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Introduction

The sets of zeroes in the projective space of homogeneous polynomials of degree d with
coefficients in a field are called projective hypersurfaces of degree d and the study of their
geometry is a very classical subject.

For example, Cayley wrote in a 1869 memoir that a smooth complex cubic (d = 3)
surface contains exactly 27 projective lines. We start this series of lectures by studying more
generally, in Chapter 1, the family of projective linear spaces contained in a smooth hypersur-
face of any degree and any dimension. We take this opportunity to introduce Grassmannians
and a little bit of Schubert calculus.

In Chapter 2, we concentrate on the family of projective lines contained in a smooth
hypersurface, with particular attention to the case of cubic hypersurfaces. We discuss several
base fields: C, R, Q, and finite fields.

In Chapter 3, we discuss cubic surfaces. We show that the projective plane blown up at
six points in general position is isomorphic to a smooth cubic surface, and that, over an alg-
ebraically closed field, every smooth cubic surface is obtained in this way. It is in particular
rational, i.e., birationally isomorphic to a projective space. Over a non-algebraically closed
field, this is no longer the case. We introduce the Picard group of a scheme and explain a
criterion of Segre for non-rationality of a smooth cubic surface.

In Chapter 4, we discuss unirationality, a weakening of rationality, and prove that all
smooth cubic hypersurfaces are unirational as soon as they contain a line (a condition which
is always satisfied if the field is algebraically closed and the dimension is at least 2).

In Chapter 5, we explain why cubic hypersurfaces of dimension 3 are not rational.
For that, we introduce several fundamental objects in algebraic geometry: the intermediate
Jacobian, the Albanese variety, principally polarized abelian varieties and theta divisors,
Abel–Jacobi maps, conic bundles, and Prym varieties, in order to go through the Clemens–
Griffiths proof of this fact over the complex numbers. The pace is considerably faster as more
and more sophisticated material is presented.

We end these notes in Chapter 6 with the study of geometrical properties of the va-
riety of lines contained in a smooth complex cubic hypersurface of dimension 4. This is a
smooth projective variety, also of dimension 4, with trivial canonical bundle, and we use
the Beauville–Bogomolov classification theorem to prove that it is a simply connected holo-
morphic symplectic variety. We define Pfaffian cubics and prove the Beauville–Donagi result
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that this variety is a deformation of the Hilbert square of a K3 surface. This is a beautiful
argument in classical algebraic geometry.

Instead of proving every result that we state, we have tried instead to give a taste
of the many tools that are used in modern classical algebraic geometry. The bibliography
provides a few references where the reader can find more detailed expositions. We offer a few
exercises, especially in the first chapters, and even a couple of open questions which can be
easily stated.
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Chapter 1

Projective spaces and Grassmannians

Let k be a field and let V be a k-vector space of dimension N .

1.1 Projective spaces

The projective space

P(V ) := {1-dimensional vector subspaces in V }
is a k-variety1 of dimension N−1. It is endowed with a very ample invertible sheaf OP(V )(1);
seen as a line bundle, its fiber at a point [V1] is the dual vector space V ∨1 . Its space of global
sections is isomorphic to V ∨, by the map

V ∨ −→ H0(P(V ),OP(V )(1))

v∨ 7−→ ([V1] 7→ v∨|V1).
More generally, for any m ∈ N, the space of global sections of OP(V )(m) := OP(V )(1)⊗m is
isomorphic to the symmetric product Symm V ∨.

1.2 The Euler sequence

The variety P(V ) is smooth and its tangent bundle TP(V ) fits into an exact sequence

0→ OP(V ) → OP(V )(1)⊗k V → TP(V ) → 0. (1.1)

At a point [V1], this exact sequence is the following exact sequence of k-vector spaces:

0 // k // V ∨1 ⊗k V // TP(V ),[V1]
// 0

0 // Homk(V1, V1) // Homk(V1, V ) // Homk(V1, V/V1) // 0

1A k-variety is an integral and separated scheme of finite type over k.
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1.3 Grassmannians

For any integer r such that 0 ≤ r ≤ N = dimk(V ), the Grassmannian

G := G(r, V ) := {r-dimensional vector subspaces Vr in V }

is a smooth projective k-variety of dimension r(N − r) (when r = 1, this is just P(V ); when
r = N − 1, this is the dual projective space P(V ∨)).

There is on G a tautological rank-r subbundle S whose fiber at a point [Vr] of G is
Vr (when r = 1, so that G = P(V ), this is OP(V )(−1) := OP(V )(1)∨). It fits into an exact
sequence

0→ S → OG ⊗k V → Q → 0,

where Q is the tautological rank-(N − r) quotient bundle.

As in the case of the projective space (r = 1), one shows that for any m ∈ N, the space
of global sections of S ymmS ∨ is isomorphic to Symm V ∨.

Let [Vr] be a point of G and choose a decomposition V = Vr ⊕ VN−r. The subset of G
consisting of subspaces complementary to VN−r is an open subset of G whose elements can
be written as {x+ u(x) | x ∈ Vr} for some uniquely defined u ∈ Homk(Vr, VN−r). In fact, we
have a canonical identification

TG,[Vr] ' Homk(Vr, V/Vr), (1.2)

or
TG 'HomOS

(S ,Q) ' S ∨ ⊗OS
Q.

The analog of the Euler sequence (1.1) for the Grassmannian is therefore

0→ S ∨ ⊗OS
S → S ∨ ⊗k V → TG → 0.

The invertible sheaf
OG(1) :=

∧
rS ∨ (1.3)

is again very ample, with space of global sections isomorphic to
∧
rV ∨. It induces the Plücker

embedding

G(r, V ) −→ P(
∧
rV )

[Vr] 7−→ [
∧
rVr].

Example 1.1 When N = 4, the image of the Plücker embedding G(2, V ) ↪→ P(
∧

2V ) ' P5
k

is the smooth quadric with equation η ∧ η = 0 (it consists of the decomposable tensors in∧
2V ).
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1.4 Linear spaces contained in a subscheme of P(V )

We can also interpret the isomorphism (1.2) as follows. Let us write the Euler exact sequences

0 // OP(Vr)
// OP(Vr)(1)⊗ Vr //

_�

��

TP(Vr)
//

_�

��

0

0 // OP(Vr)
// OP(Vr)(1)⊗ V // TP(V )|Vr // 0,

from which we obtain a formula for the normal bundle of P(Vr) in P(V ) (the cokernel of the
rightmost vertical map)

NP(Vr)/P(V ) ' OP(Vr)(1)⊗ (V/Vr). (1.4)

We can therefore rewrite (1.2) as

TG,[Vr] ' H0(P(Vr), NP(Vr)/P(V )).

This is a particular case of a more general result.

Theorem 1.2 Let X ⊂ P(V ) be a subscheme containing P(Vr). Define

Fr(X) := {[Vr] ∈ G | Vr ⊂ X} ⊂ G(r, V ).

If X is smooth along P(Vr), one has

TFr(X),[Vr] ' H0(P(Vr), NP(Vr)/X).

What is the scheme structure on Fr(X)? Assume first that X ⊂ P(V ) is a hypersurface
Z(f) defined by one equation f = 0, where f ∈ Symd V ∨ (a homogeneous polynomial in
degree d). Then [Vr] ∈ F (X) if and only if f |Vr is identically 0. Note that f defines (by
restriction) a section sf of S ymdS ∨. Then we define

Fr(X) := Z(sf ) ⊂ G(r, V ) (1.5)

(the scheme of zeroes of the section sf ) as a scheme.

In general, for a subscheme X ⊂ P(V ) defined by equations f1 = · · · = fm = 0, we set

Fr(X) := Fr(Z(f1)) ∩ · · · ∩ Fr(Z(fm)) ⊂ G(r, V )

as a (projective) scheme.

Going back to the case where X is a hypersurface of degree d, we see that the expected
codimension of Fr(X) in G is the rank of S ymdS ∨, which is(

d+ r − 1

r − 1

)
.
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When r = 2 (so that F (X) := F2(X) is the scheme of projective lines L ⊂ X), the expected
dimension of F (X) is

2(N − 2)− d− 1 = 2N − 5− d. (1.6)

Assume that X is smooth along L and consider the normal exact sequence

0→ NL/X → NL/P(V ) → NX/P(V )|L → 0. (1.7)

By (1.4), the normal bundle NL/P(V ) is isomorphic to OL(1)⊕(N−2), hence has degree (or first
Chern class) N − 2, whereas NX/P(V ) is isomorphic to OX(d). It follows that NL/X has rank
N − 3 and degree N − 2− d.

Theorem 1.2 has a more precise form, which we will only state for projective lines
(r = 2).

Theorem 1.3 Let X ⊂ P(V ) be a subscheme containing a projective line L. If X is smooth
along L, the scheme F (X) can be defined, in a neighborhood of its point [L], by h1(L,NL/X)
equations in a smooth scheme of dimension h0(L,NL/X). In particular, every component of
F (X) has dimension at least

χ(L,NL/X) := h0(L,NL/X)− h1(L,NL/X) = deg(NL/X) + dim(X)− 1.

The last equality follows from the Riemann–Roch theorem applied to the vector bundle
NL/X on the genus-0 curve L.

The number deg(NL/X) + dim(X)− 1 is called the expected dimension of F (X) (when
X ⊂ P(V ) is a hypersurface, this number is the same as in (1.6), obtained without the
assumption that X be smooth). When H1(L,NL/X) = 0, the scheme F (X) is smooth of the
expected dimension at [L].

1.5 Schubert calculus

Note that none of our results so far say anything about the existence of a line in a hyper-
surface. We will use cohomological calculations to that effect. The argument is based on the
following result.

Theorem 1.4 Let X be a smooth irreducible projective scheme and let E be a locally free
sheaf on X of rank r. Assume that the zero set Z(s) of some global section s of E is empty
or has codimension exactly r in X. Then the class [Z(s)] ∈ CHr(X) is equal to cr(E ). In
particular, if cr(E ) is non-zero, Z(s) is non-empty.

The group CHr(X) in the theorem is the Chow group of codimension-r cycles on X
modulo rational equivalence. I do not want to explain here the theory of Chow groups. For
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our purposes, it can be replaced with the corresponding group in any good cohomology
theory that you like, such as the group H2r(X,Z) in singular cohomology when k = C.

