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Abstract. In this survey article, we review past results (obtained by Hirzebruch,
Libgober—-Wood, Salamon, Gritsenko, and Guan) on Hodge and Betti numbers of
Kahler manifolds, and more specifically of hyper-Kéahler manifolds, culminating
in the bounds obtained by Guan in 2001 on the Betti numbers of hyper-Kéhler
fourfolds. Let X be a compact Kéhler manifold of dimension m. One consequence
of the Hirzebruch-Riemann-Roch theorem is that the coefficients of the x,-genus
polynomial

px() = 3 (~1)IhP(X)y? € Zy)
P,q=0

are (explicit) universal polynomials in the Chern numbers of X. In 1990, Libgober—
Wood determined the first three terms of the Taylor expansion of this polynomial
about y = —1 and deduced that the Chern number [, ¢;(X)¢y—1(X) can be
expressed in terms of the coefficients of the polynomial px(y) (Proposition 2.1).
When X is a hyper-Kéhler manifold of dimension m = 2n, this Chern number
vanishes. The Hodge diamond of X also has extra symmetries which allowed
Salamon to translate the resulting identity into a linear relation between the
Betti numbers of X (Corollary 2.5). When X has dimension 4, Salamon’s identity
gives a relation between by (X), b3(X), and bs(X). Using a result of Verbitsky’s
on the injectivity of the cup-product map that produces an inequality between
ba(X) and bs(X), it is easy to conclude by(X) < 23. Guan established in 2001
more restrictions on the Betti numbers (Theorem 3.6).
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1. Symmetries of the Hodge Diamond of a Hyper-Kahler
Manifold

Let X be a compact hyper-Kéahler manifold of dimension 2n and let ¢ be a holo-
morphic symplectic form on X. Apart from the usual symmetries

hp,q(X) — hq@(X) — h2n—p72n—q(X)
coming from Ké&hler theory and Serre duality, there is another symmetry
hP (X)) = h2" P9 X) (1.1)

coming from the fact that the wedge product A o”("~P) is an isomorphism
oL = Q%?fp. So the Hodge diamond of X has a Dg-symmetry.

Ezample 1.1. (n = 2) We represent the various symmetries of the Hodge diamond
for an irreducible hyper-Kéhler fourfold (note that the extra “mirror” symme-
try (1.1) is only visible here on the outer edges of the diamond). In the following
diagram, the Hodge numbers A?-9 of hyper-Kéahler fourfolds of Kums-type appear
as left indices of the pq label and those for the K3[2-type as right indices.
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A priori, there are only three undetermined Hodge numbers: A'!, h2!, and h?2.
We will see in Example 2.7 that there is a relation between them.

Ezample 1.2. (n = 3) We represent some of the symmetries of the Hodge diamond
of an irreducible hyper-Kahler sixfold. In the following diagram, the Hodge num-
bers h?¢ of hyper-Kéhler sixfolds of Kumgs-type appear as left indices of the pg
label, those for the K3[3-type as right indices, and those for the OG6-type as right
exponents.

1bo1 100}
0b1 0109 001§
by 3 1200 e 511Gy e 102}

s b3 0309 e 421 =—— 12 -

51 b4 333 140} ﬂ = 3722583 == 104}
56 05 0 050 441 ﬁ % 0059
a5 b 3391 1601 5515 3742373 372335601 3724553 5155 1067
56679 0619 4520 24439 24349 1425 0169

A priori, there are only six undetermined Hodge numbers: ht, b2, p3', K22 B32,
and h33. We will see in Example 2.8 that there is a relation between them.
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2. Salamon’s Results on Betti Numbers

2.1. Hirzebruch—Riemann—Roch

Let X be a compact Kéahler manifold of dimension m. Following [6], we set

m

XP(X) =) (—1)IP(X) = x(X, Q%)
q=0

By Serre duality, these numbers satisfy
X (X) = (=1)"X"P(X) (2.1)

and we define the x,-genus by the formula

px(y) =Y _X"(X)y = DY (=1)hPI(X)y” € Z[y). (2:2)
p=0 p,q=0

For instance,
o px(0) = x"(X) = x(X, Ox),
® px(—1) = Xtop(X) = e(X),
e px (1) is the signature of the intersection form on H"(X,R) (which vanishes
when m is odd).

