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ABSTRACT. We discuss new and old techniques used for, and recent progress obtained on,
the problem of detecting rationality, stable rationality, or unirationality of smooth projective
complex varieties.

CONTENTS

1. Introduction 1

2. Examples and first properties 2

2.1. Fano varieties and hypersurfaces 2

2.2. Rationally connected varieties 4

2.3. Curves and surfaces 5

3. Behavior in families 5

4. Rationality versus unirationality 8

4.1. The intermediate Jacobian 9

4.2. Birational rigidity 13

5. Rationality versus stable rationality 14

6. Stable rationality versus unirationality 14

6.1. The torsion of H3(•,Z) 14

6.2. The Brauer group 15

6.3. The Artin–Mumford example 16

7. The Chow group of 0-cycles 17

7.1. Chow groups 17

7.2. Universally CH0-trivial varieties and Chow decomposition of the diagonal 19

7.3. Applications 21

References 24

Date: February 6, 2023.
These notes were written for the RTG/SCGP Graduate Workshop on the Birational Complexity of Algebraic

Varieties which took place at the Simons Center for Geometry and Physics in Stony Brook, December 5–9, 2022.
I thank the organizers for giving me the opportunity to give this series of lectures, the SCGP for support, and
Evgeny Shinder for his comments on the first version of these notes.

1



2 O. DEBARRE

1. INTRODUCTION

The rationality problem for a (smooth projective) variety X defined over a field k is to
measure how close it is to the projective space Pn

k of the same dimension n. There are several
variants of this problem; we say that

(R) X is k-rational if there is a birational isomorphism Pn
k

∼
99KX (equivalenty, k(X) is a

purely transcendental extension of k);
(SR) X is stably k-rational if there is a nonnegative integer m such that X×Pm

k is k-rational
(equivalenty, k(X)(t1, . . . , tm) is a purely transcendental extension of k);

(UR) X is k-unirational if there is a nonnegative integer m and a rational dominant map
Pm

k 99K X (equivalenty, if k(X) is contained in a purely transcendental extension
of k);

(RC) X is k-rationally connected if any two general geometric points of X can be joined by
a rational curve.1

Note that each of these notions is invariant under birational isomorphisms; in other
words, they only depend on the function field k(X).

Comments on the base field k. In all rights, one should indicate the base field k in the notation:
the properties (R), (SR), and (UR) strongly depend on k. Also, the definitions (UR) and (RC)
given above are actually not the “right ones” when the characteristic of k is positive (one
should require that the unirationality map is separable—the property is then called separa-
ble unirationality; a similar adjustment can be made to define separable rational connected-
ness). It is therefore easier to assume that k is an algebraically closed field of characteristic
zero. By the Lefschetz principle, we might as well take k = C.

Note that there is no need to define stably k-unirational or stably k-rationally con-
nected and that in (UR), one can take m = n (restrict the dominant rational map to a general
linear subspace of dimension n). One obviously has

(1) (R) =⇒ (SR) =⇒ (UR) =⇒ (RC).

All these implications are equivalences in dimensions ≤ 2 (see Section 2.3). The reverse
implication (SR) ⇒ (R) is known to be false in dimensions ≥ 3 (see Section 5) and so is
the implication (UR) ⇒ (SR) (see Theorem 6.7 and Corollary 7.11) but, embarrassingly, the
nature of the reverse implication (RC)⇒ (UR) is not known, although it is certainly expected
to be false.

The plan of these lectures is as follows. In Section 2, we briefly review what is known
for hypersurfaces of the projective space and give a characterization of rationally connected
varieties that shows that simple-minded topological or cohomological invariants are often
unable to distinguish between the various notions defined above. In Section 3, we explain
their behavior in smooth families, with a brief account of the beautiful results of Nicaise–
Shinder and Kontsevich–Tschinkel on (stable) rationality in smooth families.

In Section 4, we turn to the more classical Lüroth problem of distinguishing between
rationality and unirationality and present the classical counter-examples given in the sev-
enties by Clemens–Griffiths, Iskovskikh–Manin, and Artin–Mumford. We emphasize the
Clemens–Griffiths criterion of irrationality for Fano threefolds, which is based on the proper-
ties of their intermediate Jacobians, and its consequences. We briefly present in Section 5 the

1This is the correct definition only when k is uncountable. In general, the property should hold after passing
to any algebraically closed extension L/k.
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stably rational but not rational threefolds constructed by Beauville–Colliot-Thélène–Sansuc–
Swinnerton-Dyer in 1985.

Section 6 is devoted to the Artin–Mumford example of a unirational but not stably
rational threefold. The proof we present uses basic properties of the Brauer group, which
we explain. The last section, Section 7, we discuss how Chow groups (mostly of 0-cycles)
can be used for rationality problems. The far-reaching idea of Voisin of using the Chow
decomposition of the diagonal (pioneered by Boch–Srinivas in the eighties) has led to all
kind of new results about rationality problems, which we briefly and partially survey.

However, despite all these progress, the most basic question of all remains unan-
swered: are there any irrational smooth cubic hypersurfaces in P5

C? It seems that, after all,
the simplest-looking examples are the hardest.

Conventions. A variety is an integral scheme of finite type over a field. Subvarieties are
always closed. “General” means “outside a strict subvariety” and “very general” means
“outside a countable union of strict subvarieties.”

Acknowledgements. These notes are based on the beautiful text [B4] written by Arnaud Beau-
ville in 2015 on the same subject. I have borrowed large parts of his notes and added a few
improvements obtained in the last seven years. Far more competent authors have produced
(far more complete) accounts of the subject which the reader interested in learning more
is invited to consult: Jean-Louis Colliot-Thélène ([Co]), Stefan Schreieder ([S3]), and Claire
Voisin ([Vo5, Vo7]).

2. EXAMPLES AND FIRST PROPERTIES

2.1. Fano varieties and hypersurfaces. It is known (but difficult to prove) that any Fano
variety (that is, any smooth projective variety whose anticanonical divisor is ample) is ratio-
nally connected. There are plenty of Fano varieties (although, once the dimension is fixed,
there are only finitely many deformation types): for example, any smooth complete inter-
section in Pn+c of multidegree (d1, . . . , dc) with d1 + · · · + dc ≤ n + c is a Fano variety, hence
is rationally connected. However, referring to the discussion in the introduction, no examples
of nonunirational Fano varieties are known!

Example 2.1 (Unirationality of smooth cubic hypersurfaces). Any smooth cubic complex
hypersurface X ⊆ Pn+1, with n ≥ 2, contains a line `. The space P(TX |`) is the set of lines
tangent to X at a point of `. Such a line meets X with mutiplicity (at least) 2 at its point
of intersection with ` and, if not contained in X , at a third point. This defines a dominant
rational map

f : P(TX |`) 99K X.
Since the space on the left is rational (any vector bundle on ` is trivial on a dense open subset
of `), any smooth cubic hypersurface of dimension ≥ 2 is unirational.

Let x be a general point of X . The intersection of the plane 〈`, x〉 with X is the union
of ` and a conic that meets ` in two points x1, x2. The inverse image of x by f is the set of two
lines 〈x, x1〉 and 〈x, x2〉 , so that f has degree 2.

To insist on the difficulty of the problems we consider here and the lack of progress on
even basic questions (despite tremendous recent advances), the question of the rationality of
smooth cubic complex hypersurfaces (which are Fano varieties hence rationally connected
in all dimensions n ≥ 2) has only been answered when n = 2 (positively) or 3 (negatively)
(see Section 4.1.2); the stable rationality of cubic threefolds is unknown.
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Example 2.2 (Rationality of some smooth cubic hypersurfaces). Let P1 and P2 be disjoint m-
dimensional linear spaces in P2m+1. A general cubic hypersurface X ⊆ P2m+1 containing P1

and P2 is smooth. I claimed that any such X is rational; indeed, there is a birational isomor-
phism P1 × P2

∼
99KX obtained by sending a general pair of points (p1, p2) ∈ P1 × P2 to the

third point of intersection with X of the line 〈p1p2〉 spanned by p1 and p2 (given x ∈ X gen-
eral, its unique preimage is (〈P2x〉 ∩ P1, 〈P1x〉 ∩ P2)). This gives examples of rational smooth
cubic hypersurfaces in all even dimensions. No odd-dimensional smooth cubic hypersurfaces are
known (they are known not to exist in dimension 3, as we will show in Section 4.1.2).

