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NUMERICAL INVARIANTS OF HYPER-KÄHLER MANIFOLDS

OLIVIER DEBARRE, WITH AN APPENDIX BY CHEN JIANG

Abstract. We study various constraints on the Beauville quadratic form and the Huybrechts–
Riemann–Roch polynomial for hyper-Kähler manifolds, mostly in dimension 6 and in the
presence of an isotropic class.

In an appendix, Chen Jiang proves that in general, the Huybrechts–Riemann–Roch poly-
nomial can always be written as a linear combination with nonnegative coefficients of certain
explicit polynomials with positive coefficients. This implies that the Huybrechts–Riemann–
Roch polynomial satisfies a curious symmetry property.

1. Introduction

A hyper-Kähler manifold is a simply connected compact Kähler manifold X whose space
of holomorphic 2-forms is spanned by a symplectic form. Its dimension is necessarily an even
number 2n. A fundamental tool in the study of hyper-Kähler manifolds is the Beauville form,
a canonical integral nondivisible nondegenerate quadratic form qX on the free abelian group
H2(X,Z) ([B, th. 5]). Its signature is (3, b2(X)− 3) and there is a positive rational number cX
(the Fujiki constant) such that ([F, Theorem 4.7])

(1) ∀α ∈ H2(X,Z)

∫
X

α2n = cXqX(α)
n.

There exists a polynomial PRR,X(T ) (the Huybrechts–Riemann–Roch polynomial) with
rational coefficients, leading term cX

(2n)!
T n and constant term n + 1, such that, for every line

bundle L on X, one has ([H2, Corollary 3.18])

(2) χ(X,L) = PRR,X(qX(c1(L))).

The objects qX , cX , and PRR,X(T ) only depend on the topology of X and are in particular
deformation invariant.

In this note, we first prove in Section 2 a curious symmetry property for the polynomial
PRR,X(T ) (Proposition 2.1). This property also follows from a strengthening of [J, Theorem 1.1]
(which says that the polynomial PRR,X(T ) has positive coefficients) proved in the appendix by
Chen Jiang.

We then study a conjecture made in [DHMV, Conjecture 1.4] (and proved in [DHMV,
Theorem 1.5] when n = 2) about the possible values of PRR,X(T ) when the quadratic form qX
represents 0. There exists then a nonzero class l ∈ H2(X,Z) such that

∫
X
l2n = 0 and, for any

m ∈ H2(X,Z), if one writes
∫
X
lnmn = an!, the number a is necessarily an integer ([DHMV,

Lemma 2.2]). The conjecture deals with the case a = 1 (which happens for nth punctual Hilbert
schemes of K3 surfaces and hyper-Kähler manifolds of OG10 deformation type).

This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (Project HyperK — grant agreement 854361).
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2 O. DEBARRE

Conjecture 1.1 (Debarre–Huybrechts–Macr̀ı–Voisin). Let X be a hyper-Kähler manifold of
dimension 2n with classes l,m ∈ H2(X,Z) such that∫

X

l2n = 0 and

∫
X

lnmn = n!.

Then cX = (2n− 1)!! and the Huybrechts–Riemann–Roch polynomial of X is

(3) PRR,X(T ) =

(
1
2
T + 1 + n

n

)
.

Our main result is the following result (Proposition 4.3) which almost proves the con-
jecture (one would need to additionally prove that the case nX = 2 does not happen) in
dimension 6 (n = 3).

Proposition 1.2. Let X be a hyper-Kähler manifold of dimension 6 with classes l,m ∈
H2(X,Z) such that

∫
X
l6 = 0 and

∫
X
l3m3 = 3!. We have qX(l,m) = 1, the quadratic form qX

is even, the Fujiki constant cX is 15, and

PRR,X(T ) =

(
T
2
+ 4

3

)
− 6− nX

16
T 2,

where nX ∈ {2, 6}.

