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ABSTRACT. The linear action of the group SO(k, C) on the vector space ck

extends to an action on the algebra of polynomials on "™k The polynomials
that are fixed under this action are called SO(k, C)-invariant. The SO(k, C)-
harmonic polynomials are common solutions of the SO(k, C)-invariant differ-
ential operators. The ideal of all SO(k, C)-invariants without constant terms,
the null cone of this ideal, and the orbits of SO(k, C) on this null cone are stud-
ied in great detail. All irreducible holomorphic representations of SO(k, C)
are concretely realized on the space of SO(k, C)-harmonic polynomials.

1. INTRODUCTION

Let G be a linear algebraic reductive subgroup of the group GL(E) of all
invertible linear transformations on a finite dimensional complex vector space
E. If S(E") is the symmetric algebra of all polynomial functions on E then
the action of G on E induces an action of G on S(E"), denoted by g - p,
for g€ G and p € S(E"). We say that p € S(E") is G-invariantif g-p=p
forall g € G. The G-invariant polynomial functions form a subalgebra J(E™)
of S(E*). Given X € E, let dy denote the differential operator defined by

[6Xf](Y)={dif(Y+tX)} , teR,
t 1=0
for all smooth functions f on E. The map X — 9, induces an isomorphism
of the algebra S(E™) onto the algebra of all differential operators on E with
constant coefficients. The image of an element p € S(E*) under this isomor-
phism is denoted by p(D). If J, (E") is the subset of all elements in J(E™)
without constant term, then an element f € S(E) is said to be G-harmonic
if p(D)f =0 forall pe J (E *). The subspace of all G-harmonic polynomial
functions in S(E*) is denoted by H(E"). The study of H(E") and the de-
composition S(E*) = J(E")H(E™) (the “separation of variable” theorem) was
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32 OLIVIER DEBARRE AND TUONG TON-THAT

initiated by H. Maass in [M1] and [M2] and was extensively developed by S.
Helgason in [H1] and by B. Kostant in [K]. Several authors have investigated
the representation theory for specific types of Lie groups G on H(E"). A non-
exhaustive list of publications on this subject includes [L], [G], [S], [T1], [T2],
[K-O], [K-V], [G-K], and [G-P-R].

It was shown in [T1] that, up to isomorphism, all irreducible holomorphic
representations of a Lie group G of type B, or D, can be concretely realized
as G-submodules of H(E") except for the case of the “mirror-conjugate repre-
sentations” of D, which was left unsettled (see [Z, Chapter XVI, §114] for the
definition of the “mirror-conjugate representations™). In this paper we will settle
this special case in conjunction with the description, in both cases B, and D,,
of the ideal J, (E™)S(E") and a detailed description of the orbit structure of
the G action in the null cone P of the common zeros of polynomial functions
in J+(E*)S(E*).

2. DESCRIPTION OF THE IDEAL J, (E*)S(E™) AND ITS NULL CONE

In this article E denotes C"** and G is SO(k,C). Then G acts linearly
on E by right multiplication and leaves the nondegenerate symmetric bilinear
form (X,Y) — tr(XY’), X, Y € E, invariant. It follows that the function
X" defined by X*(Y) = tr(XY") is an element of E*, the dual of E. It was
shown in [T1] that the algebra S(E") can be equipped with the inner product

(p1’p2>=p1(D)p (X)l,\’:oa plaPZGS(E*),

which is invariant under the restriction of the action of G to G, = SO(k).

A slight modification of the techniques in [H2, Chapter III], leads to the
following results concerning S(E*) and H(E™).

The algebra S(E*) is decomposed into an orthogonal direct sum with respect
to the inner product given above as S(E*) = J, (E")S(E" )@ H(E™). If H (E")
denotes the subspace of H(E™) spanned by the polynomial functions of the
form (X*)", X € P, m=0,1,2,... and if Hy(E") denotes the subspace
of H(E™) of all polynomial functions which vanish on P then we have the or-
thogonal direct sum decomposition H(E™) = H,(E") & H,(E"). Moreover, the
linear subspace J, (E")S(E™) @ H,(E") is the ideal in S(E™) of all polynomial

functions which vanish on P, i.e., the ideal /J, (E*)S(E").

We will now study this ideal J,(E™)S(E"). Recall ([W], [D-P, Theorem
5.6ii]) that it is generated by the n(n + 1)/2 polynomials

k
p(X) =) XX, 1<i<j<n,
s=1

together with the (k x k)-minors of the matrix X (which are 0 when k >
n). We also derive geometric properties of the null cone P of E defined by
J (E")S(E").

