SUR LES FONCTIONS THETA DU SECOND ORDRE

Arnaud Beauville et Olivier Debarre

Mathématique, Université Paris-Sud F-91 405 Orsay Cedex (France)

Introduction

Nous discutons dans cet exposé deux conjectures liées au problème de Schottky, dues à Van Geemen et Van der Geer [7] et précisées par Donagi [6]. Ces auteurs proposent de caractériser les jacobiennes (parmi toutes les variétés abéliennes) en termes de l'espace des fonctions thêta d'ordre 2. Nous énonçons ces conjectures au \$1; dans le \$2 (inspiré de [6]), nous discutons leur relation avec d'autres approches du problème de Schottky. Au \$3, nous traitons, dans le style de [4], quelques exemples où les calculs peuvent être faits explicitement. Enfin au \$4, nous prouvons la conjecture 2 et une version affaiblie de la conjecture 1 pour une variété abélienne principalement polarisée *générique*.

1. Enoncé des conjectures

Soit A une variété abélienne complexe, et ϑ une polarisation principale sur A. Par définition, ϑ est la classe dans $H^2(A,\mathbb{Z})$ d'un diviseur ample Θ , vérifiant dim $\Gamma(A, \mathfrak{G}_A(\Theta))=1$. Le diviseur Θ est uniquement déterminé à translation près. On peut de plus lui imposer d'être symétrique (c'est-à-dire stable par l'involution $a\mapsto -a$), ce que nous ferons systématiquement dans la suite; il est dès lors bien déterminé à translation près par un point d'ordre 2 de A. En vertu du théorème du carré, le faisceau $\mathfrak{G}_A(2\Theta)$ est alors indépendant du choix de Θ : il est canoniquement associé à la variété abélienne principalement polarisée (A,ϑ) . Il en est de même de l'espace $\Gamma=\Gamma(A,\mathfrak{G}_A(2\Theta))$ de ses sections globales, ainsi que du système linéaire $|2\Theta|$. Nous identifierons Γ à l'espace des fonctions thêta du second ordre sur le revêtement universel de A.

Les éléments de Γ sont symétriques; cela entraîne que la multiplicité en

O d'un tel élément est paire. Nous noterons Γ_o l'hyperplan de Γ formé des sections s'annulant avec multiplicité $\geqslant 2$, et Γ_{oo} le sous-espace des sections qui s'annulent avec multiplicité $\geqslant 4$. Nous désignerons par $|\Theta|_o$ et $|\Theta|_{oo}$ les sous-espaces projectifs correspondants de $|\Theta|$. Enfin, soit $V(\Gamma_{oo})$ le lieu de base du système linéaire $|2\Theta|_{oo}$, c'est-à-dire l'ensemble des points de A où toutes les sections de Γ_{oo} s'annulent. Pour éviter des complications sans intérêt, nous supposerons toujours que la variété abélienne principalement polarisée (A, \mathfrak{d}) est indécomposable, c'est-à-dire qu'elle ne peut s'écrire comme produit de deux variétés abéliennes principalement polarisées non nulles.

Conjecture 1. – $Si(A, \mathfrak{d})$ n'est pas une jacobienne, l'ensemble $V(\Gamma_{oo})$ est réduit à 0.

La conjecture 2 est une version infinitésimale de la conjecture 1. Soit $T=T_0(A)$ l'espace tangent à l'origine de A; en associant à chaque élément de Γ_{oo} le terme de degré 4 de son développement de Taylor, on obtient un homomorphisme α de Γ_{oo} dans l'espace $H^0(\mathbb{P}(T), \mathfrak{G}(4))$ des polynômes homogènes de degré 4 sur T, bien défini à un scalaire près. En particulier, $\alpha(\Gamma_{oo})$ est un système linéaire de quartiques dans $\mathbb{P}(T)$; on désigne par $V_{inf}(\Gamma_{oo})$ l'ensemble des points de base de ce système linéaire.

Conjecture 2. – $Si(A, \mathfrak{d})$ n'est pas une jacobienne, l'ensemble $V_{\inf}(\Gamma_{oo})$ est vide.

