
NONSMOOTHABLE CYCLES ON ALGEBRAIC VARIETIES
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ABSTRACT. In 1961, Borel and Haefliger asked whether, in the integral cohomology of a smooth
projective algebraic variety of dimension n, the class of every algebraic subvariety of dimen-
sion d is a linear combination, with integral coefficients, of classes of smooth subvarieties.
Kollár and Voisin recently proved that this is true (in characteristic zero) in the Whitney di-
mension range, that is, whenever 2d < n. Outside this range, counterexamples were first
produced by Hartshorne, Rees, and Thomas in 1974. I will present some new examples. One
example has 2d = n; another example has n = 6 (the smallest possible dimension for a coun-
terexample) and d = 4. This is joint work with Olivier Benoist.

1. INTRODUCTION

The story starts with the famous 1954 article “Quelques propriétés globales des variétés
différentiables,” where René Thom, then a professor in Strasbourg, studied which integral
homology classes on a compact differentiable orientable real manifold can be represented as
the homology class of an (orientable) submanifold. Among other things, he proved that

• any integral homology class has a nonzero multiple which is represented by a sub-
manifold;
• some integral homology classes cannot be realized as the image by some continuous

map of the fundamental class of another manifold.

Let us try to transpose the story in complex algebraic geometry. So let X be a smooth
projective complex algebraic variety of dimension n. Algebraic subvarieties (even singular
ones) of X have integral cohomology classes. Characterizing these “algebraic” cohomology
classes is a very difficult problem in general and we will not address it here. Among these
algebraic cohomology classes, one can ask which ones are represented by smooth subvarieties
of X .1

When X is the smooth rs-dimensional Grassmannian Gr,s which parametrizes all vec-
tor subspaces of dimension r of Cr+s, where all integral cohomology classes are algebraic,
there are, when r, s ≥ 4, cohomology classes on X , no nonzero multiple of which can be
represented by a smooth algebraic subvariety (Jaehyun Dong, 2005).

So a more reasonable question (formulated in 1961 by Borel and Haefliger) would be
to ask whether algebraic classes of dimension d are integral linear combinations of classes of
smooth subvarieties of X . This question has a positive answer when d ∈ {n − 1, n} (Bertini
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and Serre), when d ≤ 3 and n > 2d (Hironaka, 1968), and when n ≤ 5 (Kleiman, 1969) but
also a strong negative answer when the codimension is 2 (Hartshorne–Rees–Thomas, 1974,
using Thom’s topological techniques): on the Grassmannian Gr,s when r, s ≥ 3, there are
codimension 2 classes which are not integral linear combinations of classes of submanifolds
(algebraic or not).

A complete positive answer was recently given by Kollár–Voisin in the case 2d < n and
we will instead concentrate on further counter-examples. We set c := n−d (the codimension).
For any integer m, we let α(m) be the number of 1’s in the binary expansion of m.

Theorem (Benoist–Debarre). If α(c+α(c)) > α(c) and n ≥ 4c−2, there exist a smooth projective
complex algebraic varietyX of dimension n and an algebraic cohomology class onX of codimension c
which is not an integral linear combination of classes of smooth algebraic subvarieties of X .

The weird condition on the codimension c stems from the proof and holds for c ∈
{2, 4, 5, 8, 9, 12, 16, 17 . . .}. In particular, the theorem gives a negative answer to the Borel–
Haefliger question for c = 2 and n ≥ 6—earlier examples that also give negative answers
were constructed by Benoist whenever α(c + 1) ≥ 3 and n ≥ 2c. The first unknown case is
n = 6 and c = 3.

2. PROOF OF THE HARTSHORNE–REES–THOMAS RESULT ON G3,4

We prove a weaker form of the Hartshorne–Rees–Thomas result, with different tech-
niques. When r, s ≥ 2, one has

H2(Gr,s,Z) = Zσ1 , H4(Gr,s,Z) = Zσ2
1 ⊕ Zσ2,

where σ1 and σ2 are Schubert classes.

Theorem (Debarre–Han). Let Y ⊆ Gr,s, with r ≥ 3, s ≥ 4, be a smooth algebraic subvariety of
codimension 2 and write its cohomology class as aσ2

1 + bσ2, with a, b ∈ Z. The integer b is even.

