
PARAMETRIZING SUBVARIETIES OF AN ALGEBRAIC VARIETY

OLIVIER DEBARRE

ABSTRACT. This talk has two parts. The first part (Sections 1–4) is a colloquium style discus-
sion on the problem of parametrizing subvarieties (like lines or conics) of a given complex
algebraic variety X in a projective space. We mostly concentrate on the case where X is a
smooth cubic hypersurface and introduce at the end intermediate Jacobians and Abel–Jacobi
maps.

In the second part, we switch to another family of Fano manifolds: Gushel–Mukai mani-
folds. We describe in Section 6 their families of lines and conics. In the last section, we discuss
derived categories and how Bridgeland stability conditions and moduli spaces of stable ob-
jects can be used to describe moduli spaces of polarized hyper-Kähler manifolds of infinitely
many different dimensions.
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1. LINES AND CONICS IN THE PROJECTIVE SPACE

A complex projective algebraic variety is a subset X of the complex projective space
defined by homegeneous polynomial equations. We will always assume that X is a smooth
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vanni Mongardi for inviting me to this beautiful town.

1



2 O. DEBARRE

(a complex manifold). One can then consider families of subvarieties of X of a given type
(lines, conics, planes...). These families are themselves algebraic varieties which sometimes
have interesting geometries.

All varieties are complex algebraic, and often projective (that is, subvarieties of some
projective space) and in particular compact.

Examples 1.1. Take X = Pn = P(Vn+1).

(1) Projective lines in Pn are parametrized by the Grassmannian variety Gr(2, Vn+1)
(they correspond to 2-dimensional subspaces in Vn+1), itself a smooth irreducible projective
variety of dimension 2(n− 1), realized via the Plücker embedding

Gr(2, Vn+1) −→ P(
∧

2Vn+1), [V2] 7−→ [
∧

2V2]

as the locus in P(
∧

2Vn+1) of “bivectors” of rank 2. One defines similarly the Grassmannian
Gr(k + 1, Vn+1), which parametrizes linear subspaces of Pn of dimension k; it is a smooth
irreducible projective algebraic variety of dimension (k + 1)(n− k).

(2) For conics in Pn, there is a morphism

{conics C ⊆ Pn} −→ {P2 ⊆ Pn} = Gr(3, Vn+1), [C] 7−→ 〈C〉

that sends a conic C to its linear span 〈C〉. It is a P5-bundle (conics contained in a given
plane are parametrized by P5). So the family of conics in Pn is again a smooth irreducible
algebraic variety of dimension 3(n − 2) + 5 = 3n − 1. Note that these “conics” also include
intersecting pairs of lines and “double” (plane) lines.

In general, local deformations of a smooth projective subvariety Y ⊆ X are governed
by (algebraic) sections of its normal bundle NY/X . More exactly, the local deformation space
is defined by h1(Y,NY/X) equations in a smooth variety of dimension h0(Y,NY/X), hence

• it has dimension ≥ h0(Y,NY/X) − h1(Y,NY/X) (this number is called the “expected
dimension”);
• it is smooth when H1(Y,NY/X) = 0.

Examples 1.2. (1) Let L ⊆ Pn be a line. Its normal bundle is

NL/Pn ' OL(1)⊕(n−1),

hence h0(L,NL/Pn) = 2n−2 and h1(L,NL/Pn) = 0: we recover the fact that the Grassmannian
variety Gr(2, Vn+1) is everywhere smooth of the expected dimension 2n− 2.

(2) Let C ⊆ Pn be a smooth conic. There is an exact sequence

0 // NC/〈C〉 //

∼

��

NC/Pn // NC/Pn|C //

∼

��

0

OC(4) OC(2)⊕(n−2)

of normal bundles, from which we obtain h0(C,NC/Pn) = 3(n − 2) + 5 = 3n − 1 and
h1(C,NC/Pn) = 0: we recover the fact that the family of conics in Pn is everywhere smooth
of the expected dimension 3n− 1.
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2. LINES ON SMOOTH CUBIC HYPERSURFACES

Let X ⊆ Pn+1 = P(Vn+2) be a smooth cubic hypersurface (that is, defined by a homo-
geneous polynomial of degree 3 or, more canonically, by a nonzero f ∈ Sym3 V ∨n+2). We let
F (X) ⊆ Gr(2, Vn+2) be the family of lines contained in X .

