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Abstract. Gushel-Mukai varieties are defined as the intersection of the Grassmannian Gr(2, 5)
in its Plücker embedding, with a quadric and a linear space. They occur in dimension 6 (with a
slightly modified construction), 5, 4, 3, 2 (where they are just K3 surfaces of degree 10), and 1
(where they are just genus 6 curves). Their theory parallels that of another important class of
Fano varieties, cubic fourfolds, with many common features such as the presence of a canonically
attached hyperkähler fourfold: the variety of lines for a cubic is replaced here with a double
EPW sextic.

There is a big difference though: in dimension at least 3, GM varieties attached to a given
EPW sextic form a family of positive dimension. However, we prove that the Hodge structure of
any of these GM varieties can be reconstructed from that of the EPW sextic or of an associated
surface of general type, depending on the parity of the dimension (for cubic fourfolds, the
corresponding statement was proved in 1985 by Beauville and Donagi).

This is joint work with Alexander Kuznetsov.

1. Definition of Gushel–Mukai varieties

Let X be a (smooth complex) Fano variety of dimension n and Picard number 1, so that
Pic(X) = ZH, with H ample. The positive integer such that −KX ≡

lin
rH is called the index of X

and the integer d := Hn its degree. For example, a smooth hypersurface X ⊆ Pn+1 of degree
d ≤ n+ 1 is a Fano variety of index r = n+ 2− d and degree d.

The index satisfies the following properties:

• if r ≥ n+ 1, then X ' Pn (Kobayashi–Ochiai, 1973);
• if r = n, then X is a quadric in Pn+1 (Kobayashi–Ochiai, 1973);
• if r = n− 1 (del Pezzo varieties), classification by Fujita and Iskovskikh (1977–1988);
• if r = n− 2, classification by Mukai (1989–1992), modulo a result later proved by Mella

(1997).

Mukai used the vector bundle method (initiated by Gushel in 1982) to prove that in the
last case, d ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 22}.

Theorem 1.1 (Mukai). Any smooth Fano n-fold with Picard number 1, index n − 2, and
degree 10 has dimension n ∈ {3, 4, 5, 6} and can be obtained as follows:

• X6 → Gr(2, V5) double cover branched along X5;
• X5 = Gr(2, V5) ∩ (quadric) ⊆ P9 or Gushel;
• X4 = X5 ∩P8 or Gushel;
• X3 = X5 ∩P7 or Gushel.

If we take further linear sections, we obtain general K3 surfaces of degree 10 and general
genus-6 curves.

Why GM varieties?

• They have interesting period maps.
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• They have intriguing rationality properties in dimension 4 similar to that of cubic four-
folds (most X3 are irrational, all X5 and X6 are rational).
• They have interesting derived categories.

2. Periods of Gushel–Mukai varieties

Let X be a GM n-fold. Only its middle cohomology Hn(X;Z) is interesting and it is
torsion-free. There is a canonical map γ : X → Gr(2, V5) called the Gushel map and we define
the vanishing cohomology as

Hn(X;Z)van := γ∗Hn(Gr(2, V5);Z)⊥ ⊆ Hn(X;Z).

Its Hodge numbers are

• when n = 3, 0 10 10 0;
• when n = 4, 0 1 20 1 0;
• when n = 5, 0 0 10 10 0 0;
• when n = 6, 0 0 1 20 1 0 0.

In other words,

• when n is odd, the Hodge structure has weight 1 and there is a 10-dimensional principally
polarized intermediate Jacobian J(X);
• when n is even, the Hodge structure is of K3 type and the period is in the same 20-

dimensional quasiprojective period domain D .

This defines period maps (here Xn is the moduli space for GM n-folds)

dim. dim.

22 X3

**
24 X4

**

A10 55

25 X5

44

D 20

25 X6

44

none of which are injective. They are dominant when n is even. To go further, we need to
introduce another geometric object.

3. (Double) EPW sextics

Nobody wants to hear the definition of an EPW sextic Y ⊆ P(V6) associated with a
Lagrangian subspace A ⊆

∧
3V6. Under some explicit generality assumptions on A (which we

will always assume to hold), there is a canonical double cover

f : Ỹ −→ Y

branched over the singular locus Y 2 of Y (a smooth surface of irregularity 0) and Ỹ is a (general)
polarized smooth HK fourfold of BB degree 2 (O’Grady). There is another canonical double étale
covering

g : Ỹ 2 −→ Y 2,

where Ỹ 2 is a smooth connected surface of general type and irregularity 10.

