NUMERICAL INVARIANTS OF HYPER-KÄHLER MANIFOLDS

OLIVIER DEBARRE, WITH AN APPENDIX BY CHEN JIANG

ABSTRACT. We study various constraints on the Beauville quadratic form and the Huybrechts–Riemann–Roch polynomial for hyper-Kähler manifolds, mostly in dimension 6 and in the presence of an isotropic class.

In an appendix, Chen Jiang proves that in general, the Huybrechts-Riemann-Roch polynomial can always be written as a linear combination with nonnegative coefficients of certain explicit polynomials with positive coefficients. This implies that the Huybrechts-Riemann-Roch polynomial satisfies a curious symmetry property.

1. Introduction

A hyper-Kähler manifold is a simply connected compact Kähler manifold X whose space of holomorphic 2-forms is spanned by a symplectic form. Its dimension is necessarily an even number 2n. A fundamental tool in the study of hyper-Kähler manifolds is the Beauville form, a canonical integral nondivisible nondegenerate quadratic form q_X on the free abelian group $H^2(X, \mathbf{Z})$ ([B, th. 5]). Its signature is $(3, b_2(X) - 3)$ and there is a positive rational number c_X (the Fujiki constant) such that ([F, Theorem 4.7])

(1)
$$\forall \alpha \in H^2(X, \mathbf{Z}) \qquad \int_X \alpha^{2n} = c_X q_X(\alpha)^n.$$

There exists a polynomial $P_{RR,X}(T)$ (the Huybrechts-Riemann-Roch polynomial) with rational coefficients, leading term $\frac{c_X}{(2n)!}T^n$ and constant term n+1, such that, for every line bundle L on X, one has ([H2, Corollary 3.18])

(2)
$$\chi(X, L) = P_{RR, X}(q_X(c_1(L))).$$

The objects q_X , c_X , and $P_{RR,X}(T)$ only depend on the topology of X and are in particular deformation invariant (see Table (13) for the values of c_X and $P_{RR,X}(T)$ for all known examples of hyper-Kähler manifolds X).

In this note, we first prove in Section 2 a curious symmetry property for the polynomial $P_{RR,X}(T)$ (Proposition 2.1). This property also follows from a strengthening of [J, Theorem 1.1] (which says that the polynomial $P_{RR,X}(T)$ has positive coefficients) proved in the appendix by Chen Jiang.

We then study a conjecture made in [DHMV, Conjecture 1.4] (and proved in [DHMV, Theorem 1.5] when n=2) about the possible values of $P_{RR,X}(T)$ when the quadratic form q_X represents 0 (this is the case for all known X). There exists then a nonzero class $l \in H^2(X, \mathbb{Z})$ such that $\int_X l^{2n} = 0$ and, for any $m \in H^2(X, \mathbb{Z})$, if one writes $\int_X l^n m^n = an!$, the number a is

²⁰²⁰ Mathematics Subject Classification. 14J42.

Key words and phrases. Hyper-Kähler manifolds, Riemann-Roch polynomial, sixfolds.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Project HyperK — grant agreement 854361).

necessarily an integer ([DHMV, Lemma 2.2]). The conjecture deals with the case a = 1 (which happens for nth punctual Hilbert schemes of K3 surfaces and hyper-Kähler manifolds of OG10 deformation type).

Conjecture 1.1 (Debarre–Huybrechts–Macrì–Voisin). Let X be a hyper-Kähler manifold of dimension 2n with classes $\mathsf{I},\mathsf{m}\in H^2(X,\mathbf{Z})$ such that

$$\int_X \mathsf{I}^{2n} = 0 \quad \text{and} \quad \int_X \mathsf{I}^n \mathsf{m}^n = n!.$$

Then $c_X = (2n-1)!!$ and the Huybrechts-Riemann-Roch polynomial of X is

(3)
$$P_{RR,X}(T) = {1 \over 2}T + 1 + n \choose n.$$

Our main result is the following result (Proposition 4.3) which almost proves the conjecture (one would need to additionally prove that the case $n_X = 2$ does not happen) in dimension 6 (n = 3).

Proposition 1.2. Let X be a hyper-Kähler manifold of dimension 6 with classes $I, m \in H^2(X, \mathbf{Z})$ such that $\int_X I^6 = 0$ and $\int_X I^3 m^3 = 3!$. We have $q_X(I, m) = 1$, the quadratic form q_X is even, the Fujiki constant c_X is 15, and

$$P_{RR,X}(T) = {T \choose 2} + 4 \choose 3} - \frac{6 - n_X}{16} T^2,$$

where $n_X \in \{2, 6\}$.

One may make the following more ambitious conjecture for small positive values of a (it is verified for all known examples of hyper-Kähler manifolds and proved in general when n=2 in [DHMV, Theorem 9.3 and Theorem 1.5]).

Conjecture 1.3. Let X be a hyper-Kähler manifold of dimension 2n with classes $\mathsf{I}, \mathsf{m} \in H^2(X, \mathbf{Z})$ such that

$$\int_X \mathsf{I}^{2n} = 0 \quad \text{and} \quad \int_X \mathsf{I}^n \mathsf{m}^n = an! \;, \quad \text{with} \;\; a \in \{1, \dots, n\}.$$

Then a = 1 and X is of K3^[n] or OG10 deformation type.

Again when n=3, we get in Proposition 4.4 a much weaker result in the case a=2 (which, according to Conjecture 1.3, should not occur at all).

