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CHAPTER 28

ON HIGHEST WHITTAKER MODELS AND INTEGRAL STRUCTURES

By Marie-France Vignéras

Abstract. We show that the integral functions in a highest Whittaker model of an irreducible integral
Q�-representation of a p-adic reductive connected group form an integral structure.

Introduction. This work is motivated by a question of E. Urban (March
2001) for the group Sp(4). The fact that the integral Whittaker functions form an
integral structure is an ingredient at the nonarchimedean places for deducing con-
gruences between Eisenstein series and cuspidal automorphic forms from congru-
ences between special values of L-functions using the theory of Langlands-Shahidi.
Many fundamental and deep theorems in the theory of Whittaker models and of
L-functions attached to automorphic representations of reductive groups with arith-
metical applications are due to Joseph Shalika and his collaborators, or inspired
by him. Whittaker models and their generalizations as the Shalika models have
become a basic tool to study automorphic representations and they may become
soon a basic tool for studying congruences between them.

Let (F, G, �) be the triple formed by a local nonarchimedean field F of residual
characteristic p, the group G of rational points of a reductive connected F-group,
a prime number � different from p. We denote by Q� an algebraic closure of
the field Q� of �-adic numbers, Z� the ring of its integers, � the maximal ideal,
F� = Z�/�Z� the residual field (an algebraic closure of the finite field F� with
�-elements), ModQ�

G the category of Q�-representations of G, IrrQ�
G the subset

of irreducible representations. All representations (π, V ) of G are smooth: the
stabilizer of any vector v ∈ V is open. The dimension of a representation of G is
usually infinite.

However, a reductive p-adic group tries very hard to behave like a finite group.
A striking example of this principle is the strong Brauer-Nesbitt theorem:

Theorem 1. Let (π, V ) be a Q�-representation of G of finite length, which
contains a G-stable free Z�-submodule L. Then the Z�G-module L is finitely gen-
erated, L/�L has finite length and the semi-simplification of L/�L is independent
of the choice of L.

This is a stronger version of the Brauer-Nesbitt theorem in [V II.5.11.b] because
the hypotheses (loc. cit.) contained the property that the Z�G-module L is finitely

Manuscript received September 24, 2001, revised July 7, 2002.

773



P1: FMK

PB440-28 HIDA-0662G PB440-Hida-v4.cls November 7, 2003 14:9

marie-france vignéras774

generated and Z�-free. Here we prove that the Z�-freeness of L implies that L is
Z�G-finitely generated.

A representation (π, V ) ∈ ModQ�
G is called integral when the vector space V

contains a G-stable free Z�-submodule L containing a Q�-basis, and L is called an
integral structure.

There is not yet a standard notation for the Whittaker models. Our notation is
the following. A Whittaker Q�-representation of G is associated to a pair (Y, µ)
where Y is a nilpotent element of Lie G and µ is a cocharacter of G related by
Ad µ(x)Y = x−2Y for all x ∈ F∗. The Whittaker Q�-representation of G is an in-
duced representation IndG

N �, where N is the unipotent subgroup of G defined by
the cocharacter µ and � is an admissible irreducible representation (character or an
infinite dimensional metaplectic representation) of N defined by the nilpotent ele-
ment Y [MW]. The contragredient (N , �̃) of (N , �) is associated to (−Y, µ). When
Y = 0, � is the trivial character of N . When Y is regular, i.e., the dimension d(Y ) of
the nilpotent orbit O = Ad G, Y is maximal among the dimensions of the nilpotent
orbits of Lie G, N is a maximal unipotent subgroup and � is a generic character
of N ; the corresponding Whittaker Q�-representation of G is called generic. We
need the assumption that the characteristic of F is 0 and p �= 2 in order to refer to
[MW]. It is clear that a generic Whittaker Q�-representation of G can be defined
without any assumption on F .

Let π ∈ ModQ�
G, which may fail to be irreducible. A Whittaker model of π

associated to (Y, µ) is a subrepresentation of IndG
N � isomorphic to π , if there exists

one. If π has a model in a generic Whittaker Q�-representation of G, then π is called
generic and the model is called a generic Whittaker model. The “highest Whittaker
models” of π are the Whittaker models of π associated to (Y, µ) when the nilpotent
orbit O is maximal among the nilpotent orbits of Lie G associated to the Whittaker
models of π , when π has a Whittaker model. When π is irreducible and generic,
the generic Whittaker models are the highest Whittaker models of π .

When π is irreducible, the characteristic of F is 0 and p �= 2, a Whittaker
model with our definition which is called a degenerate Whittaker model in [MW];
the set of Whittaker models of π is not empty [MW].

We relate now the Whittaker models with the integral structures. The repre-
sentation � has a natural integral structure L� but the induction does not respect
integral structures: in general, the Z�G-submodule IndG

H L� is not Z�-free and
does not generate IndG

N �, and the Whittaker representation IndG
H � is not integral.

However, we have the following remarkable property.

Theorem 2. Let π ∈ ModQ�
G admissible and let V ⊂ IndG

N � be a highest
Whittaker model of π . Then the two following properties (1) and (2) are equivalent:

(1) π is integral.
(2) The functions in V with values in L� form an integral structure of π .

Under the restriction on (F, π ), the characteristic of F is 0 and p �= 2, π is
irreducible.
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When V is a generic Whittaker model of π , the equivalence is true without
restriction on (F, π ).

As (2) implies clearly (1), the key point is to show that (1) implies (2). We
prove that (1) implies (2) iff any element v of V has a denominator, i.e., the values
of a multiple of v belong to L� (II.5), and we give two general criteria A, B for this
property (II.6 and II.7).

Criterion A given in (II.6) is that (π, V ) contains an integral structure L such
that the �-coinvariant p�L is Z�N -finitely generated. This is an integral version
of the fact that the �-coinvariant p�V is finite dimensional (Moeglin and Wald-
spurger) when V is a highest Whittaker model of π ∈ IrrQ�

G attached to (N , �). To
explain the method due to Rodier, let us suppose that � is a character. One approx-
imates (N , �) by characters χn of open compact pro-p-subgroups Kn of G. The
key point is to prove that the projection p� on the (N , �)-coinvariants restricts to
an isomorphism enV � p�V , where en is the projector on the (Kn, χn)-invariants,
when n is big enough. Recall that V is admissible, hence p�V is finite dimensional.
The tool to prove the isomorphism is the expansion of the trace of π around 1. As
en L is a lattice of enV for any integral structure L of (π, V ), criterion A is satisfied
if p� restricts to an isomorphism en L � p�L . This is proved in Section III by a
careful analysis of the proof of [MW].

Compact induction behaves well for integral structures. A compact Whittaker
representation indG

H � is integral and indG
H L� is an integral structure. The

Whittaker representation IndG
N � is the contragredient of the compact Whittaker

representation indG
N �̃, where �̃ is the contragredient of � because � is admissible

and N unimodular. The criterion B given in (II.7) is a property of the K -invariants
of indG

N L̃� as a right module for the Hecke algebra of (G, K ) when K is an open
compact subgroup of G. It is an integral version of a finiteness theorem: the com-
ponent of indG

N �̃ in any Bernstein block is finitely generated. In the generic case
and without restriction on (F, π ), this has been recently proved by Bushnell and
Henniart [BH 7.1]. Their proof is well adapted to criterion B and one can, af-
ter some simplifications, obtain that a generic compact Whittaker representation
satisfies criterion B. This is done in Section IV.

For a generic irreducible representation with the restriction on F , we get two
very different proofs of the Theorem 2, using criteria A and B. For GL (n, F)
with no restriction on F , when the representation is also cuspidal, a third proof
was known and showed that modulo homotheties, the Kirillov model is the unique
integral structure [V4]. The Kirillov integral model was used for GL (2, F) to prove
that the semi-simple local Langlands correspondence modulo � is uniquely defined
by equalities between ε factors [V6]. The characterization of the local Langlands
correspondence modulo � in the general case n > 2 by L and ε factors remains
open. Probably the case n = 3 is accessible.

As noticed by Jacquet and Shalika for GL (n, F), the Whittaker models of
representations induced from tempered irreducible representations are useful. Being
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aware of future applications, we did not consider only integral models of irreducible
representations. The criteria A, B, as well as Theorem 1 and the generic case of
Theorem 2 are given for representations that may fail to be irreducible.

In the appendix, we compare, for a representation V of G over an algebraically
closed field R of characteristic �= p, the three properties:

(i) the rightHR (G, K )-modules V K are finitely generated for the open compact
subgroups K of G;

(ii) the components of V in the blocks of ModR G are finitely generated;

(iii) the irreducible quotients of V have finite multiplicity.

The criterion A is an integral version of (iii), the criterion B is an integral version
of (i). The property (i) is equivalent (ii) in the complex case [BH] and it is clear that
(ii) implies (iii) but is not equivalent. We give a proof of the equivalence between
(i) and (ii) in the modular case, and in the complex case we give certain properties
of V and of its Jacquet functors implying the equivalence between (ii) and (iii).
For instance, the complex representation of GL (2, F) compactly induced from a
character of a maximal (split or not split) torus and its coinvariants by a unipotent
subgroup satisfy this properties. This representation introduced by Waldspurger
and studied also by Tunnel, plays a role in the arithmetic theory of automorphic
forms.

Acknowledgments. I thank the Institute for Advanced Study for its invitation
during the spring term 2001, where this work started and was completed in the
best possible conditions. I thank Guy Henniart and Steve Rallis for discussions on
Gelfand-Graev-Whittaker models. I thank also the C.N.R.S. for the delegation that
allows me to come here and to do research full-time for one year.

