ON RATIONALITY PROBLEMS

OLIVIER DEBARRE

ABSTRACT. In this introductory survey intended for nonspecialists, we discuss new and old
techniques used for, and recent progress obtained on, the problem of detecting rationality,
stable rationality, or unirationality of smooth projective complex varieties.
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1. INTRODUCTION

The rationality problem for a (smooth projective) variety X defined over a field k is to
measure how close it is to the projective space P}, of the same dimension n. There are several
versions of this problem; we say that

(R) X is k-rational if there is a birational isomorphism P} -=» X (equivalenty, the field k(X)

of rational functions on X is a purely transcendental extension of k);

(SR) X is stably k-rational if there is a nonnegative integer m such that X x Py is k-rational
(equivalenty, the field k(X)(t1, ..., %) is a purely transcendental extension of k);

(UR) X is k-unirational if there is a nonnegative integer m and a dominant rational map
P} --» X (equivalenty, the field k(X ) is contained in a purely transcendental exten-
sion of k);

(RC) X is k-rationally connected if, for any algebraically closed extension 1 of k, any two
general points of X (1) can be joined by a rational curve defined over 1.

Note that there is no need to define stably k-unirational or stably k-rationally con-
nected. Also, when k is infinite, in (UR), one can take m = n (restrict the dominant rational
map to a general linear subspace P C P}'); and for (RC), it is enough to check the property
for one uncountable algebraically closed extension 1 of k ([D2, Remarks 4.4]).

Finally, each of these notions is invariant under birational isomorphisms; in other
words, they only depend on the function field k(X'). One obviously has

(1) (R) = (SR) = (UR) = (RC)

and one of the purposes of these notes is to examine the (non)validity of the reverse impli-
cations.

Comments on the base field k. In all rights, one should indicate the base field k in the notation:
properties (R), (SR), and (UR) strongly depend on k. Also, the definitions (UR) and (RC)
given above are actually not the “right ones” when the characteristic of k is positive (one
should require that the unirationality map is separable—the property is then called separa-
ble unirationality; a similar adjustment can be made to define separable rational connected-
ness). We will stick to the easiest situation and assume that k has characteristic zero and (unless
otherwise stated) is algebraically closed. By the Lefschetz principle, we might as well take k = C.

All the implications in (1)) are then equivalences in dimensions < 2 (see Section[2.3)). The
reverse implication (SR) = (R) is known to be false in all dimensions > 3 (see Section [5) and
so is the implication (UR) = (SR) (see Theorem [6.7|and Corollary but, embarrassingly,
the nature of the reverse implication (RC) = (UR) is not known, although it is certainly
expected to be false in general.

The plan of these notes is as follows. In Section |2, we briefly review what is known for
hypersurfaces of the projective space (a standard testing ground for rationality problems).
We characterize rationally connected varieties by the existence of so-called very free rational
curves and show that simple-minded topological or cohomological invariants are often un-
able to distinguish between the various notions defined above. In Section[3, we explain their
behavior in smooth families, with a brief account of the beautiful results of Nicaise-Shinder
and Kontsevich-Tschinkel on (stable) rationality in smooth families.
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In Section 4, we turn to the more classical Liiroth problem of distinguishing between
rationality and unirationality and introduce the classical counter-examples given in the sev-
enties by Clemens—Griffiths, Iskovskikh-Manin, and Artin-Mumford. We emphasize the
Clemens—Griffiths criterion of irrationality for Fano threefolds, which is based on proper-
ties of their intermediate Jacobians, and its consequences. We briefly present in Section |5/ the
stably rational but not rational threefolds constructed by Beauville-Colliot-Thélene-Sansuc—
Swinnerton-Dyer in 1985.

Section [f] is devoted to the Artin-Mumford example of a unirational but not stably
rational threefold. The proof we present uses basic properties of the Brauer group, which
we explain. In the last section, Section [/}, we discuss how Chow groups (mostly of 0-cycles)
can be used for rationality problems. The far-reaching idea of Voisin of using the Chow
decomposition of the diagonal (pioneered by Bloch-Srinivas in the eighties) has led to all
kinds of new results about rationality problems, which we briefly and partially survey.

However, despite all this progress, even basic questions remain unanswered: are there
any irrational smooth cubic hypersurfaces in P%ﬂ Are there any rational smooth cubic hy-
persurfaces in PE" (see Example[2.2)? Are there any rational smooth hypersurfaces of degree
at least 4 in Pg™ (see Example ? It seems that, after all, the simplest-looking examples
are the hardest.

Conventions. A variety is an integral scheme of finite type over a field. Subvarieties are
always closed, and so are points, except in Section [/} “General” means “outside a strict
subvariety” and “very general” means “outside a countable union of strict subvarieties.”
As mentioned above, unless otherwise stated, all varieties are over the field of complex
numbers.

Acknowledgements. These notes are based on the beautiful text [B4] written by Arnaud Beau-
ville in 2015 on the same subject. I have borrowed large parts of his notes and added a few
improvements obtained in the past few years. My aim was certainly not to produce a com-
prehensive and up-to-date account of rationality in algebraic geometry—far more compe-
tent authors, such as Jean-Louis Colliot-Thélene ([Col)), Stefan Schreieder ([S3]), and Claire
Voisin ([Vo5| Vo7]), have produced more complete accounts of the subject which the inter-
ested reader is invited to take a look at—but rather to present a simple-minded introduction
to the subject aimed at nonspecialists. I must also apologize to the many contributors to
the field for not having even tried to compile a comprehensive list of references—sticking
instead to the ones immediately useful for my purposes—, thereby missing many beau-
tiful works (for which I refer the reader to the afore-mentioned works): the literature on
rationality questions is extremely vast and I have barely touched its surface; for example,
I completely left aside many techniques such as the derived category approach to rational-
ity problems (see [Kul] for an account). Finally, I want to thank an anonymous referee for
her/his pertinent comments and suggestions.

2. EXAMPLES AND FIRST PROPERTIES

2.1. Fano varieties and hypersurfaces. A Fano variety is a smooth projective variety whose
anticanonical divisor is ample. It is known (but difficult to prove) that any Fano variety is
rationally connected ([D2, Proposition 5.16]). There are plenty of Fano varieties (although,
once the dimension n is fixed, there are only finitely many deformation types ; see [KMM2]

'Kontsevich recently claimed in a series of talks given in the fall of 2023 that he can prove that very general
cubic hypersurfaces in P{, are irrational.
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or [D2, Theorem 5.19]): for example, any smooth complete intersection in P"*¢ of multi-
degree (dy,...,d.), with d; + --- +d. < n + ¢, is a Fano variety of dimension n, hence is
rationally connected. However, referring to the discussion in the introduction, no examples of
nonunirational Fano varieties are known!

Example 2.1 (Unirationality of smooth cubic hypersurfaces). Any smooth cubic hypersur-
face X C P"*!, with n > 2, contains a line ¢. The projective bundle P(Tx|,) is the set of
lines tangent to X at a point of £. Such a line meets X with mutiplicity (at least) 2 at its point
of intersection with ¢ and, if not contained in X, at a third point. This defines a dominant
rational map

f: P(Tx|g) it 4 X

Since the space on the left is rational (any vector bundle on /is trivial on a dense open subset
of (), any smooth cubic hypersurface of dimension > 2 is unirational.

Let = be a general point of X. The intersection of the plane (¢, z) with X is the union
of / and a conic that meets ¢ in two points z;, z5. The inverse image of x by f is the set of two
lines (z,z1) and (x, z2) , so that f has degree 2.

To insist on the difficulty of the problems we are considering here and the lack of
progress even on basic questions (despite tremendous recent advances), the question of the
rationality of smooth cubic hypersurfaces (which are Fano varieties hence rationally con-
nected in all dimensions n > 2) has only been answered when n = 2 (positively) or 3 (nega-
tively) (see Section ; the stable rationality of smooth cubic threefolds is unknown.

Example 2.2 (Rationality of some smooth cubic hypersurfaces). Let P, and P; be disjoint m-
dimensional linear spaces in P?"*1. A general cubic hypersurface X C P?"*! containing P,
and P; is smooth. I claim that any such X is rational; indeed, there is a birational isomor-
phism P, x P, -+ X obtained by sending a general pair of points (p1,p2) € P, x P to the
third point of intersection with X of the line (p;, p») spanned by p; and p, (given z € X gen-
eral, its unique preimage is the pair of points ({1, z) N Py, (P, x) N P,)). This gives examples
of rational smooth cubic hypersurfaces in all even dimensions. However, no odd-dimensional
rational smooth cubic hypersurfaces are known (they are known not to exist in dimension 3, as
we will show in Section 4.1.2).

Example 2.3 (Other hypersurfaces). Any smooth hypersurface X C P"™! of degree d < n+1
is a Fano variety, hence is rationally connected. Moreover, fixing the degree d, any smooth
degree-d hypersurface X C P! is unirational when n > 2¢ (see [BR|, Theorem 1.4]; for
quartics, n > 6 is enough; see [HMP), Corollary 3.8 and Remark 2.2]). At the other end, when
n > 3, a very general hypersurface X C P"™! of degree d > log, n + 2 is not stably rational
(see [S1)1S2]). It is expected that very general hypersurfaces of degree d not too much smaller
than n should not be unirational (but remember that no Fano varieties are known not to
be nonunirational!). For example, Schreieder proved in [S4, Theorem 1.1] that if X C P"*!
is a very general hypersurface of degree d > 4, the degree of any dominant rational map
P" --» X is divisible by any integer < d — log, nﬂ

The following table roughly sums up what is known (for very general hypersurfaces
of given degree d in P"*!, with n > 3). Parentheses indicate that the answer is conjectural.

2As Schreieder points out, the strength of his result lies in its asymptotic behavior for large n. For instance,
the degree of any unirational parametrization of a very general hypersurface of degree 100 in P1%! is divisible
by 718766754945489455304472257065075294400. It is tempting to think that no unirational parametrizations
exist.
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d 2 3 |- ld<n| - |[loggn]+2|-- |n+1|>n+1
(R) | YES | (NOY | --- | .- . NO ... | NO NO
(SR) | YES | (NO) | --- | .-+ | (NO) NO -+ | NO NO
(UR) | YES| YES |--- | YES ? ? ? |(NO)| NO
(RC) | YES | -+ |-+ | - .- | YES NO

2.2. Rationally connected varieties. We now prove some basic properties of rationally con-
nected smooth projective varieties. One consequence is that simple-minded topological prop-
erties (such as being simply connected) do not distinguish between the various properties
in (I) (see Proposition [6.1|for a topological invariant that does).

