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Abstract. Let X, Y be closed irreducible subvarieties of an absolutely simple abelian variety
of dimension g over a field. If dim(X) + dim(Y ) ≤ g, we prove that the addition morphism
X × Y → X + Y is semismall. As a consequence, we deduce that if dim(X) + dim(Y ) ≥ g,
the subvarieties X and Y must meet (Bézout’s theorem). If we drop the assumption that the
abelian variety is absolutely simple, we prove that Bézout’s theorem still holds if X satisfies a
nondegeneracy condition. These results were previously known only in characteristic zero.

Our proof of the semismallness statement is based on the theory of perverse sheaves: using
results of Krämer and Weissauer, we prove that for perverse sheaves K supported on X, and L

supported on Y , the convolution product K ∗ L is again perverse.
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1. Introduction

Any two closed subvarieties of a projective space Pgk over a field k, whose dimensions add up to at
least g, meet. The classical proof of this fundamental fact ultimately rests on Krull’s Hauptidealsatz;
it is thus independent of the characteristic of k. Consider now the analogous question for closed
subvarieties of an abelian variety A of dimension g over a field k: do subvarieties of A whose dimensions
add up to at least g always meet? For this question to have a positive answer, it is clear that one
needs to assume that A is simple. As we shall discuss in Remark 4.12, this assumption is not strong
enough, in general, and in many of our results we shall assume that A is absolutely simple (i.e. the
extension of A to an algebraic closure of k has no nonzero proper abelian subvarieties).

Assuming that A is absolutely simple, the above question does have a positive answer when
char(k) = 0. For k = C, this was first proved by Barth [1]. A simple proof for arbitrary fields k with
char(k) = 0 was given by D. Prasad [16], and independently also by one of us [6] (the arguments are
similar and we review them in Section 2).

When char(k) > 0, the arguments used in [16] and [6] break down and Prasad asked whether
the question still has an affirmative answer. We prove that it does: this is a consequence (see Corol-
lary 4.10) of our first main result, which can be stated as follows (see Corollary 4.9).

1.1 Theorem. Let A be a g-dimensional absolutely simple abelian variety over a field. Let X1, . . . , Xr

be closed subvarieties of A and define Z := X1 + · · ·+Xr. We have

dim(Z) = min

{
g,

r∑
i=1

dim(Xi)

}
.

(1)Supported by the European Research Council under the European Union’s Horizon 2020 research and innovation
programme (ERC-2020-SyG-854361-HyperK)

1



We deduce Theorem 1.1 from the following result (see Theorem 4.1).

1.2 Theorem. Let A be an absolutely simple abelian variety of dimension g over a field. Let X and Y
be closed irreducible subvarieties of A and define Z := X + Y ⊆ A. If dim(X) + dim(Y ) ≤ g, the
addition morphism X × Y → Z is semismall.

Recall that if S and T are varieties over a field, a proper morphism f : S → T is said to be semismall
if for every integer n ≥ 0, the dimension of the closed subset Tn :=

{
t ∈ T

∣∣ dim(f−1(t)) ≥ n
}

of T is
at most dim(S)− 2n. If S is irreducible and f is semismall and surjective, then f is generically finite.

1.3. As there is a strong connection between semismallness of a morphism and the theory of perverse
sheaves (see for instance [5, Section 4.2]), it may not come as a surprise that our proof of Theorem 1.2
relies on a result about perverse sheaves. More precisely, suppose we have an absolutely simple abelian
variety A of dimension g and closed irreducible subvarieties X, Y ⊆ A with dim(X) + dim(Y ) ≤ g.
We prove, under mild technical assumptions, that for perverse sheaves K supported on X, and L

supported on Y , the convolution product K ∗ L is again perverse; see Proposition 3.16. It then still
requires some work to deduce Theorem 1.2, but the main idea for this is quite simple; we explain it
in 4.3.

The proof of Proposition 3.16 is based on the work of Krämer and Weissauer in [14] and [20].
For our applications, we need to refine and extend several of their results, especially when we work
in characteristic p. One aspect of this is that our result is valid without any assumptions on the
semisimplicity of the perverse sheaves involved. Also, in characteristic p, our result is valid whenever
the perverse sheaves are defined over some finitely generated field extension of Fp. To obtain these
results, we make use of ‘spreading out’ techniques as in the work of Drinfeld [8] and Weissauer [20].
A convenient setting for this is the theory of relative perverse sheaves that was recently developed by
Hansen and Scholze [11].

1.4. The results about perverse sheaves that we need are discussed in Section 3, and the proofs of
Theorems 1.1 and 1.2 are given in Section 4. Finally, in Section 5 we give a partial extension of our
main results to arbitrary abelian varieties. In particular, we show that if we drop the assumption
that A is absolutely simple, Theorem 1.1 is still valid if at least r − 1 of the subvarieties Xi are
geometrically nondegenerate in the sense of Ran’s paper [17]; see Corollary 5.6.

1.5. Notation and conventions

(1) By a variety over a field k, we mean a reduced and separated k-scheme of finite type.
(2) Throughout, A denotes an abelian variety over a field k, with addition map σ : A×A→ A and

origin 0 ∈ A(k).
(3) If X, Y ⊆ A are closed subvarieties, we write X + Y for the image of X × Y under σ. Similarly

for the sum of more than two subvarieties.
(4) The tangent bundle of A is identified with A× TA,0.
(5) If a ∈ A(k), we let ta : A → A be the morphism given by translation by a. If X ⊆ A is a

closed subvariety, we denote by Stab(X) ⊆ A the stabiliser of X, that is, the subgroup scheme
of A consisting of the points a ∈ A such that ta(X) = X. If k is perfect, the reduced identity
component of Stab(X) is an abelian subvariety of A.
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(6) If X is a noetherian scheme, we let dim(X) denote the maximum of the dimensions of the
irreducible components of X.

2. Background and some elementary cases

2.1. We first give a brief sketch, following [16], of the proof of Theorem 1.1 for a simple complex
abelian variety A of dimension g. The essential case to consider is when we have closed irreducible
subvarieties X, Y ⊆ A with dim(X) + dim(Y ) ≤ g; in that case, we want to show that the addition
map X×Y → A is generically finite onto its image Z := X+Y . If this is not true, all fibres of the map
X × Y → Z have positive dimension and Z ⊊ A. Choose a curve F ⊆ X × Y such that σ(F ) = {z}
for some regular point z of Z. The projection map prX : X × Y → X induces an isomorphism
F ∼−→ C := prX(F ), with inverse given by x 7→ (x, z−x). By construction, TX,x+TY,z−x ⊆ TZ,z ⊊ TA,0

for all (x, z − x) ∈ F (note convention 1.5(4)). Hence, we have inclusions

TC,x ⊆ TX,x ⊆ TZ,z ⊊ TA,0

for all x ∈ C. Finally, one shows (see [16, Lemma 1]) that in a simple complex abelian variety A, one
cannot have a regular (locally closed) curve C ⊆ A and a subspace V ⊊ TA,0 such that TC,x ⊆ V for
all x ∈ C.

2.2. It was pointed out by Abramovich that the last step in the proof (that is, [16, Lemma 1]) breaks
down over fields of positive characteristic. (In [6], the property described in (1.9) of that paper is
no longer true in positive characteristic.) More specifically: let k be an algebraically closed field of
characteristic p > 0 and let A be a simple abelian variety over k. Choose a nontrivial infinitesimal
subgroup scheme N ⊆ A (for instance, any nontrivial local subgroup scheme of the p-kernel group
scheme A[p]). The quotient morphism q : A → B = A/N is then a purely inseparable isogeny, and
TN,0 = Ker(Tq,0 : TA,0 → TB,0) is nonzero. If C ⊆ A is a regular curve passing through the origin such
that TC,0 ̸⊆ TN,0, its image q(C) ⊆ B is a generically regular curve and its regular locus C ′ ⊆ B is a
curve that has the property that TC′,x ⊆ Im(Tq,0) ⊊ TB,0 for all x ∈ C ′.

