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Abstract. This is a complement to the article [D].

1. Non-principally polarized abelian varieties

Let (X, `) be a polarized abelian variety of dimension g and type (δ1 | · · · | δg) ([BL], §3.1).
For each m ∈ {1, . . . , g}, we denote by

Hdgm(X) := H2m(X,Z) ∩Hm,m(X)

the group of codimension m Hodge classes on X and we set

`mmin :=
`m

δ1 · · · δmm!
∈ Hdgm(X).

This is a nondivisible class. We will make the assumption

(1) ∀m ∈ {1, . . . , g} Hdgm(X) = Z`mmin.

By Mattuck’s theorem ([BL], Theorem 17.4.1), this holds when (X, `) is very general. Given
a vector bundle E on X, we write its Chern classes in cohomology as ci(E ) = ai`

i
min, where

a0, . . . , ag are integers.

The following computation is [D, Proposition 1.1], but we provide more details in the
proof.

Lemma 1.1. Assume (1) holds. For every m ∈ {1, . . . , g}, the Chern character chm(E ) can
be written, in H2m(X,Q), as

(2) chm(E ) =
(

(−1)m−1
am

(m− 1)!
+
δm
δ1

bm
(m− 1)!

)
`mmin,

for some integer bm.

Proof. By [Mc, p. 28], we have

chm(E ) =
1

m!
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The expansion of this determinant shows that chm(E ) is a sum of terms of the form

± 1

m!
i1

ai1
δ1 · · · δi1i1!

`i1
ai2

δ1 · · · δi2i2!
`i2 · · · aim

δ1 · · · δimim!
`im ,

where i1, . . . , im are nonnegative integers such that i1 + · · · + im = m and {1, . . . ,m} =
{i1, i2 + 1, . . . , im +m− 1}. Since `m = δ1 · · · δmm! `mmin, this term can be rewritten, up to sign,
as

ai1 · · · aim
δ1 · · · δm

δ1 · · · δi1(i1 − 1)! δ1 · · · δi2i2! · · · δ1 · · · δimim!
`mmin

or as

ai1 · · · aim
(m− 1)!

(i1 − 1)! i2! · · · im!

δ1 · · · δm
δ1 · · · δi1δ1 · · · δi2 · · · δ1 · · · δim(m− 1)!

`mmin.

The product δ1 · · · δi1δ1 · · · δi2 · · · δ1 · · · δim in the denominator clearly divides the numerator
δ1 · · · δm. More exactly,

• either δ1 only occurs once in the product, which only happens when i1 = m and
i2 = · · · = im = 0, and the term is (−1)m−1 am

(m−1)! `
m
min;

• or δ1 occurs at least twice, δm does not occur, the product divides δ21δ2 · · · δm−1, and
the term is an integral multiple of δm

δ1
1

(m−1)! `
m
min.

Therefore, one can write chm(E ) as in (2). �

Proposition 1.2. Let (X, `) be a polarized abelian variety of dimension g and type (δ1 | · · · | δg)
that satisfies (1). Let E be a vector bundle on X, with Chern classes ci(E ) = ai`

i
min. For every

m ∈ {1, . . . , g}, the integer am is divisible by gcd( δm
δ1
, (m− 1)!).

Proof. This follows from Lemma 1.1 and the fact that, as explained in [BD, Lemma 4.1], the
class chm(E ) is integral. �

Following [KV, Section 1], we let CH(X)Ch be the subring of the Chow ring ofX generated
by Chern classes of vector bundles (or, equivalently, coherent sheaves) on X. In cohomology,
we have inclusions

H2m(X,Z)Ch ⊂ H2m(X,Z)alg ⊂ Hdgm(X) ⊂ H2m(X,Z)

of subgroups, where H2m(X,Z)alg is the image of CHm(X) by the cycle class map, and
H2m(X,Z)Ch is the image of CHm(X)Ch by the same map.

For each m ∈ {1, . . . , g}, one has inclusions

(3) (m− 1)! CHm(X) ⊂ CHm(X)Ch , (m− 1)!H2m(X,Z)alg ⊂ H2m(X,Z)Ch

(they follow from the equality (m− 1)![Z] = (−1)m−1cm(OZ) in CHm(X), valid for all subva-
rieties Z ⊂ X of codimension m).

Corollary 1.3. Let (X, `) be a polarized abelian variety of dimension g and type (δ1 | · · · | δg)
that satisfies (1). For every m ∈ {1, . . . , g}, one has

H2m(X,Z)Ch ⊂ gcd
(δm
δ1
, (m− 1)!

