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The Trisecant Conjecture for Pryms

OLIVIER DEBARRE

Introduction. We examine below the following conjecture of Welters [We]:

An indecomposable principally polarized abelian variety (ppav in the se-
quel) is a Jacobian if and only if its Kummer variety has a trisecant line.

In particular, we prove first that the family #, of Jacobians is an irreducible
component of the locus of ppav’s satisfying the above trisecant property (joint
work with A. Beauville).

Secondly, we prove that if a (generalized) indecomposable Prym variety has
the trisecant property, then it is a Jacobian. This proves Welters’ conjecture
in dimension < 5.

As a by-product of our methods, we get some results on 4-dimensional
ppav’s with a given number of vanishing thetaconstants, the most striking of
them being that there is only one indecomposable 4-dimensional ppav with 10
vanishing thetaconstants (apart from hyperelliptic Jacobians). This particular
ppav was discovered earlier by R. Varley in [Va].

1. The Schottky problem. The Schottky problem is the problem of char-
acterizing Jacobians among all ppav’s. Up to now, there have been three
principal ways of attacking this question.

(1) One can use Schottky-Jung relations to try to find equations for 7,
in the moduli space % of all ppav’s. These relations involve the so-called
thetaconstants. The interested reader should consult B. Van Geemen’s thesis
[V] for more details.

(2) One can use, after Andreotti and Mayer, the singularities of the theta
divisor of Jacobians. Namely, any Jacobian (JC, ©) satisfies

dim Sing® > dimJC -4

and these two authors proved in [A-M] that _Z, is an irreducible component
of

Ng—4 = {(A4,0) € | dim Sing® > g — 4}.
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Unfortunately, already in dimension 4, this set has other components.
Beauville proved in [B] that

Mo = 4 U s
where
Opun = {(4,0) € |0 symmetric and Sing®N,4 # I},

these two sets being irreducible. The situation gets even worse as g gets large,
as we will see later. Therefore, one needs additional properties to characterize
Jacobians.

(3) Trisecants to the Kummer variety. A. Weil noticed in [W] that on a
Jacobian (JC,®) one has, for any points p, g, r, s of C,

The existence of such an inclusion has an interpretation in terms of the
Kummer variety [M 1, M 2, We}.
Recall that for any ppav (4, ©), there is a commutative diagram

|26|* ~ p2*-!
v/
A |2 tinear isomorphism

v\,
|28

where ¢ is the morphism associated to the base point-free linear system |26)|
and y is defined by y(x) = 6, + O_, € |28| (Theorem of the square).

The Kummer variety of (A4,0) is the image of either ¢ or . If (4,0)
is indecomposable, it is isomorphic to the quotient of 4 by the involution
x — —x. This is a singular g-dimensional variety.

Its importance for us stems from the following proposition.

PROPOSITION. Let (A, ) be an indecomposable ppav and a, b, ¢, d nonzero
elements of A such that a # ¢,d and a+ b = c + d = x. Then the following
properties are equivalent:

(i) 8 -8, C 8. U B8, (scheme-theoretically).

(i) 34, 4, v € C* A06,+ub,0,+v6.6, = 0, where for any z € A, 0, denotes
a generator of H°(A,8;).

(iii) For any y € A such that 2y = x, the points y(y), w(y —a) and y(y —c)
are on a line.

The reader will notice that (ii) = (i) is trivial and that (ii) = (iii) follows
from translating the equation by (—y).

It follows that the Kummer variety of a Jacobian has a 4-dimensional
family of trisecants (obtained by varying the points p, g, r, s on C).

On the other hand, since we know of no ppav enjoying the property that
its Kummer variety has one trisecant, which is not a Jacobian, Welters has
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conjectured that, if

Trig = {(4,8) indecomposable such that
its Kummer variety has one trisecant line},

then

Trisecant conjecture:

S =Trig

REMARK. One can give a meaning to each of the interpretations (i), (ii),
(ii1) of the inclusion (1) when p, g, r, s converge to the same point of C.
The limiting equation (ii) is equivalent to the K-P equation. Therefore, the
above conjecture can be seen as a discrete analogue of the Novikov conjecture
proved by T. Shiota in [S].