One may make the following more ambitious conjecture for small positive values of a (it
is verified for all known examples of hyper-Kähler manifolds and proved in general when n = 2
in [DHMV, Theorem 9.3 and Theorem 1.5]).

Conjecture 1.3. LetX be a hyper-Kähler manifold of dimension 2n with classes l,m ∈ H2(X,Z)
such that ∫

X

l2n = 0 and

∫
X

lnmn = an! , with a ∈ {1, . . . , n}.

Then a = 1 and X is of K3[n] or OG10 deformation type.

Again when n = 3, we get in Proposition 4.4 a much weaker result in the case a = 2
(which, according to Conjecture 1.3, should not occur at all).

Proposition 1.4. Let X be a hyper-Kähler manifold of dimension 6 with classes l,m ∈
H2(X,Z) such that

∫
X
l6 = 0 and

∫
X
l3m3 = 2 · 3!. We have qX(l,m) = 1, the quadratic

form qX is even, the Fujiki constant cX is 30, and

PRR,X(T ) =
1

24
T 3 +

nX

8
T 2 +

( 4

nX

+
n2
X

12

)
T + 4,

where nX ∈ {1, 2, 3, 4}.

2. A symmetry property for the Huybrechts–Riemann–Roch polynomial

Let X be a hyper-Kähler manifold of dimension 2n. In [N, Definition 17] (see also [J,
Definition 2.2]), Nieper-Wißkirchen defined another quadratic form λX on H2(X,R) (which is
not integral on H2(X,Z)). It satisfies (see [N, (5.18)])

(4) ∀α ∈ H2(X,Z)
1

(2n)!

∫
X

α2n = AXλX(α)
n,
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where AX :=
∫
X
td1/2(X). By [N, Proposition 10] and [J, Proposition 2.3], one can write

qX = mXλX ,

where mX is a positive rational number, so that (compare (1) and (4))

(5) cX =
(2n)!AX

mn
X

.

We will also set nX := 2mX . When n > 1, one has ([HS, Section 6], [J, Corollary 5.5])

(6) 0 < AX < 1.

The Hirzebruch–Riemann–Roch theorem (2) takes the form

(7) χ(X,L) =

∫
X

td(X) exp(c1(L)) = QRR,X(λX(c1(L))),

where QRR,X(T ) = PRR,X(mXT ). The polynomial QRR,X(T ) was computed in [N, Theorem 5.2]
in terms of the Chern numbers of X. The formula is

(8) QRR,X(T ) =

∫
X

exp
(
−

+∞∑
k=1

B2k

2k
ch2k(X)T2k

(√
1
4
T + 1

))
,

where

• the B2k are the Bernoulli numbers;
• the ch2k ∈ H2k,2k(X) are the homogeneous components of the Chern character of X;
• the T2k(Y ) are the (even) Chebyshev polynomials, defined by T2k(cos θ) = cos 2kθ.

This formula implies curious symmetry relations for the polynomials PRR,X(T ) and
QRR,X(T ) for which we have no geometric explanations.

Proposition 2.1. Let X be a hyper-Kähler manifold of dimension 2n. The polynomial QRR,X(T )
satisfies the symmetry relation

(9) QRR,X(−T − 4) = (−1)nQRR,X(T ).

Equivalently,

(10) PRR,X(−T − 2nX) = (−1)nPRR,X(T ).

When n is odd, −nX is therefore a negative rational root of PRR,X(T ). In all known
examples, it is actually an integer (see also Lemma 4.2).

Proof. Let Pk be the degree k polynomial such that Pk(T ) = T2k

(√
1
4
T + 1

)
. Set cos θ :=√

1
4
T + 1, so that T = 4(cos2 θ − 1) = −4 sin2 θ. We compute

Pk(−T − 4) = T2k

(√
−1

4
T
)
= T2k(sin θ) = T2k(cos(θ − π

2
)) = cos(2k(θ − π

2
))

= (−1)k cos 2kθ = (−1)kT2k(cos θ) = (−1)kT2k

(√
1
4
T + 1

)
= (−1)kPk(T ).