Proposition 1.4. Let X be a hyper-Kähler manifold of dimension 6 with classes $I, m \in H^2(X, \mathbf{Z})$ such that $\int_X I^6 = 0$ and $\int_X I^3 m^3 = 2 \cdot 3!$. We have $q_X(I, m) = 1$, the quadratic form q_X is even, the Fujiki constant c_X is 30, and

$$P_{RR,X}(T) = \frac{1}{24}T^3 + \frac{n_X}{8}T^2 + \left(\frac{4}{n_X} + \frac{n_X^2}{12}\right)T + 4,$$

where $n_X \in \{1, 2, 3, 4\}$.

2. A SYMMETRY PROPERTY FOR THE HUYBRECHTS-RIEMANN-ROCH POLYNOMIAL

Let X be a hyper-Kähler manifold of dimension 2n. In [N, Definition 17] (see also [J, Definition 2.2]), Nieper-Wißkirchen defined another quadratic form λ_X on $H^2(X, \mathbf{R})$ (which is not integral on $H^2(X, \mathbf{Z})$). It satisfies (see [N, (5.18)])

(4)
$$\forall \alpha \in H^2(X, \mathbf{Z}) \qquad \frac{1}{(2n)!} \int_X \alpha^{2n} = A_X \lambda_X(\alpha)^n,$$

where $A_X := \int_X \operatorname{td}^{1/2}(X)$. By [N, Proposition 10] and [J, Proposition 2.3], one can write

$$q_X = m_X \lambda_X$$

where m_X is a positive rational number, so that (compare (1) and (4))

$$(5) c_X = \frac{(2n)! A_X}{m_X^n}.$$

We will also set $n_X := 2m_X$. When n > 1, one has ([HS, Section 6], [J, Corollary 5.5])

(6)
$$0 < A_X < 1$$
.

The Hirzebruch–Riemann–Roch theorem (2) takes the form

(7)
$$\chi(X,L) = \int_X \text{td}(X) \exp(c_1(L)) = Q_{RR,X}(\lambda_X(c_1(L))),$$

where $Q_{RR,X}(T) = P_{RR,X}(m_X T)$. The polynomial $Q_{RR,X}(T)$ was computed in [N, Theorem 5.2] in terms of the Chern numbers of X. The formula is

(8)
$$Q_{RR,X}(T) = \int_X \exp\left(-\sum_{k=1}^{+\infty} \frac{B_{2k}}{2k} \operatorname{ch}_{2k}(X) T_{2k} \left(\sqrt{\frac{1}{4}T + 1}\right)\right),$$

where

- the B_{2k} are the Bernoulli numbers;
- the $\operatorname{ch}_{2k} \in H^{2k,2k}(X)$ are the homogeneous components of the Chern character of X;
- the $T_{2k}(Y)$ are the (even) Chebyshev polynomials, defined by $T_{2k}(\cos\theta) = \cos 2k\theta$.

This formula implies curious symmetry relations for the polynomials $P_{RR,X}(T)$ and $Q_{RR,X}(T)$ for which we have no geometric explanations.

Proposition 2.1. Let X be a hyper-Kähler manifold of dimension 2n. The polynomial $Q_{RR,X}(T)$ satisfies the symmetry relation

(9)
$$Q_{RR,X}(-T-4) = (-1)^n Q_{RR,X}(T).$$

Equivalently,

(10)
$$P_{RR,X}(-T - 2n_X) = (-1)^n P_{RR,X}(T).$$

When n is odd, $-n_X$ is therefore a negative rational root of $P_{RR,X}(T)$. In all known examples, it is actually an integer (see also Lemma 4.2).

Proof. Let P_k be the degree k polynomial such that $P_k(T) = T_{2k} \left(\sqrt{\frac{1}{4}T + 1} \right)$. Set $\cos \theta := \sqrt{\frac{1}{4}T + 1}$, so that $T = 4(\cos^2 \theta - 1) = -4\sin^2 \theta$. We compute

$$P_k(-T-4) = T_{2k}\left(\sqrt{-\frac{1}{4}T}\right) = T_{2k}(\sin\theta) = T_{2k}(\cos(\theta - \frac{\pi}{2})) = \cos(2k(\theta - \frac{\pi}{2}))$$
$$= (-1)^k \cos 2k\theta = (-1)^k T_{2k}(\cos\theta) = (-1)^k T_{2k}\left(\sqrt{\frac{1}{4}T+1}\right) = (-1)^k P_k(T).$$

By (8), the polynomial $Q_{RR,X}(T)$ is a Q-linear combination of polynomials of the type

$$P_{k_1}(T)\cdots P_{k_r}(T)\int_X \operatorname{ch}_{2k_1}(X)\cdots \operatorname{ch}_{2k_r}(X)$$

for $k_1 + \cdots + k_r = n$. The proposition therefore follows.

Remark 2.2. The symmetry relation (10) implies that the polynomial $P_{RR,X}(T)$ is a linear combination with rational coefficients of the polynomials $(T + n_X)^{n-2j}$, for $0 \le j \le n/2$. Since its leading coefficient is $\frac{c_X}{(2n)!}$, we can write

(11)
$$P_{RR,X}(T) = \frac{c_X}{(2n)!} (T + n_X)^n + O(T^{n-2})$$
$$Q_{RR,X}(T) = P_{RR,X}(m_X T) = A_X(T^n + 2nT^{n-1}) + O(T^{n-2}).$$

The first two coefficients of $P_{RR,X}$ therefore determine m_X , A_X , and c_X (see also [J, Lemma 5.7]).

Chen Jiang proves in Appendix A that the polynomial $Q_{RR,X}(T)$ is a linear combination with nonnegative rational coefficients of the polynomials

$$Q_k(T) := \sum_{j=0}^k \binom{k+j+1}{2j+1} T^j$$

for $0 \le k \le n$ and n-k even. These polynomials satisfy the relation (9), so this much stronger result implies Proposition 2.1.