Dans le cas des jacobiennes, la situation est très différente :

Théorème 1. - Soit (JC, 3) la jacobienne d'une courbe C. On a alors :

- a) $V(\Gamma_{oo})$ est l'image C-C de l'application $\delta: C\times C \to JC$ définie par $\delta(x,y)=\mathfrak{G}_C(x-y)$,
- b) $V_{inf}(\Gamma_{oo})$ est l'image de l'application canonique $\kappa:C\to \mathbb{P}(T)$ (en identifiant T à $H^0(C,K_C)^*$),

sauf dans les deux cas suivants :

- a') C est une courbe de genre 4, non hyperelliptique, avec deux g_3^1 distincts; on a alors $V(\Gamma_{00}) = (C-C)U\{\pm t\}$, où t est la différence dans JC des deux g_3^1 sur C.
- b') C est une courbe de genre 4 avec un seul g_3^1 ; on a alors $V_{inf}(\Gamma_{oo}) = \kappa(C)U\{s\}$, où s est le sommet du cône quadratique contenant $\kappa(C)$.

Les énoncés a) et a') ont été démontrés par Welters [8]. Les énoncés b) et b') résultent essentiellement du théorème de Green (sous une forme légèrement raffinée due au premier auteur), selon lequel $\kappa(C)$ est l'intersection dans $\mathbb{P}(T)$ des cônes osculateurs aux points doubles du diviseur Θ .

2. Relation avec d'autres approches

a) Trisécantes

Le système linéaire Γ est sans point base, donc définit un morphisme ψ de A dans l'espace projectif $\mathbb{P}(\Gamma^*)$ (que nous noterons simplement \mathbb{P}^N , avec $N=2^g-1$). L'image de ce morphisme est par définition la *variété de Kummer* K de (A,Θ) ; sous l'hypothèse (A,Θ) indécomposable, elle s'identifie au quotient de A par l'involution $a\mapsto -a$. Elle a 2^{2g} points singuliers, image par ψ des points d'ordre 2 de A.

Notons en particulier s le point $\psi(0)$. Le système $|2\Theta|_o$ est l'image réciproque par ψ du système des hyperplans de \mathbb{P}^N passant par s; de même, les éléments de $|2\Theta|_{oo}$ sont les images réciproques par ψ des hyperplans de \mathbb{P}^N qui contiennent l'espace tangent $T_s(K)$ à K en s (c'est-à-dire le sous-espace projectif de \mathbb{P}^N engendré par le cône tangent à K en s). Le lieu de base de $|2\Theta|_{oo}$ est donc l'image réciproque par ψ de $T_s(K)\cap K$. Par suite la conjecture 1 signifie que *l'intersection* $T_s(K)\cap K$ est réduite à $\{s\}$, ou encore qu'il n'existe pas de droite passant par s et un autre point de K qui soit contenue dans $T_s(K)$. Appelons une telle droite une fausse trisécante (elle rencontre K avec multiplicité $\geqslant 3$). La conjecture 1 dit que K n'admet pas de fausse trisécante si (A, \emptyset) n'est pas une jacobienne. Cette formulation est bien sûr à rapprocher de l'énoncé analogue pour les trisécantes usuelles (conjecture de la trisécante), qui est l'analogue discret de la conjecture de Novikov (cf. par exemple [3]). Mise à part la similitude de leurs énoncés, la relation entre ces deux conjectures n'est pas claire.

Remarquons au passage que la dimension de $T_s(K)$ est celle de l'espace tangent (de Zariski) de $\mathbb{C}^g/\{\pm 1\}$ à l'origine, soit $\frac{1}{2}g(g+1)$; la dimension de Γ_{oo} est donc $2^g-\frac{1}{2}g(g+1)-1$.

b) "Big Schottky"

La forme classique du problème de Schottky (caractérisation des jacobiennes par les équations de Schottky-Jung) a été reformulée géométriquement par Mumford; Donagi en a donné une généralisation audacieuse, la "big Schottky conjecture" (conj. 2.11 de [6]). Cette conjecture implique la conjecture 1 (loc. cit.); Donagi le démontre en interprétant $V(\Gamma_{oo})$ en termes du cône tangent à la variété de Schottky-Jung en un point du bord de l'espace des modules \mathbf{Q}_g . Plus précisément, la conjecture de Donagi en dimension g entraîne la conjecture 1 en dimension g-1. Donagi annonce dans [6] les grandes lignes d'une démonstration de sa conjecture en dimension 5; ce résultat impliquerait la conjecture 1 pour g=4.

c) Equation K-P

Passons à la conjecture 2. Soient D un vecteur non nul de T, et \overline{D} son image dans $\mathbb{P}(T)$. Soit ϕ un élément de Γ_{oo} , considéré comme une fonction thêta du second ordre sur T; par la formule de Taylor, la valeur de $\alpha(\phi)$ en D est à une constante près $D^4\phi(0)$, où D est vu comme un champ de vecteurs constant sur T. Dire que \overline{D} est un point base du système $\alpha(\Gamma_{oo})$ signifie donc que la forme linéaire $\phi \mapsto D^4\phi(0)$ sur Γ s'annule sur Γ_{oo} ; si (D_1, \dots, D_g) est une base de T, cela revient à dire qu'il existe des constantes a_{ij} $(1 \le i \le j \le g)$ et b telles qu'on ait $D^4\phi(0) = \sum a_{ij} D_i D_i \phi(0) + b \phi(0)$ pour tout $\phi \in \Gamma$.