If X is a hypersurface of degree d of P(V ), recall from (1.5) that the subscheme
F (X) ⊂ G := G(2, V ) of lines contained in X is defined as the zero locus of a section of
S ymdS ∨, a locally free sheaf on G of rank d+ 1.

To compute cd+1(S ymdS ∨), we need to know the ring CH(G). To describe it, we
define the Schubert cycles.

Let a and b be integers such that N − 2 ≥ a ≥ b ≥ 0. Choose vector subspaces

VN−1−a ⊂ VN−b ⊂ V

such that dim(VN−1−a) = N − 1 − a and dim(VN−b) = N − b. We define a subvariety of G,
called a Schubert variety, by

Σa,b := {[V2] ∈ G | V2 ∩ VN−1−a 6= 0, V2 ⊂ VN−b}.

It is irreducible of codimension a + b in G and its class σa,b := [Σa,b] ∈ CHa+b(G) only
depends on a and b. It is usual to write σa for σa,0 and to set σa,b = 0 whenever (a, b) does
not satisfy N − 2 ≥ a ≥ b ≥ 0.

Theorem 1.5 The group CH(G(2, V )) is a free abelian group with basis
(σa,b)N−2≥a≥b≥0.

For example, the group CH1(G) of isomorphism classes of invertible sheaves on G has
rank 1, generated by σ1. This class is the first Chern class of the invertible sheaf OG(1)
defined in (1.3). We also have

c(Q) = 1 + σ1 + · · ·+ σN−2,

hence
c(S ) = (1 + σ1 + · · ·+ σN−2)−1 = 1− σ1 + σ2

1 − σ2.

(The rank of S is 2 so there are no higher Chern classes.) To compute this class in the basis
(σa,b), we need to know the multiplicative structure of CH(G): whenever N −2 ≥ a ≥ b ≥ 0
and N − 2 ≥ c ≥ d ≥ 0, there are formulas

σa,b · σc,d =
∑

x+y=a+b+c+d

N−2≥x≥y≥0

na,b,c,d,x,yσx,y,

where the na,b,c,d,x,y are integers. This is the content of Schubert calculus, which we will only
illustrate in some particular cases (the combinatorics are quite involved in general).

Poincaré duality. If a+ b+ c+ d = 2N − 4, one has

σa,b · σc,d =

{
1 if a+ d = b+ c = N − 2,

0 otherwise.
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(The class σN−2,N−2 is the class of a point and generates CH2N−4(G); we usually drop it.)
In other words, the Poincaré dual of σa,b is σN−2−b,N−2−a.

Pieri’s formula. This is the relation

σa,b · σm =
∑

x+y=a+b+m
x≥a≥y≥b

σx,y.

For example, we have
σa,b · σ1 = σa+1,b + σa,b+1 (1.8)

(where the last term is 0 when a = b), which implies

c(S ∨) = 1 + σ1 + σ1,1.

The following formula can be deduced from Pieri’s formula (using σ1,1 = σ2
1 − σ2):

σa,b · σ1,1 = σa+1,b+1. (1.9)

Example 1.6 How many lines meet 4 general lines L1, L2, L3, and L4 in P3
C? One can

answer this question geometrically as follows: through any point of L3, there is a unique line
meeting L1 and L2 and one checks by explicit calculations that the union of these lines is a
smooth quadric surface, which therefore meets L4 in 2 points (“counted with multiplicities”).
Through each of these 2 points, there is a unique line meeting all 4 lines.

But we can also use Schubert calculus: the set of lines meeting Li has class σ1, hence
the answer is (use (1.8))

σ4
1 = σ2

1(σ2 + σ1,1) = σ1(σ2,1 + σ2,1) = 2σ2,2.

(To be honest, this calculation only shows that either there are 2 such lines “counted with
multiplicities,” or there are infinitely many of them.)
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Chapter 2

Projective lines contained in a
hypersurface

2.1 The scheme of lines contained in a hypersurface

We use Schubert calculus to show the existence of lines in hypersurfaces of small enough
degrees.

Theorem 2.1 When k is algebraically closed and d ≤ 2N − 5, any hypersurface of degree
d in PN−1

k contains a projective line.

Proof. According to Theorem 1.4, it is enough to prove that the top Chern class
cd+1(S ymdS ∨) does not vanish.

The method for computing the Chern classes of the symmetric powers of S ∨ is the
following: pretend that S ∨ is the direct sum of two invertible sheaves L1 and L2, with first
Chern classes `1 and `2 (the Chern roots of S ∨), so that

c(S ∨) = (1 + `1)(1 + `2).

Then

S ymdS ∨ '
d⊕
i=0

(L ⊗i
1 ⊗L ⊗(d−i)

2 )

and

c(S ymdS ∨) =
d∏
i=0

(1 + i`1 + (d− i)`2).

This symmetric polynomial in `1 and `2 can be expressed as a polynomial in

`1 + `2 = c1(S ∨) = σ1

`1`2 = c2(S ∨) = σ1,1.
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One obtains in particular

cd+1(SymdS ∨) =
d∏
i=0

(
i`1 + (d− i)`2

)
=

∏
0≤i<d/2

(i(d− i)
(
`1 + `2)2 + (d− 2i)2`1`2

)
×
[
d

2
(`1 + `2)

]

=
∏

0≤i<d/2

(
i(d− i)σ2

1 + (d− 2i)2σ1,1

)
×
[
d

2
σ1

]

=
∏

0≤i<d/2

(
i(d− i)σ2 +

(
(d− 2i)2 + i(d− i)

)
σ1,1

)
×
[
d

2
σ1

]
,

where the expressions between brackets are only there when d is even. Formulas (1.8) and
(1.9) imply that this is a sum of Schubert classes with non-negative coefficients which, since
(d− 2i)2 + i(d− i) ≥ 1 for all i, is “greater than or equal to”∏

0≤i<d/2

σ1,1 × [σ1] = σdd/2e,dd/2e × [σ1] ≥ σd(d+1)/2e,b(d+1)/2c,

which is non-zero for (d + 1)/2 ≤ N − 2. If d ≤ 2N − 5, we have therefore proved that
cd+1(SymdS ∨) is non-zero, hence F (X) is non-empty by Theorem 1.4. When k is algebraic-
ally closed, F (X) has k-point, which means that X contains a line defined over k. �

Exercise 2.2 Prove the relations

1) c4(S ym3S ∨) = 9(2σ3,1 + 3σ2,2) , c5(S ym4S ∨) = 32(3σ4,1 + 10σ3,2).

2) c1(S ymdS ∨) = d(d+1)
2 σ1.

Assume 2N − 5 − d ≥ 0. Under the hypotheses of the theorem, it follows from (1.6)
that F (X) has everywhere dimension ≥ 2N − 5− d.

One can show that when X ⊂ PN−1
k is a general hypersurface of degree d, the scheme

F (X) is a smooth variety of dimension 2N − 5 − d (hence empty whenever this number
is < 0). But when d ≥ 4, the scheme F (X) may be singular for some smooth X, or even
reducible or non-reduced (this does not happen when d = 2 or 3; see §2.2). However, we
have the following conjecture.

Conjecture 2.3 (Debarre, de Jong) Assume N > d ≥ 3 and that char(k) is either 0 or
≥ d. For any smooth hypersurface X ⊂ PN−1

k of degree d, the scheme F (X) has the expected
dimension 2N − 5− d.

We will see in Section 2.2 that the conjecture holds for d = 3. When char(k) = 0, the
conjecture is known for d ≤ 6 or for d � N (Collino (d = 4), Debarre (d ≤ 5), Beheshti
(d ≤ 6), Harris et al. (d � N)). Example 2.5 shows why the hypothesis char(k) ≥ d is
necessary.
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Example 2.4 (Real lines) When d is even, it is clear that the Fermat hypersurface

xd1 + · · ·+ xdN = 0

contains no real points, hence no real lines, whereas the diagonal hypersurface

xd1 + · · ·+ xdN−1 − xdN = 0

contains infinitely many real points, but no real lines.

Example 2.5 (Positive characteristic) Over an algebraically closed field k of character-
istic p > 0, let us consider the smooth Fermat hypersurface X ⊂ PN−1

k with equation

xp
r+1

1 + · · ·+ xp
r+1
N = 0.

The line joining two points x and y of X is contained in X if and only if

0 =
N∑
j=1

(xj + tyj)
pr+1

=
N∑
j=1

(xp
r

j + tp
r

yp
r

j )(xj + tyj)

=
N∑
j=1

(xp
r+1
j + txp

r

j yj + tp
r

xjy
pr

j + tp
r+1yp

r+1
j )

= t
N∑
j=1

xp
r

j yj + tp
r

N∑
j=1

xjy
pr

j (2.1)

for all t. This is equivalent to the two equations

N∑
j=1

xp
r

j yj =
N∑
j=1

xjy
pr

j = 0,

hence F (X) has dimension at least 2 dim(X)− 2− 2 = 2N − 8 at every point [L].

It is known that any locally free sheaf on P1 split as a direct sum of invertible sheaves,
so we can write

NL/X '
N−3⊕
i=1

OL(ai), (2.2)

where a1 ≥ · · · ≥ aN−3 and a1 + · · · + aN−3 = N − pr − 3. By (1.7), NL/X is a subsheaf of
NL/PN−1

k
' OL(1)⊕(N−2), hence a1 ≤ 1. We have

2N − 8 ≤ dim(F (X))

≤ h0(L,NL/X) by Theorem 1.2

= 2 Card{i | ai = 1}+ Card{i | ai = 0}
≤ Card{i | ai = 1}+N − 3.
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The only possibility is
NL/X ' OL(1)⊕(N−4) ⊕ OL(1− pr), (2.3)

which implies h0(L,NL/X) = 2N − 8. Since this is ≤ dim(F (X)), Theorem 1.2 implies that
F (X) is smooth of (non-expected if pr 6= 2) dimension 2N − 8.

Remark 2.6 (Free rational curves) Assume that the hypersurface X is smooth. We say
that a line L ⊂ X is free if all the ai that appear in the decomposition (2.2) are non-
negative (with the notation above, this means aN−3 ≥ 0). Over an algebraically closed field
of characteristic 0, one can show that when X is covered by lines (meaning that through any
point of X, there is a line contained in X; this happens as soon as d ≤ N − 2 (why?)), a
general line contained in X is free.