Corollary 2.3. When n = 3, one has

(12)
$$P_{RR,X}(T) = \frac{c_X}{720} (T + n_X)^3 + \left(\frac{4}{n_X} - \frac{c_X}{720} n_X^2\right) (T + n_X).$$

Proof. By Remark 2.2, we can write

$$P_{RR,X}(T) = \frac{c_X}{720}(T + n_X)^3 + b(T + n_X),$$

where b satisfies

$$\frac{c_X}{720}n_X^3 + bn_X = P_{RR,X}(0) = 4,$$

which gives the desired value for b.

¹One has $Q_k(T + \frac{1}{T} - 2) = \sum_{j=0}^k T^{2j-k}$. In particular, the polynomials $Q_k(T)$ satisfy (9) (change T into -T) and the roots of $Q_k(T)$ are the k negative real numbers $-4\sin^2\frac{j\pi}{2(k+1)}$ for $1 \le j \le k$, so that

$$Q_k(T) = \prod_{1 \le j \le k} \left(T + 4\sin^2 \frac{j\pi}{2(k+1)} \right).$$

Remark 2.4 (Known examples). The following table displays the values of the various objects we are considering for all known examples of hyper-Kähler manifolds.

		$K3^{[n]}$ or OG10 $(n = 5)$ deformation type	$\begin{array}{c} \operatorname{Kum}_n \text{ or OG6 } (n=3) \\ \text{ deformation type} \end{array}$
	$P_{RR,X}(T)$	$\binom{\frac{1}{2}T+1+n}{n}$	$(n+1)\binom{\frac{1}{2}T+n}{n}$
(13)	roots	$-4, -6, \ldots, -2n-2$	$-2, -4, \dots, -2n$
	c_X	(2n-1)!!	(n+1)(2n-1)!!
	n_X	n+3	n+1
	A_X	$\frac{(n+3)^n}{2^{2n}n!}$	$\frac{(n+1)^{n+1}}{2^{2n}n!}$

The roots of the polynomials displayed in the above table are negative integers (this was conjectured to hold for all hyper-Kähler manifolds in [J, Conjecture 1.3]). In the next two remarks, we discuss what can be said in general about the reality of the roots of the polynomial $P_{RR,X}(T)$ (or, equivalenty, of $Q_{RR,X}(T)$) in dimensions 4 and 6 (when real, the roots are negative, since both polynomials have positive coefficients).

Remark 2.5 (Real roots, n=2). When n=2, by (11), we have

$$Q_{RR,X}(T) = A_X(T^2 + 4T) + 3.$$

Easy computations ([DHMV, Lemma 4.1]) based on [G, Main Theorem] give that

- either $b_2(X) = 23$ and $b_3(X) = 0$, in which case $A_X = \frac{25}{32}$. or $b_2(X) \le 8$, in which case $\frac{5}{6} \le A_X \le \frac{131}{144}$.

In particular, the discriminant $4A_X(4A_X-3)$ of the polynomial $Q_{RR,X}(T)$ is positive, hence its roots are real. Note that by [JL, Proposition 4.3] (also based on Guan's results), these roots are rational if and only if the Huybrechts-Riemann-Roch polynomial of X is one of the two known such poylnomials (see (13)); the roots of $P_{RR,X}(T)$ are then negative integers.

Remark 2.6 (Real roots, n=3). When n=3, we have by Remark 2.2

$$Q_{RR,X}(T) = (T+2)(A_X(T^2+4T)+2).$$

The roots of this polynomial are all real if and only if the discriminant

$$16A_X^2 - 8A_X = 8A_X(2A_X - 1)$$

is nonnegative, that is, if and only if $A_X \geq \frac{1}{2}$. The inequality $A_X > \frac{1}{2}$ is equivalent to the inequality (2) in [BS]. It implies an upper bound on $b_2(X)$. If $A_X \leq \frac{1}{2}$, the class $c_2(X)$ is not in the image of the morphism $\operatorname{Sym}^2 H^2(X, \mathbf{Q}) \to H^4(X, \mathbf{Q})$ (the Verbitsky component).

3. Coefficients of the Huybrechts-Riemann-Roch polynomial

For each positive integer n, we define the positive integer

$$C_n := \gcd_{r_0, \dots, r_n \in \mathbf{Z}} \prod_{0 < j < k < n} (r_j^2 - r_k^2).$$

One computes easily $C_1 = 1$, $C_2 = 12$, and, with a computer,²

$$C_3 = 2^5 \cdot 3^3 \cdot 5,$$

$$C_4 = 2^{11} \cdot 3^5 \cdot 5^2 \cdot 7,$$

$$C_5 = 2^{18} \cdot 3^9 \cdot 5^4 \cdot 7^2,$$

$$C_6 = 2^{27} \cdot 3^{14} \cdot 5^6 \cdot 7^3 \cdot 11,$$

$$C_7 = 2^{37} \cdot 3^{19} \cdot 5^8 \cdot 7^5 \cdot 11^2 \cdot 13.$$

Let X be a hyper-Kähler manifold of dimension 2n. We write the Huybrechts-Riemann-Roch polynomial as

$$P_{RR,X}(T) =: a_n T^n + \dots + a_1 T + a_0,$$

where $a_n = \frac{c_X}{(2n)!}$ and $a_0 = n + 1$. The proof of the following proposition uses the fact that the polynomial $P_{RR,X}(T)$ takes integral values on every integer represented by q_X : this is because of the relation (2) and the fact that, for every $\alpha \in H^2(X, \mathbf{Z})$, there is a deformation of X on which α becomes the first Chern class of a line bundle.