Example 2.3 (Other hypersurfaces). Any smooth complex hypersurface X ⊆ Pn+1 of degree
d ≤ n + 1 is a Fano variety, hence is rationally connected. Moreover, fixing the degree d,
any smooth degree-d complex hypersurface X ⊆ Pn+1 is unirational when n ≥ 2d! (see [BR,
Theorem 1.4]; for quartics, n ≥ 6 is enough; see [HMP, Corollary 3.8 and Remark 2.2]).
At the other end, when n ≥ 3, a very general complex hypersurface X ⊆ Pn+1 of degree
d ≥ log2 n+2 is not stably rational (see [S1, S2]). It is expected that very general hypersurfaces
of degree d not too much smaller than n should not be unirational. For example, Schreieder
proved in [S4, Theorem 1.1] that if X ⊆ Pn+1 is a very general complex hypersurface of
degree d ≥ 4, the degree of any dominant rational map Pn 99K X is divisible by any integer
≤ n− log2 n.2

The following table roughly sums up what is known (for very general complex hyper-
surfaces of given degree d in Pn+1). Parentheses indicate that the answer is conjectural.

d 2 3 · · · d� n · · · log2 n+ 2 · · · n+ 1

(R) YES (NO) · · · · · · · · · NO · · · NO

(SR) YES (NO) · · · · · · (NO) NO · · · NO

(UR) YES YES · · · YES ? ? ? (NO)

(RC) YES · · · · · · · · · · · · · · · · · · YES

2.2. Rationally connected varieties. We now prove some easy properties of rationally con-
nected smooth projective complex varieties. One consequence is that simple-minded topo-
logical invariants do not distinguish between the various properties in (1) (see Proposi-
tion 6.1 for a topological invariant that does).

An important player is the notion of very free rational curve on a smooth projective
variety X : this is a rational curve f : P1 → X such that the vector bundle f ∗Ω1

X is a direct
sum of line bundles of negative degrees. Surprisingly, the existence of a single such curve is
sufficient to characterize rationally connected varieties.

Proposition 2.4. A smooth projective complex variety X is rationally connected if and only if there
is a very free rational curve on X .

Sketch of proof. This follows from the deformation theory of rational curves on X . Assume
that X is rationally connected; since a general point x ∈ X can be joined to any other gen-
eral point of X by a rational curve, there exist a smooth quasi-projective variety M and a

2As Schreieder points out, the strength of his result lies in its asymptotic behavior for large n. For instance,
the degree of any unirational parametrization of a very general hypersurface of degree 100 in P101 is divisible
by 718766754945489455304472257065075294400. It is tempting to think that no unirational parametrizations
exist.
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dominant morphism g : P1 ×M → X such that g({0} ×M) = {x} and the rational curve
gm := g|P1×{m} : P

1 → X is nonconstant for all m ∈M . The differential of g is then surjective
at a general point (t,m) (this is generic smoothness, which holds because we are over a field
of characteristic 0) and one checks that this is equivalent to the fact that the vector bundle
(g∗mTX)(−1) on P1 is globally generated, that is, the rational curve gm is very free.

Conversely, if there is a very free rational curve on X , one shows that the deformations
of this curve pass through two general points ofX (see [D2, Proposition 4.7] for a proof). �

Using these very free rational curves, we obtain cohomological and topological prop-
erties of rationally connected varieties.

Proposition 2.5. Let X be a smooth projective rationally connected complex variety.

(a) The variety X is covered by very free rational curves.
(b) One has H0(X, (Ωp

X)⊗m) = 0 for all positive integers m and p; in particular, χ(X,OX) = 1.
(c) The variety X is simply connected.

Sketch of proof. With the notation of the first part of the proof of Proposition 2.4, the rational
curves gm are very free for m ∈ M general and they cover a dense open subset of X . To
prove that very free rational curves cover the whole of X is much more difficult (see [KMM]
or [D2, Corollary 4.28]) and will not be used in these notes.

For (b), note that any section of (Ωp
X)⊗m must vanish on the image of any very free

rational curve, hence on X by (a).

For (c), let π : X̃ → X be a connected finite étale cover. Since P1 is simply connected,
any very free curve P1 → X lifts to a curve P1 → X̃ which is still very free. Proposition 2.4
then applies to prove that X̃ is rationally connected. By (b),H0(X̃,Ωm

X̃
) vanishes for allm > 0

and, by Hodge theory, so does Hm(X̃,OX̃). This implies χ(X̃,OX̃) = 1. But χ(X̃,OX̃) =
deg(π)χ(X,OX) hence π is an isomorphism. This already proves that any finite étale cover
of X is trivial.

To prove that π1(X) is trivial, we use the dominant morphism g : P1 ×M → X intro-
duced in the proof of Proposition 2.4. The composition of g with the inclusion ι : {0}×M ↪→
P1 ×M is constant, hence

π1(ι) ◦ π1(g) = 0.

Since P1 is simply connected, π1(ι) is bijective, hence π1(g) = 0. Since g is dominant and X
is normal, it is a general fact that the image of π1(g) has finite index (see [D2, Lemma 4.18]
for a proof). Therefore, the group π1(X) is finite, hence trivial by what we saw earlier. �

Remark 2.6. The vanishing H0(X, (Ω1
X)⊗m) = 0 for all m > 0 is conjectured to characterize

rationally connected (smooth projective) varieties. This is known in dimensions ≤ 3.

2.3. Curves and surfaces. Lüroth proved in 1876 in [L] that a unirational smooth projective
curve is rational. This is now easily proved using Proposition 2.5: for such a curve C, one
has H0(C,Ω1

C) = 0. Thus C has genus 0 and this implies C ' P1.

Castelnuovo then proved that any unirational smooth projective complex surface S is
rational. He used the vanishings H0(S,Ω1

S) = H0(S, (Ω2
S)⊗2) = 0 obtained as above from

Proposition 2.5 and proved the difficult result that they characterize rational surfaces.

Using Proposition 2.5, one sees in fact that in dimensions 1 and 2, the implications
in (1) are all equivalences (over C).
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3. BEHAVIOR IN FAMILIES

We will start from the oldest result ([KMM], [K, Theorem IV.3.11]).

Theorem 3.1. Rational connectedness is an open and closed property: given a smooth projective
morphism X → B with B connected, if some fiber is rationally connected, all fibers are rationally
connected.

Sketch of proof. For openness, one uses Proposition 2.4: rational connectedness of a (smooth
projective) variety X is equivalent to the existence of one very free rational curve on X . It
is not difficult to prove that the existence of such a curve is an open property in a smooth
family.

Closedness is harder to prove. A smooth projective degeneration of rationally con-
nected smooth projective varieties is a priori only rationally chain connected: any two points
can be joined by a chain of rational curves. One then applies a delicate smoothing argument
of Kollár–Miyaoka–Mori to show that for smooth projective varieties, this a priori weaker
property implies rational connectedness.

So, rational connectedness is a property that is both open and closed in smooth projec-
tive families (see [K, Theorem IV.3.11] for a full proof). �

It had long been suspected that things were not that simple for (stable) rationality. The
following result, which settles that question, was only proved recently.

Theorem 3.2 (Nicaise–Shinder, Kontsevich–Tschinkel). Let X → B be a smooth projective
morphism between smooth complex varieties with dim(B) = 1. If very general fibers are (stably)
rational, all fibers are (stably) rational.

The theorem was first proved by de Fernex–Fusi in [dFF] when the fibers have dimen-
sion 3. The stably rational case is [NS] and the general case is [KT] (see [NO1] for a unified
treatment of both cases). I do not know of any analogous result for unirationality.

Corollary 3.3. Let X → B be a smooth projective morphism between smooth complex varieties. The
set of points of B whose fiber is (stably) rational is a countable union of closed subsets of B.

Sketch of proof. It follows from properties of Hilbert schemes (in particular that they have
countably many components) that the subset of B under consideration is a countable union
of locally closed subsets ofB ([dFF, Proposition 2.3]). Theorem 3.2 implies that this set is stable
under specialization and this implies the corollary. �

Example 3.4. Consider smooth hypersurfaces X ⊆ P2 × P3 of bidegree (2, 2); they are
parametrized by a dense open subset B ⊆ P(H0(P2,OP2(2)) ⊗ H0(P3,OP3(2))). They are
Fano fourfolds and projection onto the first factor makes them into quadric surface bundles
X → P2. We have

(a) for every b ∈ B, the fourfold Xb is unirational ([M, Theorem 1.8]);
(b) for b ∈ B very general, the fourfold Xb is not stably rational ([HPT1, Theorem 1]);
(c) the set of b ∈ B for which the fourfold Xb is rational is dense in B for the Euclidean

topology.

We will comment on (b) later (Section 7.3). For (c), one applies a criterion of Hassett ([H,
Proposition 2.3]) that says that if X → P2 is a quadric surface bundle such that there exists a
Hodge class in H4(X,Z) ∩H2,2(X) that has odd intersection number with a fiber, then X is
rational.