Ainsi, la conjecture 2 signifie que si (A,\mathfrak{B}) n'est pas une jacobienne, il n'existe aucun opérateur différentiel P de la forme $P = [D^4 + \text{termes de degré plus bas}]$ satisfaisant à $P\phi(0)=0$ pour tout $\phi\in\Gamma$. Il est maintenant classique qu'un énoncé de ce type se traduit en termes d'équation aux dérivées partielles, de la manière suivante. Il existe une base (ϕ_{α}) de Γ satisfaisant à la formule d'addition de Riemann

$$\theta(z+u)\;\theta(z-u)\;=\;\sum\;\phi_{\alpha}(z)\;\phi_{\alpha}(u)$$

L'équation $P\phi(0)=0$ pour tout $\phi\in\Gamma$ équivaut donc à l'équation aux dérivées partielles $P_u[\theta(z+u)|\theta(z-u)]_{u=0}=0$. L'équation (1) devient ainsi

(2)
$$\theta \ D^4 \theta - 4 \ D \theta \ D^3 \theta + 3 \ (D^2 \theta)^2 = \sum a_{ij} (\theta \ D_i D_j \theta - D_i \theta \ D_j \theta) + \frac{b}{2} \theta^2 \ .$$
 En divisant par θ^2 et différentiant deux fois, cela signifie que la fonction

méromorphe périodique $u = D^2 \log \theta$ vérifie l'équation non linéaire

(3)
$$D[D^3u + 12uDu] = \sum a_{ij} D_i D_j u$$

Supposons que (A, \mathfrak{d}) soit la jacobienne d'une courbe algébrique C. Le th.1 (§1) nous assure que la fonction θ satisfait à une équation du type (1) (ou (2), ou (3)), et ce pour chaque point \overline{D} de la courbe canonique. On sait qu'on obtient ainsi l'équation de Kadomtsev-Petviashvili (K-P), de la forme

$$D[D^3u + 12u Du] = DD_1u + D_2^2u$$

La conjecture de Novikov, démontrée par Shiota, affirme que cette équation caractérise les jacobiennes. La conjecture 2 est donc une généralisation de la conjecture de Novikov, peut-être plus naturelle géométriquement.

3. Exemples

Nous allons étudier les ensembles $V(\Gamma_{oo})$ et $V_{inf}(\Gamma_{oo})$ dans quelques cas simples. Cette étude est basée sur la remarque suivante. Pour tout $a \in A$, la fonction $\theta(z+a)$ $\theta(z-a)$ est une fonction thêta du second ordre. Si $a \in \Theta$, elle appartient à Γ_{o} ; si en outre $a \in Sing \Theta$, elle appartient à Γ_{oo} . Soit de plus D un champ de vecteurs constant sur T; toujours pour $a \in Sing \Theta$, la fonction thêta du second ordre

 $D_a\left[\theta(z+a)\;\theta(z-a)\right] \;=\; \theta(z-a)\;D\theta(z+a) \;-\; \theta(z+a)\;D\theta(z-a)$ s'annule en 0 avec multiplicité $\geqslant 3$, donc appartient à Γ_{oo} . Ce moyen est essentiellement le seul que nous possédions pour fabriquer explicitement des diviseurs de $|2\Theta|_{oo}$; nous allons voir qu'il permet dans certains cas de tester les conjectures 1 et 2. Il ne s'applique bien sûr qu'aux variétés abéliennes principalement polarisées dont le diviseur Θ possède suffisamment de singularités.

Rappelons d'autre part (§2,a) que la dimension de Γ_{00} est dim $\Gamma_{00} = 2^g - \frac{1}{2}g(g+1) - 1$.

a) g = 3

Dans ce cas la formule (4) montre que $|2\Theta|_{00}$ est formé d'un seul diviseur. Si C n'est pas hyperelliptique, il est facile de voir que le diviseur (réduit) C-C appartient à $|2\Theta|$, et a multiplicité 4 à l'origine : c'est donc le diviseur cherché.

