
UPDATE ON: SINGULARITIES OF DIVISORS ON ABELIAN
VARIETIES

OLIVIER DEBARRE

This is an update of the notes “Singularities of divisors on abelian varieties” written
in 2006 ([D6]). The additions are written in blue.

Sections 1–3 were joint work with Christopher Hacon ([DH]) and the results have been
improved by Giuseppe Pareschi ([P]).

We work over the complex numbers. Let D be an effective divisor on an abelian vari-
ety A of dimension g. If D is not ample, there exists a quotient abelian variety A→ B such
that D is the pull-back of a divisor on B. Since we are interested in the singularities of D,
we will henceforth assume that D is ample.

1. Singularities of pairs

Let D be an effective Q-divisor on a smooth projective variety A. A log resolution of
the pair (A,D) is a proper birational morphism µ : A′ → A such that the union of µ−1(D)
and the exceptional locus of µ is a divisor with simple normal crossing support. Write

µ∗(KA +D) = KA′ +
∑

aiDi

where the Di are distinct prime divisors on A′. We define the multiplier ideal sheaf I (A,D) ⊂
OA by

I (A,D) = µ∗
(
ωA′/A(−[µ∗D])

)
= µ∗

(
OA′(−

∑
[ai]Di)

)
and, if D is a prime divisor, the adjoint ideal sheaf J (A,D) ⊂ OA as fitting into an exact
sequence

(1) 0→ ωA → ωA(D)⊗J (A,D)→ f∗ωX → 0

of sheaves on A, for any desingularization f : X → D.

The pair (A,D) is

• log canonical if ai ≤ 1 for all i; this is equivalent to I (A, tD) = OA for all t ∈
Q ∩ (0, 1);
• log terminal if ai < 1 for all i; this is equivalent to I (A,D) = OA;
• (D prime) canonical if ai ≤ 0 for all i such that Di is µ-exceptional; this is equivalent

to J (A,D) = OA.

These properties have consequences for the singularities of D: for any positive inte-
gers m and k,
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• if (A, 1
m
D) is log canonical, codimA(SingmkD) ≥ k;

• if (A, 1
m
D) is log terminal, codimA(SingmkD) > k;

• (D prime) if (A,D) is canonical, D is normal with rational singularities and one
has codimA(SingkD) > k for k ≥ 2.

Kollár was the first to use (in [K] vanishing theorems to prove results on the singularities
of divisors in abelian varieties.

2. The results

Let A be an abelian variety of dimension g. A polarization ` on A is an ample numerical
equivalence class. Its degree is given by

1

g!
`g = h0(A,L)

for any line bundle L on A that represents `. A polarization of degree 1 is called principal
and a divisor representing it is called a theta divisor. A polarized abelian variety (A, `) is
indecomposable if it is not the product of nonzero polarized abelian varieties.

Previous results were as follows:

• if (A, [Θ]) is a principally polarized abelian variety and D ∼ mΘ,
– the pair (A, 1

m
D) is log canonical ([K, EL]) and log terminal if

[
1
m
D
]

= 0 ([H1]);
– if Θ is irreducible, the pair (A,Θ) is canonical ([EL]).

• if (A, `) is indecomposable of degree 2 and D ∼ m`,
– the pair (A, 1

m
D) is log canonical ([H2]).

Here is Ein–Lazarsfeld’s proof of the first point. Let Z be the subscheme of D defined
by I (A, t

m
D), for some t ∈ Q ∩ (0, 1). The Nadel–Kawamata–Viehweg vanishing theorem

yields
H i(A,OA(Θa)⊗IZ) = 0 for all i > 0 and all a ∈ A.

If Z is nonempty, we have Z 6⊂ Θa for a general, hence H0(A,OA(Θa)⊗IZ) = 0. It follows
that

χ(A,OA(Θa)⊗IZ) = H0(A,OA(Θa)⊗IZ) = 0

for a ∈ A general hence for all a because the Euler characteristic is a numerical invariant.
We conclude that

H i(A,OA(Θ)⊗ P ⊗IZ) = 0 for all i and all P ∈ Pic0(A).

By the Fourier–Mukai theory, this implies OA(Θ)⊗IZ = 0, which is absurd.