By (8), the polynomial QRR,X(T ) is a Q-linear combination of polynomials of the type

Pk1(T ) · · ·Pkr(T )

∫
X

ch2k1(X) · · · ch2kr(X)
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for k1 + · · ·+ kr = n. The proposition therefore follows. □

Remark 2.2. The symmetry relation (10) implies that the polynomial PRR,X(T ) is a linear
combination with rational coefficients of the polynomials (T +nX)

n−2j, for 0 ≤ j ≤ n/2. Since
its leading coefficient is cX

(2n)!
, we can write

(11)
PRR,X(T ) =

cX
(2n)!

(T + nX)
n +O(T n−2)

QRR,X(T ) = PRR,X(mXT ) = AX(T
n + 2nT n−1) +O(T n−2).

The first two coefficients of PRR,X therefore determinemX , AX , and cX (see also [J, Lemma 5.7]).

Chen Jiang proves in Appendix A that the polynomial QRR,X(T ) is a linear combination
with nonnegative rational coefficients of the polynomials

Qk(T ) :=
k∑

j=0

(
k + j + 1

2j + 1

)
T j

for 0 ≤ k ≤ n and n−k even. These polynomials satisfy the relation (9),1 so this much stronger
result implies Proposition 2.1.

Corollary 2.3. When n = 3, one has

(12) PRR,X(T ) =
cX
720

(T + nX)
3 +

( 4

nX

− cX
720

n2
X

)
(T + nX).

Proof. By Remark 2.2, we can write

PRR,X(T ) =
cX
720

(T + nX)
3 + b(T + nX),

where b satisfies
cX
720

n3
X + bnX = PRR,X(0) = 4,

which gives the desired value for b. □

For all known examples of hyper-Kähler manifolds X of dimension 2n, one has

PRR,X(T ) =

(
1
2
T + 1 + n

n

)
or (n+ 1)

(
1
2
T + n

n

)
.

The roots of both of these polynomials are negative integers (this was conjectured to hold
for all hyper-Kähler manifolds in [J, Conjecture 1.3]). In the next two remarks, we discuss
what can be said about the reality of the roots of the polynomial PRR,X(T ) (or, equivalenty,
of QRR,X(T )) in dimensions 4 and 6 (when real, the roots are negative, since both polynomials
have positive coefficients).

Remark 2.4 (Real roots, n = 2). When n = 2, by (11), we have

QRR,X(T ) = AX(T
2 + 4T ) + 3.

Easy computations ([DHMV, Lemma 4.1]) based on [G, Main Theorem] give that

1One has Qk

(
T + 1

T −2
)
=

∑k
j=0 T

2j−k. In particular, the polynomials Qk(T ) satisfy (9) (change T into −T )

and the roots of Qk(T ) are the k negative real numbers −4 sin2 jπ
2(k+1) for 1 ≤ j ≤ k, so that

Qk(T ) =
∏

1≤j≤k

(
T + 4 sin2

jπ

2(k + 1)

)
.
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• either b2(X) = 23 and b3(X) = 0, in which case AX = 25
32
,

• or b2(X) ≤ 8, in which case 5
6
≤ AX ≤ 131

144
.

In particular, the discriminant 4AX(4AX − 3) of the polynomial QRR,X(T ) is positive, hence
its roots are real.

Remark 2.5 (Real roots, n = 3). When n = 3, we have by Remark 2.2

QRR,X(T ) = (T + 2)(AX(T
2 + 4T ) + 2).

The roots of this polynomial are all real if and only if the discriminant

16A2
X − 8AX = 8AX(2AX − 1)

is nonnegative, that is, if and only if AX ≥ 1
2
. The inequality AX > 1

2
is equivalent to the

inequality (2) in [BS]. It implies an upper bound on b2(X). If AX ≤ 1
2
, the class c2(X) is not

in the image of the morphism Sym2H2(X,Q) → H4(X,Q) (the Verbitsky component).

