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Introduction

In this paper we discuss the extension of the methods of Wiles [W] and Taylor-
Wiles [TW] from GL2 to unitary groups of any rank.

The method of [TW] does not extend to GLn as the basic numerical coin-
cidence on which the method depends (see corollary 2.43 and theorem 4.49 of
[DDT]) breaks down. For the Taylor-Wiles method to work when considering
a representation

r : Gal (F/F ) →֒ G(Ql)

one needs

[F : Q](dimG− dimB) =
∑

v|∞

H0(Gal (F v/Fv), ad 0r)

where B denotes a Borel subgroup of a (not necessarilly connected) reductive
group G and ad 0 denotes the kernel of ad → adG. This is an ‘oddness’
condition, which can only hold if F is totally real (or ad 0 = (0)) and r satisfies
some sort of self-duality. For instance one can expect positive results if G =
GSp2n or G = GO(n), but not if G = GLn for n > 2.

In this paper we work with a disconnected group Gn which we define to be
the semidirect product of GLn ×GL1 by the two element group {1, } with

(g, µ)−1 = (µtg−1, µ).

The advantage of this group is its close connection to GLn and the fact that
Galois representations valued in the l-adic points of this group should be con-
nected to automorphic forms on unitary groups, which are already quite well
understood. This choice can give us information about Galois representations

r : Gal (F/F ) −→ GLn(Ql)

where F is a CM field and where there is a symmetric pairing 〈 , 〉 on Q
n

l

satisfying
〈σx, cσc−1y〉 = χ(σ)〈x, y〉

for all σ ∈ Gal (F/F ) and with c denoting complex conjugation. By a simple
twisting argument this also gives us information about Galois representations

r : Gal (F/F+) −→ GLn(Ql)

where F+ is a totally real field and

rc ∼= χr∨
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with χ a totally odd character.
In this setting the Taylor-Wiles argument carries over well, and we are able

to prove R = T theorems in the ‘minimal’ case. Here, as usual, R denotes a
universal deformation ring for certain Galois representations and T denotes a
Hecke algebra for a definite unitary group. By ‘minimal’ case, we mean that
we consider deformation problems where the lifts on the inertia groups away
from l are completely prescribed. (This is often achieved by making them as
unramified as possible, hence the word ‘minimal’.) That this is possible may
come as no surprise to experts. The key insights that allow this to work are
aleady in the literature:

1. The discovery by Diamond [Dia] and Fujiwara that Mazur’s ‘multiplicity
one principle’ (or better ‘freeness principle’ - it states that a certain
natural module for a Hecke algebra is free) was not needed for the Taylor-
Wiles argument. In fact they show how the Taylor-Wiles argument can
be improved to give a new proof of this principle.

2. The discovery by Skinner and Wiles [SW] of a beautiful trick using base
change to avoid the use of Ribet’s ‘lowering the level’ results.

3. The proof of the local Langlands conjecture forGLn and its compatibility
with the instances of the global correspondence studied by Kottwitz and
Clozel. (See [HT].)

Indeed a preliminary version of this manuscript has been available for many
years. One of us (R.T.) apologises for the delay in producing the final version.

We have not, however, been able to resolve the non-minimal case. We will
explain that there is just one missing ingredient, the analogue of Ihara’s lemma
for the unitary groups we consider. One purpose of this paper is to convince
the reader of the importance of attacking this problem.

To describe this conjecture we need some notation. Let F+ be a totally real
field and let G/F+ be a unitary group with G(F+

∞) compact. Then G becomes
an inner form of GLn over some totally imaginary quadratic extension F/F+.
Let v be a place of F+ with G(F+

v ) ∼= GLn(F
+
v ) and consider an open compact

subgroup U =
∏

w Uw ⊂ G(A∞,vF+ ). Let l be a prime not divisible by v. Then

we will consider the space A(U,Fl) of functions

G(F+)\G(A∞F+)/U −→ Fl.

It is naturally an admissible representation of GLn(F
+
v ) and of the commuta-

tive Hecke algebra

T = Im (
⊗

w

′
Fl[Uw\G(F+

w )/Uw] −→ End (A(U,Fl)),
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with the restricted tensor product taken over places for which Uw ∼= GLn(OF+,w)
(compatibly with G(F+

w ) ∼= GLn(F
+
w )). Subject to some minor restrictions on

G we can define what it means for a maximal ideal m of T in the support
of A(U,Fl) to be Eisenstein - the associated modl Galois representation of
Gal (F/F ) should be reducible. (See section 2.4 for details.) Then we conjec-
ture the following.

Conjecture A For any F+, G, U , v and l as above, and for any irreducible
G(F+

v )-submodule
π ⊂ A(U,Fl)

either π is generic or it has an Eisenstein prime of T in its support.

In fact a slightly weaker statement would suffice for our purposes. See
section 2.5 for details. For rank 2 unitray groups this conjecture follows from
the strong approximation theorem. There is another argument which uses
the geometry of quotients of the Drinfeld upper half plane. An analogous
statement for GL2/Q is equivalent to Ihara’s lemma (lemma 3.2 of [I]). This
can be proved in two ways. Ihara deduced it from the congruence subgroup
property for SL2(Z[1/v]). Diamond and Taylor [DT] found an arithmetic
algebraic geometry argument. The case of GL2 seems to be unusually easy as
non-generic irreducible representations of GL2(F

+
v ) are one dimensional. We

have some partial results when n = 3, to which we hope to return in a future
paper. We stress the word ‘submodule’ in the conjecture. The conjecture is
not true for ‘subquotients’. The corresponding conjecture is often known to be
true in characteristic 0, where one can use trace formula arguments to compare
with GLn. (See section 2.5 for more details.)