An important player is the notion of very free rational curve on a smooth projective va-
riety X: this is a rational curve f: P! — X such that the vector bundle f*Ty on P is a direct
sum of line bundles of positive degrees (equivalently, the vector bundle (f*Tx)(—1) is glob-
ally generated). Surprisingly, the existence of a single such curve is sufficient to characterize
rationally connected varieties.

Proposition 2.4. A smooth projective variety X is rationally connected if and only if there is a very
free rational curve on X.

Sketch of proof. This follows from the deformation theory of rational curves on X. Assume
that X is rationally connected; since a fixed general point x € X can be joined to any other
general point of X by a rational curve, there exist a smooth quasi-projective variety M and
a dominant morphism g: P* x M — X such that g({0} x M) = {z} and the rational curve
Jm = g|pix{m): P — X is nonconstant for all m € M. The differential of g is then surjective
at a general point (¢, m) (this is generic smoothness, which holds because we are over a field
of characteristic 0) and one checks that this is equivalent to the fact that the vector bundle
(g5, Tx)(—1) on P! is globally generated, that is, the rational curve g,, is very free.

Conversely, if there is a very free rational curve on X, one shows that the deformations
of this curve pass through two general points of X (see [D2, Proposition 4.7] for a proof). [

Using very free rational curves, we obtain geometrical, cohomological, and topological
properties of rationally connected varieties.

Proposition 2.5. Let X be a smooth projective rationally connected variety.

(@) The variety X is covered by very free rational curves.
(b) One has H°(X, (Q5)®™) = 0 for all positive integers m and p; in particular, x(X, Ox) = 1.
(c) The variety X is simply connected.

Sketch of proof. With the notation of the first part of the proof of Proposition the rational
curves g, are very free for m € M general and they cover a dense open subset of X (be-
cause g is dominant). To prove that very free rational curves cover the whole of X is much
more difficult (see [KMM1] or [D2, Corollary 4.28]) and will not be used in these notes.

For (b), note that the pullback on P! of the vector bundle (0% )®™ by any very free ra-
tional curve is a direct sum of line bundles of negative degrees, hence any section of (2% )®™
must vanish on the image of any very free rational curve, hence on X by (a). In partic-
ular, H(X, Q%) vanishes for all m > 0 and, by Hodge theory, so does H™(X, O). This
implies x (X, Ox) = 1 and proves (b).
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For (c), let m: X — X be a connected finite étale covering. Since P is simply connected,
any very free curve P! — X lifts to a curve P' — X which is still very free. Propos1t10n
then applies to prove that X is rationally connected. By (b), this 1mphes x(X,0%) = 1. But
the Euler characteristic of ¢ is multiplicative in finite étale coverings (this follows from the
Hirzebruch-Riemann-Roch formula), hence y(X, & ) = deg(m) x(X, Ox), which implies
that 7 is an isomorphism. This already proves that any finite étale covering of X is trivial.

To prove that 7 (X) is trivial, we use the dominant morphism g: P! x M — X intro-
duced in the proof of Proposition 2.4l The composition of g with the inclusion ¢: {0} x M —
P! x M is constant, hence

m1(¢t) om(g) = 0.
Since P! is simply connected, (1) is bijective, hence 7 (g) = 0. Since g is dominant and X
is normal, it is a general fact that the image of 7 (¢) has finite index (see [D2, Lemma 4.18]
for a proof). Therefore, the group 7 (X) is finite, hence trivial by what we saw earlier. O

Remark 2.6. By Proposition! property (a) is equivalent to X being rationally connected.
As for (b), the vanishing H°(X, (2%)®™) = 0 for all m > 0 is con]ectured to characterize
rationally connected (smooth pro]ectlve) varieties—this is known in dimensions < 3. This
would imply that property (b) is also equivalent to X being rationally connected. As for (c),
there obviously exist simply connected smooth projective varieties that are not rationally
connected (such as smooth hypersurfaces of degree > n + 1 in P"*! when n > 2).

2.3. Curves and surfaces. Liiroth proved in 1876 in [L] that a unirational smooth projective
curve is rational. This is now easily proved using Proposition! 2.5} for such a curve C, one
has H°(C,Q¢) = 0. Thus C has genus 0 and this implies C' ~ P'.

Castelnuovo then proved that any unirational smooth projective surface S is rational.
He used the vanishings H°(S, Q) = HY(S, (Q%)®?*) = 0 obtained in Proposition 2.5 and
proved the difficult result that they characterize rational surfaces.

Using Proposition one sees in fact that in dimensions 1 and 2, the implications
n (1)) are all equivalences (over C).

3. BEHAVIOR IN FAMILIES

How properties (R) and (SR) behave in families is an old question that was only re-
cently solved (see Corollary 3.3 and Example [3.5), although it was certainly suspected that
both these properties were neither open nor closed. In some sense, rational connectedness
was introduced (by Kollar-Miyaoka—Mori) in order to have a notion that is better behaved,
as shown by the next result ([KMM1]], [K, Theorem IV.3.11]).

Theorem 3.1. Rational connectedness is an open and closed property: given a smooth projective
morphism 2 — B with B connected, if some fiber is rationally connected, all fibers are rationally
connected.

Sketch of proof. For openness, one uses Proposition 2.4} rational connectedness of a (smooth
projective) variety X is equivalent to the existence of one very free rational curve on X. It
is not difficult to prove that the existence of such a curve is an open property in a smooth
family.

Closedness is harder to prove. A smooth projective degeneration of rationally con-
nected smooth projective varieties is a priori only rationally chain connected: any two points
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can be joined by a chain of rational curves. One then applies a delicate smoothing argument
of Kolldr-Miyaoka—-Mori to show that for smooth projective varieties, this a priori weaker
property implies rational connectedness.

So, rational connectedness is a property that is both open and closed in smooth projec-
tive families (see [K, Theorem IV.3.11] for a full proof). OJ

As mentioned above, it had long been suspected that things were not that simple
for (stable) rationality. The following result, which settles that question, was only proved
in 2019.

Theorem 3.2 (Nicaise-Shinder, Kontsevich-Tschinkel). Let 2" — B be a smooth projective
morphism, with dim(B) = 1. If very general fibers are (stably) rational, all fibers are (stably) rational.

The theorem was first proved by de Fernex and Fusi in [dFE] when the fibers have
dimension 3. The stably rational case is [NS] and the general case is [KI] (see [NO1] for a
unified treatment of both cases). I do not know of any analogous result for unirationality.

Corollary 3.3. Let 2 — B be a smooth projective morphism. The set of points of B whose fiber is
(stably) rational is a countable union of closed subsets of B.

Sketch of proof. It follows from properties of Hilbert schemes (in particular the fact that they
have countably many components) that the subset of B under consideration is a countable
union of locally closed subsets of B ([dEE, Proposition 2.3]). Theorem 3.2|implies that this set
is stable under specialization and this implies the corollary. O

Remark 3.4. As explained in [NS| Section 4.2], Theorem [3.2| generalizes to families of possi-
bly singular projective varieties whose explicit semistable reduction is known. For example,
rationality is preserved in families of projective varieties with ordinary double points (in the
sense of [NS, Definition 4.2.1]): this is explained in [NS] for stable rationality, but the same
argument gives the rationality result (see [KT, Section 4]). This complements our Lemma
and Theorem where explicit cohomological obstructions are used for nodal varieties,
and implies both of these results. Indeed, nontrivial cohomological obstructions on the reso-
lution of the central fiber imply that this fiber is (stably) irrational, which implies that other
tibers are also (stably) irrational.

Example 3.5 (Hassett-Pirutka-Tschinkel). Smooth hypersurfaces X C P? x P? of bide-
gree (2, 2) are parametrized by a dense open subset B C P(H%(P?, Op2(2))@ H(P?, Ops(2))).
They are Fano fourfolds and projection onto the first factor makes them into quadric surface
bundles X — P?. We have:

(a) for every b € B, the fourfold X, is unirational ([M} Theorem 1.8]);
(b) for b € B very general, the fourfold X} is not stably rational ([HPT1), Theorem 1]);
(c) the set of b € B for which the fourfold X, is rational is dense in B for the Euclidean

topology.
We will comment on (b) at the end of Section For (c), one applies a criterion of Hassett
([H, Proposition 2.3]) that says that if X — P< is a quadric surface bundle such that there
exists a Hodge class in H*(X,Z) N H*?(X) that has odd intersection number with a fiber,
then X is rational.

This gives an example of a family for which (stable) rationality is neither open nor
closed, so we do need the adjective “countable” in Corollary
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The proof of Theorem [3.2|is based on constructions that are radically different from
what was used before for this kind of problems, and which we now explain.

For any field k of characteristic 0 and any nonnegative integer n, one defines, following
Kontsevich-Tschinkel, the Burnside ring Burn,, (k) as the free abelian group on isomorphism
classes of field extensions of k of transcendence degree n (or, if you prefer, on birational
isomorphism classes of (smooth) varieties of dimension n over k). The main result is the
following.

Theorem 3.6. Let B be a smooth connected curve, with generic point 1 and function field K = C(B).
Given a nonnegative integer n and a closed point by € B with local ring R = Ogy,, there exists a
“specialization” group morphism

prn: Burn,(K) — Burn,(C)
such that, for any smooth proper morphism 2 — Spec(R) of relative dimension n, one has
pn((K(27)/K]) = [C(Z4,)/C].

Before addressing the proof of this fundamental result, we briefly sketch how it implies
Theorem Given a smooth projective morphism 2~ — B as in the statement of that the-
orem, after a finite base change B’ — B, where B’ is a smooth connected curve, the generic
tiber of 27 .= 2 xp B" — B’ is rational (over the function field of B’) (see the argument
in [dEE, Proof of Theorem 3.1] involving again the Hilbert scheme and the uncountability
of C, or use the fact that the geometric generic fiber of 2~ — B is isomorphic, via a field
isomorphism K =~ C, to a very general fiber; see [V, Lemma 2.1]).

Replacing B by B’, we now have two smooth models of the extension K(Z,)/K ~
K(Pg)/K: one is 2" — B and the other is P}, — B. Given any b, € B, we apply Theo-

rem the image by p,, of these isomorphic extensions is the common class of the exten-
sions C(Z},) and C(P"), which are therefore isomorphic.

