On the Hodge and Betti Numbers of Hyper-Kähler Manifolds

Pietro Beri and Olivier Debarre©

Abstract

In this survey article, we review past results (obtained by Hirzebruch, Libgober-Wood, Salamon, Gritsenko, and Guan) on Hodge and Betti numbers of Kähler manifolds, and more specifically of hyper-Kähler manifolds, culminating in the bounds obtained by Guan in 2001 on the Betti numbers of hyper-Kähler fourfolds. Let X be a compact Kähler manifold of dimension m. One consequence of the Hirzebruch-Riemann-Roch theorem is that the coefficients of the χ_{y}-genus polynomial $$
p_{X}(y):=\sum_{p, q=0}^{m}(-1)^{q} h^{p, q}(X) y^{p} \in \mathbb{Z}[y]
$$ are (explicit) universal polynomials in the Chern numbers of X. In 1990, LibgoberWood determined the first three terms of the Taylor expansion of this polynomial about $y=-1$ and deduced that the Chern number $\int_{X} c_{1}(X) c_{m-1}(X)$ can be expressed in terms of the coefficients of the polynomial $p_{X}(y)$ (Proposition 2.1). When X is a hyper-Kähler manifold of dimension $m=2 n$, this Chern number vanishes. The Hodge diamond of X also has extra symmetries which allowed Salamon to translate the resulting identity into a linear relation between the Betti numbers of X (Corollary 2.5). When X has dimension 4, Salamon's identity gives a relation between $b_{2}(X), b_{3}(X)$, and $b_{4}(X)$. Using a result of Verbitsky's on the injectivity of the cup-product map that produces an inequality between $b_{2}(X)$ and $b_{4}(X)$, it is easy to conclude $b_{2}(X) \leq 23$. Guan established in 2001 more restrictions on the Betti numbers (Theorem 3.6).

[^0]P. Beri and O. Debarre

Contents

1. Symmetries of the Hodge Diamond of a Hyper-Kähler Manifold 2
2. Salamon's Results on Betti Numbers 4
2.1. Hirzebruch-Riemann-Roch 4
2.2. Application to Hyper-Kähler Manifolds 6
3. Guan's Bounds for Betti Numbers of Hyper-Kähler Fourfolds 9
3.1. Bounds on b_{2} 9
3.2. Generalized Chern Numbers 10
3.3. Bounds on b_{3} 13
References 14

1. Symmetries of the Hodge Diamond of a Hyper-Kähler Manifold

Let X be a compact hyper-Kähler manifold of dimension $2 n$ and let σ be a holomorphic symplectic form on X. Apart from the usual symmetries

$$
h^{p, q}(X)=h^{q, p}(X)=h^{2 n-p, 2 n-q}(X)
$$

coming from Kähler theory and Serre duality, there is another symmetry

$$
\begin{equation*}
h^{p, q}(X)=h^{2 n-p, q}(X) \tag{1.1}
\end{equation*}
$$

coming from the fact that the wedge product $\wedge \sigma^{\wedge(n-p)}$ is an isomorphism $\Omega_{X}^{p} \xrightarrow{\sim} \Omega_{X}^{2 n-p}$. So the Hodge diamond of X has a D_{8}-symmetry.

Example 1.1. $(n=2)$ We represent the various symmetries of the Hodge diamond for an irreducible hyper-Kähler fourfold (note that the extra "mirror" symmetry (1.1) is only visible here on the outer edges of the diamond). In the following diagram, the Hodge numbers $h^{p, q}$ of hyper-Kähler fourfolds of Kum ${ }_{2}$-type appear as left indices of the $p q$ label and those for the $\mathrm{K} 3^{[2]}$-type as right indices.

A priori, there are only three undetermined Hodge numbers: h^{11}, h^{21}, and h^{22}. We will see in Example 2.7 that there is a relation between them.

Example 1.2. $(n=3)$ We represent some of the symmetries of the Hodge diamond of an irreducible hyper-Kähler sixfold. In the following diagram, the Hodge numbers $h^{p, q}$ of hyper-Kähler sixfolds of Kum_{3}-type appear as left indices of the $p q$ label, those for the $\mathrm{K} 3{ }^{[3]}$-type as right indices, and those for the OG6-type as right exponents.

A priori, there are only six undetermined Hodge numbers: $h^{11}, h^{21}, h^{31}, h^{22}, h^{32}$, and h^{33}. We will see in Example 2.8 that there is a relation between them.

2. Salamon's Results on Betti Numbers

2.1. Hirzebruch-Riemann-Roch

Let X be a compact Kähler manifold of dimension m. Following [6], we set

$$
\chi^{p}(X):=\sum_{q=0}^{m}(-1)^{q} h^{p, q}(X)=\chi\left(X, \Omega_{X}^{p}\right)
$$

By Serre duality, these numbers satisfy

$$
\begin{equation*}
\chi^{p}(X)=(-1)^{m} \chi^{m-p}(X) \tag{2.1}
\end{equation*}
$$

and we define the χ_{y}-genus by the formula

$$
\begin{equation*}
p_{X}(y):=\sum_{p=0}^{m} \chi^{p}(X) y^{p}=\sum_{p, q=0}^{m}(-1)^{q} h^{p, q}(X) y^{p} \in \mathbb{Z}[y] . \tag{2.2}
\end{equation*}
$$