Si C est hyperelliptique, le diviseur Θ a un unique point singulier, qui est d'ordre 2 et que l'on peut donc prendre comme origine de A; le diviseur 2Θ appartient alors à $|2\Theta|_{\alpha\alpha}$. On en déduit aisément le th.1 dans ce cas.

b) <u>Jacobiennes de genre 4</u>

Soit C une courbe de genre 4, que nous supposerons non hyperelliptique (le cas hyperelliptique est facile, et laissé en exercice). Le modèle canonique de C est intersection d'une quadrique Q et d'une cubique de \mathbb{P}^3 . Supposons d'abord Q lisse. Alors C a deux g_3^1 distincts, qui définissent deux points singuliers $\pm a$ de Θ . Soit (D_1, \dots, D_4) une base de T; la méthode ci-dessus fournit les éléments suivants de Γ_{00} :

$$\begin{split} &\phi_0(z)=\theta(z+a)\,\theta(z-a)\,;\quad \phi_i(z)=\theta(z-a)\,D_i\theta(z+a)-\,\theta(z+a)\,D_i\theta(z-a) \qquad (i=1,...,4). \\ &\text{Ces \'el\'ements sont lin\'eairement ind\'ependants}: cela r\'esulte du fait bien connu \\ &\text{que les fonctions } D_1\theta,\,...\,,D_4\theta \text{ forment une base de } \Gamma(\Theta,\,\Theta_\Theta(\Theta)). \text{ Comme } \Gamma_{oo} \text{ est de dimension 5 (formule (4)), } \phi_0,\,...\,,\phi_4 \text{ forment une base de } \Gamma_{oo} \text{ est de dimension 5}. \end{split}$$

Soit $z \in V(\Gamma_{oo})$. On a alors $\theta(z+a)=0$ ou $\theta(z-a)=0$. Si par exemple on a $\theta(z-a)=0$ mais $\theta(z+a)\neq 0$, on trouve $D_i\theta(z-a)=0$ pour tout i, c'est-à-dire $z \in Sing \ \Theta_a = \{0,2a\}$; si de même on a $\theta(z+a)=0$ mais $\theta(z-a)\neq 0$, on trouve z=0 ou z=-2a. On conclut que $V(\Gamma_{oo})$ est réunion de $\Theta_a \cap \Theta_{-a}$ et des points 2a, -2a. La surface $\Theta_a \cap \Theta_{-a}$ contient C-C, et ces deux surfaces ont même classe de cohomologie \mathfrak{v}^2 ; elles sont donc égales. D'autre part, il existe un diviseur κ sur C tel qu'on ait $2\kappa \equiv K_C$ et que Θ soit l'ensemble des classes de diviseurs de la forme $E-\kappa$, avec E effectif de degré 3; si l'on désigne par |D|, |D'| les deux g_3^1 sur C, on a $a\equiv D-\kappa$, d'où $2a\equiv D-D'$. On a ainsi prouvé l'assertion a') du th.1.

Considérons maintenant $V_{inf}(\Gamma_{oo})$. Au voisinage de l'origine, la fonction $\theta(z+a)$ admet un développement de Taylor

$$\theta(z+a) = q(z) + f(z) + termes de degré \ge 4$$
,

où q et f sont des polynômes homogènes sur T, de degré 2 et 3 respectivement. La quadrique q=0 dans $\mathbb{P}(T)$ est le cône tangent à Θ en a, qui s'identifie à l'unique quadrique Q contenant la courbe canonique. De même le cône osculateur q=f=0 dans $\mathbb{P}(T)$ s'identifie à la courbe canonique.

Comme θ est paire, le développement de Taylor de $\theta(z-a)$ en z=0 s'écrit $\theta(z-a) = q(z) - f(z) + \text{ termes de degré } \ge 4 \ .$

Les fonctions $\phi_0,\,...\,,\phi_4$ ont donc respectivement comme terme initial à l'origine les polynômes de degré 4

$$q^2$$
; $q D_i f - f D_i q$.

Ces polynômes sont linéairement indépendants, sans quoi q diviserait f (cela donne une autre démonstration du fait que ϕ_0,\ldots,ϕ_4 sont linéairement indépendantes dans Γ_{oo}). Il est clair que l'ensemble de leurs zéros communs est la courbe q=f=0. Cela prouve le th.1,b) dans ce cas.