Serre duality translates into the reciprocity property (—y)™p X(%) = px(y).
One consequence of the Hirzebruch-Riemann-Roch theorem is that x?(X) can
be expressed as a universal polynomial T}, ,(c1,...,¢y) in the Chern classes of X

evaluated on X [6, Section IV.21.3, (10)], that is,
px) =30 [ Tualer(0).csen0) = [ Tuli)((X)..- e (X)),
p=0 X X

(2.3)
where T, (y) := Z;n:() T py?, & polynomial with coefficients in Qlcy, ..., ¢y]. One
has

 Tinp = (—1)"Tinm—p and (=) T (3) = Tn(y);
[ ] Tm,O = tdm(cl, e ,Cm).
Libgober-Wood found in [11, Lemma 2.2] the first three terms of the Taylor expan-
sion of the polynomial T}, (y) about —1:
Thly—1)=cp — %mcmy + 1—12 (%m(Sm —5)em + clcm_l)y2 + - (2.4)
The following is [11, Proposition 2.3] (reproved later in [15, Theorem 4.1]).

Proposition 2.1. (Libgober-Wood) If X is a compact Kdhler manifold of dimension
m, one has the relation

m

[ 1 (X) = 32177 (65* = dm(3m + 1)x7(X). (2.5)

p=0



On the Hodge and Betti Numbers of Hyper-Kéahler Manifolds

Proof. The Taylor expansion of the polynomial px about the point —1 is

M

xP(X)(y = 1)*

(0P + 330 (P + 2 S0 (D)) 4
p=0 p=0

Using the Hirzebruch-Riemann—Roch theorem (2.3) and comparing with (2.4), we
get, by identifying the coefficients, the relations!

px(~1) = / en(X) = Y (17 (X),

px(y—1)

b~
I
=

M

Il
o

P

Phe(— =—m/ em(X) = <1>p-1pxp<x>, (2.6)

Pe-0) =& [ (dmm = 5)en(X) + e (e () =231 (53730,

from which it is not difficult to get (2.5). O

The following consequence of Proposition 2.1 was obtained in [4, (1.14) and
Proposition 2.4] using modular forms (see also [7]).2

Corollary 2.2. (Gritsenko) If X is a compact Kdhler manifold of dimension m that
satisfies c1(X)r = 0, one has

Hme(X) =3 (1P (3m—p)*x"(X) =2 Y (=17 (im —p)*x"(X). (2.7)

p=0 0<p<m/2

In particular, when m is even,® me(X) is divisible by 24.

Proof. The first equality in (2.7) is easily obtained from the relations (2.6), and the
second equality from the symmetries (2.1). O

Remark 2.3. Salamon gives in [15, p. 145] the next two terms of the expansion (2.4)
(see also [10, Proposition 3.1(4)]):

'The first two relations are in fact formally equivalent upon using the symmetries (2.1), which give

Pi(=1) = (=1 (m = px"(X) = —mpx(~1) — (1)

p=0

(see Remark 2.3).
2Gritsenko also gives in [4, (1.13)] relations between the x*(X) when m € {4,6,8,10}, but they are
all rewritings of (2.7).
3This assumption is missing from [4], but it is necessary: when m is odd and we write m = 2n + 1,
we have

X) =23 (07((Gm—p)" = DX"(X) =2 37 (-1 (n(n +1) = p(2n + 1) +p°)x"(X),

0<p<n 0<p<n

which is divisible by 4. So what we get is that ™2e(X) is divisible by 24.
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Thn(ly—1)=cp — %mcmy—i— 12( m(3m — 5)¢y + €1Cm— 1)y2
— 51(m = 2)(3m(m = 3)ep + ci6m—1)y’
+ == (m(15m® — 150m* 4 485m — 502)c,y, + 4(15n° — 85n + 108)c1¢n—1
+ 8(c2 + 3¢2)cm—_2 — 8(c3 — 3cico + 303)cm,3)y + e
The y3-term does not bring any new information since it is in fact a formal conse-
quence of the reciprocity property (—y)™T,, (%) =T (y).

Using this expansion, J. Schmitt was able to find the following analogue of the
Libgober-Wood formula (2.5) for a compact Kéahler manifold X of dimension m:

/X ((GEX) + ca(X))em-2(X) = (5¢1(X) = er(X)ea(X) + e3(X))em—3(X))
= Zm:(—l)P(mp‘L + (2 — 5m — 15m?)p?

