
SUBVARIETIES OF ABELIAN VARIETIES

OLIVIER DEBARRE

We work over the field C of complex numbers.

1. INTRODUCTION

Any (complex) torus can be written as X = V/Γ, where V , the universal cover of X , is
a complex vector space of dimension g and Γ ' Z2g is a lattice in V . One has

Hi(X,Z) '
∧
iΓ,

for all i ∈ {0, . . . , 2g}.
If L is a line bundle on X , its first Chern class ` is an element of H2(X,Z) '

∧
2Γ∨ that

can be seen as a skew-symmetric form on Γ. When L is ample, this form is nondegenerate,
hence it can be written, in a suitable Z-basis (x1, . . . , x2g) of Γ, as

` = δ1 dx1 ∧ dxg+1 + · · ·+ δg dxg ∧ dx2g,

where δ1, . . . , δg are uniquely determined positive integers such that δ1 | · · · | δg. For future
reference, note that for each m ∈ {1, . . . , g}, the class

`mmin :=
`m

δ1 · · · δmm!
∈ H2m(X,Z)

is integral and nondivisible.

The pair (X, `) is called a polarized abelian variety of type d := (δ1 | · · · | δg). When
δ1 = · · · = δg = 1, the polarization is called principal. There is an irreducible quasi-projective
coarse moduli space of dimension g(g + 1)/2 for polarized abelian varieties of fixed dimen-
sion g and type d. In particular, one can talk about general, or very general, polarized abelian
varieties of given dimension and type.

For each m ∈ {1, . . . , g}, we denote by

Hdgm(X) := H2m(X,Z) ∩Hm,m(X)

the group of codimension m Hodge classes on X . It contains the minimal class `mmin.

We are interested in the following problem.

Question 1.1. On a polarized abelian varietyX , which Hodge classes are classes of algebraic
subvarieties ofX , smooth or not, or integral linear combinations of products of Chern classes
of vector bundles on X?
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For very general polarized abelian varieties, the groups of Hodge classes are as simple
as they can be.1

Theorem 1.2 (Comessatti–Mattuck). A very general polarized abelian variety (X, `) of dimen-
sion g and type d satisfies the property

(P) ∀m ∈ {1, . . . , g} Hdgm(X) = Z`mmin.

We will mostly work with polarized abelian varieties that satisfy Property (P).

2. SMOOTHABILITY OF CYCLES

We begin by quickly reviewing recent results of Kollár–Voisin about smoothability of
cycles on any smooth projective variety X of dimension g, which vastly improve results of
Kleiman and Hironaka from the 60s. Given m ∈ {0, . . . , g}, we introduce the subgroups

H2m(X,Z)smalg ⊆ H2m(X,Z)alg ⊆ Hdgm(X),

where H2m(X,Z)alg is the subgroup generated by classes of algebraic subvarieties of X and
H2m(X,Z)smalg is the subgroup generated by classes of smooth subvarieties.

Equality for the inclusion on the right is the integral Hodge conjecture, for which
counter-examples are known. We will see soon (Theorem 3.4) that the inclusion on the left
may be strict, but is always an equality when m > g/2 (Theorem 2.1).

We also let H•(X,Z)Ch ⊆ H•(X,Z) be the subring generated by Chern classes of vector
bundles (or, equivalently, coherent sheaves) on X and consider the subgroups

H2m(X,Z)Ch ⊆ H2m(X,Z)alg.

Again, we will see in Proposition 5.1 examples (with m = g) where this inclusion is strict.
Hiwever, we always have, whenever 1 ≤ m ≤ g,

(1) (m− 1)!H2m(X,Z)alg ⊆ H2m(X,Z)Ch.

Indeed, this is a consequence of the Grothendieck–Riemann–Roch formula, which gives

(m− 1)![Z] = (−1)m−1cm(OZ)

for all subvarieties Z ⊆ X of codimension m.

Theorem 2.1 (Kollár–Voisin). Let X be a smooth projective variety of dimension g. For g/2 < m ≤
g, one has

H2m(X,Z)smalg = H2m(X,Z)alg.