Considérons maintenant le cas où la quadrique Q est singulière. Le diviseur Θ a alors un point double unique, que l'on peut prendre comme origine. Avec les notations ci-dessus, il existe un champ de vecteurs constant non nul D sur T tel que Dq=0. Posons $\phi_0=\theta^2$ et, pour $1\leqslant i\leqslant 4$,

$$\phi_i = \frac{1}{2} DD_i \left[\theta(z+u) \; \theta(z-u) \right]_{u=0} = \theta \; DD_i \theta \; - \; D\theta \; D_i \theta \; . \label{eq:phi_sum}$$

On vérifie comme ci-dessus que ces fonctions forment une base de Γ_{oo} . On en déduit que $V(\Gamma_{oo})$ est la surface définie par les équations $\theta=D\theta=0$, et l'on voit comme précédemment que cette surface coı̈ncide avec C-C. Le développement à l'origine de θ s'écrit cette fois

$$\theta(z) = q(z) + g(z) + termes de degré $\geqslant 6$,$$

où q et g sont des polynômes homogènes de degré 2 et 4 respectivement. Posons f=Dg; on vérifie facilement que la surface f=0 dans $\mathbb{P}(T)$ est une cubique irréductible contenant la courbe. Les termes initiaux des fonctions ϕ_0,\ldots,ϕ_4 sont les polynômes q^2 et q $D_i f-f$ $D_i q$ $(1\leqslant i\leqslant 4)$. L'ensemble de leurs zéros communs est formé de la courbe canonique et du sommet s du cône Q (d'où le th.1 b')). Ceci est l'unique cas où la fonction θ d'une jacobienne vérifie une équation du type (3) distincte de l'équation K-P.

Remarque. – Soit (A, \mathfrak{d}) une variété abélienne principalement polarisée (indécomposable) de dimension 4, qui ne soit pas une jacobienne, et soit a un point singulier de Θ . On sait alors [1] que a est un point d'ordre 2 de A, tel que la thêta-constante correspondante s'annule. Si a n'est pas un point double ordinaire de Θ , on peut appliquer le raisonnement précédent pour obtenir que $V(\Gamma_{00})$ est une surface. La conjecture 1 pour g=4 entraîne donc que les seules singularités de Θ sont des points doubles ordinaires.

c) <u>La jacobienne intermédiaire d'une hypersurface cubique dans ${\Bbb P}^4$ </u>

Soit X une hypersurface cubique lisse dans \mathbb{P}^4 . La jacobienne intermédiaire (A, \mathfrak{F}) de X est une variété abélienne principalement polarisée de dimension 5, dont le diviseur Θ admet comme seule singularité un *point triple*, que l'on peut prendre comme origine [2]. Soit (D₁, ..., D₅) une base de T; les fonctions θ^2 et θ D_iD_j θ - D_i θ D_j θ (1 \leq i \leq j \leq 5) appartiennent à Γ_{00} . On en déduit aussitôt V(Γ_{00}) \subset Sing Θ , c'est-à-dire V(Γ_{00}) = {0}.

Notons f le terme initial du développement de f à l'origine; l'hypersurface f=0 dans $\mathbb{P}(T)$ s'identifie à X (loc. cit.). Les termes initiaux des éléments de Γ_{oo} ci-dessus sont alors f^2 et les polynômes quartiques $f_{ij}=f\,D_iD_jf-D_if\,D_jf$. Soit (X_1,\dots,X_5) la base de T^* duale de (D_1,\dots,D_5) ; on a $\sum X_iX_j\,f_{ij}=-3\,f^2$. Il en résulte que $V_{inf}(\Gamma_{oo})$ est contenu dans le lieu singulier de X, donc est vide. On a donc prouvé les conjectures 1 et 2 dans cet exemple.

On montre facilement que les fonctions θ^2 et θ $D_i D_j \theta$ – $D_i \theta$ $D_j \theta$ ($1 \le i \le j \le 5$) forment une base de Γ_{oo} ; les polynômes f_{ij} forment une base de $\alpha(\Gamma_{oo})$, tandis que θ^2 est (à un scalaire près) l'unique élément de Γ s'annulant avec multiplicité ≥ 6 à l'origine.