Sketch of proof of Theorem E| We first explain how to define p,, on extensions L/K and we
next extend it by linearity. Given such an extension, we choose a smooth proper model
X — Spec(K) with K(X) ~ L and a simple normal crossing model .2~ — Spec(R) with
generic fiber X (such a model exists by Hironaka’s log-resolution of singularities). In other
words, we have

(%o>red =D = ZD“
i=1
a simple normal crossing divisor (we do not care about possible multiplicities). For any
nonempty subset I C {1,...,7}, we set
Dy = ﬂ Dy,

iel
a smooth irreducible subvariety of codimension || — 1 in Z;,, and
LI = C(D])(.Tl, Ce ,LE|[|,1),
a field extension of C of transcendence degree n. Then we define

@) LK) = Y (—)IL/C] € Bum,(C).
IC{1,...,r}, I#2

3For more details on the proof, I recommend the excellent lecture “Rationality in families of varieties” given
in 2021 by de Fernex for the Dipartimento di Matematica Tor Vergata (it can be found on YouTube).
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Of course, for p, to be well defined by this formula, one needs to check—and this is the
crucial point of the proof—that this is independent of the choices of

e the smooth proper model X — Spec(K);
e the simple normal crossing model 2" — Spec(R).

The main tool for proving these two properties is the Weak Factorization Theorem, which says
that any birational morphism between smooth proper varieties is a composition of blowups
with smooth centers and their inverses.

Once this is done, if we have a smooth proper morphism 2~ — Spec(R) as in the theo-
rem, it is its own simple normal crossing model with smooth central fiber Z;,,. Therefore, we
can take r = 1 in the proof above and the defining formula (2 gives p,([L/K]) = [C(Z4,)/C]
in Burn,, (C). O

Remark 3.7 (Nicaise-Ottem). Let 2~ — B be a smooth projective morphism as in Theo-
rem In the notation of the proof of that theorem, assume that one can find a model 2" —
Spec(R) with generic fiber X and simple normal crossing central fiber (Z4))red = > ..y D;
such that

Y (=DIC(D) (@, - air-1)/Cl # [C(P™)/C] - in Burn,(C)

10

(for example, all D; are rational except for one which is not unirational). Then very general
fibers are irrational. A much more elaborate version of this remark was used in [NO2] to
prove many new stable irrationality results: for example, in PY, a very general quartic or
a very general intersection of a quadric and a cubic are both stably irrational ([NO2, Corol-
lary 5.2 and Theorem 7.1]).

4. RATIONALITY VERSUS UNIRATIONALITY

We now go back in time to the nineteenth century and the implication (UR) = (R),
known as the Liiroth problem: is a unirational variety rational? In other words, is every
extension of C contained in C(ty, .. .,t,) purely transcendental?

We saw in Section that the answer is affirmative when n < 2. After many unsuc-
cessful attempts by Enriques, Fano, and Roth during the first half of the twentieth century,
three different counter-examples to the Liiroth problem in dimension 3 appeared in 1971-72.
We briefly indicate here the authors, their examples, and the methods they use to prove ir-
rationality (this table was borrowed from [B4]).

Authors Example Method

Clemens—Griffiths | all smooth cubic threefolds intermediate Jacobian

Iskovskikh-Manin | all smooth quartic threefolds | birational automorphisms

Artin-Mumford some quartic double solids torsion of H>(e, Z)

More precisely,

e Clemens and Griffiths proved in [CG] the longstanding conjecture that all smooth
cubic threefolds X C P* are irrational (although they are all unirational by Example [2.1).
They showed that the intermediate Jacobian of X is not the Jacobian of a curve and that this
prevents X from being rational (Clemens—Griffiths criterion; see Theorem [4.2]below).
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e Iskovskikh and Manin proved in [IM] that all smooth quartic threefolds X C P* are
irrational. Some unirational quartic threefolds had been constructed by B. Segre in [Se2], so
these also provide counter-examples to the Liiroth problem. They showed that the group of
birational automorphisms of X is finite, while the corresponding group for P? (hence for
any rational variety) is huge.

e Artin and Mumford proved in [AM] that a desingularization X of a particular double
covering of P3, branched along a quartic surface in P? with 10 nodes, is unirational but not
rational. They showed that the torsion subgroup of H?(X,Z) is nontrivial and that this is a
birational invariant (see Proposition [6.1) which is trivial for P?.

These three papers have been extremely influential. Although they appeared around
the same time, they use very different ideas; in fact, as we will see, the methods tend to
apply to different types of varieties. They have been developed and extended, and applied
to a number of interesting examples. Each of them has its advantages and its drawbacks;
very roughly:

e The intermediate Jacobian method is quite efficient, but applies only in dimension 3
(Section [4.1).

e The computation of birational automorphisms leads to the important notion of bira-
tional superrigidity. However it is not easy to work out; so far, it has been applied essentially
to Fano varieties whose Picard group is generated by their canonical class, but these varieties
are not known to be unirational in dimensions > 3. We give some results in Section [4.2|

e Torsion in H?(e, Z) gives an obstruction to stable rationality (see Section 6.1)). Unfor-
tunately, it applies only to very particular varieties and not to standard examples of unira-
tional varieties, like hypersurfaces or complete intersections. We discuss in Section [/|ideas
of Colliot-Théléne, Voisin, and others that extend considerably the range of that method.

4.1. The intermediate Jacobian. In this section, we discuss our first irrationality criterion,
which uses the intermediate Jacobian. Then we prove that smooth cubic threefolds satisfy
this criterion hence give counter-examples to the Liiroth problem.

4.1.1. The Clemens—Griffiths criterion. We first recall the Hodge-theoretic construction of the
Jacobian of a smooth projective curve C of genus g. We start from the Hodge decomposition

HY(C,Z)C H'(C,C) = H*(C) ® H"(O)

into complex vector subspaces of the same dimension g with H%!(C) = H'9(C). The latter
condition implies that the projection H'(C,R) — H%!(C) is an R-linear isomorphism, hence
that the image I of H'(C,Z) in H*!(C) is a lattice (that is, any basis of I is a basis of H*!(C)
over R). The quotient
J(C) = H"(C)/T
is a complex torus of dimension g. But there is more structure: the map
(o, B) l—>2i/ anp
c
defines a positive definite Hermitian form H on H%!, and the restriction of the imaginary
partof H toT" ~ H'(C, Z) coincides with the cup-product
HY(C,Z)® H'(C,Z) — H*(C,Z) ~ Z;

thus it induces on I' a skew-symmetric, integer-valued, unimodular form. In other words, H
defines a canonical principal polarization on J(C'). This is equivalent to the data of an ample
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divisor © C J(C) (defined up to translation and called a theta divisor) satisfying
dim(H°(J(C), Oy(©))) = 1. Thus (J(C), [O)) is a principally polarized abelian variety of di-
mension g called the Jacobian of C' (here, [©] denotes the algebraic equivalence class of the
divisor O or, equivalently, its class in H2(.J(C), Z)).

One can mimic this definition for odd dimensional varieties, starting from the middle
degree cohomology; this defines the general notion of intermediate Jacobian. In general, it is
only a complex torus, not an abelian variety. But for a rationally connected threefold X, we
have H**(X) = H°(X,Q%) = 0 (Proposition 2.5), hence the Hodge decomposition for H*
simply becomes

H*(X,Z)¢ C H*(X,C) = H*'(X) ® H"*(X)
with H?(X) = H?!(X) and H*(X,Z) = H*(X,Z)/ Tors(H*(X,Z)). As above, the quotient
group H'*(X)/H?*(X,Z)y is a complex torus, with a principal polarization defined by the
positive definite Hermitian form («, §) — —2i [, & A j: this is the intermediate Jacobian J(X)
of X (for more details on intermediate Jacobians and their polarizations, see [BL, Section 4]).

We will use several times the following classical result (see for instance [Vo2, Theo-
rem 7.31]).

Lemma 4.1. Let X be a smooth projective variety, let Y C X be a smooth subvariety of codi-
mension ¢, and let BlyX be the variety obtained by blowing up X along Y. For every nonnegative
integer p, there is a canonical isomorphism
c—1
H"(X,Z)® Y  H'*(Y,Z) = H"(BlyX, Z)
k=1
of integral Hodge structures.

In the lemma, the Hodge structure on HP=2*(Y,Z) is the canonical weight (p — 2k)
Hodge structure but where all bidegrees are shifted by (k, k), so as to make it of weight p.

Theorem 4.2 (Clemens-Giriffiths criterion). Let X be a rational smooth projective threefold. The
intermediate Jacobian J(X) is isomorphic (as a principally polarized abelian variety) to a product of
Jacobians of curves.

Sketch of proof. Let ¢: P?-=» X be a birational isomorphism. Hironaka’s resolution of inde-
terminacies provides us with a commutative diagram

P
N
P3-—-2__.X

where ¢ is a composition of blowups, either of points or of smooth curves, and f is a bira-
tional morphism.

I claim that J(P) is a product of Jacobians of curves. Indeed, by Lemma 4.1} blowing up
a point in a threefold X does not change H*(X, Z), hence does not change J(X) either. If we
blow up a smooth curve C' C X, Lemma 4.1|gives a canonical isomorphism H?*(Blo X, Z) ~
H*(X,Z) ® H'(C,Z) of Hodge structures; it is also compatible in an appropriate sense with
cup-products and this implies that there is an isomorphism J(BloX) ~ J(X) x J(C) of prin-
cipally polarized abelian varieties (see [CG, Lemma 3.11]). Thus, going back to our diagram,
we see that J(P) is isomorphic to J(C;) x --- x J(C,), where C4,...,C, are the (smooth)
curves which we have blown up in the process.
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How do we relate J(P) and J(X)? The birational morphism f: P — X induces homo-

morphisms
f* H¥X,Z) — H*(P,Z) , f.: H(P,Z)— H*(X,Z)

satistying f.f* = 1, again compatible with Hodge decompositions and cup-products in
an appropriate sense. Thus H*(X,Z), with its polarized Hodge structure, is a direct fac-
tor of H3(P,Z). This implies that J(X) is a direct factor of J(P) ~ J(C;) x --- x J(C,); in
other words, there exists a principally polarized abelian variety A such that J(X) x A ~
J(Cy) x -+ x J(C,) as principally polarized abelian varieties.

How can we conclude? In most categories, the decomposition of an object as a product
is not unique. But luckily for us, polarized abelian varieties behave nicely in this respect. Let
us say that a polarized abelian variety is indecomposable if it is nonzero and not isomorphic
(as polarized abelian varieties) to a product of nonzero polarized abelian varieties. For in-
stance, the Jacobian of a smooth projective connected curve is indecomposable. One has the
following general result (see [D1]]; this result is actually easier to prove in our case, when the
abelian varieties are principally polarized).