We will now state a sample of the sort of theorem we prove. (See corollary
4.5.4.)

Theorem B Let n ∈ Z≥1 be even and let l > max{3, n} be a prime. Let

r : Gal (Q/Q) −→ GSpn(Zl)

be a continuous irreducible representation with the following properties.

1. r ramifies at only finitely many primes.

2. r|Gal (Ql/Ql)
is crystalline.

3. dimQl
gr i(r ⊗Ql

BDR)Gal (Ql/Ql) = 0 unless i ∈ {0, 1, ..., n − 1} in which
case it has dimension 1.
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4. There is a prime q 6= l such that qi 6≡ 1 mod l for i = 1, ..., n and r|ssGQq

is unramified and r|ssGQq
(Frobq) has eigenvalues {αqi : i = 0, 1, ..., n− 1}

for some α.

5. The image of r mod l contains Spn(Fl).

6. r mod l arises from a cuspidal automorphic representation π0 of GLn(A)
for which π0,∞ has trivial infinitessimal character and π0,q is an unram-
ified twist of the Steinberg representation.

Assume further that conjecture A is true.
Then r arises from a cuspidal automorphic representation π of GLn(A) for

which π∞ has trivial infinitessimal character and πq is an unramified twist of
the Steinberg representation.

We remark that to prove this theorem we need conjecture A not just for
unitary groups defined over Q, but also over other totally real fields.

We also remark that we actually prove a more general theorem which
among other things allows one to work over any totally real field, and with
any weight which is small compared to l, and with r with quite general image.
(See theorems 4.3.4 and 4.5.3.) We go to considerable length to prove a similar
theorem where instead of assuming that r is automorphic one can assume that
it is induced from a character. (See theorems 4.4.4 and 4.5.5.) Along the way
to the proof of these latter theorems we prove an analogue of Ramakrishna’s
lifting theorem [Ra] for Gn. (See theorem 1.4.6 and, for a simple special case
which may be easier to appreciate, corollary 1.4.7.)

As mentioned above we also obtain some unconditional theorems in the
‘minimal case’ (see for example theorem 3.1.1), but we have not emphasised
this, as we believe they will not be so useful. It should not be hard however
to extract such results from our paper, if they had an application.

One of the problems in writing this paper has been to decide exactly what
generality to work in. We could certainly have worked in greater generality,
but in the interests of clarity we have usually worked in the minimal generality
which we believe will be useful. In particular we have restricted ourselves to
the ‘crystalline’ case. It would be useful, and not very difficult, to include also
the ordinary case. It would also be useful to clarify the more general results
that are available in the case n = 2.

In the first section of this paper we discuss deformation theory and Galois
theory. We set up the Galois theoretic machinary needed for the Taylor-Wiles
method (see proposition 1.4.5) and also take the opportunity to give an ana-
logue (see theorem 1.4.6 and corollary 1.4.7) of Ramakrishna’s lifting theorem
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[Ra] for Gn. In the second section we discuss automorphic forms on definite
unitary groups, their associated Hecke algebras, their associated Galois rep-
resentations and results about congruences between such automorphic forms.
In the third section we put these results together to prove two R = T theo-
rems. Theorem 3.1.1 is for the ‘minimal’ case and is unconditional. Theorem
3.1.2 is for the general case, but is conditional on the truth of Ihara’s lemma
(conjecture I or conjecture A). In the final section we combine these theorems
with base change arguments to obtain various modularity theorems (theorems
4.3.4 and 4.5.3), along the lines of theorem B above.

Some of the results (those in the non-minimal case) in this paper depend
on previously unpublished work of Marie-France Vignéras and of Russ Mann.
Marie-France has kindly written up her results in an appendix to this paper.
She has kindly written up these results in an appendix. Russ has left academia
and as it seems unlikely ever fully write up his results (see [M2]) we have
included an account of his work in another appendix.

Since this paper was written one of us (R.T.) has found a way to avoid
Ihara’s lemma in dealing with non-minimal lifts (see [Tay]). This still depends
on much of the theory developed here, but not on Ihara’s lemma or on the
results of the appendices.
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1 Galois deformation rings.

1.1 Some algebra

For n a positive integer let Gn denote the group scheme over Z which is the
semi-direct product of GLn × GL1 by the group {1, } acting on GLn × GL1

by
(g, µ)−1 = (µtg−1, µ).

There is a homomorphism ν : Gn → GL1 which sends (g, µ) to µ and  to −1.
Let G0

n denote the connected component of Gn. Let gn demote LieGLn ⊂ LieGn
and ad the adjoint action of Gn on gn. Over Z[1/2] we have

g
Gn
n = (0).

Let g0
n denote the trace zero subspace of gn.

Suppose that Γ is a group, that ∆ is a subgroup of index 2, and that
c ∈ Γ − ∆ satisfies c2 = 1. Whenever we endow Γ with a topology we will
assume that ∆ is closed.

Lemma 1.1.1 Suppose that R is a ring. Then there is a natural bijection
between the following two sets.

