J. ALGEBRAIC GEOMETRY
1(1992) 5-14

TRISECANT LINES AND JACOBIANS

OLIVIER DEBARRE

Let X be a principally polarized complex abelian variety. Symmetric
representatives © of the polarization differ by translations by points of
order 2, hence the linear system |20| is well defined. It is base point
free and defines a morphism K: X — [28|", whose image is the Kummer
variety of X . When X is the Jacobian of an algebraic curve, there are
infinitely many trisecants to K(X), i.e., lines in the projective space |26|"
meeting K(X) in at least three points.

Welters conjectured in [9] that the existence of one trisecant line to the
Kummer variety should characterize Jacobians among all indecomposable
principally polarized abelian varieties. This conjecture should be thought
of as a discrete analog of Novikov’s conjecture (now proved by Shiota in
[8]). It is known to hold if X is a Prym variety [6] and, in particular, it
holds in dimension < 5.

The existence of a line meeting K(X) at three distinct points K(a),
K(b), K(c) is equivalent to the scheme-theoretic inclusion:

(0.1) e,.-8,cO,ue_,

where, for a point x of X, we write ©_  for © + x. This forces the
intersection © -6, to be reducible.

We prove here a weak version of Welters’ conjecture: an indecom-
posable principally polarized complex abelian variety X is a Jacobian if
and only if there exist points a,b,c of X with 2a # 2b, such that
K(a), K(b), K(c) are distinct and collinear and ©, - ©, is reduced
and has two irreducible components (Theorem 3.1). The assumptions on
©,-©, can be replaced by: the points b—a,c—-b,a—c generate X and
dim Sing® < dim X — 4 (Theorem 3.5).

Our method consists in proving first that, under the above geometrical
assumptions, inclusion (0.1) implies:

(0.2) 6, 0,ce,ue

a+b—c’
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This inclusion is equivalent to the existence of a line tangent to K(.X) at
some point and meeting K(X) at some other point: a degenerate trisecant!
It is also equivalent to the fact that the scheme

Vip.c=2{CeX|K({+a), K(C+b), K({+c) are collinear}

has length > 2 at (—a - b). k

As in [1] and [2], our aim is to prove that dim___, V.pc>0 and
to apply Welters’ criterion [9] to conclude that X is a Jacobian. This is
done in §2, assuming now that (0.2) holds and that © -0, is only reduced
(Theorems 2.1 and 2.2). The method is one that Arbarello used in [1]: first
translate Welters’ criterion into an infinite set of differential equations (this
is done in §1), then show that each of these equations follows from the
first one, which is itself equivalent to (0.2).

1. A reformulation of Welters’ criterion

Let X be a complex indecomposable principally polarized abelian va-
riety, let © be a symmetric representative of the polarization, and let
K: X — |28|" be the Kummer map. Let a, b, ¢ be distinct points of X .

Riemann’s addition formula [7, p. 336] tells us that there exist a basis
{6} for H(X, ©) and a basis {6}, for H°(X, 26) such that

(1.1) Vz,{eX 6(z+{)0(z-{)=>_6,(2)6,(0).

The subscheme V

a,b,c

points 2{ of X such that
Ja,B,yeC Vn ab, ((+a)+ B6,({+b)+7y0,({+c)=0.

Formula (1.1) implies that these equatlons are equivalent to:
da,p,yeC VzeX

(12)  ab(z+l+a)0(z=C—a)+BO(z+(+Db)8(z—-C D)
+y0(z+{+c)0(z-(—¢) =
Welters’ criterion [9] states that X is a Jacobian if and only if there
exist distinct points a, b, ¢ of X such that dim Va’b,c > 0. _
Since K takes the same value at opposite points, (—a — b) always
belongs to V, , .. The aim of this section is to translate the condition

dim_,_,V, b > 0 into an infinite set of equations.
This condmon 1s equivalent to the existence of a formal curve:

20(e) = —a—b+ D(e), with D(e) = ZD&,

i>1

of X defined in the introduction is the set of
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contained in V), b . The D,;’s are tangent vectors to X at the origin, or
constant vector ﬁelds We wﬂl look for a smooth germ (D, # 0).
This is in turn equivalent to a relation of the type:
VzeX a(e)f(z+{(e)+a)f(z—{(e)—a)
(1.3) : + B(e)8(z + {(e) + b)08(z — {(¢) — b)
+7(e)0(z + {(e) +¢)8(z — ¢(e) —¢) =
where a(e), B(¢), and y(e) are relatively prime elements of C[[g]]. It is
convenient to set ¥ =a — 3(a+b) and v =c— 3(a+b) in (1.3), which
becomes ’
a(e)0(z + u+ 1D(e))0(z — u — 3D(g))
(1.4) + B(e)0(z —u+ 1D(e))8(z + u— 1D(e))
+7(e)0(z +v + $D(e))0(z — v — 3D(€)) =0
Write P(z, &) =3 5, P (z)&’ for the left-hand side of (1.4). Formula