3. Coefficients of the Huybrechts–Riemann–Roch polynomial

For each positive integer n, we define the positive integer

Cn := gcd
r0,...,rn∈Z

∏
0≤j<k≤n

(r2j − r2k).

One computes easily C1 = 1, C2 = 12, and, with a computer,2

C3 = 25 · 33 · 5,
C4 = 211 · 35 · 52 · 7,
C5 = 218 · 39 · 54 · 72,
C6 = 227 · 314 · 56 · 73 · 11,
C7 = 237 · 319 · 58 · 75 · 112 · 13.

Let X be a hyper-Kähler manifold of dimension 2n. We write the Huybrechts–Riemann–Roch
polynomial as

PRR,X(T ) =: anT
n + · · ·+ a1T + a0,

where an = cX
(2n)!

and a0 = n+ 1. The proof of the following proposition uses the fact that the

polynomial PRR,X(T ) takes integral values on every integer represented by qX : this is because
of the relation (2) and the fact that, for every α ∈ H2(X,Z), there is a deformation of X on
which α becomes the first Chern class of a line bundle.

Proposition 3.1. Let X be a hyper-Kähler manifold of dimension 2n. For each i ∈ {0, . . . , n},
the coefficient ai of the polynomial PRR,X(T ) belongs to 1

2iCn
Z (and to 1

Cn
Z if the quadratic

form qX is not even). In particular, the Fujiki constant cX is in (2n)!
2nCn

Z.

Proof. Let q be an integer represented by qX . For all r0, . . . , rn ∈ Z, the integers r20q, . . . , r
2
nq are

also represented by qX , so that PRR,X(r
2
j q) =

∑n
i=0 air

2i
j q

i is an integer for all j ∈ {0, . . . , n}.

2Many thanks to Jieao Song for making these computations. For any positive integer n, the primes p that
divide Cn are exactly those such that p ≤ 2n− 1 (this is because one can find n+ 1 distinct squares modulo p
if and only if p > 2n).



6 O. DEBARRE

The corresponding linear system with unknowns a0q
0, . . . , anq

n has a Vandermonde matrix
(r2ij ), so we get

aiq
i

∏
0≤j<k≤n

(r2j − r2k) ∈ Z

for all i ∈ {0, . . . , n}, which implies aiq
iCn ∈ Z. Since the integral bilinear form associated

with qX is not divisible, the gcd of all integers q represented by qX is either 2 (if the form qX
is even) or 1 (if it is not) and the proposition follows. □

In particular, we get cX ∈ 1
2
Z when n = 2, and cX ∈ 1

48
Z when n = 3. For any n,

Proposition 3.1 gives the lower bound cX ≥ (2n)!
2nCn

, but what would be really interesting, in
order to prove boundedness properties for hyper-Kähler manifolds, would be to find an upper
bound on cX (see [H1]).

Remark 3.2. Assume that qX represents all large enough even numbers (this is the case for all
known examples). Then PRR,X(T ) takes integral values on all large enough even numbers and
this implies that its leading coefficient is in 1

n!2n
Z, hence cX ∈ (2n− 1)!!Z.

4. The Huybrechts–Riemann–Roch polynomial in the presence of an isotropic
class

Let X be a hyper-Kähler manifold of dimension 2n. Assume that there is an isotropic
class l ∈ H2(X,Z), that is, qX(l) = 0. For any m ∈ H2(X,Z),

a(m) :=
1

n!

∫
X

lnmn

is an integer ([DHMV, Lemma 2.2]) and

(13) cXqX(l,m)n = a(m)
(2n)!

2nn!
= a(m)(2n− 1)!!.

From now on, we assume qX(l,m) > 0. Using (5) and (6), we obtain

mn
X =

(2n)!AX

cX
<

(2n)!

cX
=

2nn!qX(l,m)n

a(m)

hence

(14) mX < 2qX(l,m)

n
√

n!

a(m)
.