1. Homomorphisms r : Γ → Gn(R) that induce isomorphisms Γ/∆
∼→

Gn/G0
n.

2. Pairs (ρ, 〈 , 〉), where ρ : ∆→ GLn(R) is a homomorphism and

〈 , 〉 : Rn ×Rn −→ R

is a perfect R linear pairing such that for all x, y ∈ Rn and all δ ∈ ∆ we
have

• 〈x, y〉 = −µ(c)〈y, x〉 for some µ(c) ∈ R, and

• µ(δ)〈δ−1x, y〉 = 〈x, cδcy〉 for some µ(δ) ∈ R.

Under this correspondence µ(γ) = (ν ◦ r)(γ) for all γ ∈ Γ. If Γ and R have
topologies then under this correspondence continuous r’s correspond to contin-
uous ρ’s.

Proof: The proof is elementary. A homomorphism r corresponds to r|∆
with the pairing

〈x, y〉 = txA−1y

where r(c) = (A,−(ν ◦ r)(c)). 2
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Lemma 1.1.2 Suppose that k is a field of characteristic 6= 2 and that r : Γ→
Gn(k) such that ∆ = r−1(GLn ×GL1)(k). Then

dimk g
c=δ
n = n(n+ δ(ν ◦ r)(c))/2

for δ = 1 or −1.

Proof: We have r(c) = (A,−(ν ◦ r)(c), ) where tA = −(ν ◦ r)(c)A. Then

g
c=δ
n = {g ∈Mn(k) : gA− δ(ν ◦ r)(c)t(gA) = 0}.

The lemma follows. 2

Lemma 1.1.3 Suppose k is a field, that χ : Γ→ k× is a homomorphism and
that

ρ : ∆ −→ GLn(k)

is absolutely irreducible and satisfies χρ∨ ∼= ρc. Then there exists a homomor-
phism

r : Γ −→ Gn(k)
such that r|∆ = ρ, ν ◦ r|∆ = χ|∆ and r(c) ∈ Gn(k)−GLn(k).

If α ∈ k× define
rα : Γ −→ Gn(k)

by rα|∆ = ρ and, if γ ∈ Γ−∆ and r(γ) = (A, µ, ), then

rα(γ) = (αA, µ, ).

This sets up a bijection between GLn(k)-conjugacy classes of extensions of ρ
to Γ→ Gn(k) and k×/(k×)2.

Note that ν ◦ rα = ν ◦ r. Also note that, if k is algebraically closed then r
is unique up to GLn(k)-conjugacy.

If Γ and R have topologies and ρ is continuous then so is r.

Proof: There exists a perfect pairing

〈 , 〉 : kn × kn −→ k

such that χ(δ)〈δ−1x, y〉 = 〈x, cδcy〉 for all δ ∈ ∆ and all x, y ∈ kn. The
absolute irreducibility of ρ implies that 〈 , 〉 is unique up to k×-multiples. If
we set

〈x, y〉′ = 〈y, x〉
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then χ(δ)〈δ−1x, y〉′ = 〈x, cδcy〉′ for all δ ∈ ∆ and all x, y ∈ kn. Thus

〈 , 〉′ = ε〈 , 〉

for some ε ∈ k×. As
〈 , 〉′′ = 〈 , 〉

we see that ε2 = 1. The first assertion now follows from lemma 1.1.1. For
the second assertion note that conjugation by α ∈ k× ⊂ GLn(k) leaves ρ
unchanged and replaces 〈 , 〉 by α2〈 , 〉. 2

Suppose that k is a field and r : Γ→ Gn(k) is a homomorphism with ∆ =
r−1(GLn×GL1)(k). We will call r Schur if all irreducible ∆-subquotients of kn

are absolutely irreducible and if for all ∆-invariant subspaces kn ⊃ W1 ⊃ W2

with kn/W1 and W2 irreducible, we have

W∨
2 (ν ◦ r) 6∼= (kn/W1)

c.

This is certainly satisfied if kn is an absolutely irreducible ∆-module. Note
that if k′/k is a field extension then r : Γ → Gn(k) is Schur if and only if
r : Γ→ Gn(k′) is.

Lemma 1.1.4 Suppose that k is a field and r : Γ→ Gn(k) is a homomorphism
with ∆ = r−1(GLn×GL1)(k). If r is Schur then the following assertions hold.

1. r|∆ is semisimple.

2. If r′ : Γ → Gn(k) is another representation with ∆ = (r′)−1GLn(k) and
tr r|∆ = tr r′|∆, then r′ is GLn(k

ac)-conjugate to r.

3. If k does not have characteristic 2 then gΓ
n = (0).

Proof: We may suppose that k is algebraically closed.
Suppose that r corresponds to (r|∆, 〈 , 〉) as in lemma 1.1.1, and let V ⊂

kn be an irreducible ∆-submodule. Then (kn/V ⊥)c ∼= V ∨(ν ◦ r) and so we can
not have V ⊂ V ⊥. Thus kn ∼= V ⊕ V ⊥ as ∆-modules. Arguing recursively we
see that we have a decomposition

kn ∼= V1 ⊕ ...⊕ Vr

and
〈 , 〉 = 〈 , 〉1 ⊥ ... ⊥ 〈 , 〉r,
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where each Vi is an irreducible k[∆]-module and each 〈 , 〉i is a perfect pairing
on Vi. The first part of the lemma follows. Note also that for i 6= j we have
Vi 6∼= Vj as k[∆]-modules and V c

i
∼= V ∨i (ν ◦ r).

