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Abstract. In this survey article, we review past results (obtained by Hirzebruch,
Libgober–Wood, Salamon, Gritsenko, and Guan) on Hodge and Betti numbers of
Kähler manifolds, and more specifically of hyper-Kähler manifolds, culminating
in the bounds obtained by Guan in 2001 on the Betti numbers of hyper-Kähler
fourfolds. Let X be a compact Kähler manifold of dimension m. One consequence
of the Hirzebruch–Riemann–Roch theorem is that the coefficients of the χy-genus
polynomial

pX(y) :=
m∑

p,q=0

(−1)qhp,q(X)yp ∈ Z[y]

are (explicit) universal polynomials in the Chern numbers of X. In 1990, Libgober–
Wood determined the first three terms of the Taylor expansion of this polynomial
about y = −1 and deduced that the Chern number

∫
X

c1(X)cm−1(X) can be
expressed in terms of the coefficients of the polynomial pX(y) (Proposition 2.1).
When X is a hyper-Kähler manifold of dimension m = 2n, this Chern number
vanishes. The Hodge diamond of X also has extra symmetries which allowed
Salamon to translate the resulting identity into a linear relation between the
Betti numbers of X (Corollary 2.5). When X has dimension 4, Salamon’s identity
gives a relation between b2(X), b3(X), and b4(X). Using a result of Verbitsky’s
on the injectivity of the cup-product map that produces an inequality between
b2(X) and b4(X), it is easy to conclude b2(X) ≤ 23. Guan established in 2001
more restrictions on the Betti numbers (Theorem 3.6).
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1. Symmetries of the Hodge Diamond of a Hyper-Kähler

Manifold

Let X be a compact hyper-Kähler manifold of dimension 2n and let σ be a holo-
morphic symplectic form on X. Apart from the usual symmetries

hp,q(X) = hq,p(X) = h2n−p,2n−q(X)

coming from Kähler theory and Serre duality, there is another symmetry

hp,q(X) = h2n−p,q(X) (1.1)

coming from the fact that the wedge product ∧ σ∧(n−p) is an isomorphism
Ωp

X
∼→Ω2n−p

X . So the Hodge diamond of X has a D8-symmetry.

Example 1.1. (n = 2) We represent the various symmetries of the Hodge diamond
for an irreducible hyper-Kähler fourfold (note that the extra “mirror” symme-
try (1.1) is only visible here on the outer edges of the diamond). In the following
diagram, the Hodge numbers hp,q of hyper-Kähler fourfolds of Kum2-type appear
as left indices of the pq label and those for the K3[2]-type as right indices.
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1 b0 1 1001

0 b1 0 0100 0010

7 b2 23 1201 51121 1021

8 b3 0 0300 4210 4120 0030

108 b4 276 1401 53121 9622232 51321 1041

8 b5 0 0410 4320 4230 0140

7 b6 23 1421 53321 1241

0 b1 0 0430 0340

1 b0 1 1441

A priori, there are only three undetermined Hodge numbers: h11, h21, and h22.
We will see in Example 2.7 that there is a relation between them.

Example 1.2. (n = 3) We represent some of the symmetries of the Hodge diamond
of an irreducible hyper-Kähler sixfold. In the following diagram, the Hodge num-
bers hp,q of hyper-Kähler sixfolds of Kum3-type appear as left indices of the pq
label, those for the K3[3]-type as right indices, and those for the OG6-type as right
exponents.

1 b0
1
1 10011

0 b1
0
0 01000 00100

7 b2
8
23 12011 511621 10211

8 b3
0
0 03000 42100 41200 00300

51 b4
199
299 14011 6311222 3722173253 6131222 10411

56 b5
0
0 05000 44100 243200 242300 41400 00500

458 b6
1504
2554 16011 551621 3742173253 3723311442004 3724173253 515621 10611

56 b7
0
0 06100 45200 244300 243400 42500 01600

A priori, there are only six undetermined Hodge numbers: h11, h21, h31, h22, h32,
and h33. We will see in Example 2.8 that there is a relation between them.
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2. Salamon’s Results on Betti Numbers

2.1. Hirzebruch–Riemann–Roch

Let X be a compact Kähler manifold of dimension m. Following [6], we set

χp(X) :=
m∑

q=0

(−1)qhp,q(X) = χ(X, Ωp
X).