The last example shows that in characteristic p > 0, the Fermat hypersurface of degree
pr + 1 > 3 contains no free lines (although these lines cover the hypersurface).

More generally, we say that a non-constant morphism f : P1
k → X is free if all the

ai that appear in the decomposition of the locally free sheaf f ∗TX are non-negative. It is
conjectured that any hypersurface of degree d < N in PN−1

k contains a free rational curve.
This holds in characteristic zero, because X is covered by lines when d ≤ N − 2 (as we saw
above), or by conics when d ≤ N − 1; so the problem is in positive characteristic.

For the Fermat hypersurface of degree pr + 1 in PN−1
Fp

(which often seems to exhibit
the strangest behavior), one can prove that it contains no free rational curves of degree ≤ pr;
however, when pr + 1 ≤ N/2, it contains a free rational curve of degree 2pr + 1 defined over
Fp (Conduché).

Exercise 2.7 (Pfaffian hypersurfaces) Let k be an algebraically closed field of character-
istic 6= 2 and let W := k2d. In P(

∧
2W∨), the Pfaffian hypersurface Xd of degenerate skew-

symmetric bilinear forms (defined by the vanishing of the Pfaffian polynomial) has degree d.

1) Let m be a positive integer. Given a 2-dimensional vector space of skew-symmetric forms
on km, prove that there exists a subspace of dimension b(m+ 1)/2c which is isotropic for
all forms in that space (Hint: proceed by induction on m).

2) Given a 2-dimensional vector space of degenerate skew-symmetric forms on k2d, prove
that there exists a subspace of dimension d + 1 which is isotropic for all forms in that
space (Hint: proceed by induction on d and use 1)).

3) Show that the scheme F (Xd) of projective lines contained in Xd is irreducible of the
expected dimension (see (1.6))1 (Hint: prove that the locus {([L], [Vd+1]) ∈ G(2,

∧
2W∨)×

G(d+ 1,W ) | Vd+1 is isotropic for all forms in L} is irreducible of dimension 4d2− 3d− 5
and apply 2)).

Exercise 2.8 (Finite fields) Let X ⊂ PN−1
k be a hypersurface of degree d ≤ N − 1 defined

over a finite field k with q elements. Show that the number of k-points of X is at least qN−1−d+

· · ·+ q + 1 (Hint: use the Chevalley–Warning theorem2).

1Note that Xd is singular for d ≥ 3: its singular locus is the set of skew-symmetric forms of rank ≤ 2d−4.
2This theorem says that if f1, . . . , fr are homogeneous polynomials in N variables with coefficients in a

finite field k, of respective degrees d1, . . . , dr, and if d1 + · · ·+ dr < N , the number of solutions in kN of the
system of equations f1(x) = · · · = fr(x) = 0 is divisible by the characteristic of k. The proof is clever but
elementary. A refinement by Ax–Katz says that this number is divisible by Card(k)d(N−

∑
di)/max(di)e.
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2.2 Projective lines contained in a cubic hypersurface

Assume that k is algebraically closed and let X ⊂ P(V ) be a smooth cubic hypersurface.
When N = dim(V ) ≥ 4, it follows from Theorem 2.1 that X contains a line L. From (1.7),
we have an exact sequence

0→ NL/X → OL(1)⊕(N−2) → OL(3)→ 0. (2.4)

We write as in (2.2)

NL/X '
N−3⊕
i=1

OL(ai), (2.5)

where a1 ≥ · · · ≥ aN−3 and a1 + · · ·+ aN−3 = N − 5. By (2.4), we have a1 ≤ 1, hence

aN−3 = (N − 5)− a1 − · · · − aN−4 ≥ −1.

This implies H1(L,NL/X) = 0, hence F (X) is smooth of the expected dimension 2N − 8
(Theorem 1.3).3

We have proved the following.

Theorem 2.9 Let X ⊂ P(V ) be a smooth cubic hypersurface. If N ≥ 4, the scheme F (X)
of lines contained in X is a smooth projective variety of dimension 2N − 8.

Remark 2.10 When N ≥ 5, the scheme F (X) is connected. Indeed, F (X) is the zero locus
of a section sf of the locally free sheaf E ∨ := S ym3S ∨ on G := G(2, N) and it has the
expected codimension rank(E ) = 4 (see (1.5)). In this situation, we have a Koszul resolution

0 −→
∧

4E −→
∧

3E −→
∧

2E −→ E
s∨f−→ OG −→ OF (X) −→ 0. (2.6)

of its structure sheaf (this complex is exact because locally, E is free and the components of
sf in a basis form a regular sequence). Using this sequence and, in characteristic zero, the
Borel–Weil theorem, which computes the cohomology of homogeneous vector bundles such
as
∧
rE on G, one can compute some of the cohomology of OF (X) and obtain for example

h0(F (X),OF (X)) = 1 for N ≥ 5 ([DM, th. 3.4]), hence the connectedness of F (X). This is
obtained in all characteristics in [AK, Theorem (5.1)] by direct computations.

3A little more work shows there are two possible types for normal bundles:

NL/X ' OL(1)⊕(N−5) ⊕ O⊕2L for lines “of the first type;”
NL/X ' OL(1)⊕(N−4) ⊕ OL(−1) for lines “of the second type.”

When N ≥ 4, there are always lines of the second type. When N ≥ 5, a general line in X is of the first type
if char(k) 6= 2 (this is not true for the Fermat cubic in characteristic 2 by (2.3)).
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Under the hypotheses of the theorem, by Exercice 2.2.1), the subscheme F (X) ⊂
G(2, V ) has class 9(2σ3,1 + 3σ2,2). When N = 4, the class σ3,1 vanishes in G(2, 4) and σ2,2 is
the class of a point.

This proves the very famous classical result:

Every smooth cubic surface over an algebraically closed field contains 27 lines.

Remark 2.11 It can be shown that, over an algebraically closed field, a normal cubic surface
that contains infinitely many lines is a cone. If a normal cubic surface X is not a cone, the
scheme of lines F (X) still has class 27σ2,2, but might not be reduced, so that X contains at
most 27 lines. In fact, X is smooth if and only if it contains exactly 27 lines. It follows that
when X is normal and singular (but not a cone), F (X) is not reduced.

Example 2.12 (Real lines) The 27 complex lines contained in a smooth real cubic surface
X are either real or complex conjugate. Since 27 is odd, X always contains a real line. One
can prove that the set of real lines contained in X has either 3, 7, 15, or 27 elements
(see Example 3.1).4 In many mathematics departments around the world, there are plaster
models of (real!) cubic surfaces with 27 (real) lines on them; it is usually the Clebsch cubic
(1871), with equations in P4:

x0 + · · ·+ x4 = x3
0 + · · ·+ x3

4 = 0.

Among these 27 lines, 15 are defined over Q, and the other 12 over the field Q(
√

5).5

Figure 2.1: The Clebsch cubic with its 27 real lines

4Actually, lines on real cubic surfaces should be counted with signs, in which case one gets that the total
number is always 3.

5The permutation group S5 acts on X. The lines defined over Q are 〈(1,−1, 0, 0, 0), (0, 0, 1,−1, 0)〉 and its

images by S5, and the 12 other lines are the real line 〈(1, ζ, ζ2, ζ3, ζ4), (1, ζ, ζ
2
, ζ

3
, ζ

4
)〉, where ζ := exp(2iπ/5),

and its images by S5.
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Example 2.13 (Rational lines) It is only recently that a rational cubic surface with all
its 27 lines rational was found (by Tetsuji Shioda in 1995). Its equation is

x2
2x4 + 2x2x

2
3 = x3

1 − x1(59475x2
4 + 78x2

3) + 2848750x3
4 + 18226x2

3x4.

All 27 lines have explicit rational equations.

Example 2.14 (Finite fields) By the Chevalley–Warning theorem (see footnote 2), any
cubic hypersurface of dimension ≥ 2 defined over a finite field k has a k-point. What about
lines defined over k?

Consider a diagonal cubic surface X ⊂ P3
k with equation

a1x
3
1 + a2x

3
2 + a3x

3
3 + a4x

3
4 = 0,

where a1, . . . , a4 ∈ k are all non-zero. It is smooth whenever k is not of characteristic 3,
which we assume. Let bij be such that b3

ij = ai/aj. Then, if {1, 2, 3, 4} = {i, j, k, l}, the
projective line joining ei − bijej and ek − bklel is contained in X. Since we have 3 choices
for {i, j} and 3 choices for each bij, the 27 lines of the cubic X ×k k are all obtained in this
fashion hence are defined over k[ 3

√
ai/aj, 1 ≤ i < j ≤ 4].

In particular, the 27 lines of the Fermat cubic

x3
1 + x3

2 + x3
3 + x3

4 = 0

in characteristic 2 are defined over F4 (but only 3 over F2), whereas, if a ∈ F4 r {0, 1}, the
cubic surface defined by

x3
1 + x3

2 + x3
3 + ax3

4 = 0 (2.7)

contains no lines defined over F4.

The general phenomenon is that when k is not algebraically closed, the Galois group
Gal(k/k) acts on the set of 27 lines contained in Xk := X ×k k and (when k is perfect)
the fixed points are the lines defined over k contained in X. For the surface defined by the
equation (2.7), all the lines are defined over F64 and the orbits all consist of 3 points.

Exercise 2.15 Let X be a cubic hypersurface of dimension ≥ 6 defined over a finite field k.

Show that any k-point of X is on a line contained in X and defined over k (Hint: use the

Chevalley–Warning theorem).

This leaves the case of cubic hypersurfaces of dimensions 3, 4 or 5 open: are there
(smooth) cubic hypersurfaces of dimensions 3, 4 or 5, defined over a finite field k, which
contain no k-lines? Some answers are given in [DLR].

Exercise 2.16 Show that the cubic surface X ⊂ P3
F2

defined by the equation

x31 + x32 + x33 + x21x2 + x22x3 + x23x1 + x1x2x3 + x1x
2
4 + x21x4 = 0

is smooth and has a unique F2-point; in particular, it does not contain any line defined over

F2 (Hint: for smoothness, you may make explicit computations, or else prove that X contains

27 lines defined over F2 and use Remark 2.11).
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Chapter 3

Cubic surfaces

3.1 The plane blown up at six points

Let X be the blow up of the projective plane P2
k at 6 distinct k-points in general position

(no 3 on a line, no 6 on a conic). One checks that the linear system of cubic plane curves
passing through these 6 points has projective dimension 3 (we say that these 6 points impose
independent conditions on cubics) and that the resulting rational map P2

k 99K P3
k induces

an embedding
X ↪→ P3

k

whose image is a smooth cubic surface defined over k.