Note that if ρ and τ are representations ∆ → GLn(k) with ρ semi-simple
and multiplicity free and with tr ρ = tr τ , then the semisimplification of τ is
equivalent to ρ. Thus r′|∆ has the same Jordan-Holder factors as r|∆ (with
multiplicity). Thus r′ satisfies the same hypothesis as r and so by part one
r′|∆ is also semisimple. Hence r′|∆ ∼= r|∆, and we may suppose that in fact
r′|∆ = r|∆. Then corresponding to our decomposition

kn ∼= V1 ⊕ ...⊕ Vr

we see that r corresponds to

(r|∆, 〈 , 〉1 ⊥ ... ⊥ 〈 , 〉r)

while r′ corresponds to

(r|∆, µ1〈 , 〉1 ⊥ ... ⊥ µr〈 , 〉r)

for some µi ∈ k×. Conjugation by the element of GLn(k) which acts on Vi by√
µi takes r to r′.
For the third part note that

g
∆
n = End k[∆](V1)⊕ ...⊕ End k[∆](Vr) = kr.

Then c sends (α1, ..., αr) to (−α∗11 , ...,−α∗rr ) = (−α1, ...,−αr), where ∗i denotes
the adjoint with respect to 〈 , 〉i. Thus gΓ

n = (0). 2

Lemma 1.1.5 Let R be a complete local noetherian ring with maximal ideal
mR and residue field k = R/mR of characteristic l > 2. Let Γ be a group and
let r : Γ→ Gn(R) be a homomorphism such that ∆ = r−1(GLn×GL1)(R) has
index 2 in Γ. Suppose moreover that r mod mR is Schur. Then the centraliser
of r in 1 +Mn(mR) is {1}.

Proof: This lemma is easily reduced to the case that R is Artinian. In
this case we argue by induction on the length of R, the case of length 1 (i.e.
R = k) being immediate. In general we may choose an ideal I of R such that
I has length 1. By the inductive hypothesis any element of the centraliser in
1 +Mn(mR) of the image of r lies in 1 +Mn(I). It follows from lemma 1.1.4
that this centraliser is {1}. 2
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Lemma 1.1.6 Suppose that Γ is profinite and that

r : Γ −→ Gn(Qac
l )

is a continuous representation with ∆ = r−1(GLn × GL1)(Q
ac
l ). Then there

exists a finite extension K/Ql and a continuous representation

r′ : Γ −→ Gn(OK)

which is GLn(Q
ac
l )-conjugate to r.

Proof: It follows from the Baire category theorem that r(∆) ⊂ GLn(K)
for some finite extension K/Ql. The existence of a bilinear form 〈 , 〉 as
in lemma 1.1.1 over Qac

l implies the existence of one over K. (It can be
thought of as an n × n-matrix with non-zero determinant satisfying certain
K-linear constraints on its coefficients.) Thus r(Γ) ⊂ Gn(K). A standard
argument using the compactness of ∆ shows that there is a ∆-invariant OK-
lattice Λ ⊂ Kn. (Choose any lattice and add it to all its translates by elements
of ∆.) We may further suppose that the 〈 , 〉-dual lattice Λ∗ contains Λ. (If
not replace Λ by a suitable scalar multiple.) Choose a maximal ∆-invariant
OK-lattice Λ∗ ⊃ M ⊃ Λ such that M ∗ ⊃ M , and replace Λ by M . Then if
Λ∗ ⊃ N ⊃ Λ is any ∆-invariant OK-lattice with N/Λ simple, we must have
N∗ ∩N = Λ. We conclude that Λ∗/Λ must be a direct sum of simple OK [∆]-
modules. Replacing K by a ramified quadratic extension and repeating this
procedure we get a ∆-invariant OK-lattice Λ with Λ∗ = Λ. The lemma now
follows from lemma 1.1.1. 2

The next two lemmas are standard.

Lemma 1.1.7 Let R be a noetherian complete local ring. Let ∆ be a profinite
group and ρ : ∆ −→ GLn(R) a continuous representation. Suppose that ρ mod
mR is absolutely irreducible. Then the centraliser in GLn(R) of the image of
ρ is R×.

Proof: It suffices to consider the case that R is Artinian. We can then
argue by induction on the length of R. The case R is a field is well known. So
suppose that I is a non-zero ideal of R with mRI = (0). If z ∈ ZGLn(R)(Im ρ)
then we see by the inductive hypothesis that z ∈ R×(1 + Mn(I)). With
out loss of generality we can suppose z = 1 + y ∈ 1 + Mn(I). Thus y ∈
(ad (ρ mod mR))∆ ⊗R/mR

I = I, and the lemma is proved. 2
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Lemma 1.1.8 Let R ⊃ S be noetherian complete local rings with mR∩S = mS

and common residue field. Let ∆ be a profinite group and let ρ, ρ′ : ∆ −→
GLn(S) be continuous representations with ρ mod mS absolutely irreducible.
Suppose that for all ideals I ⊂ J of R we have

Z1+Mn(mR/I)(Im (ρ mod I))→→ Z1+Mn(mR/J)(Im (ρ mod J)).