+—m(5m + 1)(15m* + 3m — 2)) " (X). (2.8)

On a hyper-Kahler manifold, where all the odd Chern classes vanish, the left side
reduces to [ c2(X)epm_2(X).

Remark 2.4. The polynomials T}, can be computed. Setting for simplicity ¢; = 0
(the case of interest for us), we have, for even dimensions m € {2,4,6} (see [11] or
[2, Section 9]),

T

—1)=co—coy+ ﬁ02y2>
Ta(y —1) =c4 — 2c4y + C4y - 7C4y + 720(303 — 04)y4,
1) =

@

Te(y — 1) = cg — 3cey + 2 cﬁy — 706y + 240( cg + cacq + 62¢6)y*

+ +25(3¢3 — 3cacq — 6c6)y° + 5aiga (1065 — 3 — 9eacy + 2¢6)y°.
Setting y := td,, (this is the constant term and leading coefficient of T,,), we get
Ta(y) = x + (2x — e2)y + xy°,
Ta(y) = x + (4x = gea)y + (6x + Fe)y® + (dx — gea)y® +xy*. (2.9)
2.2. Application to Hyper-Kéahler Manifolds

Assume now that m is even and that we have the extra “mirror” symmetry
hP4(X) = hm~P49(X) like we do when X is a hyper-Kdhler manifold. We define
polynomials

= ) WPIX)sPte € Zs, 1,
p,q=0

2m
)= bi(X)t = hx(t,1).
j=0
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The polynomial hx is symmetric and px (y) = hx(—1,y). Now we use the evenness
of m and the extra symmetry to get

0%hx
—1.—-1) = p+th,q X
o0 LD Z pa(— (X)
P,q=0
= D (m—pa(=1)""HRP(X)
P,q=0
_ 3 hX p+q P.q
=55 (-1.-1) —l—mz hPa(X)
P,q=0
0?hx Ohx
=— 1, -1) —m (=1, -1
gsat LT = m T (=1 =L,
so that
(92hX ath /
2———(-1,—-1) =— —1,-1)=— —1). 2.1
In terms of the polynomial bx, we have, by symmetry of hx,
Ohx
, [
be(t) =2 25X (1,0,
0?hx 0%hx
/!
b (t) = Qasat(tt)—l—Q o2 (t,t),
so that we get, using (2.10),
bx(—1) = 2px(-1), bx(=1) = —mpx(=1) + 2px (- 1). (2.11)

Proceeding as in the proof of Proposition 2.1, we write the Taylor expansion of the
polynomial by about the point —1:

x(t—1) Zb )(t — 1)
=SSy S (1) e S0 (1) 4o
7=0 7=0 7=0

Using (2.11) and (2.6), we get

S bi(—1)7j = —bx(~1) = —2plx (1) = m / em(X

j=0
S ()1 (3) = $ (1) = (1) 4 (1)
5=0

— im2/){cm(x) + é/X(gm(3m— 5)em(X) + e1(X)em—1(X)).
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Putting everything together, we obtain the analogue of (2.5) [15, Theorem 4.1]:

2m

Q/X a1 (X)em-1(X) =) (=1)/(65% — m(6m + 1))b;(X).

=0

Corollary 2.5. (Salamon) If X is a compact hyper-Kdahler manifold of dimension 2n,
one has*
4n

3 (-1)7(352 — n(12n + 1))b;(X) = 0.

J=0

Using the symmetry b; = b4,,—;, one checks that one gets the equivalent rela-
tions (in the spirit of (2.7))

—GZ ) §%ban—(X), b (X) =2 (=1)7(3j% = n)bsn—_;(X).

j=1
Ezample 2.6. (n = 1) We obtain by(X) = 22 and e(X) = 24.
Ezample 2.7. (n = 2) Salamon’s relation reads
ba(X) =46 + 10b2(X) — bs(X).

