 et Xn − 1.

(2) Calculer le pgcd des polynômes Xm−1 + · · ·+X + 1 et Xn−1 + · · ·+X + 1.
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Exercice 11.34. — Soit q un entier strictement positif. Pour tout m ∈ N, on pose Pm(X) = Xqm −X .
Montrer Pm ∧ Pn = Pm∧n.

Exercice 11.35. — (1) Déterminer tous les polynômes irréductibles de degré 2 dans (Z/2Z)[X].

(2) Déterminer tous les polynômes irréductibles de degré 3 dans (Z/2Z)[X].

(3) Déterminer tous les polynômes irréductibles de degré 4 dans (Z/2Z)[X].

(4) Montrer que le polynôme X4 + a3X
3 + a2X

2 + a1X + a0, où a3 et a2 sont des entiers pairs et a1 et
a0 des entiers impairs, est irréductible dans Q[X].

Exercice 11.36. — Soit p un nombre premier.

(1) Montrer que le polynôme Φp(X) = Xp−1 + · · · + X + 1 est irréductible dans Q[X] (Indication : on
pourra appliquer le critère d’Eisenstein (th. I.9.6) au polynôme Φp(X + 1)).

(2) Soit r un entier positif. Montrer plus généralement que le polynôme

Φpr+1(X) := Φp(X
pr ) = Xpr(p−1) +Xpr(p−2) + · · ·+Xpr + 1

(voir ex. II.2.20) est irréductible dans Q[X] (Indication : on pourra appliquer le critère d’Eisenstein au
polynôme Φpr+1(X + 1)).

Exercice 11.37. — Montrer que le polynôme X6 + Y 2X5 + Y est irréductible dans C[X,Y ].

Exercice 11.38 (Ram Murty). — Soit P (X) = anX
n + · · ·+ a0 un polynôme de degré n > 1 à coeffi-

cients entiers. On pose

M :=
1

|an|
max{|an−1|, . . . , |a0|}.

(1) Soit x une racine complexe de P . Montrer l’inégalité |x| < M + 1.

(2) On suppose qu’il existe un nombre entier m > M + 2 tel que P (m) soit un nombre premier. Montrer
que le polynôme P est irréductible dans Q[X].

(3) Montrer que le polynôme P (X) = X4 + 6X2 + 1 est irréductible dans Q[X] (Indication : on pourra
calculer P (8)).

(4) Montrer que le polynôme P (X) = 4X4 + 7X3 + 7X2 + 1 est irréductible dans Q[X] (Indication : on
pourra calculer P (10)).

Exercice 11.39. — (1) Soit r un entier positif. Montrer que le polynôme

Pr(X) :=

(
X

r

)
:=

X(X − 1) · · · (X − r + 1)

r!
∈ Q[X]

prend des valeurs entières sur tous les entiers.

* (2) Soit P ∈ Q[X] un polynôme qui prend des valeurs entières sur tous les entiers assez grands. Montrer
que P est combinaison linéaire à coefficients entiers des polynômes P0, P1, . . . (Indication : on pourra
procéder par récurrence sur le degré de P et considérer le polynôme P (X + 1)− P (X)).

Exercice 11.40. — Soit A un anneau intègre. Montrer qu’un polynôme P ∈ A[X] non constant est de
dérivée nulle si et seulement s’il existe un nombre premier p tel que p · 1A = 0A (on dit que l’anneau A est
de caractéristique p ; cf. § II.1.1) et un polynôme Q ∈ A[X] tels que P (X) = Q(Xp).

Exercice 11.41. — Soit P ∈ C[X]. Exprimer P ∧P ′ en fonction des racines de P et de leur multiplicité.

Exercice 11.42. — Décomposer en éléments simples la fraction rationnelle 1
X(X−1)(X3−2) dans C(X),

dans R(X), puis dans Q(X).
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Exercice 11.43. — Décomposer en éléments simples la fraction rationnelle 1
X2+1 et en déduire sa dérivée

nième pour tout entier n > 0.

Exercice 11.44. — * (1) Soit A un anneau intègre et soient F,G ∈ A[X1, . . . , Xn] des polynômes pre-
miers entre eux, homogènes de degrés respectifs d et d+1. Montrer que le polynôme F+G est irréductible
dans A[X1, . . . , Xn].

(2) À quelle condition nécessaire et suffisante sur les entiers naturels m et n le polynôme Xm − Y n est-
il irréductible dans C[X,Y ]? (Indication : on pourra attribuer à X et à Y des degrés bien choisis pour
pouvoir appliquer (1) ; cf. rem. 10.9.)

Exercice 11.45. — Soit A un anneau intègre et soit F ∈ A(X1, . . . , Xn) une fraction rationnelle symé-
trique. Montrer qu’il existe des polynômes symétriques P,Q ∈ A[X1, . . . , Xn] tels que F = P/Q.

Exercice 11.46. — Exprimer à l’aide des polynômes symétriques élémentaires, lorsque cela est possible,
les expressions suivantes :
• X1X2 +X2X3 +X3X4 +X4X1 ;
•
∑n
i,j=1X

3
iXj ;

•
∑n
i=1

1
Xi

.

Exercice 11.47. — Soit p un nombre premier impair.

(1) Montrer que ∏
x∈Z/pZ, 16x6p−1

x = −1.

(2) En déduire ∏
x∈Z/pZ, 16x6 p−1

2

x2 = (−1)
p+1
2

puis que, si p ≡ 1 (mod 4), alors −1 est un carré (explicite) modulo p.

Exercice 11.48. — Soit p un nombre premier impair.

(1) Montrer que si x est un carré non nul dans Z/pZ, il vérifie x
p−1
2 = 1.

(2) En déduire que si x ∈ Z/pZ×, on a

x est un carré ⇐⇒ x
p−1
2 = 1

et
x n’est pas un carré ⇐⇒ x

p−1
2 = −1.

En déduire que −1 est un carré modulo p si et seulement si p ≡ 1 (mod 4).

(3) On suppose maintenant p ≡ 1 (mod 4) et soit x un entier tel que x2 + 1 soit divisible par p. Soit Z[i]

l’anneau des entiers de Gauss ; on admettra le résultat montré dans l’exerc. 11.9 que cet anneau est principal.
Montrer que p n’est pas irréductible dans Z[i] (Indication : on pourra remarquer que p | (x+ i)(x− i)) et
qu’il se décompose en p = (a+ ib)(a− ib), avec a, b ∈ Z. Cela montre que p est somme de deux carrés (9).

(4) Montrer que si des entiers sont sommes de deux carrés, il en est de même de leur produit. En déduire
qu’un entier positif tel que tous les nombres premiers p qui apparaissent dans sa décomposition en produit
d’irréductibles avec une puissance impaire vérifient p ≡ 1 (mod 4) sont somme de deux carrés.

9. Cette preuve n’est pas constructive : elle ne dit pas comment trouver explicitement les entiers a et b tels que p = a2 + b2.
L’algorithme d’Euclide donne un tel moyen : l’entier x tel que p | x2 + 1 est premier avec p et on peut le choisir < p/2 ; on exécute
l’algorithme d’Euclide pour trouver le pgcd de p et de x (qui est bien sûr 1) et on peut prendre pour a et b les deux premiers restes
qui sont <

√
p. Si par exemple p = 73, on peut prendre x = 27, puis 73 = 2× 27 + 19, 27 = 1× 19 + 8, 19 = 2× 8 + 3 et on

a bien 73 = 82 + 32. La preuve que cet algorithme fonctionne, bien qu’élémentaire, n’est pas triviale (Wagon, S., Editor’s Corner :
The Euclidean Algorithm Strikes Again, The American Mathematical Monthly 97 (1990), 125–129).
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(5) Montrer qu’un entier n ≡ 3 (mod 4) n’est pas somme de deux carrés.

Exercice 11.49. — Résoudre le système
x + y + z = 1,

x2 + y2 + z2 = 21,

1/x + 1/y + 1/z = 1.

Exercice 11.50. — Soit P un polynôme scindé qui n’a que des racines simples xj . Calculer
∑
j

1
P ′(xj) .

Exercice 11.51. — Trouver un polynôme unitaire dont les racines sont les carrés de celles du polynôme
X3 + aX2 + bX + c.

Exercice 11.52. — Soient p et q des nombres complexes et soient x1, x2 et x3 les racines du polynôme
X3 + pX + q. Trouver un polynôme unitaire dont les racines sont x2

1 + x2
2, x2

2 + x2
3 et x2

3 + x2
1.