If ρ and ρ′ are conjugate in GLn(R) then they are conjugate in GLn(S).

Proof: It suffices to consider the case that R is Artinian (because S =
lim← S/I ∩ S as I runs over open ideals of R). Again we argue by induction
on the length of R. If R is a field there is nothing to do. So suppose that I is
an ideal of R and mRI = (0). By the inuctive hypothesis we may suppose that
ρ mod I ∩ S = ρ′ mod I ∩ S. Thus ρ′ = (1 + φ)ρ where φ ∈ Z1(∆, ad (ρ mod
mS))⊗(I∩S). As ρ and ρ′ are conjugate in R, our assumption (on surjections of
centralisers) tells us that they are conjugate by an element of 1+Mn(I). Hence
[φ] = 0 in H1(∆, ad (ρ mod mS))⊗I. Thus [φ] = 0 in H1(∆, ad (ρ mod mS))⊗
(I ∩ S), so that ρ and ρ′ are conjugate by an element of 1 +Mn(I ∩ S). 2

The next lemma is essentially due to Carayol [Ca], but he makes various
unnecessary hypotheses, so we reproduce some of the proof here.

Lemma 1.1.9 Let R ⊃ S be noetherian complete local rings with mR∩S = mS

and common residue field. Let ∆ be a profinite group and ρ : ∆ −→ GLn(R)
a continuous representation. Suppose that ρ mod mR is absolutely irreducible
and that tr ρ∆ ⊂ S. If I is an ideal of R such that ρ mod I has image in
S/I ∩S, then there is a 1n +Mn(I)-conjugate ρ′ of ρ such that the image of ρ′

is contained in GLn(S). In particular there is always a 1n+Mn(mR)-conjugate
ρ′ of ρ such that the image of ρ′ is contained in GLn(S).

Proof: A simple recursion alows one to reduce to the case that mRI = (0)
and dimR/mR

I = 1. Replacing R by the set of elements in R which are

congruent mod I to an element of S we may further assume that S/I ∩ S ∼→
R/I. If I ⊂ S then R = S and there is nothing to prove. Otherwise R = S⊕I
with multiplication

(s, i)(s′, i′) = (ss′, s′i+ si′).

In particular mS is an ideal of R and R/mS
∼= (S/mS)[ǫ]/(ǫ

2). If we know the
result for S/mS ⊂ R/mS then the result follows for S ⊂ R (because then we
can find A ∈Mn(I) such that

(1n − A)ρ(1n + A) mod mS
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is valued in GLn(S/mS) so that

(1n − A)ρ(1n + A)

is valued in S.)
Thus we are reduced to the case S = k is a field, R = k[ǫ]/(ǫ2) and I = (ǫ).

Replacing ∆ by its image we may assume that ∆ ⊂ GLn(R). If δ ∈ ∆ we
will write δ for its projection to GLn(k). If γ ∈ ∆ ∩ (1n +Mn(I)) then for all
δ1, δ2 ∈ ∆ we have

tr δ1((γ − 1n)/ǫ)δ2 = 0.

As ρ is absolutely irreducible we deduce that

trA((γ − 1n)/ǫ) = 0

for all A ∈Mn(k) and hence that γ = 1n. Thus we may consider ∆ ⊂ GLn(k),
when we have

ρ(δ) = (1n + c(δ)ǫ)δ

for all δ ∈ ∆. We see that

• c(δ1δ2) = c(δ1) + δ1c(δ2)δ
−1
1 for all δ1, δ2 ∈ ∆,

• and tr c(δ)δ = 0 for all δ ∈ ∆.

As ρ is absolutely irreducible, it follows from lemma 1 of [Ca] that there exists
A ∈Mn(k) such that

c(δ) = δAδ−1 − A
for all δ ∈ ∆. (Although Carayol makes the running assumption at the start
of section 1 of [Ca] that k is perfect, this assumption is not used in the proof
of lemma 1.) Then we see that

(1n − Aǫ)ρ(δ)(1n + Aǫ) = δ

for all δ ∈ ∆. The lemma follows. 2

Lemma 1.1.10 Suppose that R ⊃ S are complete local noetherian rings with
mR ∩ S = mS and common residue field k of characteristic l > 2. Suppose
that Γ is a profinite group and that r : Γ → Gn(R) is a continuous represen-
tation with ∆ = r−1(GLn × GL1)(R). Suppose moreover that r|∆ mod mR is
absolutely irreducible and that tr r(∆) ⊂ S. Then r is GLn(R)-conjugate to a
homomorphism r′ : Γ→ Gn(S).
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Proof: By lemma 1.1.9 we may suppose that r(∆) ⊂ (GLn × GL1)(S).
Because r|c∆ and r|∨∆(ν ◦ r) are GLn(R)-conjugate, it follows from lemma 1.1.8
that they are GLn(S)-conjugate. Suppose that

r|c∆ = Ar|∨∆(ν ◦ r)A−1

with A ∈ GLn(S). Then A−1tA commutes with the image of r|∨∆. Hence by
lemma 1.1.7, tA = µA for some µ ∈ R with µ2 = 1, i.e. with µ = ±1. The
lemma now follows from lemmas 1.1.1 and 1.1.3. 2