+
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The following theorem sums up our results, which extend earlier results of
[T1] (case k > 2n) and [H] (case k odd, k < 2n).

Theorem 2.1

(i) For k > 2n, the ideal J _(E*)S(E") is prime. The scheme P is a
complete intersection, with one open dense orbit.

(ii) For k = 2n, the ideal J _(E™)S(E™) is the intersection of two prime
ideals, hence it is radical. The scheme P is a complete intersection, with
two open orbits.

(ii) For k < 2n, the ideal J_(E*)S(E") is not radical, except for k < 2.
The orbits are nowhere dense, except for k = 1. For k odd > 1, P
is irreducible and nowhere reduced. For k even, P has two irreducible
components and is generically reduced (but not reduced except for k =
2).

Proof. As a set, the scheme P is {X € C"”*|XX' = 0 and Rank(X) < k}.
Therefore, a matrix X is in P if and only if the image A(X) of the mor-
phism X' :C" — C* is totally isotropic for the quadratic form }_, ;. Yi2
(such a space is automatically of dimension < k/2). The space Zr,k_ of all
r-dimensional totally isotropic spaces for a non-degenerate quadratic form has
a long history. We borrow the following facts from [G-H, pp. 735-739]:

(a) Z, ; is empty for r > k/2.
(b) X, , has dimension r(k — (3r +1)/2) if r < k/2. It is irreducible for
r < k/2 but has two irreducible components for k£ = 2r.

Now, by Witt’s theorem [A, Chapter III], two elements X, and X, of P are
in the same G-orbit if and only if A(X,) and A(X,) are of the same rank r
and are in the same component of Zr, « - We get the following description of
the subspaces P, of P consisting of matrices of rank r:

(2.1) P, is empty for r > n or r > k/2. For r < n and r < k/2, it has
dimension

dim{surjections C" — C'} + dimZ, , =r(n+k - (3r+1)/2).

(2.2) For r<k/2 and r < n, P, is covered by the following (non-disjoint)
G-orbits: where A4 is any (n — r) x r matrix.

r r k—=2r
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(2.3) For k =2r and r <n, P, is covered by the following two families of
(non-disjoint) G-orbits:

and

n-— r{ A A
where, again, 4 is any (n—r)xr matrix and A4’ is the matrix obtained
by switching signs in the last column of i4.

It follows easily from (2.2) that P, is contained in the closure of P, when-
ever the latter is non-empty. This yields the following geometric description of
P:

(2.4) For k > 2n, the maximal r for which P, is non-empty is n. The stra-
tum P, is dense in P, which therefore has dimension nk —
n(n + 1)/2 or codimension n(n + 1)/2 in E (by (2.1)). It follows
moreover, from (2.2) and (2.3), that
(a) For k >2n, P, is just one orbit.

1 i

1 i
P = G
1 i
and
1 i
P = G
n i
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(2.5) For k < 2n, write k = 2k’ + & with ¢ =0 or 1, ie., k' is the rank
of the group SO(k, C). The maximal r for which P, is non-empty
is k. The stratum P, is dense in P, which therefore has dimension
k'(n+k — (3k' + 1)/2) or codimension k'n — k'(k' = 1)/2+ (n — k')e
in E (by (2.1)). Moreover, by (2.2) and (2.3), P has I irreducible com-
ponent when k is odd, 2 when k is even. As suspected in [T1, Remark
2.10 (1)], P, contains, in general, infinitely many orbits. More pre-
cisely, each such orbit is determined by the (n — k')-dimensional linear
subspace KerX’ of C", hence P./G is isomorphic to the
k'(n — k')-dimensional Grassmannian G(k’', n — k') and is infinite for
k>1.

We now turn our attention to the scheme structure of P, given by the ideal
I= J+(E*)S(E*).

Case k > 2n. By (2.4), P has codimension equal to the number of its defining
equations. In other words, P is the complete intersection of the p;;’s. Since
the Unmixedness Theorem holds in the polynomial ring S(E*) [M, p. 107 and
Theorem 31, p. 108], to check that P is reduced (i.e., that I is radical), it
is enough to find one point on each component of P at which P is reduced.
But this follows from [T1, Lemma 2.9], where it is shown, using the Jacobian
criterion, that P is smooth on the dense stratum P, .

Case k < 2n. The situation is very different. Recall that we wrote k = 2k’ +¢,
where ¢ = 0 or 1. By (2.5), the codimension of P is (k'n —k'(k' — 1)/2 +
(n — k')e), which is strictly less than the number of its defining equations,
except for k =2n —1 > 1. Except for this case, where P is still the complete
intersection of the p, j’s and I is primary, P may well have embedded primes
(and it does, at least for £ even > 2).