Exercice 11.53. — Soient i, j ∈ Nn. Nous dirons que i = (i1, . . . , in) est plus petit que j = (j1, . . . , jn)

si
• soit

∑n
k=1 ik <

∑n
k=1 jk,

• soit
∑n
k=1 ik =

∑n
k=1 jk et il existe k ∈ {1, . . . , n} tel que i1 = j1, . . . , ik−1 = jk−1 et ik < jk.

(1) Montrer que si i, j ∈ Nn sont distincts, alors soit i est plus petit que j, soit j est plus petit que i.

(2) On se donne i ∈ Nn. Montrer que l’ensemble des j ∈ Nn qui sont plus petits que i est fini.

Soit A un anneau commutatif. Soit P ∈ A[X1, . . . , Xn] un polynôme symétrique non nul et soit i =:

ht(P ) le plus grand (au sens de la définition précédente) élément de Nn tel que le coefficient deXi1
1 · · ·Xin

n

dans P soit non nul ; on note ce coefficient dom(P ).

(3) Montrer i1 ≥ · · · ≥ in.

(4) On pose
d1 = i1 − i2, d2 = i2 − i3, . . . , dn−1 = in−1 − in, dn = in.

Montrer que
• soit P = dom(P )Σd11 · · ·Σdnn ;
• soit ht(P − dom(P )Σd11 · · ·Σdnn ) est plus petit que ht(P ).

(5) En déduire le th. 10.11.

Exercice 11.54. — On garde les notations du § 10.6. Montrer les relations

Sn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Σ1 1 0 0 · · · 0

2Σ2 Σ1 1 0 · · · 0

3Σ3 Σ2
. . . . . . . . .

...
...

. . . . . . . . . 0

(n− 1)Σn−1 Σn−2 · · · Σ2 Σ1 1

nΣn Σn−1 Σn−2 · · · Σ2 Σ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
et

n!Σn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S1 1 0 0 · · · 0

S2 S1 2 0 · · · 0

S3 S2
. . . . . . . . .

...
...

. . . . . . . . . 0

Sn−1 Sn−2 · · · S2 S1 n− 1

Sn Sn−1 Sn−2 · · · S2 S1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.



CHAPITRE II

CORPS

1. Généralités

On rappelle qu’un corps est un anneau K commutatif non nul (c’est-à-dire que 1K 6= 0K) dans lequel
tout élément non nul est inversible. Ses seuls idéaux sont donc {0K} et K, et tout morphisme d’anneaux
d’origine K vers un anneau (unitaire) non nul est injectif.

Si K et L sont des corps, un morphisme (de corps) de K vers L est un morphisme d’anneaux (unitaires)
de K vers L ; il est nécessairement injectif et l’on dit que L est une extension de K. On identifiera souvent
une extension K ↪→ L avec une inclusion K ⊆ L.

1.1. Caractéristique d’un corps. — Soit K un corps. Il existe un plus petit sous-corps de K, appelé
sous-corps premier de K : c’est le sous-corps engendré par 1K . Il est isomorphe soit à Q, auquel cas on
dit que K est de caractéristique 0, soit à un corps de la forme Z/pZ (que l’on note le plus souvent Fp) ;
l’entier p est alors premier et l’on dit que K est de caractéristique p. Dans ce dernier cas, on a p · 1K = 0K
et la formule magique (1)

(4) ∀x, y ∈ K (x+ y)p = xp + yp.

Autrement dit, l’application de Frobenius

FrK : K −→ K

x 7−→ xp

est un morphisme de corps (injectif, car xp = 0 entraîne x = 0, mais pas nécessairement surjectif). On note
en général Kp son image. Si K = Fp, le morphisme de Frobenius est l’identité et Kp = K. Plus généra-
lement, si K est un corps fini, on a Kp = K (puisque FrK est une application injective entre ensembles
de même cardinal, donc surjective). En revanche, si K est le corps Fp(X) (infini de caractéristique p), on
a Kp = Fp(X

p)  K.

2. Extensions de corps

SoitK ⊆ L une extension de corps. Son degré est la dimension duK-espace vectoriel L, notée [L : K].
L’extension est dite finie si ce degré l’est, infinie sinon.

1. On peut l’obtenir en remarquant que la dérivée du polynôme (X + y)p ∈ K[X] est nulle, de sorte que le coefficient de Xi,
pour chaque 0 < i < p, est nul (puisque la dérivée de Xi ne l’est pas). Il ne reste donc que le terme de degré p, qui est Xp, et le
terme de degré 0, qui est yp. On a donc montré (X + y)p = Xp + yp.
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Exemple 2.1. — On a [C : R] = 2, [K(X) : K] =∞ et [C : Q] =∞ (cf. ex. 2.8) (2).

Théorème 2.2. — Soient K ⊆ L et L ⊆M des extensions de corps. On a

(5) [M : K] = [M : L][L : K].

En particulier, l’extension K ⊆M est finie si et seulement si les extensions K ⊆ L et L ⊆M le sont.

Démonstration. — Soit (li)i∈I une base du K-espace vectoriel L et soit (mj)j∈J une base du L-espace
vectoriel M . Nous allons montrer que la famille (limj)(i,j)∈I×J est une base du K-espace vectoriel M .

Cette famille est libre. Supposons que l’on ait une relation
∑

(i,j)∈I×J ki,j limj = 0, avec des ki,j ∈ K
presque tous nuls. On a

0 =
∑

(i,j)∈I×J

ki,j limj =
∑
j∈J

(∑
i∈I

ki,j li

)
mj .

Comme la famille (mj)j∈J est libre, on en déduit que pour chaque j ∈ J , on a∑
i∈I

ki,j li = 0.

Comme la famille (li)i∈I est libre, on en déduit que pour chaque i ∈ I et chaque j ∈ J , on a ki,j = 0.

Cette famille est génératrice. Soit y un élément de M . Comme la famille (mj)j∈J est génératrice, il
existe des xj ∈ L presque tous nuls tels que y =

∑
j∈J xjmj . Comme la famille (li)i∈I est génératrice,

il existe pour chaque j ∈ J des ki,j ∈ K presque tous nuls tels que xj =
∑
i∈I ki,j li. On a donc

y =
∑
j∈J

∑
i∈I ki,j li.

On en déduit

[M : K] = Card(I × J) = Card(I) Card(J) = [M : L][L : K],

ce qui termine la démonstration du théorème.

Remarque 2.3. — L’existence de bases pour un espace vectoriel n’est au programme de l’agrégation que
pour les espaces vectoriels de dimension finie. Pour le théorème, il est donc sage de se restreindre, dans le
cadre d’une leçon, au cas où les extensions K ⊆ L et L ⊆ M sont finies. On montre alors par la preuve
ci-dessus que l’extension K ⊆ M est finie et l’égalité (5). Inversement, si l’extension K ⊆ M est finie,
l’extension K ⊆ L l’est aussi (puisque L est alors un sous-K-espace vectoriel du K-espace vectoriel de
dimension finie M ), ainsi que l’extension L ⊆ M , puisque toute partie génératrice finie du K-espace
vectoriel M est encore génératrice de M comme L-espace vectoriel.

2.1. Éléments algébriques et transcendants. —

Définition 2.4. — Soit K ⊆ L une extension de corps et soit x un élément de L. On dit que x est algé-
brique sur K s’il existe un polynôme non nul P ∈ K[X] tel que P (x) = 0. Dans le cas contraire, on dit
que x est transcendant sur K.

L’extension K ⊆ L est dite algébrique si tous les éléments de L sont algébriques sur K.

Exemple 2.5. — Le corps C est une extension algébrique de R. Le réel
√

2 est algébrique sur Q. L’en-
semble des nombres réels algébriques sur Q est dénombrable (pourquoi ?) : il existe donc des nombres
réels transcendants sur Q (on dit souvent simplement « transcendants »). Le nombre réel

∑
n>0 10−n! est

transcendant (Liouville, 1844 ; cf. exerc. 5.18), ainsi que π (Lindemann, 1882). L’extension Q ⊆ R n’est
donc pas algébrique.

2. On ne se préoccupera pas ici des différentes « sortes » d’infini dans ce cours ; mais ce degré devrait bien sûr être considéré
comme un cardinal.
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Soit K ⊆ L une extension de corps et soit S une partie de L. L’intersection de tous les sous-anneaux
de L contenant K et S est un sous-anneau de L que l’on notera K[S], appelé sous-K-algèbre de L
engendrée par S. Ses éléments sont tous les éléments de L de la forme P (s1, . . . , sn), où n ∈ N,
P ∈ K[X1, . . . , Xn] est un polynôme à coefficients dans K, et s1, . . . , sn ∈ S. De même, l’intersec-
tion des sous-corps de L contenant K et S est un sous-corps de L, noté K(S) ; c’est le corps des fractions
de K[S].

