NUMERICAL INVARIANTS OF HYPER-KAHLER MANIFOLDS

OLIVIER DEBARRE, WITH AN APPENDIX BY CHEN JIANG

ABSTRACT. We study various constraints on the Beauville quadratic form and the Huybrechts—
Riemann—Roch polynomial for hyper-Ké&hler manifolds, mostly in dimension 6 and in the
presence of an isotropic class.

In an appendix, Chen Jiang proves that in general, the Huybrechts—Riemann—Roch poly-
nomial can always be written as a linear combination with nonnegative coefficients of certain
explicit polynomials with positive coefficients. This implies that the Huybrechts—Riemann—
Roch polynomial satisfies a curious symmetry property.

1. INTRODUCTION

A hyper-Kdhler manifold is a simply connected compact Kahler manifold X whose space
of holomorphic 2-forms is spanned by a symplectic form. Its dimension is necessarily an even
number 2n. A fundamental tool in the study of hyper-Kéahler manifolds is the Beauwville form,
a canonical integral nondivisible nondegenerate quadratic form ¢y on the free abelian group
H?*(X,Z) ([B, th. 5]). Its signature is (3, b2(X) — 3) and there is a positive rational number cx
(the Fujiki constant) such that ([F, Theorem 4.7])

(1) Yo € H*(X,Z) /on2” = cxqx ().

There exists a polynomial Prg x(T") (the Huybrechts-Riemann—Roch polynomial) with
rational coefficients, leading term (grf)!T” and constant term n + 1, such that, for every line

bundle L on X, one has ([H2, Corollary 3.18))

(2) X(X, L) = Prrx(gx(c1(L))).

The objects ¢x, cx, and Prg x(T) only depend on the topology of X and are in particular
deformation invariant (see Table (13) for the values of cx and Prg x(T) for all known examples
of hyper-Kéhler manifolds X).

In this note, we first prove in Section 2 a curious symmetry property for the polynomial
Prr x(T) (Proposition 2.1). This property also follows from a strengthening of [J, Theorem 1.1]
(which says that the polynomial Prg x(7") has positive coefficients) proved in the appendix by
Chen Jiang.

We then study a conjecture made in [DHMV, Conjecture 1.4] (and proved in [DHMYV,
Theorem 1.5] when n = 2) about the possible values of Prp x(T) when the quadratic form gy
represents 0 (this is the case for all known X). There exists then a nonzero class | € H*(X,Z)
such that [, I*" = 0 and, for any m € H*(X,Z), if one writes [, I"m"™ = anl, the number a is
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2 O. DEBARRE

necessarily an integer ([DHMV, Lemma 2.2]). The conjecture deals with the case a = 1 (which
happens for nth punctual Hilbert schemes of K3 surfaces and hyper-Kéahler manifolds of OG10
deformation type).

Conjecture 1.1 (Debarre-Huybrechts—-Macri—Voisin). Let X be a hyper-Kéhler manifold of
dimension 2n with classes |, m € H?(X,Z) such that

/ I’ =0 and / "m™ = nl.
X X

Then cx = (2n — 1)!! and the Huybrechts—Riemann—Roch polynomial of X is

n

3 P = (110,

Our main result is the following result (Proposition 4.3) which almost proves the con-
jecture (one would need to additionally prove that the case ny = 2 does not happen) in
dimension 6 (n = 3).

Proposition 1.2. Let X be a hyper-Kdhler manifold of dimension 6 with classes I,m €
H?*(X,Z) such that [,1° =0 and [ Pm* = 3l. We have qx(I,m) = 1, the quadratic form qx
1 even, the Fujiki constant cx is 15, and

T
=+4 6—n
Prax(T) = (2 3 ) T 16 =T,

where nx € {2,6}.

One may make the following more ambitious conjecture for small positive values of a (it

is verified for all known examples of hyper-Kéahler manifolds and proved in general when n = 2
in [DHMV, Theorem 9.3 and Theorem 1.5]).