Proposition 2.1. (a) The family F (X) is smooth and

• it is empty if n = 1;
• it consists of 27 points if n = 2;
• it is connected and has dimension 2n− 4 if n ≥ 3.

(b) Its canonical line bundle is ωF (X) = Ω
top
F (X) ' OF (X)(4− n).

Proof. If L ⊆ X is a line, there is an exact sequence

0 // NL/X
// NL/Pn+1 //

∼

��

NX/Pn+1 |L //

∼

��

0

OL(1)⊕n OL(3)

of normal bundles. The fact thatX is smooth implies that the induced mapH0(L,NL/Pn+1)→
H0(L,NX/Pn+1 |L) between spaces of global sections is surjective. This implies

• h1(L,NL/X) = 0: the variety F (X) is smooth at [L];
• h0(L,NL/X) = 2n− 4: the variety F (X) has dimension 2n− 4 at [L].

To obtain global statements about F (X), one needs a different approach. We note that
F (X) ⊆ Gr(2, Vn+2) is the zero locus of a section σ of a vector bundle of rank 4 on Gr(2, Vn+2):
if U2 is the rank-2 tautological subbundle on Gr(2, Vn+2) (its fiber at a point [V2] is just the
vector space V2), we consider the rank-4 vector bundle Sym3U ∨

2 . The map Gr(2, Vn+2) →
Sym3U ∨

2 that sends a point [V2] ∈ Gr(2, Vn+2) to the restriction of the equation f ∈ Sym3 V ∨n+2

of X to V2 is a section of that vector bundle whose zero locus is F (X) and we just proved (by
the local study above) that it has the expected codimension 4 = rank(Sym3U ∨

2 ). This has the
following consequences:

• the cohomology class of F (X) in H•(Gr(2, Vn+2),Z) is the top Chern class of Sym3U ∨
2

(this gives in particular the 27 points when n = 2);
• its canonical bundle is ωF (X) = ωGr(2,Vn+2) ⊗ det(Sym3U ∨

2 )|F (X) = OF (X)(−n − 2 + 6)
(adjunction formula).

This proves the proposition (except for the connectedness statement). �

Examples 2.2. (1) When n = 3, the variety F (X) is a surface of general type. One computes
its first Betti number b1(F (X)) = 10 (all Betti numbers are known).

(2) When n = 4, the variety F (X) is a fourfold with trivial canonical bundle. It is in fact
a hyper-Kähler manifold: it is simply connected and carries a holomorphic symplectic 2-
form ([BD]). One computes b1(F (X)) = 0 and b2(F (X)) = 23 (all Betti numbers are known).

3. TWISTED CUBICS ON A SMOOTH CUBIC HYPERSURFACE

Conics on a cubic hypersurface are too much related to lines to produce anything in-
teresting, so we go up one degree more to curves of degree 3. A twisted cubic is the image of
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the morphism given in homogeneous coordinates by

P1 −→ P3, [s, t] 7−→ [s3, s2t, st2, t3].

Unlike lines and conics, twisted cubics have complicated degenerations. However, the clo-
sure H(P3) of the family H(P3)0 of (smooth) twisted cubics in P3 is still a smooth projective
irreducible variety of dimension 10. It contains a smooth hypersurface corresponding to sin-
gular plane cubic curves with an “embedded” point.

Given a smooth cubic hypersurface X ⊆ Pn+1 = P(Vn+2), we let H(X)0 be the scheme
of (smooth) twisted cubics in X and we let H(X) be its closure. There is a morphism

h : H(X) −→ Gr(4, Vn+2)(1)
[C] 7−→ 〈C〉.

The fiber of [P3] ∈ Gr(4, Vn+2) is the family of twisted cubics (and their degenerations) con-
tained in S := P3 ∩X . We face two potential problems here:

• the linear space P3 might be contained in X (this can happen when n ≥ 6);
• even if S is a surface, it might be very singular.

3.1. Twisted cubics on cubic threefolds. Let X ⊆ P4 be a smooth cubic threefold. The
schemeH(X)0 of smooth twisted cubics inX was studied by Harris–Roth–Starr: they proved
that it is smooth irreducible of the expected dimension 6 ([HRS, Theorem 4.4]). The three-
fold X contains no planes, so any hyperplane section S := P3 ∩ X is an irreducible cubic
surface. One shows that the curve C ⊆ S moves into a two-dimensional family of curves
inside S. In fact, the morphism h in (1) factors as

H(X)
P2-fibration

// H ′(X)
finite of

degree 72
// Gr(4, Vn+2)

(see [HRS, Theorem 4.5]). It is likely that the later article [LLSvS] proves more (see next
section).