ON RATIONALITY PROBLEMS 7

This gives an example of a family for which (stable) rationality is neither open nor
closed, so we do need the adjective “countable” in Corollary 3.3.

The proof of Theorem 3.2 is based on constructions that are radically different from
what was used before for this kind of problems, and which we now explain.

For any field k of characteristic 0 and any nonnegative integer n, we define the Burnside
ring Burnn(k) as the free abelian group on the isomorphism classes of field extensions of k
of transcendence degree n (or, if you prefer, on birational isomorphism classes of (smooth)
varieties of dimension n over k). The main result is the following.

Theorem 3.5. Let B be a smooth connected complex curve, with generic point η and function field
K = C(B). Given a nonnegative integer n and a closed point b0 ∈ B with local ring R := OB,b0 ,
there exist a “specialization” group morphism

ρn : Burnn(K) −→ Burnn(C)

such that, for any smooth proper morphism X → Spec(R) of relative dimension n, one has

ρn([K(Xη)/K]) = [C(Xb0)/C].

Before addressing the proof of this fundamental result, we briefly sketch how it implies
Theorem 3.2. Given a smooth projective morphism X → B as in the statement of that theo-
rem, after a finite base change B′ → B, the generic fiber of X ′ := X ×B B′ → B′ is rational
(over the function field of B′) (see the argument in [dFF, Proof of Theorem 3.1] involving
again the Hilbert scheme and the uncountability of C, or use the fact that the geometric
generic fiber of X → B is isomorphic, via a field isomorphism K ' C, to a very general
fiber; see [V, Lemma 2.1]).

Replacing B by B′, we now have two smooth models of the extension K(Xη)/K '
K(Pn

K)/K: one is X → B and the other is Pn
B → B. Given any b0 ∈ B, we apply Theo-

rem 3.5: the image by ρn of these isomorphic extensions is the common class of the exten-
sions C(Xb0) and C(Pn), which are therefore isomorphic.

Sketch of proof of Theorem 3.5. 3 We define ρn on extensions L/K and extend it by linearity.
Given such an extension, we choose a smooth proper model X → Spec(K) with K(X) ' L
and a simple normal crossing model X → Spec(R) with generic fiber X (semistable reduc-
tion). In other words,

(Xb0)red = D =
r∑
i=1

Di,

a simple normal crossing divisor (we do not care about possible multiplicities). For any
nonempty I ⊆ {1, . . . , r}, we set

DI :=
⋂
i∈I

Di,

a smooth irreducible subvariety of codimension |I| − 1 in Xb0 and

LI := C(DI)(x1, . . . , x|I|−1),

of transcendence degree n over C. Then we define

(2) ρn([L/K]) :=
∑

I⊆{1,...,r}, I 6=∅

(−1)|I|−1[LI/C] ∈ Burnn(C).

3For more details on the proof, I recommend the excellent lecture “Rationality in families of varieties” given
in 2021 by de Fernex for the Dipartimento di Matematica Tor Vergata (it can be found on YouTube).
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Of course, for ρn to be well defined by this formula, one needs to check that this is indepen-
dent of the choices of

(a) the smooth proper model X → Spec(K);
(b) the simple normal crossing model X → Spec(R).

The main tool for this is the Weak Factorization Theorem, which says that any birational mor-
phism between smooth proper varieties is a composition of blowups with smooth centers
and their inverses.

Once this is done, if we have a smooth proper morphism X → Spec(R) as in the theo-
rem, it is its own simple normal crossing model with smooth central fiber Xb0 . Therefore, we
can take r = 1 in the proof above and the defining formula (2) gives ρn([L/K]) = [C(Xb0)/C]
in Burnn(C). �

Remark 3.6. Let X → B be a smooth projective morphism between smooth complex va-
rieties, with dim(B) = 1. In the notation of the proof of Theorem 3.5, assume that one can
find a model X → Spec(R) with generic fiber X and simple normal crossing central fiber
(Xb0)red =

∑r
i=1Di such that∑
I 6=∅

(−1)|I|−1[C(DI)(x1, . . . , x|I|−1)/C] 6= [C(Pn]/C] in Burnn(C)

(for example, all DI are rational except for one which is not unirational). Then very general
fibers are irrational. A much more elaborate version of this remark was used in [NO2] to
prove many new stable irrationality results: for example, in P6

C, a very general quartic or
a very general intersection of a quadric and a cubic are both stably irrational ([NO2, Corol-
lary 5.2 and Theorem 7.1]).

4. RATIONALITY VERSUS UNIRATIONALITY

We now go back in time to the implication (UR)⇒ (R), known as the Lüroth problem: is a
unirational variety rational? In other words, is every extension of k contained in k(t1, . . . , tn)
purely transcendental?

We saw in Section 2.3 that the answer is affirmative when n ≤ 2 and k = C. After
many unsuccessful attemps by Enriques, Fano, and Roth during the first half of the twenti-
eth century, three different counter-examples to the Lüroth problem in dimension 3 over C
appeared in 1971–72. We briefly indicate here the authors, their examples, and the methods
they use to prove irrationality (this table was borrowed from [B4]).

Authors Example Method

Clemens–Griffiths all smooth cubic threefolds intermediate Jacobian

Iskovskikh–Manin all smooth quartic threefolds birational automorphisms

Artin–Mumford some quartic double solids torsion of H3(•,Z)

More precisely:

• Clemens–Griffiths proved in [CG] the longstanding conjecture that all smooth cubic
threefolds X ⊆ P4

C are irrational (although they are all unirational by Example 2.1). They
showed that the intermediate Jacobian of X is not the Jacobian of a curve (Clemens–Griffiths
criterion; see Theorem 4.2 below).
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• Iskovskikh–Manin proved in [IM] that all smooth quartic threefolds X ⊆ P4
C are

irrational. Some unirational quartic threefolds had been constructed by B. Segre in [Se2],
so these provide counter-examples to the Lüroth problem. They showed that the group of
birational automorphisms of X is finite, while the corresponding group for P3

C (hence for
any rational variety) is huge.

•Artin–Mumford proved in [AM] that a particular double coveringX of P3
C, branched

along a quartic surface in P3
C with 10 nodes, is unirational but not rational. They showed

that the torsion subgroup of H3(X,Z) is nontrivial, and is a birational invariant (see Propo-
sition 6.1) which is trivial for P3

C.

These three papers have been extremely influential. Though they appeared around the
same time, they use very different ideas; in fact, as we will see, the methods tend to apply
to different types of varieties. They have been developed and extended, and applied to a
number of interesting examples. Each of them has its advantages and its drawbacks; very
roughly:

• The intermediate Jacobian method is quite efficient, but applies only in dimension 3
(Section 4.1).

• The computation of birational automorphisms leads to the important notion of bira-
tional superrigidity. However it is not easy to work out; so far, it has been applied essentially
to Fano varieties whose Picard group is generated by the canonical class, which are not
known to be unirational in dimensions > 3. We give some results in Section 4.2.

• torsion inH3(•,Z) gives an obstruction to stable rationality (see Section 6.1). Unfortu-
nately it applies only to very particular varieties and not to standard examples of unirational
varieties, like hypersurfaces or complete intersections. We discuss in Section 7 ideas of Voisin
and others that extend considerably the range of that method.

4.1. The intermediate Jacobian. In this section, we discuss our first irrationality criterion,
which uses the intermediate Jacobian. Then we prove that smooth cubic threefolds satisfy
this criterion hence give counter-examples to the Lüroth problem.

4.1.1. The Clemens–Griffiths criterion. We first recall the Hodge-theoretic construction of the
Jacobian of a (smooth projective complex) curve C of genus g. We start from the Hodge
decomposition

H1(C,Z) ⊆ H1(C,C) = H1,0(C)⊕H0,1(C)

into complex vector subspaces of the same dimension g with H0,1(C) = H1,0(C). The latter
condition implies that the projectionH1(C,R)→ H0,1(C) is an R-linear isomorphism, hence
that the image Γ of H1(C,Z) in H0,1(C) is a lattice (that is, any basis of Γ is a basis of H0,1

over R). The quotient
J(C) := H0,1(C)/Γ

is a complex torus of dimension g. But there is more structure:

(α, β) 7−→ 2i

∫
C

ᾱ ∧ β

defines a positive definite Hermitian form H on H0,1, and the restriction of Im(H) to Γ '
H1(C,Z) coincides with the cup-product

H1(C,Z)⊗H1(C,Z)→ H2(C,Z) ' Z;
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thus it induces on Γ a skew-symmetric, integer-valued, unimodular form. In other words, H
is a principal polarization on J(C). This is equivalent to the data of an ample divisor Θ ⊆
J(C) (defined up to translation) satisfying dim(H0(J(C),OJ(C)(Θ))) = 1. Thus (J(C),Θ) is a
principally polarized abelian variety of dimension g called the Jacobian of C.