2.3. Some low dimensional cases of Theorem 1.1 can be handled by elementary arguments (in arbi-
trary characteristic). These arguments will not be used in the rest of the paper and are only included
to illustrate how one may try to argue. We consider the situation where k is algebraically closed, A
is a simple abelian variety of dimension g over k, and X, Y ⊆ A are closed irreducible subvarieties,
of respective dimensions d and e. We assume d+ e ≤ g and we set Z := X + Y . The goal is to show
that dim(Z) = d + e. We will do that when d = 1, or when d = 2 and either e ∈ {2, 3} or g > 2e.
Note that the stabiliser of any closed subvariety W ⊊ A is finite, because A is simple.

(1) If dim(Z) = e, then X + Y = a+ Y for every a ∈ X(k), hence X − a ⊆ Stab(Y ). This is possible
only if X is a point. In particular, if dim(X) = 1 then dim(Z) = e+ 1.

(2) Assume d = 2 and dim(Z) = e + 1. For z ∈ Z(k), define Fz := σ−1(z) and let Cz := prX(Fz),
which is a closed subscheme of X. The projection map induces an isomorphism Fz

∼−→ Cz whose
inverse is given on points by w 7→ (w, z − w).
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Consider the morphism ψ : X × Y × Y → Z × Z given by ψ(x, y1, y2) = (x+ y1, x+ y2), and let
W ⊆ Z × Z be its image. For z ∈ Z(k), we have dim(Cz) ≥ 1, hence Cz + Y = Z by case (1), and
{z} × Z ⊆ W . This implies that ψ is surjective; therefore, for every z1, z2 ∈ Z(k), there exist points
x ∈ X(k) and y1, y2 ∈ Y (k) with zi = x+yi. It follows that Z−Z ⊆ Y −Y ; but Z−Z = X−X+Y −Y ,
so we get X − X ⊆ Stab(Y − Y ), which is possible only if Y − Y = A. In particular, if d = 2 and
e < g

2 , we have dim(Z) = e+ 2.

(3) Assume d = 2 and e ∈ {2, 3}. Suppose dim(Z) = e + 1. The argument in case (2) shows that
Y − Y = A, and either (e, g) = (2, 4) or e = 3 and g ∈ {5, 6}. The fibre of the difference map
δ : Y × Y → A above a point a ∈ A(k) is isomorphic to Y ∩ (a+ Y ). Let L ⊆ A be the closed subset
of A where this fibre has dimension at least e− 1. We have

2e = dim(Y × Y ) ≥ dim
(
δ−1(L)

)
≥ dim(L) + e− 1 ,

so that dim(L) ≤ 1 + e < d + e ≤ g and L ⊊ A. Therefore, δ−1(L) ⊊ Y × Y and the inequality we
have found can be improved to dim(L) ≤ e.

Let C, C ′ ⊆ X be curves such that C ′ is not a translate of C. By case (1), we have C + Y =

C ′ + Y = Z and the surjective addition maps C × Y → Z and C ′ × Y → Z are generically finite. Set
V := (C × Y ) ×Z (C ′ × Y ); then dim(V ) ≥ e + 1. Let W ⊆ C × Y × C ′ be the image of V under
projection onto the first three factors. Then V ∼−→W , hence dim(W ) ≥ e+1. Consider the projection
map π : W → C×C ′. The fibre over a point (c, c′) is e-dimensional if and only if c− c′ ∈ Stab(Y ). By
our assumption on C and C ′, this happens at only finitely many points (c, c′). Hence π is surjective
and all its fibres have dimension at least e− 1. This implies that

(
(c− c′) + Y

)
∩ Y has dimension at

least e− 1 for all (c, c′) ∈ C × C ′, that is, C − C ′ ⊆ L. As this holds for arbitrary curves C, C ′ ⊆ X
with C ≁= C ′, we get X −X ⊆ L, hence dim(X −X) ≤ dim(L) ≤ e.

Applying (2) to the subvarieties X and −X, we find that dim(X − X) ≤ 3 is possible only if
X − X = A; but then, dim(X − X) ≤ e implies g ≤ e, which in the cases that we are considering
does not hold. This settles the case where d = 2 and e ∈ {2, 3}.

It seems difficult to obtain a proof of Theorem 1.1 in general using such elementary arguments.
Already the cases where (d, e) = (2, 4) and g ∈ {6, 7, 8} pose a challenge.

3. Convolution product and perverse sheaves

The proofs of the results that will be given in the next two sections are based on Proposition 3.16
below, which concerns the convolution product of perverse sheaves on abelian varieties. The key ideas
for this proposition come from the work of Krämer and Weissauer in [14] and [20]. However, we shall
need that assertions about perverse sheaves are true in greater generality than stated in their work.
Notably, this concerns assumptions on the base field over which we work, and assumptions on the
(semi)simplicity of the perverse sheaves involved.

3.1. Throughout the discussion, ℓ denotes a prime number which is assumed to be invertible on
all schemes that we consider. We shall almost exclusively work with Qℓ as a coefficient ring but, in
Lemma 3.6 and Proposition 3.7, we also need to consider other choices; so for now, let Λ be any
commutative Hausdorff topological ring (or any condensed commutative ring).
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If X is any quasi-compact quasi-separated scheme on which ℓ is invertible, we write Dcons(X,Λ) for
the triangulated category of constructible complexes of Λ-modules on the pro-étale site Xproét of X,
as in [12]. For E an algebraic field extension of Qℓ and Λ ∈ {E,OE}, this is the same as the category
defined in [3, Definition 6.8.8]. Every objectK of Dcons(X,Qℓ) is bounded and the cohomology sheaves
H i(K) are constructible. By the support of K, we mean the union of the supports of the H i(K).

Let k be a field with algebraic closure k̄, and let X be a quasi-projective scheme over k. For
K ∈ Dcons(X,Λ), all cohomology groups H i(Xk̄,K), as well as the cohomology groups with compact
support H i

c(Xk̄,K) are Λ-modules of finite type, which are nonzero only for finitely many integers i.
If Λ is a field, define

χ(K) :=
∑
i∈Z

(−1)i dimΛ

(
H i(Xk̄,K)

)
, χc(K) :=

∑
i∈Z

(−1)i dimΛ

(
H i

c(Xk̄,K)
)
.

If K → L→M → is a distinguished triangle, χ(K) + χ(M) = χ(L) and χc(K) + χc(M) = χc(L).

3.2. Let A be an abelian variety of dimension g over a field k, with addition map σ : A×A→ A. For
K, L ∈ Dcons(A,Qℓ), we writeK∗L := Rσ∗(K⊠L) for their convolution product. (The external tensor
product is defined by K⊠L := pr∗1(K)⊗Lpr∗2(L), where pr1, pr2 : A×A→ A are the projection maps.)
The convolution product makes Dcons(A,Qℓ) into a Qℓ-linear rigid symmetric monoidal category. The
identity object is the skyscraper sheaf IC{0} at the origin (which is the intersection complex of {0} ⊆ A,
as defined in 3.3; whence the notation). The dual of an object K is (− idX)

∗D(K), where D is the
Verdier duality functor. We have the relation

D(K ∗ L) ∼= D(K) ∗ D(L) . (3.2.1)

3.3. Let Perv(A) ⊆ Dcons(A,Qℓ) be the subcategory of perverse sheaves. If X is a closed subvariety
of A, we identify Perv(X) with the category of perverse sheaves on A that have support in X. The
intersection complex of X, which is a selfdual simple perverse sheaf, is defined as ICX = j!∗Qℓ[d],
where d = dim(X) and where j : U ↪→ X is the inclusion of a dense open subset of X such that
(Uk̄)red is smooth over k̄. (By [10, Corollaire 17.15.13], there exists such an U , and it is a basic fact
that ICX is independent of which U with this property we choose.)