In particular, the class σ2 is not an integral linear combination of classes of smooth algebraic
subvarieties of Gr,s.

This is the Hartshorne–Rees–Thomas result, except that it assumes r ≥ 3, s ≥ 4, and
that the smooth subvarieties of Gr,s are algebraic, not just (differentiable) submanifolds. The
smallest dimension n that we get for the ambiant smooth variety is 12.

Steps of proof. (a) A Lefschetz type theorem shows that the restriction Pic(Gr,s) → Pic(Y ) is
an isomorphism (this is where we need Y smooth and r ≥ 3, s ≥ 4).

(b) A classical construction of Serre then produces a rank 2 vector bundle E on Gr,s

with a section with zero-locus Y . In particular, c2(E ) = [Y ] = aσ2
1 + bσ2 ∈ H4(Gr,s,Z).

(c) We restrict E to G3,3 ⊆ Gr,s and compute∫
G3,3

td(G3,3) ch(E |G3,3).

By the Hirzebruch–Riemann–Roch formula, this is an integer (equal to χ(G3,3,E |G3,3)). With
the help of Macaulay 2, we prove that the integer b must be even.2 �

2This is what the calculations look like. Upon twisting E by a line bundle, we can assume c1(E ) ∈ {0, σ1},
without changing the parity of b.
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Note that step (b) above only works in codimension 2, but works also when Y is a local
complete intersection; however, we don’t know how to prove step (a) in that case, although
we suspect that it still holds (it does when r = 1, that is, for the projective space G1,s = Ps).

Remark (The Hartshorne conjecture). Hartshorne conjectured in 1974 that when n ≥ 7, any
smooth subvariety of Pn of codimension 2 is a complete intersection. Voisin showed, by a
simple geometric argument, that Hartshorne’s conjecture would imply that, when r, s ≥ 7,
any smooth subvariety of Gr,s of codimension 2 should be a complete intersection; in par-
ticular, its class should be a multiple of σ2

1 . So, in the notation of the theorem, one should
actually have b = 0!

3. PROOF OF THE MAIN THEOREM WHEN c = 2 AND n ≥ 6

We now work on a complex torus X = V/Γ, where V , the universal cover of X , is a
complex vector space of dimension n and Γ ' Z2n is a lattice in V . One has

Hi(X,Z) '
∧

iΓ , H i(X,Z) '
∧

iΓ∨

for all i ∈ {0, . . . , 2n}.
If L is a line bundle on X , its first Chern class ` is an element of H2(X,Z) '

∧
2Γ∨ that

can be seen as a skew-symmetric form on Γ. When L is ample, this form is nondegenerate,
hence it can be written, in a suitable Z-basis (x1, . . . , x2n) of Γ, as

` = δ1 dx1 ∧ dxn+1 + · · ·+ δn dxn ∧ dx2n,

where δ1, . . . , δn are uniquely determined positive integers such that δ1 | · · · | δn. We say
that ` is a principal polarization (and the pair (X, `) is a principally polarized abelian variety)
if δ1 = · · · = δn = 1. Note that for each m ∈ {1, . . . , n}, the class

`mmin :=
`m

m!
∈ H2m(X,Z)

is integral and nondivisible.

Let C be a (smooth connected projective) curve of genus n ≥ 2. Its Jacobian JC, which
parametrizes isomorphism classes of degree 0 line bundles on C, has a canonical principal
polarization θ. When the curve C is very general (of genus n), the class of any algebraic
subvariety of codimension c of JC is an integral multiple of θcmin.

We will examine which integral multiples of the minimal codimension 2 class θ2min are
classes of smooth algebraic subvarieties of JC. Note that one can embed the curve C in JC
by fixing a point x0 of C and sending a point x of C to the isomorphism class of OC(x− x0).
The class of the (n − 2)-fold sum W := C + · · · + C in JC is then the minimal class θ2min.
However, W is singular when n ≥ 6.

If c1(E ) = 0, we obtain that the integral is

1

6720

(
42a4 + 84a3b+ 66a2b2 + 24ab3 + 3b4 − 3332a3 − 4998a2b

− 2618ab2 − 476b3 + 39018a2 + 39018ab+ 10227b2 − 78568a− 39284b+ 13440
)
.