On peut traiter de la même manière l'exemple de la jacobienne d'une courbe hyperelliptique C de genre 5. Le g_4^2 de C fournit un point triple de Θ à l'origine; le cône tangent est l'hypersurface des bisécantes à $\kappa(C)$, qui est une quartique rationnelle normale dans \mathbb{P}^4 . On en déduit facilement le th.1 dans ce cas.

d) <u>Variété de Prym des courbes planes</u>

En dimension plus grande il n'est plus possible d'expliciter une base de Γ_{oo} comme nous l'avons fait dans les exemples ci-dessus. On peut dans quelques cas démontrer les conjectures 1 ou 2 à l'aide des remarques suivantes. Soit x un point de $V(\Gamma_{oo})$, et a un point de Sing Θ . Comme la fonction $\theta(z+a)$ $\theta(z-a)$ appartient à Γ_{oo} , on a $a\in\Theta_x\cup\Theta_{-x}$. Soit maintenant Z une sous-variété irréductible de Sing Θ . On a alors $Z\subset\Theta_x$ ou $Z\subset\Theta_{-x}$; si de plus Z est symétrique, chacune de ces inclusions est vérifiée. On a donc $V(\Gamma_{oo})\subset\{\,x\in A\,\big|\, Z\subset\Theta_x\,\}$. D'autre part $V_{inf}(\Gamma_{oo})$ est contenu dans l'intersection (dans $\mathbb{P}(T)$) des cônes tangents à Θ en ses points doubles.

Nous utilisons dans [4] la première remarque pour prouver la conjecture 1 pour les *variétés de Prym associées à des courbes planes*, grâce à la description explicite de Sing Θ donnée dans ce cas par Mumford.

§4. Variétés abéliennes principalement polarisées génériques

Nous arrivons maintenant au résultat principal de cet exposé:

Théorème 2.- Pour tout entier $g \ge 4$, il existe une variété abélienne principalement polarisée de dimension g pour laquelle $V(\Gamma_{oo})$ est réduit à $\{0\}$ et $V_{inf}(\Gamma_{oo})$ est vide.

Par semi-continuité, on en déduit le corollaire suivant.

Corollaire. – Soit (A, ϑ) une variété abélienne principalement polarisée générique de dimension \geqslant 4. Alors $V(\Gamma_{00})$ est fini et $V_{inf}(\Gamma_{00})$ est vide.

Nous commencerons par quelques préliminaires sur les variétés abéliennes. Fixons d'abord quelques notations. Soient A une variété abélienne, L un fibré en droites sur A, s un élément de $H^0(A,L)$, a un point de A. Nous poserons $L_a=(T_a)_*L$ et $s_a=(T_a)_*s\in H^0(A,L_a)$, où T_a désigne la translation $z\mapsto z+a$ dans A. Nous noterons comme d'habitude H(L) le sous-groupe de A formé des éléments a tels que L soit isomorphe à L_a ; il est fini lorsque L est ample. Soient Z une sous-variété de A, définie par un idéal J_Z de \mathfrak{G}_A . Tout champ de vecteurs D sur A définit des applications \mathfrak{G}_A -linéaires D: $J_Z\to\mathfrak{G}_Z$ et $D\otimes 1_L:J_ZL\to L_{|Z}$. Si toutes les sections de L s'annulent sur Z on en déduit un homomorphisme $D_L:H^0(A,L)\to H^0(Z,L_{|Z})$.

Lemme 1. – Soient X une variété abélienne de dimension $\geqslant 2$ et M un fibré en droites ample sur X; on suppose qu'on a $h^0(M)=2$ et que le pinceau |M| n'a pas de composante fixe. Notons B l'intersection des éléments de |M|.

- a) Soit x un élément de X qui n'est pas dans H(M). Alors l'homomorphisme de restriction $H^0(X,M_x) \to H^0(B,M_x)$ est injectif.
- b) L'homomorphisme $(D,s)\mapsto D_Ls$ de $H^0(X,T_X)\otimes H^0(X,M)$ dans $H^0(B,M)$ est injectif.

L'assertion a) est une conséquence facile de la suite exacte

$$0 \to M_x \otimes M^{-2} \to (M_x \otimes M^{-1}) \oplus (M_x \otimes M^{-1}) \to M_x \to M_x \Big|_B \to 0,$$
 et de l'annulation des espaces de cohomologie $H^0(X, M_x \otimes M^{-1})$ (pour $x \notin H(M)$) et $H^1(X, M_x \otimes M^{-2})$. L'assertion b) est démontrée par exemple dans [5, lemme 12.3].

Considérons maintenant deux variétés abéliennes X_1 et X_2 de dimension $\geqslant 2$, munies de fibrés en droites amples M_1 et M_2 , satisfaisant à $h^0(M_1) = h^0(M_2) = 2$. Soient α_1 et β_1 (resp. α_2 et β_2) des générateurs de $H(M_1)$ (resp. $H(M_2)$). Il existe alors une variété abélienne principalement polarisée (A, ϑ) et une isogénie $\pi: X_1 \times X_2 \longrightarrow A$ dont le noyau est engendré par (α_1, α_2) et (β_1, β_2) . On peut trouver pour i=1,2 une base (s_i,t_i) de $H^0(X_i,M_i)$ de façon que le diviseur $\pi^*\Theta$ sur $X_1 \times X_2$ ait pour équation $s_1s_2 + t_1t_2 = 0$. On supposera que l'intersection B_i des diviseurs du pinceau $|M_i|$ est réduite et de codimension 2. La sous-variété $B=\pi(B_1 \times B_2)$ est contenue dans Sing Θ .