If 0 → P ′ → P → P ′′ → 0 is a short exact sequence in Perv(A), there is a distinguished
triangle P ′ → P → P ′′ → in Dcons(A,Qℓ). Hence the Euler characteristic χ(P ) is additive in short
exact sequences. For a perverse sheaf P which is supported on a subset of dimension d, we have
H i(Ak̄, P ) = 0 for all i > d.

A perverse sheaf P on A has a socle filtration

soc•(P ) : 0 = soc0(P ) ⊆ soc1(P ) ⊆ soc2(P ) ⊆ · · · ⊆ soct(P ) = P

(for some t ≥ 0), which is defined inductively by the rule that soci+1(P )/ soci(P ) ⊆ P/ soci(P ) is the
maximal semisimple subobject of P/ soci(P ). We refer to the number t as the socle length of P .

3.4. If ψ : π1(A, 0) → Q×
ℓ is a continuous character, we denote by Lψ the corresponding smooth

Qℓ-sheaf of rank 1 on A. We have an isomorphism

D(Lψ) ∼= Lψ−1 [2g] . (3.4.1)
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With the notation Kψ = K ⊗ Lψ, we have

Kψ ∗ Lψ ∼= (K ∗ L)ψ (3.4.2)

for all K and L in Dcons(A,Qℓ).

3.5. One of the key points in the theory is that, for every perverse sheaf P on an abelian variety A over
a field k, we have χ(P ) ≥ 0. For k = C, this was proven in [9, Corollary 1.4], and the result for arbitrary
base fields of characteristic 0 can be reduced to that case. Over fields of positive characteristic, the
result was proven in [20] under the assumption that P can be defined over a finitely generated field.
Using T. Saito’s results on characteristic cycles of perverse sheaves, essentially the same argument as
in [9] gives the result in full generality; see Proposition 3.7 below. Saito’s results in [18] are stated for
perverse sheaves with coefficients in a finite ring. We can apply these results because of the following
fact, here stated only in the setting in which we need it.

3.6 Lemma. Let X be a quasi-projective variety over an algebraically closed field k. Let E be a
finite field extension of Qℓ with ring of integers OE and residue field κE. For K ∈ Dcons(X,OE),
let K[1ℓ ] denote its image in Dcons(X,Qℓ) and let K̄ denote the image of K in Dcons(X,κE). Then
χc

(
K[1ℓ ]

)
= χc(K̄).

Proof. Write S := Spec(k). For Λ ∈ {Qℓ,OE , κE}, the category Dcons(S,Λ) is equivalent to the
category PerfΛ of perfect complexes of Λ-modules; see [12, Lemma 4.1]. In particular, in each of
the three cases, the Grothendieck group of Dcons(S,Λ) is isomorphic to Z. We have a commutative
diagram

Dcons(X,Qℓ) Dcons(X,OE) Dcons(X,κE)

Dcons(S,Qℓ) Dcons(S,OE) Dcons(S, κE)

RΓc RΓc RΓc

and the assertion follows by considering the induced maps on Grothendieck groups.

3.7 Proposition. Let A be an abelian variety over a field k. Then χ(P ) ≥ 0 for every perverse
sheaf P on A.

Proof. We may assume that k is algebraically closed. For every perverse sheaf P with Qℓ-coefficients,
there is a finite field extension Qℓ ⊆ E such that P is of the form Q[1ℓ ] (notation as in Lemma 3.6) for
a perverse sheaf Q in Dcons(A,OE), and such that the image Q̄ of Q in Dcons(A, κE) is again perverse
(this is a special case of [11, Proposition 6.11]). By Lemma 3.6, it suffices to show that χ(Q̄) ≥ 0.

Let T∨A be the cotangent bundle of A. Let CC(Q̄) be the characteristic cycle of Q̄, as defined
by Saito in [18, Section 5.3]; it is an integral linear combination CC(Q̄) =

∑
j mj [Cj ] of irreducible

closed conical subsets Cj ⊆ T∨A. By [18, Proposition 5.14], CC(Q̄) is effective, that is, mj ≥ 0

for all j. Furthermore, by [18, Theorem 7.13], the Euler characteristic χ(Q̄) equals the intersection
number of CC(Q̄) with the zero section of T∨A. Because T∨A = A× T∨

A,0, we have a projection map
pr: T∨A → T∨

A,0 (which is a proper morphism) and the zero section of T∨A is the inverse image of
0 ∈ T∨

A,0. If we denote by dj the degree of the morphism pr |Cj : Cj → T∨
A,0 (the Gauss map of Cj),

the projection formula gives χ(Q̄) =
∑

j mjdj . Because all mj and dj are nonnegative, this gives the
assertion.
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3.8 Remark. We shall frequently work in a setting where we have an abelian variety A0 over a base
field k0 with algebraic closure k. In such a setting, the notational convention is that a subscript 0 is
used for objects defined over k0, and for the corresponding objects over k the subscript 0 is omitted.
If k0 ⊆ k1 ⊆ k is an intermediate field, a subscript 1 is used for objects over k1.

3.9 Lemma. Let A0 be an abelian variety over a field k0. Set A = A0 ⊗k0 k, where k is an algebraic
closure of k0. Let P0 be a perverse sheaf on A0 and let P be its pullback to A.

(1) If P0 is semisimple, so is P .
(2) Suppose P0 is semisimple and let

P =
⊕
α

P (α) (3.9.1)

be the isotypical decomposition of P . Then this decomposition is defined over a finite extension k1
of k0 inside k; by this, we mean that if P1 is the pullback of P0 to A1 = A0 ⊗k0 k1, there is a
decomposition P1 =

⊕
α P

(α)
1 that after pullback to A gives back (3.9.1).

Proof. It suffices to prove this under the assumption that P0 is simple. In this case, there is an
irreducible subvariety j : V0 ↪→ A0 such that Vred is smooth over k, and an irreducible lisse ℓ-adic
sheaf E0 on V0 such that P0

∼= j!∗E0

[
dim(V0)

]
. There is a finite Galois extension k0 ⊆ k1 inside k

such that all irreducible components of V1 are geometrically irreducible. Let W (1), . . . ,W (n) be the
irreducible components of V1 and let E (ν) be the pullback of E0 to W (ν), which is a semisimple lisse
ℓ-adic sheaf. Replace V0 by any of the W (ν) and replace E0 by any of the simple factors of E (ν);
then we are in the same situation as before but with the additional property that V0 is geometrically
irreducible. Choose a base point v ∈ V (k) and let E be the fibre of E0 at v. Then E0 corresponds
to an irreducible representation ρ : π1(V0, v) → GL(E). Assertion (1) follows from the fact that the
restriction ρgeo of ρ to the geometric fundamental group π1(V, v) is semisimple, because π1(V, v) is a
closed normal subgroup of π1(V0, v). Assertion (2) follows from the fact that there is a finite Galois
extension k0 ⊆ k1 inside k such that π1(V1, v) ⊆ π1(V0, v) preserves the isotypical decomposition
of ρgeo (cf. the proof of [2, Proposition 5.3.9]).