For instance,

- $p_{X}(0)=\chi^{0}(X)=\chi\left(X, \mathcal{O}_{X}\right)$,
- $p_{X}(-1)=\chi_{\text {top }}(X)=e(X)$,
- $p_{X}(1)$ is the signature of the intersection form on $H^{m}(X, \mathbb{R})$ (which vanishes when m is odd).
Serre duality translates into the reciprocity property $(-y)^{m} p_{X}\left(\frac{1}{y}\right)=p_{X}(y)$.
One consequence of the Hirzebruch-Riemann-Roch theorem is that $\chi^{p}(X)$ can be expressed as a universal polynomial $T_{m, p}\left(c_{1}, \ldots, c_{m}\right)$ in the Chern classes of X evaluated on $X[6$, Section IV.21.3, (10)], that is,

$$
\begin{equation*}
p_{X}(y)=\sum_{p=0}^{m} y^{p} \int_{X} T_{m, p}\left(c_{1}(X), \ldots, c_{m}(X)\right)=\int_{X} T_{m}(y)\left(c_{1}(X), \ldots, c_{m}(X)\right), \tag{2.3}
\end{equation*}
$$

where $T_{m}(y):=\sum_{p=0}^{m} T_{m, p} y^{p}$, a polynomial with coefficients in $\mathbb{Q}\left[c_{1}, \ldots, c_{m}\right]$. One has

$$
\begin{aligned}
& \text { - } T_{m, p}=(-1)^{m} T_{m, m-p} \text { and }(-y)^{m} T_{m}\left(\frac{1}{y}\right)=T_{m}(y) ; \\
& \text { - } T_{m, 0}=\operatorname{td}_{m}\left(c_{1}, \ldots, c_{m}\right) \text {. }
\end{aligned}
$$

Libgober-Wood found in [11, Lemma 2.2] the first three terms of the Taylor expansion of the polynomial $T_{m}(y)$ about -1 :

$$
\begin{equation*}
T_{m}(y-1)=c_{m}-\frac{1}{2} m c_{m} y+\frac{1}{12}\left(\frac{1}{2} m(3 m-5) c_{m}+c_{1} c_{m-1}\right) y^{2}+\cdots \tag{2.4}
\end{equation*}
$$

The following is [11, Proposition 2.3] (reproved later in [15, Theorem 4.1]).
Proposition 2.1. (Libgober-Wood) If X is a compact Kähler manifold of dimension m, one has the relation

$$
\begin{equation*}
\int_{X} c_{1}(X) c_{m-1}(X)=\sum_{p=0}^{m}(-1)^{p}\left(6 p^{2}-\frac{1}{2} m(3 m+1)\right) \chi^{p}(X) . \tag{2.5}
\end{equation*}
$$

Proof. The Taylor expansion of the polynomial p_{X} about the point -1 is

$$
\begin{aligned}
p_{X}(y-1) & =\sum_{p=0}^{m} \chi^{p}(X)(y-1)^{p} \\
& =\sum_{p=0}^{m}(-1)^{p} \chi^{p}(X)+y \sum_{p=0}^{m}(-1)^{p-1}\binom{p}{1} \chi^{p}(X)+y^{2} \sum_{p=0}^{m}(-1)^{p}\binom{p}{2} \chi^{p}(X)+\cdots
\end{aligned}
$$

Using the Hirzebruch-Riemann-Roch theorem (2.3) and comparing with (2.4), we get, by identifying the coefficients, the relations ${ }^{1}$

$$
\begin{align*}
& p_{X}(-1)=\int_{X} c_{m}(X)=\sum_{p=0}^{m}(-1)^{p} \chi^{p}(X), \\
& p_{X}^{\prime}(-1)=-\frac{1}{2} m \int_{X} c_{m}(X)=\sum_{p=0}^{m}(-1)^{p-1} p \chi^{p}(X), \tag{2.6}\\
& p_{X}^{\prime \prime}(-1)=\frac{1}{6} \int_{X}\left(\frac{1}{2} m(3 m-5) c_{m}(X)+c_{1}(X) c_{m-1}(X)\right)=2 \sum_{p=0}^{m}(-1)^{p}\binom{p}{2} \chi^{p}(X),
\end{align*}
$$

from which it is not difficult to get (2.5).
The following consequence of Proposition 2.1 was obtained in [4, (1.14) and Proposition 2.4] using modular forms (see also [7]). ${ }^{2}$

Corollary 2.2. (Gritsenko) If X is a compact Kähler manifold of dimension m that satisfies $c_{1}(X)_{\mathbb{R}}=0$, one has

$$
\begin{equation*}
\frac{1}{12} m e(X)=\sum_{p=0}^{m}(-1)^{p}\left(\frac{1}{2} m-p\right)^{2} \chi^{p}(X)=2 \sum_{0 \leq p<m / 2}(-1)^{p}\left(\frac{1}{2} m-p\right)^{2} \chi^{p}(X) \tag{2.7}
\end{equation*}
$$

In particular, when m is even, ${ }^{3} m e(X)$ is divisible by 24.
Proof. The first equality in (2.7) is easily obtained from the relations (2.6), and the second equality from the symmetries (2.1).

Remark 2.3. Salamon gives in [15, p. 145] the next two terms of the expansion (2.4) (see also [10, Proposition 3.1(4)]):
${ }^{1}$ The first two relations are in fact formally equivalent upon using the symmetries (2.1), which give

$$
p_{X}^{\prime}(-1)=\sum_{p=0}^{m}(-1)^{p-1}(m-p) \chi^{p}(X)=-m p_{X}(-1)-p_{X}^{\prime}(-1)
$$

(see Remark 2.3).
${ }^{2}$ Gritsenko also gives in [4, (1.13)] relations between the $\chi^{p}(X)$ when $m \in\{4,6,8,10\}$, but they are all rewritings of (2.7).
${ }^{3}$ This assumption is missing from [4], but it is necessary: when m is odd and we write $m=2 n+1$, we have

$$
\frac{m-3}{12} e(X)=2 \sum_{0 \leq p \leq n}(-1)^{p}\left(\left(\frac{1}{2} m-p\right)^{2}-\frac{1}{4}\right) \chi^{p}(X)=2 \sum_{0 \leq p \leq n}(-1)^{p}\left(n(n+1)-p(2 n+1)+p^{2}\right) \chi^{p}(X),
$$

which is divisible by 4 . So what we get is that $\frac{m-3}{2} e(X)$ is divisible by 24 .