Si x ∈ L, la sous-K-algèbre K[x] de L engendrée par x est donc l’image du morphisme d’anneaux
K-linéaire

ϕx : K[X] −→ L

P 7−→ P (x).

Le théorème suivant est fondamental.

Théorème 2.6. — Soit K ⊆ L une extension de corps et soit x un élément de L.

(a) Si x est transcendant sur K, le morphisme ϕx est injectif, le K-espace vectoriel K[x] est de dimension
infinie et l’extension K ⊆ K(x) est infinie.

(b) Si x est algébrique sur K, il existe un polynôme unitaire P ∈ K[X] de degré minimal vérifiant P (x) =

0. Ce polynôme est irréductible et c’est l’unique polynôme unitaire, irréductible dans K[X], dont x est
racine dans L. On appelle P le polynôme minimal de x sur K. On a K[x] = K(x) et cette extension de K
est finie de degré deg(P ). La famille (1, x, . . . , xdeg(P )−1) forme une base du K-espace vectoriel K[x].

Démonstration. — La transcendance de x est équivalente par définition à l’injectivité de ϕx. Si ϕx est
injectif, le sous-anneau K[x] de L engendré par x est isomorphe à K[X] donc c’est un K-espace vectoriel
de dimension infinie. De même, le sous-corps K(x) de L engendré par x est isomorphe à l’anneau des
fractions rationnelles K(X) (corps des fractions de K[X]) donc c’est un K-espace vectoriel de dimension
infinie. Ceci montre (a).

Si x est algébrique sur K, le noyau de ϕx est un idéal non nul de K[X], qui est donc principal (§ I.6),
engendré par un polynôme non nul de degré minimal P qui annule x (c’est-à-dire P (x) = 0). Il est
unique si on le prend unitaire. L’anneau K[x] est alors isomorphe à l’anneau quotient K[X]/(P ) (§ I.4).
Or l’anneau K[x] est intègre car c’est un sous-anneau de L ; il s’ensuit que l’idéal (P ) est premier, donc P
est un polynôme irréductible. De plus, l’anneau K[X]/(P ) est un corps (prop. I.6.1) et il en est de même
pour K[x], donc K[x] = K(x). On termine la preuve en montrant que la famille (1, x, . . . , xdeg(P )−1)

forme une base du K-espace vectoriel K[x].

C’est une famille libre : toute combinaison linéaire nulle non triviale de 1, x, . . . , xdeg(P )−1 fournirait
un polynôme annulateur de degré < deg(P ), ce qui contredit le choix de P .

C’est une famille génératrice : si y = Q(x) ∈ K[x], on fait la division euclidienne Q = PS + R de Q
par P , avec deg(R) < deg(P ). Comme P (x) = 0, on a y = Q(x) = R(x), qui est bien combinaison
linéaire de 1, x, . . . , xdeg(P )−1.

Exemple 2.7. — Si a + ib est un nombre complexe avec b 6= 0, son polynôme minimal sur R est
(X − a)2 + b2. Le polynôme minimal de

√
2 sur Q est X2 − 2. Le sous-anneau Q[

√
2] = {x + y

√
2 |

x, y ∈ Q} de R est un corps ; l’inverse de x+ y
√

2, si x et y ne sont pas tout deux nuls, est x−y
√

2
x2+2y2 .

Plus généralement, pour tout entier n > 1, le polynôme minimal de
n√

2 sur Q est Xn − 2 (ex. I.9.7) et
le sous-anneau Q[

n√
2] = {x0 + x1

n√
2 + · · ·+ xn−1

n√
2n−1 | x0, . . . , xn−1 ∈ Q} de R est un corps.

Exemple 2.8. — Soit p un nombre premier. Le polynôme minimal de ω := e2iπ/p sur Q est P (X) :=

Xp−1 + · · ·+X + 1, de sorte que ω est de degré p− 1 sur Q. En effet, P est irréductible (exerc. I.11.44)
et ω en est racine. Si p > 3, le polynôme minimal de ω sur R est (X −ω)(X − ω̄) = X2− 2X cos 2π

p + 1
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et c’est aussi son polynôme minimal sur le corps Q(cos 2π
p ) ; en particulier, [Q(cos 2π

p ) : Q(ω)] = 2 et le
th. 2.2 entraîne alors [Q(cos 2π

p ) : Q] = p−1
2 .

Comme il existe des nombres premiers arbitrairement grands, on en déduit [R : Q] =∞. On peut aussi
déduire cette égalité du fait qu’une extension finie d’un corps dénombrable est dénombrable (alors que R

n’est pas dénombrable).

Corollaire 2.9. — Toute extension finie de corps est algébrique.

Attention ! La réciproque est fausse (cf. ex. 2.14).

Démonstration. — Soit K ⊆ L une extension finie de corps et soit x ∈ L. Le K-espace vectoriel K[x]

est un sous-espace vectoriel de L, donc est de dimension finie. Le th. 2.6 entraîne que x est algébrique
sur K.

On peut aussi facilement démontrer le corollaire directement : siK ⊆ L est une extension finie de corps
de degré n et si x ∈ L, alors la famille 1, x, . . . , xn a n + 1 éléments donc est une famille liée dans le
K-espace vectoriel L, et une combinaison linéaire nulle non triviale de ces éléments est un polynôme non
nul de K[X] dont x est racine. Donc L est une extension algébrique de K.

Corollaire 2.10. — Toute extension de corpsK ⊆ L engendrée par un nombre fini d’éléments x1, . . . , xn
algébriques sur K est finie, donc algébrique. On a de plus L = K[x1, . . . , xn].

Démonstration. — On procède par récurrence sur n.

Si n = 0, c’est évident. Si n > 1, on pose L′ = K(x2, . . . , xn). L’hypothèse de récurrence entraîne que
l’extension K ⊆ L′ est finie et L′ = K[x2, . . . , xn]. Comme x1 est algébrique sur K, il l’est sur L′, donc
l’extension L′ ⊆ L = L′(x1) est finie par le th. 2.6 et L = L′[x1]. Le corollaire résulte alors du th. 2.2 et
du cor. 2.9.

Théorème 2.11. — Soit K ⊆ L une extension de corps. L’ensemble des éléments de L algébriques sur K
est un sous-corps de L contenant K. C’est une extension algébrique de K.

Démonstration. — Soient x et y des éléments non nuls de L algébriques sur K. Le cor. 2.10 entraîne que
l’extension K ⊆ K(x, y) est finie, donc algébrique. Les éléments x− y et x/y de L sont donc algébriques
sur K.

Corollaire 2.12. — Toute extension de corps K ⊆ L engendrée par des éléments algébriques sur K est
algébrique.

Démonstration. — Soit S ⊆ L un ensemble d’éléments de L algébriques sur K et engendrant L. Par
le théorème, l’ensemble des éléments de L algébriques sur K est un sous-corps de L, et il contient S.
Comme S engendre L, c’est donc L, qui est ainsi une extension algébrique de K, de nouveau par le
théorème.

Exemple 2.13. — Le réel
√

2 +
√

3 +
√

5 est algébrique (sur Q), de même que le nombre complexe√
2 +
√

3 + i
√

5.

Exemple 2.14. — L’ensemble Q̄ ⊆ C des nombres algébriques (sur Q) est un corps qui est une extension
algébrique de Q. Elle est de degré infini parce qu’il existe des polynômes irréductibles dans Q[X] de degré
arbitrairement grand (exerc. I.11.44 et ex. 2.8).
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Théorème 2.15. — SoientK ⊆ L etL ⊆M des extensions de corps. Si un élément x deM est algébrique
sur L et que L est une extension algébrique de K, alors x est algébrique sur K.

En particulier, si L est une extension algébrique de K et que M est une extension algébrique de L,
alors M est une extension algébrique de K.

Démonstration. — Si un élément x de M est algébrique sur L, il est racine d’un polynôme P ∈ L[X].
Si l’extension K ⊆ L est algébrique, l’extension L′ ⊆ L de K engendrée par les coefficients de P est
alors finie (cor. 2.10). Comme x est algébrique sur L′, l’extension L′ ⊆ L′(x) est finie (th. 2.6). Le th. 2.2
entraîne que l’extension K ⊆ L′(x) est finie, donc algébrique (cor. 2.9), et x est algébrique sur K.

Remarque 2.16. — Si K ⊆ L et L ⊆M sont des extensions de corps, on a donc (th. 2.2 et th. 2.15)

K ⊆ L et L ⊆M finies ⇐⇒ K ⊆M finie,

K ⊆ L et L ⊆M algébriques ⇐⇒ K ⊆M algébrique.

2.2. Racines de l’unité. — Soit K un corps et soit n un entier > 1. On appelle groupe des racines
n-ièmes de l’unité dans K le groupe multiplicatif

µn(K) = {ζ ∈ K | ζn = 1}.