3.2. Twisted cubics on cubic fourfolds. Let X ⊆ P4 be a smooth cubic threefold. Then X
contains no P3 and, in general, no P2; we make that assumption. Any linear section P3 ∩X
is then an irreducible surface. The Stein factorization of the morphism h in (1) is then

H(X)
P2-fibration

// H ′(X)
finite of

degree 72
// Gr(4, Vn+2).

smooth proj.

of dim. 10

smooth proj.

of dim. 8

There is a final step to this construction: the contraction H ′(X) → H ′′(X) of the hy-
persurface coming from “strange” cubics. The final product H ′′(X) is a smooth hyper-Kähler
manifold of dimension 8. All these results appear in [LLSvS].

Remark 3.1 (Curves of higher degrees). Studying geometrically curves of higher degrees
on X seems very difficult. It is however easy to compute the expected dimension of the
space of smooth rational curves C of degree d on X . Indeed, one has

deg(NC/X) = deg(TX |C)− deg(TC) = d(n− 1)− 2.

The expected dimension of the local deformation space of C into X is

h0(C,NC/X)− h1(C,NC/X) = χ(C,NC/X),



PARAMETRIZING SUBVARIETIES OF AN ALGEBRAIC VARIETY 5

which is equal to, by the Riemann–Roch formula,

χ(C,NC/X) = deg(NC/X) + rank(NC/X)(1− g(C)) = (d+ 1)(n− 1)− 2.

The following table gives the expected dimensions for small values of n = dim(X) and
d = deg(C).

d=deg(C)
n=dim(X) 2 3 4 5

1 0 2 4 6

2 1 4 7 10

3 2 6 10 14

4. COHOMOLOGICAL CONSTRUCTIONS

We take advantage of the Hodge decomposition of the singular cohomology of smooth
compact Kähler manifolds to produce more constructions.

4.1. Jacobians of curves. Let C be a smooth projective curve of genus g and fix a point
p0 ∈ C. One would like to integrate holomorphic 1-forms on C from p0 to another point p.
This will depend on the choice of a path from p0 to p. The way to make this construction
work is the consider the map

H1(C,Z) −→ H0(C,Ω1
C)∨, γ 7−→

(
ω 7→

∫
γ

ω
)
.

This is an embedding of a rank-2g free abelian group into a g-dimensional vector space. The
quotient

Jac(C) := H0(C,Ω1
C)∨/H1(C,Z)

is a g-dimensional complex torus (homeomorphic to (S1)2g) called the Jacobian of C. The
Abel–Jacobi map

AJ : C −→ Jac(C), p 7→
(
ω 7→

∫ p

p0

ω
)

is well defined (it depends on the choice of the point p0).

Alternatively, one may start from the Hodge decomposition

H1(C,C) = H0,1(C)⊕H1,0(C)

into complex vector subspaces of dimension g, whereH1,0(C) = H0,1(C) ' H0(C,Ω1
C). Then,

Jac(C) := H1(C,C)/
(
H1(C,Z) +H1,0(C)

)
.

An important additional point is that the intersection form (cap product) on H1(C,Z)
defines an algebraic structure on Jac(C) that makes it into a principally polarized abelian
variety: it contains a theta divisor (well defined up to translation) that can be defined as the
sum

g−1 times︷ ︸︸ ︷
AJ(C) + · · ·+ AJ(C) ⊆ Jac(C).
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4.2. Intermediate Jacobians. More generally, let X be a smooth projective manifold of odd
dimension 2m+ 1. There is again a Hodge decomposition of the middle cohomology

H2m+1(X,C) = H0,2m+1(X)⊕ · · · ⊕Hm,m+1(X)⊕Hm+1,m(X)⊕ · · · ⊕H2m+1,0(X)

into a direct sum of complex subspaces and Griffiths defined the intermediate Jacobian

Jac(X) := H2m+1(X,C)/
(
H2m+1(X,Z) +Hm+1,m(X)⊕ · · · ⊕H2m+1,0(X)

)
of X . Given a family (Zt ⊆ X)t∈T of subvarieties of X of dimension m parametrized by a
connected algebraic variety T and a point t0 ∈ T , there is also an Abel–Jacobi map

AJ : T −→ Jac(X), t 7→
(
ω 7→

∫
Γ

ω
)
,

where Γ is any (m + 1)-chain such that ∂Γ = Zt − Zt0 (this chain Γ exists because all the
subvarieties Zt are cohomologous to Zt0). Griffiths proved that this map is holomorphic.