Lemme 2.- a) On a

$$\{a \in A \mid B \subset \Theta_a\} = \pi(X_1) \cup \pi(X_2).$$

b) L'intersection dans $T_0(A)$ des cônes tangents à Θ en les points de B est la réunion des espaces tangents à X_1 et X_2 en O.

Prouvons a). L'inclusion $B\subset \Theta_{\pi(x)}$ pour $x\in X_i$ est immédiate. Inversement, soit $a=\pi(a_1,a_2)$ un point de A satisfaisant à $B\subset \Theta_a$. Pour tout élément b_1 de B_1 , la restriction à B_2 de l'élément $s_{1,a_1}(b_1)\,s_{2,a_2}+t_{1,a_1}(b_1)\,t_{2,a_2}$ de $H^0(X_2,M_{2,a_2})$ est alors nulle. Si $a_2\in H(M_2)$, on a $a\in \pi(X_1)$; dans le cas contraire, on déduit du lemme 1 qu'on a $s_{1,a_1}(b_1)=t_{1,a_1}(b_1)=0$, et ce pour tout $b_1\in B_1$. Comme B_1 est réduit, une nouvelle application du lemme 1 entraı̂ne alors $a_1\in H(M_1)$, d'où $a\in \pi(X_2)$.

Prouvons b). Pour i=1,2, soit D_i un vecteur tangent à X_i en 0, que nous considérerons aussi comme un champ de vecteurs sur X_i . Pour que le vecteur (D_1,D_2) soit dans l'intersection des cônes tangents à $\pi^*\Theta$ aux points de $B_1\times B_2$, il faut et il suffit qu'on ait, pour tout $(b_1,b_2)\in B_1\times B_2$,

$$D_1 s_1(b_1) D_2 s_2(b_2) + D_1 t_1(b_1) D_2 t_2(b_2) = 0$$
,

ce qui signifie que pour tout $b_1 \in B_1$ la section $D_1 s_1(b_1) s_2 + D_1 t_1(b_1) t_2$ de $H^0(X_2, M_2)$ est annulée par D_2 . Compte tenu du lemme 1, cela entraîne $D_2 = 0$ ou $D_1 s_1(b_1) = D_1 t_1(b_1) = 0$ pour tout $b_1 \in B_1$. Comme B_1 est réduit, la seconde condition implique $D_1 = 0$ (lemme 1), d'où le lemme.

Nous allons maintenant démontrer le théorème en considérant un cas particulier de la construction précédente. Pour $1 \le i \le g$, soit E_i une courbe elliptique; notons o_i son origine et M_i le fibré en droites $\mathfrak{G}(2o_i)$. Choisissons deux

générateurs α_i et β_i du groupe des points d'ordre 2 de E_i . Il existe alors une variété abélienne principalement polarisée (A,ϑ) et une isogénie $\varrho: E_1 \times ... \times E_g \longrightarrow A$ dont le noyau est engendré par les éléments $(\beta_1, ..., \beta_g)$, et $\alpha_{ij} = (0, ..., \alpha_i, ..., \alpha_j, ..., 0)$ pour $1 \le i < j \le g$. On peut trouver pour $1 \le i \le g$ une base (s_i, t_i) de $H^0(E_i, M_i)$ de façon que le diviseur $\varrho^*\Theta$ ait pour équation $s_1 s_2 ... s_g + t_1 t_2 ... t_g = 0$.

Pour tout sous-ensemble I de $\{1, ..., g\}$, notons X_i le quotient de $\prod_{i \in I} E_i$ par

le sous-groupe engendré par les α_{ij} pour i et j dans l. L'image dans X_i de $(0,...,\alpha_i,...,0)$ est indépendante de $i\in I$; on la notera α_i . Notons β_i l'image dans X_i de $(\beta_i)_{i\in I}$.