C’est l’ensemble des racines du polynôme P (X) = Xn − 1 et il a donc au plus n éléments (prop. I.6.9).
Un élément ζ de µn(K) est dit racine primitive n-ième de l’unité si ζd 6= 1 pour tout d ∈ {1, . . . , n− 1} ;
en d’autres termes, si ζ est d’ordre n dans le groupe µn(K). S’il existe une racine primitive n-ième de
l’unité ζ dans K, elle engendre le groupe µn(K), qui est alors isomorphe à Z/nZ. Il y a alors

ϕ(n) = Card((Z/nZ)×) = Card{d ∈ {0, . . . , n− 1} | d ∧ n = 1}

différentes racines primitives n-ièmes de l’unité, à savoir les ζd pour d ∧ n = 1.

Exemple 2.17. — On a

µn(R) = µn(Q) =

{
{1} si n est impair ;

{1,−1} si n est pair.

Il n’y a donc de racines primitives n-ièmes de l’unité dans R ou dans Q que si n ∈ {1, 2}. En revanche,
on a

µn(C) ' Z/nZ

pour tout n > 1.

Théorème 2.18. — Pour tout corps K et tout entier n > 1, le groupe µn(K) est cyclique d’ordre un
diviseur de n. Plus généralement, tout sous-groupe fini de (K×,×) est cyclique.

En particulier, le groupe multiplicatif d’un corps fini est cyclique.

Démonstration. — Posons m = Card(µn(K)). Tout élément ζ de µn(K) est d’ordre un diviseur d de m
(par le théorème de Lagrange) et de n (puisque ζn = 1) ; c’est alors une racine primitive d-ième de l’unité.
On a vu plus haut que l’ensemble Pd ⊆ µn(K) des racines primitives d-ièmes de l’unité est soit vide, soit
de cardinal ϕ(d). Comme

µn(K) =
⋃

d|m∧n

Pd,

on a donc m 6
∑
d|m∧n ϕ(d). Or (exerc. I.11.16), pour tout entier e > 1, on a

∑
d|e ϕ(d) = e. On en

déduit m 6 m∧n, donc m | n, et Pm 6= ∅. Il existe donc un élément d’ordre m dans µn(K), qui est ainsi
un groupe cyclique d’ordre un diviseur de n. Ceci montre le premier point.
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Si G est un sous-groupe de (K×,×) de cardinal m, il est contenu par le théorème de Lagrange dans le
groupe cyclique µm(K), qui est de cardinal au plus m. On a donc G = µm(K) ' Z/mZ. Ceci termine la
démonstration de la proposition.

2.3. Polynômes cyclotomiques complexes. — Soit n un entier strictement positif. On définit le n-ième
polynôme cyclotomique (complexe) par

(6) Φn(X) =
∏

ζ racine primitive
n-ième de 1 dans C

(X − ζ).

D’après ce qui précède, c’est un polynôme unitaire de degré ϕ(n) à coefficients complexes. On a par
exemple

Φ1(X) = X − 1,

Φ2(X) = X + 1,

Φ3(X) = X2 +X + 1,

Φ4(X) = X2 + 1.

Pour tout entier premier p, on a

Φp(X) =

p−1∏
k=1

(X − e2ikπ/p) =
Xp − 1

X − 1
= Xp−1 + · · ·+X + 1.

Proposition 2.19. — Pour tout entier n > 1, on a

(7) Xn − 1 =
∏
d|n

Φd(X).

Le polynôme Φn est unitaire à coefficients entiers.

Démonstration. — On a Xn − 1 =
∏
ζ∈µn(C)(X − ζ). Comme dans la preuve du th. 2.18, on remarque

que µn(C) est la réunion disjointe de ses parties Pd, pour d | n. On a donc

Xn − 1 =
∏
d|n

∏
ζ∈Pd

(X − ζ) =
∏
d|n

Φd(X).

Pour montrer que le polynôme unitaire Φn est à coefficients entiers, on procède par récurrence sur n :
par (7), Φn est le quotient de Xn − 1 par le polynôme unitaire

∏
d|n, d 6=n Φd(X), qui est à coefficients

entiers par hypothèse de récurrence. C’est donc un polynôme à coefficients entiers (th. I.7.1).

Exemple 2.20. — Pour tout entier premier p, on aXp2−1 = Φp2(X)Φp(X)Φ1(X) = Φp2(X)(Xp−1),
donc

Φp2(X) =
Xp2 − 1

Xp − 1
= Xp(p−1) +Xp(p−2) + · · ·+Xp + 1.

Plus généralement, pour tout entier r > 1, on a

Φpr (X) =
Xpr − 1

Xpr−1 − 1
= Xpr−1(p−1) +Xpr−1(p−2) + · · ·+Xpr−1

+ 1 = Φp(X
pr−1

).

En particulier, on a
Φ2r (X) = X2r−1

+ 1.

Théorème 2.21. — Pour tout entier n > 1, le polynôme Φn est irréductible dans Q[X]. En particulier,

[Q(e2iπ/n) : Q] = ϕ(n).

La preuve de ce théorème (qu’on ne donnera pas ici) est un peu compliquée mais reste du niveau de
l’agrégation. C’est un développement classique pour l’oral.
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Exercice 2.22. — Montrer qu’une extension finie de Q ne contient qu’un nombre fini de racines de l’unité.

2.4. Constructions à la règle et au compas. — Ce paragraphe est un classique de l’agrégation et les
problèmes qui y sont traités ont un intérêt historique, même si leur intérêt mathématique est très limité.

Définition 2.23. — Soit Σ un sous-ensemble de R2. On dit qu’un point P ∈ R2 est constructible (à
la règle et au compas) à partir de Σ si on peut obtenir P à partir des points de Σ par une suite finie
d’opérations de l’un des types suivants :

• prendre l’intersection de deux droites non parallèles passant chacune par deux points distincts déjà
construits ;

• prendre l’un des points d’intersection d’une droite passant par deux points distincts déjà construits
et d’un cercle de rayon joignant deux points distincts déjà construits ;

• prendre l’un des points d’intersection de deux cercles distincts dont les rayons joignent chacun deux
points distincts déjà construits.

On dira qu’une droite est constructible (à partir de Σ) si elle passe par deux points constructibles dis-
tincts, et qu’un cercle est constructible si son centre l’est et qu’il passe par un point constructible. On
montre que la perpendiculaire et la parallèle à une droite constructible passant par un point constructible
sont constructibles, et que le cercle de centre un point constructible et de rayon la distance entre deux points
constructibles est constructible.

Si Σ est un sous-ensemble de R contenant 0 et 1, on dit qu’un réel x est constructible à partir de Σ si
c’est l’abcisse d’un point P constructible à partir de Σ×{0} au sens de la définition ci-dessus. Cela revient
au même de dire que les points (x, 0) et (0, x) sont constructibles à partir de Σ× {0}.

Théorème 2.24. — Soit Σ un sous-ensemble de R contenant 0 et 1. L’ensemble CΣ des réels construc-
tibles à partir de Σ est un sous-corps de R tel que, si x ∈ CΣ, alors

√
|x| ∈ CΣ.

Démonstration. — L’addition et l’opposé sont évidents (utiliser des cercles). Le produit xy est l’ordonnée
de l’intersection de la droite joignant l’origine au point (1, x) avec la verticale passant par (y, 0) ; l’inverse
de x non nul est l’ordonnée de l’intersection de la droite joignant l’origine au point (x, 1) avec la verticale
passant par (1, 0). La racine carrée d’un élément positif x de CΣ s’obtient par le théorème de Pythagore en
construisant un triangle rectangle dont un des côtés est 1

2 |x− 1| et dont l’hypothénuse est 1
2 (x+ 1).

En particulier, être constructible à partir de {0, 1} est la même chose qu’être constructible à partir de Q ;
on dit simplement « constructible ».

Théorème 2.25 (Wantzel, 1837). — SoitK un sous-corps de R. Un réel x est constructible à partir deK
si et seulement s’il existe une suite d’extensions

K = K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ R

telle que [Ki : Ki−1] = 2 et x ∈ Kn.

Avant de démontrer le théorème, on va décrire en général les extensions de degré 2.

Lemme 2.26. — Soit K un corps de caractéristique différente de 2 et soit K ⊆ L une extension de
degré 2. Il existe x ∈ LrK tel que x2 ∈ K et L = K[x].

Démonstration. — Si y ∈ L rK, la famille (1, y) est K-libre, donc c’est une base du K-espace vecto-
riel L. Il existe donc a et b dans K tels que

y2 = ay + b.
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Comme la caractéristique de K est différente de 2, on peut poser x = y − a
2 . On a alors

x2 = y2 − ay +
a2

4
= b+

a2

4
∈ K,

et L = K[y] = K[x].