3. JACOBIANS OF CURVES

Let C be a (smooth connected projective) curve of genus g ≥ 2 and let JC be its Jaco-
bian, endowed with its canonical principal polarization θ. One can embed the curve C in JC
by fixing a point c of C and sending a point x of C to the isomorphism class of OC(x − c).
For i ∈ {0, . . . , g}, we define Wi ⊆ JC as the i-fold sum C + · · · + C, with the convention
W0 = {o}. Its cohomology class is the minimal class θg−imin, which is therefore algebraic.

1This is a theorem published by Mattuck in 1958; he says: “the present paper should essentially be regarded
as a resuscitation, expansion, and interpretation of a little-known paper of Comessatti” [from 1934].
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Theorem 3.1 (Mattuck, 19612). Let C be a curve of genus g and let (JC, θ) be its Jacobian. There is
a rank g vector bundle F on JC (the Picard bundle) such that

∀m ∈ {1, . . . , g} cm(F ) = [Wg−m] = θmmin ∈ H2m(JC,Z).

Question 3.2. The theorem says in particular that when (X, θ) is the Jacobian of a curve (or
a product of such), the inclusion

H2g(X,Z)Ch ⊆ H2g(X,Z) = Z

is an equality. So this holds in particular for all principally polarized abelian varieties when
g ≤ 3. What happens when for (very) general principally polarized abelian varieties of di-
mension g ≥ 4?

Using the fact that the Jacobian of a very general curve of genus g satisfies Property (P),
we obtain the following.

Corollary 3.3. Let C be a very general curve of genus g and let (JC, θ) be its Jacobian. For every
m ∈ {1, . . . , g}, one has

(2) H2m(JC,Z)Ch = H2m(JC,Z)alg = Hdgm(JC) = Zθmmin ⊆ H2m(JC,Z).

Under the hypotheses of the corollary, the variety Wg−m is smooth if and only if m ≥
(g − 1)/2, and in that range, the group H2m(JC,Z)smalg is also equal to the groups in (2)
(compare with Theorem 2.1). However, outside that range of dimensions, the next theorem
shows that the minimal class θmmin is, in many cases, not in H2m(JC,Z)smalg. For any positive
integer n, we let α(n) be the number of ones in the binary expansion of n.

Theorem 3.4 (Benoist, Debarre). Let C be a very general curve of genus g. Let m be a positive
integer such that α(m+ α(m)) > α(m) and m ≤ (g + 2)/4. Then,

H2m(JC,Z)smalg ⊆ 2Zθmmin  Zθmmin = H2m(JC,Z)alg.

The weird condition α(m+α(m)) > α(m) holds for m ∈ {2, 4, 5, 8, 9, 12, 16, 17, . . . }. We
also prove H8(JC,Z)alg ⊆ 4Zθ4min when g ≥ 14. The first unknown case is g = 6 and m = 3.

Sketch of proof when m = 2. Given a smooth subvariety Z ⊆ JC of codimension 2, with class
bθ2min, a Lefschetz-type theorem (here, one needs g ≥ 6) and the Serre construction produce
a rank 2 vector bundle E on JC with second Chern class [Z]. Write c1(E ) = aθ. In 1995,
I used the Hirzebruch–Grothendieck–Riemann–Roch theorem, which says that χ(X,E ) =∫
JC

chg(E ) is an integer (the tangent bundle to X is trivial). This integer is∫
JC

1

2g−1g!

∑
0≤2k≤g

(aθ)g−2k((aθ)2 − 2bθ2)k
(
g

2k

)
=

1

2g−1

∑
0≤2k≤g

ag−2k(a2 − 2b)k
(
g

2k

)
.

Just to illustrate how the calculation works, when g = 8, this sum is

a8 − 4a6b+ 5a4b2 − 2a2b3 +
1

8
b4,

so b must be even. This argument works when 4 | g. For other values of g ≥ 7, one needs
to use the fact that

∫
JC

chg(E (rθ)) is an integer for all integers r and choose r suitably. But it
does not work when g = 6.