The first result toward the conjecture is the following theorem, obtained
in collaboration with A. Beauville, which links the last two approaches to the
Schottky problem.

THEOREM [B-D]. Let (4,8) be an indecomposable ppav satisfying one of
the conditions (i), (ii), (iii) above. Then

dim Sing©® > dim 4 — 4.

One deduces immediately from this theorem and the theorem of Andreotti
and Mayer mentioned above that

COROLLARY. % is a component of T rig.

We will only prove the corollary. More precisely, we show that if a ppav
(A, 8) is such that

{ NS(4) = divisors/algebraic equivalence = Z[8)],
Ja#0 6N, reducible,

then dim Sing® > dim 4 — 4.

Since the Neron-Severi group of a generic Jacobian satisfies the above
property, the corollary will follow.

Suppose dim Sing® < dim 4 — 4. Then, by Samuel’s conjecture [G, Exp.
X1, Corollary 3.14] © is locally factorial. If we write © N6, = D + D/,
the Weil divisors D and D’ of © are therefore Cartier. Again, the Lefschetz
theorem a la Grothendieck [G, Exp. XII, Corollary 3.6] yields an isomorphism
Pic(4) = Pic(8): the line bundles & (D) and @ (D’) come from line bundles
L and L’ on A. By hypothesis, we have: 3m,m’ e N* L ~ mO, L' ~ m'8.
Since LQ L' = &(8,), one has m + m’ = 1. Contradiction. O

2. The trisecant conjecture for Pryms. Our first theorem states that Jri, C
A —4. Unfortunately, the only thing known about the set .#;_4 is its inter-
section with the Prym locus &%, [M 3, B].

Recall that to any double étale cover n: C — C of smooth connected
curves, one associates a ppav P = JC/n*JC, its Prym variety.
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Beauville has extended this definition to certain double covers of stable
curves [B]. The corresponding family %, (g = g(C) — 1) in & is closed and

Py = Sy for g <5,
dim%, = 3g for g > 5,
Sz C Py for any g.

Using Beauville’s list of double covers for which the Prym variety is in
Ag—4 and Donagi’s tetragonal construction [De], we show:

PROPOSITION [D1]. The irreducible components of " N Ny_4 (indecom-
posable Pryms which are in N,_4) are, for g > S:

/% of dimension 3g — 3;

ggz ={Pryms of double covers of C =" U §  with normalization of C
hyperelliptic of genus g — 1} of dimension 2g; .
&2,_, ={Pryms of double covers of C = WPI with H hyperelliptic of
genus g — 2} of dimension 2g — 1, c

9"&_, Jor 2 <t < g/2 ={Pryms of double covers of C = )000( o with
g(Ch=t—1and g(C")=g—1t— 1} of dimension 3g — 4.

Although the following result will not be used in the sequel, we can also
prove

THEOREM [D1]. For g > 5, 7g, —8? and é’fg_l are irreducible components
Of./f/;;_a,.

For2 <t<g/2 g=>5 P%_, is contained in an irreducible component
A2, of Ng_a, of codimension t(g —t) in .

Let us describe now M,fg,_,. Suppose (A4,0) is a ppav which contains an
abelian subvariety X’ of dimension ¢ such that deg®|x, = 2. Then there
exists another abelian subvariety X" of 4 of dimension g — ¢, satisfying also
deg©| x» = 2, such that the inclusions X’ C 4 and X" C A4 induce an isogeny:

n: X'xX"—- A4

with kernel (Z/2)%, compatible with the polarizations. Moreover, there exist
bases

{s,¢'} for H(X',8|x/), {s",0"} for H®(X",8|x")
such that
n*0 = div(s's” +1't").
Setting
F'={s=¢=0}c X, F'={s"=1t" =0} c X",
one sees immediately that
n(F' x F") c Sing®©.