Démonstration du théorème. — Soit L un sous-corps de R. On vérifie par des calculs directs que :

• les coordonnées du point d’intersection de deux droites non parallèles passant chacune par deux
points distincts à coordonnées dans L, sont dans L ;

• les coordonnées de chacun des points d’intersection d’une droite passant par deux points à coor-
données dans L et d’un cercle de rayon joignant deux points distincts à coordonnées dans L sont
solutions d’une équation de degré 2 à coefficients dans L ;

• les coordonnées de chacun des points d’intersection de deux cercles distincts, chacun de rayon joi-
gnant deux points distincts à coordonnées dans L, sont solutions d’une équation de degré 2 à coeffi-
cients dans L.

Par récurrence, on voit que les coordonnées d’un point constructible à partir de K sont dans un corps du
type Kn décrit dans l’énoncé du théorème.

Inversement, pour montrer que tout point dans un corps de type Kn est constructible à partir de K, il
suffit de montrer que tout réel dans une extension quadratique d’un corps L contenue dans R est construc-
tible à partir de L. Une telle extension est engendrée par un réel x tel que x2 ∈ L (lemme 2.26 ). Mais alors
x = ±

√
x2 est constructible à partir de L (th. 2.24).

Corollaire 2.27. — Soit x un réel constructible sur un sous-corps K de R. Alors x est algébrique sur K
de degré une puissance de 2.

Démonstration. — Si x est un réel constructible, il est dans une extension Kn du type décrit dans le
théorème de Wantzel (th. 2.25), pour laquelle [Kn : K] = 2n (th. 2.2). En considérant la suite d’extensions
K ⊆ K(x) ⊆ Kn, on voit que [K(x) : K] est une puissance de 2 (th. 2.2).

Remarque 2.28. — Attention, la réciproque du corollaire est fausse telle quelle (exerc. 5.19). On peut
montrer qu’un nombre réel x est constructible si et seulement s’il vérifie la propriété suivante : x est algé-
brique sur Q et si P est son polynôme minimal (sur Q) et si x1, . . . , xd sont toutes les racines (complexes)
de P , alors le degré de l’extension Q ⊆ Q(x1, . . . , xd) est une puissance de 2.

Corollaire 2.29 (Duplication du cube). — Le réel
3√

2 n’est pas constructible (sur Q).

Démonstration. — C’est une racine du polynôme X3 − 2. Si ce dernier est réductible sur Q, il a un
facteur de degré 1, donc une racine rationnelle que l’on écrit sous forme de fraction réduite a/b. On a alors
a3 = 2b3, donc a est pair. On écrit a = 2a′ avec 4a′

3
= b3, donc b est pair, contradiction (voir aussi

l’exerc. I.11.20 ou appliquer le critère d’Eisenstein (th. I.9.6)).

Ainsi, le degré de
3√

2 sur Q est 3 : il n’est donc pas constructible par cor. 2.27.

Corollaire 2.30 (Quadrature du cercle). — Le réel
√
π n’est pas constructible.

Démonstration. — Ici, on triche : il faut savoir que π est transcendant (ex. 2.5), donc aussi
√
π.

On dit qu’un angle α est constructible à partir d’un angle θ si le point (cosα, sinα) est constructible à
partir de {(0, 0), (0, 1), (cos θ, sin θ)}. Comme sinα est constructible à partir de cosα, c’est équivalent à
dire que cosα est constructible à partir de {0, 1, cos θ}.
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Corollaire 2.31 (Trisection de l’angle). — L’angle θ/3 est constructible à partir de l’angle θ si et seule-
ment si le polynôme X3 − 3X − 2 cos θ a une racine dans Q(cos θ).

En particulier, l’angle 2π/9 n’est pas constructible à la règle et au compas.

Démonstration. — Comme cos 3u = 4 cos3 u− 3 cosu, le réel cos θ/3 est racine du polynôme

P (X) = 4X3 − 3X − cos θ.

Si P est irréductible sur Q(cos θ), il n’a pas de racine dans ce corps, le réel cos θ/3 est de degré 3 sur ce
corps et ne peut y être constructible par cor. 2.27.

Si P est réductible sur Q(cos θ), étant de degré 3, il doit avoir une racine dans ce corps et se factoriser sur
ce corps en le produit d’un polynôme de degré 1 et d’un polynôme de degré 2. Le réel cos θ/3 est racine
de l’un de ces deux polynômes, donc est constructible sur Q(cos θ) (lemme 2.26 et th. 2.25). Comme
2P (X/2) = X3 − 3X − 2 cos θ, cela montre la première partie de l’énoncé.

On a Q(cos 2π/3) = Q, donc l’angle 2π/9 est constructible si et seulement si le polynômeX3−3X−1

a une racine dans Q, ce qui n’est pas le cas (exerc. I.11.20).

On peut aussi s’intéresser plus généralement, après Fermat, aux polygones réguliers constructibles à la
règle et au compas. Soit N l’ensemble des nombres entiers n > 1 tels que le polygone régulier à n côtés,
inscrit dans le cercle unité et dont l’un des sommets est (0, 1), soit constructible à la règle et au compas,
c’est-à-dire tels que e2iπ/n (ou, de façon équivalente, l’angle 2π/n) soit constructible. On vient de voir
que 9 n’est pas dans N .

Rappelons qu’un nombre premier de Fermat est un nombre premier de la forme Fm := 22m

+ 1.

Théorème 2.32. — Si un polygone régulier à n côtés est constructible à la règle et au compas, n est le
produit d’une puissance de 2 et de nombres premiers de Fermat distincts.

La réciproque est vraie, mais sa preuve nécessite de connaître la théorie de Galois. En particulier, le
polygone régulier à 17 côtés est constructible à la règle et au compas (Gauss, 1796).

Démonstration. — Si n ∈ N , le degré de e2iπ/n sur Q est une puissance de 2 (cor. 2.31). De plus,
2n ∈ N (on peut bissecter n’importe quel angle constructible) et tout diviseur de n est dans N . Il suffit
donc de montrer que si un nombre premier impair p appartiennent à N , c’est un nombre premier de Fermat,
et que le carré d’un nombre premier impair n’est pas dans N .

Soit p un nombre premier impair. Le degré de exp(2iπ/p) sur Q est p − 1 (ex. 2.8). Si p ∈ N ,
l’entier p− 1 est donc une puissance de 2, et p est un nombre premier de Fermat (exerc. I.11.15).

Pour montrer que p2 n’est jamais dans N , rappelons (ex. 2.20 et th. 2.21) que le degré de exp(2iπ/p2)

sur Q est ϕ(p2) = p(p− 1), qui n’est pas une puissance de 2 (il est divisible par p).

3. Construction d’extensions

On prend maintenant le problème dans l’autre sens : au lieu de se donner une extension d’un corps K et
de regarder si les éléments de cette extension sont, ou non, racines de polynômes à coefficients dans K, on
part d’un polynôme P ∈ K[X] et l’on cherche à construire une extension de corps de K dans laquelle P
aura une racine, ou même, sera scindé (produit de facteurs du premier degré).
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3.1. Corps de rupture. — Étant donné un polynôme irréductible, on commence par construire une ex-
tension dans lequel P a une racine.

Définition 3.1. — Soit K un corps et soit P ∈ K[X] un polynôme irréductible. On appelle corps de
rupture de P sur K une extension K ⊆ L telle que L = K(x), avec x ∈ L et P (x) = 0.

Exemple 3.2. — Le corps C est un corps de rupture du polynôme irréductible X2 + 1 ∈ R[X]. De
même, le polynôme X2 + X + 1 est aussi irréductible sur R et C est encore un corps de rupture. Plus
généralement, C est le corps de rupture de n’importe quel polynôme de R[X] de degré deux sans racine
réelle (cf. ex. 5.1).

Exemple 3.3. — Le corps Q(
3√

2) est un corps de rupture du polynôme irréductible X3 − 2 ∈ Q[X] ; le
corps Q(j

3√
2) en est un autre. Remarquons que le polynôme X3 − 2 n’est pas scindé dans ces corps.

Théorème 3.4. — Soit K un corps et soit P ∈ K[X] un polynôme irréductible. Il existe un corps de
rupture de P sur K.

Démonstration. — L’anneau K[X] étant principal, l’anneau quotient KP := K[X]/(P ) est un corps
(prop. 6.1). Soit xP ∈ KP l’image de X dans KP . On a alors P (xP ) = 0 et KP = K(xP ), donc KP est
un corps de rupture de P sur K.

Nous allons maintenant nous intéresser à l’unicité du corps de rupture.