One can mimic this definition for odd dimensional varieties, starting from the middle
degree cohomology; this defines the general notion of intermediate Jacobian. In general, it is
only a complex torus, not an abelian variety. But for a rationally connected threefold X , we
have H3,0(X) = H0(X,Ω3

X) = 0 (Proposition 2.5), hence the Hodge decomposition for H3

becomes
H3(X,Z)tf ⊆ H3(X,C) = H2,1(X)⊕H1,2(X)

with H1,2 = H2,1 and H3(X,Z)tf := H3(X,Z)/Tors(H3(X,Z)). As above, H1,2(X)/H3(X,Z)tf
is a complex torus, with a principal polarization defined by the positive definite Hermitian
form (α, β) 7→ −2i

∫
X
ᾱ ∧ β: this is the intermediate Jacobian J(X) of X .

We will use several times the following easy result (see for instance [Vo2, Theorem 7.31]).

Lemma 4.1. Let X be a complex manifold, let Y ⊆ X a closed submanifold of codimension c, and
let BlY X the variety obtained by blowing up X along Y . For every integer p, there is a canonical
isomorphism

Hp(X,Z)⊕
c−1∑
k=1

Hp−2k(Y,Z) ∼−→Hp(BlYX,Z).

Theorem 4.2 (Clemens–Griffiths criterion). Let X be a rational smooth projective complex three-
fold. The intermediate Jacobian J(X) is isomorphic (as a principally polarized abelian variety) to a
product of Jacobians of a curves.

Sketch of proof. Let ϕ : P3 99K X be a birational map. Hironaka’s resolution of indetermina-
cies provides us with a commutative diagram

P
ε

~~

f

��

P3 ϕ
// X

where ε : P → P3 is a composition of blowups, either of points or of smooth curves, and f is
a birational morphism.

I claim that J(P ) is a product of Jacobians of curves. Indeed, by Lemma 4.1, blowing up
a point in a threefold X does not change H3(X,Z), hence does not change J(X) either. If we
blow up a smooth curve C ⊆ X , Lemma 4.1 gives a canonical isomorphism H3(BlCX,Z) '
H3(X,Z) ⊕ H1(C,Z), compatible in an appropriate sense with the Hodge decompositions
and the cup-products; this implies J(BlCX) ' J(X)× J(C) as principally polarized abelian
varieties. Thus going back to our diagram, we see that J(P ) is isomorphic to J(C1) × · · · ×
J(Cr), where C1, . . . , Cr are the (smooth) curves which we have blown up in the process.

How do we relate J(P ) and J(X)? The a birational morphism f : P → X induces
homomorphisms

f ∗ : H3(X,Z)→ H3(P,Z) , f∗ : H
3(P,Z)→ H3(X,Z)

satisfying f∗f ∗ = 1, again compatible with the Hodge decompositions and the cup-products
in an appropriate sense. Thus H3(X,Z), with its polarized Hodge structure, is a direct factor
ofH3(P,Z); this implies that JV is a direct factor of J(P ) ' J(C1)×· · ·×J(Cp), in other words
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there exists a principally polarized abelian varietyA such that J(X)×A ' J(C1)×· · ·×J(Cp)
as principally polarized abelian varieties.

How can we conclude? In most categories, the decomposition of an object as a prod-
uct is not unique (think of vector spaces!). However here a miracle occurs. Let us say that
a polarized abelian variety is indecomposable if it is nonzero and not isomorphic (as polar-
ized abelian varieties) to a product of nontrivial polarized abelian varieties. The Jacobian
of a (smooth projective connected) curve is indecomposable. One has the following general
result (see [D1]; this result is actually easier to prove in our case, when the abelian varieties
are principally polarized).

Lemma 4.3. Any polarized abelian variety admits a unique decomposition as a product of indecom-
posable polarized abelian varieties.

Once we have this, we conclude as follows: since the principally polarized abelian
varieties J(C1), . . . , J(Cr) are indecomposable, from the isomorphism J(X) × A ' J(C1) ×
· · · × J(Cr) and the lemma, we conclude that J(X) is isomorphic to J(Ci1)× · · · × J(Cis) for
some subset {i1, . . . , is} of {1, . . . , r}. �

Remark 4.4. In the moduli space Ag of principally polarized abelian varieties of dimension g,
the boundary Jg r Jg of the Jacobian locus Jg is precisely the locus of products of lower-
dimensional Jacobians. So the latter can be seen as degenerations of the former.

Remark 4.5. Jacobians of curves and their products are characterized among all principally
polarized abelian varieties (A, θ) by the fact that the cohomology class θn−1

(n−1)!
∈ H2n−2(A,Z),

where n := dim(A), is represented by an (algebraic) effective 1-cycle (Matsusaka’s criterion).

4.1.2. The Schottky problem. Thus to show that a (smooth projective) threefold X is not ratio-
nal, it suffices to prove that its intermediate Jacobian (J(X),Θ) is not a product of Jacobians
of curves. This is the classical Schottky problem: the characterization of Jacobians of curves
among all principally polarized abelian varieties. One frequently used approach is through
the singularities of the theta divisor: the codimension of Sing(Θ) in J is at most 4 for a
product (J,Θ) of Jacobians of curves. However, controlling Sing(Θ) for an intermediate Ja-
cobian J(X) is quite difficult and requires a lot of information on the geometry of X . Let us
just give a sample.

Theorem 4.6. Let X ⊆ P4
C be a smooth cubic threefold. The theta divisor Θ ⊆ J(X) has a unique

singular point p, which is a triple point. The projectified tangent cone P(TCΘ,p) ⊆ P(TJ(X),p) ' P4
C

is isomorphic to X ⊆ P4
C.

This elegant result, apparently due to Mumford (see [B2] for a proof), implies the irra-
tionality of all smooth cubic threefolds X ⊆ P4, because codimJ(X)(Sing(Θ)) = 5.

There are actually very few cases where we can control so well the singular locus of
the theta divisor. One of these is the case of smooth quartic double solids X → P3, for which
Sing(Θ) has a component of codimension 5 in J(X) ([Vo1]). Another case is that of conic
bundles, that is, threefolds X with a flat morphism p : X → P2 such that, for each closed
point s ∈ P2, the fiber p−1(s) is isomorphic to a plane conic (possibly singular). In that
case, J(X) is the Prym variety associated with a natural double covering of the discriminant
curve ∆ ⊆ P2 (the locus of s ∈ P2 such that p−1(s) is singular). Thanks to work of Mumford
and Beauville, we have enough control on the singularities of the theta divisor of a Prym
variety to show that J(X) is not a product of Jacobians of curves if deg(∆) ≥ 6 ([B1, th. 4.9]). In
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particular, these conic bundles are irrational (we will see in Section 7.3 that they are not even
stably rational when the discriminant curve is very general).

Unfortunately, there are many Fano threefolds that are not (or least not known to be)
conic bundles. However, the Clemens–Griffiths criterion of irrationality is an open condition
(unlike irrationality!). In fact, we have a stronger result, which follows from the properties
of the Satake compactification of the moduli space of principally polarized abelian varieties
([B1, lemme 5.6.1]).

Lemma 4.7. Let π : X → B be a flat family of projective complex threefolds over a smooth complex
curve B. Let b0 ∈ B and assume that

• the fiber Xb := π−1(b) is smooth for all b ∈ B r {b0};
• the only singularities of Xb0 are ordinary double points;

• for some desingularization X̃b0 of Xb0 , the intermediate Jacobian J(X̃b0) is not a product of
Jacobians of curves.

Then for b outside a finite subset of B, the smooth threefold Xb is irrational.

From this, we deduce general irrationality statements for many families of Fano three-
folds: it is enough to find a degeneration as in the lemma such that X̃b0 is a conic bundle
with a discriminant curve of degree ≥ 6, to which the lemma applies.

Consider for example (ordinary) Gushel–Mukai threefolds: they are smooth complete
intersections X of the Grassmannian Gr(2,C5) ⊆ P(

∧
2C5) = P9 in its Plücker embedding

with a P7 and a quadric. They are Fano threefolds with canonical line bundle OX(−1). When
the quadric becomes singular at a point p of Gr(2,C5) ∩ P7, the threefold X acquires a node
at p and projection X → P6 from p is (birationally) a conic bundle with discriminant curve
of degree 6. The lemma then implies that a general Gushel–Mukai threefold is irrational.