However, there is a simpler and more general argument that works for all g ≥ 6. It is
based on the rather deep fact (whose proof uses the Künneth product formula for topological

2Mukai reproved this result—and many more about Picard bundles—in the 1981 article where he introduced
the Fourier–Mukai transform on abelian varieties.
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K-theory, Bott periodicity, and the fact thatX is homeomorphic to (S1)2g) that on any abelian
variety X , the whole Chern character takes values in H•(X,Z). So we simply compute

ch4(E ) =
1

24

(
c1(E )4 − 4c1(E )2c2(E ) + 2c2(E )2

)
=
(
a4 − 2a2b+

1

2
b2
)
θ4min.

So b must be even.

When m > 2, this approach fails because the denominators are hard to control and one
must replace K-theory with complex cobordism. �

Remark 3.5 (Intermediate Jacobian of cubic threefolds). There is another known family of
principally polarized abelian varieties for which a minimal class is algebraic: if Y ⊆ P4 is a
smooth cubic threefold, its intermediate Jacobian (JY, θ) is a principally polarized indecom-
posable abelian fivefold. The image by the Abel–Jacobi map of the surface of lines contained
in Y is a smooth surface in JY with minimal class θ3min. So we have

θ3min ∈ H6(JY,Z)smalg

and, when Y is very general (in which case (JY, θ) satisfies Property (P)), again

H6(JC,Z)smalg = H6(JC,Z)alg = Hdg3(X) = Zθ3min,

but I do not know whether the class θ3min is in H6(JY,Z)Ch (by Theorem 2.1, twice this class
is in H6(JY,Z)Ch).

Remark 3.6 (Grassmannians). Historically, the first examples of integral algebraic classes
that are not integral linear combinations of classes of smooth subvarieties were found by
Hartshorne, Rees, and Thomas in 1974 on the Grassmannian Gr(3, 6) (but these examples
immediately extend to all Grasmannians Gr,s := Gr(r, r + s) with r, s ≥ 3 by taking sections
with general sub-Grassmannians Gr(3, 6)). The cohomology ring of the Grassmannian Gr,s is
generated by the Chern classes σ1, . . . , σr of the rank r tautological subbundle. In particular,
one has

H2•(Gr,s,Z)Ch = H2•(Gr,s,Z)alg = Hdg•(Gr,s) = H2•(Gr,s,Z).

However, the subring H2•(Gr,s,Z)smalg can be smaller: Hartshorne, Rees, and Thomas show
that on G3,3, if the class aσ2

1 + bσ2 is the class of a smooth submanifold (not necessarily
algebraic), b is even, so that

H4(Gr,s,Z)smalg $ H4(Gr,s,Z)alg.

They use topological methods, so that their results is only valid over C (although they sketch
a complicated argument valid over all fields of characteristic other than 2). Note that when
r = 2, the class of the smooth subvariety G2,s−1 ⊆ G2,s is σ1,1 = σ2

1 − σ2, hence

H4(G2,s,Z)smalg = H4(G2,s,Z)alg.

Frédéric Han and I, using Macaulay 2, were able to show very simply that the integral-
ity of the number χ(G3,3,E ) =

∫
G3,3

td(G3,3) ch(E ), for any rank 2 vector bundle E on G3,3,
shows that the integer b in the decomposition c2(E ) = aσ2

1+bσ2 must be even. The arguments
used above (using a Lefschetz-type theorem and the Serre construction) give the same con-
clusion (over any field), but only on G3,4. This method cannot be used further, because the
Chern character does not take integral values on Grassmannians.

Remark 3.7 (Grassmannians, continued). Hartshorne conjectured in 1974 that when n ≥ 7,
any smooth subvariety of Pn of codimension 2 is a complete intersection. Voisin showed, by
a simple geometric argument, that Hartshorne’s conjecture would imply that, when r, s ≥ 7,
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any smooth subvariety of Gr,s of codimension 2 should be a complete intersection; in partic-
ular, its class should be a multiple of σ2

1 and this would imply

H4(Gr,s,Q)smalg = Qσ2
1 ( Qσ2

1 ⊕Qσ2 = H4(Gr,s,Q)alg.