$$
\begin{aligned}
T_{m}(y-1)= & c_{m}-\frac{1}{2} m c_{m} y+\frac{1}{12}\left(\frac{1}{2} m(3 m-5) c_{m}+c_{1} c_{m-1}\right) y^{2} \\
& -\frac{1}{24}(m-2)\left(\frac{1}{2} m(m-3) c_{m}+c_{1} c_{m-1}\right) y^{3} \\
& +\frac{1}{5760}\left(m\left(15 m^{3}-150 m^{2}+485 m-502\right) c_{m}+4\left(15 n^{2}-85 n+108\right) c_{1} c_{m-1}\right. \\
& \left.+8\left(c_{1}^{2}+3 c_{2}\right) c_{m-2}-8\left(c_{1}^{3}-3 c_{1} c_{2}+3 c_{3}\right) c_{m-3}\right) y^{4}+\cdots
\end{aligned}
$$

The y^{3}-term does not bring any new information since it is in fact a formal consequence of the reciprocity property $(-y)^{m} T_{m}\left(\frac{1}{y}\right)=T_{m}(y)$.

Using this expansion, J. Schmitt was able to find the following analogue of the Libgober-Wood formula (2.5) for a compact Kähler manifold X of dimension m :

$$
\begin{align*}
\int_{X} & \left(\left(\frac{1}{3} c_{1}^{2}(X)+c_{2}(X)\right) c_{m-2}(X)-\left(\frac{1}{3} c_{1}^{3}(X)-c_{1}(X) c_{2}(X)+c_{3}(X)\right) c_{m-3}(X)\right) \\
= & \sum_{p=0}^{m}(-1)^{p}\left(10 p^{4}+\left(2-5 m-15 m^{2}\right) p^{2}\right. \\
& \left.+\frac{1}{24} m(5 m+1)\left(15 m^{2}+3 m-2\right)\right) \chi^{p}(X) \tag{2.8}
\end{align*}
$$

On a hyper-Kähler manifold, where all the odd Chern classes vanish, the left side reduces to $\int_{X} c_{2}(X) c_{m-2}(X)$.

Remark 2.4. The polynomials T_{m} can be computed. Setting for simplicity $c_{1}=0$ (the case of interest for us), we have, for even dimensions $m \in\{2,4,6\}$ (see [11] or [2, Section 9]),

$$
\begin{aligned}
T_{2}(y-1)= & c_{2}-c_{2} y+\frac{1}{12} c_{2} y^{2} \\
T_{4}(y-1)= & c_{4}-2 c_{4} y+\frac{7}{6} c_{4} y^{2}-\frac{1}{6} c_{4} y^{3}+\frac{1}{720}\left(3 c_{2}^{2}-c_{4}\right) y^{4} \\
T_{6}(y-1)= & c_{6}-3 c_{6} y+\frac{13}{4} c_{6} y^{2}-\frac{3}{2} c_{6} y^{3}+\frac{1}{240}\left(-c_{3}^{2}+c_{2} c_{4}+62 c_{6}\right) y^{4} \\
& +\frac{1}{720}\left(3 c_{3}^{2}-3 c_{2} c_{4}-6 c_{6}\right) y^{5}+\frac{1}{60480}\left(10 c_{2}^{3}-c_{3}^{2}-9 c_{2} c_{4}+2 c_{6}\right) y^{6} .
\end{aligned}
$$

Setting $\chi:=\operatorname{td}_{m}$ (this is the constant term and leading coefficient of T_{m}), we get

$$
\begin{align*}
& T_{2}(y)=\chi+\left(2 \chi-c_{2}\right) y+\chi y^{2} \\
& T_{4}(y)=\chi+\left(4 \chi-\frac{1}{6} c_{4}\right) y+\left(6 \chi+\frac{2}{3} c_{4}\right) y^{2}+\left(4 \chi-\frac{1}{6} c_{4}\right) y^{3}+\chi y^{4} \tag{2.9}
\end{align*}
$$

2.2. Application to Hyper-Kähler Manifolds

Assume now that m is even and that we have the extra "mirror" symmetry $h^{p, q}(X)=h^{m-p, q}(X)$ like we do when X is a hyper-Kähler manifold. We define polynomials

$$
\begin{aligned}
h_{X}(s, t) & :=\sum_{p, q=0}^{m} h^{p, q}(X) s^{p} t^{q} \in \mathbb{Z}[s, t], \\
b_{X}(t) & :=\sum_{j=0}^{2 m} b_{j}(X) t^{j}=h_{X}(t, t) .
\end{aligned}
$$

The polynomial h_{X} is symmetric and $p_{X}(y)=h_{X}(-1, y)$. Now we use the evenness of m and the extra symmetry to get

$$
\begin{aligned}
\frac{\partial^{2} h_{X}}{\partial s \partial t}(-1,-1) & =\sum_{p, q=0}^{m} p q(-1)^{p+q} h^{p, q}(X) \\
& =\sum_{p, q=0}^{m}(m-p) q(-1)^{m-p+q} h^{p, q}(X) \\
& =-\frac{\partial^{2} h_{X}}{\partial s \partial t}(-1,-1)+m \sum_{p, q=0}^{m} q(-1)^{p+q} h^{p, q}(X) \\
& =-\frac{\partial^{2} h_{X}}{\partial s \partial t}(-1,-1)-m \frac{\partial h_{X}}{\partial t}(-1,-1)
\end{aligned}
$$

so that

$$
\begin{equation*}
2 \frac{\partial^{2} h_{X}}{\partial s \partial t}(-1,-1)=-m \frac{\partial h_{X}}{\partial t}(-1,-1)=-m p_{X}^{\prime}(-1) \tag{2.10}
\end{equation*}
$$