(1.1) implies, as in [2], that P_ is a section of @4(20).
For any point x of X, write 6, for the translate of 6 by x. We have

= (a(0) + B(0))0_,-0,+»(0)6_, -6

Since a, b, ¢ are distinct and © is irreducible, P, vanishes if and only
if a(0) + B(0) = y(0) = 0. It follows that a(e) and B(e) are units and
that, by dividing by —f(¢), we may assume:

ale)=1+Y o', BlE)=-1, ye)=) 7t

i>1 i>1

v"

One has
(1.5) Pl=a10_u-9u+D16_u-0u—H_u-D16u+y10_U.9

Since D, is assumed to be nonzero and 2u is nonzero, », has to be
nonzero if P, vanishes. Allowing linear changes of the D,’s, we may
finally assume y(¢) =¢.

We can state the following translation of Welters’ criterion:

Theorem 1.6. The abelian variety X is a Jacobian if and only if there
exist complex numbers o, o, , ... and constant vector fields D, , D,, ...
on X with D, # 0, such that the sections P, vanish for all positive integers
s.

e

Following [2], we can go further. Notice that P, only depends on
o, ,o, and D, ---, D . Moreover, one can write P, as

(1.7) P=Q +ab_,-6,+D6_,-06,-0_, DO
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where Q. does not depend on a, nor on D . Notice that Q. , which
corresponds to vanishing o, and D_, is also a section of &, (20).

It follows from (1.7) that the restriction of P to © -©_  is independent
of a, and D,. Moreover, one has:

Lemma 1.8. The section P, of @ (20) vanishes for some choice of o,
and D if and only if the restriction of Q; to ©,-©_,  does.

Proof of Lemma 1.8. The cohomology sequence of the exact sequence

u

.g_u
0= G (8,) — G, (26) = Gy o (260) =0

implies that Q  vanishes on ©, -©_ if and only if there exists a vector
field D such that

Qsleu =D0,-0_,.
The section (Q,—-D6,-0_,+6,-D6_ ) of &,(20) then vanisheson ©,
and one concludes with the cohomology sequence of the exact sequence
0— G, (0_) —2 @,(20) — B, (20) - 0. qe.d.
In particular, P, given by (1.5), will vanish for some choice of «, and
D, if and only if -

(1.9) e,06_,cOe ue._,.

2. Characterizations of Jacobians by a degenerate trisecant

We start from an indecomposable principally polarized abelian variety
X and points # and v of X such that (1.9) holds. In geometric terms,
this 1s equivalent to the existence of a line passing through K(v) and
tangent to the Kummer variety K(X) at K(u): a degenerate trisecant!

In the notation of the last section, (1.9) translates into: P, = 0 for
some choice of o, and D,. Our aim is to prove that this forces X to
be a Jacobian by showing, by induction, that the sections P, all vanish.
Unfortunately, we need an extra hypothesis:

Theorem 2.1. Let X be a complex indecomposable principally polar-
ized abelian variety and let © be a symmetric representative of the polar-
ization. Then X is a Jacobian if and only if there exist points u and v
of X with u, —u,v, —v all distinct, such that © -©_, c©, UO_, and
©, -0_ s reduced.

Proof of Theorem 2.1. Suppose X is the Jacobian of a curve C. For
distinct points p, g, r, s on C, one has

©.8, ,=V,UW,CO,_ u®

s—q°
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where V and W are integral, depend only on p and g respectively,
and are dlstmct one from another for general choices of p and g . Taking
r=5, U= 2(p+q) qg,and v = 2(p+q) — r proves one direction of the
theorem.