The other proofs are more involved and use generic vanishing results of Green–Lazarsfeld.
We’ll come back to that. Here are our results.

Theorem 1. Let (A, `) be an indecomposable polarized abelian variety of degree d and di-
mension g > (d+ 1)2/4 and let D ∼ m`.

• If A is simple,
– if m = 1, the divisor D is prime and the pair (A,D) is canonical;
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– if m ≥ 2, the pair (A, 1
m
D) is log terminal unless D = mE, with E ∈ `.

• If d = 2,
– if m = 1 and D is prime, the pair (A,D) is canonical;
– if m ≥ 2, the pair (A, 1

m
D) is log canonical and is log terminal if

[
1
m
D
]

= 0.1

The first part of the theorem was improved in [P] (see [D6, Remark 1.1)]).

Theorem 2. Let A be a simple polarized abelian variety, let L be a line bundle on A such
that dim(A) > χ(A,L), and let D ∼ mL.

• if m = 1, the divisor D is prime and the pair (A,D) is canonical;
• if m ≥ 2, the pair (A, 1

m
D) is log terminal unless D = mE, with E ∈ `.

Remark 3. If A is not simple, but still indecomposable, ` may very well contain reducible
elements (see footnote below). There are also examples, in any dimension ≥ 2, and for any
d ≥ 3 and m ≥ d − 1, of pairs (A, 1

m
D) that are not log canonical on an indecomposable

polarized abelian variety of degree d.2

3. The proofs

Skipping the proof of log terminality,3 the point is to show that

• if m = 1, the ideal J (A,D) is trivial;
• if m ≥ 2 and t ∈ Q ∩ (0, 1), the ideal I (A, tD) is trivial.

In both cases, let Z be the subscheme of D defined by the ideal and set

h = h0(A,L⊗IZ ⊗ P ) = h0(A,La ⊗IZ) ∈ [0, d]

for P and a general in Pic0(A).

If h = d, all sections of L contain all translates of Z, which must be empty.

1This condition holds unless
∗ D = mE, with E ∈ `;
∗ or there are nonzero principally polarized abelian varieties (B1, [Θ1]) and (B2, [Θ2]), and an isogeny
p : A→ B1 ×B2 of degree 2, such that

D = mp∗(Θ1 ×B2) + p∗(B1 ×D2)

with D2 ∈ |mΘ2|.

2Let (A1, [L1]) be a general polarized abelian variety of type (d−1) and let E be an elliptic curve. Pick an
isomorphism ψ : K(L1)→ E[d− 1] and consider the quotient A of A1 × E by the subgroup {(x, ψ(x)) | x ∈
K(L1)}. There is a divisor Θ on A that defines a principal polarization and OA(Θ) restricts to L1 on A1. The
line bundle L = OA(Θ+A1) defines an indecomposable polarization of degree d on A that is indecomposable
if d ≥ 3. The linear system |(d − 1)Θ − A1| is nonempty, hence so is the linear system |mΘ − (m′ −m)A1|
for d

d−1m ≥ m
′ > m ≥ d− 1. If D′ is in that linear system, D = D′+m′A1 is in |mL| and the pair (A, 1

mD)

is not log canonical since it has a component with multiplicity > 1.
3The difficulties are first to prove that the Green–Lazarsfeld theory still applies in this case (this follows

from previous work of Hacon), then to prove, in the notation below, h > 0 (this follows from the hypothesis[
1
mD

]
= 0 and other work of Hacon).
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Assume h = 0. In the case m ≥ 2, we conclude as in the Ein–Lazarsfeld proof OA(Θ)⊗
IZ = 0, which is absurd. In the case m = 1, this implies, by work of Ein and Lazarsfeld,4

that D is fibered by nonzero abelian varieties, which is also absurd.

So we assume 0 < h < d (and Z nonempty). Set

J = {(s, a) ∈ PH0(A,L)× A | s|Z+a ≡ 0}

The fiber of a point a of A for the second projection q : J → A is PH0(A,L ⊗ IZ+a) '
PH0(A,La⊗IZ) and a unique irreducible component I of J dominates A. It has dimension
g + h− 1.