4. CURVES CLASSES

As we saw in Section 3, on the Jacobian (JC, θ) of a curve C of genus g, the minimal
class θg−1min is the class of the curve C embedded in JC; it is in particular algebraic. Whether
this Hodge class is algebraic on any principally polarized abelian variety is a difficult ques-
tion (when g ≥ 4). The following result shows that this question is equivalent to the integral
Hodge conjecture for curve classes.

Theorem 4.1 (Beckman–de Gaay Fortman, 2023). Let (X, θ) be a principally polarized abelian
variety of dimension g. One has

(?) H2g−2(X,Z)alg = Hdgg−1(X) ⇐⇒ θg−1min ∈ H2g−2(X,Z)alg.

In particular, (products of) Jacobians of curves satisfy the integral Hodge conjecture for
curve classes. Voisin proved a nice complement to this result.

Theorem 4.2 (Voisin, 2023). Let (X, θ) be a principally polarized abelian variety of dimension g.
The equivalent conditions of (?) imply thatX is a direct summand in a product of Jacobians of curves.

The reason why Voisin was interested in the algebraicity of the minimal curve class
was the following earlier result of hers. In the situation of Remark 3.5, one can prove that the
intermediate Jacobian (JY, θ) is not a product of Jacobians of curves (the Clemens–Griffiths
criterion then implies that Y is not rational). This implies (by the Matusaka criterion) that
the minimal curve class θ4min is not the class of a subvariety of JY . Voisin proved that if the
class θ4min is not algebraic, then Y is not stably rational.3

5. NONPRINCIPALLY POLARIZED ABELIAN VARIETIES

We show that for many types d = (δ1 | · · · | δg), for a very general polarized abelian
variety (X, `) of type d, the groups H2m(X,Z)Ch are as small as they can be, taking into
account the inclusion (1). We recall from Theorem 1.2 that a very general (X, `) satisfies
Property (P).

Proposition 5.1. Let (X, `) be a polarized abelian variety of dimension g and type d = (δ1 | · · · | δg)
that satisfies Property (P). For every m ∈ {1, . . . , g}, one has

H2m(X,Z)Ch ⊆ gcd
(δm
δ1
, (m− 1)!

)
Z`mmin.

In particular, if δ1(m− 1)! | δm, one has

(m− 1)!H2m(X,Z)alg ⊆ H2m(X,Z)Ch ⊆ (m− 1)!Z`mmin

and (when m = g)

(3) H2g(X,Z)Ch = (g − 1)!H2g(X,Z).

3Note that, since (JY, θ) is a Prym variety, the class 2θ4min is algebraic.
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Proof. Given a vector bundle E on X , we may, using Property (P), write its Chern classes as

ci(E ) = ai`
i
min,

where a0, . . . , ag are integers. Using a simple computation based on the expression of the
Chern character as a determinant in the Chern classes, one checks that for everym ∈ {1, . . . , g},
the Chern character chm(E ) can be written, in H2m(X,Q), as

chm(E ) =
(

(−1)m−1
am

(m− 1)!
+
δm
δ1

bm
(m− 1)!

)
`mmin,

for some integer bm. Using the fact, mentioned earlier, that the class chm(E ) is integral, we
deduce that the integer am is divisible by gcd( δm

δ1
, (m− 1)!).

Consider now vector bundles E1, . . . ,Er on X and the product Π := ci1(E1) · · · cir(Er) of
Chern classes, where i1 + · · ·+ ir = m, with i1 ≥ · · · ≥ ir. One checks that either i1 = m and
Π = cm(E1), or r ≥ 2 and Π is a multiple of δm

δ1
`mmin. The proposition follows. �

6. SUBVARIETIES OF ABELIAN VARIETIES

We now turn our attention to subvarieties (as opposed to cycles) of very general prin-
cipally polarized abelian varieties (I don’t have anything to say on this subject about non-
principally polarized abelian varieties). We define, for m ∈ {0, . . . , g}, integers

em(g) := min{e ∈ Z>0 | ∀[(X, θ)] ∈ Ag ∃Z ⊆ X [Z] = e θmmin}.