By Serre duality, these numbers satisfy

χp(X) = (−1)mχm−p(X) (2.1)

and we define the χy-genus by the formula

pX(y) :=
m∑

p=0

χp(X)yp =
m∑

p,q=0

(−1)qhp,q(X)yp ∈ Z[y]. (2.2)

For instance,
• pX(0) = χ0(X) = χ(X, OX),
• pX(−1) = χtop(X) = e(X),
• pX(1) is the signature of the intersection form on Hm(X,R) (which vanishes

when m is odd).
Serre duality translates into the reciprocity property (−y)mpX

(
1
y

)
= pX(y).

One consequence of the Hirzebruch–Riemann–Roch theorem is that χp(X) can
be expressed as a universal polynomial Tm,p(c1, . . . , cm) in the Chern classes of X
evaluated on X [6, Section IV.21.3, (10)], that is,

pX(y) =
m∑

p=0

yp

∫

X

Tm,p(c1(X), . . . , cm(X)) =
∫

X

Tm(y)(c1(X), . . . , cm(X)),

(2.3)

where Tm(y) :=
∑m

p=0 Tm,py
p, a polynomial with coefficients in Q[c1, . . . , cm]. One

has
• Tm,p = (−1)mTm,m−p and (−y)mTm

(
1
y

)
= Tm(y);

• Tm,0 = tdm(c1, . . . , cm).
Libgober–Wood found in [11, Lemma 2.2] the first three terms of the Taylor expan-
sion of the polynomial Tm(y) about −1:

Tm(y − 1) = cm − 1
2mcmy + 1

12

(
1
2m(3m − 5)cm + c1cm−1

)
y2 + · · · (2.4)

The following is [11, Proposition 2.3] (reproved later in [15, Theorem 4.1]).

Proposition 2.1. (Libgober–Wood) If X is a compact Kähler manifold of dimension
m, one has the relation

∫

X

c1(X)cm−1(X) =
m∑

p=0

(−1)p
(
6p2 − 1

2m(3m + 1)
)
χp(X). (2.5)
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Proof. The Taylor expansion of the polynomial pX about the point −1 is

pX(y − 1) =

m∑

p=0

χp(X)(y − 1)p

=
m∑

p=0

(−1)pχp(X) + y
m∑

p=0

(−1)p−1
(p

1

)
χp(X) + y2

m∑

p=0

(−1)p
(p

2

)
χp(X) + · · ·

Using the Hirzebruch–Riemann–Roch theorem (2.3) and comparing with (2.4), we
get, by identifying the coefficients, the relations1

pX(−1) =
∫

X

cm(X) =
m∑

p=0

(−1)pχp(X),

p′
X(−1) = −1

2m

∫

X

cm(X) =
m∑

p=0

(−1)p−1pχp(X), (2.6)

p′′
X(−1) = 1

6

∫

X

(
1
2m(3m − 5)cm(X) + c1(X)cm−1(X)

)
= 2

m∑

p=0

(−1)p

(
p

2

)
χp(X),

from which it is not difficult to get (2.5). �

The following consequence of Proposition 2.1 was obtained in [4, (1.14) and
Proposition 2.4] using modular forms (see also [7]).2

Corollary 2.2. (Gritsenko) If X is a compact Kähler manifold of dimension m that
satisfies c1(X)R = 0, one has

1
12 me(X) =

m∑

p=0

(−1)p
(
1
2m − p

)2
χp(X) = 2

∑

0≤p<m/2

(−1)p
(
1
2m − p

)2
χp(X). (2.7)

In particular, when m is even,3 me(X) is divisible by 24.