Lemma 4.3. Any polarized abelian variety admits a unique decomposition as a product of indecom-
posable polarized abelian varieties.

Once we have this, we conclude as follows: since the principally polarized abelian
varieties J(C}), ..., J(C,) are indecomposable, from the isomorphism J(X) x A ~ J(C}) x
.-+ x J(C,) and the lemma, we conclude that J(X) is isomorphic to J(C;,) x --- x J(C;,) for
some subset {i1,...,is} of {1,...,7}. O

Remark 4.4. In the moduli space .27, of principally polarized abelian varieties of dimension g,

the boundary _#, \. _#, of the Jacobian locus _#, is precisely the locus of products of lower-
dimensional Jacobians. So the latter can be seen as degenerations of the former.

Remark 4.5. Jacobians of curves and their products are characterized among all princi-

o]"-1
(n—1)! €

H?*2(A,Z), where n = dim(A), is represented by an (algebraic) effective 1-cycle (Mat-
susaka’s criterion).

pally polarized abelian varieties (A, [O]) by the fact that the cohomology class

4.1.2. The Schottky problem. Theorem[4.2]says that to show that a rationally connected smooth
projective threefold X isirrational, it suffices to prove that its intermediate Jacobian (J(X), [©])
is not a product of Jacobians of curves. This is related to the classical Schottky problem: the
characterization of Jacobians of curves (and their products) among all principally polarized
abelian varieties. One frequently used approach is through the singularities of the theta di-
visor: for a product (.J,[©]) of Jacobians of curves, the codimension of Sing(©) in .J is at most 4.
However, controlling the singularities of theta divisors is quite difficult for the intermediate
Jacobian of a threefold X and requires a lot of information on the geometry of X. Let us just
give a sample.

Theorem 4.6. Let X C P* be a smooth cubic threefold and let (J(X),[O]) be its 5-dimensional
principally polarized intermediate Jacobian. Any theta divisor © C J(X) has a unique singular
point x, which is a triple point. The projectified tangent cone P(T'Cq,) C P(Tyx).) ~ Ptis
isomorphic to the cubic X C P,

This elegant result, apparently due to Mumford (see [B2] for a proof), implies the ir-
rationality of all smooth cubic threefolds X C P*: it says that the codimension of Sing(©)
in J(X) is 5, so J(X) is not a product of Jacobians of curves.
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There are actually very few cases where we can control so well the singular locus of
theta divisors. One of these is the case of smooth quartic double solids X — P?* (double cov-
erings branched along a smooth quartic surface), for which Sing(©) also has a component
of codimension 5 in the 10-dimensional intermediate Jacobian J(X) ([Vol]). Another case is
that of conic bundles, that is, smooth projective threefolds X with a flat morphism p: X — P?
such that, for each closed point s € P?, the fiber p~'(s) is isomorphic to a plane conic (possi-
bly singular). In that case, J(X) is the Prym variety associated with a natural double covering
of the discriminant curve A C P? (the locus of points s € P? such that the conic p~*(s) is singu-
lar). Thanks to work of Mumford and Beauville, we have enough control on the singularities
of theta divisors of Prym varieties to show that J(X) is not a product of Jacobians of curves if
deg(A) > 6 ([B1, th. 4.9]). In particular, these conic bundles are then irrational (we will see
in Section that they are not even stably rational when the discriminant curve is very
general).

Unfortunately, there are many Fano threefolds that are not (or least not known to be)
conic bundles. However, the Clemens—Griffiths criterion for irrationality is an open condition
(unlike irrationality!). In fact, we have a stronger result, which follows from the properties
of the Satake compactification of the moduli space of principally polarized abelian varieties
([B1, lemme 5.6.1]).

Lemma 4.7. Let 7: 2" — B be a flat family of projective threefolds over a smooth curve B. Let
by € B and assume that

o the fiber Z;, .= 7 '(b) is smooth for all b € B~ {by};
o the only singularities of 2y, are ordinary double points;

o for some desingularization E&”jo of Zy,, the intermediate Jacobian J (%) is not a product of
Jacobians of curves.

Then, for b outside a finite subset of B, the smooth threefold 2, is irrational.

From this, we deduce general irrationality statements for many families of Fano three-

folds: it is enough to find a degeneration as in the lemma such that f%jo is a conic bundle
with a discriminant curve of degree > 6, to which the lemma applies.

Consider for example (ordinary) Gushel-Mukai threefolds: they are smooth complete
intersections X of the Grassmannian Gr(2, C°) C P(A*C®) = P? in its Pliicker embedding,
with a P and a quadric. They are Fano threefolds with canonical line bundle Oy (—1). When
the quadric becomes singular at a point x of Gr(2, C®) N P7, the threefold X acquires a node
at 2 and the projection X --» P from z is (birationally) a conic bundle with discriminant
curve of degree 6. The lemma then implies that a general Gushel-Mukai threefold is irra-
tional.

4.1.3. Easy counterexamples. The results of the previous section require rather involved meth-
ods. We will now discuss a more elementary approach, which however only applies to spe-
cific varieties. It is based on the so-called Hurwitz bound (the order of the group of automor-
phisms of a smooth projective curve C of genus g is at most 84(g— 1)) and the Torelli theorem
for curves, which gives an exact sequence

3) 1 — Aut(C) — Aut(J(C), [©]) = Z/2.
Fano threefolds with very large automorphism groups will therefore tend not be rational

(automorphisms of the Fano variety induce automorphisms—often nontrivial—of its inter-
mediate Jacobian).
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We will give two examples. We consider first smooth complete intersections of a quadric
and a cubic in PZ. They are classically known to be unirational, but a general such complete
intersection is irrational (this can be proved using the degeneration result Lemma [4.7} it
also follows from the proof of the theorem below and the openness of the Clemens—Griffiths
criterion of irrationality). The example of the next theorem was however the first explicit
irrational example ([B3]).

Theorem 4.8 (Beauville). The Fano threefold defined by the equations

6 6 6
E T, = E asf = E :Ef =0
i=0 i=0 i=0

in PS is not rational.

Proof. The group &7 acts faithfully on this threefold X by permuting the coordinates xy, . . ., z¢.
One checks that the induced action on Tx)o = H'(X,Q%) is also faithful (it is the sum
of two irreducible representations, of degrees 6 and 14), hence so is its action on the 20-
dimensional principally polarized abelian variety J(X). But the Hurwitz bound and the ex-
act sequence (3) imply that the automorphism group of the Jacobian of a curve of genus 20
has order at most 2-84(20 — 1) = 3192 < 7! = |&7|. So J(X) cannot be the Jacobian of a curve
of genus 20, because it has too many automorphisms.

One then needs an additional easy argument to exclude the possibility that J(X) be
isomorphic to a nontrivial product of Jacobians of curves. O

The same method was applied more recently in [DM] to Gushel-Mukai threefolds X C
P(A?C?) (for which, as we explained earlier, irrationality was only known for a general
one). We choose coordinates zy,...,z4 on C° and we denote by (z;;)o<i<;j<4 the induced
coordinates on A\*C®.

Theorem 4.9 (Debarre-Mongardi). The smooth Gushel-Mukai threefold defined in P(/\*C?) by
the linear equations
Toz + 12 = Toa — T23 =0
and the quadratic equaiton
To1To2 — T13%14 — Toalza = 0
is irrational.

Sketch of proof. One shows that the simple group G' := PSL(2,F;) acts faithfully on the 10-
dimensional intermediate Jacobian J(X) of this threefold X (but not on X ﬁ) and that the
induced action on the tangent space Ty(x) ¢ is an irreducible representation of dimension 10.
This implies already that the principally polarized abelian variety J(X) is indecomposable:
indeed, by the uniqueness result Lemma the group G permutes its m indecomposable
factors and this induces a morphism u: G — &,,, which cannot be injective since GG contains
elements of order 11 whereas G,,, does not, because m < 10. The simplicity of G then implies
that u is constant and that GG preserves each indecomposable factor. The irreducibility of the
action of G on T (x) finally implies m = 1.

It is known that the automorphism group of a curve of genus 10 has order at most 432
(an improvement on the Hurwitz bound). Since G is simple, any morphism G — Z/2Z is
trivial, hence, since |G| = 660 > 432, the exact sequence (3) implies that G does not embed
in the automorphism group of the Jacobian of a curve of genus 10. So J(X) cannot be the

4By [P, Theorem 1.5], G cannot act nontrivially on a smooth Gushel-Mukai threefold.
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Jacobian of a curve. Since J(X) is indecomposable, the Clemens—Griffiths criterion implies
that X is irrational. O

Corollary 4.10. There exists a complete family, with finite moduli morphism, parametrized by a
smooth projective surface, of irrational smooth Gushel-Mukai threefolds.

This follows from a description of the moduli space of Gushel-Mukai threefolds ([DM,
Corollary 5.3], [DK] Example 6.8]): through any point of the moduli space, there passes a pro-
jective surface that parametrizes mutually birationally isomorphic smooth Gushel-Mukai
threefolds. Another family of irrational smooth Gushel-Mukai threefolds (whose interme-
diate Jacobian has a faithful 2;-action) was recently described in [BWI.

A. Javanpeykar asked the following related questionﬂ

Question 4.11 (Javanpeykar). Does there exist nonisotrivial families of smooth Fano vari-
eties parametrized by P'?

To motivate this question, note that for any such family of threefolds (or more gen-
erally, of odd dimensional varieties whose middle degree Hodge structure has level one,
so that their intermediate Jacobians are principally polarized abelian varieties), the corre-
sponding family of intermediate Jacobians is trivial. This is because any family of principally
polarized abelian varieties parametrized by P is trivialﬂ

4.2. Birational rigidity. As mentioned in the introduction, Iskovskikh and Manin proved
that all smooth quartic threefolds X C P* are irrational by proving that any birational au-
tomorphism of X is actually biregular. But they proved much more, namely that X is bira-
tionally superrigid in the following sense.

Definition 4.12. Let X be a prime Fano variety with Picard number 1. We say that X is
birationally superrigid if

(a) there is no rational dominant map X --» Y with 0 < dim(Y) < dim(X) and with
general fibers of Kodaira dimension —oo;

(b) any birational isomorphism X -=» Y to another Fano variety Y with Picard number 1
is an isomorphism.

(The variety Y in (b) is allowed to have Q-factorial terminal singularities.)