The 27 lines on X are then

• the images of the 6 exceptional divisors;

• the images of the strict transforms on X of the 15 lines passing through 2 of the 6
points;

• the images of the strict transforms on X of the 5 conics passing through 5 of the 6
points.

They are all defined over k.

Example 3.1 Note that for X to be defined over k, we only need the whole set of 6 points
to be defined over k. So if we take set a set, defined over R, of 6 points in P2

C,

• either the 6 points are real and the cubic surface contains 27 real lines;

• or only 4 points are real and the other 2 are complex conjugate, and the cubic surface
contains 15 real lines (why?);

14



• or only 2 points are real and the other 4 form 2 pairs of complex conjugate points, and
the cubic surface contains 7 real lines (why?);

• or the 6 points are not real but form 3 pairs of complex conjugate points, and the cubic
surface contains 3 real lines (why?).

The following converse was proved by Arthur Clebsch in 1871.

Theorem 3.2 (Clebsch) Let k be an algebraically closed field. Any smooth cubic surface
X ⊂ P3

k is isomorphic to the plane P2
k blown up at 6 distinct points in general position.

Sketch of proof. Since k is algebraically closed, X contains 27 lines and one can show
(by direct computation) that it contains two disjoint lines L1 and L2. We define rational
maps

Φ: L1 × L2 99K X

(x1, x2) 7−→ 3rd point of intersection of
the line 〈x1, x2〉 with X

and

Ψ: X r L1 r L2 99K L1 × L2

x 7−→ (〈x, L2〉 ∩ L1, 〈x, L1〉 ∩ L2).

It is clear that Φ and Ψ are mutually inverse. Moreover, Ψ can be extended to a morphism

Ψ: X −→ L1 × L2.

(When x ∈ Li, juste replace the plane 〈x, Li〉 with the plane tangent to X at x.)

By the general theory of birational morphisms between smooth projective surfaces, we
know that Ψ is a composition of blow ups. On the other hand, it blows down exactly the 5
lines contained in X that meet both L1 and L2 (the existence of these lines is again obtained
by direct computation); Ψ is therefore the blow up of 5 distinct points on L1×L2 ' P1

k×P1
k.

On the other hand, the blow up of a point on P1
k×P1

k is isomorphic to P2
k blown up at two

distinct points.1

It follows that X is isomorphic to P2 blown up at 6 distinct points x1, . . . , x6. By
adjunction, the hyperplane linear system coming from the embedding X ⊂ P3

k is | −KX |. It
is therefore the linear system of cubics passing through x1, . . . , x6. This linear system must
be very ample; this implies that no lines pass through 3 of these points and no conic through
all 6 points (they would otherwise be contracted). �

1This can be obtained by direct calculation, or by considering the projection of a smooth quadric Q ⊂ P3
k

(isomorphic to P1
k ×P1

k) from a point x ∈ Q: it induces a birational morphism from the blow up of Q at x
to P2

k to P1
k ×P1

k which contracts the two generators of Q passing through x.
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The proof above implies that a cubic surface is isomorphic to a blow up of the plane
P2

k at 6 points as soon as it contains two skew lines defined over k (the points need not be
defined over k: only the whole set is; when X contains 27 lines defined over k, the 6 points
are all defined over k).

Example 3.3 For p ∈ {2, 3}, no smooth cubic surfaces in P3
Fp

contain 27 lines defined over

Fp (the plane P2
Fp

is too small to contains six Fp-points in general position!).

Up to the action of PGL3(F4), there is only one set of six F4-points in P2
F4

which are
in general position: if a ∈ F4 r {0, 1}, they are (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (1, a, a2),
and (1, a2, a).

Since the Fermat cubic x3
1 + x3

2 + x3
3 + x3

4 = 0 contains 27 lines defined over F4 (see
Example 2.14), it is isomorphic to the plane P2

F4
blown up in these 6 points.

More results on smooth cubic surfaces defined over an algebraically closed field can be
found in [H, Section V.4].

3.2 Rationality

One important consequence of Theorem 3.2 is that smooth cubic surfaces defined over an
algebraically closed field are rational.

Definition 3.4 Let X be a variety of dimension n defined over a field k. We say that X is
k-rational if there is a birational isomorphism Pn

k 99K X defined over k.

When k is algebraically closed, we say only “rational.”

In terms of field extensions, k-rationality means that the field k(X) of rational functions
on X is a purely transcendental extension of k.

Remark 3.5 For a smooth cubic surface defined over a field k to be rational, it is enough
that it contain two skew lines defined over k (see the proof of Theorem 3.2).

Remark 3.6 The set of real points of some real smooth cubic surfaces is not connected:
such a surface cannot be R-rational. It is known that real smooth cubic surfaces containing
7, 15, or 27 lines are R-rational; some real smooth cubic surfaces containing only 3 lines are
R-rational, while some others are not.

Exercise 3.7 Prove that the cubic surface X ⊂ P4
R defined by the equations

x0 + · · ·+ x4 = 1
8x

3
0 + x31 + · · ·+ x34 = 0

is smooth and that the set of its real points is not connected. Find all the real lines contained

in X.
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Exercise 3.8 Show that any smooth cubic hypersurface X ⊂ P2m+1
k which contains two dis-

joint m-planes defined over k is k-rational. Find an example of such a cubic for each m, defined
over Q.

No examples of smooth rational complex cubic hypersurfaces of odd dimensions are

known.

3.3 Picard groups

To state a result of Segre about non-rationality of cubic surfaces, we need to define the
Picard group of a scheme.

Definition 3.9 Let X be a scheme. Its Picard group Pic(X) is the group of isomorphism
classes of invertible sheaves on X, under the operation given by tensor product.

When X is integral, Pic(X) is also the group of Cartier divisors on X modulo linear
equivalence.2 A computation in Cech cohomology shows that Pic(X) is also isomorphic to
the cohomology group H1(X,O∗X).

Example 3.10 The Picard group of Pn
k is isomorphic to Z since the invertible sheaves on

Pn
k are the OPn

k
(d), for d ∈ Z.

If X̃ → X is a smooth blow up, with exceptional divisor E, we have

Pic(X̃) ' Pic(X)⊕ Z[OX̃(E)].

In particular, by Theorem 3.2, the Picard group of a cubic surface defined over an algebr-
aically closed field is isomorphic to Z7.3

The Picard group is not invariant under extensions of the base field k. Let X be a
smooth cubic surface defined over a field k. Then Pic(X) is a subgroup of Pic(Xk) ' Z7. Its
rank is the Picard number ρ(X); since Pic(X) always contains the (non-zero) class of OX(1)
(the “hyperplane class”), the Picard number is in {1, . . . , 7}.

Let p be the characteristic exponent of k (this is characteristic of k if it is positive,
1 otherwise). If kp

−∞
:=
⋃
e kp

−e ⊂ k is the perfect closure of k and G := Aut(k/k) =

Aut(k/kp
−∞

) the Galois group, we have:

• any divisor defined over kp
−∞

is defined over some purely inseparable extension of k,
so that some pe-th multiple is defined over k. This implies ρ(X) = ρ(Xkp−∞ );

2Two Cartier divisors are linear equivalent if their difference is the divisor of a rational function.
3In general, the Picard group is an extension of a finitely generated abelian group by a “continuous

component” (which is zero in the cubic surface case). We will come back to that in Section 5.1.
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• divisors of X defined over kp
−∞

can be identified with the G-invariant divisors of
Xk, which in turn can be identified with the G-orbits of divisors defined over k. In
particular, the Picard group of Xkp−∞ is the subgroup of the Picard group of Xk

invariant under the natural action of G. If {Li1 , . . . , Lit} is an orbit of G on the 27
lines, Li1 + · · ·+ Lit is an effective curve defined over kp

−∞
and these orbit sums span

Pic(Xkp−∞ ).

Theorem 3.11 (B. Segre) Let X be a smooth cubic surface defined over a field k, with
algebraic closure k. Consider the action of the Galois group G := Aut(k/k) on the 27 lines
of Xk.

The following conditions are equivalent:

(i) the Picard number ρ(X) is one;

(ii) the sum of the lines in each G-orbit is linearly equivalent to a multiple of the hyperplane
class on X;

(iii) no G-orbit consists of pairwise disjoint lines on X.

If these conditions hold, X is not k-rational.

For complete proofs, we refer to [KSR]. The implication (i)⇒(ii) is easy. The converse
follows from the discussion above since the orbit sums span a free abelian group of rank ρ(X).
To see that (i) implies (iii), suppose that {Li1 , . . . , Lit} is a G-orbit consisting of pairwise
disjoint lines. If ρ(X) = 1, any other orbit sum Lj1 + · · · + Ljs is linearly equivalent to
a(Li1 + · · ·+ Lit), for some a ∈ Q+. But then,

−t = (Li1 + · · ·+ Lit)
2 =

1

a
(Li1 + · · ·+ Lit)(Lj1 + · · ·+ Ljs),

which is non-negative since the lines in the first orbit are different from the line in the second
orbit. This is a contradiction.

The proof that (iii) implies (i) is not too difficult ([KSR, p. 13]), but the fact that the
conditions (i)–(iii) imply the irrationality of X is harder ([KSR, p. 17–21]).

Exercise 3.12 1) Let k be a field of characteristic 6= 3 and let a1, . . . , a4 ∈ k∗. Following Segre
([S]), show (using Theorem 3.11) that the smooth cubic surface over k defined by the equation

a1x
3
1 + a2x

3
2 + a3x

3
3 + a4x

3
4 = 0 (3.1)

has Picard number one if and only if, for all permutations σ ∈ S4,

aσ(1)aσ(2)

aσ(3)aσ(4)

is not a cube in k.
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2) Let a ∈ F4 r {0, 1}. Prove that the cubic surface defined by the equation

x31 + x32 + x33 + ax34 = 0

in P3
F4

is smooth, has F4-points, but is not F4-rational.