Définition 3.5. — Soient K ⊆ L et K ⊆ L′ des extensions de corps. On appelle K-morphisme de L dans
L′ un morphisme de corps L ↪→ L′ qui est l’identité sur K.

Proposition 3.6. — Soit P ∈ K[X] un polynôme irréductible. Pour toute extensionK ⊆ L et toute racine
x de P dans L, il existe un unique K-morphisme KP ↪→ L qui envoie xP sur x.

Démonstration. — Le morphisme K[X] → L qui envoie X sur x est nul sur P , donc définit par passage
au quotient l’unique K-morphisme de KP vers L qui envoie xP sur x.

Corollaire 3.7. — Soit P ∈ K[X] un polynôme irréductible. Deux corps de rupture de P sont K-
isomorphes.

On remarquera que l’isomorphisme entre deux corps de rupture n’est en général pas unique. Plus préci-
sément, étant donnés des corps de rupture K ⊆ L et K ⊆ L′ de P , et des racines x ∈ L et x′ ∈ L′ de P ,
il existe un unique K-isomorphisme σ : L ∼→L′ tel que σ(x) = x′.

3.2. Corps de décomposition. — Étant donné un polynôme P à coefficients dans K, on cherche mainte-
nant à construire une extension deK dans laquelle P est scindé, c’est-à-dire produit de facteurs du premier
degré.

Théorème 3.8. — Soit K un corps et soit P ∈ K[X] un polynôme non nul de degré d.

(a) Il existe une extension K ⊆ L dans laquelle le polynôme P est scindé, de racines x1, . . . , xd, telle que
L = K(x1, . . . , xd).

(b) Deux telles extensions sont K-isomorphes.

Une telle extension s’appelle un corps de décomposition de P . C’est une extension finie deK (cor. 2.10).



3. CONSTRUCTION D’EXTENSIONS 43

Démonstration. — On procède par récurrence sur le degré d de P . Si d = 0, le corps L = K est le seul
qui convient.

Si d > 1, soit Q un facteur irréductible de P dans K[X] (cf. th. I.8.6) et soit KQ le corps de rupture
de Q construit plus haut. Le polynôme P admet la racine xQ dans KQ, donc s’écrit

P (X) = (X − xQ)R(X),

avec R ∈ KQ[X] de degré d− 1. L’hypothèse de récurrence appliquée à R fournit un corps de décompo-
sition KQ ⊆ L de R sur KQ. Alors R est scindé dans L[X], de racines x1, . . . , xd−1, donc aussi P , de
racines xQ, x1, . . . , xd−1. De plus, L = KQ(x1, . . . , xd−1) = K(xQ, x1, . . . , xd−1), donc L est un corps
de décomposition de P , et ceci montre (a).

Soient K ⊆ L et K ⊆ L′ des corps de décomposition de P , et soient x une racine de Q (un facteur
irréductible de P dans K[X]) dans L et x′ une racine de Q dans L′. Le corps K(x) ⊆ L est un corps
de rupture pour Q sur K, et il en est de même pour le corps K(x′) ⊆ L′. Il existe donc (cor. 3.7) un
K-isomorphisme K(x) ∼→K(x′) qui envoie x sur x′. Il permet de considérer L′ comme une extension de
K(x) via le morphisme composé K(x) ∼→K(x′) ⊆ L′.

Écrivons comme plus haut P (X) = (X−x)R(X) avecR ∈ K(x)[X] de degré d−1. Les extensions L
et L′ de K(x) sont alors des corps de décomposition de R sur K(x). L’hypothèse de récurrence appliquée
à R entraîne que L et L′ sont K(x)-isomorphes, donc K-isomorphes. Ceci prouve (b).

Exemple 3.9. — Pour tout d > 3, le corps C est un corps de décomposition pour le polynôme Xd − 1 ∈
R[X].

Exemple 3.10. — Le corps Q(
3√

2, j) est un corps de décomposition pour le polynôme X3 − 2 ∈ Q[X].
En considérant la suite d’extensions Q ⊆ Q(

3√
2) ⊆ Q(

3√
2, j), on voit que c’est une extension de degré 6

de Q.

Remarque 3.11. — Soit K un corps de caractéristique 0 et soit P ∈ K[X] un polynôme irréductible. Son
polynôme dérivé P ′ est alors non nul et est donc premier avec P . En particulier, P n’a que des racines
simples dans un corps de décomposition (prop. I.10.5).

Cela n’est plus nécessairement vrai en caractéristique p > 0 (voir cependant la rem. 4.3). Posons L =

Fp(Y ), vu comme extension deK = Lp = Fp(Y
p). Le polynôme P (X) = Xp−Y p ∈ K[X] est irréduc-

tible (Eisenstein). Un corps de décomposition estL et dans ce corps, il se décompose en P (X) = (X−Y )p.
Il a donc une unique racine, d’ordre p.

3.3. Clôture algébrique. —

Définition 3.12. — On dit qu’un corps Ω est algébriquement clos si tout polynôme non constant de Ω[X]

a une racine dans Ω.

Une clôture algébrique d’un corps K est une extension algébrique de corps K ⊆ Ω telle que Ω est un
corps algébriquement clos.

Si Ω est un corps algébriquement clos, tout polynôme non constant de Ω[X] est scindé dans Ω, comme
on le voit facilement en raisonnant par récurrence sur le degré du polynôme.

Exemple 3.13. — Le corps C est algébriquement clos (c’est le théorème de d’Alembert–Gauss, qui est
au programme de l’agrégation). C’est une clôture algébrique de R, mais pas de Q (car l’extension Q ⊆ C

n’est pas algébrique : il existe des nombres complexes transcendants).

Proposition 3.14. — Soit K ⊆ L une extension algébrique de corps. On suppose que tout polynôme
de K[X] est scindé dans L. Alors L est une clôture algébrique de K.
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La conclusion subsiste si on suppose seulement que tout polynôme de K[X] a une racine dans L, mais
c’est beaucoup plus difficile à montrer.

Démonstration. — Soit Q ∈ L[X] un polynôme irréductible et soit x une racine de Q dans une extension
deL, de sorte queQ est le polynôme minimal de x surL. Alors x est algébrique surL donc surK (th. 2.15).
Soit P ∈ K[X] son polynôme minimal sur K ; on a alors Q | P dans L[X]. Mais par hypothèse faite dans
la proposition, P est scindé dans L, donc x ∈ L, et Q a donc une racine dans L.

Comme tout élément de L[X] est produit de polynômes irréductibles (th. I.8.6), on a montré que tout
polynôme de L[X] a une racine dans L, donc que L est un corps algébriquement clos. C’est donc une
clôture algébrique de K.

À partir d’un corps algébriquement clos, il est facile de construire une clôture algébrique pour n’importe
quel sous-corps.

Proposition 3.15. — Soit Ω un corps algébriquement clos et soit K ⊆ Ω un sous-corps. L’ensemble des
éléments de Ω qui sont algébriques sur K est une clôture algébrique de K.

Démonstration. — On a déjà vu que l’ensemble K̄ des éléments de Ω qui sont algébriques sur K est
un sous-corps de Ω (th. 2.11), extension algébrique de K. Montrons qu’il est algébriquement clos. Soit
P ∈ K̄[X] un polynôme non constant et soit x une racine de P dans Ω. Alors x est algébrique sur K̄, donc
aussi sur K (th. 2.15), de sorte que x ∈ K̄ (3).

Exemple 3.16. — Le corps Q̄ ⊆ C des nombres algébriques (cf. ex. 2.14) est une clôture algébrique de Q.
C’est un corps dénombrable (pourquoi ?).

Théorème 3.17 (Steinitz, 1910). — SoitK un corps. Il existe une clôture algébrique deK. Deux clôtures
algébriques de K sont K-isomorphes.

Démonstration. — La construction d’une clôture algébrique en général utilise l’axiome du choix (par
exemple sous la forme de l’existence d’un idéal maximal dans un anneau que l’on construit). Pour simplifier
la démonstration, nous nous limiterons donc au cas où le corps K est (au plus) dénombrable et nous ne
démontrons que l’existence d’une clôture algébrique. L’ensemble K[X] est alors dénombrable. On peut
donc numéroter ses éléments en une suite (Pn)n∈N. On construit une suite (Kn)n∈N de corps emboîtés en
posant K0 = K et en prenant pour Kn+1 un corps de décomposition du polynôme Pn, vu comme élément
de Kn[X]. Posons

L =
⋃
n∈N

Kn.

Il existe sur L une (unique) structure de corps faisant de chaque Kn un sous-corps de L et K ⊆ L est une
extension algébrique.

Tout polynôme de K[X] est un des Pn donc est par construction scindé dans L. Ce dernier est donc une
clôture algébrique de K par la prop. 3.14.