I. Proof of the strong Brauer-Nesbitt theorem. Let (π, V ) be a finite length
Q�-representation of G which contains a G-stable free Z�-submodule L . We will
prove that the Z�G-module L is finitely generated. The rest of the theorem follows
from the Brauer-Nesbitt theorem proved in [V II.5.11.b].

The proof uses an unrefined theory of types for G as in [V II.5.11.b]. One can
take either the mottes [V1] or the more sophisticated Moy-Prasad types.

The subrepresentation π ′ of π generated by L has finite length and we may
suppose that π = π ′ is generated by L .

One may replace Z� by the ring of integers OE of a finite extension E of Q�

as in [V II.4.7]. What is important is that OE is a principal local ring. Let pE be a
generator of the maximal ideal, let kE := OE/pE OE be the residual field.

The theory of unrefined types shows that L/pE L ∈ ModkE G has finite
length because it contains only finitely many unrefined minimal types modulo G-
conjugation ([V II.5.11.a], where the condition OE G-finitely generated is useless).
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Let m be the length of L/pE L . We will prove the Z�G-module L is generated by m
elements.

We cannot conclude immediately because the free OE -module L is usually
not of finite rank. As � �= p, the open compact pro-p-subgroups K of G form a
fundamental system of neighborhoods of 1. The finite length Q�-representation
(π, V ) of G is admissible: for any open compact pro-p-subgroup K of G, the E-
dimension of the vector space V K is finite. The OE -modules L K are free of finite
rank. By smoothness we have L = ∪K L K .

The kE G-module L/pE L is generated by m elements w1, . . . , wm . We lift these
elements arbitrarily to v1, . . . , vm in L and we consider the OE G-submodule L ′ of
L that they generate. As OE is principal and L is OE -free, the OE -submodule L ′

of L is OE -free. We have by construction

L = L ′ + pE L .

The OE -modules L
′ K , L K are free of finite rank and L K = L

′ K + pE L K . The
theory of invariants for free modules of finite rank over a principal ring implies that
L

′ K = L K . As L = ∪K L K , L ′ = ∪K L
′ K , we deduce L = L ′. Thus Theorem 1 is

proved.

II. Integral structures in induced representations (criteria A and B). The
framework of this section is very general, R is a commutative ring and G is a locally
profinite group that contains an open compact subgroup C of pro-order invertible
in R, such that G/C is countable. The criteria A and B are given in (II.6) and (II.7).
The proofs are given at the end of the section.

II.1. We fix the notations:

ModR is the category of R-modules;

ModR G is the category of smooth representations of G on R-modules;

IrrR G is the subset of irreducible representations;

H is a closed subgroup of G;

OE is a principal ring with quotient field E ;

(�, W ) ∈ ModE H of countable dimension;

IndG
H (�, W ) ∈ ModE G is the space of functions f : G → W right invariant

by some open compact subgroup K f , with functional equation f (hg) = �(h) f (g)
for h, g ∈ H, G, with the action of G by right translations;

indG
H (�, W ) ∈ ModE G is the compactly induced representation, subrepresen-

tation of IndG
H (�, W ) on the functions f with compact support modulo H .

We often forget the module V or the action π in the notation (π, V ) of a
representation.
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The induced representation IndG
H � and the compactly induced representation

indG
H � can be equal even when G is not compact modulo H . There are two typical

examples with indG
H � = IndG

H �:

– a metaplectic representation [MVW I.3, I.6]: G is a p-adic Heisenberg group
of center Z , H is a maximal commutative subgroup of G, � �= p a prime number,
E is the field generated over Q� by the roots of 1 of order any power of p (the ring
of integers OE is principal), � is an E-character of H nontrivial on Z .

– a cuspidal representation [V5]: G is a p-adic connected reductive group, H
is the normalizer in G of a maximal parahoric subgroup K , R is an algebraically
closed field of characteristic �= p, � ∈ IrrR H such that �|K contains the inflation
of a cuspidal irreducible representation of the quotient K/K p (a finite connected
reductive group).

A representation (π, V ) ∈ ModE G is called OE -integral when it contains an
OE -integral structure L , i.e., a G-stable OE -free submodule L that contains an
E-basis of V .

II.2. Let L be an OE -integral structure of a representation (π, V ) ∈ ModE G
and let (π ′, V ′) be a subrepresentation of (π, V ). Then L ′ := L ∩ V is an OE -
integral structure of (π ′, V ′).

This is a basic fact with an easy proof: clearly L ′ is G-stable; as OE is principal
and the OE -module L is free, the OE -submodule L ′ ⊂ L is free; if (vi )i∈I is a basis
of V ′ then for each i ∈ I there exists ai ∈ OE such that vi ai ∈ L hence vi ai ∈ L ′.
Therefore L ′ is an OE -integral structure of V ′.

In contrast with (II.2): a quotient of an integral representation is not always
integral. A counter-example is given after (II.3).

We suppose in this section that (�, W ) ∈ IrrE H is OE -integral with an
OE -integral structure LW . The proofs are given at the end of the section. Are
the induced representations IndG

H � and indG
H � integral? In general, the induced

representation without condition on the support is not integral by (II.2) because
IndG

H � may contain a nonintegral irreducible representation. This contrasts with
the compactly induced representation indG

H �, which is integral.

Proposition II.3. indG
H LW is an OE -integral structure of indG

H (�, W ).

The integral representation indG
H � may have nonintegral quotients: ind

Q∗
p

1 1E

is integral but there are characters of Q∗
p with values not contained in O∗

E .
The OE -module IndG

H LW is clearly G-stable. But when indG
H � �= IndG

H �, the
OE -module IndG

H LW is not free and does not contain a basis of IndG
H W . Hence the

following property is particularly nice:

Proposition II.4. For any admissible subrepresentation (π, V ) of IndG
H

(�, W ), the OE -module V ∩ IndG
H LW is free or zero.
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Clearly V ∩ IndG
H LW is G-stable, hence V ∩ IndG

H LW is an OE -integral struc-
ture of (π, V ) if and only if any element of V has a nonzero multiple in IndG

H LW :

Denominators. Let (π, V ) ⊂ IndG
H (�, W ). We say that v ∈ V has a denom-

inator if there exists a ∈ OE nonzero with av ∈ IndG
H LW . We say that V has a

bounded denominator if there exists a ∈ OE nonzero and an E-basis of V with
av ∈ IndG

H LW for all v in the basis.

Two OE -integral structures LW , L ′
W of (�, W ) ∈ IrrE H are commensurable:

aLW ⊂ L ′
W ⊂ bLW , for some a, b ∈ OE

and the definition of a denominator or of a bounded denominator does not depend
on the choice of LW . Any element of V has a denominator iff every element in a set
of generators of V has a denominator. If (π, V ) is finitely generated, any element
of V has a denominator iff V has a bounded denominator; this is false if (π, V ) is
not finitely generated. From (II.4) we deduce:

Corollary II.5. Let (π, V ) ∈ ModE G admissible contained in IndG
H (�, W ).

Then any element of V has a denominator iff V ∩ IndG
H LW is an OE -integral

structure of (π, V ).

We give two criteria A in (II.6), B in (II.7) for this property.

II.6. Criterion A uses the H -equivariant projection

p� : V → V�

on the �-coinvariants V� of (π, V ) ∈ ModE G; by definition V� is the maximal
semi-simple �-isotypic quotient of the restriction of (π, V ) to H .

Criterion A. Let (π, V ) ∈ ModE G contained in IndG
H (�, W ). If (π, V ) con-

tains an OE -integral model L such that the OE H-module p�L is finitely generated,
then V has a bounded denominator.

Criterion A is equivalent to: V� is isomorphic to a finite sum ⊕m(π )� and p�L
is an OE -structure of V�. This is clear except may be the OE -freeness of p�L that
results from the fact that OE is principal and that a multiple of p�L is contained in
the OE -integral structure of V� defined by LW . By adjunction

m(π ) = dimE HomEG
(
π, IndG

H �
)
.

Criterion A is an integral version of the finite multiplicity of π in IndG
H �.

In the section III, for (F, G, �) as in the introduction under the restriction on
F given in the Theorem 2, we will prove that any highest Whittaker model of
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(π, V ) ∈ IrrQ�
G satisfies the criterion A. As (π, V ) is admissible, it follows that

(1) implies (2) in Theorem 2.

II.7. Criterion B uses the Hecke algebras. One denotes by �R an isomor-
phism of R-modules. For any open compact subgroup K of G, one defines the Hecke
R-algebra of (G, K ),

HR(G, K ) := EndRG R[K\G] �R R[K\G/K ].

For g ∈ G, the RG-endomorphism of R[K\G] sending the characteristic function
of K to the characteristic function of K gK identifies with the natural image [K gK ]
of K gK in R[K\G/K ]. The set V K of K -invariants of (π, V ) ∈ ModR G, has
a natural structure of right HR(G, K )-module, which satisfies for any v ∈ V K ,

g ∈ G:

(1) v ∗ [K gK ] =
∑

h

π (h)−1v,

where K gK = ∪h K h (disjoint union).

Criterion B. We suppose that the HOE (G, K )-module (indG
H LW )K is finitely

generated for all K in a separated decreasing sequence of open compact sub-
groups of G of pro-order invertible in OE . Let (π, V ) ∈ ModE G be a quotient
of indG

H (�, W ). Then (π, V ) is OE -integral iff the image of indG
H LW in V is an

OE -integral structure of (π, V ).