Si J désigne le complémentaire de I dans {1, ... ,g}, l'isogénie $\pi\colon X_I\times X_J\to A$ est du type étudié précédemment; son noyau est engendré par (α_I,α_J) et (β_I,β_J) . Supposons que I et J aient au moins deux éléments. On vérifie facilement que les lieux de base B_I et B_J sont réduits et de codimension 2; la sous-variété $\pi(B_I\times B_J)$ de Sing Θ est réunion de translatés de sous-variétés abéliennes de codimension 4 de A par des points d'ordre 2, de sorte que ses composantes irréductibles sont symétriques. On en déduit (cf. §3,d)) que pour $x\in V(\Gamma_{oo})$ on a $\pi(B_I\times B_J)\subset \Theta_x$, d'où d'après le lemme 2

$$V(\Gamma_{oo}) \subset \pi(X_I) \cup \pi(X_J)$$
 pour $2 \leqslant Card(I) \leqslant g - 2$.

Ceci entraîne aussitôt

$$V(\Gamma_{00}) \subset \pi(E_1) \cup ... \cup \pi(E_{\dot{\alpha}})$$
.

On prouve de la même manière la version infinitésimale de cette inclusion:

$$\mathsf{V}_{\mathsf{inf}}(\mathsf{\Gamma}_{\mathsf{oo}}) \,\subset\, \mathbb{PT}_{\mathsf{O}}(\mathsf{E}_{\mathsf{1}}) \,\cup\, \ldots\, \cup\, \mathbb{PT}_{\mathsf{O}}(\mathsf{E}_{\mathsf{q}}) \ .$$

Pour $1 \le i \le g$, notons $\psi_i : E_i \to \mathbb{P}^1$ le morphisme défini par la base (s_i, t_i) de $H^0(E_i, M_i)$. Posons $\psi_i = \psi_i(o_i)$; c'est un nombre complexe (différentde $0, \pm 1$ et $\pm \sqrt{-1}$). Nous allons imposer entre les modules ψ_i des courbes elliptiques E_i la relation $\psi_1 \psi_2 \dots \psi_g + 1 = 0$. L'origine de A est alors sur le diviseur Θ , ce qui entraîne

$$V(\Gamma_{00}) \subset \Theta \cap \bigcup_{i=1}^{g} \pi(E_i) = \{0\},$$

puisqu'on a $\,\phi_i^{-1}(\nu_i) = \{o_i\}$. D'autre part, il existe une coordonnée locale z_i sur E_i

au voisinage de o_i telle qu'on ait $\phi_i={\psi_i}+{z_i^2}$; le diviseur Θ admet donc comme équation au voisinage de l'origine

$$1 + \prod_{i=1}^{g} (\nu_i + z_i^2) = 0 .$$

Son cône tangent en O est la quadrique d'équation $\sum_{i} \psi_{i}^{-1} z_{i}^{2} = 0$ dans $\mathbb{P}(T)$. Il ne

rencontre aucun des points $\mathrm{PT}_0(\mathrm{E_i})$, donc $\mathrm{V_{inf}}(\Gamma_{oo})$ est vide. Cela achève la démonstration du théorème.

BIBLIOGRAPHIE

- [1] A. BEAUVILLE: Prym varieties and the Schottky problem. Invent. math. 41 (1977), 149–196.
- [2] A. BEAUVILLE: Les singularités du diviseur ⊖ de la jacobienne intermédiaire de l'hypersurface cubique dans P⁴. Algebraic threefolds (Proc. Varenna 1981), 190-208; Lecture Notes 947, Springer-Verlag, Berlin-Heidelberg-New York (1982).
- [3] A. BEAUVILLE: Le problème de Schottky et la conjecture de Novikov. Exp. 675 du sém. Bourbaki, Astérisque 152-153 (1988),101-112.
- [4] A. BEAUVILLE, O. DEBARRE, R. DONAGI, G. VAN DER GEER: Sur les fonctions thêta d'ordre 2 et les singularités du diviseur thêta. C. R. Acad. Sci. Paris t. 307, sér.I (1988), 481-484.
- [5] O. DEBARRE: Sur les variétés abéliennes dont le diviseur thêta est singulier en codimension 3. Duke math. J. 57 (1988), 221-273.
- [6] R. DONAGI: *The Schottky problem.* Theory of moduli (Montecatini Terme 1985), 84-137; Lecture Notes 1337, Springer-Verlag, Berlin-Heidelberg-New York (1988).
- [7] B. VAN GEEMEN, G. VAN DER GEER: Kummer varieties and the moduli spaces of abelian varieties. Amer. J. of Math. 108 (1986), 615-642.
- [8] G. WELTERS: The surface C-C on Jacobi varieties and 2nd order theta functions. Acta math. 157 (1986), 1-22.