After the pioneering work [IM], birational superrigidity was proved for a number of
Fano varieties of index 1. In particular, de Fernex extended the result of Iskovskikh-Manin
and proved that any smooth hypersurface of degree n in P" is birationally superrigid ([dF]).
We refer to the surveys [Pu] and [C] for ideas of proofs and for many more examples.

5. RATIONALITY VERSUS STABLE RATIONALITY

Now that we know that the converse of the composed implication
(R) = (SR) = (UR)

>It is known that families of smooth projective varieties of general type parametrized by P* are isotrivial.

°A family of principally polarized abelian varieties of dimension g parametrized by P! induces a morphism
from P! to the moduli space 7, of principally polarized abelian varieties of dimension g. Since P! is simply
connected, this morphism lifts to a holomorphic map ¢ from P! to the universal cover %%, of <7,. The space .77,
is the Siegel upper half-space, which is biholomorphic to a bounded domain in C9(9+1)/2, By Liouville’s theo-
rem (any bounded holomorphic map C — C is constant), ¢ is constant and the original family is trivial.
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is false (in dimensions > 3), we examine separately the two implications
(UR) = (SR) and (SR) = (R).

The implication on the right was proved to be false by Beauville, Colliot-Théléne, Sansuc,
and Swinnerton-Dyer in [BCSS|], thereby answering a question asked by Zariski in 1949
(see [Sell]).

Theorem 5.1. Let P(x,t) = 2 + p(t)z + q(t) be an irreducible polynomial in Clx,t| and assume
that its discriminant §(t) == 4p(t)3+27q(t)? has degree > 5. The affine hypersurface X C C* defined
by y? — §(t)z* = P(z,t) is stably rational but not rational.

The projection X — C? defined by (z,t,y, z) — (z,t) makes the threefold X into an
(affine) conic bundle.

The irrationality of X is proved using the intermediate Jacobian, which turns out to
be the Prym variety associated with an admissible double covering between nodal curves.
Stable rationality, more precisely the fact that X x P? is rational, is proved in [BCSS] using
some particular torsors under certain algebraic tori. A different construction of Shepherd-
Barron shows that X x P? is already rational ([SB]); it is not known whether X x P! is
rational.

6. STABLE RATIONALITY VERSUS UNIRATIONALITY

We prove in this section that the implication (UR) = (SR) is also false (for smooth
projective varieties). So we need to find unirational varieties that are not stably rational.
For that, we cannot use the Clemens—Griffiths criterion since it applies only in dimension 3
hence cannot disprove stable rationality. The group of birational automorphisms is very
complicated for a variety of the form X x P"; so the only available method is the torsion
of H3(e,Z) (see Section@ and its subsequent refinements, which we will examine in the
next sections.

6.1. The torsion of H*(e,Z). Artin and Mumford used the following property of stably ra-
tional varieties.

Proposition 6.1. Let X be a stably rational smooth projective variety. The abelian group H*(X,Z)
is torsion free.

Proof. The Kiinneth formula gives an isomorphism H?*(X x P™, Z) ~ H*(X,Z) ® H'(X,Z);
since H'(X, Z) is always torsion free, the torsion subgroups of H*(X,Z) and H*(X x P™, Z)
are isomorphic hence, replacing X by X x P, we may assume that the variety X is ratio-

nal. Let ¢: P"-=» X be a birational isomorphism. As in the proof of the Clemens-Griffiths

criterion, we have a diagram
P
7 X
©

Pr--—---- + X,
where ¢ is a composition of blowups of smooth subvarieties and f is a birational morphism.

By Lemma[4.1} we have H*(P,Z) ~ H'(Y;,Z)®---® H'(Y,,Z), where Y1, ..., Y, are the
subvarieties successively blown up by ¢; therefore H3(P, Z) is torsion free. As in the proof of
Theorem 4.2} H?(X,Z) is a direct summand of H3(P, Z), hence is also torsion free. O
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6.2. The Brauer group. The torsion of H*(X, Z) is strongly related to the (cohomological)
Brauer group of X. There is a huge literature on the Brauer group in algebraic geometry,
starting with the three exposés by Grothendieck in [G]. We recall here the cohomological
definition of this group (we work over C as usual). We denote by G,, the sheaf of invertible
elements in the étale topology.

Definition 6.2. Let X be a variety. We define the (cohomological) Brauer group Br(X) to be
the étale cohomology group H%,(X, G,,).

It is known that when X is smooth (the only case we will be interested in), Br(X) is a
torsion group (see [G, II, prop. 1.4]). The following proposition relates it to more common
groups.

Proposition 6.3. Let X be a smooth variety. There is an exact sequence

(4) 0 — Pic(X) ® Q/Z =+ H*(X,Q/Z) — Br(X) — 0.

Proof. Let n € Z~,. The exact sequence
1—>p,n%Gmi>Gm—>1
of étale sheaves and the isomorphism Pic(X) = H (X, G,,) give an exact sequence
Pic(X) = Pic(X) 2+ H% (X, p,) — Br(X) =% Br(X)

in étale cohomology (we denote all these abelian groups additively). Noting the isomor-
phism H% (X, p,) ~ H*(X,Z/nZ), taking the direct limit with respect to n, and using the
fact that the group Br(X) is torsion, we obtain the exact sequence (4). O

Proposition 6.4. Let X be a smooth variety. There is a surjective homomorphism
Br(X) — Tors(H*(X,Z))
which is bijective when the map c,: Pic(X) — H?(X,Z) is surjective.

Assume that X is a smooth projective variety. By Hodge theory, the condition on ¢;
is satisfied if H*(X, Ox) = 0 (by Proposition this holds for example if X is rationally
connected); one then has an isomorphism Br(X) = Tors(H?(X, Z)). In particular, the Brauer
group of a projective space is trivial.

Proof. The exact sequence 0 — Z — Q — Q/Z — 0 gives an exact sequence
H*(X,Z) - H*(X,Q) - H*(X,Q/Z) - H*(X,Z) - H*(X,Q)
in cohomology. Since H(X,Q) = H'(X,Z) ® Q, it also reads
H*(X,Z) ® Q/Z — H*(X,Q/Z) — Tors(H*(X,Z)) — 0.

Comparing it with (), we obtain a diagram

0 —— Pic(X) ® Q/Z —— H*(X,Q/Z) —— Br(X) ———— 0

I |
0— H*(X,Z) ® Q/Z — H*(X,Q/Z) — Tors(H*(X,Z)) — 0,

hence the desired result U
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Remark 6.5 (Birational invariance). Let X be a smooth projective variety. It is possible to
define the Brauer group Br(X) purely in terms of the function field C(X) as its unramified
Brauer group; this implies that it is a birational invariant (see [B4, Section 6.5] for more de-
tails). It is even a stable birational invariant: the Brauer group of a stably rational smooth
projective variety is trivial.

6.3. P"-fibrations. We describe here a geometric way to construct nontrivial elements of the
Brauer group.

Definition 6.6. Let X be a variety. A P"-fibration over X is a smooth map P — X all of
whose geometric fibers are isomorphic to P".

An obvious example is the projective bundle P x (£) associated with a vector bundle E
of rank n + 1 on X; a vector bundle being trivial on a dense open subset of X, a projective
bundle has plenty of rational sections. We will actually be interested in those P"-fibrations
that are not projective bundles; for example, those that have no rational sections.

Any P"-fibration is locally trivial for the étale (or analytic) topology. This implies that
isomorphism classes of P"-fibrations over X are parametrized by the Cech étale cohomology
set %, (X, PGL,.1) where, for an algebraic group G, we denote by G the sheaf of local maps
to G. Similarly, isomorphism classes of vector bundles (analytically locally free sheaves) of

rank n + 1 over X are parametrized by the Cech étale cohomology set % (X, GL,. ).

The exact sequence
l1—G,, — GL,,; — PGL,;; — 1

of sheaves of groups gives rise to a sequence of pointed sets
Hlét(Xa GLy 1) - Hlét(Xv PGL,41) 2, Br(X)

in Cech cohomology, which is exact in the sense that 9~'(1) = Im(q) ([Mi, Proposition 4.5]).
Thus we associate with each P"-fibration p: P — X a class [p| € Br(X) and this class is
trivial if and only if p is a projective bundle. Moreover, by comparing with the exact sequence
0— p,, — SLy41 — PGL, 11 — 1, we get a commutative diagram

H (X, SLis1) — H (X, PGLy 1) — H*(X, 1y 1)

l | |

HY(X, GLy 1) — Hy(X, PGLy 1) —— Br(X)

which shows that the image of 0 is contained in the (n + 1)-torsion subgroup of Br(X).

6.4. The Artin-Mumford example. The Artin-Mumford example is a double covering of P*
branched along a quartic symmetroid, that is, a quartic surface defined by the vanishing of a
symmetric 4 x 4 determinant of linear forms.

We start with a web II = P(), ..., \3) of quadrics in P?; its elements are defined by
quadratic forms Aggo + - - - + A3q3, with Xg,..., A3 € C. We make the following generality
assumptions:

(a) the linear system II is basepoint free;
(b) if a line in P? is singular for a quadric of II, it is not contained in another quadric of II.
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Let A C ITbe the discriminant locus, corresponding to quadrics of rank < 3.Itis a quar-
tic surface (defined by det(}  \;¢;) = 0 in II); under our hypotheses, A has 10 ordinary dou-
ble points, corresponding to quadrics of rank 2, and no other singularities. Let 7: X' — II
be the double covering branched along A. Again X’ has 10 ordinary double points; blowing
up these points, we obtain the Artin-Mumford (smooth projective) threefold X.

Observe that a quadric ¢ € II has two rulings by lines if ¢ € II \ A, and one if ¢ €
A ~ Sing(A). The smooth part X|| of X’ parametrizes pairs (¢, ), where ¢ € Il and ) is a
ruling of ¢.

Theorem 6.7. The smooth projective threefold X is unirational but not stably rational.

Skectch of proof. Let G be the Grassmannian of lines in P?. A general line is contained in a
unique quadric of II, and in a unique ruling of this quadric. This defines a dominant rational
map G --» X', thus X’, and therefore X, is unirational.

We will deduce from Proposition [6.1] that X is not stably rational by proving that the
group H?*(X,Z) contains an element of order 2. This is done by a direct calculation in [AM];
following [B4], we use a different approach based on the Brauer group: we will

(a) construct a nontrivial P!-fibration over X/, hence a nonzero torsion class in Br(X});
(b) apply Proposition [6.4to X/, to obtain a nonzero torsion class in H*(X{, Z);
(c) prove that the torsion subgroups of H*(X,Z) and H?(X{, Z) are isomorphic.