Criterion B does not depend on the choice of LW . There is no restriction
on (π, V ). Its application to the integral structures of subrepresentations of IndG

H
(�, W ) is obtained by using the contragredient (II.8.3); for the contragredient, we
need to restrict to admissible representations.

Criterion B implies that the HE (G, K )-modules (indG
H �)K are finitely gener-

ated. This implies that for any admissible representation(π, V ) ∈ ModE G,

mK (π ) := dimE HomHE (G,K )
((

indG
H �

)K
, π K

)
< ∞.

The converse is false in general, the finite multiplicity mK (π ) < ∞ for all (π, V ) ∈
ModE G does not implies that the HE (G, K )-modules (indG

H �)K are finitely
generated.

For (F, G, �) as in the introduction, we will prove in (IV.2.1) that any generic
compact Whittaker Q�-representation of G satisfies the Criterion B. Therefore (1)
implies (2) in the Theorem 2 for any generic admissible representation, without
restriction on F .

II.8. We recall some general properties of the contragredient. The contragre-
dient (π̃ , Ṽ ) ∈ ModR G of an R-representation (π, V ) ∈ ModR G of G is given the
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natural action of G on the smooth linear forms of V [V2, I.4.12]. The representation
(π, V ) is called reflexive when (π, V ) is the contragredient of (π̃ , Ṽ ).

The contragredient ˜ : ModE G → ModE G is exact [V I.4.18] and relates the
induced representation to the compactly induced representation

(
indG

H �
)̃ � IndG

H (�˜ ⊗ δH ),

where δH is the module of H [V2, I.5.11].
Admissible representations of ModE G are reflexive and conversely [V2,

I.4.18]. Note that the induced representations IndG
H �, indG

H � are not admissible
in general. To apply the Criterion B to a subrepresentation (π, V ) of IndG

H (�, W ),
we suppose (π, V ) and (�, W ) admissible so that:

(
indG

H �̃ ⊗ δ−1
H

)̃ � IndG
H �

and (π̃ , Ṽ ) is a quotient of indG
H (�̃ ⊗ δ−1

H , W̃ ).
The assertion on the quotient results from a property (II.8.1) of the following

isomorphism [V2, I.4.13]: Let V1, V2 ∈ ModR G, then there is an isomorphism

HomRG(V1, Ṽ2) � HomRG(V2, Ṽ1)

sending f ∈ HomRG(V1, Ṽ2) to φ ∈ HomRG(V2, Ṽ1) such that

< f (v1), v2 >=< v1, φ(v2) > for all v1 ∈ V1, v2 ∈ V2

(for ṽ ∈ Ṽ , v ∈ V , one denotes ṽ(v) by < ṽ, v > or by < v, ṽ >).

II.8.1. Suppose that R is a field. If φ is surjective then f is injective; if V1 is
admissible then the converse is true.

An integral OE -structure L (II.1) of an admissible representation
(π, V ) ∈ ModE G is an admissible integral OE -structure in the sense of [V2, I.9.1-
2] and conversely. The contragredient L̃ of L in ModOE G is an OE -structure of
(π̃ , Ṽ ) [V2, I.9.7], and L is reflexive in ModOE G, i.e., the contragredient of L̃ is
equal to L . These results are false without the admissibility.

The values of the module δH are units in OE hence L̃W ⊂ W̃ is stable by the
action of �̃ ⊗ δ−1

H . The OE -module L̃W is an OE -integral structure of (�̃ ⊗ δ−1
H , W̃ ).

The space of indG
H (�̃ ⊗ δ−1

H , L̃W ) ∈ ModOE G is the OE -module of functions f ∈
indG

H (�̃ ⊗ δ−1
H , W̃ ) with values in L̃W .

indG
H (�̃ ⊗ δ−1

H , L̃W ) is an OE -integral structure of indG
H (�̃ ⊗ δ−1

H , W̃ ) by (II.3).

(IndG
H �, IndG

H LW ) is the contragredient of indG
H (�̃⊗ δ−1

H , L̃W ) by [V2, I.5.11].

But IndG
H LW is not an OE -integral structure of IndG

H (�, W ) in general.
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We deduce:
Let (π, V ) ∈ ModE G admissible, OE -integral, and contained in IndG

H (�, W ).
Then (π̃ , Ṽ ) ∈ ModE G is admissible, OE -integral, and a quotient of indG

H (�̃ ⊗
δ−1

H , W̃ ).
The image L ′ of indG

H (�̃ ⊗ δ−1
H , L̃W ) in Ṽ is always nonzero. When L ′ is an

OE -integral structure of (π̃ , Ṽ ), then L̃ ′ is an OE -integral structure of (π, V ).

Proposition II.8.2. Let (�, W ) ∈ IrrE H admissible and let (π, V ) ∈ ModE G
admissible contained in IndG

H (�, W ) and OE -integral. The following properties
are equivalent:

– L := V ∩ IndG
H LW contains an E-basis of V ,

– the image L ′ of indG
H (�̃ ⊗ δ−1

H , L̃W ) in Ṽ is OE -free.

– L , L ′ are OE -integral structures of (π, V ), (π̃ , Ṽ ), contragredient of each
other.

Remarks: (i) When π is irreducible, the first property is equivalent to L �= 0.
(ii) When L ′ is OE G-finitely generated, the second property is satisfied be-

cause a multiple of L ′ is contained in an OE -integral structure of (π̃ , Ṽ ) and OE is
principal.

With Criterion B (II.7) we deduce:

Corollary II.8.3. Suppose that theHOE (G, K )-module indG
H (�̃ ⊗ δ−1

H , L̃W )K

is finitely generated for all K as in (II.7). Let (π, V ) ⊂ IndG
H (�, W ) admissible.

Then (π, V ) is OE -integral iff V ∩ IndG
H LW is an OE -integral structure of (π, V ).

Proofs of II.3, II.4, II.6, II.7, II.8.

Proof of II.3. Let K be an arbitrary open compact subgroup of G of pro-order
invertible in OE . We have the Mackey relations [V2, I.5.5]:

(II.3.1)
(

indG
H W

)K = ⊕HgK indHgK
H W, indHgK

H W �R W H∩gK g−1
.

The hypotheses on G, H, W insure that the dimension of indG
H W = ∪K (indG

H W )K

is countable. The relations (II.3.1) are valid for any OE -representation of H . We
apply them to LW ∈ ModOE H . As OE is principal and LW is an OE -free module

that generates W , the OE -module L H∩gK g−1

W is free and generates W H∩gK g−1
. We

deduce that the OE -module (indG
H LW )K is free and contains a basis of (indG

H W )K .
As K is arbitrary, this implies that indG

H LW contains a basis of the vector space
indG

H W and is free as an OE -module, by the characterization of free modules on a
principal commutative ring [V2, I.9.2 or I.C.4]. �
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Proof of II.4. Let (ei )i∈I be an OE -basis of (indG
H LW )K . We have

(
IndG

H W
)K =

∏
i∈I

Eei ,
(

IndG
H LW

)K =
∏
i∈I

OE ei .

We suppose, as we may, IndG
H W �= indG

H W ; the set I is infinite and countable. The
E-dimension N of V K if finite because V is admissible. Let (v j )1≤ j≤N be an E-
basis of V K . We write v j = ∑

i∈I x j,i ei with x j,i ∈ E, and the support of the map
i → x j,i is finite. We can extract a square submatrix A = (x j,i ) for i = i1, . . . , iN

and 1 ≤ j ≤ N of nonzero determinant; the projection p : V K → ⊕1≤k≤N Eeik is
an isomorphism. The projection p restricts to an injective OE -homomorphism

V K ∩ (
IndG

H LW
)K = (

V ∩ IndG
H LW

)K → ⊕1≤k≤N OE eik .

As OE is principal, the OE -submodule p(V ∩ IndG
H LW )K of ⊕1≤k≤N OE eik is OE -

free or zero. This is true for all K and we deduce that V ∩ IndG
H LW is OE -free or

zero as in the proof of II.3. �

Proof of II.6. The value at 1 defines an H -equivariant nonzero linear form
V → W, and hence factorizes through p�V . There exists an H -equivariant linear
map q : p�V → W such that v(1) = q ◦ p�(v) for all v ∈ V . As V� is semi-simple,
q splits and we can suppose that q corresponds to the first projection ⊕m(π )W → W .

By hypothesis p�(L) is OE H -finitely generated, the same is true for its image
by the H -equivariant linear map q, therefore there exists a ∈ OE such that a(q ◦
p�)L ⊂ LW . Let (v, g) ∈ L × G arbitrary. We have v(g) = gv(1) = q ◦ p�(gv)
and gv ∈ L , hence av(g) ∈ LW , that is, aL ⊂ IndG

H LW . As L contains an E-basis
of V , V has a bounded denominator. �

Proof of II.7. We suppose that (π, V ) is OE -integral. We want to prove that the
image L of indG

H LW in V is an OE -integral structure of (π, V ). Clearly L is G-stable
and generates the E-vector space V . The only property that needs some argument
is the OE -freeness of L . As in the proofs of (II.3) and of (II.6) it is equivalent to
prove that L K is contained in a OE -free module for all K , as in the Criterion B with
V K �= 0. This results from the fact that the right HOE (G, K )-module L K is finitely
generated, being the quotient of (indG

H LW )K ( as p �= �, the K -invariant functor is
exact), hence a multiple of L K is contained in an OE -structure of (π, V ), and OE

is principal. �

Proof of II.8.1. f is not injective iff there exist v1 ∈ V1 nonzero such that
f (v1) = 0, i.e., < φ(v2), v1 >= 0 for any v2 ∈ V2. Let K be an open compact
subgroup of G of pro-order invertible in R such that v1 ∈ V K

1 . Then (Ṽ1)K is the
linear dual of V K

1 , and as we supposed that R is a field, there exists a linear form
of V K

1 that does not vanish on v1. Hence φ is not surjective.
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φ is not surjective iff there exists K , as above, such that φ(V2)K is not the linear
dual of V K

1 . Suppose V1 admissible. The vector spaces V K
1 are finite dimensional

and φ(V2)K is not the linear dual of V K
1 iff there exists v1 ∈ V K

1 nonzero such that
φ(V2)K vanish on v1. Hence f is not injective. �

Proof of II.8.2. (a) By definition L = V ∩ IndG
H LW and L ′ is the image in Ṽ

of indG
H L̃W (we supressed �, �̃ ⊗ δ−1

H to simplify).
An element v ∈ IndG

H W belongs to IndG
H LW iff < v, φ >∈ OE for all φ ∈

indG
H (L̃W ), because IndG

H (�, LW ) is the contragredient of indG
H (�̃ ⊗ δ−1

H , L̃W ). An
element φ ∈ indG

H (W̃ ) acts on V via the quotient map indG
H (W̃ ) → Ṽ .