In general, Jac(X) is only a complex torus of dimension 1
2
b2m+1(X) with no algebraic

structure. However, when there are only two nonzero terms in the Hodge decomposition,

(2) H2m+1(X,C) = Hm,m+1(X)⊕Hm+1,m(X),

the cup product makes Jac(X) into a principally polarized abelian variety (as in the case of
curves).

Examples 4.1. (1) A typical example is whenX ⊆ P4 is a cubic threefold. The condition (2) is
satisfied (because H0,3(X) = 0) and Jac(X) is a 5-dimensional principally polarized abelian
variety. The Abel–Jacobi map

AJ : F (X) −→ Jac(X)

for the family F (X) of lines on X is a closed immersion whose image is a surface S(X) such
that the set of differences S(X)−S(X) ⊆ Jac(X) is a theta divisor (Mumford–Beauville, [B]).

Consider the universal line

L := {(x, L) | x ∈ L ⊆ X}

pr2
))

pr1
vv

X F (X).

The induced map

H3(X,Z) ∼−→H1(Jac(X),Z)
AJ∗−−→ H1(F (X),Z)

in cohomology is then pr2∗ pr
∗
1.

For the 6-dimensional family H(X) of twisted cubics on X , it was shown in [HRS,
Corollary 4.7] that the Abel–Jacobi map

AJ : H(X) −→ Jac(X)

is birationally a P2-bundle onto a theta divisor.

(2) When X ⊆ P5 is a cubic fourfold, there is no intermediate Jacobian, because the
dimension of X is even. However, there is still an isomorphism

pr2∗ pr
∗
1 : H4(X,Z) ∼−→H2(F (X),Z).

These results have been generalized in any dimension (see [H, Chapter 2, Section 5.2]).
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5. GUSHEL–MUKAI MANIFOLDS

We now switch to different families of manifolds that present many similarities with
cubic hypersurfaces. A Gushel–Mukai manifold is a smooth transverse intersection

X = CGr(2, V5) ∩Q ∩P(Wn+5) ⊆ P(C⊕
∧

2V5) = P10,

where CGr(2, V5) is the cone with vertex v over the Grassmannian Gr(2, V5) ⊆ P(
∧

2V5) andQ
is a quadric. It has dimension n ≤ 6 and its canonical bundle is ωX = OX(2 − n). There is a
canonical projection map γ : X → Gr(2, V5) and we say that X is

• ordinary if v /∈ P(Wn+5), in which case n ≤ 5 and γ is an embedding;
• special if v ∈ P(Wn+5), in which case γ is a double cover of its image.

We will assume 3 ≤ n ≤ 6, so that ωX is antiample (X is a genus-6 curve when n = 1, and a
K3 surface when n = 2).

As before, we study lines, conics... on X . As in Remark 3.1, the expected dimension of
the family of degree-d rational curves C ⊆ X is

χ(C,NC/X) = deg(TX |C)− deg(TC) + rank(NC/X)(1− g(C)) = (d+ 1)(n− 1)− 1.

The following table gives the expected dimensions for small values of d = deg(C).

d=deg(C)
n=dim(X) 3 4 5 6

1 1 3 5 7

2 2 5 8 11

3 3 7 11 15

6. LINES AND CONICS ON A GUSHEL–MUKAI MANIFOLD

The scheme of lines on a Gushel–Mukai manifold of dimension n always has the ex-
pected dimension 2n − 3; it is connected, and smooth when X is general (we also have a
precise description of its singularities in all cases).

For conics, the most interesting cases are n ∈ {3, 4}. The following theorem states our
results under the simplifying generality assumptions that X is ordinary and Y ≥3

A(X)⊥
is empty

(the varieties Ỹ ≥k
A(X)⊥

will be “defined” after the statement of the theorem).

Theorem 6.1 (D.–Kuznetsov). Let X be an ordinary Gushel–Mukai manifold of dimension n such
that Y ≥3

A(X)⊥
= ∅ and let G(X) be the scheme of conics on X .

(a) When n = 3, the scheme G(X) is a smooth irreducible projective surface of general type
which is the blow up of Ỹ ≥2

A(X)⊥
at one point.