3.10. Let A0 be an abelian variety over a field k0 which is a finitely generated extension of Fp. We
discuss some techniques that allow to reduce statements about perverse sheaves on A0 to the case
where k0 is a finite field. Our arguments are inspired by the work of Drinfeld [8] and Weissauer [20],
but we shall rephrase these arguments using the theory of relative perverse sheaves developed by
Hansen and Scholze in [11].

Let κ be the algebraic closure of Fp inside k0, which is a finite field. There exists a geometrically
integral variety S over κ whose function field is k0 and such that A0 extends to an abelian scheme
π : A → S. After shrinking S, we may assume S is smooth over κ; from now on, we assume this. If s̄
is a geometric point of S, let As̄ be the fibre of π over s̄. Furthermore, let η be the generic point of S,
so that Aη = A0, and let jη : Aη ↪→ A be the inclusion.

For the definition of when an object K ∈ Dcons(A ,Qℓ) is called universally locally acyclic (ab-
breviated to ULA) relative to S, we refer to [11, Definition 3.2]. In [11, Theorem 4.4], it is shown that
this agrees with the more traditional definition. We write DULA(A /S,Qℓ) for the full subcategory
of Dcons(A ,Qℓ) consisting of the objects that are ULA relative to S. On this category, Hansen and
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Scholze define a relative perverse t-structure, whose heart PervULA(A /S) is artinian and noetherian
(see [11, Theorem 6.8]). The relative perverse sheaves are the objects P of DULA(A /S) with the
property that P|As̄ is perverse in the usual sense, for all geometric points s̄ of S.

3.11. We list some properties that we need. Notation and assumptions are as above.

3.11.1. By [11, Theorem 6.8], the functor j∗η : Perv
ULA(A /S)→ Perv(Aη) is exact and fully faithful,

and its essential image is stable under subquotients. Furthermore, if is : As ↪→ A is the inclusion
of a closed fibre, the functor i∗s : DULA(A /S,Qℓ) → Dcons(As,Qℓ) is t-exact (this follows from [11,
Theorem 6.1(ii)]).

3.11.2. If K is an object of Dcons(A ,Qℓ), there is a dense open subset U ⊆ S such that the
restriction of K to AU = π−1(U) is an object of DULA(AU/U). This is a result of Deligne, who
proved the analogous statement for torsion sheaves in [7, Théorèmes de finitude, Théorème 2.13], and
whose proof for the case of Qℓ-coefficients is given in [4, Corollary B.4].

3.11.3. IfK0 is a perverse sheaf on A0 = Aη, there is a dense open subset U ⊆ S such thatK0 extends
to a relatively perverse sheaf K ∈ PervULA(AU/U) on AU over U . By 3.11.1, K is then unique up
to isomorphism.) To see this, first note that jη,∗(K0) ∈ Dcons(A ,Qℓ) so, by 3.11.2, we may, after
shrinking S, assume that there exists K ∈ DULA(A /S) that extends K0. Then the P i = p/SH i(K )

are again in DULA(A /S) and only finitely many of them are nonzero. For i ̸= 0, the restriction of
P i to Aη is zero. Since the (cohomology sheaves of the) P i are constructible, it follows that P i (for
i ̸= 0) is supported on a constructible subset Ci ⊆ A that does not meet the generic fibre Aη. Because
the morphism π : A → S is of finite type, a theorem of Chevalley ([10, Corollaire 1.8.5]) gives that
π(Ci) ⊆ S is constructible and does not contain the generic point η. It follows that there is a dense
open subset U ⊆ S that is disjoint from

⋃
i̸=0 π(Ci). This U does the job, since p/SH i(K |AU

) = 0 for
all i ̸= 0, so K |AU

= p/SH0(K |AU
) is perverse relative to U .

3.11.4. If K is an object of DULA(A /S) then, for every specialisation u : t̄ → S(s̄) of geomet-
ric points of S (here S(s̄) denotes the strict henselisation of S at s̄), the cospecialisation map
cosp(u) : RΓ(At̄,K |At̄

)→ RΓ(As̄,K |As̄) is an isomorphism; see Illusie’s appendix to [7, Théorèmes
de finitude]. (This uses that A → S is proper.) In particular, the function s̄ 7→ χ(K |As̄) is constant.

3.12. In the next results, we consider an abelian variety A over a field k. We shall assume that either
char(k) = 0 or that we work in the following setting:

(3.12.1) k is an algebraic closure of a field k0 which is a finitely generated extension of Fp, for some
prime number p, and A = A0 ⊗k0 k for some abelian variety A0 over k0.

3.13 Proposition. Let A be an abelian variety over a field k and let K and L be perverse sheaves
on A. Assume that either char(k) = 0, or that we are in setting of (3.12.1) and that K and L are the
pullbacks of perverse sheaves K0 and L0 on A0. If P is a subquotient of pH i(K ∗ L) with i ̸= 0, we
have χ(P ) = 0.

Proof. By Proposition 3.7, it suffices to prove χ
(
pH i(K ∗ L)

)
= 0 if i ̸= 0.
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First assume char(k) = 0. By [13, Lemma A.1], it suffices to prove the assertion for k = C.
In this case, the assertion follows from the results of Krämer and Weissauer in [14]. (See also [15,
Lemma 2.2.(5)] and the arguments below.)

Assume next we are in the situation of (3.12.1) with k0 a finite field. Suppose L0 is semisimple.
If K0 is semisimple too, the assertion follows from [14, Corollaries 6.3 and 6.4, Theorem 9.1]. In
general, let K ′

0 = soc1(K0) ⊆ K0 and K ′′
0 = K0/K

′
0. Because the functor pH0 is cohomological (see

[2, Théorème 1.3.6]), this gives an exact sequence of perverse sheaves

· · · −→ pH i(K ′
0 ∗ L0)

α−−→ pH i(K0 ∗ L0)
β−−→ pH i(K ′′

0 ∗ L0) −→ pH i+1(K ′
0 ∗ L0) −→ · · ·

Arguing by induction on the socle length of K0, we may assume that χ
(
pH i(K ′

0 ∗ L0)
)
= 0 and

χ
(
pH i(K ′′

0 ∗L0)
)
= 0. It then follows from Proposition 3.7 that also χ

(
Im(α)

)
= 0 and χ

(
Ker(β)

)
= 0.

Hence χ
(
pH i(K0 ∗ L0)

)
= 0. This gives the result for semisimple L0 and arbitrary K0. The general

case (for k0 finite) is handled in the same way, writing L0 as an iterated extension of semisimple
objects.

Finally, consider the situation of (3.12.1), where now k0 is finitely generated over Fp but no longer
assumed to be finite. As in 3.10, let κ be the algebraic closure of Fp inside k0. By 3.11.3, we can find a
geometrically integral variety S which is smooth over κ, an abelian scheme π : A → S whose generic
fibre is A0, and relatively perverse sheaves K , L ∈ PervULA(A /S) whose restrictions to A0 = Aη

are isomorphic to K0, respectively L0. For a closed point s ∈ S, we then have χ
(
pH i(K0 ∗ L0)

)
=

χ
(
pH i(Ks ∗Ls)

)
. This reduces the problem to the case of a finite base field, which we have already

dealt with.

3.14. Let P be a semisimple perverse sheaf on an abelian variety A over an algebraically closed
field k. As shown in [19, Lemma 21], there is a reduced closed subgroup scheme Stab(P ) ⊆ A with
the property that

Stab(P )
(
k
)
=

{
a ∈ A(k)

∣∣ t∗a(P ) ∼= P
}
.