We deduce that L is the set of v ∈ V such that < v, φ >∈ OE for all φ ∈
indG

H (L̃W ) and < L ′, L >⊂ OE .
(b) Suppose that L ′ is OE -free. Then L ′ is an OE -integral structure of (π̃ , Ṽ ).

Its contragredient L̃ ′ is equal to L by the above description of L . Hence L = L̃ ′ is
an OE -integral structure of (π, V ).

(c) Suppose that L contains an E-basis of V , that is, by (II.4), L is an OE -
integral structure of (π, V ). Its contragredient L̃ is an OE -integral structure of Ṽ .
By the last formula in (a), L ′ ⊂ L̃ hence L ′ is OE -free because OE is principal.
From (b) we deduce that L ′ is the OE -integral structure of (π̃ , Ṽ ) contragredient
to L . �

III. Integral highest Whittaker model. Let (F, G, �) be as in the intro-
duction with the restriction: the characteristic of F is zero and p �= 2.

We define a Whittaker data and a Whittaker representation following [MW].
We choose:

(a) A continuous homomorphism φ : F → C∗, trivial on OF but not on
p−1

F OF .

(b) A nondegenerate Ad G-invariant bilinear form B : G × G → F on the Lie
algebra G of G.

(c) An exponential exp : V(0) → V (1), which is a bijective G-equivariant
homeomorphism defined on an Ad G-invariant open closed subset V(0) of G con-
taining the nilpotent elements with image an G-invariant open closed subset V (1)
of G, with inverse a logarithm log : V (1) → V(0).

(d) A nilpotent element Y of G of orbit O = Ad G.Y .

(e) A cocharacter µ : F∗ → G of G defining via the adjoint action a grading
of the Lie algebra G = ⊕i∈Z Gi ,

Gi := {X ∈ G | Ad µ(s).X = si X for all s ∈ µ(F∗)}

such that Y ∈ G−2. Set G≥? := ⊕i≥? Gi and ?i := Gi∩?.
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Clearly the grading is finite, [Gi ,G j ] ⊂ Gi+ j and B(Gi ,G j ) = 0 if i + j �= 0.
The centralizer GY := {Z ∈ G | [Y, Z ] = 0} of Y in G satisfies B(Y,GY ) = 0 [MW,
p. 438]. There is a unique µ(F∗)-invariant decomposition

G = M ⊕ GY

and M = ⊕i∈ZMi , GY = ⊕i∈ZGY
i . The skew bilinear form

BY (X, Z ) := B(Y, [X, Z ]) : G × G → F

has a radical {Z ∈ G | B(Y, [X, Z ]) = 0 for all X ∈ G} equal to GY . Therefore BY

induces a duality between Mi and Mi+2 for all i ∈ Z and a symplectic form on
M1. The dimension of M1 is an even integer 2m1.

(f) An OF -lattice M1(OF ) of M1, which is self-dual for B:

M1(OF ) = {m ∈ M1 | BY (m,M1(OF )) ⊂ OF}.
The group N := expG≥1 is unipotent and depends only on the choice of µ and

exp. We consider the open subgroup H of N and the character χ of H defined by:

H := exp
(
M1(OF ) ⊕ GY

1 ⊕ Gi≥2
)
, χ (exp X ) := φ(B(Y, X )).

Clearly H = N iff M1 = 0, and χ (exp X ) = χ (exp X2), where X2 is the com-
ponent of X in M2. The character χ does not change if (φ, B) is replaced by
(φa, a−1 B), where φa(x) := φ(ax) with a ∈ O∗

F .

Definition III.1. We call (φ, B, exp, Y,O, µ,M1(OF )) a Whittaker data of G
and

IndG
H χ = IndG

N �, where � := IndN
H χ

a Whittaker representation of G.

When H �= N the representation � is a metaplectic representation of the
Heisenberg group H/ Ker χ . The representation � is irreducible and admissible
[MVW chapter 2, I.6 (3)] and its isomorphism class does not depend on the choice
of M1(OF ). The isomorphism class of the Whittaker representation depends only
on (Y, µ) when (φ, B, exp) are fixed, and does not change if (Y, µ) is replaced by
a G-conjugate.

The complex field C appears only in the definition of the nontrivial additive
character φ of F . The same definitions can be given over any field (or even a
commutative ring) R, which contains roots of 1 of any p-power order.

We define the highest Whittaker models of (π, V ) ∈ IrrQ�
G as in the introduc-

tion. When V ⊂ IndG
H χ is a highest Whittaker model of π , we want to show that

the projection on the (H, χ )-coinvariant vectors

pχ : V → Vχ

behaves well with integral structures.
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Theorem III.2. Let (π, V ) ∈ IrrQ�
G integral with V ⊂ IndG

H χ a highest

Whittaker model. Let L be a Z�-integral structure of (π, V ). Then pχ L is a Z�-free
module.

As pχ V is a finite dimensional Q�-space by Moeglin and Waldspurger, and
as pχ L is a Z�-integral structure (a lattice) of pχ V by the Theorem III.2, (π, V )
satisfies the criterion A, modulo the fact that Z� is not a principal ring. But we may
replace (Z�, Q�) by (OE , E), where OE is the ring of integers of a finite extension
E/Q�(µp∞) such that π is defined over E , where µp∞ is the group of roots of 1 of
any order of p in Q�. The extension Q�(µp∞)/Q� is infinite and unramified hence
OE is principal.

Therefore (III.2) implies the Theorem 2 of the introduction under the restric-
tions on (F, π ). The theorem (III.2) results from (III.4.6) and the remark following
(III.4.3). The rest of the section III is devoted to the proof of (III.2).

The fundamental idea due to Rodier is to approximate the character χ of H by
characters χn of open compact subgroups Kn with the property that the projections
en on the (Kn, χn)-invariant vectors approximate the projection pχ on the (H, χ )-
coinvariant vectors in the following sense: when n is big enough, pχ restricts to
an isomorphism enV → pχ V . We want to prove the same thing for an integral
structure L instead of V . There is not much to add to the original proof for V , only
another technical computation (III.4.1), and this is the purpose of this section.

III.3. We recall the construction of the geometric approximation (Kn, χn)
of (H, χ ) following [MW I.2 (2), I.4 (1), I.9, I.13] (our χn is not the character
χn of [MW]). Set t := µ(pF ). We choose a lattice L of G such that [L,L] ⊂ L
and we complete M1(OF ) to a self-dual lattice M(OF ) = ⊕iMi (OF ) of M. The
OF -module

L′ := M(OF ) ⊕ ⊕i∈Z
(
L ∩ GY

i

)
is an OF -lattice of G. For a big enough fixed integer A and a fixed integer c ≥ A,
we set for all n ≥ A

Gn := exp
(

pn
FL′), An := exp

(
p[n/2]+c

F (L ∩ G1)Y
)
, Kn := t−n(Gn An)tn

ξn(exp X ) = χn(t−n exp(Z1) exp(X )tn) := φ
(

p−2n
F B(Y, X )

)

for all X ∈ pn
FL′, Z1 ∈ p[n/2]+c

F (L ∩ G1)Y , where [n/2] is the smallest integer ≤
n/2. The particular form of Kn will be explained soon.

We set N ′ := exp(GY
1 ⊕ Gi≥2). The Campbell-Hausdorff formula shows that N ′

is a normal subgroup of H . The closed subgroup C of H generated by exp(M1(OF ))
is compact and H = C N ′. The character χ of H is trivial on C . The sequence
(Kn, χn)n≥A is an approximation of (H, χ ) in the following sense:
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Kn = (Kn ∩ P−)(Kn ∩ H ) = (Kn ∩ H )(Kn ∩ P−) [MW I.4] where P− is the
stabilizer in G of ⊕i<0Gi , the sequence of groups Kn ∩ P− is decreasing with
trivial intersection, the sequence of groups Kn ∩ H = C(Kn ∩ N ′) is increasing
with union H , the restriction of χn to Kn ∩ P− is trivial and χn = χ on Kn ∩ H .

The sequence of open compact subgroups Gn of G is decreasing with trivial
intersection, and ξn is a character of Gn . A basic property of (Gn, ξn) is [MW I.6]:

III.3.1. For any integers A ≤ m ≤ n, the group Gn is normal in Gm and the
stabilizer of ξn in Gm is equal to Gn exp(pm

FLY ).
We introduce now an admissible representation (π, V ) ∈ ModQ�

G. Let In be
the projection of V on its (Gn, ξn)-invariant vectors. The dimension of the Q�-vector
space InV is finite. The profinite group exp(pc+[n/2]

F LY ) acts on InV by (III.3.1). The
action is trivial iff the trace trIn V u of the action of any element u ∈ exp(pc+[n/2]

F LY )
is equal to dim InV .