On an irreducible hyper-Kéhler fourfold, because of the symmetries, there are only
3 unknown Hodge numbers: h!!(X), h?1(X), and h??(X). One has

bo(X) =2+ RN (X), b3(X)=2hr*"(X), by(X)=2+20"(X)+h*2(X).
Salamon’s relation translates into
h*(X) =64 4 8k (X) — 2n*' (X).
There are two Chern numbers, ¢4 1= [y c4(X) = e(X) and ¢3 := [ c2(X)?. They
satisfy
3=x(X,0x)=T4(0) = /X tda(X) = 720 (3¢5 — c4). (2.12)

But we also have, using (2.9),
(X)) =12—Les, P(X) =18+ 2. (2.13)

A priori though, the value of ¢4 is not enough to determine all the Hodge numbers
but, once we know ¢4, one Hodge number determines all the others.

The Chern numbers for the two known deformation types of irreducible hyper-
Kahler fourfolds are in the following table.

Xtop = € = C4 c5
Kums, 108 756
K32 324 828

“There is a misprint in [9, 24.4.2].
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Ezample 2.8. (n = 3) Salamon’s relation reads
be(X) = 70 + 30b2(X) — 16b3(X) + 6b4(X).

Because of the symmetries, there are only 6 undetermined Hodge numbers: h'!(X),
R (X)), h3(X), h?2(X), h3?(X), and h33(X). One has

by (X) =2+ h'(X),
b3(X) = 2h*(X),
ba(X) = 2 + 20°1(X) + h*?(X),
bs(X) = 2p*(X) + 2032 (X),

(

be(X) = 2+ 2h" (X)) + 2h%2(X) + K33 (X).
Salamon’s relation translates into
P33 (X) = 140 + 280" (X)) — 32R*H(X) + 12R3(X) + 4h*(X).
There are three Chern numbers, ¢s == [ ¢6(X) = e(X), cacq 1= [y ca(X)ea(X),
and ¢ := [y ¢2(X)?. They satisfy

4= y(X,0x) = Ts(0) = tdg(X) = (10¢3 — 9¢acq + 20).

60480

The three known examples in dimension 6 are in the following table taken from [14,
Remark 4.13] (see also [13, Appendix A]) and [12, Corollary 6.8].

Xtop = G(X) = Cp C2Cy C%
Kumg 448 6784 30208
K3 3200 14720 36800
0G6 1920 7680 30720

3. Guan’s Bounds for Betti Numbers of Hyper-Kahler Fourfolds
3.1. Bounds on by

Let X be an irreducible compact hyper-Kéhler manifold of complex dimension m =
2n. Let o be a symplectic form on X. One has b1(X) = 0, and by(X) > 3 since
H?*%(X) = Co, H*?(X) = Cs, and H"' (X)) contains the class of any Kéhler form.

Our aim is to prove the following upper bound for be(X) when m = 4 [5,
Theorem 1].

Theorem 3.1. (Guan) Let X be an irreducible compact hyper-Kdhler manifold of
dimension 4. Then 3 < ba(X) < 23. Moreover, if bo(X) = 23, the Hodge numbers
of X are the same as the Hodge numbers of the Hilbert square of a K3 surface.

About the higher Betti numbers, we have the following result ([16, Theorem
1.5], [1, Theorem 1.5]).
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Theorem 3.2. (Verbitsky) Let X be an irreducible compact hyper-Kdhler manifold

of dimension 2n. For all k < n, the canonical map Sym”H?*(X,R) — H?*(X,R)

given by cup-product is injective. In particular, bap(X) > (b2(X)k+k_1).

We denote by SH?*(X) C H?*(X,R) the image of the map above.
Proof of Theorem 3.1. Write b; for b;(X'). We have b3+by = 4641002 (Example 2.7)
and by > % (Theorem 3.2), hence

bz(bg + 1) bg(bz + 1)
2 2
which can be rewritten as

< b3+ < b3 + by = 46 + 10D, (3.1)

(bg + 4)(b2 — 23) <0,

so by < 23. Assume now by = 23. Substituting in the inequality above, we get
b3 + 276 < 46 + 230 = 276, so b3 = 0. This implies by = 46 4+ 10b; = 276. So the
Betti numbers of X are the same as those of the Hilbert square of a K3 surface. As
noted in Example 2.7, this implies that the Hodge numbers are also the same. [J

3.2. Generalized Chern Numbers

For an irreducible compact hyper-Kéahler manifold X of dimension 2n, we have the
Beauville-Bogomolov—Fujiki quadratic form ¢x on H?(X, Q) ([3] or [9, Section 23]).
There exists a positive rational constant cx such that

v € H(X,Q) Aﬁ%:mwww (3.2)

More generally, let o € H*(X,R) be a class that is of type (27,25) on all small
deformations of X (this is the case for example for the Chern class ¢z;(X)). There
is a constant ¢, € R such that [9, Corollary 23.17]

Vo C HAXR) [ af D — oy (9" (33)
X
For « =1 and j = 0, we recover (3.2).
We can now define the generalized Chern numbers.