As this result is unpublished (as far as we are aware), let us sketch Weissauer’s proof in the case
where P is isotypical, which is the only case we need. Since Stab(P⊕N ) = Stab(P ), we may assume
that P is simple. Write S =

{
a ∈ A(k)

∣∣ t∗a(P ) ∼= P
}
. The main point is to show that S is constructible;

because S ⊆ A(k) is a subgroup, this implies that S is closed in A(k), which gives the assertion.
To show that S is constructible, we need two basic facts:

(1) For arbitrary K, L ∈ Dcons(A,Qℓ), we have the relation RHom
(
K,D(L)

) ∼= D(K ⊗L L), and
this implies that Hom

(
K,D(L)

) ∼= H0
(
A,RHom(K,D(L))

) ∼= H0(A,K ⊗L L)∨.
(2) For a ∈ A(k), we have H 0(K ∗ L)a ∼= H0

(
X, t∗a(K)⊗L (− idA)

∗L
)
.

Because P is a simple perverse sheaf, this gives

a ∈ S ⇐⇒ Hom
(
t∗a(P ), P

)
̸= 0 ⇐⇒ H0

(
A, t∗a(P )⊗L D(P )

)
̸= 0 ⇐⇒ a ∈ Supp

(
H 0(P ∗ P∨)

)
,

where P∨ = (− idA)
∗D(P ) ∈ Dcons(A,Qℓ) is the dual of P for the convolution product. This shows

that S = Supp
(
H 0(P ∗ P∨)

)
, which is constructible.

3.15 Proposition. Let A be an abelian variety over an algebraically closed field k and let P be an
isotypical perverse sheaf on A. Assume that either char(k) = 0, or that we are in the setting of (3.12.1)
and that P is the pullback of a perverse sheaf P0 on A0. If χ(P ) = 0, then dim

(
Stab(P )

)
> 0.
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Proof. If char(k) = 0, we can reduce to the case k = C by using [13, Lemma A.1] and, in that case,
the assertion follows from [14, Proposition 10.1]. In the setting of (3.12.1) with k0 a finite field, the
assertion follows from the main theorem in [20].

Assume next that we are in the situation of (3.12.1) with k0 a finitely generated extension of Fp.
Assume Stab(P ) is finite. Choose an integer n such that Stab(P ) ⊆ A[n] and choose a prime number q
prime to pn. After replacing k0 by a finite extension, we may assume that all q-torsion points of A
are rational over k0. As in 3.10, let κ be the algebraic closure of Fp inside k0. By 3.11.3, we can
find a geometrically integral variety S which is smooth over κ, an abelian scheme π : A → S whose
generic fibre is A0, and a relatively perverse sheaf P ∈ PervULA(A /S) whose restriction to A0 = Aη

is isomorphic to P0. This implies that χ(Ps̄) = χ(P ) = 0 for all s̄ ∈ S(Fp). By 3.11.2, we may
further assume, after shrinking S, that all RHom

(
t∗a(P), t∗b(P)

)
with a, b ∈ A0[q]

(
k0
)
= A [q]

(
S
)

are universally locally acyclic. By 3.11.4, it follows from this that, for every s̄ ∈ S(Fp), we have

HomPerv(A)

(
t∗a(P ), t

∗
b(P )

) ∼−→ HomPerv(As̄)

(
t∗a(Ps̄), t

∗
b(Ps̄)

)
. (3.15.1)

In particular, End(P ) ∼−→ End(Ps̄) and, since P is isotypical, Ps̄ is isotypical as well. Because the
proposition is true for Ps̄, its stabiliser Stab(Ps̄) is a subgroup scheme of A of positive dimension.
If a is a point of order q on Stab(Ps̄), it follows from (3.15.1) that a ∈ Stab(P ); but this contradicts
our choice of q. This shows that Stab(P ) cannot be finite.

3.16 Proposition. Let A be an absolutely simple abelian variety of dimension g over a field k and
let K and L be perverse Qℓ-sheaves on A. Assume that either char(k) = 0, or that we are in the
setting of (3.12.1) and that K and L are the pullbacks of perverse sheaves K0 and L0 on A0. Assume
further that there exist closed subvarieties X and Y of A such that Supp(K) ⊆ X and Supp(L) ⊆ Y ,
and such that dim(X) + dim(Y ) ≤ g. Then K ∗ L is again a perverse sheaf.

Proof. In order to treat the cases char(k) = 0 and char(k) = p simultaneously, we change (for the
duration of the proof) the notation as follows: if char(k) = 0, write k0 and A0 instead of k and A,
and write K0 and L0 instead of K and L; then we define k to be an algebraic closure of k0, and we
follow the notational convention of Remark 3.8. (Note that if K0 ∗ L0 is perverse after base change
to k = k0, it is perverse over k0.)

By Lemma 3.9(2), we may, after replacing k0 by a finite extension, assume that every simple
subquotient P0 of K0 ∗ L0 (that is, every composition factor of K0 ∗ L0) has the property that its
pullback P to A is isotypical.

We assume that K0 ∗L0 is not perverse; our goal is to derive a contradiction. Let i be the largest
integer such that pH i(K0 ∗ L0) ̸= 0. Without loss of generality, we may assume i > 0; otherwise,
replace K0 and L0 by their Verdier duals and use (3.2.1). Let P0 be a simple quotient of pH i(K0 ∗L0)

in Perv(A0). By Propositions 3.13 and 3.15, dim
(
Stab(P )

)
> 0. BecauseA is simple and P is supported

on X + Y , it follows that X + Y = Stab(P ) = A, which implies dim(X) + dim(Y ) = g. Moreover,
because π1(A, 0) is abelian and P is isotypical, there exists a continuous character φ : π1(A, 0)→ Q×

ℓ

such that P is a power of Lφ[g]. Let ψ = φ−1. By how i was chosen and the relation (3.4.2), we have
a distinguished triangle of the form F −→ Kψ ∗ Lψ −→ Qℓ[g − i] −→ with F ∈ pD≤i(A,Qℓ) and
i > 0. This gives a long exact sequence

· · · −→ Hg+i(A,Kψ ∗ Lψ) −→ H2g(A,Qℓ) −→ Hg+i+1(A,F ) −→ · · · .
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Because F ∈ pD≤i(A,Qℓ), we have Hg+i+1(A,F ) = 0. Also, H•(A,Kψ ∗ Lψ) ∼= H•(A,Kψ) ⊗
H•(A,Lψ), which vanishes in degrees above dim(X) + dim(Y ) = g. This gives a contradiction with
the fact that H2g(A,Qℓ) ̸= 0.

4. The addition map on an absolutely simple abelian variety

In this section, we prove the main theorems stated in the introduction.

4.1 Theorem. Let A be an absolutely simple abelian variety of dimension g over a field k. Let X
and Y be irreducible closed subvarieties of A and define Z := X + Y ⊆ A. If dim(X) + dim(Y ) ≤ g,
the addition morphism σ : X × Y → Z is semismall.

After some preparations, the proof of the theorem will be finished in Section 4.8. In Corollary 4.11,
we shall extend the result to the case of more than two subvarieties.

4.2 Remark. Theorem 4.1 is of a geometric nature. Suppose k ⊆ k′ is a field extension and define
A′ := A⊗k k′. Let X ′ ⊆ A′ be the reduced underlying subscheme of X ⊗k k′, and define Y ′ similarly.
Then X×Y → Z is semismall if and only if X ′×Y ′ → X ′+Y ′ is semismall, and this can be checked
on each irreducible component of X ′ × Y ′ separately. In the proof, we may therefore assume that k
is algebraically closed and that X and Y are irreducible closed subvarieties of A.

4.3. To explain the idea of the proof, suppose that k is algebraically closed and consider the special
case where X and Y are smooth over k, of dimensions d = dim(X) and e = dim(Y ). Their intersection
complexes are then simply (iX)∗Qℓ[d] and (iY )∗Qℓ[e], where iX : X ↪→ A and iY : Y ↪→ A are the
inclusions. Now we can argue as follows.