4.1.3. Easy counterexamples. The results of the previous section require rather involved meth-
ods. We will now discuss a more elementary approach, which however only applies to spe-
cific varieties. It is based on the so-called Hurwitz bound (the order of the group of automor-
phisms of a smooth projective curve C of genus g is 84(g − 1) and the Torelli theorem for
curves, which gives an exact sequence

(3) 1→ Aut(C)→ Aut(J(C),Θ)→ Z/2.

Fano threefolds with very large automorphism groups will therefore not be rational.

We will give two examples. We consider first smooth complete intersections of a quadric
and a cubic in P5

C. They are classically known to be unirational, but a general such complete
intersection is irrational (this can be proved using the degeneration result Lemma 4.7; it
also follows from the proof of the theorem below and the openness of the Clemens–Griffiths
criterion of irrationality). The example of the next theorem was however the first explicit
irrational example ([B3]).

Theorem 4.8 (Beauville). The Fano threefold X ⊆ P6 defined by the equations

6∑
i=0

xi =
6∑
i=0

x2
i =

6∑
i=0

x3
i = 0

is not rational.
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Proof. The group S7 acts faithfully onX . One then checks that the induced action on TJ(X),0 =
H1(X,Ω2

X) is also faithful (it is the sum of two irreducible representations, of degrees 6
and 14), hence so is its action on the 20-dimensional principally polarized abelian vari-
ety J(X). But the Hurwitz bound and the exact sequence (3) imply that the automorphism
group of the Jacobian of a curve of genus 20 has order at most 2·84(20−1) = 3192 < 7! = |S7|.
So J(X) cannot be the Jacobian of a curve of genus 20.

One then needs an additional easy argument to exclude the possibility that J(X) be
isomorphic to a nontrivial product of Jacobians of curves. �

The same method was applied more recently in [DM] to (smooth) Gushel–Mukai three-
folds X ⊆ P(

∧
2C5) (for which, as we explained earlier, irrationality was only known for a

general one). We choose coordinates x0, . . . , x4 on C5 and we denote by (xij)0≤i<j≤4 the in-
duced coordinates on

∧
2C5.

Theorem 4.9 (Debarre–Mongardi). The smooth Gushel–Mukai threefold X ⊆ P(
∧

2C5) defined
by the linear space

x03 + x12 = x04 − x23 = 0

and the quadric
x01x02 − x13x14 − x24x34 = 0

is irrational.

Sketch of proof. One shows that the simple group G := PSL(2,F11) acts faithfully on the 10-
dimensional intermediate Jacobian J(X) (but not on X!4) and that the induced action on the
tangent space TJ(X),0 is an irreducible representation of dimension 10. This implies already
that the principally polarized abelian variety J(X) is indecomposable: by the uniqueness
result Lemma 4.3, the group G permutes its m indecomposable factors and this induces
a morphism u : G → Sm which cannot be injective since G contains elements of order 11
but not Sm since m ≤ 10. The simplicity of G then implies that u is constant and that G
preserves each indecomposable factor. The irreducibility of the action of G on TJ(X),0 finally
implies m = 1.

It is known that the automorphism group of a curve of genus 10 has order at most 432
(an improvement on the Hurwitz bound). Since G is simple, any morphism G → Z/2Z
is trivial, hence, since |G| = 660 > 432, the exact sequence (3) implies that G does not
embed in the automorphism group of the Jacobian of a curve of genus 10. So J(X) cannot be
the Jacobian of a curve. Since it is indecomposable, the Clemens–Griffiths criterion implies
that X is irrational. �

Corollary 4.10. There exists a complete family, with finite moduli morphism, parametrized by a
smooth projective surface, of irrational smooth Gushel–Mukai threefolds.

This follows from a description of the moduli space of Gushel–Mukai threefolds ([DM,
Corollary 5.3], [DK, Example 6.8]): through any point of the moduli space, there passes a
projective surface that parametrizes mutually birationally isomorphic Gushel–Mukai three-
folds. Another family of irrational Gushel–Mukai threefolds (whose intermediate Jacobian
has a faithful A7-action) was recently described in [BW].

A. Javanpeykar asked the following related question.5

4By [P, Theorem 1.5], G cannot act nontrivially on a smooth Gushel–Mukai threefold.
5It is known that families of smooth projective varieties of general type parametrized by P1 are isotrivial.
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Question 4.11 (Javanpeykar). Does there exist nonisotrivial families of smooth Fano vari-
eties parametrized by P1?

4.2. Birational rigidity. As mentioned in the introduction, Iskovskikh–Manin proved that
all smooth quartic threefolds X ⊆ P4

C are irrational by proving that any birational automor-
phism of X is actually biregular. But they proved much more, namely that X is birationally
superrigid in the following sense.

Definition 4.12. Let X be a prime Fano variety with Picard number 1. We say that X is
birationally superrigid if

(a) there is no rational dominant map X 99K Y with 0 < dim(Y ) < dim(X) and with
general fibers of Kodaira dimension −∞;

(b) any birational isomorphism X
∼
99KY to another Fano variety Y with Picard number 1

is an isomorphism.

(The variety Y in (b) is allowed to have Q-factorial terminal singularities.)

After the pioneering work [IM], birational superrigidity was proved for a number of
Fano varieties of index 1. In particular, de Fernex extended the result of Iskovskikh–Manin
and proved that any smooth hypersurface of degree n in Pn

C is birationally superrigid ([dF]).
We refer to the surveys [Pu] and [C] for ideas of proofs and for many more examples.

5. RATIONALITY VERSUS STABLE RATIONALITY

Now that we know that the converse of the composed implication

(R) =⇒ (SR) =⇒ (UR)

is false (in dimensions ≥ 3), we examine separately the two implications

(UR) =⇒ (SR) and (SR) =⇒ (R).

The implication on the right was proved to be false by Beauville–Colliot-Thélène–Sansuc–
Swinnerton-Dyer in [BCSS], thereby answering a question asked by Zariski in 1949 (see [Se1]).

Theorem 5.1. Let P (x, t) = x3 + p(t)x + q(t) be an irreducible polynomial in C[x, t] and assume
that its discriminant δ(t) := 4p(t)3+27q(t)2 has degree≥ 5. The affine hypersurfaceX ⊆ C4 defined
by y2 − δ(t)z2 = P (x, t) is stably rational but not rational.

The projection X → C2 defined by (x, t, y, z) 7→ (x, t) makes the threefold X into an
(affine) conic bundle.

The irrationality of X is proved using the intermediate Jacobian, which turns out to be
the Prym variety associated with an admissible double covering of nodal curves. The stable
rationality, more precisely the fact that X×P3

C is rational, was proved in [BCSS] using some
particular torsors under certain algebraic tori. A different construction of Shepherd-Barron
shows that X ×P2

C is already rational ([SB]); it is not known whether X ×P1
C is rational.

6. STABLE RATIONALITY VERSUS UNIRATIONALITY

We prove in this section that the implication (UR) ⇒ (SR) is also false (for smooth
projective complex varieties). So we need to find unirational varieties that are not stably
rational. For that, we cannot use the Clemens–Griffiths criterion since it applies only in di-
mension 3 hence cannot disprove stable rationality. The group of birational automorphisms
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is very complicated for a variety of the form X×Pn
C; so the only available method is the tor-

sion of H3(•,Z) and its subsequent refinements, which we will examine in the next sections.

6.1. The torsion of H3(•,Z). Artin and Mumford used the following property of stably ra-
tional varieties.

Proposition 6.1. Let X be a stably rational smooth projective complex variety. The abelian group
H3(X,Z) is torsion free.

Proof. The Künneth formula gives an isomorphism H3(X ×Pm,Z) ' H3(X,Z) ⊕ H1(X,Z);
since H1(X,Z) is always torsion free, the torsion subgroups of H3(X,Z) and H3(X ×Pm,Z)
are isomorphic hence, replacing X by X×Pm, we may assume that the variety X is rational.
Let ϕ : Pn ∼

99KX be a birational map. As in the proof of the Clemens–Griffiths criterion, we
have a diagram

P
ε

~~

f

  

Pn ϕ
// X,

where ε : P → Pn is a composition of blowups of smooth subvarieties and f is a birational
morphism.

By Lemma 4.1, we have H3(P,Z) ' H1(Y1,Z)⊕· · ·⊕H1(Yr,Z), where Y1, . . . , Yr are the
subvarieties successively blown up by ε; therefore H3(P,Z) is torsion free. As in the proof of
Theorem 4.2, H3(X,Z) is a direct summand of H3(P,Z), hence is also torsion free. �

6.2. The Brauer group. The torsion of H3(X,Z) is strongly related to the (cohomological)
Brauer group of X . There is a huge literature on the Brauer group in algebraic geometry,
starting with the three exposés by Grothendieck in [G]. We recall here the cohomological
definition of this group for complex varieties.

