
COMPLETE FAMILIES OF SMOOTH PROJECTIVE MANIFOLDS

OLIVIER DEBARRE

ABSTRACT. We discuss nontrivial families of smooth projective manifolds over a smooth pro-
jective curve. Their existence depends on the nature of the fibers and the genus of the base
curve. We will state some of the main theorems that give restrictions on the existence of such
families and explain a couple of constructions.
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1. INTRODUCTION

We work over the field of complex numbers. All varieties are connected. We study
smooth projective morphisms f : X → B with connected fibers, where B is a smooth complete
variety which, for the sake of simplicity, will be assumed to have dimension one (so a smooth
connected projective curve). The first example that comes to mind is the case when f is
trivial, that is, F is a smooth projective variety and f : F × B → B is the second projection.
This case is not interesting, so we will look for morphisms f as above that are nontrivial.

In this talk, we will, after first discussing various notions of triviality (including isotriv-
iality), try to answer the following two questions for various classes F of smooth projective
varieties:

(Q1) does there exist nonisotrivial smooth fibrations with fibers in F ?
(Q2) does there exist nonisotrivial smooth fibrations with fibers in F and base a rational

or elliptic curve?
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2. TRIVIALITY OF SMOOTH FIBRATIONS

Consider a smooth projective fibration f : X → B. By Ehresmann’s theorem, f is C∞-
locally trivial and in particular, its fibers are all diffeomorphic. So their Betti numbers are
constant and, by a standard argument, its Hodge numbers hp,q are also constant (by semi-
continuity, they can only go up by specialization, but the sum

∑
p+q=k h

p,q is the Betti number
bk, so is constant). A difficult theorem of Siu says that the plurigenera (hence also the Kodaira
dimensions) of the fibers are constant.

Obviously, when f is trivial, its fibers are all isomorphic. The converse is however false,
as shown by the following example.

Example 2.1. Consider a Hirzebruch surface f : Fn := P(OP1 ⊕ OP1(n)) → P1, with n > 0.
All fibers of f are isomorphic to P1 but f is not trivial, because the rank-2 vector bundles
OP1 ⊕ OP1(n) and OP1 ⊕ OP1 do not differ by twisting by a rank-1 vector bundle. The same
reasoning shows that f remains nontrivial even after pulling back by any finite morphism
B → P1.

The situation improves when one assumes that the fibers are not uniruled (that is, not
covered by rational curves; this is the case if their Kodaira dimension is nonnegative).

Theorem 2.2 (Matsusaka–Mumford). Let f : X → B be a smooth projective fibration whose fibers
are all projectively isomorphic to a fixed nonuniruled (smooth projective) variety F . There is a finite
étale cover of B over which f becomes trivial.

Sketch of proof. For tautological reasons, f trivializes over the base change IsomB(X,B×F )→
B (we are considering here isomorphisms of polarized varieties). This base change is sur-
jective because all fibers are isomorphic to F ; it is affine because we are considering iso-
morphisms of polarized varieties; it is proper by a theorem of Matsusaka–Mumford (this is
where nonuniruledness is used); it is unramified because, in characteristic zero, all algebraic
groups are smooth; and it is flat because all fibers are isomorphic to Aut(F ). So the base
change is finite étale. �

In the rest of the lecture, we will say that a smooth projective fibration f : X → B is
isotrivial if its fibers are all projectively isomorphic.

3. MODULI STACKS AND MODULI SPACES

One way to look at our setup is to introduce the moduli stack M and (coarse) moduli
space M for the fibers of a smooth fibration f : X → B (in most cases, they exist). Then there
are moduli morphisms

B −→M and B −→ M

The fibration f is trivial if the first map is constant with image a “nonstacky point.” Its fibers
are all isomorphic if the second map is constant. These two properties are not equivalent: a
map B → M might not even lift to a map B →M .

However, it is often the case that a map B → M lifts, after taking a suitable finite cover
B′ → B, to a map B′ →M and in this case, the existence of nonisotrivial smooth fibrations
(that is, an affirmative answer to question (Q1)) is equivalent to the existence of complete
curves contained in M.
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The situation is different for question (Q2): an affirmative answer implies that M con-
tains complete curves of genus 0 or 1, but the converse is false: we will see very simple
examples where the answer to question (Q2) is negative, although M contains complete ra-
tional curves.