In terms of the polynomial b_{X}, we have, by symmetry of h_{X},

$$
\begin{aligned}
b_{X}^{\prime}(t) & =2 \frac{\partial h_{X}}{\partial t}(t, t) \\
b_{X}^{\prime \prime}(t) & =2 \frac{\partial^{2} h_{X}}{\partial s \partial t}(t, t)+2 \frac{\partial^{2} h_{X}}{\partial t^{2}}(t, t)
\end{aligned}
$$

so that we get, using (2.10),

$$
\begin{equation*}
b_{X}^{\prime}(-1)=2 p_{X}^{\prime}(-1), \quad b_{X}^{\prime \prime}(-1)=-m p_{X}^{\prime}(-1)+2 p_{X}^{\prime \prime}(-1) \tag{2.11}
\end{equation*}
$$

Proceeding as in the proof of Proposition 2.1, we write the Taylor expansion of the polynomial b_{X} about the point -1 :

$$
\begin{aligned}
b_{X}(t-1) & =\sum_{j=0}^{2 m} b_{j}(X)(t-1)^{j} \\
& =\sum_{j=0}^{2 m} b_{j}(X)(-1)^{j}+t \sum_{j=0}^{2 m} b_{j}(-1)^{j-1}\binom{j}{1}+t^{2} \sum_{j=0}^{2 m} b_{j}(X)(-1)^{j}\binom{j}{2}+\cdots
\end{aligned}
$$

Using (2.11) and (2.6), we get

$$
\begin{aligned}
\sum_{j=0}^{2 m} b_{j}(-1)^{j} j & =-b_{X}^{\prime}(-1)=-2 p_{X}^{\prime}(-1)=m \int_{X} c_{m}(X) \\
\sum_{j=0}^{2 m} b_{j}(X)(-1)^{j}\binom{j}{2} & =\frac{1}{2} b_{X}^{\prime \prime}(-1)=-\frac{1}{2} m p_{X}^{\prime}(-1)+p_{X}^{\prime \prime}(-1) \\
& =\frac{1}{4} m^{2} \int_{X} c_{m}(X)+\frac{1}{6} \int_{X}\left(\frac{1}{2} m(3 m-5) c_{m}(X)+c_{1}(X) c_{m-1}(X)\right)
\end{aligned}
$$

Putting everything together, we obtain the analogue of (2.5) [15, Theorem 4.1]:

$$
2 \int_{X} c_{1}(X) c_{m-1}(X)=\sum_{j=0}^{2 m}(-1)^{j}\left(6 j^{2}-m(6 m+1)\right) b_{j}(X)
$$

Corollary 2.5. (Salamon) If X is a compact hyper-Kähler manifold of dimension $2 n$, one has ${ }^{4}$

$$
\sum_{j=0}^{4 n}(-1)^{j}\left(3 j^{2}-n(12 n+1)\right) b_{j}(X)=0
$$

Using the symmetry $b_{j}=b_{4 n-j}$, one checks that one gets the equivalent relations (in the spirit of (2.7))

$$
n e(X)=6 \sum_{j=1}^{2 n}(-1)^{j} j^{2} b_{2 n-j}(X), \quad n b_{2 n}(X)=2 \sum_{j=1}^{2 n}(-1)^{j}\left(3 j^{2}-n\right) b_{2 n-j}(X) .
$$

Example 2.6. $(n=1)$ We obtain $b_{2}(X)=22$ and $e(X)=24$.
Example 2.7. $(n=2)$ Salamon's relation reads

$$
b_{4}(X)=46+10 b_{2}(X)-b_{3}(X) .
$$

On an irreducible hyper-Kähler fourfold, because of the symmetries, there are only 3 unknown Hodge numbers: $h^{11}(X), h^{21}(X)$, and $h^{22}(X)$. One has

$$
b_{2}(X)=2+h^{11}(X), \quad b_{3}(X)=2 h^{21}(X), \quad b_{4}(X)=2+2 h^{11}(X)+h^{22}(X)
$$

Salamon's relation translates into

$$
h^{22}(X)=64+8 h^{11}(X)-2 h^{21}(X)
$$

There are two Chern numbers, $c_{4}:=\int_{X} c_{4}(X)=e(X)$ and $c_{2}^{2}:=\int_{X} c_{2}(X)^{2}$. They satisfy

$$
\begin{equation*}
3=\chi\left(X, \mathcal{O}_{X}\right)=T_{4}(0)=\int_{X} \operatorname{td}_{4}(X)=\frac{1}{720}\left(3 c_{2}^{2}-c_{4}\right) \tag{2.12}
\end{equation*}
$$

But we also have, using (2.9),

$$
\begin{equation*}
\chi^{1}(X)=12-\frac{1}{6} c_{4}, \quad \chi^{2}(X)=18+\frac{2}{3} c_{4} \tag{2.13}
\end{equation*}
$$

A priori though, the value of c_{4} is not enough to determine all the Hodge numbers but, once we know c_{4}, one Hodge number determines all the others.

The Chern numbers for the two known deformation types of irreducible hyperKähler fourfolds are in the following table.