Definition 6.2. LetX be a complex variety. We define the (cohomological) Brauer group Br(X)
to be the étale cohomology group H2

ét(X,O
×
X).

Proposition 6.3. Let X be a complex variety. There is an exact sequence

(4) 0 −→ Pic(X)⊗Q/Z
c1−−→ H2(X,Q/Z) −→ Tors(Br(X)) −→ 0.

Proof. Let n ∈ Z>0. The exact sequence

1→ µn → O×X
•n−−→ O×X → 1

of étale sheaves and the isomorphism Pic(X) ∼→H1
ét(X,O

×
X) give an exact sequence

Pic(X)
×n−−→ Pic(X)

c1−−→ H2
ét(X,µn) −→ Br(X)

×n−−→ Br(X)

in étale cohomology (we denote all these abelian groups additively). Noting the isomor-
phism H2

ét(X,µn) ' H2(X,Z/nZ) and taking the direct limit with respect to n gives the
exact sequence (4). �

It is known that when X is smooth, Br(X) is a torsion group (see [G, II, prop. 1.4]).

Proposition 6.4. Let X be a smooth complex variety. There is a surjective homomorphism Br(X)→
Tors(H3(X,Z)) which is bijective when c1 : Pic(X)→ H2(X,Z) is surjective.
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By Hodge theory, the condition on c1 is satisfied in particular if X is projective and
H2(X,OX) = 0.

Proof. The exponential exact sequence 0→ Z→ OX
exp−−→ O×X → 1 gives an exact sequence

Pic(X)
c1−−→ H2(X,Z) −→ H2(X,OX) −→ Br(X) −→ H3(X,Z) −→ H3(X,OX)

in cohomology. Since X is smooth, Br(X) is a torsion group; since H3(X,OX) is torsion free
(it is a complex vector space), this exact sequence reduces to

Pic(X)
c1−−→ H2(X,Z) −→ H2(X,OX) −→ Br(X) −→ Tors(H3(X,Z)) −→ 0.

When c1 is surjective, sinceH2(X,OX) has no torsion and Br(X) is a torsion group, we obtain
H2(X,OX) = 0 hence the desired result �

Remark 6.5 (Birational invariance). LetX be a smooth projective complex variety. The Brauer
group Br(X) can be defined purely in terms of the function field C(X) as its unramified Brauer
group; this proves that it is a birational invariant (see [B4, Section 6.5] for more details). It is
even a stable birational invariant: the Brauer group of a stably rational smooth projective
complex variety is trivial.

We will now describe a geometric way to construct nontrivial elements of the Brauer
group.

Definition 6.6. Let X be a complex variety. A Pn-fibration over X is a smooth map P → X
all of whose geometric fibers are isomorphic to Pn.

An obvious example is the projective bundle PX(E) associated with a vector bundle E
of rank n + 1 on X ; a vector bundle being trivial on a dense open subset of X , a projective
bundle has plenty of rational sections. We will actually be interested in those Pn-fibrations
that are not projective bundles; for example, those that have no rational sections.

Any Pn-fibration is locally trivial for the étale (or analytic) topology. This implies that
isomorphism classes of Pn-fibrations over X are parametrized by the étale cohomology set
H1

ét(X,PGLn+1) where, for an algebraic group G, we denote by G the sheaf of local maps
to G. Similarly, isomorphism classes of vector bundles (analytically locally free sheaves) of
rank n+ 1 over X are parametrized by the étale cohomology set H1

ét(X,GLn+1).

The exact sequence

1 −→ O×X −→ GLn+1 −→ PGLn+1 −→ 1

of sheaves of groups gives rise to a sequence of pointed sets

H1
ét(X,GLn+1)

q−→ H1
ét(X,PGLn+1)

∂−→ Br(X)

which is exact in the sense that ∂−1(1) = Im(q). Thus we associate with each Pn-fibration
p : P → X a class [p] ∈ Br(X) and this class is trivial if and only if p is a projective bundle.
Moreover, by comparing with the exact sequence 0 → µn+1 → SLn+1 → PGLn+1 → 1, we
get a commutative diagram

H1
ét(X, SLn+1) //

��

H1
ét(X,PGLn+1) // H2(X,µn+1)

��

H1
ét(X,GLn+1) // H1

ét(X,PGLn+1)
∂

// Br(X)

which shows that the image of ∂ is contained in the (n+ 1)-torsion subgroup of Br(X).
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6.3. The Artin–Mumford example. The Artin–Mumford counter-example is a double cover
of P3 branched along a quartic symmetroid, that is, a quartic surface defined by the vanishing
of a symmetric 4× 4 determinant of linear forms.

We start with a web Π of quadrics in P3; its elements are defined by quadratic forms
λ0q0 + · · ·+ λ3q3. We assume the following generality properties:

(a) the linear system Π is basepoint free;
(b) if a line in P3 is singular for a quadric of Π, it is not contained in another quadric of Π.

Let ∆ ⊆ Π be the discriminant locus, corresponding to quadrics of rank ≤ 3. It is
a quartic surface (defined by det(

∑
λiqi) = 0 in P(λ0, . . . , λ3)); under our hypotheses, ∆

has 10 ordinary double points, corresponding to quadrics of rank 2, and no other singular-
ities. Let π : X ′ → Π be the double covering branched along ∆. Again X ′ has 10 ordinary
double points; blowing up these points, we obtain the Artin–Mumford (smooth projective)
threefold X .

Observe that a quadric q ∈ Π has two rulings by lines if q ∈ Π r ∆, and one if q ∈
∆ r Sing(∆). The smooth part X0 of X ′ parametrizes pairs (q, λ), where q ∈ Π and λ is a
ruling of q.

Theorem 6.7. The threefold X is unirational but not stably rational.

Skectch of proof. Let G be the Grassmannian of lines in P3. A general line is contained in a
unique quadric of Π, and in a unique ruling of this quadric; this defines a dominant rational
map γ : G 99K X ′, thus X is unirational. We will deduce from Proposition 6.1 that X is not
stably rational by proving that H3(X,Z) contains an element of order 2. This is done by a
direct calculation in [AM]; we use a different approach based on the Brauer group.

Consider the variety P ⊆ G × Π consisting of pairs (`, q) with ` ⊆ q. The Stein factor-
ization of the projection P → Π is

P
p′−−→ X ′

π−→ Π.

Set P0 := p′−1(X0). The restriction p0 : P0 → X0 of p′ is a P1-fibration: the fiber of a point (q, λ)
of X0 is the smooth rational curve parametrizing the lines of the ruling λ. An elementary
argument (see [B4, Section 6.3]) then shows that p0 no rational sections. It is therefore not a
projective bundle, hence defines a nonzero 2-torsion class in Br(X0).

In the commutative diagram

Pic(X)
c1
//

��

H2(X,Z)

r

��

Pican(X0)
c1
// H2(X0,Z),

the top horizontal arrow is surjective because H2(X,OX) = 0. Since E := XrX0 is a disjoint
union of quadrics (the exceptional divisors of the blowup of the 10 ordinary double points
of X), the Gysin exact sequence

H2(X,Z)
r−→ H2(X0,Z)→ H1(E,Z) = 0

shows that r is surjective. Therefore the map c1 : Pic(X0) → H2(X0,Z) is surjective and, by
Proposition 6.4, we get a nonzero 2-torsion class in H3(X0,Z). Using again the Gysin exact
sequence

0→ H3(X,Z)→ H3(X0,Z)→ H2(E,Z)
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we find that Tors(H3(X,Z)) is isomorphic to Tors(H3(X0,Z)), hence nonzero. By Proposi-
tion 6.1, the threefold X is not stably rational. �

7. THE CHOW GROUP OF 0-CYCLES

In this section, we discuss another property of stably rational varieties, namely the
fact that their Chow group CH0 parametrizing 0-cycles is universally trivial (Proposition 7.4).
While the idea goes back to the end of the seventies (see [Bl]), its use for rationality questions
is recent ([Vo4]).

This property implies thatH3(X,Z) is torsion free (Proposition 7.9), but not conversely
(see (11)). Moreover, it behaves well under deformation, even if we accept mild singularities
(see Proposition 7.10).

In this section, we will need to work over nonalgebraically closed fields (of character-
istic 0). We use the language of schemes.

7.1. Chow groups. Let X be a variety of dimension n defined over a field k. The Chow
group CHp(X) is the group of dimension-p cycles on X modulo rational equivalence. More
precisely, let us denote by Σp(X) the set of dimension-p closed subvarieties ofX . Then CHp(X)
is defined by the exact sequence

(5)
⊕

W∈Σp+1(X)

k(W )∗ −→ Z(Σp(X)) −→ CHp(X)→ 0 ,

where the first arrow associates with f ∈ k(W )∗ its divisor ([F, Section 1.3]).