• If z ∈ Z(k) and Fz ⊆ X ×Y is the fibre of σ over z, the stalk of the sheaf H m(ICX ∗ ICY ) at z
is Hm+d+e(Fz,Qℓ). (Here things greatly simplify because of our assumption that X and Y are
smooth over k.)

• If dim(Fz) = n, then H2n(Fz,Qℓ) ̸= 0 (see Lemma 4.4 below).
• Proposition 3.16 gives that ICX ∗ ICY is a perverse sheaf on A. This implies that the locus of

points z ∈ Z such that H m(ICX ∗ ICY )z ̸= 0 has dimension at most −m. Taking m = 2n−d−e,
we find that the locus of points z ∈ Z with dim(Fz) = n has dimension at most d + e − 2n,
which is exactly the definition of semismallness.

For the proof in the general case, we start with a lemma that is surely well known but for which we
could not find a good reference.

4.4 Lemma. Let V be a nonempty scheme of finite type over an algebraically closed field, with
n := dim(V ) ≥ 0. Then H2n

c (V,Qℓ) ̸= 0.

Proof. Since étale cohomology only depends on the underlying reduced scheme, we may assume V is
reduced. We have an exact sequence

· · · −→ Hm−1
c (V sing,Qℓ) −→ Hm

c (V reg,Qℓ) −→ Hm
c (V,Qℓ) −→ Hm

c (V sing,Qℓ) −→ · · ·

and Hm
c (V sing,Qℓ) = 0 for m ≥ 2n − 1. Moreover, H2n

c (V reg,Qℓ) is dual to H0(V reg,Qℓ), which is
nonzero since V is nonempty.
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4.5. With notation and assumptions as in Theorem 4.1, let d := dim(X) and e := dim(Y ). Choose a
subfield k0 ⊆ k which is finitely generated over its prime field, such that A, X, and Y are obtained
from A0, X0, and Y0 over k0 by extension of scalars. Choose an algebraic closure k0 ⊆ k, redefine
A to be A = A0 ⊗k0 k, and redefine X and Y to be (X0 ⊗k0 k)red and (Y0 ⊗k0 k)red, respectively.
If the theorem is valid for the A, X, and Y thus obtained, it is valid for the original A, X and Y .
This reduces the problem to the situation where k is an algebraic closure of a field k0 which is finitely
generated over its prime field, and where A, X, and Y are obtained from A0, X0, and Y0 over k0 by
extension of scalars. As already remarked in 4.2, we may further assume that X and Y are irreducible.
In the remainder of the proof, we assume that we are in this situation.

4.6. Choose affine regular open subsets jX : UX ↪→ X and jY : UY ↪→ Y that are defined over k0.
Let iX : ∆X ↪→ X and iY : ∆Y ↪→ Y be the (reduced) closed complements. Let U := UX × UY and
∆ := (X × Y ) ∖ U = (∆X × Y ) ∪ (X ×∆Y ), and write j : U ↪→ X × Y and i : ∆ ↪→ X × Y for the
inclusion maps.

We have ICX×Y = ICX ⊠ ICY . Define

K := ICX |∆X
[−1] , L := ICY |∆Y

[−1] , J := ICX×Y |∆[−1].

By [2, Corollaire 4.1.12], these are perverse sheaves. Clearly, ICX , ICY , K, and L are all pullbacks of
perverse sheaves on A0.

By adjunction, we have morphisms

K ⊠ ICY
αX←−−− J αY−−−→ ICX ⊠L

and we define α := (αX , αY ) : J → (K⊠ ICY )⊕(ICX ⊠L). Similarly, we have morphisms βX : ICX →
K[1] and βY : ICY → L[1], and we define

β := (id⊠βY )− (βX ⊠ id) : (K ⊠ ICY )⊕ (ICX ⊠L) −→ K ⊠ L[1] .

4.7 Lemma. We have a distinguished triangle

J
α−−→ (K ⊠ ICY )⊕ (ICX ⊠L)

β−−→ K ⊠ L[1] −→ . (4.7.1)

Proof. Let
(∆X × Y )

ιX
↪−−→ ∆

ιY←−−↩ (X ×∆Y ) , (∆X ×∆Y )
θ

↪−→ ∆

be the inclusion maps. If F is any Qℓ-sheaf on ∆proét, we have a short exact sequence

0 −→ F
α−−→ (ιX)∗ι

∗
XF ⊕ (ιY )∗ι

∗
Y F

β−−→ θ∗θ
∗F −→ 0 ,

where α is the sum of the adjunction maps and β is the difference of the adjunction maps (exactly
as in the construction above). Passing to the derived category gives the lemma.

4.8. Keeping the notation and assumptions as above, let σ : X × Y → Z be the addition map. For
z ∈ Z(k), let Fz := σ−1(z) be the fibre of σ over z. Let Vz := Fz ∩ U and Dz := Fz ∩∆.
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By proper base change, the stalk of H m(ICX ∗ ICY ) at z is isomorphic to Hm(Fz, ICX×Y |Fz).
The short exact sequence of perverse sheaves

0 −→ j!Qℓ,U [d+ e] −→ ICX×Y −→ i∗J [1] −→ 0

(see [2, (4.1.12.3)]) gives rise to a long exact cohomology sequence

· · · −→ Hm
(
Dz, J |Dz

)
−→ Hm+d+e

c (Vz,Qℓ) −→
Hm

(
Fz, ICX×Y |Fz

)
−→ Hm+1

(
Dz, J |Dz

)
−→ · · · (4.8.1)

(We use the base change theorem for proper pushforwards; see [3, Lemma 6.7.10].) Moreover, the
triangle (4.7.1) gives a long exact sequence

· · · −→ Hm
(
Dz,K ⊠ L|Dz

)
−→ Hm

(
Dz, J |Dz

)
−→

Hm
(
Dz,K ⊠ ICY |Dz

)
⊕Hm

(
Dz, ICX ⊠L|Dz

)
−→ Hm+1

(
Dz,K ⊠ L|Dz

)
−→ · · · (4.8.2)

Because Hm
(
Dz,K⊠L|Dz

)
is the stalk at z of H m(K ∗L), the perversity of K ∗L (Proposition 3.16)

implies that the locus of points z with Hm
(
Dz,K ⊠ L|Dz

)
̸= 0 has dimension at most −m. Exactly

the same holds for the terms Hm
(
Dz,K ⊠ ICY |Dz

)
and Hm

(
Dz, ICX ⊠L|Dz

)
.

For n ≥ 0, define Z◦
n =

{
z ∈ Z

∣∣ dim(Fz) = n
}
, which is a locally closed subset of Z. Taking

m = 2n − d − e in the previous calculations, we find that there is a locus Z ′
n ⊆ Z◦

n of dimension at
most d+ e− 2n, such that

H2n−d−e(Dz, J |Dz

)
= H2n−d−e+1

(
Dz, J |Dz

)
= 0

for all z ∈ Z◦
n ∖ Z ′

n.
Let Z ′′

n =
{
z ∈ Z◦

n

∣∣ dim(Vz) = n
}
. For z ∈ Z ′′

n, we have H2n
c (Vz,Qℓ) ̸= 0 by Lemma 4.4. By the

exact sequence (4.8.1), it follows that H2n−d−e(Fz, ICX×Y |Fz

)
̸= 0 for all z ∈ Z ′′

n∖Z ′
n. By perversity

of ICX ∗ ICY (again using Proposition 3.16), it follows that dim(Z ′′
n ∖ Z ′

n) ≤ d+ e− 2n.
Finally, for z ∈ Z◦

n ∖ (Z ′
n ∪ Z ′′

n), we have dim(Dz) = n. By induction, we may assume that the
addition maps ∆X × Y → ∆X + Y and X ×∆Y → X +∆Y are semismall, so the locus of points z
where dim(Dz) = n has dimension at most d+ e− 1− 2n.