Suppose that (π, V ) is irreducible hence admissible. When n is big enough,
trIn V u can be computed using the expansion of the trace tr π of π around 1. The
computation simplifies when the nilpotent orbit O is maximal among the nilpotent
orbits with a nonzero coefficient. When O satisfies this property we say that O is
maximal for tr π . Then we have [MW I.13]:

III.3.2. Let (π, V ) ∈ IrrQ�
G. When O is maximal for tr π and when n is big

enough, the action of exp(pc+[n/2]
F LY ) on InV is trivial.

For two integers n, m ≥ A, we denote by In,m : InV → Im V the restriction to
InV of Imtm−n . In particular

In+1,n = Int−1 : In+1V → InV,

In,n+1 = In+1t : InV → In+1V .

The property [MW I.15]: “Let (π, V ) ∈ IrrQ�
G. When O is maximal for tr π

Au: Eq. ok as
set?

and when n is big enough, In+1,n In,n+1 In is a nonzero multiple of In” is used to
prove that the nilpotent orbits maximal for trπ are those maximal for the Whittaker
models [MW I.16] and that the dimension of the (H, χ )-coinvariants of (V, π ) is
equal to the coefficient attached to O in the expansion of trπ [MW I.17].

III.4. We give variants of this property that will be the key to prove (III.2).

Lemma III.4.1. Let (π, V ) ∈ ModQ�
G such that the action of exp(pc+[n/2]

F LY )
on InV is trivial when n is big enough. Then, when n ≥ no is big enough, there
exist integers b(n), b′(n) ≥ 0 such that

In+1,n In,n+1 In = pb(n) In, In,n+1 In+1,n In+1 = pb′(n) In+1.

We will prove in (III.4.2) that b(n) = b′(n).
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Proof of III.4.1. To simplify we set gv := π (g)v for g ∈ G, v ∈ V .

(a) It is proved in [MW I.15] under the hypothesis that π is irreducible but
without using this property, that for any wn ∈ InV , In+1,n In,n+1wn is the product
of a power of p and of a sum∑

h

ξn+1(h−1)t−1htwn,

where h ∈ Gn+1/(Gn+1 ∩ tGnt−1) and t−1ht stabilizes ξn . The number of terms
of the sum is a power of p. It is claimed in [MW I.15] that each term of the
sum is equal to wn when n is big enough; we deduce that there exists an integer
b(n) such that In+1,n In,n+1 In = pb(n) In . We give a proof of the claim because the
same method is used for the second equality of the lemma. Let h ∈ Gn+1 such
that t−1ht stabilizes ξn . The definition of Gn shows that if n is big enough, the
group t−1Gn+1t is contained in Gn+1−a for some integer a such that c + [n/2] ≤
n + 1 − a. There exists g ∈ Gn and y ∈ exp pn+1−a

F LY such that t−1ht = gy by
(III.3.1). By (III.3.2) y acts trivially on InV hence t−1htwn = gwn = ξn(g)wn .
Denote by X2 the component of log g in M2. Then

ξn(g) = φ
(

p−2n
F B(Y, X2)

) = φ
(

p−2n−2
F B(Y, Ad t.X2)

) = ξn+1(h).

Hence each term in the sum is equal to wn .

(b) We prove the second equality with the same method. For all n ≥ A,
we choose on Gn the Haar measure normalized by vol Gn = 1. By definition,
In,n+1 In+1,n In+1 = In+1t Int−1 In+1 is equal to∫

Gn+1

∫
Gn

∫
Gn+1

ξn+1(g′)−1ξn(h)−1ξn+1(g)−1g′tht−1g dg′ dh dg.

When h ∈ Gn ∩ t−1Gn+1t , the action of ξn(h)−1tht−1 on In+1V is trivial be-
cause ξn(h) = ξn+1(tht−1) as in (a). The volume of Gn ∩ t−1Gn+1t is a power of p.
The triple integral is the product of this volume and of:

∑
h∈Gn/(Gn∩t−1Gn+1t)

ξn(h)−1
∫

Gn+1

∫
Gn+1

ξn+1(g′)−1ξn+1(g)−1g′tht−1g dg′ dg.

The group tGnt−1 normalizes Gn+1, because tGnt−1 is contained in Gn−a and n −
a ≥ A when n is big enough. After the change of variables y = (tht−1)−1g′tht−1

and x = yg in Gn+1 we get
∑

h∈Gn/(Gn∩t−1Gn+1t)

ξn(h)−1tht−1
∫

Gn+1

∫
Gn+1

ξn+1(tht−1 y(tht−1)−1 y−1x)−1x dx dy,

which is equal to the product of a power of p and of

J :=
∑

h

ξn(h)−1tht−1
∫

Gn+1

ξn+1(x)−1x dx =
∑

h

ξn(h)−1tht−1 In+1,
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where h ∈ Gn/(Gn ∩ t−1Gn+1t) and tht−1 stabilizes ξn+1. The number of h is a
power of p. Let wn+1 ∈ In+1V . We have

Jwn+1 =
∑

h

ξn(h)−1tht−1wn+1

for h as above. As in (a), one shows that each term of the sum is equal to wn+1. Let
h ∈ Gn such that tht−1 stabilizes ξn+1. As in (a), tht−1 ∈ Gn−a and the stabilizer
of ξn+1 in Gn−a is Gn+1 exp pn−a

F LY with n − a > c + [(n + 1)/2] when n is big
enough. Hence tht−1 = gy for some g ∈ Gn+1 and the action of y on In+1V is
trivial. Hence tht−1wn+1 = gwn+1 = ξn+1(g)wn+1. Denote by X2 the component
of log g in G2. Then

ξn+1(g) = φ
(

p−2n−2
F B(Y, X2)

) = φ
(

p−2n
F B(Y, Ad t−1.X2)

) = ξn(h).

Hence each term in the sum is equal to wn+1. We deduce that there exists an integer
b′(n) such that In,n+1 In+1,n In+1 = pb′(n) In+1. The lemma is proved. �

For the application that we have in mind, we replace the projection In on the
(Gn, ξn)-invariant vectors by the projection en on the (Kn, χn)-invariant vectors in
the Lemma III.4.1, and we prove b(n) = b′(n).

Stabilization Lemma III.4.2. Let (π, V ) ∈ ModQ�
G such that the action of

exp(pc+[n/2]
F LY ) on InV is trivial when n is big enough. Then, when n ≥ no is big

enough, there exists an integer b(n) ≥ 0 such that

enen+1en = pb(n)en, en+1enen+1 = pb(n)en+1.

In particular, en+1 induces an isomorphism enV � en+1V of inverse p−b(n)en re-
stricted to en+1V .

Proof of III.4.2. Suppose that n is big enough. By (III.3) Kn = t−n Antn

t−nGntn , as t−n Antn acts trivially on t−n InV and as χn(t−ngtn) = ξn(g) for all
g ∈ Gn , we have

In = tnent−n.

The action of t on V is invertible hence InV = tnenV . We have

In+1,n = Int−1 = tnent−n−1 : tn+1en+1V → tnenV,

In,n+1 = In+1t = tn+1en+1t−n : tnenV → tn+1en+1V,

In+1,n In,n+1 = tnenen+1t−n : tnenV → tnenV,

In,n+1 In+1,n = tn+1en+1ent−n−1 : tn+1en+1V → tn+1en+1V,

In+1,n In,n+1 In = tnenen+1ent−n : V → tnenV,

In,n+1 In+1,n In+1 = tn+1en+1enen+1t−n−1 : V → tn+1en+1V .
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The equalities in III.4.1 are equivalent to

enen+1en = pb(n)en, en+1enen+1 = pb′(n)en+1.

We compute enen+1enen+1 in two different ways using the two equalities. We get
pb(n)enen+1 = pb′(n)enen+1. The first equality implies enen+1 �= 0, hence b(n) =
b′(n). The equalities in (III.4.2) are proved.

Let vn ∈ enV . The first equality gives enen+1vn = pb(n)vn . In particular en+1

is injective on enV . For vn+1 ∈ en+1V the second equality gives en+1envn+1 =
pb(n)vn+1. In particular en+1enV = en+1V . Hence en+1 induces an isomorphism
enV → en+1V . By the first equality p−b(n)enen+1vn = vn , by the second equal-
ity en+1 p−b(n)envn+1 = vn+1. Hence p−b(n)en induces the inverse isomorphism
en+1V → enV . �

Stabilization Property III.4.3. We say that the stabilization property holds
for (H, χ ) in (π, V ) ∈ ModQ�

G when: for all big enough integers n ≥ no, there
exists an integer b(n) such that en+1 restricted to enV is an isomorphism enV �
en+1V of inverse p−b(n)en restricted to en+1V .

Remark. When (π, V ) ∈ IrrQ�
G and V ⊂ IndG

H χ is a highest Whittaker
model, then the stabilization property III.4.3 holds for (H, χ ) in (π, V ) by (III.3.2)
and (III.4.2).

We consider finally the projections εn on the (Kn ∩ H, χ |Kn∩H )-invariant
vectors.

Lemma III.4.4. The stabilization property for (H, χ ) in (π, V ) ∈ ModQ�
G im-

plies for any big enough integers n ≥ m ≥ no:

(a) εn = en on em V and εn restricted to em V is an isomorphism em V → enV ,

(b) if (π, V ) has an integral structure L, we can replace V by L in (a).

