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Abstract. Starting from an explicit EPW sextic with a faithful action of PSL(2,F11) found
by Giovanni Mongardi in his thesis, we construct various varieties with faithful actions of this
finite simple group of order 660. This leads to constructions of further interesting varieties,
such as explicit smooth irrational Gushel-Mukai threefolds and their 10-dimensional principally
polarized intermediate Jacobians. This is joint work with Giovanni Mongardi.

1. A bit of history

In this talk, G will be the unique simple group of order 660. It is isomorphic to PSL(2,F11).

In 1879, Felix Klein considered the smooth cubic threefold (now called the Klein cubic) with

equation

x21x2 + x22x3 + x23x4 + x24x5 + x25x1 = 0

in P4 and proved that it has a faithful action of the group G by projective transformations. This

can be checked by starting from one of the two conjugate irreducible representations ξ of degree 5

of G and proving, by a character computation, that there is a unique (up to multiplication by

a constant) nonzero invariant cubic polynomial which can then be computed explicitly. This is

what Adler did in 1978. He also went on to prove that the automorphism group of the Klein

cubic is exactly G and extended these results as follows: for any prime number p ≥ 11 such

that p ≡ 3 (mod 8), there exists a unique cubic in P
1
2
(p−3) acted on faithfully by the group

PSL(2,Fp) and its automorphism group is exactly PSL(2,Fp).

As any smooth cubic, the Klein cubic has an intermediate Jacobian, a 5-dimensional

principally polarized abelian variety which inherits a faithful G-action. Given a prime number p

such that p ≡ 3 (mod 4), Adler classified all abelian varieties (non necessarily principally

polarized) of dimension 1
2
(p − 1) whose automorphism group contains PSL(2,Fp). They are

all of CM type and Adler showed that there is a bijection between the group of ideal classes

of the field Q(
√
−p) and the set of isomorphism classes of these abelian varieties. Moreover,

these abelian varieties all have a unique PSL(2,Fp)-invariant principal polarization and it is

indecomposable (Bennama–Bertin, 1997).

In particular, when the class number of Q(
√
−p) is 1, that is, when

p ∈ {3, 7, 11, 19, 43, 67, 163},

there is a unique such abelian variety and it is isomorphic to the product of 1
2
(p − 1) copies

of the (unique) elliptic curve whose endomorphism ring is the ring of integers of Q(
√
−p). For

example,
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• (p = 7) the (3-dimensional) Jacobian of the Klein quartic plane curve with equation

x31x2+x32x3+x33x1 = 0 is isomorphic to product of 3 copies of the elliptic curve C/Z[1
2
(1+√

−7)];

• (p = 11) the intermediate Jacobian of the Klein cubic threefold is isomorphic to the

product of 5 copies of the elliptic curve C/Z[1
2
(1 +

√
−11)].

In general, Bennama–Bertin interpret the abelian varieties constructed above as interme-

diate Jacobians of mildly singular hypersurfaces of degree p in P
1
2
(p−3). I do not know of any

relation with Adler’s PSL(2,Fp)-invariant cubics in P
1
2
(p−3).

2. Eisenbud–Popescu–Walter sextics and Gushel–Mukai varieties

I will begin by introducing the various kinds of varieties we will be dealing with. My

running notation for an m-dimensional complex vector space is Vm.

2.1. Eisenbud–Popescu–Walter (EPW) sextics. These are (singular) sextics YA ⊂ P(V6)

constructed from a Lagrangian A ⊂
∧

3V6 as the Lagrangian degeneracy loci

YA := {[x] ∈ P(V6) | A ∩ (x ∧
∧

2V6) 6= 0}

(the definition is not important). When A satisfies certain explicit genericity conditions, we will

say that YA (or A) is quasi-smooth; its singular locus is then a smooth surface and there is a

canonical double covering

ỸA −→ YA

branched along that surface, where ỸA is a smooth hyperkähler fourfold (called a double EPW

sextic).

2.2. Gushel–Mukai (GM) varieties. These are (smooth) Fano varieties of dimension n ∈
{3, 4, 5} with Picard number 1 and index n − 2. They were classified by Mukai and most of

them can be obtained as complete intersections

X := Gr(2, V5) ∩Pn+4 ∩ (quadric) ⊂ P(
∧

2V5).

They can also be obtained, by a complicated process, from the data of

• a quasi-smooth Lagrangian A ⊂
∧

3V6 and

• a hyperplane V5 ⊂ V6.

The dimension of the resulting smooth GM variety XA,V5 is given by

n = 5− dim(A ∩
∧

3V5).

If Y ∨A ⊂ P(V ∨6 ) is the projective dual of YA (it is also an EPW sextic!), this dimension is

• 5 if [V5] ∈ P(V ∨6 ) r Y ∨A ,

• 4 if (Y ∨A )smooth,

• 3 if (Y ∨A )sing.
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2.3. The Mongardi Lagrangian. Let ξ be the degree-5 irreducible representation of G men-

tioned above. There is a unique G-invariant quadric

Q ⊂ P(
∧

2Vξ)

and

X5
A := Q ∩ Gr(2, Vξ)

is a (smooth) GM fivefold with a faithful G-action.

The Lagrangian A that appears in the notation can be constructed as follows. Consider

the representation

V6 := Ce0 ⊕ Vξ,
where G acts trivially on e0. One has a decomposition∧

3V6 = (e0 ∧
∧

2Vξ)⊕
∧

3Vξ

into irreducible representations. Choose a G-isomorphism v :
∧

2Vξ
∼−→

∧
3Vξ. The graph

A := {e0 ∧ x+ v(x) | x ∈
∧

2Vξ}

of v is a quasi-smooth Lagrangian and X5
A is the GM fivefold XA,Vξ associated with A and the

hyperplane Vξ ⊂ V6 by the procedure mentioned above.