Using the bound cX ≥ (2n)!
2nCn

, we also get mX < 2
n
√
Cn.

Lemma 4.1. We have
n!qX(l,m)n | a(m)Cn

and, if qX is not even,
n!2nqX(l,m)n | a(m)Cn.

Proof. Using (13), we get

an =
cX

(2n)!
=

a(m)

2nn!qX(l,m)n
.

Then use Proposition 3.1. □
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Lemma 4.2. We have

a(m)
(qX(m) + nX

2qX(l,m)
− n− 1

2

)
∈ Z.

In particular,

nX ∈ Z+
2qX(l,m)

a(m)
Z

so that nX is an integer when a(m) ∈ {1, 2}.

Proof. For every t ∈ Z, the number

P (t) := PRR,X(qX(tl+m)) = PRR,X(2tqX(l,m) + qX(m))

is an integer. We have, using (11) and (13),

P (t) =
cX

(2n)!
(2tqX(l,m) + qX(m) + nX)

n +O(tn−2)

=
a(m)

qX(l,m)n2nn!
(2nqX(l,m)ntn + n2n−1qX(l,m)n−1(qX(m) + nX)t

n−1
)
+O(tn−2)

=
a(m)

n!
tn +

a(m)

qX(l,m)2(n− 1)!
(qX(m) + nX)t

n−1 +O(tn−2).

This is an integer for all t ∈ Z, hence so is

P (t)− a(m)

(
t+ n− 1

n

)
= P (t)− a(m)

tn + n(n−1)
2

tn−1

n!
+O(tn−2)

=
(qX(m) + nX

2qX(l,m)
− n− 1

2

) a(m)

(n− 1)!
tn−1 +O(tn−2).

This implies the lemma. □

4.1. Case a(m) = 1. We know from [DHMV, Theorem 1.5] that in dimension 4, this case only
occurs when X is of K3[2] deformation type. In particular, PRR,X(T ) is then given by (3). We
believe (Conjecture 1.1) that the same should happen for any n ≥ 2 (one would then have
cn = (2n− 1)!! and nX = n+ 3). We study the case n = 3.

Proposition 4.3. Assume n = 3 and a(m) = 1. Then qX(l,m) = 1, cX = 15, nX ∈ {2, 6},
and the quadratic form qX is even. One also has

PRR,X(T ) =
1

48
T 3 +

nX

16
T 2 +

13

6
T + 4 =

(
T
2
+ 4

3

)
− 6− nX

16
T 2

and the sublattice Zl⊕ Zm of (H2(X,Z), qX) is a hyperbolic plane.

Proof. We have C3 = 25 · 33 · 5 and we obtain from Lemma 4.1

qX(l,m)3 | 24 · 32 · 5 (and qX(l,m)3 | 2 · 32 · 5 if qX is not even),

so that qX(l,m) ∈ {1, 2} (and qX(l,m) = 1 if qX is not even).

Assume qX(l,m) = 1. We have cX = 15 from (13), Lemma 4.2 gives qX(m) + nX ∈ 2Z,
and (14) gives mX < 2 3

√
6 ∼ 3.6, so that nX ∈ {1, 2, 3, 4, 5, 6, 7}. Furthermore, we have, by

Corollary 2.3,

PRR,X(T ) =
1

48
(T + nX)

3 +
( 4

nX

− 1

48
n2
X

)
(T + nX).
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For all values q taken by qX , this must be an integer when T = q, so that

(15) 48nX | nX(q + nX)
3 + (192− n3

X)(q + nX).

In particular, nX | 192q. If nX ∈ {5, 7}, this implies nX | q, which is impossible because the
gcd of all integers q represented by qX is either 1 or 2. Otherwise, 16nX | 192, hence we obtain
(16) 16 | (q + nX)

3 − n2
X(q + nX) = q(q + nX)(q + 2nX).