Given a GM n-fold X with Gushel map X → Gr(2, V5), one can associate an EPW sextic
Y ⊆ P(V6), where V5 naturally embeds into V6 as a hyperplane (Iliev–Manivel).
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Theorem 3.1 (D–Kuznetsov). (1) When n ∈ {3, 5}, there is an isomorphism

J(X) ∼−→Alb(Ỹ 2).

(2) When n ∈ {4, 6}, there is an isomorphism of Hodge structures

(Hn(X;Z)van,^) ∼−→(H2(Ỹ ;Z)0, (−1)n/2−1qBB).

Let E be the quasiprojective GIT moduli space for good Lagrangians A (or for good EPW
sextics). There is a map Xn → E and the fiber of [A] ∈ E is a subvariety of P(V ∨6 ) that
corresponds to the choice of the hyperplane [V5] ∈ P(V ∨6 ). It is

• the surface Y̌ 2 when n = 3;
• the 4-fold Y̌ when n = 4;
• the 5-fold P(V ∨6 ) r Y̌ 2 when n = 5;
• the 5-fold P(V ∨6 ) r Y̌ when n = 6.

(Here Y̌ ⊆ P(V ∨6 ) is the projective dual of Y ⊆ P(V6); it is also an EPW sextic, with singular
locus a smooth surface Y̌ 2.)

Corollary 3.2. The period map for GM n-folds factors through the map Xn → E and its image
has dimension 20.

When n is even, the period maps factor as

dim. dim.

24 X4

)) ))
E �
� p

// D 20

25 X6

55 55

where the period map p for double EPW sextics is an open embedding by Verbitsky’s Torelli
theorem (with known image). When n is odd, there are factorizations

dim. dim.

22 X3

(( ((
E // E /τ

q
// A10 55

25 X5

66 66

where τ is the (nontrivial) duality involution of E . The morphism q is known to be unramified
(D–Iliev–Manivel 2012) and it is expected to be (generically) injective.

Conjecture 3.3 (Iliev). Let X be a (general) GM 3-fold with intermediate Jacobian (J(X),Θ)
and associated EPW sextic Y . There is a unique component of codimension ≤ 6 of the singular

locus of Θ and it is “isomorphic” to Ỹ 2 × ˜̌Y 2.

Iliev has a sketch of proof that follows Voisin’s 1988 construction of a component of
codimension 5 of the singular locus of the theta divisor of the 10-dimensional intermediate
Jacobian J(W ) of a quartic double solid W (whereby proving the irrationality of this solid;
I proved in 1990 that this is the unique component of codimension ≤ 5). The surface F (W )
of lines contained in W embeds into J(W ) by the Abel–Jacobi map and Voisin studies those
translates F (W )u that are contained in Θ and the linear systems |Θ||F (W )u : their base-points
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correspond to singular points of Sing(Θ). In our case, the surface F (X) of conics contained in X
maps into J(X) but each of the steps of Voisin’s proof becomes much more difficult.

4. Ideas of proofs

The standard argument for this kind of results goes back to Beauville–Donagi (1985), who
treated the case of a smooth cubic fourfold W ⊆ P(V6) and its (smooth) HK fourfold of lines
F (W ) ⊆ Gr(2, V6). There is an incidence diagram

I
q

{{

p

%%

W F (W ),

where p is the universal line, a P1-bundle, and q is dominant and generically finite. Beauville and
Donagi prove that the Abel–Jacobi map p∗q

∗ : H4(W,Z)→ H2(F (W ),Z) is an isomorphism of
Hodge structures which induces an isometry between the primitive cohomologies (H4(W,Z)0,^)
and (H2(F (W ),Z)0,−qBB). Two ingredients that one uses here are:

• F (W ) parametrizes curves on W , so there is a correspondence between W and F (W );
• F (W ) and I are smooth, so one can define p∗ in singular cohomology.

Dimension 4. Let X be a GM fourfold satisfying some mild explicit generality assumptions.