Proposition 3.1. Let X be a hyper-Kähler manifold of dimension 2n. For each $i \in \{0, ..., n\}$, the coefficient a_i of the polynomial $P_{RR,X}(T)$ belongs to $\frac{1}{2^iC_n}\mathbf{Z}$ (and to $\frac{1}{C_n}\mathbf{Z}$ if the quadratic form q_X is not even). In particular, the Fujiki constant c_X is in $\frac{(2n)!}{2^nC_n}\mathbf{Z}$.

Proof. Let q be an integer represented by q_X . For all $r_0, \ldots, r_n \in \mathbf{Z}$, the integers $r_0^2 q, \ldots, r_n^2 q$ are also represented by q_X , so that $P_{RR,X}(r_j^2 q) = \sum_{i=0}^n a_i r_j^{2i} q^i$ is an integer for all $j \in \{0, \ldots, n\}$. The corresponding linear system with unknowns $a_0 q^0, \ldots, a_n q^n$ has a Vandermonde matrix (r_j^{2i}) , so we get

$$a_i q^i \prod_{0 \le j < k \le n} (r_j^2 - r_k^2) \in \mathbf{Z}$$

for all $i \in \{0, ..., n\}$, which implies $a_i q^i C_n \in \mathbf{Z}$. Since the integral bilinear form associated with q_X is not divisible, the gcd of all integers q represented by q_X is either 2 (if the form q_X is even) or 1 (if it is not) and the proposition follows.

In particular, we get $c_X \in \frac{1}{2}\mathbf{Z}$ when n=2, and $c_X \in \frac{1}{48}\mathbf{Z}$ when n=3. For any n, Proposition 3.1 gives the lower bound $c_X \geq \frac{(2n)!}{2^n C_n}$, but what would be really interesting, in order to prove boundedness properties for hyper-Kähler manifolds, would be to find an upper bound on c_X (see [H1]).

Remark 3.2. Assume that q_X represents all large enough even numbers (this is the case for all known examples). Then $P_{RR,X}(T)$ takes integral values on all large enough even numbers and this implies that its leading coefficient is in $\frac{1}{n!2^n}\mathbf{Z}$, hence $c_X \in (2n-1)!!\mathbf{Z}$.

²Many thanks to Jieao Song for making these computations. For any positive integer n, the primes p that divide C_n are exactly those such that $p \leq 2n-1$ (this is because one can find n+1 distinct squares modulo p if and only if p > 2n).

4. The Huybrechts-Riemann-Roch polynomial in the presence of an isotropic class

Let X be a hyper-Kähler manifold of dimension 2n. Assume that there is an isotropic class $l \in H^2(X, \mathbf{Z})$, that is, $q_X(l) = 0$. For any $m \in H^2(X, \mathbf{Z})$,

$$a(\mathsf{m}) \coloneqq \frac{1}{n!} \int_X \mathsf{I}^n \mathsf{m}^n$$

is an integer ([DHMV, Lemma 2.2]) and

(14)
$$c_X q_X(\mathsf{I}, \mathsf{m})^n = a(\mathsf{m}) \frac{(2n)!}{2^n n!} = a(\mathsf{m})(2n-1)!!.$$

From now on, we assume $q_X(1, \mathbf{m}) > 0$. Using (5) and (6), we obtain

$$m_X^n = \frac{(2n)! A_X}{c_X} < \frac{(2n)!}{c_X} = \frac{2^n n! q_X(\mathsf{I}, \mathsf{m})^n}{a(\mathsf{m})}$$

hence

$$(15) m_X < 2q_X(\mathsf{I},\mathsf{m}) \sqrt[n]{\frac{n!}{a(\mathsf{m})}}.$$

Using the bound $c_X \geq \frac{(2n)!}{2^n C_n}$, we also get $m_X < 2\sqrt[n]{C_n}$.

Lemma 4.1. We have

$$n!q_X(\mathsf{I},\mathsf{m})^n \mid a(\mathsf{m})C_n$$

and, if q_X is not even,

$$n!2^nq_X(\mathsf{I},\mathsf{m})^n\mid a(\mathsf{m})C_n.$$

Proof. Using (14), we get

$$a_n = \frac{c_X}{(2n)!} = \frac{a(\mathsf{m})}{2^n n! q_X(\mathsf{l}, \mathsf{m})^n}.$$

Then use Proposition 3.1.

Lemma 4.2. We have

$$a(\mathsf{m})\Big(rac{q_X(\mathsf{m})+n_X}{2q_X(\mathsf{l},\mathsf{m})}-rac{n-1}{2}\Big)\in\mathbf{Z}.$$

In particular,

$$n_X \in \mathbf{Z} + \frac{2q_X(\mathsf{I},\mathsf{m})}{a(\mathsf{m})}\mathbf{Z}$$

so that n_X is an integer when $a(\mathsf{m}) \in \{1, 2\}$.