For (a), we consider the variety P C G x II consisting of pairs (¢, ¢) with ¢ C ¢. The
Stein factorization of the projection P — Il is

P2 X T

Set Py := p'~1(X{). The restriction pj,: Py — X/, of p’ is a P!-fibration: the fiber of a point (¢, \)
of X{ is the smooth rational curve parametrizing the lines of the ruling A\. An elementary
argument (see [B4, Section 6.3]) shows that p, has no rational sections. It is therefore not a
projective bundle, hence defines a nonzero 2-torsion class in Br(X|).

For (b), we consider the commutative diagram

Pic(X) —=— H?(X,Z)
| |

Pic(Xp) — HA(X}, Z),

where the top horizontal arrow is surjective because H?*(X, 0x) = 0.Since F == X \ X} isa
disjoint union of quadrics (the exceptional divisors of the blowup of the 10 ordinary double
points of X), the Gysin exact sequence

H*(X,Z) - H*(X},Z) — H'(E,Z) =0

shows that r is surjective. Therefore the map ¢;: Pic(X() — H?*(X{, Z) is surjective and, by
Proposition we get a nonzero 2-torsion class in H*(X{, Z).

For (c), we use again the Gysin exact sequence

0— H*X,Z) » H*(X|,Z) — H*(E,Z)
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and we find that Tors(H?(X,Z)) is isomorphic to Tors(H?(X},Z)), hence is nonzero. By
Proposition the smooth projective threefold X is not stably rationalﬂ O

Colliot-Thélene and Ojanguren gave in [CO] a more birational treatment of the Artin-
Mumford example that does not require the construction of any smooth or mildly singular
model for the total space of the conic bundle. They also proved that higher unramified coho-
mology is a stable birational invariant and used it to produce 6-dimensional quadric bundles
over P? that are not stably rational, although their Brauer groups vanish (so that the Artin—
Mumford criterion does not apply).

7. THE CHOW GROUP OF 0-CYCLES

In this section, we discuss another property of stably rational varieties, namely the
fact that their Chow group CH, parametrizing 0-cycles is universally trivial (Proposition 7.4).
While the idea goes back to the end of the seventies (see [Bl]), its use for rationality questions
is recent ([Vo4]).

This property implies that H*(X,Z) is torsion free (Proposition [7.10), but not con-
versely (see (I1)). Moreover, it behaves well under deformation, even if we accept mild
singularities (see Theorem [7.11)).

In this section, we will need to work over nonalgebraically closed fields (of character-
istic 0). We use the language of schemes.

7.1. Chow groups. Let X be a variety of dimension n defined over a field k. The Chow
group CH,(X) is the group of dimension-p cycles on X modulo rational equivalence. More
precisely, let us denote by X,(.X) the set of dimension-p subvarieties of X. Then CH,(X) is
defined by the exact sequence

(5) B kW) -z - CH,(X) -0,
WESp1(X)

where the first arrow maps f € k(IV)* to its divisor ([E, Section 1.3]).

Example 7.1. When X = A; = Spec(k[z]), a closed point is an irreducible polynomial P €
k[z]. The divisor of the regular function on X defined by P is P, so any point is rationally
equivalent to 0 and CHy(A}) = 0. More generally, one has CH,(A}) = 0 for all p # n and
CH,(A}) = Z.

Given a morphism f: X — Y between varieties, it induces pushforward homomor-
phisms f.: CH,(X) — CH,(Y') when f is proper, and pullback homomorphisms f*: CH,(Y’)
— CH,4,,(X) when f is flat of relative dimension n ([F, Theorems 1.4 and 1.7]). Furthermore,

e if Y C X is a closed subset, with inclusions i: Y < X and j: X \Y < X, one has
localization exact sequences ([E, Proposition 1.8])

©6) CH,(Y) -5 CH,(X) L5 CH, (X \Y) = 0,
e for any variety X over k, there are canonical isomorphisms ([F, Theorem 3.3(b)])

"We have therefore constructed an element of order 2 in the group Br(X) ~ Tors(H3(X, Z)). Deligne proved
in [De, Lemma 3.6] that the whole group H?(X, Z) is actually isomorphic to Z/2Z.
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In particular, we have CH,(P}) ~ Z for all 0 < p < n (where the isomorphism is given by
the degree of subvarieties of P}).

When X is smooth of pure dimension n, we set CH?(X) := CH,,_,(X) (the lower index
denotes the dimension and the upper index the codimension). One can define intersection
products

CH?(X) ® CHY(X) — CHP(X)
satisfying various nice properties (see [F, Proposition 8.3]).

We will be particularly interested in the group CHy(XX) of 0-cycles on X. When X is

proper over k, the map
Z nglx] — an[k(x) - k],

x closed point
where the n, are integers that vanish for all but a finite number of closed points x of X,
defines a group morphism deg: CHy(X) — Z ([F, Example 1.6.6]). We denote its kernel

Finally, we will need the following birational invariance result. Note that, together with
the isomorphism (7), it implies that if X is a stably rational smooth projective variety (over
any field), one has CHy(X)o = 0.

Lemma 7.2. Any birational isomorphism X -=+Y between smooth projective varieties (over any
field) induces an isomorphism CHy(X) ~ CHy(Y').

Sketch of proof. The graph I' C X x Y of the birational isomorphism X -=»Y defines mor-
phisms

I,: CHy(X) — CHL(Y) , ar—— pro (I pri(e))
and

I*: CH,(Y) — CH,(X) , B+ pr, (I pri(B))
where the dots represent the intersection product mentioned earlier. One shows I'* o I', = Id
on CHy(X) and I', o I'* = Id on CHy(Y') (see [Vo5, Lemma 2.11] for details). O

7.2. Universally CH,-trivial varieties and Chow decomposition of the diagonal. When k
is algebraically closed, one has CHy(X ), = 0 for any smooth projective rationally connected
variety X defined over k (by Proposition any two closed points of X can be joined
by a P;. where they are rationally equivalent); we say that X is CHo—trivial.ﬁ This does not
always remain true when k is not algebraically closed (see (11)): being CHy-trivial is not
stable under field extensions. We make the following definition.

Definition 7.3. A smooth projective complex variety X is universally CHy-trivial if for any
field extension K/C, we have CH,(Xxk)o = 0.

This property only depends on the birational isomorphism class of the variety (by
Lemma and holds for all projective spaces, hence for all rational smooth projective com-
plex varieties. But we have even more.

Proposition 7.4. Any stably rational smooth projective complex variety is universally CHo-trivial.

Proof. Let X be a stably rational smooth projective complex variety. For any field exten-
sion K/C, the variety Xk is again stably rational (over K), hence CHy(Xk)o = 0, as ex-
plained in the paragraph before Lemma O

8The converse is not true: a complex Enriques surface is CHo-trivial ([BKL]) but not rationally connected.
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The following result, obtained in [ACP, Lemma 1.3], relates the property for a smooth
projective complex variety X to be universally CHy-trivial with a decomposition property of
the class in the Chow group of X x X of the diagonal Ax.

Proposition 7.5 (Auel-Colliot-Thélene-Parimala). Let X be a smooth projective complex variety
of dimension n and let Ax C X x X be the diagonal. The following conditions are equivalent:

(i) the variety X is universally CHo-trivial;

(ii) one has CHo(X¢(x))o = 0;

(iii) there exists a closed point v € X such that x — [xc(x)| = 0in CHo(Xc¢(x)), where 0x is the
0-cycle class on X¢(x) induced by the diagonal Ax;

(iv) there exist a closed point x € X and a dense open subset U C X such that the cycle class
[Ax]| — [X x {x}] restricts to 0 in CH" (U x X);

(v) (Integral Chow decomposition of the diagonal) there exists a closed point x € X such
that the class

(8) [Ax] = [X x{x}]

in CH,,(X x X) is supported on D x X, for some hypersurface D C X.

In (ii), (iii), (iv), and (v), the property is independent of the closed point z € X: if
it holds for one closed point, it holds for all closed points. In (iv), one says that a class
a € CH, (X x X) is supported on D x X if there exists a class ap € CH, (D x X) such that
a = i.(ap), where i is the inclusion D x X — X x X.

Proof. The implication (i) = (ii) is clear.
(ii) = (iii). Let n be the generic point of X and let x be a closed point. We have a diagram

Spec(C(X)) ——— Ax
l(n )

N

(7} % X = Xep 2 X x X — ™2 4 X

l 5 (n.x) Pr ,> (o,7) l}x
(C

(X)) ! X Spec(C).

Spec

The point (1,7) of {n} x X = X¢(x) is rational (over C(X)). Since CHy(X¢(x))o = 0, it is
rationally equivalent to any other C(X)-point, such as (n,z) = z¢(x) for any closed point
x € X. The class [Ax] — [X x {z}] restricts to (1,7) — (n,z) in CHy(X¢(x)), hence to 0. This
shows (iii) (for all closed points z).

(iii) = (iv). An element of X" ({n} x X) extends to an element of ¥"(X x X) and two such
extensions agree on U x X for some dense open subset U of X; in other words, the natural
map lim YU x X) — X*({n} x X) is an isomorphism. Thus writing down the exact se-

U
quence (B)) for U x X and passing to the direct limit over U, we get a commutative diagram



ON RATIONALITY PROBLEMS 23
of exact sequences

li @ C(W)* —— lim ZC"WxX) 5 lim CH"(U x X) —— 0

! [ |
CX)(W)* ——— ZE" X)) 5 CH"({n} x X) —— 0
wexn—1({n}xX)

where the first two vertical arrows are isomorphisms; therefore the third vertical arrow is
also an isomorphism. We conclude that the class [A] — [X x {z}] is zero in CH"(U x X) for
some dense open subset U.

(iv) = (v). The localization exact sequence (6)
CH,((X\U)x X) — CH,(X x X) — CH,(U x X) —0

implies that the class [A] — [X x {z}] comes from a class in CH,,((X \ U) x X). Choosing any
hypersurface D in X containing X \ U and pushing forward that class to CH,,(D x X) does
the job.

(v) = (i). Assume that holds; then it holds in CH,,(Xk x Xk) for any extension K of C,
so it suffices to prove CHy(X )y = 0.