Conjecture 1.3. Let X be a hyper-Kéahler manifold of dimension 2n with classes |, m € H*(X,Z)
such that

/|2”:0 and /I”m”:an!, with a € {1,...,n}.
X X

Then a = 1 and X is of K3 or OG10 deformation type.

Again when n = 3, we get in Proposition 4.4 a much weaker result in the case a = 2
(which, according to Conjecture 1.3, should not occur at all).

Proposition 1.4. Let X be a hyper-Kahler manifold of dimension 6 with classes |,m €
H*(X,Z) such that [, 1° = 0 and [, Pm?® = 2.3l We have qx(I,m) = 1, the quadratic
form qx is even, the Fujiki constant cx is 30, and

1 4 2

n n
Prrx(T) = o T° + ?XT2 + (E +05)T 4,

where nx € {1,2,3,4}.
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2. A SYMMETRY PROPERTY FOR THE HUYBRECHTS—RIEMANN—ROCH POLYNOMIAL

Let X be a hyper-Kéhler manifold of dimension 2n. In [N, Definition 17] (see also [J,
Definition 2.2]), Nieper-Wiikirchen defined another quadratic form Ay on H%(X,R) (which is
not integral on H%(X,Z)). Tt satisfies (see [N, (5.18)])

(@) Vo € H2(X,Z) % /X 0™ = A Ay (@),

where Ax = [, td"/?(X). By [N, Proposition 10] and [J, Proposition 2.3], one can write

gx = mxAx,
where my is a positive rational number, so that (compare (1) and (4))

n
mx

(5) cx =
We will also set ny = 2myx. When n > 1, one has ([HS, Section 6], [J, Corollary 5.5])
(6) 0<Ax < 1.

The Hirzebruch-Riemann—Roch theorem (2) takes the form

(7) (X, L) = /X td(X) exp(cr(L)) = Qrux (Ax (e (D)),

where Qrr x (1) = Prr.x(mxT). The polynomial Qrg x (1) was computed in [N, Theorem 5.2]
in terms of the Chern numbers of X. The formula is

(8) Qrax(T) = /X exp(— i E—Z“ chon(X ) To (, /1T + 1))

where

e the By, are the Bernoulli numbers;
e the chy, € H*?(X) are the homogeneous components of the Chern character of X;
e the T5(Y') are the (even) Chebyshev polynomials, defined by Ty (cos 6) = cos 2k6.

This formula implies curious symmetry relations for the polynomials Prg x(7") and
Qrrx(T) for which we have no geometric explanations.

Proposition 2.1. Let X be a hyper-Kdhler manifold of dimension 2n. The polynomial Qgrp x(T)
satisfies the symmetry relation

(9) Qrrx (=T —4) = (-1)"Qrrx(T).
Equivalently,
(10) PRR,X<_T — 271)() = <_1)nPRR,X<T>-

When n is odd, —ny is therefore a negative rational root of Prp x(7'). In all known
examples, it is actually an integer (see also Lemma 4.2).
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Proof. Let Py be the degree k polynomial such that Py (T) = T2k(w/}lT+ 1). Set cosl =
\/%T + 1, so that T' = 4(cos? — 1) = —4sin?§. We compute

P(=T — 4) = Ty <\/§> = Tor(sin @) = Ty (cos(0 — 7)) = cos(2k(0 —

— (-1)* 05280 = (~1)*Tan(cost) = (~1) Tue (437 + 1

By (8), the polynomial Qrp x(T) is a Q-linear combination of polynomials of the type

)
= (=1)"Pu(T).

~—— N3

Py (T)- - Py (T) /X chggy (X) -+ chog, (X)

for k1 + - - - + k. = n. The proposition therefore follows. ]

Remark 2.2. The symmetry relation (10) implies that the polynomial Prr x(7') is a linear
combination with rational coefficients of the polynomials (T + nx)" %, for 0 < j < n/2. Since

its leading coeflicient is (2 ),, we can write

(11) Prrx(T) = W(T—'— nx )"+ O(T"2)

Qrrx(T) = Prrx(mxT) = Ax(T" + 2nT™ 1) + O(T"?).
The first two coefficients of Prp x therefore determine mx, Ax, and cx (see also [J, Lemma 5.7]).