Proof. For every $t \in \mathbf{Z}$, the number

$$P(t) := P_{RR,X}(q_X(t\mathsf{I} + \mathsf{m})) = P_{RR,X}(2tq_X(\mathsf{I}, \mathsf{m}) + q_X(\mathsf{m}))$$

is an integer. We have, using (11) and (14),

$$\begin{split} P(t) &= \frac{c_X}{(2n)!} (2tq_X(\mathsf{I},\mathsf{m}) + q_X(\mathsf{m}) + n_X)^n + O(t^{n-2}) \\ &= \frac{a(\mathsf{m})}{q_X(\mathsf{I},\mathsf{m})^n 2^n n!} (2^n q_X(\mathsf{I},\mathsf{m})^n t^n + n 2^{n-1} q_X(\mathsf{I},\mathsf{m})^{n-1} (q_X(\mathsf{m}) + n_X) t^{n-1}) + O(t^{n-2}) \\ &= \frac{a(\mathsf{m})}{n!} t^n + \frac{a(\mathsf{m})}{q_X(\mathsf{I},\mathsf{m}) 2(n-1)!} (q_X(\mathsf{m}) + n_X) t^{n-1} + O(t^{n-2}). \end{split}$$

This is an integer for all $t \in \mathbf{Z}$, hence so is

$$\begin{split} P(t) - a(\mathbf{m}) \binom{t+n-1}{n} &= P(t) - a(\mathbf{m}) \, \frac{t^n + \frac{n(n-1)}{2} t^{n-1}}{n!} + O(t^{n-2}) \\ &= \Big(\frac{q_X(\mathbf{m}) + n_X}{2q_X(\mathbf{l},\mathbf{m})} - \frac{n-1}{2} \Big) \frac{a(\mathbf{m})}{(n-1)!} t^{n-1} + O(t^{n-2}). \end{split}$$

This implies the lemma.

4.1. Case $a(\mathsf{m}) = 1$. We know from [DHMV, Theorem 1.5] that in dimension 4, this case only occurs when X is of $\mathrm{K3}^{[2]}$ deformation type. In particular, $P_{RR,X}(T)$ is then given by (3). We believe (Conjecture 1.1) that the same should happen for any $n \geq 2$ (one would then have $c_n = (2n-1)!!$ and $n_X = n+3$). We study the case n=3.

Proposition 4.3. Assume n=3 and $a(\mathsf{m})=1$. Then $q_X(\mathsf{l},\mathsf{m})=1$, $c_X=15$, $n_X\in\{2,6\}$, and the quadratic form q_X is even. One also has

$$P_{RR,X}(T) = \frac{1}{48}T^3 + \frac{n_X}{16}T^2 + \frac{13}{6}T + 4 = {\binom{\frac{T}{2} + 4}{3}} - \frac{6 - n_X}{16}T^2$$

and the sublattice $\mathbf{ZI} \oplus \mathbf{Zm}$ of $(H^2(X, \mathbf{Z}), q_X)$ is a hyperbolic plane.

Proof. We have $C_3 = 2^5 \cdot 3^3 \cdot 5$ and we obtain from Lemma 4.1

$$q_X(\mathsf{I},\mathsf{m})^3 \mid 2^4 \cdot 3^2 \cdot 5$$
 (and $q_X(\mathsf{I},\mathsf{m})^3 \mid 2 \cdot 3^2 \cdot 5$ if q_X is not even),

so that $q_X(I, m) \in \{1, 2\}$ (and $q_X(I, m) = 1$ if q_X is not even).

Assume $q_X(\mathsf{I},\mathsf{m})=1$. We have $c_X=15$ from (14), Lemma 4.2 gives $q_X(\mathsf{m})+n_X\in 2\mathbb{Z}$, and (15) gives $m_X<2\sqrt[3]{6}\sim 3.6$, so that $n_X\in\{1,2,3,4,5,6,7\}$. Furthermore, we have, by Corollary 2.3,

$$P_{RR,X}(T) = \frac{1}{48}(T + n_X)^3 + \left(\frac{4}{n_X} - \frac{1}{48}n_X^2\right)(T + n_X).$$

For all values q taken by q_X , this must be an integer when T=q, so that

(16)
$$48n_X \mid n_X(q+n_X)^3 + (192 - n_X^3)(q+n_X).$$

In particular, $n_X \mid 192q$. If $n_X \in \{5,7\}$, this implies $n_X \mid q$, which is impossible because the gcd of all integers q represented by q_X is either 1 or 2. Otherwise, $16n_X \mid 192$, hence we obtain

(17)
$$16 \mid (q+n_X)^3 - n_X^2(q+n_X) = q(q+n_X)(q+2n_X).$$

• When $n_X = 1$, the relation (17) is equivalent to $q \equiv 0, 6, 8, 14, 15 \pmod{16}$. The case $q \equiv 15 \pmod{16}$ is impossible since 4q is also represented but not in this list, hence $q \equiv 0, 6, 8, 14 \pmod{16}$ and q_X is even. This contradicts the fact that $q_X(\mathbf{m}) + n_X$ is even.

- When $n_X = 2$, the relation (17) is equivalent to q even.
- When $n_X = 3$, the only possible odd value is $q \equiv 13 \pmod{16}$. This implies that $4q \equiv 4 \pmod{16}$ should also be represented, but 4 does not satisfy the relation (17). So q_X is even, which contradicts the fact that $q_X(\mathsf{m}) + n_X$ is even.
- When $n_X = 4$, the relation (17) is equivalent to $4 \mid q$, which is impossible because the gcd of all integers q represented by q_X is either 1 or 2.
- When $n_X = 6$, the relation (17) is equivalent to q even.

All in all, we get $n_X \in \{2, 6\}$ and q_X even.