Nous ne démontrerons pas que deux clôtures algébriques de K sont K-isomorphes (même dans le cas
K = Q, on utilise l’axiome du choix).

3. Pour prouver que K̄ est algébriquement clos, on peut aussi utiliser la prop. 3.14 : tout polynôme P ∈ K[X] non constant a
une racine dans Ω, et cette racine est dans K̄ par définition de K̄.
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4. Corps finis

On dit qu’un corps K est fini s’il n’a qu’un nombre fini d’éléments. Sa caractéristique est alors un
nombre premier p et son sous-corps premier le corps Fp := Z/pZ. L’extension Fp ↪→ K est de degré
fini n, de sorte que K est de cardinal pn.

Théorème 4.1. — Soient p un entier premier et n un entier > 1.

(1) Il existe un corps fini à pn éléments.

(2) Tout corps fini à pn éléments est un corps de décomposition du polynôme Xpn −X sur le corps Fp.
En particulier, deux tels corps sont isomorphes.

On parlera souvent du corps à pn éléments, noté Fpn .

Démonstration. — Soit Fp ⊆ K un corps de décomposition du polynôme P (X) := Xpn −X sur Fp et
soit K ′ ⊆ K l’ensemble des racines de P dans K. Par la formule magique (4), c’est un sous-corps de K,
qui lui est donc égal puisqueK est engendré par ces racines. Ces racines sont toutes distinctes car sa dérivée
étant −1, le polynôme P n’a pas de racine multiple (prop. I.10.5(2)). En particulier, Card(K) = pn. Ceci
montre (1).

Soit K un corps fini à pn éléments. Le groupe (K×,×) étant d’ordre pn − 1, tout élément non nul x
de K vérifie xp

n−1 = 1 (théorème de Lagrange). En particulier, les pn éléments de K sont exactement les
racines de P , qui est ainsi scindé dans K. Le corps K est donc un corps de décomposition de P sur Fp.
Par le th. 3.8, ceci montre (2).

Remarque 4.2. — Si P ∈ Fp[X] est irréductible et de degré 2, son corps de rupture (qui est aussi un corps
de décomposition) est une extension de degré 2 de Fp, donc est de cardinal p2 : c’est Fp2 . Il s’ensuit que
dans Fp2 , tous les polynômes de degré 2 à coefficients dans Fp sont scindés (de la même façon que dans
C, tous les polynômes à coefficient réels sont scindés).

Si −1 n’est pas un carré dans Fp (cela arrive si et seulement si p ≡ 3 (mod 4)), le polynôme X2 + 1

est irréductible dans Fp[X] et on a Fp2 = Fp[i], avec i2 = −1. Cela peut être utile pour faire des calculs
dans Fp2 .

Remarque 4.3. — Soit P ∈ Fpn [X]. Si P ′ = 0, on peut écrire P (X) =
∑
i aiX

ip. Comme le morphisme
de Frobenius FrFpn

est bijectif (§ 1.1), on peut écrire

P (X) =
(∑
i

Fr−1
Fpn

(ai)X
i
)p
.

En particulier, P ne peut être irréductible. Autrement dit, le polynôme dérivé d’un polynôme irréductible
P ∈ Fpn [X] est non nul et est donc premier avec P . En particulier, comme dans la rem. 3.11, P n’a que
des racines simples dans un corps de décomposition.

4.1. Théorème de l’élément primitif. — Le résultat suivant permet de simplifier la vision que l’on a des
extensions finies. Mais il n’est pas valable en toute généralité (voir ex. 4.6).

Théorème 4.4. — Soit K un corps qui est soit fini, soit de caractéristique 0 et soit K ⊆ L une extension
finie. Il existe x ∈ L tel que L = K(x).

Démonstration. — Si le corps K est fini, le corps L est aussi fini. Par le th. 2.18, le groupe multiplicatif
(L∗,×) est engendré par un élément x. On a alors L = K(x).

Supposons maintenant K de caractéristique 0 (donc infini). Comme L est une extension finie de K, on
peut faire une récurrence sur le nombre de générateurs de L sur K et on voit qu’il suffit de montrer le
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théorème pour L = K(x, y). Le fait fondamental qu’on va utiliser est qu’un polynôme irréductible n’a que
des racines simples dans un corps de décomposition (rem. 3.11).

Soit P le polynôme minimal de x sur K, soit Q le polynôme minimal de y sur K et soit M un corps
de décomposition du polynôme PQ. La rem. 3.11 entraîne que P et Q sont scindés à racines simples dans
M . On les écrit

P (X) =

m∏
i=1

(X − xi) , Q(X) =

n∏
j=1

(X − yj),

où les xi (resp. les yj) sont distincts deux à deux, avec x1 = x et y1 = y. Comme K est infini, on peut
choisir t ∈ K qui n’est égal à aucun des éléments xi−x

y−yj de M , pour i ∈ {1, . . . ,m} et j ∈ {2, . . . , n}, de
sorte que z := x+ ty ∈ L n’est égal à aucun des xi + tyj .

On a bien sûr K(z) ⊆ K(x, y). Montrons qu’il y a égalité en prouvant y ∈ K(z) (donc aussi x =

z − ty ∈ K(z)). Notons que y est racine de Q(X) ∈ K[X] et de R(X) := P (z − tX) ∈ K(z)[X], donc
aussi de leur pgcd S(X) ∈ K(z)[X]. Comme S | Q, il est produit dansM [X] de facteurs distinctsX−yj .
Si X − yj | S avec j ∈ {2, . . . , n}, alors 0 = S(yj) = R(yj) = P (z − tyj). Ceci entraîne que z − tyj
est l’un des xi, ce qui contredit le choix de t. Comme S(y) = 0, on en déduit S(X) = X − y1, donc
y = y1 ∈ K(z) et K(x, y) = K(z).

Corollaire 4.5. — Soit K un corps qui est soit fini, soit de caractéristique 0 et soit K ⊆ L une extension
finie. Il n’existe qu’un nombre fini d’extensions intermédiaires K ⊆M ⊆ L.

L’énoncé est bien sûr évident lorsque K est fini puisqu’il n’y a alors qu’un nombre fini de sous-
ensembles de L.

Démonstration. — Écrivons L = K(x) (th. 4.4) et soit P ∈ K[X] le polynôme minimal de x sur K. À
chaque extension intermédiaire K ⊆ M ⊆ L, associons le polynôme minimal PM ∈ M [X] de x sur M .
Il est unitaire et divise P dans L[X], donc il n’y a qu’un nombre fini de polynômes possibles PM .

Il suffit maintenant de montrer que la sous-extension M est entièrement déterminée par le polynôme
PM = Xe+ae−1X

e−1 + · · ·+a1X+a0. On a tout d’abord ae−1, . . . , a0 ∈M , doncK(ae−1, . . . , a0) ⊆
M . De plus, comme PM (x) = 0 et L = K(x) = K(ae−1, . . . , a0)(x), on a [L : K(ae−1, . . . , a0)] 6 e.
Comme e = [L : M ] (puisque L = M(x)), on en déduit M = K(ae−1, . . . , a0), ce qui montre ce qu’on
voulait : M est le sous-corps de L engendré par les coefficients du polynôme PM .

Exemple 4.6 (Une extension finie avec une infinité de sous-extensions). — Soit p un nombre premier.
Considérons le corps L := Fp(X,Y ) comme extension du corps K = Lp = Fp(X

p, Y p) (infini de
caractéristique p). C’est une extension finie de K de degré p2 (X et Y sont algébriques de degré p sur K).
Mais il n’existe pas d’élément F de L tel que L = K(F ). En effet, pour tout F ∈ L, on a F p ∈ K, donc
[K(F ) : K] 6 p.

Par ailleurs, considérons, pour chaque n ∈ N, les extensions Ln := K(X + Y Xnp) de K, toutes de
degré p et contenues dans L. Si Lm = Ln, alors X + Y Xmp et X + Y Xnp sont dans Lm, donc aussi leur
différence Y (Xnp −Xmp). Si m 6= n, la différence Xnp −Xmp est non nulle dans K, donc inversible.
On en déduit Y ∈ Lm, puis X ∈ Lm, donc Lm = L, ce qui est absurde. Les sous-extensions (Ln)n∈N
de L sont donc distinctes deux à deux et il y en a une infinité.

Corollaire 4.7. — Soit K un corps qui est soit fini, soit de caractéristique 0 et soit K ⊆ L une extension
algébrique. On suppose qu’il existe un entier C tel que le degré sur K de tout élément de L est 6 C. Alors
K ⊆ L est une extension finie (de degré 6 C).