One has e0(g) = e1(g) = eg(g) = 1 and em(g) ≤ m!.

Curve classes. For eg−1(g), one has

• e2(3) = 1 because every principally polarized abelian threefold is a product of Jaco-
bians of curves;
• eg−1(g) ≥ 2 for all g ≥ 4, because products of Jacobians of curves are characterized by

the fact that they contain a curve with minimal class (Matsusaka’s criterion);
• e3(4) = e4(5) = 2, because every principally polarized abelian variety is a Prym

variety in these dimensions;
• eg−1(g) ≥ 3 for all g ≥ 6, because of Welters’ characterization of principally polarized

abelian varieties containing a curve with twice the minimal class.

A degeneration argument proves that the sequence (eg−1(g))g≥2 is nonincreasing. In 1994,
I gave a lower bound on eg−1(g) which, using the upper bound on the geometric genus of
a curve in a principally polarized abelian variety in terms of its degree proved by Pareschi–
Popa in 2008 and the lower bound on the genus proved by Pirola in 1993, one can improve
to

eg−1(g) >
√
g − 1− 1

2
,

giving the (not very good) lower bounds

g 2 3 4 5 6 7 8 9 10 11 12

eg−1(g) ≥ 1 1 2 2 2 2 3 3 3 3 3

I have an argument which I cannot quite make rigorous (yet) that would prove

eg−1(g) > 1√
2
(g − 5

2
),
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giving the better lower bounds

g 2 3 4 5 6 7 8 9 10 11 12

eg−1(g) ≥ 1 1 2 2 3 4 4 5 6 7 7

As we saw above, these bounds are sharp for g ≤ 5.

As for upper bounds, very little is known for g ≥ 6: apart from the trivial inequal-
ity eg−1(g) ≤ (g − 1)!, the only one I know is e5(6) ≤ 6 (Alexeev–Donagi–Farkas–Izadi–
Ortega).

Higher dimensional subvarieties. For g ≥ 4 and 1 < m < g, I proved in 1995 that the Ja-
cobian locus is an irreducible component of the set of principally polarized abelian varieties
with a subvariety of class θmmin. In particular, em(g) > 1 and e2(g) = 2.

Let (P, θ) be the g dimensional Prym variety associated with a double étale cover of a
curveC of genus g+1. WhenC has a base-point-free grd with 0 < d < 2g+2, Beauville’s theory
of special subvarieties constructs a subvariety of P with class 2d−2r−1θg−rmin . In particular, since
every curve of genus at most 6 has a g26 , one has

e2(4) = e3(5) = 2

(in dimensions 4 and 5, every principally polarized abelian variety is a Prym variety) hence,
in dimensions 4 and 5, there are always surfaces with twice the minimal class.

Finally, fixing m, a degeneration argument proves that both sequences (em(g))g≥m and
(eg−m(g))g≥m are nonincreasing.

Subvarieties with minimal classes. Although this is a slightly different line of research, I
will finish by briefly discussing a conjecture that I made in 1995.

Conjecture 6.1. Let (X, θ) be an indecomposable principally polarized abelian variety of
dimension g that contains a subvariety with class θmmin, with 1 < m < g. Then either (X, θ) is
the Jacobian of a curve, or g = 5, m = 3, and (X, θ) is the intermediate Jacobian of a smooth
cubic threefold.

When m = g − 1, this is Matsusaka’s criterion. Despite the introduction by Pareschi–
Popa of powerful techniques to attack it, this conjecture is still open almost 30 years later.
Here is one easily stated result proved in 2018 by Casalaina-Martin–Popa–Schreieder in di-
mension 5.

Theorem 6.2. Let (X, θ) be an indecomposable principally polarized abelian fivefold that contains
surfaces V,W , both with class θ3min, such that [V + W ] = θ. Then (X, θ) is either the Jacobian of a
curve, or the intermediate Jacobian of a smooth cubic threefold.
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