Denote by pr; and pr, the two projections from X x X to X. Any class § € CH, (X x X)
induces a homomorphism 6,: CHy(X) — CHy(X), defined by 6.(2) = pr,,(d - pri(z)). Let us
consider the classes which appear in (8). The diagonal induces the identity of CHy(X); the
class of X x {z} maps z € CH(X) to deg(z) [z], hence is 0 on CH(X)o.

Now consider the class a = [Ax] — [X X {z}] supported on D x X and write it as
(1x1).(ap), where ap € CH,(Dx X)and i: D — X is the inclusion. Then, for z € CHy(X) =
CH"(X), one has

. (2) = pra.((1 x 1)u(ap) - pri(2)) = pro.(ap - pri(i°(2))).
Since dim(D) < n, the class i*(z) is zero, hence so is «,(z). We conclude from (8) that the
group CH(X), vanishes, since [A x] induces the identity of CHy(X')y and both [X x {z}] and
[Ax] — [X x {z}] induce 0. O

Example 7.6 (Decomposition of the diagonal for projective spaces). For X = P¢, the class of
the diagonal decomposes as

[Apy] = Z[Pg_i x P
i=0

and this is clearly an example of (§).

Remark 7.7 (Rational Chow decomposition of the diagonal). The original argument of Bloch—
Srinivas in [BS] started from a smooth projective complex variety X such that CHy(X )y = 0
(this holds for example if X is rationally connected) and concluded that there exists a posi-
tive integer NV such that

©) N([Ax] = [X x{z}])
is supported on D x X (see [S3] Section 7.2] or [Vo7, Theorem 3.5] for proofs of this result
and its converse: the existence of such a decomposition implies CHy(X )o = 0). This is called

a rational Chow decomposition of the diagonal (because it is a decomposition of the diagonal,
but in CH, (X x X)q). The analog of Proposition [7.5(iii) is that this is equivalent to saying
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that the class 0x — [z¢(x)] in CHo(Xc¢(x)) is N-torsion. The analog of Proposition [7.5(i) is
that CHy(X¢,)o is an N-torsion group (with the same positive integer V) for any field exten-
sion L/C.

Remark 7.8 (Torsion order). Following [S3, Definition 7.9], one may define, for any proper
variety X defined over a field k, its torsion order Tors(X) € Z-,U{oo} as the smallest positive
integer N such that the class 0x satisfies Nox = zi(x) in CHy(Xy(x)) for some O-cycle z
on X, and oo if no such integer exists. This is a stable birational invariant which is finite for
rationally connected smooth projective complex varieties (see [Vo5, Corollary 4.4] for a direct
proof), and Proposition[7.5says that a smooth complex projective variety is universally CHy-
trivial if and only if its torsion order is 1. If X is unirational and there is a dominant map
P} --» X of degree d, then Tors(X) | d.

Remark 7.9 (Cubic threefolds revisited). Let X C P¢ be a smooth cubic hypersurface. We
prove in Section as a consequence of the Clemens—Griffiths criterion, that X is not
rational. This is because its 5-dimensional intermediate Jacobian (J(X), ) is not isomorphic
to a product of Jacobians of curves. As explained in Remark 4.5} this is equivalent to saying
that the minimal cohomology class /4! is not the class of an effective 1-cycle.

In [Vo6|, Theorem 1.7], Voisin proved the remarkable result that X is universally CHy-
trivial if and only if the class 6* /4! is the class of a 1-cycle (not necessarily effective). Whether this
holds for all smooth cubic threefolds is an open problem, but she constructed large families
of cubic threefolds for which this holds. She also constructed large families of smooth cubic
fourfolds that are universally CHy-trivial.

In general, by Example 2.1] and Remark the torsion order of any smooth cubic
hypersurface of dimension > 2 is either 1 (if it is is universally CHy-trivial) or 2 (if it is not).

7.3. Applications. Despite its technical aspect, Proposition[7.5/has remarkable consequences,
which were worked out by Bloch-Srinivas in [BS].

Proposition 7.10. Let X be a smooth projective complex variety. Suppose X is universally CH-
trivial.

(a) We have H°(X, Q%) = 0 for all v > 0.

(b) The group H*(X, Z) is torsion free.
Proof. The proof is very similar to that of the implication (v) = (i) in Proposition [7.5[ we use
the same notation. Again, a class § in CH" (X x X') induces a homomorphism 6*: H"(X,Z) —
H"(X,Z), defined by 6*(z) = pry,(J - pri(z)). The diagonal induces the identity, the class

[X x{z}] gives 0 for r > 0, and the class (i x 1).ap gives the homomorphism z — i, (pry, (ap -
pr5(z))). Thus formula (8) gives for r > 0 a commutative diagra

(10) H*(D,Z)

pri.(ap W X‘

H*(X,Z) i H*(X,Z).

Since D C X is a hypersurface, the homomorphism i,: H*(D,C) — H*(X,C) is a mor-
phism of Hodge structures of bidegree (1, 1). Therefore, its image intersects trivially the
subspace H™'(X) of H"(X,C). Since i, is surjective by (10), its image contains H"(X,C),
hence H™°(X) = 0.

9For simplicity, we assume here that D is smooth. Otherwise, one needs to replace D by a desingularization.
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We now take r = 3 in (10). The only possible part of H*(D, Z) with a nontrivial contri-
bution in is H'(D,Z), which is torsion free. Any torsion element in H*(X,Z) goes to 0
in H'(D,Z), hence is zero. O

Observe that in the proof, we use only formula (8)) in cohomology and not in the Chow
group. The relation between these two properties is discussed in Voisin’s papers [Vo3| Vo4,
Vool.

It is a fundamental conjecture of Bloch that the vanishing (a) in the proposition should
imply that X is CHy-trivial.

We summarize in the following diagram the implications that we “proved” between
the various properties of a smooth projective complex variety that we defined.

(R)

(SR) == univ. CHy-trivial <= Tors = 1 == H?>(e, Z) torsion free

(UR) Tors | deg

(RC) == CHj -trivial === Tors < 0.

The reason why universal CHy-triviality has been so successful at proving new non
stable rationality results is that, as the Clemens—Griffiths criterion, it behaves well under
deformation (compare with Lemma see also Remark [3.4). The following result of Voisin
from 2015 was the original inspiration for Theorem

Theorem 7.11 (Voisin). Let m: 2~ — B be a projective flat morphism over a smooth complex
curve B, with dim(Z2") > 3. Let by € B and assume that

e a general fiber 2}, is smooth;

e the only singularities of 2y, are ordinary double points;

e some desingularization /,%\”; of 2y, is not universally CHy-trivial.

Then Zy, is not universally CHy-trivial for a very general point b of B.

We refer to [Vo4, Theorem 1.1 and Remark 1.3] for the proof. The idea is that there
cannot exist a decomposition (8) as in Proposition [7.5for b general in B, because it would
extend to an analogous decomposition over 2, then specialize to Z3,, and finally extend
to Z3,. One concludes by observing that in the open subset B° of B over which 7 is smooth,

the locus of points b € B such that .2} is CHy-trivial is a countable union of closed subsets
of B°.

Corollary 7.12. The double covering of P¥, branched along a very general quartic surface is not
stably rational.

Proof. Consider the pencil of quartic surfaces in P¢, spanned by a smooth quartic and a
quartic symmetroid, and the family of double covers of Pg branched along the members



26 O. DEBARRE

of this pencil. By Proposition b), the Artin-Mumford threefold is not universally CHy-
trivial. Applying the proposition, we conclude that a very general quartic double solid is not
universally CHy-trivial, hence not stably rational. 0

Any smooth complex quartic double solid X is a Fano variety, hence rationally con-
nected; it is in fact even unirational (see [IP, Example 10.1.3(iii)]). Since the group H*(X,Z)
is torsion free, Theorem implies that both implications

H?(e,Z) torsion free == univ. CHj -trivial
(11) are false
(UR) =————= univ. CHj -trivial

for very general complex quartic double solids.

More generally, Voisin showed that the desingularization of a very general complex
quartic double solid with at most seven nodes is not stably rational. We do not know whether
there exist smooth complex quartic double solids that are universally CHy-trivial.

Voisin’s technique has given rise to a number of other results. Colliot-Thélene and
Pirutka have extended Theorem to the case where the singular fiber 2, has (still suffi-
ciently nice) nonisolated singularities and applied this to prove that a very general quartic
hypersurface in P§ is not stably rational ([CP]). Hassett, Kresch, and Tschinkel have shown
that a conic bundle with discriminant a very general complex plane curve of degree > 6 is
not stably rational ([HKT, Theorem 1]; compare with Section . This allowed Hassett,
Pirutka, and Tschinkel to produce in [HPT1] the first examples of smooth irrational com-
plex projective varieties (in all dimensions > 4) that deform to smooth rational ones (see
Example and also [S1), Theorem 2]).

In [S1], Schreieder introduced a variant of the method of Voisin and Colliot-Thélene-
Pirutka, which allows one to prove non stable rationality via a degeneration argument where
a non universally CHy-trivial resolution of the special fibre is not needed. He used this tech-
nique to simplify the arguments in [HPT1, HPT2, HPT3] and to apply them to large classes
of complex quadric surface bundles. He also obtained in [S2] a dramatic improvement of the
range of degrees for which very general complex hypersurfaces are known to be not stably
rational (see Example 2.3). I recommend the excellent survey [S3] to the interested reader.

REFERENCES

[AM] Artin, M., Mumford, D., Some elementary examples of unirational varieties which are not rational,
Proc. London Math. Soc. 25 (1972), 75-95.

[ACP] Auel, A, Colliot-Thélene, J.-L., Parimala, R., Universal unramified cohomology of cubic four-
folds containing a plane, in Brauer groups and obstruction problems, 29-55, Progr. Math. 320,
Birkhduser /Springer, Cham, 2017.

[B1] Beauville, A., Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. Ec. Norm. Sup. 10 (1977), 309-

391.

[B2] Beauville, A., Les singularités du diviseur © de la jacobienne intermédiaire de I’hypersurface cubique
dans P*, Algebraic threefolds (Cime, Varenna, 1981), 190-208, Lecture Notes 947, Springer, Berlin-New
York, 1982.

[B3] Beauville, A., Non-rationality of the symmetric sextic Fano threefold, in Geometry and Arithmetic,

57-60, EMS Congress Reports (2012).

[B4] Beauville, A., The Liiroth Problem, in Rationality problems in algebraic geometry. Lecture notes from the
CIME-CIRM course held in Levico Terme, June 22-27, 2015, Rita Pardini and Gian Pietro Pirola edi-
tors, Lecture Notes in Mathematics 2172, Fondazione CIME/CIME Foundation Subseries, Springer,
Cham; Fondazione C.I.LM.E., Florence, 2016.