In general, it is known that a cubic surface as (3.1) is rational if and only if

1. it has a k-point (which always holds if k is finite by the Chevalley–Warning Theorem)
and

2. one of the
aσ(1)aσ(2)
aσ(3)aσ(4)

is a cube in k.
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Chapter 4

Unirationality

4.1 Unirationality

Let X be a k-variety. We defined the k-rationality of X in Definition 3.4. The following
weaker property is also central.

Definition 4.1 Let X be a variety defined over a field k. We say that X is k-unirational if
there are an integer n and a dominant morphism Pn

k 99K X defined over k.

We say that X is separably k-unirational if there are an integer n and a dominant
separable morphism Pn

k 99K X defined over k.

The integer n in this definition can be taken to be the dimension of X. In characteristic
0, k-unirationality and separable k-unirationality are of course equivalent.

In terms of field extensions, (separable) k-unirationality means that k(X) has an al-
gebraic (separable) extension which is a purely transcendental extension of k.

Exercise 4.2 Show that the smooth real (non-rational) cubic surface defined by the equations

x0 + · · ·+ x4 = 1
8x

3
0 + · · ·+ x34 = 0

in P4
R is R-unirational (recall from Exercise 3.7 that it is not R-rational).

Theorem 4.3 Let X ⊂ PN−1
k be a smooth cubic hypersurface containing a k-line L. There

exists a double cover πL : PN−2
k 99K X defined over k; in particular, X is k-unirational.

When k is algebraically closed, the existence of the line L is automatic as soon as
N ≥ 4.

Proof. Let us consider the restriction TX |L of the locally free tangent sheaf TX to L and
the total space P of the projectification of the associated vector bundle. Since TX |L is trivial
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of rank N−2 on any affine open subset of L, the k-variety P is rational, of dimension N−2.
We define a rational map

πL : P 99K X

as follows. A point of P is a pair (x, Lx), where x is a (geometric) point of L and Lx is a
projective line tangent to X at x. If Lx is not contained in X, since it has contact of order
≥ 2 with X at x, it meets X in a third point, which we call πL(x, Lx). Note that there always
exists a line Lx not contained in X, since otherwise, the projective tangent space TX,x would
be contained in X, contradicting the irreducibility of X. We have therefore defined a rational
map πL, defined over k.

Let y be a point in X such that the plane Py := 〈L, y〉 is not contained in X (this is the
case for y general, since otherwise, X would be a cone with vertex L). The scheme-theoretic
intersection Py ∩X is then the union of L and a residual conic Cy passing through y. Any
point x ∈ L ∩ Cy is then singular on L ∪ Cy, hence Py ⊂ TL∪Cy ,x ⊂ TX,x. It follows that
y = πL(x, 〈x, y〉), hence πL is dominant, of degree 2. �

Remark 4.4 One can show that if k is algebraically closed and N ≥ 4, there always ex-
ists a line L ⊂ X such the map πL defined in the proof above is separable, except if the
characteristic is 2 and X is projectively equivalent to the Fermat cubic x3

1 + · · · + x3
N = 0.

This implies that X is k-unirational (note that in characteristic 2, Fermat cubics of even
dimensions are in fact rational by Exercice 3.8).

We now show that k-unirationality implies the existence of a k-point.

Proposition 4.5 If a variety is k-unirational, it has a k-point.

Proof. This is obvious when k is infinite: any rational map π : Pn
k 99K X is defined on

some dense Zariski open subset of Pn
k and, because Pn

k has plenty of k-points in every dense
open set, the image of any one of them will be a k-point of X. This is not so obvious when
k is finite, because Pn

k has dense open subsets with no k-points.

To prove the proposition, we proceed by induction on n (we do not assume that π is
dominant). When n = 1, this holds because π is actually a morphism.

Assume n ≥ 2 and let P̃n
k → Pn

k be the blow up of a k-point, with exceptional divisor

E isomorphic to Pn−1
k . The induced rational map π̃ : P̃n

k → Pn
k 99K X is defined over an

open subset U of P̃n
k whose complement has codimension ≥ 2. In particular, U meets E,

hence π̃ restricts to E to induce a rational map Pn−1
k 99K X. We now apply the induction

hypothesis to conclude. �

Remark 4.6 Conversely, Kollár proved that over an arbitrary field k, a cubic hypersurface
with a k-point is always k-unirational ([K]). Cubic hypersurfaces of dimension ≥ 2 over a
finite field k always have k-points (Chevalley–Warning Theorem), so they are k-unirational.
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Exercise 4.7 (Positive characteristics) Over an algebraically closed field k of characteris-
tic p > 0, let us consider as in Example 2.5 the smooth Fermat hypersurface X ⊂ PN−1

k with
equation

xp
r+1

1 + · · ·+ xp
r+1
N = 0.

We assume N ≥ 4 and that k contains all (pr + 1)-th roots of −1; let u be such a root. Then
X contains the line L joining the points (1, u, 0, 0, . . . , 0) and (0, 0, 1, u, 0, . . . , 0). The pencil
−tux1 + tx2 − ux3 + x4 = 0 of hyperplanes containing L induces a dominant rational map
π : X 99K A1

k which makes k(X) into an extension of k(t).

Show that the generic fiber of π is isomorphic over k(t1/p
r

) to

• if N = 4, the k-rational plane curve with equation yp
r−1

3 y4 + yp
r

2 = 0,

• if N ≥ 5, the singular k-rational hypersurface with equation yp
r

3 y4 +y3y
pr

2 +yp
r+1

5 + · · ·+
yp

r+1
N = 0 in PN−2.

Deduce that X has a purely inseparable cover of degree pr which is k-rational.

In contrast with the last exercise, we will show that hypersurfaces of high degree cannot
be separably unirational.

Theorem 4.8 If X is a smooth projective variety of dimension d ≥ 1 that is separably
unirational, H0(X, (Ωr

X)⊗m) = 0 for all r,m ≥ 1.

Here, ΩX is the sheaf of Kähler differentials on X ([H, Section II.8]; since X is smooth,
this is also the dual of the tangent sheaf TX), locally free of rank d because X is smooth,
and Ωr

X :=
∧
rΩX .

Let KX be the canonical divisor of X, so that O(KX) ' Ωd
X . For all positive integers

m, the numbers h0(X,O(mKX)) are called the plurigenera of X and are very important
in the classification theory of algebraic varieties. The theorem says that they vanish for a
separably unirational smooth projective variety X, and so do the Hodge numbers h0(X,Ωr

X).

Proof. Let π : Pn 99K X be a dominant and separable map. It is defined on an open
subset U ⊂ Pn whose complement has codimension ≥ 2. We have an exact sequence ([H,
Proposition II.8.11])

π∗ΩX → ΩU → ΩU/X → 0,

where π∗ΩX and ΩU are locally free of respective ranks d and n. At the generic point of U ,
this sequence is the sequence

Ωk(X)/k ⊗k k(U)→ Ωk(U)/k → Ωk(U)/k(X) → 0

of k(U)-vector spaces of respective dimensions d, n, and n − d (because the extension
k(U)/k(X) is separable; [H, Theorem II.8.6A]).

All this implies that the map π∗ΩX → ΩU is injective (its kernel is torsion-free and 0
at the generic point). In particular, there is an injection

H0(X, (Ωr
X)⊗m) ↪→ H0(U, (Ωr

U)⊗m),
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where the latter space is isomorphic to H0(Pn, (Ωr
Pn)⊗m), because the complement of U has

codimension ≥ 2.

We now prove that this last space is 0: the dual of the Euler sequence (1.1) gives an
inclusion ΩPn ↪→ OPn(−1)⊕(n+1), hence an inclusion of Ωr

Pn =
∧
rΩPn into a direct sum of

copies of OPn(−r), and an inclusion of (Ωr
Pn)⊗m into a direct sum of copies of OPn(−rm), a

sheaf which has no non-zero sections since rm > 0.

This ends the proof of the theorem. �

Corollary 4.9 A smooth projective hypersurface of degree ≥ dim(X) + 2 is not separably
unirational.

Proof. This is because the canonical sheaf OX(KX) is OX(deg(X)− dim(X)− 2), hence
it has non-zero sections under our hypothesis. �
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Chapter 5

Cubic threefolds

Let k be an algebraically closed field and let X ⊂ P4
k be a smooth cubic threefold. As we

saw in Theorem 4.3, X is unirational: there exists a double cover P3
k 99K X. The question

of the rationality of X was a longstanding question until it was solved negatively in 1972 by
Clemens–Griffiths (over C).1 We will explain the tools used in their proof, or rather, in the
simpler proofs that appeared later (such as [B2]).

5.1 Jacobians

5.1.1 The Picard group

Let X be a complex projective variety. As explained in Section 3.3, the group Pic(X) can be
identified with H1(X,O∗X). Consider the exponential exact sequence

0 −→ Z −→ OXan

exp−→ O∗Xan
−→ 0

of sheaves of analytic functions on the underlying complex variety Xan. The associated co-
homology sequence reads

0→ H1(Xan,Z)→ H1(Xan,OXan)→ H1(Xan,O
∗
Xan

)

→ H2(Xan,Z)→ H2(Xan,OXan). (5.1)

By Serre’s GAGA theorems, we haveHq(Xan,OXan) ' Hq(X,OX) for all q, andH1(Xan,O∗Xan
)

' Pic(X).

The image of Pic(X) in the finitely generated abelian group H2(X,Z) is again a finitely
generated abelian group called the Néron–Severi group of X and denoted by NS(X). We have
an exact sequence

0→ Pic0(X)→ Pic(X)→ NS(X)→ 0,

1This non-rationality result still holds over any field of characteristic other than 2 ([M]).
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where
Pic0(X) := H1(X,OX)/H1(X,Z). (5.2)

Any morphism f : X → Y induces compatible morphisms

f ∗ : Pic(X)→ Pic(Y ) , f ∗ : Pic0(X)→ Pic0(Y ) , f ∗ : NS(X)→ NS(Y ).

When X is moreover smooth, by Hodge theory, Pic0(X) is an abelian variety, a smooth
projective variety with a group structure.

In the case of a cubic surface, studied in Section 5.1, H1(X,OX) = H2(X,OX) = 0, so
that Pic0(X) = 0 and Pic(X) ' NS(X) ' H2(X,Z) ' Z7.