	$\chi_{\mathrm{top}}=e=c_{4}$	c_{2}^{2}
Kum_{2}	108	756
$\mathrm{~K} 3^{[2]}$	324	828

[^1]Example 2.8. $(n=3)$ Salamon's relation reads

$$
b_{6}(X)=70+30 b_{2}(X)-16 b_{3}(X)+6 b_{4}(X) .
$$

Because of the symmetries, there are only 6 undetermined Hodge numbers: $h^{11}(X)$, $h^{21}(X), h^{31}(X), h^{22}(X), h^{32}(X)$, and $h^{33}(X)$. One has

$$
\begin{aligned}
& b_{2}(X)=2+h^{11}(X), \\
& b_{3}(X)=2 h^{21}(X), \\
& b_{4}(X)=2+2 h^{31}(X)+h^{22}(X), \\
& b_{5}(X)=2 h^{41}(X)+2 h^{32}(X), \\
& b_{6}(X)=2+2 h^{11}(X)+2 h^{22}(X)+h^{33}(X) .
\end{aligned}
$$

Salamon's relation translates into

$$
h^{33}(X)=140+28 h^{11}(X)-32 h^{21}(X)+12 h^{31}(X)+4 h^{22}(X)
$$

There are three Chern numbers, $c_{6}:=\int_{X} c_{6}(X)=e(X), c_{2} c_{4}:=\int_{X} c_{2}(X) c_{4}(X)$, and $c_{2}^{3}:=\int_{X} c_{2}(X)^{3}$. They satisfy

$$
4=\chi\left(X, \mathcal{O}_{X}\right)=T_{6}(0)=\operatorname{td}_{6}(X)=\frac{1}{60480}\left(10 c_{2}^{3}-9 c_{2} c_{4}+2 c_{6}\right) .
$$

The three known examples in dimension 6 are in the following table taken from [14, Remark 4.13] (see also [13, Appendix A]) and [12, Corollary 6.8].

	$\chi_{\text {top }}=e(X)=c_{6}$	$c_{2} c_{4}$	c_{2}^{3}
Kum $_{3}$	448	6784	30208
K3 $^{[3]}$	3200	14720	36800
OG6	1920	7680	30720

3. Guan's Bounds for Betti Numbers of Hyper-Kähler Fourfolds

3.1. Bounds on b_{2}

Let X be an irreducible compact hyper-Kähler manifold of complex dimension $m=$ $2 n$. Let σ be a symplectic form on X. One has $b_{1}(X)=0$, and $b_{2}(X) \geq 3$ since $H^{2,0}(X)=\mathbb{C} \sigma, H^{0,2}(X)=\mathbb{C} \bar{\sigma}$, and $H^{1,1}(X)$ contains the class of any Kähler form.

Our aim is to prove the following upper bound for $b_{2}(X)$ when $m=4[5$, Theorem 1].

Theorem 3.1. (Guan) Let X be an irreducible compact hyper-Kähler manifold of dimension 4. Then $3 \leq b_{2}(X) \leq 23$. Moreover, if $b_{2}(X)=23$, the Hodge numbers of X are the same as the Hodge numbers of the Hilbert square of a K3 surface.

About the higher Betti numbers, we have the following result ([16, Theorem 1.5], [1, Theorem 1.5]).

Theorem 3.2. (Verbitsky) Let X be an irreducible compact hyper-Kähler manifold of dimension $2 n$. For all $k \leq n$, the canonical map $\operatorname{Sym}^{k} H^{2}(X, \mathbb{R}) \rightarrow H^{2 k}(X, \mathbb{R})$ given by cup-product is injective. In particular, $b_{2 k}(X) \geq\binom{ b_{2}(X)+k-1}{k}$.

We denote by $S H^{2 k}(X) \subset H^{2 k}(X, \mathbb{R})$ the image of the map above.
Proof of Theorem 3.1. Write b_{j} for $b_{j}(X)$. We have $b_{3}+b_{4}=46+10 b_{2}$ (Example 2.7) and $b_{4} \geq \frac{b_{2}\left(b_{2}+1\right)}{2}$ (Theorem 3.2), hence

$$
\begin{equation*}
\frac{b_{2}\left(b_{2}+1\right)}{2} \leq b_{3}+\frac{b_{2}\left(b_{2}+1\right)}{2} \leq b_{3}+b_{4}=46+10 b_{2} \tag{3.1}
\end{equation*}
$$

which can be rewritten as

$$
\left(b_{2}+4\right)\left(b_{2}-23\right) \leq 0
$$

so $b_{2} \leq 23$. Assume now $b_{2}=23$. Substituting in the inequality above, we get $b_{3}+276 \leq 46+230=276$, so $b_{3}=0$. This implies $b_{4}=46+10 b_{2}=276$. So the Betti numbers of X are the same as those of the Hilbert square of a K3 surface. As noted in Example 2.7, this implies that the Hodge numbers are also the same.

3.2. Generalized Chern Numbers

For an irreducible compact hyper-Kähler manifold X of dimension $2 n$, we have the Beauville-Bogomolov-Fujiki quadratic form q_{X} on $H^{2}(X, \mathbb{Q})([3]$ or [9, Section 23]). There exists a positive rational constant c_{X} such that

$$
\begin{equation*}
\forall \beta \in H^{2}(X, \mathbb{Q}) \quad \int_{X} \beta^{2 n}=c_{X} q_{X}(\beta)^{n} \tag{3.2}
\end{equation*}
$$

More generally, let $\alpha \in H^{4 j}(X, \mathbb{R})$ be a class that is of type $(2 j, 2 j)$ on all small deformations of X (this is the case for example for the Chern class $\left.c_{2 j}(X)\right)$. There is a constant $c_{\alpha} \in \mathbb{R}$ such that [9, Corollary 23.17]

$$
\begin{equation*}
\forall \beta \in H^{2}(X, \mathbb{R}) \quad \int_{X} \alpha \beta^{2(n-j)}=c_{\alpha} q_{X}(\beta)^{n-j} \tag{3.3}
\end{equation*}
$$

For $\alpha=1$ and $j=0$, we recover (3.2).
We can now define the generalized Chern numbers.
Definition 3.3. Let $C \in H^{4 j}(X, \mathbb{C})$ be a polynomial in the Chern classes. The number

$$
N(C):=\frac{\int_{X} C u^{2(n-j)}}{\left(\int_{X} u^{2 n}\right)^{\frac{n-j}{n}}}
$$

is independent of the choice of $u \in H^{2}(X, \mathbb{C})$ with $\int_{X} u^{2 n} \neq 0$. We call it a generalized Chern number of X.