Chen Jiang proves in Appendix A that the polynomial Qgr x(T) is a linear combination
with nonnegative rational coefficients of the polynomials

(k41
Qr(T) :;( 2+ 1 )TJ

for 0 < k < n and n—k even. These polynomials satisfy the relation (9),* so this much stronger
result implies Proposition 2.1.

Corollary 2.3. When n = 3, one has
4 c
(12) Prnx(T) = o (T 4+ nx)* 4 (== = 2ond ) (T + ny).

720 nx 720 x

Proof. By Remark 2.2, we can write

PRR,)((T) 720(T+nx) +b(T+nx),
where b satisfies .
77)(071)( + an = PRR)((O) = 4,
which gives the desired value for b. 0

10ne has Qi (T+ 1+ -2) = Z?:o T2%=F_ In particular, the polynomialb Qx(T) satisty (9) (change T into —T)

and the roots of Qi (T) are the k negative real numbers —4 sin? for 1 < j <k, so that

2(k+1)

= mQL
Qu(T) = 1gJHgk(T+4S T 1)).
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Remark 2.4 (Known examples). The following table displays the values of the various objects

we are considering for all known examples of hyper-Kahler manifolds.

K3" or 0G10 (n =5) | Kum, or OG6 (n = 3)
deformation type deformation type
Prnx(T) (375 (n+ D)
(13) roots —4,—6,...,—2n — 2 —2,—4,...,—2n
cx (2n — )N (n+1)(2n — D!
nx n—+3 n+1
Ax Gr o

The roots of the polynomials displayed in the above table are negative integers (this
was conjectured to hold for all hyper-Kéhler manifolds in [J, Conjecture 1.3]). In the next
two remarks, we discuss what can be said in general about the reality of the roots of the
polynomial Prp x(T') (or, equivalenty, of Qrr x(7")) in dimensions 4 and 6 (when real, the
roots are negative, since both polynomials have positive coefficients).

Remark 2.5 (Real roots, n = 2). When n = 2, by (11), we have
Qrrx(T) = Ax(T? +4T) + 3.
Easy computations ([DHMV, Lemma 4.1]) based on [G, Main Theorem]| give that
e cither by(X) = 23 and b3(X) = 0, in which case Ay = 22

399
e or by(X) < 8, in which case % < Ax < %.

In particular, the discriminant 4Ax(4Ax — 3) of the polynomial Qgrr x(7") is positive, hence
its roots are real. Note that by [JL, Proposition 4.3] (also based on Guan’s results), these roots
are rational if and only if the Huybrechts-Riemann-Roch polynomial of X is one of the two
known such poylnomials (see (13)); the roots of Prg x (1) are then negative integers.

Remark 2.6 (Real roots, n = 3). When n = 3, we have by Remark 2.2
Qrrx(T) = (T +2)(Ax(T? + 4T) + 2).
The roots of this polynomial are all real if and only if the discriminant
16A% — 8Ax = 8Ax(24x — 1)

is nonnegative, that is, if and only if Ax > % The inequality Ax > % is equivalent to the

inequality (2) in [BS]. It implies an upper bound on by(X). If Ax < 3, the class ¢;(X) is not
in the image of the morphism Sym*H?(X, Q) — H*(X, Q) (the Verbitsky component).

3. COEFFICIENTS OF THE HUYBRECHTS—RIEMANN—ROCH POLYNOMIAL

For each positive integer n, we define the positive integer

I «2-

0<j<k<n

ged
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One computes easily C; = 1, Cy = 12, and, with a computer,?

Cy=2°.3%.5,
C,=21.3.5%.7,
05:218.39_54.72’

Ce =2%7.31.5%. 7311,
Cr=2%.39.5%.7°.11% . 13.

Let X be a hyper-Kéahler manifold of dimension 2n. We write the Huybrechts—Riemann—Roch
polynomial as

Prrx(T) = a,T" + -+ a1 T + ay,

where a,, = % and ag = n + 1. The proof of the following proposition uses the fact that the
polynomial Prp x(T') takes integral values on every integer represented by ¢x: this is because
of the relation (2) and the fact that, for every a € H*(X,Z), there is a deformation of X on
which a becomes the first Chern class of a line bundle.