Example 7.1. When X = A1
k = Spec(k[x]), a closed point is an irreducible polynomial P ∈

k[x]. The divisor of the regular function on X defined by P is P , so any point is rationally
equivalent to 0 and CH0(A1

k) = 0. More generally, one has CHp(A
n
k) = 0 for all p 6= n and

CHn(An
k) = Z.

Given a morphism f : X → Y between varieties, it induces pushforward homomor-
phisms f∗ : CHp(X)→ CHp(Y ) when f is proper, and pullback homomorphisms f ∗ : CHp(Y )
→ CHp+n(X) when f is flat of relative dimension n ([F, Theorem 1.4 and Theorem 1.7]). Fur-
thermore,

• if Y ⊆ X is a closed subset, with inclusions i : X r Y ↪→ X and j : Y ↪→ X , one has
localization exact sequences ([F, Proposition 1.8])

(6) CHp(Y )
i∗−−→ CHp(X)

j∗−−→ CHp(X r Y ) −→ 0

• for any variety X over k, there are canonical isomorphisms ([F, Theorem 3.3(b)])

(7) CH0(X) ∼−→CH0(X ×Pn
k).

In particular, we have CHp(P
n
k) ' Z for all 0 ≤ p ≤ n (where the isomorphism is given by

the degree of subvarieties of Pn
k).

When X is smooth of pure dimension n, we set CHp(X) := CHn−p(X) (the lower index
denotes the dimension and the upper index the codimension) and one can define intersec-
tion products

CHp(X)⊗ CHq(X) −→ CHp+q(X)

satisfying various nice properties (see [F, Proposition 8.3]).
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We will be particularly interested in the group CH0(X) of 0-cycles. When X is proper
over k, the map ∑

ni∈Z, pi closed point

ni[pi] 7−→
∑

ni[k(pi) : k]

defines a group morphism deg : CH0(X) → Z ([F, Example 1.6.6]). We denote its kernel by
CH0(X)0.

Finally, we will need the following birational invariance result. Note that, together with
the isomorphism (7), it implies that if X is a stably rational smooth projective variety (over
any field), one has CH0(X)0 = 0.

Lemma 7.2. Any birational isomorphism X
∼
99KY between smooth projective varieties (over any

field) induces an isomorphism CH0(X) ' CH0(Y ).

Sketch of proof. The graph Γ ⊆ X × Y of the birational isomorphism X
∼
99KY defines mor-

phisms
Γ∗ : CHp(X) −→ CHp(Y ) , α 7−→ pr2∗(Γ · pr∗1(α))

and
Γ∗ : CHp(Y ) −→ CHp(X) , β 7−→ pr1∗(Γ · pr∗2(β))

where the dots represent the intersection product mentioned earlier. One shows Γ∗ ◦Γ∗ = Id
on CH0(X) and Γ∗ ◦ Γ∗ = Id on CH0(Y ) (see [Vo5, Lemma 2.11] for details). �

7.2. Universally CH0-trivial varieties and Chow decomposition of the diagonal. When k
is algebraically closed, one has CH0(X)0 = 0 for any (smooth projective) rationally connected
varietyX (any two points can be joined by a P1

k where they are rationally equivalent); we say
that X is CH0-trivial.6 This does not always remain true when k is not algebraically closed
(see (11)): being CH0-trivial is not stable under field extensions. We make the following
definition.

Definition 7.3. A smooth projective complex variety X is universally CH0-trivial if for any
field extension K/C, we have CH0(XK)0 = 0.

This property only depends on the birational isomorphism class of the variety (by
Lemma 7.2) and holds for all projective spaces, hence for all (smooth projective) complex
varieties. But we have even more.

Proposition 7.4. Any stably rational smooth projective complex variety is universally CH0-trivial.

Proof. Let X be a stably rational smooth projective complex variety. For any field exten-
sion K/C, the varietyXK is again stably rational (over K), hence CH0(XK)0 = 0 as discussed
in Section 7.1. �

Proposition 7.5. Let X be a smooth projective complex variety of dimension n and let ∆X ⊆ X×X
be the diagonal. The following conditions are equivalent:

(i) the variety X is universally CH0-trivial;
(ii) one has CH0(XC(X))0 = 0;

(iii) there exists a point x ∈ X such that δX− [xC(X)] = 0 in CH0(XC(X)), where δX is the 0-cycle
class on XC(X) induced by the diagonal ∆X ;

(iv) there exist a point x ∈ X and a dense open subset U ⊆ X such that the cycle class [∆X ] −
[X × {x}] restricts to 0 in CHn(U ×X);

6The converse is not true: a complex Enriques surface is CH0-trivial ([BKL]) but not rationally connected.
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(v) (Integral Chow decomposition of the diagonal) there exists a point x ∈ X such that the
class

(8) [∆X ]− [X × {x}]
in CHn(X ×X) is supported on D ×X , for some hypersurface D ⊆ X .

In (ii), (iii), (iv), and (v), the property is independent of the point x ∈ X : if it holds for
one point, it holds for all points. In (iv), one says that a class α ∈ CHn(X × X) is supported
onD×X if there exists a class αD ∈ CHn(D×X) such that α = i∗(αD), where i is the inclusion
D ×X ↪→ X ×X .

Proof. The implication (i)⇒ (ii) is clear.

(ii)⇒ (iii). Let η be the generic point of X . We have a diagram

Spec(C(X))
η

//

(η,η)

��

∆X
_�

��

{η} ×X = XC(X)

��

(η,•)
// X ×X

pr2
//

pr1

��

X

��

Spec(C(X))
η

//

(η,x)

WW

X //

(•,x)

YY

Spec(C).

x

ZZ

The point (η, η) of {η} × X = XC(X) is rational (over C(X)). Since CH0(XC(X))0 = 0, it is
rationally equivalent to any other C(X)-point, such as (η, x) = xC(X) for any closed point
x ∈ X . The class [∆X ] − [X × {x}] restricts to (η, η) − (η, x) in CH0(XC(X)), hence to 0. This
shows (iii).

(iii)⇒ (iv). An element of Σn({η} × X) extends to an element of Σn(X × X) and two such
extensions agree on U ×X for some dense open subset U of X ; in other words, the natural
map lim−→

U

Σn(U × X) → Σn({η} × X) is an isomorphism. Thus writing down the exact se-

quence (5) for U ×X and passing to the direct limit over U , we get a commutative diagram
of exact sequences

lim−→
U

⊕
W∈Σn−1(U×X)

C(W )∗ //

∼

��

lim−→
U

Z(Σn(U×X)) //

∼

��

lim−→
U

CHn(U ×X) //

��

0

⊕
W∈Σn−1({η}×X)

C(X)(W )∗ // Z(Σn({η}×X)) // CHn({η} ×X) // 0

where the first two vertical arrows are isomorphisms; therefore the third vertical arrow is
also an isomorphism. We conclude that the class [∆] − [X × {x}] is zero in CHn(U ×X) for
some dense open subset U .

(iv)⇒ (v). The localization exact sequence (6)

CHn((X r U)×X) −→ CHn(X ×X) −→ CHn(U ×X) −→ 0

implies that the class [∆]− [X×{x}] comes from a class in CHn((XrU)×X). Choosing any
hypersurface D in X containing X rU and pushing forward that class to CHn(D×X) does
the job.
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(v)⇒ (i). Assume that (8) holds; then it holds in CHn(XK × XK) for any extension K of C,
so it suffices to prove CH0(X)0 = 0.

Denote by pr1 and pr2 the two projections from X ×X to X . Any class δ ∈ CHn(X ×X)
induces a homomorphism δ∗ : CH0(X)→ CH0(X), defined by δ∗(z) = pr2∗(δ · pr∗1(z)). Let us
consider the classes which appear in (8). The diagonal induces the identity of CH0(X); the
class of X × {x}maps z ∈ CH0(X) to deg(z) [x], hence is 0 on CH0(X)0.

Now consider the class α := [∆X ] − [X × {x}] supported on D × X and write it as
(i×1)∗(αD), where αD ∈ CHn(D×X) and i : D ↪→ X is the inclusion. Then, for z ∈ CH0(X) =
CHn(X), one has

α∗(z) = pr2∗((i× 1)∗(αD) · pr∗1(z)) = pr2∗(αD · pr∗1(i∗(z))).