(b) When n = 4 and X contains no planes, the scheme G(X) is a smooth irreducible projective
fourfold and fits into a diagram

G̃(X)

P1-fibration

&&

blowup of a smooth

3-dimensional quadric

||

G(X) Blp′X ,p′′X (Ỹ ≥1
A(X)⊥

).
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The projective varieties Ỹ ≥1
A(X)⊥

, Ỹ ≥2
A(X)⊥

, and Y ≥3
A(X)⊥

are important objects attached to
any Gushel–Mukai manifold X :

• Y ≥3
A(X)⊥

is a finite set which is empty when X is general;

• Ỹ ≥1
A(X)⊥

is a hyper-Kähler fourfold (called a double Eisenbud–Popescu–Walter sextic) which
is singular along Y ≥3

A(X)⊥
;

• Ỹ ≥2
A(X)⊥

is a surface which is singular along Y ≥3
A(X)⊥

.

In dimensions 5 and 6, we have analogous results about the scheme G2(X) of quadric
surfaces contained in X :

• when n = 5, the scheme G2(X) has a component which has a P1-fibration over the
surface Ỹ ≥2

A(X)⊥
;

• when n = 6 and Y ≥3
A(X)⊥

= ∅, the scheme G2(X) has a component which has a P3-

fibration over the fourfold Ỹ ≥1
A(X)⊥

.

Therefore,

• When n is odd, the important object is the surface Ỹ ≥2
A(X)⊥

. One can show that X has a
10-dimensional principally polarized intermediate Jacobian Jac(X) and that there is
an isomorphism

Hn(X,Z) ∼−→H1(Ỹ ≥2
A(X)⊥

,Z)

which induces an isomorphism

Alb(Ỹ ≥2
A(X)⊥

) ∼−→ Jac(X),

where Alb(Ỹ ≥2
A(X)⊥

) is the Albanese variety of the surface Ỹ ≥2
A(X)⊥

(compare with Exam-
ples 4.1).
• When n is even, the important object is the hyper-Kähler fourfold Ỹ ≥1

A(X)⊥
. There is also

an isomorphism

Hn(X,Z)0
∼−→H2(Ỹ ≥1

A(X)⊥
,Z)0

where the indices 0 indicate that you have to take some kind of “primitive part.”

In both cases, we expect the isomorphisms to be given by the Abel–Jacobi maps associated
with families of conics or quadric surfaces, but we have not written down the proof yet.

So what is next? Studying twisted cubics on Gushel–Mukai manifolds? Their geometry
seems very complicated. We describe in the next section a more fruitful approach based on
derived categories.

7. DERIVED CATEGORIES

Given a smooth projective variety X , we denote by D(X) the derived category of
bounded complexes of coherent sheaves (see [Ku, Section 1] for a bit more details).

7.1. Cubic hypersurfaces. LetX ⊆ Pn+1 be a smooth cubic hypersurface. Kuznetsov proved
(see [Ku, Example 2.11]) that there is a semiorthogonal decomposition

D(X) = 〈Ku(X),OX ,OX(1), . . . ,OX(n− 2)〉,
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where the full triangulated subcategory Ku(X) is the Kuznetsov component. The category
Ku(X) has a Serre functor SKu(X) that satisfies S3/c

Ku(X) '
[
n+2
c

]
; in particular, when n = 4, it

is a K3 category on which Bayer–Lahoz–Macrı̀-Stellari constructed in [BLMS] a Bridgeland
stability condition σ (this had been done in [BMMS] for cubic threefolds). In particular, one
can then study moduli spaces of σ-stable objects in Ku(X).

More precisely, still when n = 4, there is an extended Mukai lattice

H̃(Ku(X),Z) ' H•(K3,Z) = H0 ⊕H2 ⊕H4

with a weight-2 Hodge structure and a Mukai vector

v : Ktop(Ku(X)) −→ H̃(Ku(X),Z)

such that v(E) · v(F ) = −χ(E,F ). We let H̃alg(Ku(X),Z) be the image of v (the “algebraic
classes”).

The following result was proved in [BLMNPS].

Theorem 7.1. Let X be a smooth cubic fourfold, let v ∈ H̃alg(Ku(X),Z) be a nonzero primi-
tive vector, and let σ be a stability condition which is general with respect to v. The moduli space
Mσ(Ku(X), v) of σ-stable objects in Ku(X) with Mukai vector v is a smooth irreducible projective
hyper-Kähler manifold of deformation type K3[ v

2

2
+1].