4. NONTRIVIAL SMOOTH FIBRATIONS: EXISTENCE AND NONEXISTENCE RESULTS

4.1. Smooth fibrations in curves or abelian varieties. We first answer (negatively) ques-
tion (Q2) when the fibers of the smooth fibration are curves or polarized abelian varieties.

Theorem 4.1 (Shafarevich). Let B be a smooth projective curve of genus 0 or 1 (a rational or
elliptic curve). Any smooth projective fibration f : X → B in curves or in polarized abelian varieties
is isotrivial.

Proof. Because of the Torelli theorem, it is enough to do the case of polarized abelian varieties
(of dimension g > 0). The local system R1f∗Z trivializes on the universal cover B̃ → B.
Choosing a symplectic basis defines a holomorphic map µ : B̃ → Hg to the Siegel upper
half-space. Note that

• B̃ is either P1 (if B is rational) or C (if B is elliptic);
• Hg is a bounded domain: it is biholomorphic to a bounded domain in Cg(g+1)/2.

By Liouville’s theorem (any bounded holomorphic map C → C is constant), the map µ is
constant, hence f is isotrivial. �

Let us now consider question (Q2) for curves of genus g.

The moduli space M2 is affine, so it contains no complete curves. When g ≥ 3, there is
a projective compactification of Mg (the Satake compactification) whose boundary has codi-
mension 2, so Mg does contain complete curves (passing through any point). As explained
(here, there is a finite cover˜→ over which there is a universal curve So there exist non-
isotrivial complete families of smooth curves of any genus g ≥ 3.

Such explicit families were constructed by Kodaira. Briefly, he proceeds as follows:
start from a morphism h : B → C between curves of genus≥ 2, assume that a finite group G
acts without fixed points on C and that there is a cyclic covering X → B×C branched along
the smooth curve

⊔
g∈G{(b, gh(b)) | b ∈ B}. The surface X is smooth and the fiber at b ∈ B of

the fibration f : X → B is a cyclic covering of C branched along the (smooth) orbit G · h(b).
These fibers are all smooth, but not all isomorphic (they are coverings of the fixed curveC, of
genus ≥ 2, branched along a varying divisor, so they cannot be all isomorphic by a theorem
of de Franchis).

Oort refined Kodaira’s construction, starting from a curve B with a morphism p : B →
P1 and constructing the fibration f : X → B in such a way that the associated moduli map
B → Mg(F ) factors through p, therefore proving that Mg actually contains complete rational
curves for infinitely many values of g (this does not contradict Theorem 4.1!). Note that for
g ≥ 22, the compactification Mg is not uniruled, so these rational curves have to be “special”
(when g ≤ 16, the projective variety Mg is uniruled, but this says nothing about complete
rational curves contained in Mg).

As for question (Q2) for principally polarized abelian varieties of dimension g, the
moduli space Ag also has a Satake compactification, whose boundary has codimension g,
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so Ag contains complete subvarieties of dimension g−1 (passing through any point). Explicit
examples of complete rational curves in A2 given by suitable Shimura varieties.

4.2. Smooth fibrations in Calabi–Yau varieties. Question (Q2) for varieties with trivial
canonical bundles also has a negative answer. This follows from a theorem of Griffiths from
the ’70s which has since been vastly generalized by many different authors. One very gen-
eral recent version is an article of Brunebarbe–Cadorel about varieties carrying a complex
polarized variation of Hodge structures ([BC]).

Theorem 4.2 (Griffiths). Let B be a smooth projective curve of genus 0 or 1 (a rational or elliptic
curve). Any smooth projective fibration f : X → B in varieties with trivial canonical bundles is
isotrivial.

Sketch of proof. The proof follows the same path as that of Theorem 4.1. Griffiths proved that
there is a holomorphic period map B → D/Γ, where D is an analytic domain and Γ is a
properly discontinuous group of analytic automorphisms of D.

Griffiths and Schmid then proved that, if B̃ → B is the universal cover, its composition
with the period map lifts to a holomorphic map µ : B̃ → D. Unfortunately, unlike Hg, the
domain D is in general not bounded; however, Griffiths and Schmid proved that the map µ
is “horizontal,” that is, the image of its tangent map lies into a specific subbundle of the
tangent bundle to D and that any horizontal holomorphic map C → D is constant. This
proves that the period map is constant ([GS, Corollary (9.7)]).