Proof. The first equality in (2.7) is easily obtained from the relations (2.6), and the
second equality from the symmetries (2.1). �

Remark 2.3. Salamon gives in [15, p. 145] the next two terms of the expansion (2.4)
(see also [10, Proposition 3.1(4)]):

1The first two relations are in fact formally equivalent upon using the symmetries (2.1), which give

p′
X(−1) =

m∑

p=0

(−1)p−1(m − p)χp(X) = −mpX(−1) − p′
X(−1)

(see Remark 2.3).
2Gritsenko also gives in [4, (1.13)] relations between the χp(X) when m ∈ {4, 6, 8, 10}, but they are
all rewritings of (2.7).
3This assumption is missing from [4], but it is necessary: when m is odd and we write m = 2n + 1,
we have

m−3
12

e(X) = 2
∑

0≤p≤n

(−1)p((
1
2
m − p

)2 − 1
4

)
χp(X) = 2

∑

0≤p≤n

(−1)p(
n(n + 1) − p(2n + 1) + p2)χp(X),

which is divisible by 4. So what we get is that m−3
2

e(X) is divisible by 24.
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Tm(y − 1) = cm − 1
2mcmy + 1

12

(
1
2m(3m − 5)cm + c1cm−1

)
y2

− 1
24(m − 2)

(
1
2m(m − 3)cm + c1cm−1

)
y3

+ 1
5760

(
m(15m3 − 150m2 + 485m − 502)cm + 4(15n2 − 85n + 108)c1cm−1

+ 8(c21 + 3c2)cm−2 − 8(c31 − 3c1c2 + 3c3)cm−3

)
y4 + · · ·

The y3-term does not bring any new information since it is in fact a formal conse-
quence of the reciprocity property (−y)mTm

(
1
y

)
= Tm(y).

Using this expansion, J. Schmitt was able to find the following analogue of the
Libgober–Wood formula (2.5) for a compact Kähler manifold X of dimension m:

∫

X

(
(13c21(X) + c2(X))cm−2(X) − (13c31(X) − c1(X)c2(X) + c3(X))cm−3(X)

)

=
m∑

p=0

(−1)p
(
10p4 + (2 − 5m − 15m2)p2

+
1
24

m(5m + 1)(15m2 + 3m − 2)
)
χp(X). (2.8)

On a hyper-Kähler manifold, where all the odd Chern classes vanish, the left side
reduces to

∫
X

c2(X)cm−2(X).

Remark 2.4. The polynomials Tm can be computed. Setting for simplicity c1 = 0
(the case of interest for us), we have, for even dimensions m ∈ {2, 4, 6} (see [11] or
[2, Section 9]),

T2(y − 1) = c2 − c2y + 1
12c2y

2,

T4(y − 1) = c4 − 2c4y + 7
6c4y

2 − 1
6c4y

3 + 1
720(3c22 − c4)y4,

T6(y − 1) = c6 − 3c6y + 13
4 c6y

2 − 3
2c6y

3 + 1
240(−c23 + c2c4 + 62c6)y4

+ 1
720(3c23 − 3c2c4 − 6c6)y5 + 1

60480(10c32 − c23 − 9c2c4 + 2c6)y6.

Setting χ := tdm (this is the constant term and leading coefficient of Tm), we get

T2(y) = χ + (2χ − c2)y + χy2,

T4(y) = χ + (4χ − 1
6c4)y + (6χ + 2

3c4)y2 + (4χ − 1
6c4)y3 + χy4. (2.9)

2.2. Application to Hyper-Kähler Manifolds

Assume now that m is even and that we have the extra “mirror” symmetry
hp,q(X) = hm−p,q(X) like we do when X is a hyper-Kähler manifold. We define
polynomials

hX(s, t) :=
m∑

p,q=0

hp,q(X)sptq ∈ Z[s, t],

bX(t) :=
2m∑

j=0

bj(X)tj = hX(t, t).
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The polynomial hX is symmetric and pX(y) = hX(−1, y). Now we use the evenness
of m and the extra symmetry to get

∂2hX

∂s∂t
(−1, −1) =

m∑

p,q=0

pq(−1)p+qhp,q(X)

=
m∑

p,q=0

(m − p)q(−1)m−p+qhp,q(X)

= −∂2hX

∂s∂t
(−1, −1) + m

m∑

p,q=0

q(−1)p+qhp,q(X)

= −∂2hX

∂s∂t
(−1, −1) − m

∂hX

∂t
(−1, −1),

so that

2
∂2hX

∂s∂t
(−1, −1) = −m

∂hX

∂t
(−1, −1) = −mp′

X(−1). (2.10)

In terms of the polynomial bX , we have, by symmetry of hX ,

b′
X(t) = 2

∂hX

∂t
(t, t),

b′′
X(t) = 2

∂2hX

∂s∂t
(t, t) + 2

∂2hX

∂t2
(t, t),

so that we get, using (2.10),

b′
X(−1) = 2p′

X(−1), b′′
X(−1) = −mp′

X(−1) + 2p′′
X(−1). (2.11)