When C is a smooth projective curve, the abelian variety Pic0(C) is principally po-
larized of dimension g := h1(C,OC), the genus of C, and NS(C) ' Z. The abelian variety
Pic0(C) is also refered to as the Jacobian of C and denoted by J(C).

5.1.2 Intermediate Jacobians

If we want to mimic the construction (5.2) of the abelian variety Pic0(X) with H3(X,Z)
instead of H1(X,Z), the problem is that the Hodge decomposition

H3(X,C) ' H0,3(X)⊕H1,2(X)⊕H2,1(X)⊕H3,0(X)

is now more complicated. The quotient

J(X) := (H0,3(X)⊕H1,2(X))/H3(X,Z)

is still a complex torus,2 but not in general an abelian variety, unless, for example, H0,3(X)
or H1,2(X) vanishes. It is called the intermediate Jacobian of X.

5.1.3 The Albanese variety

At the other end, if X has dimension n, we may also consider the complex torus

Alb(X) := Hn−1,n(X)/H2n−1(X,Z), (5.3)

called the Albanese variety of X (this is always an abelian variety). By Poincaré and Serre
dualities, this is also

Alb(X) ' H0(X,ΩX)∨/H1(X,Z),

2What we denote by H2n−1(X,Z) is actually (here and in (5.3)) the image of that group by the compo-
sition

H2n−1(X,Z)→ H2n−1(X,Z)⊗Z C = H2n−1(X,C)� H0,2n−1(X)⊕ · · · ⊕Hn−1,n(X),

which kills exactly the torsion.
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where H1(X,Z) maps to H0(X,ΩX)∨ by the morphism

[γ] 7−→
[
ω 7→

∫
γ

ω
]
.

Contrary to the intermediate Jacobian, it is always algebraic (Theorem 5.5).

Any morphism f : X → Y induces compatible morphisms f∗ : H1(X,Z) → H1(Y,Z)
and f ∗T : H0(X,ΩX)∨ → H0(Y,ΩY )∨, hence a group morphism Alb(f) : Alb(X)→ Alb(Y ).

5.1.4 Principally polarized abelian varieties

A principal polarization on an abelian variety A is an effective divisor Θ (aptly named theta
divisor) with the following two properties:

• Θ is ample;

• h0(A,OA(Θ)) = 1.

A principally polarized abelian variety is a pair (A,Θ), where A is an abelian variety and Θ
a theta divisor on A (defined up to translation by an element of A).

When A is expressed as a complex torus V/Γ, where V is a complex vector space and Γ a
lattice in V , a principal polarization on A is exactly the same as a definite positive Hermitian
form on V whose imaginary part is an integral unimodular non-degenerate skew-symmetric
form on Γ.3

When C is a smooth projective curve, such a form is provided by the intersection
form on H1(C,Z) (unimodularity follows from Poincaré duality), hence J(C) is a principally
polarized abelian variety.

When X has dimension 3 and H0,3(X) = 0, such a form is provided again by the
intersection form on H3(X,Z), hence J(X) is a principally polarized abelian variety. This is
the case when X is a smooth cubic threefold, because

H0,3(X) ' H3(X,OX) ' H0(X,OX(−2))∨ = 0

3This can be understood through the exact sequence (5.1) for A:

0→ H1(A,Z) → H1(A,OA) → H1(XA,O∗A) → H2(A,Z)
a→ H2(A,OA)

‖ ‖ ‖ ‖ ‖
Γ∨ → V

∨ → Pic(A) →
∧

2Γ∨ →
∧

2V
∨
.

The kernel of the map a is identified with the group of Hermitian forms H on V whose imaginary part is an
integral skew-symmetric form on Γ (i.e., an element of

∧
2Γ∨). Such a form therefore defines a (non-unique)

invertible sheaf on A. It is ample if and only if H is positive definite, and its space of global sections has
dimension 1 if and only if the integral skew-symmetric form on Γ is unimodular.
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by Serre duality (this is also a consequence of Theorems 4.3 and 4.8). As shown in the exercise
below, J(X) has dimension h1,2(X) = h2(X,ΩX) = 5.

In both cases, the corresponding theta divisors have geometric constructions which we
will explain in Section 5.3.

Exercise 5.1 Let V be a 5-dimensional vector space and let X ⊂ P(V ) be a smooth cubic
hypersurface. Using the (dual of the) Euler sequence (1.1), the conormal exact sequence

0→ OX(−3)→ ΩP(V )|X → ΩX → 0,

various vanishing theorems, and Serre duality, show that there is an isomorphism

H2(X,ΩX) ' H0(X,OX(1))∨ ' V. (5.4)

In particular, the intermediate Jacobian J(X) has dimension 5.

5.2 The Clemens–Griffiths method

Let X be a smooth complex projective threefold. Assume that X is rational, so that there is a
birational isomorphism P3 ∼

99KX. By Theorem 4.8, we have H0,3(X) = 0, so we may consider
the principally polarized abelian variety J(X). A typical birational map is the blow up of
a smooth subvariety of codimension ≥ 2. We will examine how the intermediate Jacobian
changes under this operation.

Proposition 5.2 Let X be a smooth complex projective threefold with H0,3(X) = 0, let

Z ⊂ X be a smooth projective subvariety of codimension ≥ 2, and let X̃ → X be the blow
up of Z. Then H0,3(X̃) = 0 and

J(X̃) '

{
J(X) if Z is a point,

J(X)× J(Z) if Z is a curve,

as principally polarized abelian varieties.

Proof. There is a general formula for the cohomology of the blow up X̃ → X of a smooth
subvariety Z ⊂ X of codimension r ([V, Theorem 7.31]): there is an isomorphism of Hodge
structures

Hk(X,Z)⊕
( r+1⊕
i=1

Hk−2i(Z,Z)(−i)
)
−→ Hk(X̃,Z).

In particular, H3(X̃,Z) ' H3(X,Z)⊕H1(Z,Z)(−1) as Hodge structures and H0,3(X̃,Z) '
H0,3(X,Z) = 0.

Furthermore, H1,2(X̃) ' H1,2(X)⊕H0,1(Z) and H0,1(Z) = 0 when Z is a point. �

Now, any principally polarized abelian variety A decomposes as a product of principally
polarized indecomposable factors, and these factors only depend on A. Jacobians of smooth
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curves are indecomposable, so we may define the Griffiths component AG of A as the product
of the indecomposable factors of A which are not Jacobians of curves.4

The theorem then says that the Griffiths component of the intermediate Jacobian of a
threefold does not change under blow ups.

Let again X be a smooth complex projective threefold with H0,3(X) = 0 and let
X 99K Y be a birational map. By Hironaka’s theorem on resolution of singularities, there
is a birational morphism X̃ → X which is a composition of blow ups with smooth centers
(either points or smooth curves) such that the composition

f : X̃ −→ X 99K Y

is a (birational) morphism. The induced map f ∗ : H3(Y,Z) → H3(X̃,Z) is an injective

morphism of Hodge structures. In particular, H0,3(Y ) = 0 and J(Y ) injects into J(X̃).

One checks that more precisely, J(X̃) decomposes as the product of J(Y ) and another
principally polarized abelian variety. In particular, the Griffiths component of Y injects into
(more precisely, is a factor of) the Griffiths component of X̃. Using Theorem 5.2, we obtain
the following.

Theorem 5.3 Let X and Y be a smooth complex projective threefolds which are birationally
isomorphic. If H0,3(X) = 0, we have H0,3(Y ) = 0 and J(X)G ' J(Y )G.

In particular, the Griffiths component of the intermediate Jacobian of a rational smooth
complex projective threefold is 0.

The last statement follows from J(P3) = 0.

To prove the unirationality of a smooth cubic threefold, it is therefore “enough” to
prove that the Griffiths component of its intermediate Jacobian is non-zero; in other words,
that it is not a product of Jacobians of curves. Following Clemens and Griffiths, we will
proceed as follows.

As explained earlier, a principally polarized abelian variety has a theta divisor Θ,
uniquely determined up to translation. For a general principally polarized abelian variety A,
the divisor Θ is smooth, but for any product of Jacobians of curves, the singular locus of Θ
has codimension ≤ 4 in A.5

So, one way to prove that the (5-dimensional) intermediate Jacobian of a smooth cubic
threefold is not a product of Jacobians of curves is to prove that the singular locus of its
theta divisor has dimension ≤ 0. We will explain that this singular locus consists of exactly
one point.

4It should be mentioned here that all principally polarized abelian varieties of dimension ≤ 3 are product
of Jacobians of curves, hence their Griffiths component vanishes. In dimensions ≥ 4, a general principally
polarized abelian variety is not a Jacobian of curve. This follows easily from a “count of parameters:” curves
of genus g depend on max(g, 3g − 3) parameters and principally polarized abelian varieties of dimension g
on g(g + 1)/2 parameters, and 3g − 3 < g(g + 1)/2 for g ≥ 4.

5This follows from the Riemann singularity theorem, which relates the singularities of the theta divisor
of the Jacobian of a smooth projective curve C to specific linear systems on the curve C.
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5.3 Abel–Jacobi maps

5.3.1 For curves

Let C be a smooth complex projective curve of genus g. We explained earlier that its Jacobian

J(C) := H0,1(C)/H1(C,Z)

is a principally polarized abelian variety of dimension g.

The Abel–Jacobi map is a regular map

C → J(C)

which we now explain. One way to see it is to remember that J(C) is isomorphic to Pic0(C),
the group of divisors of degree 0 modulo linear equivalence. If we choose p0 ∈ C, the Abel–
Jacobi map (which depends on the choice of p0) is then just the map

u : C −→ Pic0(C) (5.5)

p 7−→ [p]− [p0].

This map is injective when g ≥ 1 (when g = 1, it identifies the elliptic curve C with the
1-dimensional abelian variety Pic0(C)). It induces for all integers m ≥ 1 maps

um : Cm −→ Pic0(C)

(p1, . . . , pm) 7−→ u(p1) + · · ·+ u(pm).

Theorem 5.4 (Riemann) Let C be a smooth projective curve of genus g. The image
ug−1(Cg−1) is a theta divisor on J(C).