The same argument used in the above mentioned Lemma 2.9 of [T1] shows
that, on the dense stratum P,,, the rank of the Jacobian matrix of the p, j’s is
(k'n-K'(k'-1)/2). If k' < k-1, that is if k > 2, the derivatives of the
(k x k)-minors are 0 on P, . It follows that, for k odd > 1, P is nowhere
reduced, hence I is not radical but that, for k even, P is generically smooth!

This is therefore not enough to conclude in the case k even and we will use a
direct computation, based on (2.1) only, to show that I is not radical whenever
2<k<2n.

Recall that any element of P has rank <k’. Thus, if X' = (X;}),<; k415
(det X') vanishes on P, hence is in the radical of I (recall that K+1<n).
Suppose (detX') € I. Substitute 0 for all the Xij’s except for X,, X,, and

X, for 1 <i<k'+1.When k>k'+1, that is when k > 2, all the (k x k)-
minors of X vanish and the only non-zero p,.j’s left are p,, = X12 X 122 ,
Py = X, Xy, + Xy Xyy» Dyy = Xoy + X5y and p, = X, for 3< i<k’ +1.
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Modulo (X323 yeees X ,f, +1,k'+1) » We get a congruence of the type

(X1 Xy = X X5 ) X3 Ky gy = Z 49;Pij -
1<i<jL2
By comparing coefficients of Xy;-- Xy ) 4y, we get X Xy, — X, X,
(Pyys Pyy» Py,) » Which is untrue. Therefore, (det X ') is not in I when k

3, and [ is not radical. Direct calculations show that, for k = 1, I
(Xiy5...,X,;) is prime and that, for k =2, I is radical. O

v m

It follows immediately from Theorem 2.1 and the remarks made earlier that,
for the case k > 27, the ideal J (E*)S(E™) is radical (prime when k > 2n)
and hence H,(E") = {0}. Thus we have the following result which extends an
earlier result in [T1, Theorem 2.5].

Corollary 2.2 (“Separation of variables” theorem for S(E*), E = >k k>
2n). .

(i) The algebra of all polynomial functions on C™* k > 2n, can be de-
composed as

S(E") = J (E")S(E") ® H(E")(orthogonal direct sum)
S(E™) = J(E"H(E").

(ii) The space H(E™) is generated by all powers of all polynomial functions
f satisfying

f(X)=>"A4,X, withA4'=0, 1<i<n, 1<j<k.
i,Jj

(iii) The space HZ(E*) of all G-harmonic polynomial functions that vanish
on the null cone P of the common zeros of polynomial functions in
J (E")S(E™) is zero.
For the case k = 2n, Corollary 2.2 will play a crucial role in the proof of
Theorem 3.1 of the next section.

3. THE HARMONIC REPRESENTATIONS OF SO(k, C)

In [T1] it was shown that all irreducible holomorphic representations of
G = SO(k, C) can be explicitly realized as G-submodules of H(E") with
the exception of the “mirror-conjugate representations” of G . In this section
we will show that these representations too can be realized on H(E™) and have
a very interesting characterization on the orbits of G in P, which was studied
in Theorem 2.1. Since “the mirror-conjugate representations” can only occur
when k is even we shall assume henceforth that k = 2n.
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Let

~
I
Sl
|8}
|

Then

1 -

where the entries not exhibited are 0. Then

1
G He™H = [ } —0.
1

If G= y_le , then it can be easily verified that
G={geGL2n,C):30(g) =0,detg=1}.
In general we shall denote, by &, the image of g under the conjugation g —

Y- gy , and vice versa. It follows that G is the connected component of the
identity in the group of linear transformations which preserve the symmetric

bilinear form tr(xoy’) = X VoptXoVoy_yte+Xy,¥,, forall x = (x,, ..., X,,)
and y = (¥, ..., ¥,,) in C*. It is well-known (cf. [Z, Chapter XVI, §114])
that G has the Gauss decomposition induced by GL(2n, C)

(3.1) G=2_DZ_,

where the components Z .,D,Z . are the intersections of G with the sub-
groups Z_(2n), D(2n), and Z_(2n) of all lower triangular unipotent, of all
diagonal, and of all upper trlangular unipotent matrices of GL(2n, C), respec-
tively. It follows that B =Z_D is a Borel subgroup of G which consists of all
lower triangular matrices of the form

b, -

Lt
I
3
S

(3.2)
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Let (m)" denote an n-tuple of positive integers (m;, m,, ..., m,) satisfying
the condition m; > m, > --- > m, > 0, and set (m) = (m,..., m,_,,
(m)* (m)~

—m,) . Define the holomorphic characters 7 and @ on B by

"By =b" ... k"™ and "™ (B)=bl - b
forall b€ B. Set
ym” {f:G — C: f holomorphic and f(hg) = n(”‘)+(13)f(g)
V(b, g) € B x G}

(3.3)
v™" —{f:G — C: f holomorphic and f(bg) = 2™ (b)f(2)
V(b, g) € B x G}.