Proceeding as in the proof of Proposition 2.1, we write the Taylor expansion of the
polynomial bX about the point −1:

bX(t − 1) =
2m∑

j=0

bj(X)(t − 1)j

=
2m∑

j=0

bj(X)(−1)j + t
2m∑

j=0

bj(−1)j−1

(
j

1

)
+ t2

2m∑

j=0

bj(X)(−1)j

(
j

2

)
+ · · ·

Using (2.11) and (2.6), we get

2m∑

j=0

bj(−1)jj = −b′
X(−1) = −2p′

X(−1) = m

∫

X

cm(X),

2m∑

j=0

bj(X)(−1)j

(
j

2

)
= 1

2b′′
X(−1) = −1

2mp′
X(−1) + p′′

X(−1)

= 1
4m2

∫

X

cm(X) + 1
6

∫

X

(
1
2m(3m − 5)cm(X) + c1(X)cm−1(X)

)
.
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Putting everything together, we obtain the analogue of (2.5) [15, Theorem 4.1]:

2
∫

X

c1(X)cm−1(X) =
2m∑

j=0

(−1)j(6j2 − m(6m + 1))bj(X).

Corollary 2.5. (Salamon) If X is a compact hyper-Kähler manifold of dimension 2n,
one has4

4n∑

j=0

(−1)j(3j2 − n(12n + 1))bj(X) = 0.

Using the symmetry bj = b4n−j , one checks that one gets the equivalent rela-
tions (in the spirit of (2.7))

ne(X) = 6
2n∑

j=1

(−1)jj2b2n−j(X), nb2n(X) = 2
2n∑

j=1

(−1)j(3j2 − n)b2n−j(X).

Example 2.6. (n = 1) We obtain b2(X) = 22 and e(X) = 24.

Example 2.7. (n = 2) Salamon’s relation reads

b4(X) = 46 + 10b2(X) − b3(X).

On an irreducible hyper-Kähler fourfold, because of the symmetries, there are only
3 unknown Hodge numbers: h11(X), h21(X), and h22(X). One has

b2(X) = 2 + h11(X), b3(X) = 2h21(X), b4(X) = 2 + 2h11(X) + h22(X).

Salamon’s relation translates into

h22(X) = 64 + 8h11(X) − 2h21(X).

There are two Chern numbers, c4 :=
∫

X
c4(X) = e(X) and c22 :=

∫
X

c2(X)2. They
satisfy

3 = χ(X, OX) = T4(0) =
∫

X

td4(X) = 1
720(3c22 − c4). (2.12)

But we also have, using (2.9),

χ1(X) = 12 − 1
6c4, χ2(X) = 18 + 2

3c4. (2.13)

A priori though, the value of c4 is not enough to determine all the Hodge numbers
but, once we know c4, one Hodge number determines all the others.

The Chern numbers for the two known deformation types of irreducible hyper-
Kähler fourfolds are in the following table.

χtop = e = c4 c22

Kum2 108 756
K3[2] 324 828

4There is a misprint in [9, 24.4.2].
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Example 2.8. (n = 3) Salamon’s relation reads

b6(X) = 70 + 30b2(X) − 16b3(X) + 6b4(X).

Because of the symmetries, there are only 6 undetermined Hodge numbers: h11(X),
h21(X), h31(X), h22(X), h32(X), and h33(X). One has

b2(X) = 2 + h11(X),

b3(X) = 2h21(X),

b4(X) = 2 + 2h31(X) + h22(X),

b5(X) = 2h41(X) + 2h32(X),

b6(X) = 2 + 2h11(X) + 2h22(X) + h33(X).

Salamon’s relation translates into

h33(X) = 140 + 28h11(X) − 32h21(X) + 12h31(X) + 4h22(X).

There are three Chern numbers, c6 :=
∫

X
c6(X) = e(X), c2c4 :=

∫
X

c2(X)c4(X),
and c32 :=

∫
X

c2(X)3. They satisfy

4 = χ(X, OX) = T6(0) = td6(X) = 1
60480(10c32 − 9c2c4 + 2c6).