The integer in parentheses must therefore be divisible by 6720, hence by 8. This implies 4 | b.
When c1(E ) = σ1, one finds that

1

17280

(
126a4 + 252a3b+ 198a2b2 + 72ab3 + 9b4 − 13944a3 − 20916a2b− 10956ab2

− 1992b3 + 239736a2 + 239736ab+ 62812b2 − 794304a− 397152b+ 362880
)

is an integer. This implies 6 | b.
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I will begin with an old result of mine which is a particular case of the main theorem
and whose proof is very similar to the proof sketched above, and then explain how to extend
the argument to the general case.

Theorem (Debarre, 1995). Let C be a very general smooth projective curve of genus n ≥ 7. The
class of any smooth subvariety Y of JC of codimension 2 is an even multiple of θ2min = θ2/2.

Remark. When C degenerates to a tree of elliptic curves E1, . . . , En, the Jacobian JC degen-
erates to E1 × · · · × En, and one sees that the class θcmin is the sum of classes of all (smooth)
products F1 × · · · × Fn, where Fi = Ei except for c values of i ∈ {1, . . . , n}, for which Fi

is a point. When C is any curve, the differentiable structure of JC remains the same: these
products are no longer algebraic, but they persist as (differentiable) submanifolds of JC. So
the class θcmin is always the sum of classes of (nonalgebraic) submanifolds of JC.

Steps of proof of the theorem. (a) A Lefschetz type theorem shows that the restriction Pic(JC)→
Pic(Y ) is an isomorphism (for this, we need Y smooth, but only n ≥ 6).

(b) The Serre construction produces a rank 2 vector bundle E on JC with c2(E ) =
[Y ] = bθ2min ∈ H4(JC,Z), with b ∈ Z. Write c1(E ) = aθ, with a ∈ Z (upon twisting E by a line
bundle, we can even assume a ∈ {0, 1}, without changing the parity of b).

(c) Since the tangent bundle to JC is trivial, the Hirzebruch–Riemann–Roch formula
says that∫
JC

ch(E ) =

∫
JC

1

2n−1n!

∑
0≤2k≤n

(aθ)n−2k((aθ)2−2bθ2)k
(
n

2k

)
=

1

2n−1

∑
0≤2k≤n

an−2k(a2−2b)k
(
n

2k

)
is an integer. Just to illustrate how the calculation works, when n = 8, this sum is

a8 − 4a6b+ 5a4b2 − 2a2b3 +
1

8
b4,

so b must be even. A similar argument works whenever 4 | n. For other values of n ≥ 7, a
variation of this argument still works. But this method does not work when n = 6 (one gets
that a6 − 3a4b + 9

4
a2b2 − 1

4
b3 is an integer, but this says nothing about the parity of b when a

is odd). �

A different argument works for (c) for all n ≥ 6. It is based on the rather deep fact
(whose proof uses the Künneth product formula for topological K-theory, Bott periodicity,
and the fact that X is homeomorphic to (S1)2n) that on any abelian variety X , the whole
Chern character takes values in H•(X,Z).3 So we simply compute

ch4(E ) =
1

24

(
c1(E )4 − 4c1(E )2c2(E ) + 2c2(E )2

)
=
(
a4 − 2a2b+

1

2
b2
)
θ4min.

So b must be even.

3This is proved as follows. The Chern character in algebraic K-theory factors through the Chern character
in complex topological K-theory as

ch: K0
alg(X) −→ K0

top(X)
chtop−−−−→ H2•(X,Q).

Complex topological K-theory extends to a Z/2-graded cohomological theory K0
top⊕K1

top. One computes (us-
ing suspension and Bott periodicity) that there is a factorization chtop : K

•
top(S

1) ∼→H•(S1,Z) ↪→ H•(S1,Q)

and, using Künneth’s formula for both K•
top and H•, that the same factorization holds for (S1)2n. In partic-

ular, the topological Chern character of (S1)2n takes values in H•((S1)2n,Z) and, since X is homeomorphic
to (S1)2n, so does the algebraic Chern character of X .
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When c > 2, this approach fails: first because step (b) does not work any more—but this
can be circumvented—, but also because the denominators in the Chern character become
hard to control and one must replace K-theory with complex cobordism.

Remark. On Grassmannians, the Chern character does not take integral values, hence this
method cannot be used.
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