The second ingredient (due to Andreotti) is that varieties with trivial canonical bundles
satisfy the infinitesimal Torelli property for their middle cohomology (the differential of
their period map for their local universal deformation is injective). This implies that f is
isotrivial. �

Projectivity is essential here: twistor lines give analytic nonisotrivial families of K3
surfaces (or hyper-Kähler manifolds) over P1.

Concerning question (Q1), we explain now how to construct complete nonisotrivial
families of smooth polarized K3 surfaces. The original idea comes from [BKPS]. Thanks to
the Torelli theorem and the existence of the Baily–Borel compactification, there is a coarse
moduli space F2e for smooth polarized K3 surfaces of degree 2e > 0 which is an open subset
of a projective (19-dimensional) variety F2e; unfortunately, the complement of F2e in F2e is a
divisor. When this divisor is ample (this happens when e = 1 for example), F2e is affine hence
contains no complete curves and any complete family of smooth polarized K3 surfaces of
degree 2e is isotrivial. However, for all e � 0, there are complete nonisotrivial families of
smooth polarized K3 surfaces of degree 2e.

Theorem 4.3 (Debarre–Macrı̀). For each integer e ≥ 62 or in the set

{14, 18, 26, 28, 29, 32, 34, 36, 38, 40, 42, 44, 45, 46, 47, 49, 50, 53, 54, 56, 57, 59, 60},

there exists a nonisotrivial complete family of smooth K3 surfaces with a relative polarization of
degree 2e.

Sketch of proof. The idea is to use Kummer surfaces: if (A,L) is a polarized abelian surface,
the quotientA/±1 has 16 ordinary double points corresponding to the 2-torsion points ofA,
and resolving them gives a (smooth) K3 surfaceK(A). It inherits a nef and big line bundleH
coming from the polarization L of A and 16 (−2)-curves E1, . . . , E16. The trick is to concoct
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ample line bundles on K(A) out of these. This is achieved by the following result: On any
Kummer surface, any rational class

L = aH −
16∑
i=1

aiEi,

where a1 ≥ · · · ≥ a16 > 0 and a > a1+a2+a3+a4, is ample. In particular, the class aH−
∑16

i=1Ei

is ample for all a > 4 and when the polarization L is principal (so that H2 = 4), the self-
intersection of the integral ample class 2e = 3H − 1

2

∑16
i=1Ei is 9 · 4 + 1

4
· 16 · (−2) = 28. This is

the smallest degree 2e that we found; of course, other values of a, a1, . . . , a16 give many more
values of 2e.

To construct the family, one starts from a nonisotrivial complete family of polarized
abelian surfaces and perform the Kummer construction on this family. �

Using recent results on Bridgeland stability conditions for moduli spaces of stable ob-
jects on K3 surfaces and their behavior in families, one can construct nonisotrivial complete
families of polarized hyper-Kähler varieties of any dimensions.

Starting from complete rational curves in A2 (such as Shimura curves), it is not difficult
(using the theorem) to construct complete rational curves in F2e (or in the coarse moduli
space of polarized hyper-Kähler varieties) for infinitely many values of e. These moduli
spaces are known not to be uniruled for e� 0, so these curves have to be “special.”

4.3. Smooth fibrations in varieties of general type. The following theorem is a particular
case of a very general result (itself the termination of a long list of previous works by many
different authors) of Wei–Wu ([WW]). It gives a negative answer to question (Q2) for vari-
eties of general type.

Theorem 4.4. Let B be a smooth projective curve of genus 0 or 1 (a rational or elliptic curve). Any
smooth projective fibration f : X → B in varieties with big canonical bundles is isotrivial.

Concerning question (Q1), I have already explained how to obtain complete non isotriv-
ial families of smooth projective curves of genus 2; taking their relative self-product gives
complete non isotrivial families of smooth projective varieties of general type of any dimen-
sions.

4.4. Smooth fibrations in Fano varieties. A Fano variety is a (smooth projective) variety
whose anticanonical bundle is ample. In dimension 1, there is just P1. Fano surfaces are
more commonly called del Pezzo surfaces: they are P1 × P1 or P2 blown up at at most 8
distinct points “in general position” (no three on a line, no six on a conic, no eight on a cubic
having a node at one of them).