)
Z`mmin.

In particular, if δ1(m− 1)! | δm, one has

(m− 1)!H2m(X,Z)alg ⊂ H2m(X,Z)Ch ⊂ (m− 1)!Z`mmin.
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Proof. Let E1, . . . ,Er be vector bundles on X and consider the product Π := ci1(E1) · · · cir(Er)
of Chern classes, where i1 + · · ·+ ir = m, with i1 ≥ · · · ≥ ir. We write

cik(Ek) = ak`
ik
min =

`ik

δ1 · · · δik ik!
,

with a1, . . . , ar ∈ Z, so that

Π = a1 · · · ar
δ1 · · · δm

δ1 · · · δi1δ1 · · · δi2 · · · δ1 · · · δir
m!

i1!i2! · · · ir!
`mmin.

As in the proof of Proposition 1.2, either i1 = m and Π = cm(E1), or r ≥ 2 and Π is a multiple
of δm

δ1
`mmin. Using Proposition 1.2, we obtain the corollary. �

Corollary 1.4. Let (X, `) be a polarized abelian variety of dimension g and type (δ1 | · · · | δg)
that satisfies (1). Assume δ1(g − 1)! | δg. One has

CHg(X)Ch = (g − 1)! CHg(X).

Proof. The inclusion ⊃ is (3). Conversely, let η ∈ CHg(X)Ch. Since δ1(g−1)! | δg, Corollary 1.3
implies that deg(η) is divisible by (g − 1)!. Therefore, there exists η′ ∈ CHg(X) such that
η−(g−1)!η′ has degree 0. Since the subgroup of CHg(X) of 0-cycles of degree 0 is divisible, there
exists η′′ ∈ CHg(X) such that η− (g−1)!η′ = (g−1)!η′′. This implies η ∈ (g−1)! CHg(X). �

2. Principally polarized abelian varieties

Remark 2.1 (Jacobians of curves). Let C be a smooth connected projective curve of genus
g ≥ 2 and let JC be its Jacobian, endowed with its canonical principal polarization θ.

We fix a point c of C and embed the curve C in JC by sending a point x of C to the
isomorphism class of OC(x − c). For i ∈ {0, . . . , g}, we define Wi ⊂ JC as the i-fold sum
C + · · ·+ C, with the convention W0 = {o}. Its cohomology class is the minimal class θg−imin.

Let P be the Poincaré line bundle on C × JC, uniquely defined by the properties

P|{c}×JC ' OJC and P|C×{ξ} ' Pξ|C for all ξ ∈ JC,

where Pξ is the numerically trivial line bundle on JC defined by ξ. Following [S, §2, Definition]
(see also [Mk], and [Mu, Definition 4.1]), we define the Picard bundle on JC by

F := R1q∗(P ⊗ p∗OC(−c))

where p : C × JC → C and q : C × JC → JC are the projections. By [S], the sheaf F is
locally free of rank g on JC.

The Chern classes of F were computed by Mattuck in [Mk, §6, Corollary] (see also [S, §4]
and [G, Corollary 3 to Theorem 4]); he obtains:

(4) ∀m ∈ {1, . . . , g} cm(F ) = [Wg−m] ∈ CHm(JC).

Considering translates of F , we get

CHg(JC)Ch = CHg(JC).

Moreover, when C is very general, so that (JC, θ) satisfies (1), one has

∀m ∈ {1, . . . , g} H2m(JC,Z)Ch = H2m(JC,Z)alg = Hdgm(JC) = Zθmmin.
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Question 2.2. What are the subgroups H2m(X,Z)Ch ⊂ Zθmmin for a very general principally
polarized abelian variety (X, θ) of dimension g ≥ 4? The example of Jacobians of curves shows
that there are no numerical obstructions. This question is already intriguing for m = g (a case
where all classes are trivially algebraic).

Question 2.3. The intermediate Jacobian (JX, θ) of a smooth cubic threefold X ⊂ P4 is a
principally polarized abelian variety of dimension 5 which contains a surface with minimal
class θ3min. Is there a vector bundle E on JX with c3(E ) = θ3min?

Question 2.4. On a Prym variety (P, θ), are there vector bundles with “small” Chern classes?
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E-mail address: olivier.debarre@imj-prg.fr


	1. Non-principally polarized abelian varieties
	2. Principally polarized abelian varieties
	References