• When nX = 1, the relation (16) is equivalent to q ≡ 0, 6, 8, 14, 15 (mod 16). The case
q ≡ 15 (mod 16) is impossible since 4q is also represented but not in this list, hence
q ≡ 0, 6, 8, 14 (mod 16) and qX is even. This contradicts the fact that qX(m) + nX is
even.

• When nX = 2, the relation (16) is equivalent to q even.
• When nX = 3, the only possible odd value is q ≡ 13 (mod 16). This implies that 4q ≡ 4
(mod 16) should also be represented, but 4 does not satisfy the relation (16). So qX is
even, which contradicts the fact that qX(m) + nX is even.

• When nX = 4, the relation (16) is equivalent to 4 | q, which is impossible because the
gcd of all integers q represented by qX is either 1 or 2.

• When nX = 6, the relation (16) is equivalent to q even.

All in all, we get nX ∈ {2, 6} and qX even.

Assume qX(l,m) = 2. The quadratic form qX is even, we have cX = 15
8
from (13), Lemma 4.2

gives 1
2
qX(m) + mX ∈ 2Z, so that mX is an integer, and (14) gives mX < 4 3

√
6 < 8, so that

mX ∈ {1, 2, 3, 4, 5, 6, 7}. As above, we deduce from (12) that

1

8 · 48
(2q + 2mX)

3 +
( 2

mX

− 1

8 · 48
4m2

X

)
(2q + 2mX)

is an integer for all values 2q taken by qX , so that

48mX | mX(q +mX)
3 + (192−m3

X)(q +mX).

This is “the same” relation as (15) and the discussion above allows us to conclude that q must
be even, so that all values taken by qX are divisible by 4. This is impossible because the gcd
of all values taken by qX is 2. So this case does not occur. □

4.2. Case a(m) = 2. We believe (Conjecture 1.3) this case should not occur for any n ≥ 2 and
we know from [DHMV, Theorem 9.3] that it does not when n = 2. We study the case n = 3.

Proposition 4.4. Assume n = 3 and a(m) = 2. Then, qX(l,m) = 1, cX = 30, nX ∈ {1, 2, 3, 4},
and the quadratic form qX is even. One also has PRR,X(T ) =

1
24
T 3 + nX

8
T 2 +

(
4
nX

+
n2
X

12

)
T + 4

and the sublattice Zl⊕ Zm of (H2(X,Z), qX) is a hyperbolic plane.

Proof. We have C3 = 25 · 33 · 5 and we obtain from Lemma 4.1

qX(l,m)3 | 25 · 32 · 5 (and qX(l,m)3 | 22 · 32 · 5 if qX is not even),

so that qX(l,m) ∈ {1, 2} (and qX(l,m) = 1 if qX is not even).

Assume qX(l,m) = 1. We have cX = 30 from (13), Lemma 4.2 gives nX ∈ Z, and (14) gives
mX < 2 3

√
3 ∼ 2.9, so that nX ∈ {1, 2, 3, 4, 5}. Furthermore, we have, by (12),

PRR,X(T ) =
1

24
(T + nX)

3 +
( 4

nX

− 1

24
n2
X

)
(T + nX),
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For all values q taken by qX , this must be an integer when T = q, so that

24nX | nX(q + nX)
3 + (96− n3

X)(q + nX).

In particular, nX | 96q. If nX = 5, this implies nX | q, which is impossible because the gcd of
all integers q represented by qX is either 1 or 2. Otherwise, 8nX | 96, hence we obtain

(17) 8 | (q + nX)
3 − n2

X(q + nX) = q(q + nX)(q + 2nX).