Assume $q_X(\mathsf{I},\mathsf{m})=2$. The quadratic form q_X is even, we have $c_X=\frac{15}{8}$ from (14), Lemma 4.2 gives $\frac{1}{2}q_X(\mathsf{m})+m_X\in 2\mathbf{Z}$, so that m_X is an integer, and (15) gives $m_X<4\sqrt[3]{6}<8$, so that $m_X\in\{1,2,3,4,5,6,7\}$. As above, we deduce from (12) that

$$\frac{1}{8\cdot 48}(2q+2m_X)^3 + \left(\frac{2}{m_X} - \frac{1}{8\cdot 48}4m_X^2\right)(2q+2m_X)$$

is an integer for all values 2q taken by q_X , so that

$$48m_X \mid m_X(q+m_X)^3 + (192-m_X^3)(q+m_X).$$

This is "the same" relation as (16) and the discussion above allows us to conclude that q must be even, so that all values taken by q_X are divisible by 4. This is impossible because the gcd of all values taken by q_X is 2. So this case does not occur.

4.2. Case a(m) = 2. We believe (Conjecture 1.3) this case should not occur for any $n \ge 2$ and we know from [DHMV, Theorem 9.3] that it does not when n = 2. We study the case n = 3.

Proposition 4.4. Assume n=3 and $a(\mathsf{m})=2$. Then, $q_X(\mathsf{I},\mathsf{m})=1$, $c_X=30$, $n_X\in\{1,2,3,4\}$, and the quadratic form q_X is even. One also has $P_{RR,X}(T)=\frac{1}{24}T^3+\frac{n_X}{8}T^2+\left(\frac{4}{n_X}+\frac{n_X^2}{12}\right)T+4$ and the sublattice $\mathbf{Z}\mathsf{I}\oplus\mathbf{Z}\mathsf{m}$ of $(H^2(X,\mathbf{Z}),q_X)$ is a hyperbolic plane.

Proof. We have $C_3 = 2^5 \cdot 3^3 \cdot 5$ and we obtain from Lemma 4.1

$$q_X(\mathsf{I}, \mathsf{m})^3 \mid 2^5 \cdot 3^2 \cdot 5$$
 (and $q_X(\mathsf{I}, \mathsf{m})^3 \mid 2^2 \cdot 3^2 \cdot 5$ if q_X is not even),

so that $q_X(\mathsf{I},\mathsf{m}) \in \{1,2\}$ (and $q_X(\mathsf{I},\mathsf{m}) = 1$ if q_X is not even).

Assume $q_X(\mathsf{I}, \mathsf{m}) = 1$. We have $c_X = 30$ from (14), Lemma 4.2 gives $n_X \in \mathbf{Z}$, and (15) gives $m_X < 2\sqrt[3]{3} \sim 2.9$, so that $n_X \in \{1, 2, 3, 4, 5\}$. Furthermore, we have, by (12),

$$P_{RR,X}(T) = \frac{1}{24}(T + n_X)^3 + \left(\frac{4}{n_X} - \frac{1}{24}n_X^2\right)(T + n_X),$$

For all values q taken by q_X , this must be an integer when T = q, so that

$$24n_X \mid n_X(q+n_X)^3 + (96-n_X^3)(q+n_X).$$

In particular, $n_X \mid 96q$. If $n_X = 5$, this implies $n_X \mid q$, which is impossible because the gcd of all integers q represented by q_X is either 1 or 2. Otherwise, $8n_X \mid 96$, hence we obtain

(18)
$$8 \mid (q+n_X)^3 - n_X^2(q+n_X) = q(q+n_X)(q+2n_X).$$

• When $n_X = 1$, the relation (18) is equivalent to $q \equiv 0, 2, 4, 6, 7 \pmod{8}$; this means that every odd value taken by q_X is $\equiv 7 \pmod{8}$. Assume there exists α such that

 $q_X(\alpha) \equiv 7 \pmod{8}$. Since $q_X(kl + m) = 2k + q_X(m)$, the integer $q_X(m)$ must be even and we may even assume $q_X(m) = 0$. For all $t, u \in \mathbf{Z}$, the integer

$$q_X(t\mathsf{I} + u\mathsf{m} + \alpha) = 2tu + 2tq_X(\mathsf{I}, \alpha) + 2uq_X(\mathsf{m}, \alpha) + q_X(\alpha)$$

is odd, hence is $\equiv 7 \pmod 8$. This implies $tu + tq_X(\mathsf{I}, \alpha) + uq_X(\mathsf{m}, \alpha) \equiv 0 \pmod 4$. Taking t = 1 and u = 0, we obtain $q_X(\mathsf{I}, \alpha) \equiv 0 \pmod 4$; taking t = 0 and u = 1, we obtain $q_X(\mathsf{m}, \alpha) \equiv 0 \pmod 4$; taking t = u = 1, we obtain a contradiction. Hence $q \equiv 0, 2, 4, 6 \pmod 8$ and q_X is even.

- When $n_X = 2$, the relation (18) is equivalent to $q \equiv 0, 2, 4, 6 \pmod{8}$ and q_X is even.
- When $n_X = 3$, the relation (18) is equivalent to $q \equiv 0, 2, 4, 5, 6 \pmod{8}$. If the case $q \equiv 5 \pmod{8}$ occurs, the same reasoning as in the case $n_X = 1$, $q \equiv 7 \pmod{8}$, gives a contradiction, hence q_X is even.
- When $n_X = 4$, the relation (18) is equivalent to $q \equiv 0, 2, 4, 6 \pmod{8}$ and q_X is even.