Finally in this section we consider induction in this setting. Suppose that
Γ′ is a finite index subgroup of Γ containing c and set ∆′ = ∆∩Γ′. Suppose also
that χ : Γ→ R× is a homomorphism. Let r′ : Γ′ → Gn(R) be a homomorphism
with ν ◦ r′ = χ|Γ′ and suppose r′ corresponds to a pair (ρ′, 〈 , 〉′) as in lemma
1.1.1. We define

Ind Γ,∆,χ
Γ′,∆′ r

′ : Γ→ Gn[Γ:Γ′](R)

to be the homomorphism corresponding to the pair (ρ, 〈 , 〉) where ρ acts by
right translation on the R-module of functions f : ∆→ Rn such that

f(δ′δ) = ρ(δ′)f(δ)

for all δ′ ∈ ∆′ and δ ∈ ∆. We set

〈f, f ′〉 =
∑

δ∈∆′\∆

χ(δ)−1〈f(δ), f ′(cδc−1)〉′.

We have ν ◦ (Ind Γ,∆,χ
Γ′,∆′ r′) = χ. If Γ and R carry topologies, if Γ′ is open in Γ

and if r′ is continuous then we consider only continuous functions f . We will
sometimes write Ind Γ,χ

Γ′ for Ind Γ,∆,χ
Γ′,∆′ , although it depends essentially on ∆′ and

∆ as well as Γ′, Γ and χ.

1.2 Deformation theory

Next we will turn to deformation theory. We will follow the approach of
Dickinson [Dic1]. Let l be an odd prime. Let k denote an algebraic extension
of the finite field with l elements, let O denote the ring of integers of a finite
totally ramified extension K of the fraction field of the Witt vectors W (k),
let λ denote the maximal ideal of O, let CfO denote the category of Artinian
local O-algebras for which the structure map O → R induces an isomorphism
on residue fields, and let CO denote the full subcategory of the category of
topological O-algebras whose objects are inverse limits of objects of CfO. Also
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fix a profinite group Γ together with a closed subgroup ∆ ⊂ Γ such that there is
an element c ∈ Γ−∆ with c2 = 1. Also fix a continuous Schur homomorphism

r : Γ −→ Gn(k)
and a homomorphism χ : Γ → O×, such that ∆ = r−1(GLn × GL1)(k) and
ν ◦ r = χ. Let S ⊃ S0 be finite index sets. For q ∈ S let ∆q be a profinite
group provided with a continuous homomorphism ∆q → ∆. For q ∈ S0 fix a

decreasing filtration of kn by ∆q-invariant subspaces Fil
i

q, such that Fil
i

q is kn

for i sufficiently small and Fil
i

q = (0) for i sufficiently large.

By a lifting of (r, {Fil
i

q}q∈S0,i) to an object R of CO we shall mean a pair

(r, {Fil iq}q∈S0,i), where r : Γ → Gn(R) is a continuous homomorphism with

r mod mR = r and ν ◦ r = χ, and where Fil iq is a decreasing filtration of

Rn by ∆q-invariant subspaces such that the natural maps Fil iq ⊗R k → kn

give isomorphisms Fil iq ⊗R k
∼→ Fil

i

q. By a lifting of (r|∆q , {Fil
i

q}i) (resp.

r|∆q) to an object R of CO we shall mean a pair (r, {Fil iq}i) (resp. r), where
r : ∆q → GLn(R) is a continuous homomorphism with r mod mR = r and
ν ◦ r = χ, and where Fil iq is a decreasing filtration of Rn by ∆q-invariant

subspaces such that the natural maps Fil iq ⊗R k → kn give isomorphisms

Fil iq ⊗R k
∼→ Fil

i

q. We will call two liftings equivalent if they are conjugate

by an element of 1 +Mn(mR) ⊂ GLn(R). By a deformation of (r, {Fil
i

q}) we
shall mean an equivalence class of liftings.

For q ∈ S0 define a filtration Fil q on ad r by setting

Fil iqad r = {a ∈ ad r : aFil jq ⊂ Fil j+iq ∀j}.

To simplify notation set Fil 0
qad r = ad r and Fil 1

qad r = (0) if q 6∈ S0. We will

write Z1(∆q, {Fil
i

q}i, ad r) for the set of pairs (φ,A) with φ ∈ Z1(∆q, ad r) and

A ∈ ad r/Fil 0
qad r satisfying

φ+ (ad r − 1)A = 0 ∈ Z1(∆q, ad r/Fil 0
qad r).

There is a natural map

ad r −→ Z1(∆q, {Fil
i

q}i, ad r)
A 7−→ ((1− ad r)A,A).

This gives rise to an exact sequence

(0)→ H0(∆q,Fil 0
qad r)→ ad r →

→ Z1(∆q, {Fil
i

q}i, ad r)→ H1(∆q,Fil 0
qad r)→ (0),

14



where the penultimate map sends (φ,A) to [φ+ (ad r − 1)Ã] for any lifting Ã
of A to ad r.

For q ∈ S there is a universal lifting (not deformation) of (r, {Fil
i

q}i) over
a an object Rloc

q of CO. Note that Rloc
q has a natural action of 1n +Mn(mRloc

q
).

There are natural isomorphisms

Hom k(mRloc
q
/(m2

Rloc
q
, λ), k) ∼= Hom CO(Rloc

q , k[ǫ]/(ǫ2)) ∼= Z1(∆q, {Fil
i

q}i, ad r).