To see that $N(C)$ does not depend on the choice of u, note that $\int_{X} C u^{2(n-j)}=$ $a_{C} q_{X}(u)^{n-j}$, where a_{C} is the sum of the c_{α} as in (3.3) for all monomials α in C. Moreover, $\int_{X} u^{2 n}=c_{X} q_{X}(u)^{n}$, so $N(C)=a_{C} c_{X}^{-\frac{n-j}{n}}$; it is a real number since we can always choose u in $H^{4 j}(X, \mathbb{R})$.

In our case, $n=2$, we are interested in the generalized Chern number $N\left(c_{2}(X)\right)$. Guan rewrote $[8,(1)]$ as follows [5, Lemma 2].

Lemma 3.4. Let X be an irreducible compact hyper-Kähler manifold of dimension $2 n$. Then ${ }^{5}$

$$
\begin{equation*}
\frac{((2 n)!)^{n-1} N\left(c_{2}(X)\right)^{n}}{(24 n(2 n-2)!)^{n}}=\int_{X} \operatorname{td}^{\frac{1}{2}}(X) . \tag{3.4}
\end{equation*}
$$

Moreover $N\left(c_{2}(X)\right)>0$.
Proof. For any hyper-Kähler manifold X, one has $\int_{X}(\sigma+\bar{\sigma})^{2 n}=c_{X} q_{X}(\sigma+\bar{\sigma})^{n}>0$. Hence we can write

$$
N\left(c_{2}(X)\right)=\frac{\int_{X} c_{2}(X)(\sigma+\bar{\sigma})^{2 n-2}}{\left(\int_{X}(\sigma+\bar{\sigma})^{2 n}\right)^{\frac{n-1}{n}}}
$$

The lemma therefore follows from the equality

$$
\begin{equation*}
\frac{\|R\|^{2 n}}{\left(192 \pi^{2} n\right)^{n} \operatorname{vol}(X)^{n-1}}=\int_{X} \operatorname{td}^{\frac{1}{2}}(X) \tag{3.5}
\end{equation*}
$$

from $[8,(1)],{ }^{6}$ where

- $\operatorname{vol}(X)=\frac{1}{2^{2 n}(2 n)!} \int_{X}(\sigma+\bar{\sigma})^{2 n}$ is the volume form on X,
- $\|R\|$ is the L^{2}-norm of the Riemann curvature tensor, given by

$$
\|R\|^{2}=\frac{8 \pi^{2}}{2^{2 n-2}(2 n-2)!} \int_{X} c_{2}(X)(\sigma+\bar{\sigma})^{2 n-2}
$$

Note that $\int_{X} c_{2}(X)(\sigma+\bar{\sigma})^{2 n-2}$ is nonnegative, since it is a positive multiple of $\|R\|^{2}$. If it vanishes, X is flat, hence a torus by the Bieberbach theorem, which is absurd.

The following proposition is [5, Lemma 3].
Proposition 3.5. (Guan) Let X be an irreducible compact hyper-Kähler manifold of dimension 4. Then

$$
\begin{equation*}
3 b_{2}(X) N\left(c_{2}(X)\right)^{2} \leq\left(b_{2}(X)+2\right) \int_{X} c_{2}(X)^{2} \tag{3.6}
\end{equation*}
$$

Equality holds if and only if $c_{2}(X) \in S H^{4}(X)$.
Proof. The orthogonal complement $S H^{4}(X)^{\perp}$ of $S H^{4}(X)$ in $H^{4}(X, \mathbb{R})$ with respect to the intersection form consists of primitive classes. Therefore, by the second Hodge-Riemann bilinear relations, the intersection form is positive definite on $S H^{4}(X)^{\perp}$ and one has $H^{4}(X, \mathbb{R})=S H^{4}(X) \oplus S H^{4}(X)^{\perp}$.

Let us write $c_{2}(X)=p+r$ with $p \in S H^{4}(X)$ and $r \in S H^{4}(X)^{\perp}$. As noted above, one has $\int_{X} r^{2} \geq 0$, with equality if and only if $r=0$.

[^2]For every $\beta \in H^{2}(X, \mathbb{R})$, one has, using (3.3),

$$
\begin{equation*}
\int_{X} p \beta^{2}=\int_{X} c_{2}(X) \beta^{2}=c q_{X}(\beta) \tag{3.7}
\end{equation*}
$$

where $c:=c_{c_{2}(X)}$. Write b for $b_{2}(X)$. Let $\left(e_{1}, \ldots, e_{b}\right)$ be a basis of $H^{2}(X, \mathbb{C})$ which is orthonormal with respect to q_{X}. For all $t_{1}, t_{2}, t_{3}, t_{4} \in \mathbb{R}$ and pairwise distinct i, j, k, l, we have

$$
\int_{X}\left(t_{1} e_{i}+t_{2} e_{j}+t_{3} e_{k}+t_{4} e_{l}\right)^{4}=c_{X} q_{X}\left(t_{1} e_{i}+t_{2} e_{j}+t_{3} e_{k}+t_{4} e_{l}\right)^{2}=c_{X}\left(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{4}^{2}\right)^{2}
$$

which implies

$$
\begin{equation*}
\int_{X} e_{i}^{4}=c_{X}, \quad \int_{X} e_{i}^{2} e_{j}^{2}=\frac{1}{3} c_{X}, \quad \int_{X} e_{i}^{2} e_{j} e_{k}=\int_{X} e_{i} e_{j} e_{k} e_{l}=0 \tag{3.8}
\end{equation*}
$$

Write $p=\sum_{1 \leq i \leq j \leq b} p_{i j} e_{i} \cdot e_{j}$. Using (3.7) and (3.8), we obtain, for $i \neq j$,

$$
0=\int_{X} p e_{i} e_{j}=\frac{1}{3} c_{X} p_{i j}
$$

hence $p_{i j}=0$. Similarly, for each i, we have

$$
c=\int_{X} p e_{i}^{2}=c_{X} p_{i i}+\frac{1}{3} c_{X} \sum_{j \neq i} p_{i i} .
$$