To prove the other direction, it is enough to show, by (1.6) and (1.8),
that for any integer s > 2, one has

P=---=P_,=0= P (or Q) vanisheson ©, -0_,
It is convenient to slightly change the setting. Write
R(z,e)=P(z+iD(e), &) =Y R (2)¢’.
s>1
Assume P, =---=P_, = 0. Asin [1], it is elementary to check that
R =---=R,_, =0 and that P = R. Therefore, it is enough to prove
that R_ vanisheson © -©_, . Notice that
R(z,¢e) =a(e)f(z+ D(e) + u)0(z —u) — 0(z + D(g) — u)6(z + u)
+¢e0(z+ D(e) +v)0(z —v),
whose restriction to ©,-0_ is just e6(z + D(e) +v)8(z —v).
Writing e2® =3 _ A &®, we get

s20%s

Rsleu-e_u = (As—le—v) ' 01}‘

Now set

T(z,¢)=P(z—iD(e), &) =) T,(2)

s>1

and ¢ 0@ = Ym0l € S, Again, we get

Ts|eu-e_u =0_, (4,_,0,)-
Moreover,
T(z,e)=R(z-D(e),e)=e "WR(z, ¢),
so that )
T, = ZO(AS__I.Ri) =R
since R, -+, R_, vanish. I': follows that, on ©, -©_ , one has

R§=RSTS=(AS~19—v)'9v'O—U'( s—1 v)_

Since ©,-©_, is reduced, R vanishes on © -©_, and the proof is
then completed. q.e.d.
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We now give another version of Theorem 2.1, in which some assump-
tions on © and u will automatically insure that © -©__ is reduced.

Theorem 2.2. Let X be a principally polarized complex abelian variety
and let © be a symmetric representative of the polarization. Suppose that
there exist points u and v of X with u, —u, v, —v, all distinct, such
that:

(1.9) e,6_,co,uo_,
(2.3)  the closed subgroup of X generated by u has dimension > 2,

(2.4) dim Sing® < dim X — 4.

Then X is the Jacobian of a nonhyperelliptic curve.

Remarks 2.5. (1) Notice the similarity between the hypothesis of this
theorem and those of the theorem on p. 60 of [1].

(2) Hypothesis (2.4) is quite strong, since (1.9) implies dim Sing® >
dim X — 4 [3, Théoreme 2.3].

Theorem 2.2 follows immediately from Theorem 2.1 and the following
proposition.

Proposition 2.6. Let X be a principally polarized complex abelian vari-
ety. Let © be a representative of the polarization and suppose (2.4) holds.
Let w be a point of X such that the closed subgroup it generates has
dimension > 2. Then © -0, is reduced.

Proof of Proposition 2.6. Suppose © - © _ is not reduced and pick a

nonreduced component Z . Let n: Z — Z ., be the normalization. The

argument of the proof of Proposition 3 of [4] shows that (2.4) implies that
w 1s in the kernel of the composed homomorphism

X 2L Pic’x 2L picd Z,

where ¢ 1is the isomorphism associated with the principal polarization of
X . The transpose of n* is the Albanese morphism Alb(Z ) — X, whose
image contains a translate of Z_,, hence has codimension < 2. Using
(2.3), this implies that the abelian variety 4 generated by w (i.e.,the
neutral component of the closed subgroup generated by w) has dimension
2, Z_, is a translate of an abelian subvariety B of X, and the addition
map n: A x B — X is an isogeny. According to Proposition (9.1) of [5],
the polarization 7”© splits as L ,®L,, and there exists a basis {5}, ;cn

(resp. {t;},;cy) for H(4, L,) (resp. H°(B, L,)) such that Y% s,
is an equation for 7°©. Write Z_, = z,+ B with z, € A. The kernel of
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n*: Pic’(X) — PicO(B) is connected; hence the kernel of n*o¢ is 4 and
weA. We get

N N
VzeB Zsi(zo)tl.(z) = Zsi(zo —w)t,(z)=0

This implies that both z, and z,—w are in the base locus F, of L
But F, is stable by translation by a subgroup H(L,) of A of order N
Since w is not in H ( 4) because it generates 4, we get 2N? distinct

points of F,. But L? 4 = 2N ; hence either N = 1 and X is decompos-
able, which would contradict (2.4), or F, is contained in a translate of
an elliptic curve, which would contradict the fact that w , which is the
difference of two points of F,, generates 4.

Hence © -6, isreduced. q.e.d.

3. Characterizations of Jacobians by an honest trisecant

In this section, we will show how, under further geometric assumptions,
the existence of one honest trisecant implies the existence of a degenerate
trisecant. The results of §2 will then yield two new characterizations of
Jacobians. The first one is:

Theorem 3.1. Let X be a complex indecomposable principally polar-
ized abelian variety and let © be a representative of the polarization. Then
X is a Jacobian if and only if there exist points a,b,c on X with
2a # 2b, such that:

(3.2) The points K(a), K(b), K(c) of the Kummer variety of X
are distinct and collinear.

(3.3) ©, - 8, is reduced and has two irreducible components.