If g—t t>2, F'and F” are nonempty; hence (4,0) € #;_,.
DEFINITION. %3 _, is the family of all such (4, 8)’s.
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REMARK. For any “type” d = (d,|d3|---|d,) of polarization, a similar
construction yields families M,,‘Z,_ +» which are contained in #;_; 4,5 for ¢, g —
t > dego.

In this way, we get irreducible components of .#;_¢ for g > 7 (with § =
(3)) and of .4, _3 for g > 9 (with é = (2|2)) [D 1].

COROLLARY. In dimension 5, the irreducible components of 4] are
5, &2 gf:, Sy, and A x .
The respective dimensions are 12, 10, 9, 9, 11.

Getting back to Pryms, a careful examination of the elements of each
component of 93;,"“ N Az_4, plus a proof by induction on the dimension
(starting in dimension 4 by using results of Z. Ran [R]) yields

THEOREM [D 2]. #,NTriy, = % for g > 4.
CoOROLLARY. The trisecant conjecture is true in dimension < 5.

3. Vanishing thetaconstants on 4-dimensional ppav’s. The preceding anal-
ysis can be extended to the case g = 4. Recall that we have [B]

Mo = 1 U Onun,

where 0y, is the locus of ppav’s of dimension 4 for which any symmetric
representative of the theta divisor has a singular point that is of order 2.
This is equivalent to the vanishing of a thetaconstant 9[ :,](0, 7) (with
e,e' €(Z/2)8, ¢-¢ =0 (mod 2)) at a point 7 of the Siegel upper half-space
#4 corresponding to the ppav.
That is why one says that a thetaconstant vanishes. Let us introduce

Gr(l‘l’l)n = {(4, ©) € &, with at least p vanishing thetaconstants}.

Since each new vanishing thetaconstant corresponds to the vanishing of a
function, one would expect that codim%(ﬁgﬁ}]) = p. This is true in a sense,
as shown by the following theorem.

THEOREM [D3]. (1) O, is irreducible, 9-dimensional, and a generic ele-
ment has exactly 1 vanishing thetaconstant.

(2) 01(31)11 is irreducible, 8-dimensional, and a generic element has exactly 2

vanishing thetaconstants (in the preceding notations, 91(1?1)11 is &2).

(3) Gr(li)“ is purely 7-dimensional and has 3 components: # 4, closure of the
locus of hyperelliptic Jacobians (generically 10 vanishing thetaconstants); 4 x
4 (generically 28 vanishing thetaconstants) and 2 (generically 3 vanishing
thetaconstants).

(4) 8% has a 6-dimensional component contained in &, which is Sty% (with

generically 4 vanishing thetaconstants).

(5) Bx(‘?l)lii“d — A4 Is irreducible 1-dimensional. Its elements are isogenous to

a product E*, where E is an elliptic curve.
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(6) Hflh?,)’i“d — #, has exactly one element which we will call Ayy and which

corresponds to the case where E has complex multiplication by i (j(E) =
1728).

The ppav A4,, was studied in great detail by R. Varley in [Va]. A. Beauville
has pointed out to me the following alternative construction of 4;o. Let E;
be the elliptic curve with complex multiplication by i. As an abelian va-
riety, Ao is isomorphic to E}; therefore, giving an indecomposable princi-
pal polarization on A;q is equivalent to giving an indecomposable unimod-
ular positive hermitian form on the Z[i]-module Z[i]*. Let I's be the lattice
of roots of the root system Eg and let Q be the corresponding quadratic
form. There exists, up to conjugation, a unique element J of the Weyl group
W (Eg) with square (—1r,) (cf. [C]). This element endows I's with the struc-
ture of a free Z[i}]-module of rank 4; the hermitian form H defined on I's by
H(x,y) = Q(x,y) + iQ(Jx,y) yields the desired polarization.

It follows from [C] that the automorphism group of 4;o, which is identified
with the centralizer of J in W(Ejy), has order 46080.
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