Proof of III.4.4. εnv = env for any v ∈ V , which is invariant by Kn ∩ P−

because Kn = (Kn ∩ P−)(Kn ∩ H ) and χn is trivial on Kn ∩ P− and equal to χ

on Kn ∩ H . In particular εnvm = envm for any vm ∈ em V because the sequence
of groups Kn ∩ P− is decreasing and χm is trivial on Km ∩ P−. The stabilization
property implies that εm+1 restricted to em V is an isomorphism em V � em+1V . By
induction, εn ◦ . . . ◦ εm+1 restricted to em V is an isomorphism em V � enV . The
open compact groups Kn ∩ H form an increasing sequence, hence for any n ≥ m
and m big enough, εn = εn ◦ . . . ◦ εm . We proved (a).

If (π, V ) has an integral structure L , en+1 and p−b(n)en give by restriction
isomorphisms en L � en+1L , which are inverse of each other, because the Kn are
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pro-p-groups, p �= �, and en L = L ∩ enV . The arguments given in the proof (a)
are valid when V is replaced by L . �

As the open compact groups Kn ∩ H form an increasing sequence of union
H , the projections εn on the (Kn ∩ H, χ |Kn∩H )-invariant vectors approximate the
projection pχ on the (H, χ )-invariants in the following sense:

(III.4.5) pχεn = pχ , Ker pχ = ∪n≥m Ker εn

for any integer m.

Proposition III.4.6. The stabilization property (III.4.3) for (H, χ ) in (π, V ) ∈
ModQ�

G implies for a big enough integer m ≥ no:
(1) pχ restricted to em V is an isomorphism em V � pχ V ,
(2) if (π, V ) is integral with integral structure L, pχem L � pχ L is a lattice of

pχ V .

The property (1) is a reformulation of [MW I.14] when (π, V ) ∈ IrrQ�
G and

V ⊂ IndG
H χ is a highest Whittaker model.

Proof of III.4.6. (a) Injectivity of pχ restricted to em V . Apply (III.4.5),
(III.4.4), and the injectivity of εn restricted to em V for all n ≥ m ≥ no.

(b) Surjectivity of pχ restricted to em V . We have V = ∪n≥m V Kn∩P−
and by

(III.4.4), and its proof:

pχ (V Kn∩P−
) = pχεn(V Kn∩P−

) = pχen(V Kn∩P−
) ⊂ pχenV = pχεnem V = pχem V .

Hence pχ V = pχem V .

(c) pχem L = pχ L . The arguments of (b) apply to L instead of V .
(d) em L is a lattice of em V ; this remains true when one applies the isomor-

phism pχ . �

IV. Integral generic compact Whittaker representation

Notation IV.1. Let (F, G) be as in the introduction and let R be a commutative
ring that contains roots of the unity of any power of p. The characteristic of R is
automatically different from p. We choose in G a maximal split F-torus T (the
group of rational points a maximal split F-torus) and a minimal parabolic F-group
B = T U that contains T and of unipotent radical U . We denote by Z the centralizer
of T in G (not the center of G), and by B = T U the opposite of B in G. We denote
by �, �red, �, �+, �+,red the set of roots of (G, T ) in Lie U , of reduced roots,
of simple positive roots, of positive roots, of positive reduced roots with respect
to B. Let U(α) be the unipotent subgroup of U normalized by Z with Lie algebra
Uα + U2α for any root α ∈ � (when 2α is not a root, U2α = 0 and U(2α) = {1}).
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Definition IV.1.1. A character φ : U → R∗ is nondegenerate if the restrictions
φ(α) of φ to U(α) satisfy the two following properties (1) and (2):

1. φ(α) is trivial for any α ∈ �+ − �.
The character φ satisfying (1) identifies to a character of the direct product∏

α∈�

U(α)/U(2α) → R∗.

2. The kernel Ker φ(α) of φ(α) is an open compact subgroup of U(α) for all
α ∈ �.

In particular (2) implies that φ(α) is nontrivial for all α ∈ �.

Remarks IV.1.2. (1) When G is anisotropic, U = {1} is the trivial group, the
regular representation of G on the R-module C∞

c (G; R) of locally constant func-
tions f : G → R with compact support is the compact generic Whittaker R-
representation of G.

(2) When G is split, the property (1) of (IV.1.1) is true except in some excep-
tional cases [Borel Tits Ann. Math. 97 (1973), 449–571, see page 519 4.3], and the
property (2) of (IV.1.1) is equivalent to: φ(α) is nontrivial for all α ∈ �.

(3) The set of nondegenerate characters of U is stable by the natural action of
Z , because Z normalizes U(α) for all roots α ∈ �.

IV.2. We choose an open compact subgroup Ko of G such that

G = BKo

and a normal subgroup K of Ko of finite index, normalized by

T + := {t ∈ T | |α(t)| ≤ 1 for all α ∈ �},
with an Iwahori decomposition

K = (K ∩ U )(K ∩ Z )(K ∩ U ) = (K ∩ U )(K ∩ Z )(K ∩ U ).

K ∩ U =
∏

α∈�+,red

K ∩ U(α), K ∩ U =
∏

α∈�+,red

K ∩ U(−α).

The theory of Bruhat-Tits gives a subgroup Ko of G and a decreasing separated
sequence of subgroups K of G satisfying these properties.

Theorem IV.2.1. The right HR(G, K )-module (indG
U φ)K is finitely generated

for any nondegenerate character φ : U → R∗.

This implies that a generic compact Whittaker representation satisfies the Cri-
terion B of (II.7). The rest of this section is devoted to the proof of the theorem.

When R = C is the field of complex numbers, this is a theorem of Bushnell
and Henniart [BH 7.1].
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The theorem follows from a geometric property (IV.2.2) and a computation
(IV.2.3). This proof is valid over any R and does not use the theorem over C, and
is a variant of the proof of [BH].

The support of (indG
U φ)K is

G(U, φ, K ) = {g ∈ G | gK g−1 ∩ U ⊂ Ker φ}(1)

by the Mackey decomposition of (indG
U φ)K (proof of (II.3)). This means the fol-

lowing :

- for g ∈ G(U, φ, K ) there exists a function φUgK ∈ (indG
U φ)K with support

UgK and value 1 at g,
- the functions φUgK for the (U, K )-cosets UgK of G(U, φ, K ) form a basis

of the R-module (indG
U φ)K over R.

The support G(U, φ, K ) of (indG
U φ)K satisfies the geometric property:

IV.2.2. G(U, φ, K ) is a finite union of U zT+Ko with z ∈ Z ∩ G(U, φ, K ).
We consider now the right action of the Hecke algebraHR(G, K ) on (indG

U φ)K .

IV.2.3. (a) We have for x ∈ G(U, φ, K ) and ko ∈ Ko:

φU x K ∗ [K ko K ] = φU xko K

(b) We have for z ∈ Z ∩ G(U, φ, K ) and t+ ∈ T+:

φU zK ∗ [K t+K ] = φU zt+ K .

Clearly, the Theorem IV.2.1 follows from the claims (IV.2.2) and (IV.2.3).

IV.3. The geometric property (IV.2.2) results from a known fact: when X (α)

is a group in the Bruhat-Tits filtration of U(α) for α ∈ � [T 1.4.2], we have the
equality of semi-groups (deduced from [T 1.2 (1), 1.4.2]):

(IV.3.1) T (X, X ) = T+,

where T (X, X ) := {t ∈ T | t X (α)t−1 ⊂ X (α) for all α ∈ �}.
For (IV.2.2) it is enough to know that for any α ∈ � there exists an open compact

subgroup X (α) of U(α) such that (IV.3.1) is true. We give a variant of (IV.3.1) when
T is replaced by Z and the X (α) are replaced by pairs (K(α), C(α)) of open compact
subgroups of U(α) with K(α) normalized by T+ for any α ∈ �, and T (X, X ) is
replaced by

Z (K , C) := {z ∈ Z | zK(α)z
−1 ⊂ C(α) for all α ∈ �}.
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IV.3.2. Z (K , C) = ZoT+ for some compact subset Zo of Z (K , C).
The proof of the variant (IV.3.2) uses the particular case (IV.3.1) and the fact

that T+ contains the maximal compact open subgroup T o of T with semi-group
quotient T/T o � Nd where N is the set of natural integers and d > 0 an integer.
One reduces (IV.3.2) to the combinatorial finiteness property:

IV.3.3. Any non-empty subset Y of Nd saturated under addition by Nd is a
finite union of y + Nd for y ∈ Y .

The proof is elementary. When d = 1, we choose the minimum element y of
Y . Then Y = y + N. By induction on d, we suppose that the property is true for
d − 1. Let us call “minimal” an element y of Y such that z + Nd ⊂ y + Nd and
z ∈ Y implies z = y. Then Y is the union of y + Nd for y ∈ Y minimal. The property
is equivalent to the finiteness of minimum elements. If y, z ∈ Y are minimum and
distinct, then some component of z is strictly smaller than some component of y.
We are reduced to prove that the set M(i, m) of minimum elements of Y with a
given i-th component m ∈ N is finite, for any 1 ≤ i ≤ d and any m ∈ N. Suppose
that M(i, m) is not empty and let Yi,m be the union of y + Nd for y ∈ M(i, m). Via
the components different from i , the set of elements of Yi,m with i-th component
m, identifies with a non-empty subset of Y (i, m) ⊂ Nd−1 saturated under under
addition by Nd−1. Under this identification M(i, m) becomes the set of minimum
elements of Y (i, m). By induction hypothesis, the set M(i, m) is finite.