ON RATIONALITY PROBLEMS 27

Beauville, A., Colliot-Thélene, J.-L., Sansuc, J.-J., Swinnerton-Dyer, P., Variétés stablement ra-
tionnelles non rationnelles, Ann. of Math. 121 (1985), 283-318.

Beheshti, R., Riedl, E., Linear subspaces of hypersurfaces, Duke Math. |. 170 (2021), 2263-2288.

Billi, S., Wawak, T., Double EPW-sextics with actions of <% and irrational GM threefolds, eprint
arXiv:2207.00833.

Birkenhake, C., Lange, H., Complex tori, Progress in Mathematics 177, Boston, Birkh&duser, 1999.
Bloch, S., On an argument of Mumford in the theory of algebraic cycles, Journées de Géometrie
Algébrique d’Angers, 217-221, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.

Bloch, S., Kas, A., Lieberman, D., Zero cycles on surfaces with p, = 0, Compos. Math. 33 (1976),
135-145.

Bloch, S., Srinivas, V., Remarks on correspondences and algebraic cycles, Amer. . Math. 105 (1983),
1235-1253.

Cheltsov, 1., Birationally rigid Fano varieties, Uspekhi Mat. Nauk 60 (2005), 71-160. English transl.:
Russian Math. Surveys 60 (2005), 875-965.

Clemens, H., Griffiths, P., The intermediate Jacobian of the cubic threefold, Ann. of Math. 95 (1972),
281-356.

Colliot-Thélene, J.-L., Introduction to work of Hassett-Pirutka-Tschinkel and Schreieder, in Birational
geometry of hypersurfaces, 111-125, Lect. Notes Unione Mat. Ital. 26, Springer, Cham, 2019.
Colliot-Thélene, J.-L., Ojanguren, M., Variétés unirationnelles non rationnelles: au-dela de 'exemple
d’Artin et Mumford, Invent. Math. 97 (1989), 141-158.

Colliot-Thélene, J.-L., Pirutka, A., Hypersurfaces quartiques de dimension 3 : non rationalité stable,
Ann. Sci. Ec. Norm. Sup. 49 (2016), 371-397.

Debarre, O., Polarisations sur les variétés abéliennes produits, C. R. Acad. Sci. Paris 323 (1996), 631-
635.

Debarre, O., Higher-dimensional algebraic geometry, Universitext. Springer-Verlag, New York, 2001.
Debarre, O., Kuznetsov, A., Gushel-Mukai varieties: moduli, Int. ]. Math. 31, 2050013 (2020).
Debarre, O., Mongardi, G., Gushel-Mukai varieties with many symmetries and an explicit irrational
Gushel-Mukai threefold, Boll. Unione Mat. Ital. 15 (2022), 133-161.

Deligne, P, Variétés unirationnelles non rationnelles [d’apreés M. Artin et D. Mumford], Séminaire
Bourbaki (1971/1972), Exp. n° 402, 45-57, Lecture Notes in Math. 317, Springer-Verlag, Berlin-New
York, 1973.

de Fernex, T., Birationally rigid hypersurfaces, Invent. Math. 192 (2013), 533-566.

de Fernex, T., Fusi, D., Rationality in families of threefolds, Rend. Circ. Mat. Palermo 62 (2013), 127-135.
Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 2, Springer-Verlag,
Berlin, 1984.

Grothendieck, A., Le groupe de Brauer I, I, I1I, in Dix Exposés sur la Cohomologie des Schémas, North-
Holland, Amsterdam; Masson, Paris (1968).

Harris, J., Mazur, B., Pandharipande, R., Hypersurfaces of low degree, Duke Math. J. 95 (1998), 125-
160.

Hassett, B., Some rational cubic fourfolds, J. Algebraic Geom. 8 (1999), 103-114.

Hassett, B., Kresch, A., Tschinkel, Yu., Stable rationality and conic bundles, Math. Ann. 365 (2016),
1201-1217.

Hassett, B., Pirutka, A., Tschinkel, Yu., Stable rationality of quadric surface bundles over surfaces,
Acta Math. 220 (2018), 341-365.

Hassett, B., Pirutka, A., Tschinkel, Yu., A very general quartic double fourfold is not stably rational,
Algebr. Geom. 6 (2019), 64-75.

Hassett, B., Pirutka, A., Tschinkel, Yu., Intersections of three quadrics in P7, in Surveys in differential
geometry 2017. Celebrating the 50th anniversary of the Journal of Differential Geometry, 259274, Surv.
Differ. Geom. 22, Int. Press, Somerville, MA, 2018.

Iskovskikh, V., Manin, Yu., Three-dimensional quartics and counterexamples to the Liiroth problem,
Math. USSR-Sb. 15 (1971), 141-166.

Iskovskikh, V., Prokhorov, Yu., Fano varieties, Algebraic geometry, V, 1-247, Encyclopaedia Math. Sci.
47, Springer-Verlag, Berlin, 1999.

Kolldr, J., Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete 32,
Springer-Verlag, Berlin, 1996.

[KMM1] Kolldr, J., Miyaoka, Y., Mori, S., Rationally connected varieties, J. Algebraic Geom. 1 (1992), 429-448.



28

O. DEBARRE

[KMM2] Kolldr, J., Miyaoka, Y., Mori, S., Rational connectedness and boundedness of Fano manifolds, J. Dif-

[KT]
[Ku]

[S1]
[S2]
[S3]

[S4]
[SB]

[Sel]

[Se2]

[Vo1]

[Vo2]
[Vo3]

[Vo4]

[Vo5]

[Vob]

[Vo7]

ferential Geom. 36 (1992), 765-779.

Kontsevich, M., Tschinkel, Yu., Specialization of birational types, Invent. Math. 217 (2019), 415-432.
Kuznetsov, A., Derived categories view on rationality problems, in Rationality problems in algebraic ge-
ometry. Lecture notes from the CIME-CIRM course held in Levico Terme, June 22-27, 2015, Rita Pardini and
Gian Pietro Pirola editors, Lecture Notes in Mathematics 2172, Fondazione CIME /CIME Foundation
Subseries, Springer, Cham; Fondazione C.I.M.E., Florence, 2016.

Liiroth, J., Beweis eines Satzes tiber rationale Curven, Math. Ann. 9 (1876), 163-165.

Massarenti, A., On the unirationality of quadric bundles, Adv. Math. 431 (2023), Paper No. 109235.
Milne, J., Etale cohomology, Princeton Math. Ser. 33, Princeton University Press, Princeton, NJ, 1980.
Nicaise, ]., Ottem, J. C., A refinement of the motivic volume, and specialization of birational types, in
Rationality of Varieties, 291-322, Progr. Math. 342, Springer, Cham, 2021.

Nicaise, J., Ottem, J. C., Tropical degenerations and stable rationality, Duke Math. J. 171 (2022), 3023—
3075.

Nicaise, J., Shinder, E., The motivic nearby fiber and degeneration of stable rationality, Invent. Math.
217 (2019), 377-413.

Prokhorov, Yu., Simple finite subgroups of the Cremona group of rank 3, J. Algebraic Geom. 21 (2012),
563-600.

Pukhlikov, A., Birationally rigid varieties. I. Fano varieties, Uspekhi Mat. Nauk 62 (2007), 15-106. Eng-
lish transl.: Russian Math. Surveys 62 (2007), 857-942.

Schreieder, S., On the rationality problem for quadric bundles, Duke Math. |. 168 (2019), 187-223.
Schreieder, S., Stably irrational hypersurfaces of small slopes, J. Amer. Math. Soc. 32 (2019), 1171-1199.
Schreieder, S., Unramified cohomology, algebraic cycles and rationality, in Rationality of varieties, 345-
388, Progr. Math. 342, Birkhduser /Springer, Cham, 2021.

Schreieder, S., Torsion orders of Fano hypersurfaces, Algebra Number Theory 15 (2021), 241-270.
Shepherd-Barron, N., Stably rational irrational varieties, The Fano Conference, 693-700, Univ. Torino,
Turin, 2004.

Segre, B., Sur un probleme de M. Zariski, in Colloque international d’algebre et de théorie des nombres
(Paris 1949), 135-138, CNRS, Paris, 1950.

Segre, B., Variazione continua ed omotopia in geometria algebrica, Ann. Mat. Pura Appl. 50 (1960),
149-186.

Vial, C., Algebraic cycles and fibrations, Doc. Math. 18 (2013), 1521-1553.

Voisin, C., Sur la jacobienne intermédiaire du double solide d’indice deux, Duke Math. |. 57 (1988),
629-646.

Voisin, C., Hodge theory and complex algebraic geometry I, Cambridge University Press, New York, 2002.
Voisin, C., Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal, J. Algebraic
Geom. 22 (2013), 141-174.

Voisin, C., Unirational threefolds with no universal codimension 2 cycle, Invent. Math. 201 (2015),
207-237.

Voisin, C., Stable birational invariants and the Liiroth problem, in Surveys in differential geometry 2016,
Advances in geometry and mathematical physics, 313-342, Surv. Differ. Geom. 21, Int. Press, Somerville,
MA, 2016.

Voisin, C., On the universal CHy group of cubic hypersurfaces, . Eur. Math. Soc. (JEMS) 19 (2017),
1619-1653.

Voisin, C., Birational invariants and decomposition of the diagonal, in Birational geometry of hypersur-
faces, 3-71, Lect. Notes Unione Mat. Ital. 26, Springer, Cham, 2019.

UNIVERSITE PARIS CITE AND SORBONNE UNIVERSITE, CNRS, IM]J-PRG, F-75013 PARIS, FRANCE

E-mail address: olivier.debarre@imj-prg. fr



	1. Introduction
	2. Examples and first properties
	2.1. Fano varieties and hypersurfaces
	2.2. Rationally connected varieties
	2.3. Curves and surfaces

	3. Behavior in families
	4. Rationality versus unirationality
	4.1. The intermediate Jacobian
	4.2. Birational rigidity

	5. Rationality versus stable rationality
	6. Stable rationality versus unirationality
	6.1. The torsion of H3(,Z)
	6.2. The Brauer group
	6.3. ¶n-fibrations
	6.4. The Artin–Mumford example

	7. The Chow group of 0-cycles
	7.1. Chow groups
	7.2. Universally `39`42`"613A``45`47`"603ACH0-trivial varieties and Chow decomposition of the diagonal
	7.3. Applications

	References