5.3.2 The Albanese map

Another way to see the map u is to interpret Pic0(C) as the Albanese variety of C. Recall
from Section 5.1.3 that for X smooth projective, one has

Alb(X) ' H0(X,ΩX)∨/H1(X,Z),

where the map H1(X,Z)→ H1(X,ΩX)∨ sends a loop γ to the linear form ω 7→
∫
γ
ω.

Fixing x0 ∈ X, we consider the well-defined holomorphic map (the Albanese map)

a : X −→ Alb(X) ' H0(X,ΩX)∨/H1(X,Z)

x 7−→ [ω 7→
∫ x

x0

ω].

When X is a curve, this is the same map as u in (5.5).
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Theorem 5.5 Let X be a smooth projective complex variety. The image a(X) generates the
group Alb(X). More precisely, for m� 0, the morphism

am : Xm −→ Alb(X)

(x1, . . . , xm) 7−→ a(x1) + · · ·+ a(xm)

is surjective. In particular, Alb(X) is an abelian variety and a is a regular map.

Proof. The tangent map to a at a point x ∈ X is the linear map

TX,x −→ TAlb(X),u(x) ' H0(X,ΩX)∨

t 7−→ [ω 7→ ω(t)].

To prove that am is surjective, it is enough to prove that its tangent map

TX,x1 ⊕ · · · ⊕ TX,xm −→ H0(X,ΩX)∨

(t1, . . . , tm) 7−→ [ω 7→ ω(t1) + · · ·+ ω(tm)]

is surjective at some point, or that its transpose, the evaluation map

H0(X,ΩX) −→ ΩX,x1 ⊕ · · · ⊕ ΩX,xm

is injective. This follows from the facts that H0(X,ΩX) is finite-dimensional and that, given
any non-zero subspace V ⊂ H0(X,ΩX), the kernel of the evaluation map V → ΩX,x has
dimension < dim(V ) for x ∈ X general.

The fact that Alb(X) is a projective algebraic variety then follows from general prin-
ciples: a Kähler variety (such as any complex torus) which is the image by a holomorphic
map of a projective algebraic variety, is projective algebraic. The fact that a is regular then
follows from GAGA principles. �

The Albanese map a of X has a universal property:

any regular map f : X → B to a complex torus B factors through a : X → Alb(X).

Indeed, by Section 5.1.3, and since Alb(B) = B, there is an induced morphism

Alb(f) : Alb(X)→ Alb(B) = B

and one checks that f is the composition of Alb(f) ◦ a and the translation by f(x0).

5.3.3 For cubic threefolds

We want to construct an Abel–Jacobi map for a smooth complex cubic threefold X with
(principally polarized) intermediate Jacobian

J(X) := H1,2(X)/H3(X,Z) ' H2,1(X)∨/H3(X,Z).
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Lines on X are parametrized by a smooth connected surface F (X) (Theorem 2.9 and Re-
mark 2.10). Fix a line L0 ⊂ X. I claim that we can define a map

v : F (X) −→ J(X) (5.6)

[L] 7−→
[

[ω] 7→
∫ L

L0

ω
]
.

We need to explain several things.

• The lines L0 and L have same class in H2(X,Z) (one can pass continuously from one
to the other because F (X) is connected) hence there exists a differentiable real 3-chain

Z in X such that ∂Z = L − L0. The integral
∫ L
L0

means
∫
Z

. It is independent of the
choice of Z.

• We view [ω] ∈ H2,1(X) as an element of H3(X,R), represented by a closed differential
3-form ω on X, which we can integrate on Z.

The map v is then well-defined and regular (Griffiths, 1968). The following theorem, which
we will not prove, gives a beautiful geometric description of one theta divisor in J(X).

Theorem 5.6 (Tyurin, Beauville) Let X ⊂ P4
C be a smooth complex cubic threefold, with

surface of lines F (X) and intermediate Jacobian J(X). The Abel–Jacobi morphism v is an
embedding and the image of

F (X)× F (X) −→ J(X) (5.7)

(x, y) 7−→ v(x)− v(y)

is a theta divisor on J(X).

Unfortunately, it does not seem easy to compute the singularities of the theta divisor
using this description (recall that our aim is to prove that a theta divisor has only finitely
many singular points).

5.4 Conic bundles and Prym varieties

Let as before X ⊂ P4
C be a smooth complex cubic threefold and let L ⊂ X be a line.

Consider the projection X r L → P2 from L. If XL → X is the blow up of L, it induces a
surjective morphism

pL : XL → P2

whose fibers are the conics obtained by intersecting planes containing L with X. One checks
that for L general, the fibers are either smooth conics (this is the general case) or unions of
two distinct lines. The latter happens for fibers of points in the discriminant curve C ⊂ P2.
We say that XL is a conic bundle over P2.
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Lemma 5.7 The curve C is a smooth quintic curve.

Proof. The smoothness of C is a local calculation and follows from our assumption (valid
for general L) that all fibers of pL are reduced. We will skip that and only compute the
degree of C.

Choose coordinates x1, . . . , x5 such that L is given by x1 = x2 = x3 = 0. The equation
of X can then be written

f(x) = x1Q1(x) + x2Q2(x) + x3Q3(x),

where Q1, Q2, and Q3 are quadrics. The fiber of (a1, a2, a3) can be found by intersecting
X with the plane spanned by (a1, a2, a3, 0, 0) and L. A typical element of that plane is
(αa1, αa2, αa3, β, γ) so we compute

f(αa1, αa2, αa3, β, γ) = αa1Q1(αa1, αa2, αa3, β, γ)

+ αa2Q2(αa1, αa2, αa3, β, γ) + αa3Q3(αa1, αa2, αa3, β, γ).

This is the product of α (whose vanishing defines L) and a degree-2 homogeneous polynomial
in (α, β, γ). The locus C ⊂ P2 (with coordinates (a1, a2, a3)) where the corresponding conic
is singular is defined by the vanishing of a symmetric 3 × 3 determinant whose entries are
homogeneous polynomials in (a1, a2, a3) of degrees∣∣∣∣∣∣

3 2 2
2 1 1
2 1 1

∣∣∣∣∣∣ .
It is therefore a quintic curve. �

The preimage of C in XL is the union of the (strict transforms of the) lines in X which

are incident to L. The family of these lines is a curve C̃ ⊂ F (X) endowed with an involution

σ and a double étale cover π : C̃ → C. In particular, C̃ is smooth and can be shown to be
connected. Its genus is (by the Riemann–Hurwitz formula) g(C̃) = 2g(C)− 1 = 11.

Consider the restriction
C̃ → J(X)

of the Abel–Jacobi map v in (5.6). Since the Jacobian J(C̃) is also the Albanese variety of

C̃, this map factors, by the universal property of the Albanese map (Section 5.3.2), as

C̃
u−→ J(C̃) −→ J(X).

On the other hand, we consider the pullback π∗ : J(C)→ J(C̃) and the quotient

P := J(C̃)/π∗J(C).

It is called the Prym variety associated with the double étale covering π and is a principally
polarized abelian variety of dimension g(C̃) − g(C) = 11 − 6 = 5. The theta divisor in P
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can be described geometrically and Mumford related its singular points to specific linear
systems on C̃, very much as in the Riemann singularity theorem for Jacobian of curves (see
footnote 5). The conclusion of all this is the following ([B2, Proposition 2]).

Theorem 5.8 The theta divisor of the intermediate Jacobian of a smooth complex cubic
threefold has a unique singular point.

This singular point is, by the way, the image 0 of the diagonal of F (X)×F (X) by the
morphism (5.7).

Combining this with our previous “results,” we finally obtain the celebrated following
result.

Corollary 5.9 (Clemens–Griffiths) Every smooth complex cubic threefold is irrational.
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Chapter 6

Cubic fourfolds

In this chapter, we will consider smooth cubic fourfolds X ⊂ P5
k.

6.1 The fourfold F (X)

The scheme F (X) ⊂ G(2, 6) of lines contained in X is a smooth connected projective fourfold
(Theorem 2.9 and Remark 2.10) obtained as the zero locus of a section s of the dual of the
rank-4 sheaf E := S ym3S (see (1.5)). The normal bundle of F (X) in G := G(2, 6) is
E ∨|F (X), hence the normal exact sequence

0→ TF (X) → TG|F (X) → NF (X)/G → 0

gives (using 2.2.2))

c1(F (X)) := −c1(TF (X)) = −c1(TG)|F (X) + c1(E ∨)|F (X) = −6σ1|F (X) + 6σ1|F (X) = 0. (6.1)

Moreover, we have an exact sequence

0 −→
∧

4E −→ · · · −→
∧

2E −→ E
s∨−→ OG −→ OF (X) −→ 0

of sheaves on G (the Koszul resolution; see (2.6)) which gives

χ(F (X),OF (X)) =
4∑
i=0

(−1)iχ(G,
∧
iE ).

There are computer programs (such as Macaulay2) which compute this sort of things (un-
fortunately, they can only do it on “small” Grassmannians) and we find

χ(F (X),OF (X)) = 3.
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6.2 Varieties with vanishing first Chern class

We assume here k = C. Smooth projective complex varieties with vanishing first Chern class
were classified by Beauville and Bogomolov.

Theorem 6.1 (Beauville–Bogomolov Decomposition Theorem) Let F be a smooth
projective complex variety with c1(F )R = 0. There exists a finite étale cover of F which is
isomorphic to the product of

• non-zero abelian varieties;

• simply connected Calabi–Yau varieties;

• simply connected holomorphic symplectic varieties.

Here, a Calabi–Yau variety is a (complex) variety Y of dimension n ≥ 3 such that
H i(Y,OY ) = 0 for all 0 < i < n. In particular, χ(Y,OY ) = 1 + (−1)n.

A holomorphic symplectic variety Y is a (complex) variety carrying a holomorphic 2-
form η which is everywhere non-degenerate and such that H0(Y,Ω2

Y ) = Cη. The dimension
of Y is even, Y is simply connected, and

H0(Y,Ωr
Y ) =

{
Cη∧(r/2) if r is even and 0 ≤ r ≤ dim(Y ),

0 otherwise,

so that χ(Y,OY ) = 1 + 1
2

dim(Y ). When Y is a surface, it is called a K3 surface.

If the holomorphic Euler characteristic χ(F,OF ) is non-zero, the same holds for the
étale cover in the theorem. Since the holomorphic Euler characteristic of a non-zero abelian
variety vanishes, there can be no such factors in the decomposition of the theorem. It follows
that the universal cover of F is a product of simply connected Calabi–Yau varieties and
simply connected holomorphic symplectic varieties.