The three known examples in dimension 6 are in the following table taken from [14,
Remark 4.13] (see also [13, Appendix A]) and [12, Corollary 6.8].

χtop = e(X) = c6 c2c4 c32

Kum3 448 6784 30208
K3[3] 3200 14720 36800
OG6 1920 7680 30720

3. Guan’s Bounds for Betti Numbers of Hyper-Kähler Fourfolds

3.1. Bounds on b2

Let X be an irreducible compact hyper-Kähler manifold of complex dimension m =
2n. Let σ be a symplectic form on X. One has b1(X) = 0, and b2(X) ≥ 3 since
H2,0(X) = Cσ, H0,2(X) = Cσ̄, and H1,1(X) contains the class of any Kähler form.

Our aim is to prove the following upper bound for b2(X) when m = 4 [5,
Theorem 1].

Theorem 3.1. (Guan) Let X be an irreducible compact hyper-Kähler manifold of
dimension 4. Then 3 ≤ b2(X) ≤ 23. Moreover, if b2(X) = 23, the Hodge numbers
of X are the same as the Hodge numbers of the Hilbert square of a K3 surface.

About the higher Betti numbers, we have the following result ([16, Theorem
1.5], [1, Theorem 1.5]).
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Theorem 3.2. (Verbitsky) Let X be an irreducible compact hyper-Kähler manifold
of dimension 2n. For all k ≤ n, the canonical map SymkH2(X,R) → H2k(X,R)
given by cup-product is injective. In particular, b2k(X) ≥ (

b2(X)+k−1
k

)
.

We denote by SH2k(X) ⊂ H2k(X,R) the image of the map above.

Proof of Theorem 3.1. Write bj for bj(X). We have b3+b4 = 46+10b2 (Example 2.7)
and b4 ≥ b2(b2+1)

2 (Theorem 3.2), hence

b2(b2 + 1)
2

≤ b3 +
b2(b2 + 1)

2
≤ b3 + b4 = 46 + 10b2 (3.1)

which can be rewritten as

(b2 + 4)(b2 − 23) ≤ 0,

so b2 ≤ 23. Assume now b2 = 23. Substituting in the inequality above, we get
b3 + 276 ≤ 46 + 230 = 276, so b3 = 0. This implies b4 = 46 + 10b2 = 276. So the
Betti numbers of X are the same as those of the Hilbert square of a K3 surface. As
noted in Example 2.7, this implies that the Hodge numbers are also the same. �
3.2. Generalized Chern Numbers

For an irreducible compact hyper-Kähler manifold X of dimension 2n, we have the
Beauville–Bogomolov–Fujiki quadratic form qX on H2(X,Q) ([3] or [9, Section 23]).
There exists a positive rational constant cX such that

∀β ∈ H2(X,Q)
∫

X

β2n = cXqX(β)n. (3.2)

More generally, let α ∈ H4j(X,R) be a class that is of type (2j, 2j) on all small
deformations of X (this is the case for example for the Chern class c2j(X)). There
is a constant cα ∈ R such that [9, Corollary 23.17]

∀β ∈ H2(X,R)
∫

X

αβ2(n−j) = cαqX(β)n−j . (3.3)

For α = 1 and j = 0, we recover (3.2).
We can now define the generalized Chern numbers.

Definition 3.3. Let C ∈ H4j(X,C) be a polynomial in the Chern classes. The num-
ber

N(C) :=

∫
X

Cu2(n−j)

(∫
X

u2n
)n−j

n

is independent of the choice of u ∈ H2(X,C) with
∫

X
u2n 	= 0. We call it a generalized

Chern number of X.

To see that N(C) does not depend on the choice of u, note that
∫

X
Cu2(n−j) =

aCqX(u)n−j , where aC is the sum of the cα as in (3.3) for all monomials α in C.

Moreover,
∫

X
u2n = cXqX(u)n, so N(C) = aCc

−n−j
n

X ; it is a real number since we
can always choose u in H4j(X,R).

In our case, n = 2, we are interested in the generalized Chern number N(c2(X)).
Guan rewrote [8, (1)] as follows [5, Lemma 2].
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Lemma 3.4. Let X be an irreducible compact hyper-Kähler manifold of dimension
2n. Then5

((2n)!)n−1N(c2(X))n

(24n(2n − 2)!)n
=

∫

X

td
1
2 (X). (3.4)

Moreover N(c2(X)) > 0.