IV.3.4. We explain how (IV.3.1) and (IV.3.3) imply (IV.3.2).

(1) We replace Z by T . There exists an open compact subgroup Zo of Z that
normalizes K(α) for any α ∈ �. There exists a finite set of zk ∈ Z such that

Z = ∪k zk T Zo

because the quotient Z/T is compact. The subset Ck,(α) := z−1
k C(α)zk of U(α) is open

and compact. Let t ∈ T, zo ∈ Zo. Then zkt zo ∈ Z (K , C) iff t belongs to T (K , Ck)
where

T (K , C) := {t ∈ T | t K(α)t
−1 ⊂ C(α) for all α ∈ �}.

Hence Z (T, C) = ∪k zk T (K , Ck)Zo. The set T (K , C) is stable by multiplication by
T+ because the K(α) are normalized by T+. Hence the property (IV.3.2) is true if for
any (K , C) iff T (K , C) = ToT+ for some compact To ⊂ T (K , C) for any (K , C).
When T (K , C) satisfies this property we say simply that T (K , C) is compact mod-
ulo T+.

(2) Change of (K , C) by (K ′, C ′). The conjugation by t ∈ T respects the
property of being an open compact subgroup of T or of being an open compact
subgroup of T normalized by T+. Let t1, t2 ∈ T . Then (t−1

1 K t1, t2Ct−1
2 ) satisfies the

same hypotheses than (K , C). An element t ∈ T satisfies t t−1
1 K(α)t1t−1 ⊂ t2C(α)t

−1
2
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iff x := t(t1t2)−1 satisfies x K(α)x−1 ⊂ C(α). In other terms,

T (K , C) = T (t−1
1 K t1, t2Ct−1

2 )(t1t2)−1.(2a)

We deduce that T (t−1
1 K t1, t2Ct−1

2 ) is compact modulo T+ iff the same is true for
T (K , C).

Let (K ′, C ′) satisfying the same hypotheses than (K , C). For Y = K , C and
α ∈ �, there exists t+ ∈ T + such that

t+Y(α)t
−1
+ ⊂ Y ′

(α) ⊂ t−1
+ Y(α)t+.

We can choose t+ independent of the finite set of α ∈ �. The inclusions K ′
(α) ⊂

t−1
+ K(α)t+, t+C(α)t

−1
+ ⊂ C ′

(α) imply T (t−1
+ K t+, t+Ct−1

+ ) ⊂ T (K ′, C ′). By symme-
try and by (2a), we obtain:

T (K ′, C ′)t2
+ ⊂ T (K , C) ⊂ T (K ′, C ′)t−2

+ .(2b)

(3) Choosing (K ′, C ′) = (X, X ) and applying (IV.3.1) we deduce from (2a) and
(2b) that there exists t+ ∈ T+ such that T+t4

+ ⊂ T (t−1
+ K t+, t+Ct−1

+ ) ⊂ T+. Using
the remark following (2a) and that t4

+ ∈ T+, we deduced that T (K , C) is compact
modulo T+ for all (K , C) iff this is true when

T+t+ ⊂ T (K , C) ⊂ T+

for some t+ ∈ T+. The image of these inclusions under the natural projection T →
T/T o followed by an isomorphism T/T o � Nd is

a + Nd ⊂ Y ⊂ Nd,

where (Y, a) is the image of (T (K , C), t+) in Nd . We have Y + Nd ⊂ Y because
T (K , C) is stable by multiplication by T +. By (IV.3.3), Y is a finite union of y + Nd

with y ∈ Y . We deduce that T (K , C) = ToT+ is compact modulo T +.
The claim (IV.3.2) is proved.

IV.3.5. We explain how the geometric property (IV.2.2) can be deduced from
(IV.3.2). We start from the decomposition G = U Z Ko. As K is normal in Ko,
the support G(U, φ, K ) of indG

U φ described in (IV.2.1) (1) is a union of double
(U, Ko)-cosets. Hence G(U, φ, K ) = U (Z ∩ G(U, φ, K ))Ko. We have

Z ∩ G(U, φ, K ) = {z ∈ Z | z(K ∩ U )z−1 ⊂ Ker φ}.
because zK z−1 ∩ U = z(K ∩ U )z−1 as z ∈ Z normalizes U . As φ(α) is trivial for
all positive non simple roots α ∈ �+ − � by hypothesis (IV.1.1), and as z ∈ Z
normalizes U(α) for all roots α ∈ �, the decomposition of K ∩ U implies that

Z ∩ G(U, φ, K ) = {z ∈ Z | z(K ∩ U(α))z
−1 ⊂ Ker φ(α) for all α ∈ �}.

By hypothesis (IV.1.1), Ker φ(α) is an open compact subgroup of U(α) for all α ∈ �.
The open compact subgroups K ∩ U(α) of U(α) are normalized by T+. Hence by
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(IV.3.2) Z ∩ G(U, φ, K ) is compact modulo T +. Therefore G(U, φ, K ) is a finite
union of U zKo with z ∈ Z . The geometric property (IV.2.2) is proved.

IV.3.6. We check the computations of (IV.2.3). The first one (a) follows from
the formula (II.7) (1) and from the fact that K is normal in Ko hence K ko K =
ko K = K ko and U x K ko K = U xko K for any ko ∈ Ko, x ∈ G. We check now the
second one (b). Any element t+ ∈ T+ satisfies the relations

t+(K ∩ U )t−1
+ ⊂ K ∩ U, t+(K ∩ Z )t−1

+ = K ∩ Z , t−1
+ (K ∩ U )t+ ⊂ K ∩ U .

These relations and the Iwahori decomposition of K imply

(a) t+K = (K ∩ ZU )t+K ,

(b) K t+ = K t+(K ∩ ZU ),

(c) K t+K = ∪u− K t+u−(disjoint) with K ∩ U− = ∪u− t−1
+ (K ∩ U−)t+u−

(disjoint),

(d) U zK t+K = U z(K ∩ ZU )t+K = U zt+K for any z ∈ Z (z normalizes
U ∩ K ).

By (d) the support of f := φU zK ∗ [K t+K ] is contained in U zt+K . Hence f =
f (zt+)φU zt+ K . We want to prove f (zt+) = 1. We have using (c):

f (zt+) =
∑
u−

φU zK
(
zt+(t+u−)−1

) =
∑
u−

φU zK
(
zt+u−−1

t−1
+

)

for u− as in (c). Only the u− with zt+u−−1t−1
+ ∈ U zK give a nonzero contribution.

As z normalises U , we can forget it and the condition is u−−1 ∈ t−1
+ U K t+ which

means u− ∈ t−1
+ (K ∩ U−)t+ because U K ⊂ B(K ∩ U−). With (c), only one term

contributes and f (zt+) = 1.

Appendix. Let (F, G, �) be as in the introduction and let R be any alge-
braically closed field of characteristic �. The aim of this appendix is to compare
three properties of a representation (ρ, V ) ∈ ModR G:

(i) The HR(G, K )-module V K is finitely generated for all K in a separated
decreasing sequence of open compact pro-p-subgroups of G.

(ii) (ρ, V ) is finitely generated in each block of ModR G.

(iii) For any irreducible R-representation π , the quotient multiplicity dimR

HomRG(ρ, π ) is finite.

Example. G = GL (2, F), H is a maximal torus (split or not split), � : H →
R∗ a character. The representation ρ = indG

H � was originally considered by
Waldspurger in his work on modular forms of half integral weight leading to a
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proof of nonvanishing of values of L functions of automorphic cuspidal repre-
sentations for GL (2) at the center of the critical strip. We call it a Waldspurger
representation.

Theorem.

- (i) is equivalent to (ii).
- (ii) implies (iii).
- (iii) implies (ii) for a complex Waldspurger representation.

Remarks. (1) The finite quotient multiplicity of ρ ∈ ModR G is equivalent to
the finite multiplicity of the contragredient ρ̃ : for all π ∈ IrrR G, the multiplicity
dimR HomRG(π, ρ̃) is finite. To prove this, one uses that the contragredient is an in-
volution on IrrR G and the isomorphism (see II.8): HomRG(π, ρ̃) � HomRG(ρ, π̃ ).

(2) When G is noncompact, their are infinitely many irreducible representa-
tions in a block, their direct sum is not finitely generated but satisfies the finite
quotient multiplicity.

(3) When R is the field of complex numbers, the equivalence between (i) and
(ii) is proved in [BH].

(4) The category ModR G is a product of blocks. Each block has a level r ∈ Q
and there are finitely many blocks of a given level [V, II.5.8, II.5.9] and [V3, III.6]

(5) By the theory of Bernstein, in the complex case, the cuspidal blocks are
well understood and the blocks are related with the cuspidal blocks of the Levi
subgroups M of the parabolic subgroups of G. The groups M are the F-points of
a reductive connected group, just as G, always with a noncompact center when
M �= G.

Proof (i) ⇔ (ii). We need some preliminaries on the theory of Moy-Prasad
minimal unrefined R-types. There are finitely many blocks of a given level r ∈ Q.
We denote by ModR G(r ) their sum. The Moy-Prasad minimal unrefined types of
level r contained in V ∈ ModC G generate the component V (r ) of V in ModR G(r ).
There are only finitely many Moy-Prasad minimal unrefined types of a given level
r , modulo G-conjugation [V, II.5.5]. For each level r , there exists K (r ) such that
V (r ) is generated by V (r )K (r ), this is also true for a smaller K ⊂ K (r ). Note that V
is generated by V K for some K iff V has only finitely many non zero components
in the blocks of G. The letter K or K (r ) always stands for an open compact pro-p-
subgroup of G. The properties (i), (ii) are respectively equivalent to: For any level
r ∈ Q,

(i) the HR(G, K )-module V (r )K is finitely generated for some K ⊂ K (r ).