Summing over $i \in\{1, \ldots, b\}$, we obtain

$$
b c=c_{X} \sum_{i} p_{i i}+\frac{1}{3} c_{X}(b-1) \sum_{i} p_{i i}=\frac{c_{X}(b+2)}{3} \sum_{i} p_{i i}
$$

Using these relations, we obtain

$$
\int_{X} p^{2}=\sum_{i} p_{i i} \int_{X} p e_{i}^{2}=c \sum_{i} p_{i i}=\frac{3 b c^{2}}{c_{X}(b+2)}
$$

Finally, Definition 3.3 gives

$$
N\left(c_{2}(X)\right)=\frac{\int_{X} c_{2}(X) e_{1}^{2}}{\left(\int_{X} e_{1}^{4}\right)^{1 / 2}}=\frac{\int_{X} p e_{1}^{2}}{\left(\int_{X} e_{1}^{4}\right)^{1 / 2}}=c c_{X}^{-1 / 2}
$$

Putting everything together, we obtain

$$
\int_{X} c_{2}(X)^{2}=\int_{X} p^{2}+\int_{X} r^{2} \geq \int_{X} p^{2}=\frac{3 b c^{2}}{c_{X}(b+2)}=\frac{3 b N\left(c_{2}(X)\right)^{2}}{b+2}
$$

which is the desired inequality. Equality holds if and only if $\int_{X} r^{2}=0$. As we saw earlier, this is equivalent to $r=0$, that is, $c_{2}(X) \in S H^{4}(X)$.

3.3. Bounds on b_{3}

Let again X be an irreducible compact hyper-Kähler manifold of dimension 4. A formal computation shows

$$
\begin{equation*}
\int_{X} \operatorname{td}^{\frac{1}{2}}(X)=\frac{1}{5760} \int_{X}\left(7 c_{2}(X)^{2}-4 c_{4}(X)\right) \tag{3.9}
\end{equation*}
$$

The following result is [5, Theorem 2].
Theorem 3.6. (Guan) Let X be an irreducible compact hyper-Kähler manifold of dimension 4. Then

$$
\begin{equation*}
b_{3}(X) \leq \frac{4\left(23-b_{2}(X)\right)\left(8-b_{2}(X)\right)}{b_{2}(X)+1} \tag{3.10}
\end{equation*}
$$

If $b_{2}(X)>7$, then $\left(b_{2}(X), b_{3}(X)\right) \in\{(8,0),(23,0)\}$.
Proof. Write b_{j} for $b_{j}(X), c_{2}^{2}$ for $\int_{X} c_{2}(X)^{2}$, and c_{4} for $\int_{X} c_{4}(X)$. We substitute Lemma 3.4, with $n=2$, in Proposition 3.5 to obtain

$$
3 b_{2} \frac{(24 \cdot 4)^{2}}{4!} \int_{X} \operatorname{td}^{\frac{1}{2}}(X) \leq\left(b_{2}+2\right) c_{2}^{2}
$$

Substituting in (3.9) the expression for c_{4} given in (2.12), we get

$$
\int_{X} \operatorname{td}^{\frac{1}{2}}(X)=\frac{1}{5760}\left(7 c_{2}^{2}-4\left(3 c_{2}^{2}-720 \cdot 3\right)\right)=\frac{3}{2}-\frac{c_{2}^{2}}{1152} .
$$

Hence

$$
\begin{equation*}
\left(b_{2}+2\right) c_{2}^{2} \geq 2 \cdot 24^{2} b_{2} \int_{X} \operatorname{td}^{\frac{1}{2}}(X) 4=2 \cdot 24^{2} b_{2}\left(\frac{3}{2}-\frac{c_{2}^{2}}{1152}\right)=b_{2}\left(3 \cdot 24^{2}-c_{2}^{2}\right) \cdot(\tag{3.11}
\end{equation*}
$$

We have $h^{1,1}(X)-2 h^{2,1}(X)=\chi^{1}(X)=12-\frac{c_{4}}{6}($ see (2.13)$)$; using

$$
b_{2}=2+h^{1,1}(X), \quad b_{3}=2 h^{1,2}(X),
$$

we obtain $c_{4}=3\left(16+4 b_{2}-b_{3}\right)$. We use this in (2.12) to get $c_{2}^{2}=736+4 b_{2}-b_{3}$. Then, (3.11) becomes $\left(b_{2}+1\right) b_{3} \leq 4\left(23-b_{2}\right)\left(8-b_{2}\right)$ as in the statement of the theorem.

If $b_{2}>7$, the right side of (3.10) is nonpositive because $b_{2} \leq 23$, so it has to be zero.

The following is [5, Corollary 1].
Corollary 3.7. (Guan) Let X be an irreducible compact hyper-Kähler manifold of dimension 4. If $b_{2}(X) \leq 7$, one of the following holds:

- $b_{2}(X)=3$ and $b_{3}(X)=4 \ell$ with $\ell \leq 17$;
- $b_{2}(X)=4$ and $b_{3}(X)=4 \ell$ with $\ell \leq 15$;
- $b_{2}(X)=5$ and $b_{3}(X)=4 \ell$ with $\ell \leq 9$;
- $b_{2}(X)=6$ and $b_{3}(X)=4 \ell$ with $\ell \leq 4$;
- $b_{2}(X)=7$ and $b_{3}(X)=4 \ell$ with $\ell \in\{0,2\}$.

Proof. By [3, Lemma 1.2], one has $4 \mid b_{k}$ for k odd. The bounds are obtained using either (3.1) or (3.10). Guan proved in [5] that the case $\left(b_{2}(X), b_{3}(X)\right)=(7,4)$ cannot occur.