Let p : I → PH0(A,L) be the first projection. The fibers Fs = q
(
p−1(s)

)
are either

empty or of dimension ≥ g + h− d; they satisfy Z + Fs ⊂ div(s) hence dim(Fs) ≤ g − 1.

If h = d− 1 (this is the case when d = 2), Fs has dimension g − 1 and p is surjective.
The divisor of a general section s being prime, the inclusion z + Fs ⊂ div(s) is an equality
for all z in Z. This implies that Z is finite.

If A is simple, the inclusion Z + Fs ⊂ div(s) implies

dimZ ≤ g − 1− dimFs ≤ d− 1− h

For a general in A, the subvariety p(q−1(a)) = PH0(A,L⊗IZ+a) of PH0(A,L) is a linear
subspace of dimension h − 1. It must vary with a, because a nonzero s does not vanish
on all translates of Z. It follows that the linear span of p(I) has dimension at least h For
s1, . . . , sh+1 general elements in p(I), one has5

dim(Fs1 ∩ · · · ∩ Fsh+1
) ≥ g − (h+ 1)(d− h) ≥ g − (d+ 1)2/4

For a ∈ Fs1∩· · ·∩Fsh+1
, the sections s1, . . . , sh+1 all vanish on Z+a, hence h0(A,La⊗IZ) ≥

h+ 1. Since the Euler characteristic χ(A,La ⊗IZ) is independent of a, this proves that

V>0 = {P ∈ Pic0(A) | H i(A,L⊗IZ ⊗ P ) 6= 0 for some i > 0}

has dimension ≥ g − (d+ 1)2/4 > 0.

Now it follows from the Green–Lazarsfeld theory that in our case, the cohomological
loci

Vi = {P ∈ Pic0(A) | H i(A,L⊗IZ ⊗ P ) 6= 0}
have striking properties: every irreducible component of Vi is an abelian subvariety of codi-
mension ≥ i of Pic0(A) translated by a torsion point. In our case, the inequality h > 0
means V0 = Pic0(A).

This immediatley finishes the proof when A is simple, since V>0 must then be finite.

4By the Green–Lazarsfeld theory, the cohomological locus V>0 defined below is not Pic0(A). If h = 0, we
have V0 6= Pic0(A) as well, so that χ(X,ωX) = 0 for any desingularization X of D (use (1)) and this implies
that D is fibered by nonzero abelian varieties.

5As in the projective space, subvarieties of a simple abelian variety that should meet for dimensional
reasons actually meet.
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When d = 2 (and h = 1), since V>0 6= Pic0(A), we get that for a general, there is an
exact sequence

0→ H0(A,La ⊗IZ)→ H0(A,La)→ H0(Z,La|Z)→ 0

hence Z is a single point z. An element ϕL(a) ∈ Pic0(A) is in V1 if the restriction H0(A,La)→
H0(Z,La|Z) is zero. This happens exactly when z + a is in the base locus of |L|, hence

V1 = ϕL(Bs(|L|)− z)

which has codimension ≤ 2 in A. A rather technical lemma proves that for any i > 0 such
that Vi is nonempty, dimZ ≥ i− 1 + dimVi, which is a contradiction.

4. Base loci of ample linear systems

Not much seems to be known about the singularities, or even the dimension, of the
base locus of an ample linear system |L| on an abelian variety A.

4.1. Dimension. Let us begin with the following remark: let B be an abelian subvariety
of A on which L has degree e and let C be an abelian subvariety of A such that the sum
morphism f : B × C → A is an isogeny. The base locus of |L| contains

f(Bs(|L|B|)× C) = Bs(|L|B|) + C

hence has codimension ≤ e if e ≤ dim(B). Hence

(2)
L has degree ≤ e on an abelian
subvariety of A of dimension ≥ e

=⇒ codim(Bs(|L|)) ≤ e

It is classical and easy to show that the converse holds for e = 1:

L has degree 1 on a nonzero
abelian subvariety of A

⇐⇒
the polarized abelian variety
(A, [L]) is decomposable with
a principally polarized factor

⇐⇒ all elements of |L|
are reducible

⇐⇒ codim(Bs(|L|)) = 1

I would like to conjecture that the converse holds for e = 2.6

Conjecture 1. Let (A, [L]) be a polarized abelian variety. If Bs(|L|) has codimension 2
in A, the abelian variety A contains an abelian subvariety of dimension ≥ 2 on which L has
degree 2.