(ii) V (r ) finitely generated.

We prove that (i)′ and (ii)′ are equivalent. We have V K = eK V where eK ∈
HR(G) is an idempotent such that the Hecke algebra HR(G, K ) identifies to the
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subalgebra eKHR(G)eK of the global Hecke algebra HR(G), using that K is a
pro-p-group [V, I.3.2]. Let (vi )i∈I be elements of V K . The two relations

V K =
∑
i∈I

HR(G, K )vi , HR(G)V K =
∑
i∈I

HR(G)vi

are equivalent. Take V = V (r ) then HR(G)V (r )K = V (r ) for any K ⊂ K (r ); we
deduce from this the equivalence of (i)′ and (ii)′. �

Comparaison between (ii) and (iii). It is clear that the finite generation in each
block implies the finite quotient multiplicity because each irreducible representation
is admissible. The converse is not true in general. We will describe certain properties
which imply that the converse is true for complex representations.

We consider first a cuspidal block B ⊂ ModC G. We recall some known facts
[BDK]. As for a torus (IV.3), the compact subgroups of G generate a normal
subgroup Go with quotient isomorphic to Zd where d is the rank of the maximal
central split torus T of G. The unipotent subgroups of G are contained in Go. If Z
is the center of G (and not the centralizer of T as in the chapter IV), the quotient
G/Go Z is finite. Let π ∈ B irreducible. The restriction

π |Go = ⊕σi , σi ∈ IrrC Go,

of π to Go is semi-simple of finite length, and the irreducible representations in B
are the representations of G with the same restriction to Go. Each σi is the unique
irreducible representation in a block of ModC Go. We denote by Bo the sum of the
blocks containing the σi . For V ∈ ModC G, the restriction of V to Go belongs to Bo

iff V belongs to B. There are infinitely many irreducible non isomorphic cuspidal
representations in B iff d > 0. The abelian subcategory Bω of representations in B
with a central character ω contains only finitely many irreducible representations
modulo isomorphism.

The categories Bo and Bω are semi-simple. In these categories, the properties
finitely generated, finite length, finite multiplicity, finite quotient multiplicity are
trivially equivalent.

For any representation V = indG
Go W ∈ B compactly induced from W ∈ Bo,

the property: V has finite quotient multiplicity is equivalent to the same property
for W using that the functor indG

Go is the left adjoint of the restriction from G to Go.
It implies that W is finitely generated hence V is finitely generated. By transitivity
of the compact induction, this is also true for any V ∈ B compactly induced from
a closed subgroup H of Go. Any complex irreducible representation of a closed
subgroup H of G has a central character because the cardinal of C is strictly bigger
than the cardinal of G, hence V = indG

H W has a central character when Z ⊂ H .
We summarize:

Let H be a closed subgroup of G with H ⊂ Go or Z ⊂ H and let � ∈ IrrC H.
Then the cuspidal irreducible quotients of indG

H � have finite multiplicity if and
only if indG

H � is finitely generated in any cuspidal block.



P1: FMK

PB440-28 HIDA-0662G PB440-Hida-v4.cls November 7, 2003 14:9

on highest whittaker models and integral structures 799

Remarks. (1) This applies to all the representations used to give models of
irreducible representations in the theory of automorphic forms related with L-
functions, that I am aware of. For the Whittaker representations, H is nilpotent
hence H ⊂ Go. For the Waldspurger representations, H contains the center Z
of G.

(2) There are of course other properties of (H, �) implying the same property
for indG

H �. A variant that we will use for the component of a Waldspurger rep-
resentation in a non cuspidal block is: H = Go Z ′ where Z ′ is a closed subgroup
acting on � ∈ ModC H by a character.

Reduction to a cuspidal block. We consider now a noncuspidal block B of
ModC G. There exists a pair (P,BM ) where P = MN is a parabolic subgroup of
G with unipotent radical N and Levi subgroup M and BM is a cuspidal block of
M , unique modulo association, such that the normalized functor of N -coinvariants,
called the Jacquet functor, r G

P : B → ∑
BM restricted to B is exact and faithful [R]

Corollary 2.4 of image contained in the finite sum
∑

BM of the blocks of ModC M
conjugate to BM by the normalizer of M in G. We need all of them, at the level of
blocks r G

P (B) = ∑
BM . Let (π, V ) ∈ B. We claim:

(π, V ) is finitely generated iff r G
P (π, V ) is finitely generated.

(π, V ) has finite quotient multiplicity iff r G
P (π, V ) has finite quotient

multiplicity.
r G

P (π, V ) is finitely generated iff r G
P (π, V ) is finitely generated in each cuspidal

block because the sum
∑

BM is finite. The computation of the Jacquet functors of
the representations used for models in the theory of automorphic forms is a well
known and basic question, originally considered by Rodier, Casselman, and Shalika
for the generic Whittaker representation.

The proof of the claim is easy. Finitely generated: if because of exactness and
faithfulness of r G

P , any subset (vi ) of V which lifts a set of generators of r G
P (π, V )

generates (π, V ). Iff because G/P is compact, a finite set (vi ) of generators of
(π, V ) is fixed by an open compact subgroup K , G = ∪ j Pk j K (finite union), the
finite set (k j vi ) generates r G

P (π, V ).
Finite quotient multiplicity: r G

P is the left adjoint of the normalized parabolic
induction i G

P , so HomCG(π, i G
P τ ) � HomCM (r G

P π, τ ) for all τ ∈ IrrC M . As i G
P τ

has finite length, the finite quotient multiplicity for π implies the finite quotient
multiplicity for r G

P π (one does not need to suppose π ∈ B).
Conversely, the faithfulness of r G

P onB implies that r G
P ρ �= 0 for any irreducible

representation ρ which is a quotient of π ∈ B; as r G
P ρ has finite length it has an irre-

ducible quotient τ ; by adjunction ρ is contained in i G
P τ and dimC HomCG(π, ρ) ≤

dimC HomCG(r G
P π, τ ). Hence the finite quotient multiplicity for r G

P π implies the
finite quotient multiplicity for π .

Example. Let G = GL (2, F) and B = T N is the upper triangular subgroup
with unipotent radical N and T the diagonal subgroup. Let V ∈ ModC G. Then
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(iii) implies (ii) for the noncuspidal part of V iff (iii) implies (ii) for the N -
coinvariants VN . We need to analyze VN . We take the example of a complex
Waldspurger representation indG

H � defined at the beginning of the appendix.

First case: H = T . We have G = B ∪ Bs N where s =
(

0 1
1 0

)
and a CN -

equivariant exact sequence:

0 → indBs N
T � → indG

T � → indB
T � → 0.(1)

The functor of N -coinvariants is exact and (indG
T �)N can be computed using (2)

and (3) below. We have

(indB
T �)N � �(2)

by the linear form f → ∫
N f (n) dn for f ∈ indB

T � and a Haar measure dn on
N . We can neglect the character � for the properties (ii) and (iii). We compute
(indBs N

T �)N . The linear map f (bsn) → φ(b) := ∫
N f (bsn)dn for b ∈ B, followed

by the restriction to N identifies (indBs N
T �)N with the space C∞

c (N ; C). The action
of t ∈ T on φ ∈ C∞

c (N ; C) is

(t ∗ φ)(n′) =
∫

N
f (n′snt) dn = �(sts)

∫
N

f (n′′s t−1nt)dn = �δB(sts)φ(n′′)

where δB is the module of B and n′′ := (sts)−1n′sts for n′ ∈ N . We have(
indBs N

T �
)

N
� (�δB ⊗ ρ) ◦ s,(3)

where ρ is the natural action of T on C∞
c (N ; C) by (t.φ)(n) = φ(t−1nt). For the

properties (ii) and (iii) we can neglect the character �δB and s. As T has two orbits
in N , the trivial element of stabilizer T and the nontrivial elements of stabilizer the
center Z of G, we have a T -equivariant exact sequence

0 → indT
Z 1 → ρ → 1 → 0.(4)

For (ii) and (iii) we can neglect the trivial character, and we are reduced to examine
indT

Z 1. The blocks of ModC T are parametrized by the characters χo of the maximal
compact subgroup T o of T , and the component of indT

Z 1 in the block parametrized
byχo is the cyclic representation indT

Z T o χo ifχo is trivial on Z ∩ T o and 0 otherwise.
We deduce that the Waldspurger representation indG

T � is finitely generated in the
non cuspidal blocks of G.

Second case: H nonsplit. Modulo conjugation, H is contained in one of the
two maximal, compact modulo the center Z , subgroups of G

C1 := KZ, C2 := ZI ∪ ZIt,

where K = GL (2, OF ), I is the standard Iwahori subgroup normalized by t :=(
0 1
pF 0

)
. We suppose H ⊂ C where C = C1 or C2. Using G = CTN and the
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transitivity of the compact induction, we compute:(
indG

H �
)

N
� indT

C∩T (τC∩N ),(5)

with τC∩N equal to the C ∩ N -coinvariants of τ = indC
H �. As C ∩ T = T o Z and

Z acts on τC∩N by multiplication by a character. We deduce from the cuspidal case
seen above, that the Waldspurger representation indG

H � are finitely generated in the
non cuspidal blocks if and only if the noncuspidal quotients have finite multiplicity.
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