In total, this gives dim(Z◦
n) ≤ d+ e− 2n, hence the addition map X × Y → Z is semismall. This

completes the proof of Theorem 4.1.

4.9 Corollary. Let A be a g-dimensional absolutely simple abelian variety over a field. Let X1, . . . , Xr

be closed subvarieties of A and define Z := X1 + · · ·+Xr. We have

dim(Z) = min

{
g,

r∑
i=1

dim(Xi)

}
.

Proof. It suffices to prove this for r = 2. Let X ′
1 ⊆ X1 and X ′

2 ⊆ X2 be irreducible closed subvarieties
such that dim(X ′

1) + dim(X ′
2) = min{g, dim(X1) + dim(X2)}. Theorem 4.1, applied to X ′

1, X ′
2 ⊆ A,

gives that the addition map σ : X ′
1×X ′

2 → X ′
1 +X ′

2 is semismall. In particular, σ is generically finite
and we find

dim(X1 +X2) ≥ dim(X ′
1 +X ′

2) = dim(X ′
1) + dim(X ′

2) = min{g, dim(X1) + dim(X2)} .

The reverse inequality is clear.
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4.10 Corollary. Let A be a g-dimensional absolutely simple abelian variety over a field. If X1, . . . , Xr

are closed subvarieties of A such that
∑r

i=1 codimA(Xi) ≤ g, then
⋂r
i=1Xi ̸= ∅.

Proof. We argue by induction on r. For r = 1, there is nothing to prove, and the induction step
reduces to the case r = 2. For r = 2, suppose codimA(X1) + codimA(X2) ≤ g (by definition,
codimA(Xi) := g − dim(Xi)). By Corollary 4.9, the difference map X1 ×X2 → A is then surjective.
Since X1 ∩X2 is isomorphic to its fibre over 0, we obtain X1 ∩X2 ̸= ∅.

We now extend Theorem 4.1 to the case of more than two subvarieties.

4.11 Corollary. Let A be an absolutely simple abelian variety of dimension g over a field k, let
X1, . . . , Xr be irreducible closed subvarieties of A and define Z := X1+· · ·+Xr. If

∑r
i=1 dim(Xi) ≤ g,

the addition map σ : X1 × · · · ×Xr → Z is semismall.

Proof. Without loss of generality, we may assume that k is algebraically closed and that X1, . . . , Xr

are irreducible closed subvarieties of A. We argue by induction on r. The case r = 1 is trivial and
the case r = 2 is Theorem 4.1. Assume then that r ≥ 3 and that the assertion is true whenever we
consider at most r − 1 subvarieties Xi. In particular, if we set Y := X1 + · · · + Xr−1, the addition
maps

X1 × · · · ×Xr−1
α−−→ Y , Y ×Xr

β−−→ Z

are semismall.
For n ≥ 0, let Zn ⊆ Z be the closed subset of points z ∈ Z such that dimσ−1(z) ≥ n, and define

Z◦
n := Zn∖Zn+1. Our goal is to prove that Zn has dimension at most dim(Z)−2n. (By Corollary 4.9

we have dim(Z) =
∑r

i=1 dim(Xi).) Let Γ◦ ⊆ Z◦
n be an irreducible component and let Γ ⊆ Zn be

its Zariski closure. Let γ ∈ Γ be the generic point. Let Tγ ⊆ σ−1(γ) be an irreducible component of
dimension n, let T ⊆ X1×· · ·×Xr be the Zariski closure of Tγ , and let V := (α× id)

(
T
)

be the image
of T in Y ×Xr. By construction, σ(T ) = β(V ) = Γ. Also, the fibre of V → Γ over γ is irreducible;
let e be its dimension.

Let W ⊆ Y be the image of V ⊆ Y ×Xr under the first projection map. Then V ⊆W ×Xr, and
hence Γ ⊆W +Xr. Because the map W ×Xr →W +Xr is semismall, we have

dim(Γ) ≤ dim(W ) + dim(Xr)− 2e . (4.11.1)

By construction, the fibre of α× id : (X1×· · ·×Xr−1)×Xr → Y ×Xr over the generic point of V
has dimension n − e. It follows that the fibre of α over the generic point of W also has dimension
at least n − e. Because α is semismall, this implies dim(W ) ≤ dim(Y ) − 2n + 2e and, together
with (4.11.1), we obtain dim(Γ) ≤ dim(Y ) + dim(Xr)− 2n = dim(Z)− 2n, which is what we wanted
to prove.

4.12 Remark. The following construction shows that in Corollary 4.9, it does not suffice to assume
that A is simple (as opposed to absolutely simple).

Let k be a field with separable algebraic closure k ⊆ ksep. Let k ⊆ L be a finite separable
field extension and write Emb(L) for the set of k-homomorphisms σ : L → ksep. Let L̃ ⊆ ksep be
the compositum of all subfields σ(L) ⊆ ksep, for σ ∈ Emb(L), which is a finite Galois extension

14



of k. In what follows, we view the elements σ ∈ Emb(L) as embeddings L ↪→ L̃. The Galois group
Γ = Gal(L̃/k) naturally acts on Emb(L) and this action is transitive.

If B is an abelian variety over L and σ ∈ Emb(L), let Bσ denote the abelian variety over L̃ that
is obtained by extension of scalars via σ. If A = ResL/k B is the abelian variety over k obtained by
restriction of scalars, we have AL̃ ∼=

∏
σ∈Emb(L) Bσ. The natural action of Γ on AL̃ permutes the

factors Bσ.
If I ⊆ Emb(L) is a subset, define TI ⊆ AL̃ =

∏
σ∈Emb(L) Bσ by

TI :=

{
(bσ) ∈

∏
σ∈Emb(L)

Bσ

∣∣∣∣ bσ = 0 for all σ /∈ I
}
.

Clearly, TI is an abelian subvariety of AL̃ of dimension equal to #I · dim(B). If γ ∈ Γ, we have
γTI = Tγ(I). Furthermore, for I, J ⊆ Emb(L) we have TI + TJ = TI∪J .

Let I be a Γ-orbit of subsets of Emb(L). By Galois descent, there is a closed subscheme XI ⊆ A
over k such that

XI ⊗k L̃ =
⋃
I∈I

TI .

We now make several choices that will give rise to an example of the desired kind. To begin with,
we choose a field extension k ⊆ L as above and two Γ-orbits I , J of subsets of Emb(L) such that:

• if I ∈ I and J ∈J , then #I +#J = [L : k];
• I ∩ J ̸= ∅ for all I ∈ I and J ∈J .

(Note that [L : k] = #Emb(L), so if the first condition is satisfied, the second condition is equivalent
to I ∪J ̸= Emb(L) for all I ∈ I and J ∈J .) Next we choose an absolutely simple abelian variety B
over L with the property that Bσ and Bτ are not isogenous whenever σ ̸= τ in Emb(L). This condition
implies that the abelian variety A = ResL/k B is simple over k. With notation as above, the closed
subschemes XI , XJ of A then satisfy dim(XI ) + dim(XJ ) = dim(A), whereas XI +XJ ̸= A.