Proof of Theorem 3.1. We may assume © is symmetric. It follows
from (1.2) that (3.2) implies ©,-©, CO, UO_,

Write ©,-©, = VUW, with VV and W integral, V C ©,, and
wce._, Smce a and b are different from ¢ and from —c, one has

(3.4) VgO_, and WO,

Notice that (a + b — V)is either ¥V or W . In the latter case, one has
W=a+b-VCO and we can conclude with Theorem 2.1 (where,

as before, u = $(a+b) —a and v = 3(a+b) —c). We can therefore
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assume that V' =a+b—V and W =a+ b — W . On the other hand, by
(1.2) again, (3.2) also implies

@a 'ec C ebU@_b.

The scheme ©,- O, contains V', hence a + ¢ — V', which is equal to
a+c—(a+b-V)=V+c—b, which is not contained in ©®_, by (3.4). It
follows that a +c¢—V 1is contained in ©,-6,-6_, whose only component
of this dimension is V' . Therefore V = a+c—V = V+c—b . By switching
the roles of @ and b,weget V=V +c—-a;hence V=V4+a-b. By
switching ¢ and —c, one also gets W = W +a— b, from which it follows
that © -©,, hence also ©- 0, _ » » 18 invariant by translation by (a — b).
This is possible only if 2(a — b) = 0, which we assumed did not hold.
Therefore, one cannot have V' = a + b — V' and the proof is complete.
g.e.d.

We conclude with another characterization of nonhyperelliptic Jaco-
bians in the spirit of theorem 2.2 and the theorem on p. 60 of [1].

Theorem 3.5. Let X be a principally polarized complex abelian variety
and let © be a representative of the polarization. Then X is a nonhy-
perelliptic Jacobian if and only if there exist points a,b,c on X such
that:

(3.6) The points K(a), K(b), and K(c) of the Kummer variety
are distinct and collinear.

(3.7) The points a—c, b —a, c —- b generate closed subgroups
of X of dimensions at least 2, 2, and (dimX — 1), re-
spectively.

(3.8) dim Sing® < dim X — 4.

By working a bit harder, it is possible to weaken the hypothesis on (c—b)
by asking only that the subgroup it generates have codimension < 2.

Proof of Theorem 3.5. We may assume © is symmetric and dim X >
4. It follows from Proposition 2.6 that ©,-0,, 6,-0_,and ©,-0 are
reduced. We begin with:

Lemma 3.9. Under the hypothesis of the theorem, the components of
O, - ©, which are contained in ©, and ©_ . are also contained in ©_,
and ©_, (same statement with a, b, ¢ permuted).

Proof of Lemma 3.9. Let Z be a component of ©, -0, contained in
©.-©_.. By differentiating the trisecant relation

aea‘e_a+ﬂeb'6_b+yec'9_c=0,
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we get that the section (aD6,-6_,+ D6, -6_,) vanishes on Z for any
constant vector field D.

Since © -0, isreduced, Z is not contained in its singular locus, from
which it follows that 6__ and 6_, vanishon Z. q.e.d.

Now let 7 be the set of components Z of ©_ -6, such that neither
Z nor (a+b—Z) is contained in ©__.

Lemma 3.10. Assume 77 is nonempty and let V be the union of the
components of ©, -0, which belong to 7”. Then V =V +b—c.

Proof of Lemma 3.10. It is enough to show that, for any Z in 77,
Z+b-—c isalsoin 7. Since Z is contained in © -0, butnotin ©_,
it is contained in ©,, hence in ©,-O,. Therefore (a+c—-Z)CO,-6, C
©,U8_,. Since (a+b—-Z)¢ O__, one has

(3.11) (@a+c—-2)¢O_,,

and therefore (a+c¢—-2Z)C®©,,ie, (Z+b—-c)CO,.

Furthermore, Z C ©, implies (Z+b—-¢)C©O,.

Since Z ¢ ©__, Lemma 3.9 implies Z ¢ ©_, , thatis, (Z+b—-c¢) ¢
©_,. Finally, (3.11) and Lemma 3.9 imply that (a +¢—Z) ¢ ©__, that
is, (a+b—(Z+b—c)) ¢ ©®_,. This proves that (Z+b—-c)€ 7 . q.ed.

The abelian subvariety 4 of X generated by (b —¢) has codimension
< 1 by (3.7); hence we get a contradiction. Therefore 7~ is empty and
one has

8a ' @b C @——c U 8a+b+c'
Theorem 2.1 implies that X is a Jacobian (set # = 3(a + b) —a and
v=35(a+b)+o).
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