The scheme F (X) of lines contained in X is harder to relate to the double EPW sextic Ỹ (which
I haven’t defined anyway!). It goes as follows.

Any line contained in Gr(2, V5) is of the type LV1,V3 = {[V2] ∈ Gr(2, V5) | V1 ⊆ V2 ⊆ V3},
so there is a map σ : F (X) → P(V5) given by [LV1,V3 ] 7→ [V1]. The steps are (recall that V5 is
naturally a hyperplane in V6):

• σ factors as

σ : F (X)
σ̃
// f−1(Y ∩P(V5))

f
// Y ∩P(V5)

� � // P(V5)

∩ ∩ ∩

Ỹ
f

// Y �
�

// P(V6);

• F (X) is smooth irreducible of dimension 3 and σ̃ is a small resolution;
• the induced composition

a : H2(Ỹ ,Z) ∼−→H2(f−1(Y ∩P(V5)),Z)
σ̃∗
−−→ H2(F (X),Z)

(where the first map is an isomorphism by the Lefschetz theorem) is injective;
• the Abel–Jacobi map p∗q

∗ : H4(X,Z)van → H2(F (X),Z) is injective (as in Beauville–

Donagi) and induces an antiisometry betweenH4(X,Z)van andH2(Ỹ ,Z)0 ⊆ H2(Ỹ ,Z)
a
↪→

H2(F (X),Z)

Dimension 6. For a general GM 6-fold X, the proof is similar: one uses instead the smooth
fourfold parametrizing σ-planes contained in X (that is, of the form PV1,V4 = {[V2] ∈ Gr(2, V5) |
V1 ⊆ V2 ⊆ V4}).

Dimension 5. The 5-dimensional case is the easiest: σ-planes contained in a (general) GM
fivefold X are parametrized by a smooth connected curve P (X) of genus 161 with, as above, a
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map σ : P (X)→ P(V5). This map factors as

σ : P (X) g−1(Y 2 ∩P(V5))
g
// Y 2 ∩P(V5)

� � // P(V5)

∩ ∩ ∩

Ỹ 2
g

// Y 2 � � // P(V6).

In other words, P (X) is a connected double étale cover of a general genus-81 hyperplane
section of the smooth surface Y 2 ⊆ P(V6). A generalization of an old argument of Clemens
(written by Tjurin in his famous 1972 article) shows that the corresponding Abel–Jacobi map
q∗p
∗ : H1(P (X),Z)→ H5(X,Z) in homology is surjective. It induces a surjective morphism

a : J(P (X)) −→ J(X)

with connected kernel. By the Lefschetz theorem, there is another surjective morphism

b : J(P (X)) −→ Alb(Ỹ 2)

with connected kernel. We want to show that the morphisms a and b are the same.

One can then use a cheap trick: it follows from Deligne–Picard–Lefschetz theory that since
the surface Y 2 is regular, for a very general choice of hyperplane V5, the Jacobian J(Y 2∩P(V5))
is simple (of dimension 81). It is therefore contracted by both a and b , which induce surjective
morphisms

a′ : Prym −→ J(X) and b′ : Prym −→ Alb(Ỹ 2)

with connected kernels. Using again monodromy arguments, one shows that the kernel of b′ is
simple (of dimension 70). It is therefore contracted by a′, which induces an isomorphism

a′′ : Alb(Ỹ 2) ∼−→ J(X).

Dimension 3. Lines on a (general) GM threefold X are parametrized by a smooth connected
curve F (X) of genus 71 which is the normalization of the singular, arithmetic genus-81, curve
Y 2 ∩P(V5) (the hyperplane V5 is not general anymore), but it is hard to relate this curve with

the surface Ỹ 2.

However, it was proved by Logachev and Iliev–Manivel that the Hilbert scheme of conics

contained in X is the blow up of the smooth surface ˜̌Y 2 at a point. This gives an Abel–Jacobi

map Alb(˜̌Y 2)→ J(X) which should be an isomophism.

We actually proceed differently and prove instead that the Abel–Jacobi map associated

with a family of rational quartic curves parametrized by the surface Ỹ 2 gives the desired iso-

morphism Alb(Ỹ 2) ∼→ J(X) (a similar method also works for fivefolds).
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