• When nX = 1, the relation (17) is equivalent to q ≡ 0, 2, 4, 6, 7 (mod 8); this means
that every odd value taken by qX is ≡ 7 (mod 8). Assume there exists α such that
qX(α) ≡ 7 (mod 8). Since qX(kl + m) = 2k + qX(m), the integer qX(m) must be even
and we may even assume qX(m) = 0. For all t, u ∈ Z, the integer

qX(tl+ um+ α) = 2tu+ 2tqX(l, α) + 2uqX(m, α) + qX(α)

is odd, hence is ≡ 7 (mod 8). This implies tu + tqX(l, α) + uqX(m, α) ≡ 0 (mod 4).
Taking t = 1 and u = 0, we obtain qX(l, α) ≡ 0 (mod 4); taking t = 0 and u = 1,
we obtain qX(m, α) ≡ 0 (mod 4); taking t = u = 1, we obtain a contradiction. Hence
q ≡ 0, 2, 4, 6 (mod 8) and qX is even.

• When nX = 2, the relation (17) is equivalent to q ≡ 0, 2, 4, 6 (mod 8) and qX is even.
• When nX = 3, the relation (17) is equivalent to q ≡ 0, 2, 4, 5, 6 (mod 8). If the case
q ≡ 5 (mod 8) occurs, the same reasoning as in the case nX = 1, q ≡ 7 (mod 8), gives
a contradiction, hence qX is even.

• When nX = 4, the relation (17) is equivalent to q ≡ 0, 2, 4, 6 (mod 8) and qX is even.

Assume qX(l,m) = 2. The quadratic form qX is even, we have cX = 15
4
from (13), Lemma 4.2

gives mX ∈ Z, and (14) gives mX < 5.8, so that mX ∈ {1, 2, 3, 4, 5}. As above, we deduce
from (12) that

1

8 · 24
(2q + 2mX)

3 +
( 2

mX

− 1

8 · 24
4m2

X

)
(2q + 2mX)

must be an integer for all values 2q taken by qX , so that

24mX | mX(q +mX)
3 + (96−m3

X)(q +mX).

We reason as above to conclude that the integer q must be even, so that all values taken by
the quadratic form qX are divisible by 4. This is impossible because the gcd of all values taken
by qX is 2. So this case does not occur. □

Appendix A. Positivity of the Huybrechts–Riemann–Roch polynomial

by Chen Jiang

Throughout this appendix, X is a hyper-Kähler manifold of dimension 2n and we fix
a symplectic form σ ∈ H0(X,Ω2

X). The degree n Huybrechts–Riemann–Roch polynomial
PRR,X(T ) was defined in the introduction, and the polynomial QRR,X(T ) = PRR,X(mXT )
in Section 2. These polynomials were proved in [J, Theorem 1.1] to have positive coefficients.
The purpose of this appendix is to prove a refinement of this result. For every nonnegative
integer k, we define a degree k monic polynomial with positive coefficients by

Qk(T ) :=
k∑

j=0

(
k + j + 1

2j + 1

)
T j = T k + 2kT k−1 + · · ·+ k + 1.

Our result is the following.



10 O. DEBARRE

Proposition A.1. Let X be a hyper-Kähler manifold of dimension 2n > 2. There are non-
negative rational numbers b0, b1, . . . , b⌊n/2⌋ such that

(18) QRR,X(T ) =

⌊n/2⌋∑
i=0

biQn−2i(T ).

Moreover, b0 =
∫
X
td1/2(X) > 0 and b1 > 0.

For any α ∈ H2(X,R), we have

QRR,X(λX(α)) =

∫
X

td(X) exp(α),

where λX is the quadratic form onH2(X,R) discussed in Section 2. Indeed, by (7), this equality
holds when α is the first Chern class of a line bundle on X. It then holds for each α ∈ H2(X,Z)
because there is a deformation of X on which α becomes the first Chern class of a line bundle.
Finally, it holds for every α ∈ H2(X,R) since both sides are polynomial functions of α.

Moreover, one has ([N, Definition 17], [J, Definition 2.2])

λX(α) :=

{
24n

∫
X exp(α)∫

X c2(X) exp(α)
if well-defined;

0 otherwise.

For simplicity, we set λσ := λX(σ + σ). We know that λσ > 0 (see [J, Lemma 2.4(2)]).