Proposition 3.1. Let X be a hyper-Kdihler manifold of dimension 2n. For eachi € {0,...,n},

the coefficient a; of the polynomial Prr x(T) belongs to 57 (and to LnZ if the quadratic

20C,y, C

form qx is not even). In particular, the Fujiki constant cx is in ;Z@;Z

Proof. Let g be an integer represented by qx. For all g, ..., r, € Z, the integers 2q, ..., r2q are
also represented by qx, so that Prg x(riq) = > 7 jar7'q" is an integer for all j € {0,...,n}.
The corresponding linear system with unknowns aoq’, ..., a,q" has a Vandermonde matrix
(r3), so we get

a;q’ H (rjz - 7",3) <Y/
0<j<k<n

for all 7 € {0,...,n}, which implies a;¢°C,, € Z. Since the integral bilinear form associated
with gx is not divisible, the gcd of all integers ¢ represented by ¢x is either 2 (if the form ¢x
is even) or 1 (if it is not) and the proposition follows. O

In particular, we get cx € %Z when n = 2, and cx € %Z when n = 3. For any n,
Proposition 3.1 gives the lower bound cx > %, but what would be really interesting, in

order to prove boundedness properties for hyper-Kahler manifolds, would be to find an upper
bound on cx (see [H1]).

Remark 3.2. Assume that gy represents all large enough even numbers (this is the case for all
known examples). Then Prg x(7') takes integral values on all large enough even numbers and
this implies that its leading coefficient is in —-Z, hence cx € (2n — 1)!!Z.

nl2n

2Mauny thanks to Jieao Song for making these computations. For any positive integer n, the primes p that
divide C,, are exactly those such that p < 2n — 1 (this is because one can find n + 1 distinct squares modulo p
if and only if p > 2n).
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4. THE HUYBRECHTS—RIEMANN—-ROCH POLYNOMIAL IN THE PRESENCE OF AN ISOTROPIC
CLASS

Let X be a hyper-Kéahler manifold of dimension 2n. Assume that there is an isotropic
class | € H*(X,Z), that is, gx(l) = 0. For any m € H*(X,Z),

a(m) = %/Xlnm”

is an integer ([DHMV, Lemma 2.2]) and

(2n)!
2mn)

(14) cxqx(l,m)" = a(m) =a(m)(2n — DI

From now on, we assume ¢y (l,m) > 0. Using (5) and (6), we obtain

o (2n)'Ax - (2n)!  2"nlgx(l,m)"
X ey cx a(m)

hence

n

|
(15) my < 2qx (1, m) [ —

a(m)’

Using the bound cy > %, we also get my < 2+/C,,.

Lemma 4.1. We have
nlax(,m)" | a(m)C,
and, if gx s not even,

n‘2nQX(I) m)n | a(m)on-

Proof. Using (14), we get

cx a(m)
(2n)!  27nlgx (1, m)n’

Ay —

Then use Proposition 3.1. U

Lemma 4.2. We have

gx(m)+nxy n-—1
— Z.
a(m)< 2qx (I, m) 2 ) <
In particular,
2qX(|, m)

a(m) z

nx € 4+

so that ny is an integer when a(m) € {1,2}.

Proof. For every t € Z, the number

P(t) = PRR,X(CIX(tI + m)) = PRR,X(2tQX(I7 m) + C]X(m))
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is an integer. We have, using (11) and (14),

P(t) = %(thxa, m) + gx(m) + nx)" + O(t"2)

a(m)

= g 2l m) 02 g () (g (m) + )+ O(F )

a(m> n a<m) n—1 n—2
= t t .
This is an integer for all ¢ € Z, hence so is
n 4 nn=1),n-1
t -1 "+ —5—t
P(t) — a(m)( +Z ) = P(t) — a(m) n2| +O(t"?)
gx(m)+nx n- 1) a(m) . -
= - " O ?).
( 2 (L) > Jmont O
This implies the lemma. C

4.1. Case a(m) = 1. We know from [DHMV, Theorem 1.5] that in dimension 4, this case only

occurs when X is of K3 deformation type. In particular, Prg x(T) is then given by (3). We

believe (Conjecture 1.1) that the same should happen for any n > 2 (one would then have

¢, = (2n — ! and nx = n + 3). We study the case n = 3.