Assume $q_X(\mathsf{I},\mathsf{m})=2$. The quadratic form q_X is even, we have $c_X=\frac{15}{4}$ from (14), Lemma 4.2 gives $m_X\in\mathbf{Z}$, and (15) gives $m_X<5.8$, so that $m_X\in\{1,2,3,4,5\}$. As above, we deduce from (12) that

$$\frac{1}{8 \cdot 24} (2q + 2m_X)^3 + \left(\frac{2}{m_X} - \frac{1}{8 \cdot 24} 4m_X^2\right) (2q + 2m_X)$$

must be an integer for all values 2q taken by q_X , so that

$$24m_X \mid m_X(q+m_X)^3 + (96-m_X^3)(q+m_X).$$

We reason as above to conclude that the integer q must be even, so that all values taken by the quadratic form q_X are divisible by 4. This is impossible because the gcd of all values taken by q_X is 2. So this case does not occur.

APPENDIX A. POSITIVITY OF THE HUYBRECHTS-RIEMANN-ROCH POLYNOMIAL

Throughout this appendix, X is a hyper-Kähler manifold of dimension 2n and we fix a symplectic form $\sigma \in H^0(X, \Omega_X^2)$. The degree n Huybrechts-Riemann-Roch polynomial $P_{RR,X}(T)$ was defined in the introduction, and the polynomial $Q_{RR,X}(T) = P_{RR,X}(m_X T)$ in Section 2. These polynomials were proved in [J, Theorem 1.1] to have positive coefficients. The purpose of this appendix is to prove a refinement of this result. For every nonnegative integer k, we define a degree k monic polynomial with positive coefficients by

$$Q_k(T) := \sum_{j=0}^k {k+j+1 \choose 2j+1} T^j = T^k + 2kT^{k-1} + \dots + k+1.$$

Our result is the following.

Proposition A.1. Let X be a hyper-Kähler manifold of dimension 2n > 2. There are non-negative rational numbers $b_0, b_1, \ldots, b_{\lfloor n/2 \rfloor}$ such that

(19)
$$Q_{RR,X}(T) = \sum_{i=0}^{\lfloor n/2 \rfloor} b_i Q_{n-2i}(T).$$

Moreover, $b_0 = A_X = \int_X td^{1/2}(X) > 0$ and $b_1 > 0$.

For any $\alpha \in H^2(X, \mathbf{R})$, we have

$$Q_{RR,X}(\lambda_X(\alpha)) = \int_X \operatorname{td}(X) \exp(\alpha),$$

where λ_X is the quadratic form on $H^2(X, \mathbf{R})$ discussed in Section 2. Indeed, by (7), this equality holds when α is the first Chern class of a line bundle on X. It then holds for each $\alpha \in H^2(X, \mathbf{Z})$ because there is a deformation of X on which α becomes the first Chern class of a line bundle. Finally, it holds for every $\alpha \in H^2(X, \mathbf{R})$ since both sides are polynomial functions of α .

Moreover, one has ([N, Definition 17], [J, Definition 2.2])

$$\lambda_X(\alpha) := \begin{cases} \frac{24n \int_X \exp(\alpha)}{\int_X c_2(X) \exp(\alpha)} & \text{if well-defined;} \\ 0 & \text{otherwise.} \end{cases}$$

For simplicity, we set $\lambda_{\sigma} := \lambda_X(\sigma + \overline{\sigma})$. We know that $\lambda_{\sigma} > 0$ (see [J, Lemma 2.4(2)]).

In [J, Definition 4.1], for any $0 \le k \le n/2$, we defined a class

$$tp_{2k} := \sum_{i=0}^{k} \frac{(n-2k+1)! \operatorname{td}_{2i}^{1/2} \wedge (\sigma \overline{\sigma})^{k-i}}{(-\lambda_{\sigma})^{k-i} (k-i)! (n-k-i+1)!} \in H^{4k}(X, \mathbf{R})$$

which is of Hodge type (2k, 2k). One important fact is that, by [J, Corollary 4.4],

$$\int_X \operatorname{tp}_{2k}^2(\sigma \overline{\sigma})^{n-2k} \ge 0.$$

Lemma A.2. The numbers

$$C_k := \frac{\int_X \operatorname{tp}_{2k}^2 (\sigma \overline{\sigma})^{n-2k}}{\lambda_{\sigma}^{n-2k}}$$

are deformation invariants of X. In particular, C_k is independent of the choice of σ .

Here we remark that we cannot directly apply [H2, Corollary 23.17] as tp_{2k} might no longer be of type (2k,2k) on deformations of X.

Proof. By definition of tp_{2k} , the number C_k can be written as

$$C_k = \sum_{i=0}^{k} \sum_{j=0}^{k} a_{ij} \frac{\int_X \operatorname{td}_{2i}^{1/2} \operatorname{td}_{2j}^{1/2} (\sigma \overline{\sigma})^{n-i-j}}{\lambda_{\sigma}^{n-i-j}},$$

where the a_{ij} are constants depending only on n, k, i, j. By [H2, Corollary 23.17] and [J, Proposition 2.3],

$$\frac{\int_X \operatorname{td}_{2i}^{1/2} \operatorname{td}_{2j}^{1/2} (\sigma \overline{\sigma})^{n-i-j}}{\lambda_{\sigma}^{n-i-j}} = \frac{(n-i-j)!^2}{(2n-2i-2j)!} \frac{\int_X \operatorname{td}_{2i}^{1/2} \operatorname{td}_{2j}^{1/2} (\sigma + \overline{\sigma})^{2n-2i-2j}}{\lambda_{\sigma}^{n-i-j}}$$

only depends on $\operatorname{td}_{2i}^{1/2}\operatorname{td}_{2j}^{1/2}$, $c_2(X)$, and c_X , which implies that C_k is a deformation invariant of X.