In [J, Definition 4.1], for any 0 ≤ k ≤ n/2, we defined a class

tp2k :=
k∑

i=0

(n− 2k + 1)! td
1/2
2i ∧(σσ)k−i

(−λσ)k−i(k − i)!(n− k − i+ 1)!
∈ H4k(X,R)

which is of Hodge type (2k, 2k). One important fact is that, by [J, Corollary 4.4],∫
X

tp2
2k(σσ)

n−2k ≥ 0.

Lemma A.2. The numbers

Ck :=

∫
X
tp2

2k(σσ)
n−2k

λn−2k
σ

are deformation invariants of X. In particular, Ck is independent of the choice of σ.

Here we remark that we cannot directly apply [H2, Corollary 23.17] as tp2k might no
longer be of type (2k, 2k) on deformations of X.

Proof. By definition of tp2k, the number Ck can be written as

Ck =
k∑

i=0

k∑
j=0

aij

∫
X
td

1/2
2i td

1/2
2j (σσ)n−i−j

λn−i−j
σ

,

where the aij are constants depending only on n, k, i, j. By [H2, Corollary 23.17] and [J, Propo-
sition 2.3], ∫

X
td

1/2
2i td

1/2
2j (σσ)n−i−j

λn−i−j
σ

=
(n− i− j)!2

(2n− 2i− 2j)!

∫
X
td

1/2
2i td

1/2
2j (σ + σ)2n−2i−2j

λn−i−j
σ
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only depends on td
1/2
2i td

1/2
2j , c2(X), and cX , which implies that Ck is a deformation invariant

of X. □

Proof of Proposition A.1. From [J, Proof of Theorem 5.1], for any 0 ≤ m ≤ n, we have∫
X

td2m(σσ)
n−m =

⌊m/2⌋∑
i=0

(n−m)!2

λm−2i
σ (n− 2i)!2

(
2n− 2i−m+ 1

m− 2i

)∫
X

(tp2i)
2(σσ)n−2i.

In other words,∫
X

td2m(σ + σ)2n−2m =

⌊m/2⌋∑
i=0

(2n− 2m)!

λm−2i
σ (n− 2i)!2

(
2n− 2i−m+ 1

m− 2i

)∫
X

(tp2i)
2(σσ)n−2i.

Thus we have the following equalities:∫
X

td(X) exp(σ + σ) =
n∑

m=0

∫
X

1

(2n− 2m)!
td2m(X)(σ + σ)2n−2m

=
n∑

m=0

⌊m/2⌋∑
i=0

1

λm−2i
σ (n− 2i)!2

(
2n− 2i−m+ 1

m− 2i

)∫
X

(tp2i)
2(σσ)n−2i

=
n∑

m=0

⌊m/2⌋∑
i=0

1

(n− 2i)!2

(
2n− 2i−m+ 1

m− 2i

)
Ciλ

n−m
σ

=

⌊n/2⌋∑
i=0

Ci

(n− 2i)!2

n∑
m=2i

(
2n− 2i−m+ 1

m− 2i

)
λn−m
σ

=

⌊n/2⌋∑
i=0

Ci

(n− 2i)!2

n−2i∑
m=0

(
2n− 4i−m+ 1

m

)
λn−m−2i
σ

=

⌊n/2⌋∑
i=0

Ci

(n− 2i)!2
Qn−2i(λσ).

In other words,

QRR,X(λσ) =

⌊n/2⌋∑
i=0

Ci

(n− 2i)!2
Qn−2i(λσ).

Here Ci ≥ 0 by [J, Corollary 4.4]. By Lemma A.2, Ci is independent of the choice of σ, so after
replacing σ by tσ for any t ∈ C×, we can get an equality of polynomials

QRR,X(T ) =

⌊n/2⌋∑
i=0

Ci

(n− 2i)!2
Qn−2i(T ),

which gives the desired equation (18).

The last assertion is a consequence of [J, Corollary 5.2]. □
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