Proposition 4.3. Assume n = 3 and a(m) = 1. Then qx(I,m) =1, cx = 15, nxy € {2,6},

and the quadratic form qx s even. One also has

1 ny 13 T+4\ 6-—ny
Prax(T) = =T°+ =T?+ —T+4= |2 — T°
rrx(T) = g0+ g+ 5T+ (3> 16

and the sublattice ZI & Zm of (H*(X,Z),qx) is a hyperbolic plane.

Proof. We have Cs = 25 - 33 - 5 and we obtain from Lemma 4.1
gx(I,m)*|2*.3%.5 (and gx(I,m)* | 2-3% -5 if gx is not even),
so that ¢x(I,m) € {1,2} (and ¢x(l,m) = 1 if gx is not even).
Assume ¢x(I,m) = 1. We have cx = 15 from (14), Lemma 4.2 gives gx(m) + nx € 2Z,

and (15) gives mx < 2v/6 ~ 3.6, so that ny € {1,2,3,4,5,6,7}. Furthermore, we have, by
Corollary 2.3,

Prrx(T) i(T +nx)® + <i — in?}() (T 4 nx).

T 48 nx 48
For all values ¢ taken by ¢x, this must be an integer when 7" = ¢, so that
(16) 48nx | nx(q+nx)® + (192 — n%)(q + nx).

In particular, nx | 192¢q. If nx € {5, 7}, this implies nx | ¢, which is impossible because the
ged of all integers ¢ represented by ¢x is either 1 or 2. Otherwise, 16ny | 192, hence we obtain

(17) 16 | (¢ + nx)® — nk (¢ + nx) = q(q + nx)(q + 2nx).

e When ny = 1, the relation (17) is equivalent to ¢ = 0, 6,8, 14,15 (mod 16). The case
g = 15 (mod 16) is impossible since 4q is also represented but not in this list, hence
g =0,6,8,14 (mod 16) and gx is even. This contradicts the fact that ¢x(m) + nx is
even.
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e When ny = 2, the relation (17) is equivalent to ¢ even.

e When nx = 3, the only possible odd value is ¢ = 13 (mod 16). This implies that 4¢g = 4
(mod 16) should also be represented, but 4 does not satisfy the relation (17). So gx is
even, which contradicts the fact that ¢x(m) + ny is even.

e When nyx = 4, the relation (17) is equivalent to 4 | ¢, which is impossible because the
ged of all integers ¢ represented by ¢y is either 1 or 2.

e When nx = 6, the relation (17) is equivalent to ¢ even.

All in all, we get nx € {2,6} and ¢x even.

Assume ¢x(l, ) = 2. The quadratic form gx is even, we have cx = £ from (14), Lemma 4.2

gives 1gx(m) + mx € 2Z, so that my is an integer, and (15) gives my < 4v/6 < 8, so that
mx € {1 2,3,4,5, ,7} As above, we deduce from (12) that
2 1
2q + 2 (5= = optmd ) (20 + 2
gag 20 2 (o = g gdm ) (20 + 2mx)

is an integer for all values 2q taken by gy, so that
A8myx | mx(q+mx)® + (192 — m% ) (g + mx).

This is “the same” relation as (16) and the discussion above allows us to conclude that ¢ must
be even, so that all values taken by ¢x are divisible by 4. This is impossible because the ged
of all values taken by ¢x is 2. So this case does not occur. 0

4.2. Case a(m) = 2. We believe (Conjecture 1.3) this case should not occur for any n > 2 and
we know from [DHMV, Theorem 9.3] that it does not when n = 2. We study the case n = 3.