Proof. For any hyper-Kähler manifold X, one has
∫

X
(σ+ σ̄)2n = cXqX(σ+ σ̄)n > 0.

Hence we can write

N(c2(X)) =

∫
X

c2(X)(σ + σ̄)2n−2

(
∫

X
(σ + σ̄)2n)

n−1
n

.

The lemma therefore follows from the equality

‖R‖2n

(192π2n)n vol(X)n−1
=

∫

X

td
1
2 (X) (3.5)

from [8, (1)],6 where
• vol(X) = 1

22n(2n)!

∫
X

(σ + σ̄)2n is the volume form on X,

• ‖R‖ is the L2-norm of the Riemann curvature tensor, given by

‖R‖2 =
8π2

22n−2(2n − 2)!

∫

X

c2(X)(σ + σ̄)2n−2.

Note that
∫

X
c2(X)(σ+σ̄)2n−2 is nonnegative, since it is a positive multiple of ‖R‖2.

If it vanishes, X is flat, hence a torus by the Bieberbach theorem, which is absurd.
�

The following proposition is [5, Lemma 3].

Proposition 3.5. (Guan) Let X be an irreducible compact hyper-Kähler manifold of
dimension 4. Then

3b2(X)N(c2(X))2 ≤ (b2(X) + 2)
∫

X

c2(X)2. (3.6)

Equality holds if and only if c2(X) ∈ SH4(X).

Proof. The orthogonal complement SH4(X)⊥ of SH4(X) in H4(X,R) with respect
to the intersection form consists of primitive classes. Therefore, by the second
Hodge–Riemann bilinear relations, the intersection form is positive definite on
SH4(X)⊥ and one has H4(X,R) = SH4(X) ⊕ SH4(X)⊥.

Let us write c2(X) = p + r with p ∈ SH4(X) and r ∈ SH4(X)⊥. As noted
above, one has

∫
X

r2 ≥ 0, with equality if and only if r = 0.

5Hitchin and Sawon, and then Guan, use the Â
1
2 -genus instead of td

1
2 . In general, one has Â =

ec1/2 td, so they coincide in our case since c1 = 0.
6The authors of [5,8] use a different convention for exterior products of differential forms. The
latter can be seen either as elements of the abstract exterior algebra of the space of 1-forms or
as alternating multilinear forms: depending on the point of view, the two definitions of product
between differential forms differ by a binomial coefficient. So, if we follow Hitchin and Sawon and

we write vol(X) = 1
22n((n)!)2

∫
X

σnσ̄n and ‖R‖2 = 8π2

22n−2((n−1)!)2

∫
X

c2(X)σn−1σ̄n−1, then (3.4)

becomes ((2n)!)n−1N(c2(X))n

(24n(2n−2)!)n
· (2(n−1)

n−1 )
n

(2nn )n−1 =
∫

X
td

1
2 (X).
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For every β ∈ H2(X,R), one has, using (3.3),
∫

X

pβ2 =
∫

X

c2(X)β2 = cqX(β), (3.7)

where c := cc2(X). Write b for b2(X). Let (e1, . . . , eb) be a basis of H2(X,C) which
is orthonormal with respect to qX . For all t1, t2, t3, t4 ∈ R and pairwise distinct
i, j, k, l, we have

∫

X

(t1ei + t2ej + t3ek + t4el)
4 = cXqX(t1ei + t2ej + t3ek + t4el)

2 = cX(t21 + t22 + t23 + t24)
2,

which implies
∫

X

e4i = cX ,

∫

X

e2i e
2
j =

1
3
cX ,

∫

X

e2i ejek =
∫

X

eiejekel = 0. (3.8)

Write p =
∑

1≤i≤j≤b pijei · ej . Using (3.7) and (3.8), we obtain, for i 	= j,

0 =
∫

X

peiej =
1
3
cXpij ,

hence pij = 0. Similarly, for each i, we have

c =
∫

X

pe2i = cXpii +
1
3
cX

∑

j �=i

pii.

Summing over i ∈ {1, . . . , b}, we obtain

bc = cX

∑

i

pii +
1
3
cX(b − 1)

∑

i

pii =
cX(b + 2)

3

∑

i

pii.