Since dim(D) < n, the class i∗(z) is zero, hence so is α∗(z). We conclude from (8) that the
group CH0(X)0 vanishes, since [∆X ] induces the identity of CH0(X)0 and both [X×{x}] and
[∆X ]− [X × {x}] induce 0. �

Remark 7.6 (Rational Chow decomposition of the diagonal). The original argument of Bloch–
Srinivas in [BS] started from a smooth projective complex variety X such that CH0(X)0 = 0
and concluded that there exists a positive integer N such that

(9) N([∆X ]− [X × {x}])

is supported on D × X (see [S3, Section 7.2] or [Vo7, Theorem 3.5] for proofs of this result
and its converse: the existence of such a decomposition implies CH0(X)0 = 0). This is called
a rational Chow decomposition of the diagonal (because it is a decomposition of the diagonal,
but in CHn(X × X)Q). The analog of Proposition 7.5(iii) is that this is equivalent to saying
that the class δX − [xC(X)] in CH0(XC(X)) is N -torsion. The analog of Proposition 7.5(i) is
that CH0(XL)0 is an N -torsion group (with the same positive integer N ) for any field exten-
sion L/C.

Remark 7.7 (Torsion order). Following [S3, Definition 7.9], one may define, for any proper
variety X over a field k, its torsion order Tors(X) ∈ Z>0 ∪ {∞} as the smallest positive inte-
ger N such that the class δX can be written as NδX = zk(X) in CH0(Xk(X)) for some 0-cycle z
on X , and∞ if no such integer exists. This is a stable birational invariant which is finite for
rationally connected smooth projective complex varieties (see [Vo5, Corollary 4.4] for a di-
rect proof), and Proposition 7.5 says that a smooth complex projective variety is universally
CH0-trivial if and only if its torsion order is 1. If X is unirational and there is a dominant
map Pn

k 99K X of degree d, then Tors(X) | d.

Remark 7.8 (Cubic threefolds revisited). We prove in Section 4.1.2, as a consequence of the
Clemens–Griffiths criterion, that no smooth cubic hypersurface X ⊆ P4

C is rational. This is
because its 5-dimensional intermediate Jacobian (J(X), θ) is not isomorphic to a product of
Jacobians of curves. As explained in Remark 4.5, this is equivalent to saying that the minimal
cohomology class θ4/4! is not the class of an effective 1-cycle.

In [Vo6, Theorem 1.7], Voisin proves the remarkable result that X is universally CH0-
trivial if and only if the class θ4/4! is the class of a 1-cycle. Whether this holds for all smooth
cubic threefolds is an open problem, but she constructs large families of cubic threefolds
for which this holds. She also constructs large families of smooth cubic fourfolds that are
universally CH0-trivial.

In general, by Example 2.1 and Remark 7.7, the torsion order of any smooth cubic
hypersurface of dimension ≥ 2 is either 1 (if it is is universally CH0-trivial) or 2 (if it is not).
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7.3. Applications. Despite its technical aspect, Proposition 7.5 has remarkable consequences,
which were worked out by Bloch–Srinivas in [BS].

Proposition 7.9. Let X be a smooth projective complex variety. Suppose X is universally CH0-
trivial.

(a) We have H0(X,Ωr
X) = 0 for all r > 0.

(b) The group H3(X,Z) is torsion free.

Proof. The proof is very similar to that of the implication (v)⇒ (i) in Proposition 7.5; we use
the same notation. Again a class δ in CHn(X×X) induces a homomorphism δ∗ : Hr(X,Z)→
Hr(X,Z), defined by δ∗(z) := pr1∗(δ · pr∗2(z)). The diagonal induces the identity, the class
[X×{x}] gives 0 for r > 0, and the class (i×1)∗αD gives the homomorphism z 7→ i∗(pr1∗(αD ·
pr∗2(z))). Thus formula (8) gives for r > 0 a commutative diagram7

(10) H•(D,Z)
i∗

&&

Hr(X,Z)

pr1∗(αD·pr∗2(−))
88

Id
// H•(X,Z).

Since D ⊆ X is a hypersurface, the homomorphism i∗ : H
•(D,C) → H•(X,C) is a mor-

phism of Hodge structures of bidegree (1, 1). Therefore its image intersects trivially the
subspace Hr,0(X) of Hr(X,C). Since i∗ is surjective by (10), its image contains Hr(X,C),
hence Hr,0(X) = 0.

Now we take r = 3 in (10). The only possible part of H•(D,Z) with a nontrivial contri-
bution in (10) is H1(D,Z), which is torsion free. Any torsion element in H3(X,Z) goes to 0
in H1(D,Z), hence is zero. �

Observe that in the proof, we use only formula (8) in cohomology and not in the Chow
group. The relation between these two properties is discussed in Voisin’s papers [Vo3, Vo4,
Vo6].

It is a fundamental conjecture of Bloch that the vanishing (a) in the proposition should
imply that X is CH0-trivial.

We summarize in the following diagram the implications that we proved between the
various properties of a smooth projective complex variety that we defined.

(R)

��

(SR)

��

+3 univ. CH0 -trivial ks +3 Tors = 1

��

+3 H3(•,Z) torsion free

(UR)

��

+3 Tors | deg

��
(RC) +3 CH0 -trivial +3 Tors <∞.

7To be entirely correct, one should work on a desingularization of D.



ON RATIONALITY PROBLEMS 23

The reason why universal CH0-triviality has been so successful at proving new non
stable rationality results is that, as the Clemens–Griffiths criterion, it behaves well under
deformation (compare with Lemma 4.7).

Proposition 7.10 (Voisin). Let π : X → B be a proper flat family over a smooth variety B, with
dim(X ) ≥ 3. Let b0 ∈ B and assume that

• the general fiber Xb is smooth;

• the only singuarities of Xb0 are ordinary double points;

• some desingularization X̃b0 of Xb0 is not universally CH0-trivial.

Then Xb is not universally CH0-trivial for a very general point b of B.

We refer to [Vo4] for the proof. The idea is that there cannot exist a decomposition (8) as
in Proposition 7.5 for b general inB, because it would extend to an analogous decomposition
over X , then specialize to Xb0 , and finally extend to X̃b0 . One concludes by observing that
the locus of points b ∈ B such that Xb is smooth and CH0-trivial is a countable union of
closed subsets.

Corollary 7.11. The double cover of P3 branched along a very general quartic surface is not stably
rational.

Proof. Consider the pencil of quartic surfaces in P3 spanned by a smooth quartic and a quar-
tic symmetroid, and the family of double covers of P3 branched along the members of this
pencil. By Proposition 7.9(b), the Artin–Mumford threefold is not universally CH0-trivial.
Applying the proposition, we conclude that a very general quartic double solid is not uni-
versally CH0-trivial, hence not stably rational. �

Any smooth quartic double solid X is a Fano variety, hence rationally connected; it
is in fact even unirational (see [IP, Example 10.1.3(iii)]). Since the group H3(X,Z) is torsion
free, Proposition 7.10 implies that both implications

(11)
H3(•,Z) torsion free +3 univ. CH0 -trivial

(UR) +3 univ. CH0 -trivial
are false

for very general quartic double solids.

More generally, Voisin shows that the desingularization of a very general quartic dou-
ble solid with at most seven nodes is not stably rational. We do not know whether there exist
smooth quartic double solids that are universally CH0-trivial.

Voisin’s technique has given rise to a number of other results. Colliot-Thélène and
Pirutka have extended Proposition 7.10 to the case where the singular fiber Xb0 has (still suf-
ficiently nice) nonisolated singularities and applied this to prove that a very general quartic
hypersurface in P4

C is not stably rational ([CP]). Hassett, Kresch, and Tschinkel have shown
that a conic bundle with discriminant a very general plane curve of degree ≥ 6 is not stably
rational ([HKT]; compare with Section 4.1.2). This allowed them to produce the first exam-
ples of smooth irrational varieties that deform to rational ones.

In [S1], Schreieder introduced a variant of the method of Voisin and Colliot-Thélène–
Pirutka, which allows one to prove non stable rationality via a degeneration argument where
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a non universally CH0-trivial resolution of the special fibre is not needed. He used this tech-
nique to simplify the arguments in [HPT1, HPT2, HPT3] and to apply them to large classes
of quadric surface bundles. He also obtained in [S2] a dramatic improvement of the range
of degrees for which very general hypersurfaces are known to be not stably rational (see
Example 2.3). I recommend the excellent survey [S3] to the interested reader.

The literature on rationality questions is extremely vast and I have barely touched its
surface. Also, I completely left aside many techniques such as the derived category approach
to rationality problems (see [Ku] for an account).

It is therefore extremely frustating that, despite all these efforts, one cannot still answer
the simple question: are there irrational smooth cubic hypersurfaces in P5

C?
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