Proposition 4.4. Assumen = 3 and a(m) = 2. Then, gx(I,m) =1, c¢x = 30, nx € {1,2,3,4},
and the quadratic form qx is even. One also has Prpx(T) = 5;1° + "XT? + (% + )T +4
and the sublattice ZI & Zm of (H*(X,Z),qx) is a hyperbolic plane.

Proof. We have C3 = 2°- 3% -5 and we obtain from Lemma 4.1
gx(l,m)*]2°.3%.5 (and gx (I, m)? | 22 - 3% -5 if gx is not even),
so that gx(I,m) € {1,2} (and ¢x(I,m) = 1 if gx is not even).

Assume ¢x(l,m) = 1. We have cx = 30 from (14), Lemma 4.2 gives nx € Z, and (15) gives
mx < 2v/3 ~ 2.9, so that nx € {1,2,3,4,5}. Furthermore, we have, by (12),

Panx(T) = —(T +nx)* + (i _ 1 )(T+nx),

24 nx 24X
For all values ¢ taken by ¢x, this must be an integer when 7' = ¢, so that
24nx | nx(q+nx)® + (96 — n%)(q + nx).

In particular, nx | 96¢. If nx = 5, this implies nx | ¢, which is impossible because the ged of
all integers ¢ represented by ¢x is either 1 or 2. Otherwise, 8nx | 96, hence we obtain

(18) 8| (¢ +nx)* —nk(q+nx) = q(qg +nx)(q + 2nx).

e When ny = 1, the relation (18) is equivalent to ¢ = 0,2,4,6,7 (mod 8); this means
that every odd value taken by ¢x is = 7 (mod 8). Assume there exists o such that
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gx(a) = 7 (mod 8). Since gx(kl + m) = 2k + gx(m), the integer ¢x(m) must be even
and we may even assume ¢x(m) = 0. For all t,u € Z, the integer

gx (t + um + o) = 2tu + 2tqx (1, @) + 2ugx(m, a) + gx (@)

is odd, hence is = 7 (mod 8). This implies tu + tgx(l, @) + ugx(m,a) = 0 (mod 4).
Taking t = 1 and u = 0, we obtain ¢x(l,a) = 0 (mod 4); taking t = 0 and u = 1,
we obtain gx(m,«) = 0 (mod 4); taking ¢ = u = 1, we obtain a contradiction. Hence
¢g=0,2,4,6 (mod 8) and ¢y is even.

e When nyx = 2, the relation (18) is equivalent to ¢ = 0,2,4,6 (mod 8) and gx is even.

e When ny = 3, the relation (18) is equivalent to ¢ = 0,2,4,5,6 (mod 8). If the case
g =5 (mod 8) occurs, the same reasoning as in the case ny =1, ¢ =7 (mod 8), gives
a contradiction, hence qx is even.

e When ny = 4, the relation (18) is equivalent to ¢ = 0,2,4,6 (mod 8) and ¢x is even.

Assume ¢y (I, m) = 2. The quadratic form gy is even, we have cx = £ from (14), Lemma 4.2
gives my € Z, and (15) gives myx < 5.8, so that myx € {1,2,3,4,5}. As above, we deduce
from (12) that

1
2 + 2 (———4 )2 2
5 2q (20 2 (L = g dmi ) 20+ 2mx)

must be an integer for all values 2¢g taken by ¢y, so that
24mx | mx(q +mx)® + (96 — m3)(q + mx).

We reason as above to conclude that the integer ¢ must be even, so that all values taken by
the quadratic form gx are divisible by 4. This is impossible because the gcd of all values taken
by qx is 2. So this case does not occur. 0

APPENDIX A. POSITIVITY OF THE HUYBRECHTS—RIEMANN—-ROCH POLYNOMIAL

by CHEN JIANG

Throughout this appendix, X is a hyper-Kéahler manifold of dimension 2n and we fix
a symplectic form ¢ € H°(X,0%). The degree n Huybrechts-Riemann-Roch polynomial
Prr x(T) was defined in the introduction, and the polynomial Qrrx(T) = Prrx(mxT)
in Section 2. These polynomials were proved in [J, Theorem 1.1] to have positive coefficients.
The purpose of this appendix is to prove a refinement of this result. For every nonnegative
integer k, we define a degree k£ monic polynomial with positive coefficients by

k
k 1
:Z( A ) =TF 4 2kT" o k1.
J=

Our result is the following.