Démonstration. — Soit x un élément de L de degré maximal d sur K (on a d 6 C). Soit y ∈ L ; l’ex-
tension K ⊆ K(x, y) est finie donc, par le th. 4.4, elle est engendrée par un élément z. Par choix de x,
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le degré de z sur K, c’est-à-dire le degré de l’extension K ⊆ K(z) = K(x, y), est 6 d. Comme elle
contient l’extension K ⊆ K(x), qui est de degré d, ces extensions sont égales et y ∈ K(x). On a donc
L = K(x).

Exemple 4.8. — Soit p un nombre premier et soit I un ensemble infini. Considérons le corps L :=

Fp((Xi)i∈I) comme extension du corps K = Lp = Fp((X
p
i )i∈I). Tout élément F de L est de degré

6 p sur K, puisque F p ∈ K, mais L est une extension infinie de K.

5. Exercices

5.1. Généralités. —

Exercice 5.1. — Soit K un corps de caractéristique 3. Montrer que les médianes de tout triangle dans K2

sont parallèles.

Exercice 5.2. — Pour tous nombres réels positifs a et b, montrer

Q(a, b,
√
a,
√
b) = Q(a, b,

√
a+
√
b).

5.2. Extensions finies. —

Exercice 5.3. — Trouver le polynôme minimal de
√

3 + i sur Q.

Exercice 5.4. — (1) Calculer le degré de l’extension Q(
√

2,
√

3) de Q.

(2) Calculer le degré de l’extension Q(
√

2 +
√

3) de Q.

(3) Calculer le degré de l’extension Q(
√

2,
3√

2) de Q.

Exercice 5.5. — SoitK ⊆ L une extension de corps finie de degré premier. Pour tout x ∈ LrK, montrer
que L = K(x).

Exercice 5.6. — Soit K ⊆ L une extension de corps finie de degré impair. On suppose qu’il existe x ∈ L
tel que L = K(x). Montrer que L = K(x2).

Exercice 5.7. — Soit K ⊆ M une extension finie de corps et soient K ⊆ L ⊆ M et K ⊆ L′ ⊆ M des
extensions intermédiaires. Notons LL′ le sous-corps de M engendré par L et L′. Montrer [LL′ : L′] 6
[L : K] (Indication : on pourra prendre une base de L sur K et montrer qu’elle engendre LL′ sur L′).

5.3. Racines de l’unité. —

Exercice 5.8. — Soit K un corps de caractéristique p > 0 et soit r un entier > 1. Quels sont les groupes
µpr (K)?

Exercice 5.9. — Soit p un nombre premier. Déterminer selon les valeurs de l’entier n > 1 le groupe
µn(Z/pZ).

Exercice 5.10. — Soit K un corps infini. Montrer que le groupe (K×,×) n’est pas engendré par un élé-
ment.

Exercice 5.11. — Montrer que pour tout n > 2, on a Φn(0) = 1 et que le polynôme cyclotomique Φn est
réciproque : Xϕ(n)Φn(1/X) = Φn(X).

Exercice 5.12. — Montrer l’égalité Q(e2iπ/8) = Q(
√

2, i).
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Exercice 5.13. — Pour tout entier k strictement positif, on pose ζk := e2iπ/k. Soient m et n des entiers
strictement positifs. On veut montrer l’égalité

Q(ζm) ∩Q(ζn) = Q(ζm∧n).

On pose K := Q(ζm) ∩Q(ζn).

(1) Montrer que si m | n, on a Q(ζm) ⊆ Q(ζn). En déduire K ⊇ Q(ζm∧n).

(2) Montrer qu’on a K(ζm) = Q(ζm), K(ζn) = Q(ζn) et K(ζm∨n) = Q(ζm∨n).

(3) Montrer Q(ζm, ζn) = Q(ζm∨n).

(4) En déduire [Q(ζm, ζn) : Q(ζm)] = ϕ(m ∨ n)/ϕ(m) puis, en utilisant l’exerc. 5.7, [Q(ζn) : K] >
ϕ(m ∨ n)/ϕ(m).

(5) Démontrer la formule ϕ(m)ϕ(n) = ϕ(m ∨ n)ϕ(m ∧ n) et conclure.

(6) En déduire tous les entiers strictement positifs n tels que
√

2 ∈ Q(ζn) (Indication : on pourra utiliser
l’exerc. 5.12).

5.4. Extensions algébriques. —

Exercice 5.14. — Trouver toutes les extensions algébriques du corps C.

Exercice 5.15. — Montrer que tout corps algébriquement clos est infini.

Exercice 5.16. — On considère le corpsK = Q(T ) et ses sous-corps K1 = Q(T 2) etK2 = Q(T 2−T ).
Montrer que les extensions K1 ⊆ K et K2 ⊆ K sont algébriques, mais pas l’extension K1 ∩ K2 ⊆ K

(Indication : on pourra montrer K1 ∩K2 = Q).

Exercice 5.17. — Soit K un corps et soit L un corps tel que K ⊆ L ⊆ K(T ).

(1) Si L est une extension algébrique de K, montrer que L = K.

(2) Si L 6= K, montrer que K(T ) est une extension finie de L.

Exercice 5.18 (Nombres de Liouville). — Le but de cet exercice est de donner un exemple explicite de
nombre transcendant.

(1) Soit α un nombre réel algébrique irrationel. Montrer qu’il existe un réel C strictement positif et un
entier positif n tels que

∀p ∈ Z ∀q ∈ Nr {0}
∣∣∣α− p

q

∣∣∣ ≥ C

qn

(Indication : on pourra introduire un polynôme à coefficients entiers qui annule α et appliquer judicieuse-
ment l’inégalité des accroissements finis).

(2) Montrer que le nombre réel
∑
n≥1 10−n! est transcendant (sur Q).

5.5. Nombres constructibles. —

Exercice 5.19. — Considérons le polynôme P (X) = X4 −X − 1 ∈ Q[X].

(1) Montrer que P a exactement deux racines réelles distinctes x1 et x2.

(2) On écrit (X − x1)(X − x2) = X2 + aX + b avec a, b ∈ R. Montrer [Q(a2) : Q] = 3.

(3) Montrer que x1 et x2 ne peuvent être tous les deux constructibles, bien qu’ils soient de degré 4 sur Q.
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5.6. Corps de décomposition. —

Exercice 5.20. — Déterminer le corps de décomposition du polynôme X3 − 3 sur Q et en donner une
base sur Q.

Exercice 5.21. — Montrer que le corps de décomposition d’un polynôme de degré d est une extension de
degré au plus d!.

Exercice 5.22. — Soit p un nombre premier, soit K un corps et soit a ∈ K. Montrer que le polynôme
Xp − a est irréductible dans K[X] si et seulement s’il n’a pas de racines dans K (Indication : on pourra
montrer que si Xp − a = PQ, avec n := deg(P ) et P ∈ K[X] unitaire, on a an = ((−1)nP (0))p, en
décomposant Xp − a en produit de facteurs de degré 1 dans un corps de décomposition).

5.7. Corps finis. —

Exercice 5.23. — Écrire les tables d’addition et de multiplication du corps F4
(4).

Exercice 5.24. — Montrer que le polynôme P (X) = X6 +X5 +X4 +X3 +X2 +X+1 est irréductible
dans F3[X] (Indication : on pourra considérer le corps de rupture d’un facteur irréductible de P ).

Exercice 5.25. — Quel est le groupe additif (Fpn ,+)?

Exercice 5.26. — Soit p un nombre premier.

(1) Comparer les trois groupes additifs (Fp2 ,+), (F2
p,+) et (Z/p2Z,+) : lesquels sont isomorphes?

(2) Comparer les trois anneaux correspondants : lesquels sont isomorphes?

(3) Pour les trois anneaux précédents, déterminer les groupes (multiplicatifs) formés des éléments inver-
sibles : lesquels sont isomorphes?

Exercice 5.27. — Soient p et q des nombres premiers. Montrer que Fpm est isomorphe à un sous-corps
de Fqn si et seulement si p = q et m divise n.

Exercice 5.28. — (1) Montrer que le polynôme X4 −X − 1 n’a pas de racine dans le corps F25.

(2) Montrer que le polynôme X4 −X − 1 est irréductible dans F5[X].

Exercice 5.29. — Factoriser le polynôme X4 − 2X2 + 9 dans R[X], dans Q[X] et dans Fp[X] (où p est
un nombre premier quelconque) (Indication : on pourra utiliser les identités

X4 − 2X2 + 9 = (X4 − 2X2 + 1) + 8 = (X4 + 6X2 + 9)− 8X2 = (X4 − 6X2 + 9) + 4X2

pour montrer que ce polynôme est réductible modulo tout p).

4. Voir exerc. I.11.1.