Definition 3.3. Let C € H*(X,C) be a polynomial in the Chern classes. The num-
ber

n—j
(S urr) ™
is independent of the choice of u € H?(X, C) with fX u?™ #£ 0. We call it a generalized
Chern number of X.

N(C):

To see that N(C') does not depend on the choice of u, note that fX Cu2(n=1) =
acqx(u)"~, where ac is the sum of the ¢, as in (3.3) for all monomials a in C.

Moreover, [, u** = cxqx(u)", so N(C) = acc)}%; it is a real number since we
can always choose u in H* (X, R).

In our case, n = 2, we are interested in the generalized Chern number N (co(X)).
Guan rewrote [8, (1)] as follows [5, Lemma 2].
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Lemma 3.4. Let X be an irreducible compact hyper-Kdahler manifold of dimension

2n. Then®
20NN (eo(X))™ 1
! (2)4)71(271—(2)(!)”)) N /xtdQ(X)' .

Moreover N (ca(X)) > 0.
Proof. For any hyper-Kéhler manifold X, one has [, (047)*" = cxqx(c+a)" > 0.

Hence we can write

_ fX c2(X) (o +5)2n—2
(fx(o+0)2m)"

The lemma therefore follows from the equality

IR
(1927%n)" vol(X)"—1 — /Xtd (X) (3.5)

N(ea(X))

from [8, (1), where
e vol(X) = m Jx (o +a)*" is the volume form on X,
e ||R| is the L?-norm of the Riemann curvature tensor, given by

IR = g 5 [ ealX)(o 422

22022, — 2)1 [y ‘
Note that [y ¢2(X)(0+6)*"~? is nonnegative, since it is a positive multiple of || R||?.
If it vanishes, X is flat, hence a torus by the Bieberbach theorem, which is absurd.
]

The following proposition is [5, Lemma 3].

Proposition 3.5. (Guan) Let X be an irreducible compact hyper-Kdhler manifold of
dimension 4. Then

Shy (X )N (e5(X))2 < (ba(X) + 2) /X ea(X)2. (3.6)

Equality holds if and only if co(X) € SH*(X).

Proof. The orthogonal complement SH*(X)+ of SH*(X) in H*(X,R) with respect
to the intersection form consists of primitive classes. Therefore, by the second
Hodge—Riemann bilinear relations, the intersection form is positive definite on
SH*(X)* and one has H*(X,R) = SH*(X) ® SH*(X)*.

Let us write co(X) = p + 7 with p € SH*(X) and r € SH*(X)*. As noted
above, one has [, r? > 0, with equality if and only if » = 0.

SHitchin and Sawon, and then Guan, use the A%—genus instead of tdz . In general, one has A=
ec1/2 td, so they coincide in our case since ¢; = 0.

5The authors of [5,8] use a different convention for exterior products of differential forms. The
latter can be seen either as elements of the abstract exterior algebra of the space of 1-forms or
as alternating multilinear forms: depending on the point of view, the two definitions of product
between differential forms differ by a binomial coefficient. So, if we follow Hitchin and Sawon and

o"6" and ||R|? = sy [y c2(X)o™" 16" !, then (3.4)

we write vol(X) = T2 ((n—1)1)2

1
()2 {fﬁl i
(@nn" N | CU5)"

(24n(2n—2)H" (27:1,)71'71 b'e

td2 (X).

becomes
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For every 3 € H?(X,R), one has, using (3.3),

/ pp? = / e(X)52 = cqx (), (3.7)
X X

where ¢ := c.,(x). Write b for ba(X). Let (e1,...,ep) be a basis of H?(X,C) which
is orthonormal with respect to gx. For all t1,t5,t3,t4 € R and pairwise distinct
1,7, k,l, we have