Proof of Proposition A.1. From [J, Proof of Theorem 5.1], for any $0 \le m \le n$, we have

$$\int_X \operatorname{td}_{2m}(\sigma \overline{\sigma})^{n-m} = \sum_{i=0}^{\lfloor m/2 \rfloor} \frac{(n-m)!^2}{\lambda_{\sigma}^{m-2i}(n-2i)!^2} {2n-2i-m+1 \choose m-2i} \int_X (\operatorname{tp}_{2i})^2 (\sigma \overline{\sigma})^{n-2i}.$$

In other words,

$$\int_X \operatorname{td}_{2m}(\sigma + \overline{\sigma})^{2n-2m} = \sum_{i=0}^{\lfloor m/2 \rfloor} \frac{(2n-2m)!}{\lambda_{\sigma}^{m-2i}(n-2i)!^2} {2n-2i-m+1 \choose m-2i} \int_X (\operatorname{tp}_{2i})^2 (\sigma \overline{\sigma})^{n-2i}.$$

Thus we have the following equalities:

$$\int_{X} \operatorname{td}(X) \exp(\sigma + \overline{\sigma}) = \sum_{m=0}^{n} \int_{X} \frac{1}{(2n - 2m)!} \operatorname{td}_{2m}(X) (\sigma + \overline{\sigma})^{2n - 2m}
= \sum_{m=0}^{n} \sum_{i=0}^{\lfloor m/2 \rfloor} \frac{1}{\lambda_{\sigma}^{m-2i} (n-2i)!^{2}} \binom{2n - 2i - m + 1}{m - 2i} \int_{X} (\operatorname{tp}_{2i})^{2} (\sigma \overline{\sigma})^{n-2i}
= \sum_{m=0}^{n} \sum_{i=0}^{\lfloor m/2 \rfloor} \frac{1}{(n-2i)!^{2}} \binom{2n - 2i - m + 1}{m - 2i} C_{i} \lambda_{\sigma}^{n-m}
= \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{C_{i}}{(n-2i)!^{2}} \sum_{m=2i}^{n} \binom{2n - 2i - m + 1}{m - 2i} \lambda_{\sigma}^{n-m}
= \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{C_{i}}{(n-2i)!^{2}} \sum_{m=0}^{n-2i} \binom{2n - 4i - m + 1}{m} \lambda_{\sigma}^{n-m-2i}
= \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{C_{i}}{(n-2i)!^{2}} Q_{n-2i}(\lambda_{\sigma}).$$

In other words,

$$Q_{RR,X}(\lambda_{\sigma}) = \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{C_i}{(n-2i)!^2} Q_{n-2i}(\lambda_{\sigma}).$$

Here $C_i \geq 0$ by [J, Corollary 4.4]. By Lemma A.2, C_i is independent of the choice of σ , so after replacing σ by $t\sigma$ for any $t \in \mathbb{C}^{\times}$, we can get an equality of polynomials

$$Q_{RR,X}(T) = \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{C_i}{(n-2i)!^2} Q_{n-2i}(T),$$

which gives the desired equation (19).

The last assertion is a consequence of [J, Corollary 5.2].

References

- [B] Beauville, A., Variétés kählériennes dont la première classe de Chern est nulle, *J. Differential Geom.* **18** (1983),755–782. 1
- [BS] Beckmann, T., Song, J., Second Chern class and Fujiki constants of hyperkähler manifolds, eprint arXiv:2201.07767. 5
- [DHMV] Debarre, O., Huybrechts, D., Macrì, E., Voisin, C., Computing Riemann–Roch polynomials and classifying hyper-Kähler fourfolds, J. Amer. Math. Soc. 37 (2024), 151–185. 1, 2, 5, 7, 8, 9
- [F] Fujiki, A., On the de Rham cohomology group of a compact Kähler symplectic manifold, in *Algebraic geometry, Sendai, 1985*, 105–165, Adv. Stud. Pure Math. **10** North-Holland Publishing Co., Amsterdam, 1987. 1
- [G] Guan, D., On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four, *Math. Res. Lett.* **8** (2001), 663–669. 5

- [HS] Hitchin, N., Sawon, J., Curvature and characteristic numbers of hyper-Kähler manifolds, *Duke Math. J.* **106** (2001), 599–615. 3
- [H1] Huybrechts, D., Finiteness results for compact hyperkähler manifolds, *J. reine angew. Math.* **558** (2003), 15–22. 6
- [H2] Huybrechts, D., Compact hyperkähler manifolds, in *Calabi-Yau manifolds and related geometries* (Nordfjordeid, 2001), 161–225, Universitext, Springer, Berlin, 2003. 1, 11
- [J] Jiang, C., Positivity of Riemann–Roch polynomials and Todd classes of hyperkähler manifolds, J. Algebraic Geom. 32 (2023), 239–269. 1, 3, 4, 5, 10, 11, 12
- [JL] Jiang, C., Liu, W., On numerically trivial automorphisms of compact hyperkähler manifolds of dimension 4, Math. Res. Lett. **31** (2024), 1771–1784. 5
- [N] Nieper-Wisskirchen, M., Hirzebruch-Riemann-Roch formulae on irreducible symplectic Kähler manifolds, J. Algebraic Geom. 12 (2003), 715–739. 3, 11

Université Paris Cité, CNRS, Institut de Mathématiques de Jussieu-Paris rive gauche,

8 Place Aurélie Nemours, 75013 Paris, France

E-mail address: olivier.debarre@imj-prg.fr

SHANGHAI CENTER FOR MATHEMATICAL SCIENCES & SCHOOL OF MATHEMATICAL SCIENCES, FUDAN UNIVERSITY, SHANGHAI 200438, CHINA

E-mail address: chenjiang@fudan.edu.cn