Finally, we note that it is possible to make choices as above. For a concrete example, take k = Q
and L = L̃ = Q(ζ7) with ζ7 = exp(2πi/7). Number the complex embeddings of L in such a way that
Γ = Gal(L/Q) is generated by the cyclic permutation (1 2 3 4 5 6), and take I to be the Γ-orbit
of I = {1, 2, 3} and J the Γ-orbit of {1, 3, 5}. If B is an elliptic curve over L that is not isogenous
to any of its Galois conjugates, then A = ResL/Q B is a 6-dimensional simple abelian variety over Q
and XI , XJ ⊆ A are 3-dimensional closed subvarieties with dim(XI +XJ ) = 5.

5. The addition map on arbitrary abelian varieties

It is clear that Corollary 4.9 does not extend as is to nonsimple abelian varieties. However, we shall
show that the result remains valid under an additional hypothesis. We use the following notion that
was introduced by Ran in [17].

5.1 Definition. Let A be an abelian variety over a field k. If k = k̄, an irreducible closed subvarietyX
of A is said to be geometrically nondegenerate if for every quotient morphism q : A→ A/B withB ⊆ A

15



an abelian subvariety, either q(X) = A/B or dim
(
q(X)

)
= dim(X). Equivalently, X is geometrically

nondegenerate if
dim(X +B) = min

{
dim(A), dim(X) + dim(B)

}
(5.1.1)

for every abelian subvariety B ⊆ A (compare with Corollary 5.6).
For arbitrary k, we say that a closed subvariety X ⊆ A is geometrically nondegenerate if all

irreducible components of Xk̄ are geometrically nondegenerate.

Note the connection between (5.1.1) and Corollary 5.6.

5.2. Examples and elementary properties. Assume k = k̄.

(1) If A is simple, every irreducible closed subvariety of A is geometrically nondegenerate.
(2) If q : A ↠ A′ is a surjective homomorphism of abelian varieties and X ⊆ A is a geometrically

nondegenerate closed subvariety, its image q(X) ⊆ A′ is again geometrically nondegenerate.
(3) An irreducible curve X ⊆ A is geometrically nondegenerate if and only if X generates A.
(4) An irreducible hypersurface X ⊆ A is geometrically nondegenerate if and only if X is ample.
(5) A dimensionally transverse intersection X ⊆ A of ample hypersurfaces is geometrically nonde-

generate.

The main result of this section is the following.

5.3 Theorem. Let A be an abelian variety of dimension g over a field k. Let X and Y be closed
subvarieties of A with dim(X) + dim(Y ) ≥ g and assume X is geometrically nondegenerate. Then
X + Y = A.

Proof. By the same argument as in 4.5, we may assume that either k = C or that k is the algebraic
closure of a field k0 which is finitely generated over Fp. To avoid case distinctions, define k0 = k = C in
the first case. Moreover, we may assume that X and Y are irreducible with dim(X)+ dim(Y ) = g (if
necessary, replace Y by an irreducible closed subvariety), and that we have X0, Y0 ⊆ A0 over k0 which
after extension of scalars to k give X, Y ⊆ A. We follow the notational convention of Remark 3.8.
Let Z0 := X0 + Y0 (and so Z = X + Y ). Our goal is to show Z = A. We assume Z ̸= A and we shall
derive a contradiction.

Suppose B ⊆ A is an abelian subvariety with quotient q : A ↠ A = A/B and write X := q(X)

and Y := q(Y ). The assumption that X is geometrically nondegenerate implies dim(X) + dim(Y ) ≥
dim(A). By induction on g, we may therefore assume q(Z) = X + Y = A whenever B ̸= 0.

As we did in 4.6, we choose affine open subsets UX0 ↪→ X0 and UY0 ↪→ Y0 such that (UX)red

and (UY )red are smooth over k, and we let ∆X0 ↪→ X0 and ∆Y0 ↪→ Y0 be the closed complements.
Define

K0 := ICX0 |∆X0
[−1] , L0 := ICY0 |∆Y0

[−1] ,

which are perverse sheaves. To prove the theorem, it suffices to show that there exists a dense open
subset Z ′

0 ⊆ Z0 such that the restriction of each of the objects

ICX0 ∗ ICY0 , K0 ∗ ICY0 , ICX0 ∗L0 , K0 ∗ L0 (5.3.1)

to Z ′
0 is a perverse sheaf. Let (X × Y )′ ⊆ X × Y be the pre-image of Z ′ under the addition map

X×Y → Z. Note that (X×Y )′, being an open subset of the irreducible variety X×Y , is irreducible.
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Exactly the same argument as in 4.8 then shows that the map (X × Y )′ → Z ′ (which is a proper
surjective morphism) is semismall. In particular, this implies g = dim(X×Y ) = dim(Z), contradicting
the assumption Z ̸= A.

To find an open subset Z ′
0 ⊆ Z0 as desired, we give the argument for K0 ∗ L0; exactly the same

works with K0 replaced by ICX0 or L0 replaced by ICY0 . (For each of the terms in (5.3.1), we find an
open subset Z ′

0 as desired, and at the end, we take the intersection of the four open subsets Z ′
0 that

were found.) By Lemma 3.9(2), we may, after replacing k0 by a finite extension, assume that every
simple subquotient P0 of K0 ∗ L0 has the property that P (the pullback of P0 to A) is isotypical.
By Propositions 3.13 and 3.15, it follows that for every simple subquotient P0 of pH i(K0 ∗ L0) with
i ̸= 0, we have dim

(
Stab(P )

)
> 0, so that the identity component B = Stab(P )0 is a nonzero abelian

subvariety of A. If Σ(P0) ⊆ A0 is the closure of the support of P0, then Σ := Σ(P0) ⊗k0 k is stable
under the action of B. Writing q : A→ A = A/B for the quotient map and Σ := q(Σ), it follows that
Σ = q−1(Σ). Moreover, Σ ⊆ Z ⊊ A, whereas q(Z) = A, so we cannot have Σ = Z. This shows that P0

is supported on a proper closed subset of Z0. Now take Z ′
0 ⊆ Z0 to be the complement of the union

of all Σ(P0) ⊊ Z0, where P0 runs through the simple subquotients of pH i(K0 ∗ L0) with i ̸= 0.

5.4 Remark. The argument actually proves something slightly stronger: we have X +Y = A when-
ever, with notation as above, dim(X) + dim(Y ) ≥ dim(A) for every quotient q : A ↠ A = A/B.
This condition means precisely that (X,Y ) ‘fills up A’, in the sense of [6, (1.10)]. Thus we have the
analogue of [6, Corollaire 2.6] over an arbitrary base field.

5.5 Remark. In the situation of the theorem, assuming instead dim(X) + dim(Y ) ≤ g, we do not
know whether the addition map X × Y → X + Y is semismall (compare with Theorem 4.1).

As a corollary to Theorem 5.3, we obtain the promised generalisation of Corollary 4.9.

5.6 Corollary. Let X1, . . . , Xr be closed subvarieties of an abelian variety A of dimension g over a
field. Assume that at least r−1 of the Xi are geometrically nondegenerate. Then dim(X1+ · · ·+Xr) =

min
{
g,
∑r

i=1 dim(Xi)
}
.

Proof. It suffices to prove this for r = 2, working over an algebraically closed base field. Let X and Y
be closed subvarieties of A such that X is geometrically nondegenerate. When dim(X)+dim(Y ) ≥ g,
the theorem givesX+Y = A, whence the corollary in that case. Assume now dim(X)+dim(Y ) = g−n
for some n > 0. Let C ⊆ A be an irreducible closed curve that generates A. For every closed subvariety
V ⊊ A, we have dim(V +C) = dim(V )+1. Let Y ′ = Y +nC, where nC = C+· · ·+C (n terms). Then
dim(X)+dim(Y ′) = g, so the theorem gives dim(X+Y +nC) = g and hence dim(X+Y ) = g−n.
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