The conjecture holds in dimension g ≤ 3.7 I can also prove it if some codimension 2
component of the base locus is a Cartier divisor in some element of |L|.

6and perhaps for any e! Note that for e ≥ 2, the property on the left-hand of (2) side does occur on some
indecomposable polarized abelian varieties.

7We may assume that Bs(|L|) has codimension 2 and a general element of |L| is irreducible.
If g = 2, the fixed part consists of at most (L)2 = 2d points. Since it is stable by translation by the

subgroup K(L) of order d2, we get d2 ≤ 2d.
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One could also include in the conjecture that all codimension 2 components of the base
locus occur as in the construction above, so that, if d > 2, they are in particular stable by
translation by a nonzero abelian subvariety of A.

4.2. Singularities. Let (B, [Θ]) be an indecomposable principally polarized abelian variety
and let b ∈ B be a point of order 2. In all examples that I know of, the intersection Θ · Θb

is reduced. For instance, if C is a hyperelliptic curve with hyperelliptic involution τ , the
intersection Θ · Θp−τp = 2(Wg−2 + p) is not reduced for any p ∈ C, but p − τp is never
of order 2. If one believes the conjecture above in its strong form, we should also have the
following.

Conjecture 2. Let (A, [L]) be a polarized abelian variety. Any component of Bs(|L|) that
has codimension 2 in A is reduced.

A stronger form of this conjecture was claimed in [ACP, Theorem 4] but there is an
error on page 257, line -7: the claim E|X0 = 0 is in fact wrong.

4.3. Characterization of hyperelliptic Jacobians. The following conjecture has been
around for some years. It was probably first explicitly formulated in 1977 by Beauville, who
proved it, using his theory of generalized Prym varieties, in dimension g ≤ 5.

Conjecture 3. Let (B, [Θ]) be a principally polarized abelian variety. If Sing(Θ) has codi-
mension 3 in B, the principally polarized abelian variety (B, [Θ]) is a hyperelliptic Jacobian.

Let (A, [L]) be a polarized abelian variety of dimension g such that the base locus
of |L| has a component Z of codimension 2 that is not generically reduced. Let (A′, [L′]) be
a polarized abelian variety of the same type and construct a principally polarized quotient
π : (A,L)× (A′, L′)→ (B,Θ) (we have to check that it is indecomposable). The equation of
π∗Θ is ∑

i

si(x)s′i(x
′) = 0

If x ∈ Z, we have si(x) = 0 and rank(Djsi(x)) ≤ 1. On Z × A′, the singular locus of π∗Θ
has equations ∑

i

Djsi(x)s′i(x
′) = 0

for j ∈ {1, . . . , g}. For fixed x ∈ Z, this determines a divisor in A′. It follows that Sing(Θ)
has codimension at most 3 in B. On the other hand, (B, [Θ]) cannot be a hyperelliptic
Jacobian: since Θ contains Z +A′, the intersection Θ ∩Θx′ is reducible for all x′ ∈ A′; on a

If g = 3 and d > 2, I showed 20 years ago in my thesis (p. 103) that every component of Bs(|L|) is a
translated elliptic curve in A. More precisely, for any principally polarized quotient p : (A,L) → (A0, L0),
either

• (A0, L0) is a product E1×E2×E3 of principally polarized elliptic curves and one checks that, after
reordering, p(K(L)) must be contained in E1×E2×{0}, so that E3 embeds in A and L has degree
1 on it;

• or A0 is the Jacobian of a bielliptic curve D that has a morphism D → E of degree 2 and p(K(L)) ⊂
E, so that a complementary surface S ⊂ A0 embeds in A and L has degree 2 on it.
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Jacobian, this can only happen if A′ has dimension 1 and the curve is bielliptic, but a curve
cannot be at the same time hyperelliptic and bielliptic.

This shows that Conjecture 3 implies Conjecture 2.
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