Remark 3.8. When $b_{2}(X)=7$, either $b_{3}(X)=0$ or the Hodge numbers of X are the same as the Hodge numbers of a generalized Kummer fourfold.

Remark 3.9. Given $\left(b_{2}(X), b_{3}(X)\right)$, one can compute $N\left(c_{2}(X)\right)$ using Lemma 3.4, since the Chern numbers of X are computed in the proof of Theorem 3.6. Then it is possible to check which pairs give an equality in (3.6). Hence, using Proposition 3.5 , one can check that $c_{2}(X) \in S H^{4}(X)$ if and only if $\left(b_{2}(X), b_{3}(X)\right) \in$ $\{(5,36),(7,8),(8,0),(23,0)\}$.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

[1] Bottini, A.: The Looijenga-Lunts-Verbitsky Algebra and Verbitsky's Theorem
[2] Debarre, O.: Cohomological characterizations of the complex projective space. eprint arXiv:1512.04321
[3] Fujiki, A.: On the de Rham cohomology group of a compact Kähler symplectic manifold. In: Algebraic Geometry, Sendai, 1985. Advanced Studies in Pure Mathematics, vol. 10, pp. 105-165. North-Holland, Amsterdam (1987)
[4] Gritsenko, V.: Elliptic genus of Calabi-Yau manifolds and Jacobi and Siegel modular forms. Algebra Anal. 11, 100-125 (2000). Reprinted in St. Petersbg. Math. J. 11 (2000), 781-804 (2000)
[5] Guan, D.: On the Betti numbers of irreducible compact hyperKähler manifolds of complex dimension four. Math. Res. Lett. 8, 663-669 (2001)
[6] Hirzebruch, F.: Topological Methods in Algebraic Geometry, reprint of the 1968 th edn. Springer, Berlin (1995)
[7] Hirzebruch, F.: On the Euler characteristic of manifolds with $c_{1}=0$. A letter to V. Gritsenko. Algebra Anal. 11, 126-129 (2000). Reprinted in St. Petersbg. Math. J. 11, 805-807 (2000)
[8] Hitchin, N., Sawon, J.: Curvature and characteristic numbers of hyper-Kähler manifolds. Duke Math. J. 106, 599-615 (2001)
[9] Huybrechts, D.: Compact HyperKähler manifolds. In: Calabi-Yau Manifolds and Related Geometries. Lectures from the Summer School Held in Nordfjordeid, June 2001. Universitext. Springer, Berlin (2003)
[10] Li, P.: Kähler hyperbolic manifolds and Chern number inequalities. Trans. Am. Math. Soc. 372, 6853-6868 (2019)
[11] Libgober, A.S., Wood, J.W.: Uniqueness of the complex structure on Kähler manifolds of certain homotopy types. J. Differ. Geom. 32, 139-154 (1990)
[12] Mongardi, G., Rapagnetta, A., Saccà, G.: The Hodge diamond of O'Grady's sixdimensional example. Compos. Math. 154, 984-1013 (2018)
[13] Nieper-Wißkirchen, M.: On the Chern numbers of generalised Kummer varieties. Math. Res. Lett. 9, 597-606 (2002)
[14] Nieper-Wißkirchen, M.: Chern Numbers and Rozansky-Witten Invariants of Compact Hyper-Kähler Manifolds. World Scientific Publishing Co., Inc., River Edge (2004)
[15] Salamon, S.M.: On the cohomology of Kähler and hyper-Kähler manifolds. Topology 35, 137-155 (1996)
[16] Verbitsky, M.: Cohomology of compact hyperKähler manifolds and its applications. Geom. Funct. Anal. 73, 601-611 (1996)

Pietro Beri
Laboratoire de Mathématiques et Applications
Université de Poitiers
Téléport 2, Boulevard Marie et Pierre Curie
BP 30179
86962 Futuroscope Chasseneuil Cedex
France
e-mail: pietro.beri@math.univ-poitiers.fr
Olivier Debarre
Université Paris Cité and Sorbonne Université, CNRS, IMJ-PRG
75013 Paris
France
e-mail: olivier.debarre@imj-prg.fr
Received: September 8, 2021.
Accepted: August 26, 2022.

[^0]: This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Project HyperK-grant agreement 854361).

[^1]: ${ }^{4}$ There is a misprint in [9, 24.4.2].

[^2]: ${ }^{5}$ Hitchin and Sawon, and then Guan, use the $\hat{A}^{\frac{1}{2}}$-genus instead of $\operatorname{td}{ }^{\frac{1}{2}}$. In general, one has $\hat{A}=$ $e^{c_{1} / 2} \mathrm{td}$, so they coincide in our case since $c_{1}=0$.
 ${ }^{6}$ The authors of $[5,8]$ use a different convention for exterior products of differential forms. The latter can be seen either as elements of the abstract exterior algebra of the space of 1-forms or as alternating multilinear forms: depending on the point of view, the two definitions of product between differential forms differ by a binomial coefficient. So, if we follow Hitchin and Sawon and we write $\operatorname{vol}(X)=\frac{1}{2^{2 n}((n)!)^{2}} \int_{X} \sigma^{n} \bar{\sigma}^{n}$ and $\|R\|^{2}=\frac{8 \pi^{2}}{2^{2 n-2}((n-1)!)^{2}} \int_{X} c_{2}(X) \sigma^{n-1} \bar{\sigma}^{n-1}$, then (3.4) becomes $\frac{((2 n)!)^{n-1} N\left(c_{2}(X)\right)^{n}}{(24 n(2 n-2)!)^{n}} \cdot \frac{\binom{2(n-1)}{n-1}^{n}}{\binom{2 n}{n}^{n-1}}=\int_{X} \operatorname{td}^{\frac{1}{2}}(X)$.