Let ﬁ;’")+ (respectively ﬁﬁtm)_) denote the representation of G obtained by
right translation on y™" (respectively V™ ). Then, by the Borel-Weil
theorem, ﬁfzm) (respectively ﬁfz'”) ) is irreducible with signature (m)* (re-
spectively (m)~). These representations are termed ° m1rror-con_]ugate rep-
resentations” of G in [Z, Chapter XVI]. Moreover, if & € G then, in the
Gauss decomposition of G, & = b[g]2[g] with b[Z] € B and 2[2] € Z+ ,
and (b[g])” = A,(8)/A,_,(&), where A,(g) is the ith principal minor of &,
Ay(&) =1, 1 <i<n,so that the highest weight vector of ym’” (respectively

™Y is given by
34) (@ =2" (bla) = A" @A) A(R)
and _ _

£ @) =2 (BlgD = AT @A) A, (@)

forall g € G.

For the same n-tuple, (m,, m,,...,m,) = (m)*, define a holomorphic
character of B = B(n), the lower triangular subgroup of GL(n, C), by

™Mby =b1---b",  beB.

Let H(E", (m)) denote the subspace of all G-harmonic polynomial functions
p which also satisfy the covariant condition

p(bx) =E™(B)p(X), V(b,X)eBXE.
Let



REPRESENTATIONS OF SO(k, C) 39

and

o
1 —i

Then it follows from Equation (2.7) of Theorem 2.1 that P, is the union of
two orbits, P, = X; -G and P, = X, - G. Let H"(E*, (m)) (respectively
H™(E"(m))) denote the subspace of all functions in H(E*, (m)) which vanish
on the orbit P~ (respectively P: ). Then we have

Theorem 3.1. (i) If H(E", (m)) is the subspace of H(E™) consisting of all
G-harmonic polynomial functions p which also satisfy the covariant condition
p(bX) =& (b)p(X) forall (b, X) € Bx E, then H(E*, (m)) is decomposed
into an orthogonal direct sum as

H(E", (m)) =H"(E", (m)) @ H" (E", (m)).

(i) If R™ denotes the representation of G obtained by right translation on

H(E", (m)), then the restriction R"™ (respectively R'™ ) of R™ to
HY(E", (m)) (respectively H™(E*, (m))) is irreducible with signature (m)* =
(my, ..., m,) (respectively (m)~ =(m,...,m,_,, -m,)).

Proof. We define a representation RS:M) G on V"' g ym” by
[RY(g)(f + fN&) = 17 (280) + £~ (82,).
forall f*e ™, fevm g €G, g€ G . Using the “Weyl’s unitarian

trick” (cf. [V, §4.11]), we may equip ™" g y™” Gith an inner product
which is invariant under the compact real form G, = SO(k) of G, and, using

. _
Schur’s orthogonality relations, we can show that since V™ and V™ are
inequivalent G -simple modules they form an orthogonal direct sum relative to
the G-invariant inner product. Set

-l -
n—l{
1 1
{ 1 n n
n-—1
L 14

n-1 2 n-—1

— O
O =

and define a linear map A : H(E".(m)) — y o V™ by
Ap=A"p+ATp, forallpe HE", (m)),
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where
Ap(g)=pMgy™")
and
A p(g)=p(Ms,gy~'), forallgeG.
Then

5 1 _+ - . 1 -
3.5 A'p(g) = <—X ) and A = (—X ) ,
(3.5) p(&)=p %08 p@)=r 75%0 8
forall g = yg'y_l € G. Let us verify that A™ (respectively A~) does indeed
map H(E*, (m)) into V'™ (respectively V™ ). If

b ]
b= . bz"l
bnn
-1
L bll .
is an element of B then I1d = bII with
by,
b= )
* b

nn

in B(n). So
A*p(bg) = p(Tbgy™") = p(bT1gy"™")
=& b)pmgy™) = 2™ (A p(2)
and obviously A*p is a holomorphic functionon G. So A* maps H(E", (m))
into V" . Similarly, Iis,b = I(s,bs,)s, since s; ' =s,, and
b, ]

n—1,n-1
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in B(n). Therefore,

A" p(bg) = p(Tlsybgy™")
= p((sybsy)s,&7™")
=p(b Tsy2y™")
= by b b (Tls gy )

=z (DA p(2).