The first is standard. Under the second a pair (φ,A) corresponds to the
homomorphism arising from the lifting

((1 + φǫ)r|∆q , {(1 + ǫA)Fil
i

q + ǫFil
i

q}i)

of (r|∆q , {Fil
i

q}i). The action of M2(mRloc
q
/(m2

Rloc
q
, λ)) on Rloc

q /(m2
Rloc

q
, λ) gives

an action on Z1(∆q, {Fil
i

q}i, ad r) which can be described as follows. If ψ ∈
Hom k(mRloc

q
/(m2

Rloc
q
, λ), k) corresponds to z ∈ Z1(∆q, {Fil

i

q}i, ad r), then B ∈
M2(mRloc

q
/(m2

Rloc
q
, λ)) takes z to z plus the image of ψ(B) ∈ ad r. In partic-

ular there is a bijection between M2(mRloc
q
/(m2

Rloc
q
, λ)) invariant subspaces of

Z1(∆q, {Fil
i

q}i, ad r) and subspaces of H1(∆q,Fil 0
qad r).

Let R be an object of CO and I be a closed ideal of R with mRI = (0).

Suppose that (r1, {Fil iq,1}) and (r2, {Fil iq,2}) are two liftings of (r|∆q , {Fil
i

q})
with the same reduction mod I. Choose A ∈Mn(I) such that (1n+A)Fil iq,1 =

Fil iq,2 for all i. Then

γ 7−→ r2(γ)r1(γ)
−1 − 1 + (ad r(γ)− 1)A

defines an element of H1(∆q,Fil 0
qad r)⊗k I which is independent of the choice

of A and which we shall denote [(r2, {Fil iq,2})− (r1, {Fil iq,1})]. In fact this sets

up a bijection between H1(∆q,Fil 0
qad r)⊗kI and (1+Mn(I))-conjugacy classes

of lifts which agree with (r1, {Fil iq,1}) modulo I. Now suppose that (r, {Fil iq})
is a lift of (r|∆q , {Fil

i

q}) to R/I. Choose a lifting {F̃il
i

q} to R of {Fil iq} and for

each γ ∈ ∆q choose a lifting r̃(γ) to GLn(R) of r(γ) such that r̃(γ)F̃il
i

q ⊂ F̃il
i

q

for all i. Then

(γ, δ) 7−→ r̃(γδ)r̃(δ)
−1
r̃(γ)

−1

defines a class obsR,I(r, {Fil iq}) ∈ H2(∆q,Fil 0ad r)⊗k I which is independent

of the choices made and vanishes if and only if (r, {Fil iq}) lifts to R.
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Now suppose that (rq, {Fil iq}i) is a lifting of (r|∆q , {Fil
i

q}i) to O corre-

sponding to a homomorphism α : Rloc
q → O. Write Z1(∆q, {Fil iq}i, ad rq ⊗

K/O) for the set of pairs (φ,A) with φ ∈ Z1(∆q, ad rq ⊗ K/O) and A ∈
(ad rq/Fil 0

qad rq)⊗K/O satisfying

φ+ (ad rq − 1)A = 0 ∈ Z1(∆q, (ad rq/Fil 0
qad rq)).

As above, the map

ad rq ⊗K/O −→ Z1(∆q, {Fil iq}i, ad rq ⊗K/O)
A 7−→ ((1− ad rq)A,A)

has kernel H0(∆q,Fil 0
qad rq ⊗ K/O) and cokernel H1(∆q,Fil 0

qad rq ⊗ K/O)
(via the map

Z1(∆q, {Fil iq}i, ad rq ⊗K/O) −→ H1(∆q,Fil 0
qad rq ⊗K/O)

(φ,A) 7−→ [φ+ (ad rq − 1)Ã],

where Ã is any lifting of A to ad rq ⊗K/O). There is also a natural identifi-
cation

HomO(kerα/(kerα)2,K/O) ∼= Z1(∆q, {Fil iq}i, ad rq ⊗K/O).

This may be described as follows. Consider the topological O-algebra O ⊕
K/Oǫ where ǫ2 = 0. Although O⊕K/Oǫ is not and object of CO, it still makes
sense to talk about liftings of (rq, {Fil iq}i) to O ⊕K/Oǫ. One can then check

that such liftings are parametrised by Z1(∆q, {Fil iq}i, ad rq⊗K/O). (Any such
lifting arises by extension of scalars from a lifting to some O ⊕ λ−N/Oǫ.) On
the other hand such liftings correspond to homomorphisms Rloc

q → O⊕K/Oǫ
lifting α and such liftings correspond to HomO(kerα/(kerα)2,K/O).

If q ∈ S then by a local deformation problem at q we mean a collection Dq
of liftings of (r|∆q , {Fil

i

q}) (or simply of r|∆q if q ∈ S − S0) to objects of CO
satisfying the following conditions.

1. (k, r|∆q , {Fil
i

q}) ∈ Dq.

2. If (R, r, {Fil iq}) ∈ Dq and if f : R → S is a morphism in CO then

(S, f ◦ r, {fFil iq}) ∈ Dq.