/ (tie; + taej + taer + taer)* = cxqx (tie; +taej +taer +tae))? = ex (t2 + 13 + 13 +13)2,
X

which implies

1
4 2 2 2
/ e; =cx, / eje; = gCX’ ejejer = eiejepe; = 0. (3.8)
X X X X

Write p = Z1gi§jgbpijei - €. Using (3.7) and (3.8), we obtain, for i # j,

1
0= / peiej = 3CXPij;
X

hence p;; = 0. Similarly, for each i, we have

/Pe —Cszz+ CXZpu

JFi

Summing over i € {1,...,b}, we obtain

bC—CXZpu > b*]- ZPMZCX(bg_‘_Q)Zpu

Using these relations, we obtain

2N, _
/Xp —zi:pu/pe —CZpu— b+2)

Finally, Definition 3.3 gives

fX Cz(X)Q% fXPQ% —1/2
N(e2(X)) = 172 — 173 = ¢cc¢ .
e (e 7

Putting everything together, we obtain

feor = [ [ [ = o = PR

which is the desired inequality. Equality holds if and only if [ < r? = 0. As we saw
earlier, this is equivalent to 7 = 0, that is, c2(X) € SH*(X). O
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3.3. Bounds on b3

Let again X be an irreducible compact hyper-Kéahler manifold of dimension 4. A
formal computation shows

1 1 2
/Xtd2(X):5760 X(702(X) —4dey(X)). (3.9)

The following result is [5, Theorem 2].

Theorem 3.6. (Guan) Let X be an irreducible compact hyper-Kdhler manifold of
dimension 4. Then

4(23 — ba(X))(8 — ba(X))

b3(X) < . 3.10
Ibe(X) > 77 then (b2(X)ab3(X)) € {(8,0), (2330)}
Proof. Write b; for b;(X), ¢3 for [ ca(X)?, and ¢4 for [y cs(X). We substitute
Lemma 3.4, with n = 2, in Proposition 3.5 to obtain

. 2 1

(24-4) / td3(X) < (by + 2)2
T

Substituting in (3.9) the expression for ¢4 given in (2.12), we get

3ba

2
/Xtd%(X) = ?160(%5 —4(3¢2 - 720-3)) = g - 1%2.

Hence

(by +2)c3 > 2242 b2/ td? (X =2 - 242 b2(§ _ G ) by (3 - 242 —c2).(3.11)

. 2 1152
We have h'1(X) — 2h%1(X) = x' (X) = 12 — % (see (2.13)); using
by =2+ hVN(X), by =2r"%(X),

we obtain ¢4 = 3(16 + 4bs — b3). We use this in (2.

12) to get c3 = 736 + 4by — bs.
Then, (3.11) becomes (by + 1)bg < 4(23 — b2)(8 — by) as in the statement of the
theorem.

If b, > 7, the right side of (3.10) is nonpositive because by < 23, so it has to
be zero. O

The following is [5, Corollary 1].

[
Corollary 3.7. (Guan) Let X be an irreducible compact hyper-Kdahler manifold of
dimension 4. If bo(X) < 7, one of the following holds:

. bQ(X) =3 and b3(X) = 40 with £ < 17;

o bo(X) =4 and b3(X) = 4¢ with ¢ < 15;

o bo(X) =5 and bs(X) = 40 with £ < 9;

e by(X) =06 and b3(X) = 4¢ with ¢ < 4;

o bo(X) =17 and b3(X) = 4¢ with ¢ € {0,2}.

Proof. By [3, Lemma 1.2], one has 4 | b, for k£ odd. The bounds are obtained using
either (3.1) or (3.10). Guan proved in [5] that the case (ba(X), b3(X)) = (7,4) cannot
occur. 0



P. Beri and O. Debarre

Remark 3.8. When by(X) = 7, either b3(X) = 0 or the Hodge numbers of X are
the same as the Hodge numbers of a generalized Kummer fourfold.

Remark 3.9. Given (b2(X),b3(X)), one can compute N (co(X)) using Lemma 3.4,
since the Chern numbers of X are computed in the proof of Theorem 3.6. Then
it is possible to check which pairs give an equality in (3.6). Hence, using Propo-
sition 3.5, one can check that co(X) € SH*(X) if and only if (ba(X),b3(X)) €
{(5,36),(7,8),(8,0),(23,0)}.
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