2.4. Automorphisms. With the notation above, one has, for any quasi-smooth Lagrangian A,

Aut(YA) = {g ∈ PGL(V6) | (
∧

3g)(A) = A},

Aut(XA,V5) = {g ∈ Aut(YA) | g(V5) = V5}.
It can be shown that the inclusions

G ⊂ Aut(X5
A) ⊂ Aut(YA)

are equalities (note that Vξ is fixed by the G-action). The automorphism groups of the GM

varieties that can be constructed from the Mongardi Lagrangian A and various hyperplanes

V5 ⊂ V6 are therefore all subgroups of G.

One can for example construct an explicit GM threefold with cyclic automorphism group

of order 11 (this is the largest possible order). It is the intersection of Gr(2, 5) in its Plücker

embedding with the quadric defined by the equations

x03 + x12 = x04 − x23 = x01x02 − x13x14 − x24x34 = 0.

3. Hodge structures

There are relations between the Hodge structures of various varieties attached to an EPW

sextic YA (such as the double EPW sextic ỸA) and those of the GM varieties XA,V5 constructed

from A (and hyperplanes V5 ⊂ V6).

For example, we can construct a GM fourfold XA,V5 with Hodge group Hdg2(XA,V5) of

maximal rank 22 (note that the integral Hodge conjecture is known in that case by recent work

of Perry).
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In dimensions 3 and 5, GM varieties have 10-dimensional principally polarized interme-

diate Jacobians and Kuznetsov and I proved that there is a canonical isomorphism

Jac(XA,V5)
∼−→Alb(Ỹ 2

A),

where Ỹ 2
A → (YA)sing is a canonical double étale cover. In particular, the Torelli property for

GM varieties of dimension 3 or 5 does not hold, because the intermediate Jacobian depends

only on A and not on the choice of the hyperplane V5.

Automorphisms of YA induce automorphisms of the surfaces (YA)sing and Ỹ 2
A , hence auto-

morphisms of the principally polarized abelian varieties Alb(Ỹ 2
A) and Jac(XA,V5).

One can use this to construct explicit irrational GM threefolds (it has long been known,

by a degeneration argument, that general GM threefolds are irrational, a fact that is reproved

by the theorem below).

Theorem 1. Any smooth GM threefold constructed from the Mongardi Lagrangian A is irra-

tional and there exists a complete family with maximal variation, parametrized by a projective

surface, of irrational smooth GM threefolds.

In particular, the explicit GM threefold with cyclic automorphism group of order 11

constructed above is irrational.

Proof. We apply the Clemens–Griffiths criterion: it suffices to prove that the intermediate

Jacobian is not a Jacobian of curve or a product of such. Following Beauville, we will prove

that it has too many automorphisms. By what we just saw, this intermediate Jacobian has a

faithful G-action. Assume it is the Jacobian of a (say smooth) curve C of genus 10. The group G

then embeds into the group of automorphisms of (Jac(C), θC); by the Torelli theorem for curves,

this group is isomorphic to Aut(C) if C is hyperelliptic and to Aut(C)×Z/2Z otherwise. Since

any morphism from G to Z/2Z is trivial, we see that G is a subgroup of Aut(C). This contradicts

the fact that the automorphism group of a curve of genus 10 has order at most 432. �

Remark 2. It is a general fact that all GM varieties of the same dimension constructed from

the same Lagrangian A are birationally isomorphic. So their rationality only depends on A. We

do not know whether GM fourfolds constructed from A are rational. One can see directly, by

elementary geometric constructions, that all (smooth) GM fivefolds are rational.

4. A mysterious abelian variety

The 10-dimensional abelian variety J := Alb(Ỹ 2
A ) with its canonical principal polariza-

tion θJ seems worth studying. The group G acts on it and the induced action on its Lie algebra

(the so-called analytic representation) is
∧

2ξ, one of the two 10-dimensional irreducible rep-

resentations of G, which is defined over Q. In particular, it has complex multiplication by the

cyclotomic field Q(ζ11).
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Theorem 3 (Ekedahl–Serre 1993, Lange 2004). Let G be a finite group that acts on an abelian

variety X of dimension n. Assume that the analytic representation of G is irreducible and

defined over Q. Then X is isogeneous to the product of n copies of an elliptic curve.

Conversely, for any elliptic curve E there is an action of G on E10 whose associated

analytic representation is
∧

2ξ: this representation is defined over Q, hence over Z by a theorem

of Burnside; since

End(E10) 'M10(End(E)) ⊃M10(Z)

one can easily achieve what we want. Moreover, if θ0 is any polarization on E10 (for example

the product principal polarization),
∑

g∈G g
∗θ0 will be a G-invariant polarization.

If we hope to characterize J by what we have, we need to hope that the presence of a

G-invariant principal polarization is a strong condition (this is in contrast with the situation

described in the first section, where the existence of the G-action on E5 forced E to have

complex multiplication by Q(
√
−11), but the principal polarization came for free).

Another possibility would be to follow what was classically done for the modular curve

X(11) to analyze its simple factors (which are all elliptic curves) and look for quotients of the

surface Ỹ 2
A by various subgroups of G and hope that one of them has irregularity 1.

We have a candidate for J that can be constructed as follows. If o = Z[1
2
(1 +

√
−11)]

is the ring of integers of the field Q(
√
−11) and E is the elliptic curve C/o (with complex

multiplication by o), one can show that there is a principal polarization on E10 which is invariant

by the G-action described above.
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