When d ∈ {5, . . . , 9}, all del Pezzo surfaces of degree d are isomorphic, so any smooth
projective fibration is isotrivial according to our definition. When d ∈ {1, 2, 3, 4}, a del Pezzo
surface is the blow up of P2 at 9−d distinct points in general position. In that case, the coarse
moduli space of del Pezzo surfaces is open in an affine,1 hence contains no complete curves.
So in all cases, any smooth projective fibration in smooth del Pezzo surfaces is isotrivial.

1I could not find a reference for this fact. Here is a quick argument based on [I]: the open subset U ⊆
Sym9−d(P2) of distinct points such that no three of them are colinear is the complement of an ample divisor,
hence is affine. Morever ([I, Table (4)]), it consists of stable points for the action of Aut(P2), hence the GIT
quotient U//Aut(P2) is also affine. It contains as an open subset the coarse moduli space of del Pezzo surfaces
of degree d.
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Note that it does not mean that the fibration becomes trivial on a finite cover of the base
because the Matsusaka–Mumford theorem does not apply (any nontrivial P2-bundle on P1

gives a counter-example).

We end the lecture by explaining what we know for Gushel–Mukai (or GM) varieties. If
CGr(2,C5) ⊆ P(C⊕

∧
2C5) is the cone over the Plücker embedded Grassmannian Gr(2,C5) ⊆

P(
∧

2C5), a GM variety is a smooth transverse intersection

X := CGr(2,C5) ∩Pn+4 ∩Q,
where Q is a quadric hypersurface. Its dimension n is at most 6 and ωX = OX(2 − n), so
that X is a Fano variety for n ∈ {3, 4, 5, 6} (GM curves are Brill–Noether general curves of
genus 6; GM surfaces are Brill–Noether general polarized K3 surfaces of degree 10 ). There
is a quasi-projective coarse moduli space MGM

n for GM n-folds; it is irreducible of dimension
25− (5− n)(6− n)/2 and there is a map

πn : MGM
n −→ MEPW,

where MEPW is the irreducible 20-dimensional affine coarse moduli space for EPW sextics
Y ⊆ P5: these are sextic hypersurfaces whose singular locus is a normal irreducible surface
with finite singular locus, empty for [Y ] ∈ MEPW general. When n ∈ {3, 4, 5, 6}, the map πn is
surjective and its fibers are as follows:2

π−1n ([Y ]) =


P5 r Y when n = 6;

P5 r Ysing when n = 5;

Y r (Ysing)sing when n = 4;

Ysing when n = 3.

The coarse moduli space MGM
6 is affine, so it contains no complete curves and any complete

family of GM sixfolds is isotrivial. It is clear from the description of πn that MGM
3 ,MGM

4 ,MGM
5

all contain complete curves (necessarily contained in the fibers of πn) through any point.
This answers question (Q1) for these Fano vareties.

Question (Q2) is more delicate. With Kuznetsov, we were able to prove that the follow-
ing families exist:

• nonisotrivial families of GM 5folds parametrized by P1 (more exactly, by any bitan-
gent line to Y );
• nonisotrivial families of GM 4folds parametrized by P1 (more exactly, by any rational

curve contained in a canonical double cover of Y called a double EPW sextic);
• nonisotrivial families of GM 3folds parametrized by the (projective) surface Ysing

when that surface is smooth. However, these surfaces contain no rational curves.

The answer to the following subquestion of question (Q2) seems unknown (refering
to the description above, it is not known whether the surface Ysing contains rational curves
when it is singular).

Question 4.5 (Javanpeykar). Are there nonisotrivial families of Fano threefolds parametrized
by P1?

Note that there are nonisotrivial families of Fano threefolds parametrized by an elliptic
curve (these are blowups of a fixed smooth complete intersection of two quadrics in P5 along
a varying line).

2To be precise, one needs to quotient out these quasiprojective varieties by the action of a finite group of
automorphisms which is trivial for [Y ] general (see [DK, Section 2.3]).



COMPLETE FAMILIES OF SMOOTH PROJECTIVE MANIFOLDS 7

REFERENCES

[BKPS] Borcherds, R., Katzarkov, L., Pantev, T., Shepherd-Barron, N.I., Families of K3 surfaces, J. Algebraic
Geom. 7 (1998), 183–193.

[BC] Brunebarbe, Y., Cadorel, B., Hyperbolicity of varieties supporting a variation of Hodge structure, Int.
Math. Res. Not. IMRN 6 (2020), 1601–1609.

[DK] Debarre, O., Kuznetsov, A., Gushel–Mukai varieties: intermediate Jacobians, Epijournal Gom.
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