So A~ maps H(E*, (m)) into V™ . Now A is an intertwining operator
since

[AR™ (g))1(8) = [R™ (8,)p)M2y™") + [R™ (g,)p)(Tls,27 ")
= (M7 g) +p(Tsy&y™ &)
=p(ggy ") +p(so22yy™")
= A"p(28,) + A p(8%,)
= [R{(g))Ap)(2)
forall g,€G and g€G.
Let p,(X) = A" "™(X)A72 ™ (X)... A7 ™ (X)Ay»(X) and set P (x)
= pf(X 7), p(()'")_(X ) = pé(X ?S,) - Then an easy computation analogous to
the one in Lemma 3.4 of [T1] shows that both p(()m)+ and p(()m)_ belong to

H(E", (m)). Moreover, from Equation (3.4) it follows that
Ao () =py" (Mgy™") = p(Mey™'y)
=p(2) = 1™ (2).

Now it can be shown that the conjugation & — s5,8s, preserves the Gauss
decomposition (see [Z, Chapter X VI, §114]) and, if

bll
n—1,n-—1

blg] = b,, ,

nn
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then

i’[SogSo] = bt

by
so that
Ap{" (&) =py" (Tsygy™") = p,(Tsy2 ™~ vs,)
= pg(nsogso)
= p,(T1b[sy&5,]215,5,])
= (b TIZ[s,£5,))

= &M (b")p, (Tzls,25,])
=" (@),

for
by,

b’ =
n—1,n—1
-1
* bn,n
and p(I1Z[s,&s,]) = 1. Also,

+ (m)” m)~

Apy™ (2)=py" (Mgy™") = p,(Mgy~"vs,)
= p,(Tgs,) = p,(TIB[Z]2(2]s,)
= p;(bI1Z[£]s)
= E™(b)p, (T2(2]s,)
= " (B)p,(TLsy (5, 2121sy) -
Since the conjugation & — s5,£s, preserves the Gauss decomposition of (~},

502[&]s, is of the form

1
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and

HSO(Sof[g]S‘O) = .. *
0
so that A, (Tlsy(s,2[£]s,)) = O and hence pf(l'lso(soz"'[g]so)) = 0. It follows that
Atp{™ =0. Similarly,

Ay (8) = py" (Tsy2r™") = py(Tlsy2)
= p(Ts,bl£12(2))
= p,(T(s,b1£15,)5,2[2]) -
égain,~ since the conjugation g — 5,85, preserves the Gauss decomposition of
G, s5yb[&]ls, is of the form
by | ]

n—1,n—1 |
bn,n
n,n
L * bl_lll i
so that TI(s,b[£]s,) = b"T1. It follows that

P (TU(s,B12150)5,2[81) = E™ (6" ), (5, 2[gD) -

(m)*

As above we see that pf(sof[g]) = 0 and infer that A"p;” = 0. Since
AP = ATp™T = M (resp. Ap{™ = AP = f™) s a cyclic
vector of the simple G-module y o’ (resp. V(m)_) and A is an intertwining
operator it follows that A is a G-module epimorphism. If p € H(E™, (m))
and Ap = A*p+ A”p = 0 then Equation (3.5) implies that p((l/\/i)XJg) =
p((1/vV2)X; g) = 0 for all g € G, that is, p vanishes on both P, and P, .
Since P: UP; = P, it follows that p = 0 on P and, by Corollary 2.2(iii),
p is the 0 polynomial function. Thus A is a G-module monomorphism,
and, hence, a G-module isomorphism. Let H'(E", (m)) = KerA™ (resp.
H™(E*, (m)) = KerA") be the subspace of all elements of H(E"(m)) which
vanish on P~ (resp. P:). Then clearly H*(E*, (m)) and H™ (E*(m)) are G-
submodules of H(E", (m)) and A g+ g+ () = A" Ay g+ my =A" - More-

over, p™" € H'(E*, (m)) and p{™ € H™(E", (m)). So both H"(E"(m))
and H™(E*, (m)) are nonzero, and it follows that A™ : H*(E", (m)) — ym
and A~ : H™(E", (m)) » V"™ are isomorphisms of simple G-modules. The
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fact that the inner product (-, -) defined earlier on S(E") is invariant un-
der the restriction of the action of G to G, = SO(k) and that H Y(E", (m))
and H™ (E*(m)) are inequivalent simple G-modules implies immediately that
H(E*, (m))=H"(E*, (m))® H (E*, (m)) is an orthogonal direct sum. 0O
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