This result is obtained by deformation from the previously known case where Ku(X) '
D(K3).

The lattice H̃alg(Ku(X),Z) contains a sublattice Zλ1 ⊕ Zλ2, with intersection matrix(
2 −1
−1 2

)
; if L ⊆ X is a line and p is the left-adjoint to the inclusion Ku(X) ↪→ D(X), the

class λ1 is v(p(OL(1))) and the class λ2 is v(p(OL(2))).

Corollary 7.2. Let (a, b) be a pair of coprime integers and set n := a2 − ab + b2. There exists a
unirational locally complete 20-dimensional family of smooth polarized hyper-Kähler manifolds of
deformation type K3[n+1]. The polarization has{

degree 6n and divisibility 2n if 3 - n;
degree 2n

3
and divisibility 2n

3
if 3 | n.

Proof. This is Mσ(Ku(X), aλ1 + bλ2). �

Examples 7.3. (1) When a = b = 1, we get the variety F (X) of lines contained in X studied
in Section 2 ([LPZ]).

(2) When a = 2 and b = 1 and X contains no planes, we get the variety H ′′(X) studied
in Section 3 ([LPZ]).

7.2. Gushel–Mukai manifolds. LetX be a Gushel–Mukai manifold of dimension n ∈ {3, 4, 5, 6}.
Kuznetsov and Perry proved in [KP] that there is a semiorthogonal decomposition

D(X) = 〈Ku(X),OX ,U
∨
X ,OX(1),U ∨

X (1), . . . ,OX(n− 3),U ∨
X (n− 3)〉,

where UX is the pullback by the map γ : X → Gr(2, V5) of the tautological rank-2 subbundle
on Gr(2, V5). The Serre functor SKu(X) is

• [2] if n is even (so that Ku(X) is a K3 category);
• ι ◦ [2] if n is odd, where ι is a nontrivial involutive autoequivalence.
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Moreover, there are Bridgeland stability conditions on Ku(X) ([PPZ]). As in the case of cubic
fourfolds, there is an extended Mukai lattice H̃(Ku(X),Z), a Mukai vector

v : Ktop(Ku(X)) −→ H̃(Ku(X),Z),

and two algebraic classes λ1, λ2 ∈ H̃alg(Ku(X),Z) with intersection matrix
(

2 0
0 2

)
. The follow-

ing result was proved in [PPZ].

Theorem 7.4. Let X be a Gushel–Mukai manifold of dimension n ∈ {4, 6}, let v ∈ H̃alg(Ku(X),Z)
be a nonzero primitive vector, and let σ be a stability condition which is general with respect to v.
The moduli space Mσ(Ku(X), v) of σ-stable objects in Ku(X) with Mukai vector v is a smooth
irreducible projective hyper-Kähler manifold of deformation type K3[ v

2

2
+1].

Corollary 7.5. Let (a, b) be a pair of coprime integers. There exists a unirational locally complete
20-dimensional family of smooth polarized hyper-Kähler manifolds of deformation type K3[a2+b2+1].
The polarization has degree 2(a2 + b2) and divisibility a2 + b2.

Proof. This is Mσ(Ku(X), aλ1 + bλ2). �

Examples 7.6. Let X be a very general Gushel–Mukai fourfold.

(1) When a = 1 and b = 0, we get the hyper-Kähler fourfold Ỹ ≥1
A(X)⊥

studied in Section 6,

and when a = 0 and b = 1, we get the hyper-Kähler fourfold Ỹ ≥1
A(X) ([PPZ, Proposition 5.17],

[GLZ, Theorem 1.1]).

(2) When a = b = 1, we get the hyper-Kähler sixfold constructed in [IKKR] ([KKM,
Theorem 1.1]).

REFERENCES

[BLMNPS] Bayer, A., Lahoz, M., Macrı̀, E., Nuer, H., Perry, A., Stellari, P., Stability conditions in families, Publ.
Math. Inst. Hautes Études Sci. 133 (2021), 157–325.

[BLMS] Bayer, A., Lahoz, M., Macrı̀, E., Stellari, P., Stability conditions on Kuznetsov components, eprint
arXiv:1703.10839.

[B] Beauville, A., Les singularités du diviseur Θ de la jacobienne intermédiaire de l’hypersurface cu-
bique dans P4, Algebraic threefolds (Cime, Varenna, 1981), 190–208, Lecture Notes 947, Springer,
Berlin-New York, 1982.
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