For our fourfold F (X), there are 3 possibilities for its universal cover π : F̃ (X)→ F (X):

• either F̃ (X) is a Calabi–Yau fourfold, in which case

2 = χ(F̃ (X),OF̃ (X)) = deg(π)χ(F (X),OF (X)) = 3 deg(π),

which is impossible;

• or F̃ (X) is a product of two K3 surfaces, in which case χ(F̃ (X),OF̃ (X)) = 4 = 3 deg(π),
which is also impossible;

• or F̃ (X) is a holomorphic symplectic fourfold, in which case

3 = χ(F̃ (X),OF̃ (X)) = deg(π)χ(F (X),OF (X)) = 3 deg(π).

It follows that we are in the third case and that

F (X) is a holomorphic symplectic fourfold.
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6.3 The Hilbert square of a smooth variety

Let Y be a smooth projective variety. A subscheme of length 2 of Y is either reduced, in
which case it is just a subset of two distinct points in Y , or non-reduced, in which case it
consists of a point y ∈ Y and a tangent direction to Y at y.

Consider now the blow up ε : Ỹ × Y → Y × Y of the diagonal ∆ := {(y1, y2) ∈ Y |
y1 = y2}. Outside of the exceptional divisor E, a point of Ỹ × Y is just a pair (y1, y2) of two
distinct points of Y , whereas a point of E is a tangent direction at some point of Y (this is
because the normal bundle N∆/Y×Y is the tangent bundle TY ). The involution ι of Y × Y
which exchanges the two factors lifts to an involution ι̃ of Ỹ × Y whose fixed locus is E.

If follows that the subschemes of length 2 of Y are in one-to-one correspondence with

the quotient Ỹ × Y /ι̃. This is a smooth projective variety of dimension 2 dim(Y ) which we
call the Hilbert square of Y and denote by Y [2]. We still denote by E ⊂ Y [2] the smooth
hypersurface which parametrizes non-reduced subschemes.

Theorem 6.2 (Fujiki, Beauville) Let S be a complex K3 surface. The Hilbert square S[2]

is a holomorphic symplectic fourfold and

H2(S[2],Z) ' H2(S,Z)⊕ Z1
2
[E]. (6.2)

Sketch of proof. The surface S carries a nowhere vanishing 2-form ηS. It induces the

2-form p∗1ηS + p∗2ηS on S × S, which we pull back by ε on S̃ × S. The resulting form is
invariant by the involution ι̃ described above hence comes from a (non-zero) 2-form η on

S[2]. Since the double cover π : S̃ × S → S[2] is simply ramified along E, we have

π∗ div(η ∧ η) = div(π∗η ∧ π∗η)− E = div(ε∗(
∧

2(p∗1ηS + p∗2ηS)))− E
= ε∗(div(

∧
2(p∗1ηS + p∗2ηS))) = ε∗(div(p∗1ηS ∧ p∗2ηS)) = 0.

This proves that the 2-form η is everywhere non-degenerate. One checks that it spans
H0(S[2],Ω2

S[2]), so that S[2] is a holomorphic symplectic variety.

Finally, (6.2) follows from the explicit construction that we gave of S[2]. �

6.4 Pfaffian cubics

For these interesting cubics, already studied by Fano in 1942, we relate the fourfold F (X)
with a certain K3 surface.

The construction is the following. Let W6 be a 6-dimensional complex vector space. We
defined and studied in Exercise 2.7 the cubic hypersurface X3 ⊂ P(

∧
2W∨

6 ) of degenerate
skew-symmetric bilinear forms on W6. One can show that its singular set corresponds to skew
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forms of corank 4, which, since W6 has dimension 6, is just the Grassmannian G(2,W∨
6 ).

It has codimension 6 in P(
∧

2W∨
6 ). It follows from the Bertini theorem that for a general

6-dimensional vector subspace V6 ⊂
∧

2W∨
6 ,

X := P(V6) ∩X3 ⊂ P(
∧

2W∨
6 )

is a smooth cubic fourfold. We study here these Pfaffian cubic fourfolds.

Consider in the dual space the intersection

S := G(2,W6) ∩P(V ⊥6 ) ⊂ P(
∧

2W6).

Since V6 is general and codim(V ⊥6 ) = dim(V6) = 6, we obtain a surface and since KG(2,W6) ≡
−6H, its canonical sheaf is trivial (by adjunction). It is in fact a K3 surface (see Section 6.2).1

Proposition 6.3 (Beauville–Donagi) Let X ⊂ P(V6) be a smooth complex Pfaffian cubic
fourfold. Then,

• X is rational;

• when X is general,2 the fourfold F (X) is isomorphic to the Hilbert square S[2].3

Proof. To prove that X is rational, we consider

Z := {([w], [φ]) ∈ P(W6)×X | w ∈ Ker(φ)},

where φ is seen as a (rank-4) skew-symmetric form on W6. The second projection p2 : Z → X
is a P1-bundle, hence Z is smooth irreducible of dimension 5. On the other hand, the fiber of
[w] ∈ P(W6) under the first projection p1 : Z → P(W6) is {φ ∈ P(V6) | φ(w,W6) ≡ 0} (such
a form is necessarily degenerate, hence in X3, hence in X), which is a non-empty projective
linear space. It follows that p1 is a birational isomorphism.

Since the fibers of p2 are mapped by p1 to lines in P(W6), the inverse image by p1 of a
general hyperplane in P(W6) is birationally isomorphic, on the one hand, by p1, to P4

C, and
on the other hand, by p2, to X. The latter is therefore rational.

We now construct a morphism F (X)→ S[2].

A line contained in X corresponds to a pencil of skew-symmetric forms on W6, all
degenerate of rank 4. There exists a W4 ⊂ W6 which is isotropic for all these forms (Exer-
cise 2.7.2)) and one can show that it is unique.4 The pencil is then contained in (

∧
2W4)⊥∩V6.

1As usual in algebraic geometry, “general” means that the property holds for V6 in a Zariski dense open
subset of G(6,

∧
2W∨6 ).

2More precisely, we assume that X contains no projective planes and S contains no projective lines.
3See Section 6.3 for the construction of S[2].
4One way to check that is to use a result of Jordan–Kronecker which gives normal forms for any pair of

skew-symmetric forms on a finite-dimensional vector space over an algebraically closed field of characteristic
6= 2. In our case, one sees that there is a basis of W6 in which any pair of generators of the pencil is given by

the matrices

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 −1 0 0

 and either

 0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0

, or

 0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

. In both cases, W4 is spanned

by the kernels of all the forms in the pencil.
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Conversely, this intersection defines a linear space contained in X, since any form in (
∧

2W4)⊥

must be degenerate.

A “count of parameters” shows that for a general choice of V6, the fourfold X contains
no projective planes. If we make this assumption, we obtain

dim
(
(
∧

2W4)⊥ ∩ V6

)
= 2.

By duality, this means dim
(∧

2W4 + V ⊥6
)

= 13, hence

dim
(
(
∧

2W4) ∩ V ⊥6
)

= 2.

In other words, P(
∧

2W4) ∩ P(V ⊥6 ) is a projective line. Its intersection with the quadric
G(2,W4) ⊂ G(2,W6) (see Exercice 1.1) is then contained in S. Again, a “count of param-
eters” shows that for a general choice of V6, the surface S contains no projective lines. If
we make this further assumption, the intersection is a subscheme of S of length 2, hence a
point of S[2].

Let us show that φ is birational by constructing an inverse. Consider two distinct
points in S. We can see them as distinct vector subspaces P1 and P2 of dimension 2 of W6.
They also define a line in P(V ⊥6 ). Since S contains no lines, this line cannot be contained in
G(2, P1 +P2). This implies in particular that P1 +P2 has dimension 4. Any skew-symmetric
form in V6 vanishes on P1 and P2, hence those forms that vanish on P1 + P2 form a vector
space of dimension ≥ 2 which corresponds, because of the assumption on X, to a projective
line contained in X, hence to a point of F (X). This defines an inverse to φ on the complement
of the divisor E in S[2].

To finish the proof, one can either see that this construction of the inverse extends to
the whole of S[2], so that φ is an isomorphism, or argue that the pullback by φ of a nowhere
vanishing 4-form on S[2] (which exists because S[2] is a symplectic variety) is a non-identically
zero 4-form on F (X). This form cannot vanish anywhere, because F (X) is also a symplectic
variety. This implies that the tangent map to φ is everywhere an isomorphism, hence the
birational morphism φ is an isomorphism. �

Corollary 6.4 Let X be a smooth complex cubic fourfold. The Hodge numbers hp,q(F (X))
of the variety F (X) of lines contained in X are as follows

1
0 0

1 21 1
0 0 0 0

1 21 231 21 1
0 0 0 0

1 21 1
0 0

1
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Proof. Hodge numbers are invariant by smooth deformations. It follows that the Hodge
numbers of F (X) are the same as the Hodge numbers of the Hilbert square of a K3 surface
and those can be computed using the explicit construction we gave in Section 6.3. �
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intersection complète, Math. Ann. 312 (1998), 549–574.

[H] Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics 52, Springer
Verlag, New York, 1977.

[KSR] Smith, K., Rosenberg, J., Rational and Non-Rational Algebraic Varieties: Lectures
of János Kollár, arXiv:alg-geom/9707013.

[K] Kollár, J., Unirationality of cubic hypersurfaces, J. Inst. Math. Jussieu 1 (2002),
467–476.

[M] Murre, J., Reduction of the proof of the non-rationality of a non-singular cubic
threefold to a result of Mumford, Compos. Math. 27 (1973), 63–82.

[S] Segre, B., A note on arithmetical properties of cubic surfaces, J. London Math.
Soc. 18 (1943), 24–31.

[T] Tyurin, A., Geometry of the Fano surface of a non-singular cubic F ⊂ P4 and Torelli
theorems for Fano surfaces and cubics, (in Russian), Izv. Akad. Nauk. SSSR Ser.
Mat. 35 (1971), 498–529.

40



[V] Voisin, C., Hodge theory and complex algebraic geometry I, Cambridge Studies in
Adv. Math. 76, Cambridge University Press, 2002.

41