Proposition A.1. Let X be a hyper-Kahler manifold of dimension 2n > 2. There are non-

negative rational numbers by, by, ..., by, 2 such that
[n/2]
(19) Qrrx(T Z biQn—2i(

Moreover, by = Ax = [, td"*(X) > 0 and b; > 0.
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For any a € H*(X,R), we have

Qnix(Ox (@) = /X td(X) exp(a),

where Ay is the quadratic form on H?(X, R) discussed in Section 2. Indeed, by (7), this equality
holds when « is the first Chern class of a line bundle on X. It then holds for each a € H*(X, Z)
because there is a deformation of X on which o becomes the first Chern class of a line bundle.
Finally, it holds for every o € H?*(X,R) since both sides are polynomial functions of a.

Moreover, one has ([N, Definition 17|, [J, Definition 2.2])

24n [y exp(a) . B )
Ae(a) = {—fx LR if well-defined;

0 otherwise.
For simplicity, we set A\, = Ax (0 + 7). We know that A\, > 0 (see [J, Lemma 2.4(2)]).
In [J, Definition 4.1], for any 0 < k < n/2, we defined a class

k 1/2 —\k—i
o (n — 2k + 1)!tdy,” A(00) n
tDay, '_; (=X (k=) (n—k—1i+1)! €HH(XR)

which is of Hodge type (2k, 2k). One important fact is that, by [J, Corollary 4.4],

| ooy 20
X

Lemma A.2. The numbers o
)

k= \n—2k
o

are deformation invariants of X. In particular, C) is independent of the choice of o.

Here we remark that we cannot directly apply [H2, Corollary 23.17] as tp,, might no
longer be of type (2k, 2k) on deformations of X.

Proof. By definition of tp,, the number Cj can be written as
k /2, 41/2 i
Sy 3!ty (07)"

k
:E:E:GU n—i— ’
Ag’ j

i=0 j=0

where the a;; are constants depending only on n, k, 4, j. By [H2, Corollary 23.17] and [J, Propo-
sition 2.3,

St i (03T (i )2 [yt 3 (o + 7)Y
DV -~ (2n — 2i — 27)! PV

only depends on tdéz/ 2 td;f, 2(X), and cx, which implies that Cj is a deformation invariant

of X. O

Proof of Proposition A.1. From [J, Proof of Theorem 5.1], for any 0 < m < n, we have

|m/2] '2 .
— ! 2n—2t—m+1
tdm t n21,
/X om(00)" E /\m 2 21) ( m— 9 )/}(( pQZ)( o)
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In other words,
Lm/2]

on—om (2n — 2m)! 2n —2i—m +1 / 9/ 94
[ ot = S0 B () [ oo

1=0

Thus we have the following equalities:

/td(X)exp o+70) Z/ 2n— tdzm(X)(UJrE)Z”*Qm

n |m/2]

o — 2 —m+1
:mzo ; Am=2i( n—QZ) ( m — 21 )/X(tpm) Colky :
i“"zm (2n—2i—m—|—1)a)\n_m
— n—2@'2 m — 2i e
_L”fj zn:(Qn—Qi—m—l—l))\n_m
— — m — 2i 7
_Lnfj Ti (2n—4in;m+1) .
=0 m=0
ins2 c

_Z 12Q” 2i(Ao)-

In other words,

C—
Qrrx(Ao) =Y m Qn—2i(As)-
i=0 '

Here C; > 0 by [J, Corollary 4.4]. By Lemma A.2, C; is independent of the choice of o, so after
replacing o by to for any t € C*, we can get an equality of polynomials

[n/2] C.
T) = — 0, (T
QRR,X( ) ; (n _ 22)'2 Qn 21( )7

which gives the desired equation (19).

The last assertion is a consequence of [J, Corollary 5.2]. 0
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