Using these relations, we obtain
∫

X

p2 =
∑

i

pii

∫

X

pe2i = c
∑

i

pii =
3bc2

cX(b + 2)
.

Finally, Definition 3.3 gives

N(c2(X)) =

∫
X

c2(X)e21
(∫

X
e41

)1/2
=

∫
X

pe21
(∫

X
e41

)1/2
= c c

−1/2
X .

Putting everything together, we obtain
∫

X

c2(X)2 =
∫

X

p2 +
∫

X

r2 ≥
∫

X

p2 =
3bc2

cX(b + 2)
=

3bN(c2(X))2

b + 2
,

which is the desired inequality. Equality holds if and only if
∫

X
r2 = 0. As we saw

earlier, this is equivalent to r = 0, that is, c2(X) ∈ SH4(X). �
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3.3. Bounds on b3

Let again X be an irreducible compact hyper-Kähler manifold of dimension 4. A
formal computation shows

∫

X

td
1
2 (X) =

1
5760

∫

X

(7c2(X)2 − 4c4(X)). (3.9)

The following result is [5, Theorem 2].

Theorem 3.6. (Guan) Let X be an irreducible compact hyper-Kähler manifold of
dimension 4. Then

b3(X) ≤ 4(23 − b2(X))(8 − b2(X))
b2(X) + 1

. (3.10)

If b2(X) > 7, then (b2(X), b3(X)) ∈ {(8, 0), (23, 0)}.

Proof. Write bj for bj(X), c22 for
∫

X
c2(X)2, and c4 for

∫
X

c4(X). We substitute
Lemma 3.4, with n = 2, in Proposition 3.5 to obtain

3b2
(24 · 4)2

4!

∫

X

td
1
2 (X) ≤ (b2 + 2)c22.

Substituting in (3.9) the expression for c4 given in (2.12), we get
∫

X

td
1
2 (X) =

1
5760

(
7c22 − 4(3c22 − 720 · 3)

)
=

3
2

− c22
1152

.

Hence

(b2 + 2)c22 ≥ 2 · 242 b2

∫

X

td
1
2 (X)4 =2 · 242 b2

(3
2

− c22
1152

)
=b2(3 · 242−c22).(3.11)

We have h1,1(X) − 2h2,1(X) = χ1(X) = 12 − c4
6 (see (2.13)); using

b2 = 2 + h1,1(X), b3 = 2h1,2(X),

we obtain c4 = 3(16 + 4b2 − b3). We use this in (2.12) to get c22 = 736 + 4b2 − b3.
Then, (3.11) becomes (b2 + 1)b3 ≤ 4(23 − b2)(8 − b2) as in the statement of the
theorem.

If b2 > 7, the right side of (3.10) is nonpositive because b2 ≤ 23, so it has to
be zero. �

The following is [5, Corollary 1].

Corollary 3.7. (Guan) Let X be an irreducible compact hyper-Kähler manifold of
dimension 4. If b2(X) ≤ 7, one of the following holds:

• b2(X) = 3 and b3(X) = 4� with � ≤ 17;
• b2(X) = 4 and b3(X) = 4� with � ≤ 15;
• b2(X) = 5 and b3(X) = 4� with � ≤ 9;
• b2(X) = 6 and b3(X) = 4� with � ≤ 4;
• b2(X) = 7 and b3(X) = 4� with � ∈ {0, 2}.

Proof. By [3, Lemma 1.2], one has 4 | bk for k odd. The bounds are obtained using
either (3.1) or (3.10). Guan proved in [5] that the case (b2(X), b3(X)) = (7, 4) cannot
occur. �
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Remark 3.8. When b2(X) = 7, either b3(X) = 0 or the Hodge numbers of X are
the same as the Hodge numbers of a generalized Kummer fourfold.

Remark 3.9. Given (b2(X), b3(X)), one can compute N(c2(X)) using Lemma 3.4,
since the Chern numbers of X are computed in the proof of Theorem 3.6. Then
it is possible to check which pairs give an equality in (3.6). Hence, using Propo-
sition 3.5, one can check that c2(X) ∈ SH4(X) if and only if (b2(X), b3(X)) ∈
{(5, 36), (7, 8), (8, 0), (23, 0)}.
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