3. Suppose that (R1, r1, {Fil iq,1}) and (R2, r2, {Fil iq,2}) ∈ Dq, that I1 (resp.

I2) is a closed ideal of R1 (resp. R2) and that f : R1/I1
∼→ R2/I2 is an iso-

morphism in CO such that f((r1, {Fil iq,1}) mod I1) = ((r2, {Fil iq,2}) mod
I2). Let R3 denote the subring of R1 ⊕ R2 consisting of pairs with the
same image in R1/I1

∼→ R2/I2. Then (R3, r1⊕r2, {Fil iq,1⊕Fil iq,2}) ∈ Dq.
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4. If (Rj, rj, {Fil iq,j}) is an inverse system of elements of Dq then

(lim←Rj, lim← rj, {lim← Fil iq,j}) ∈ Dq.

5. Dq is closed under equivalence.

It is equivalent to give a 1n+Mn(mRloc
q

) invariant ideal Iq ofRloc
q . The collection

Dq is simply the collection of all liftings (r, {Fil iq}i) over rings R such that the
kernel of the induced map Rloc

q → R contains Iq. We will write Lq = Lq(Dq) for

the image in H1(∆q,Fil 0
qad r) of the annihilator L1

q in Z1(∆q, {Fil
i

q}i, ad r) of
Iq/(Iq ∩ (m2

Rloc
q
, λ)) ⊂ mRloc

q
/(m2

Rloc
q
, λ). Because Iq is 1n +Mn(mRloc

q
) invariant

we see that the annihilator in Z1(∆q, {Fil
i

q}i, ad r) of Iq/(Iq∩(m2
Rloc

q
, λ)) equals

the preimage of Lq.

Lemma 1.2.1 Keep the above notation and assumptions. Suppose that R
is an object of CO and I is a closed ideal of R with mRI = (0). Suppose

also that (r1, {Fil iq,1}) and (r2, {Fil iq,2}) are two liftings of (r|∆q , {Fil
i

q}i) with

the same reduction modI. Suppose finally that (r1, {Fil iq,1}) is in Dq. Then

(r2, {Fil iq,2}) is in Dq if and only if [(r2, {Fil iq,2})− (r1, {Fil iq,1})] ∈ Lq.

Proof: Suppose that (rj, {Fil iq,j}i) corresponds to αj : Rloc
q → R. Then

α2 = α1 + β where
β : Rloc

q −→ I

satisfies

• β(x+ y) = β(x) + β(y);

• β(xy) = β(x)α1(y) + α1(x)β(y) + β(x)β(y);

• and β|O = 0.

Thus β is determined by β|m
Rloc

q
and β is trivial on (m2

Rloc
q
, λ). Hence β gives

rise to and is determined by an O-linear map:

β : mRloc
q
/(m2

Rloc
q
, λ) −→ I.

A straightforward calculation shows that

[(r2, {Fil iq,2})− (r1, {Fil iq,1})] ∈ H1(∆q,Fil 0
qad r)

is the image of

β ∈ Hom (mRloc
q
/(m2

Rloc
q
, λ), I) ∼= Z1(∆q, {Fil

i

q}i, ad r)⊗k I.

17



The homomorphism α1 vanishes on Iq. Thus we must show that β vanishes
on Iq if and only if β maps to Lq ⊗k I, i.e. if and only if

β ∈ Hom (mRloc
q
/(m2

Rloc
q
, λ, Iq), k)⊗k I.

This is tautological. 2

Again let (rq, {Fil iq}) be a lift of (r|∆q , {Fil
i

q}) to O corresponding to a

homomorphism α : Rloc
q → O. Suppose that (rq, {Fil iq}i}) is in Dq. We will

call a lift of (rq, {Fil iq}i) to O ⊕ K/Oǫ of type Dq if it arises by extension
of scalars from a lift to some O ⊕ λ−N/Oǫ which is in Dq. Such liftings
correspond to homomorphisms Rloc

q /Iq → O ⊕ K/Oǫ which lift α. Because

Iq is 1n + Mn(mRloc
q

) invariant, the subspace of Z1(∆q, {Fil
i

q}i, ad rq ⊗ K/O)
corresponding to

HomO(kerα/((kerα)2, Iq),K/O) ⊂ HomO(kerα/(kerα)2,K/O)

is the inverse image of a sub-O-module

L(rq) ⊂ H1(∆q,Fil 0
qad rq ⊗K/O).

Thus a lift of (rq, {Fil iq}i) to O⊕K/Oǫ is of type Dq if and only if its class in

Z1(∆q, {Fil
i

q}i, ad rq ⊗K/O) maps to an element of Lq(rq).
We will call Dq liftable if the following condition is satisfied:

• for each object R of CO, for each ideal I of R with mRI = (0) and for
each lifting (r, {Fil iq}) to R/I in Dq there is a lifting of (r, {Fil iq}) to R.

This is equivalent to Rloc
q /Iq being a power series ring over O. We will call Lq

minimal if
dimk Lq = dimkH

0(∆q,Fil 0ad r).

This is equivalent to the preimage of Lq in Z1(∆q, {Fil
i

q}i, ad r) having dimen-
sion n2.

Let S be a collection of deformation problems Dq for each q ∈ S. We

call a lifting (R, r, {Fil iq}q∈S0,i) of (r, {Fil
i

q}) of type S if for all q ∈ S the

restriction (R, r|∆q , {Fil iq}i) ∈ Dq. If (R, r, {Fil iq}) is of type S, so is any

equivalent lifting. We say that a deformation [(R, r, {Fil iq})] is of type S if

some (or equivalently, every) element (R, r, {Fil iq}) of [(R, r, {Fil iq)] is of type
S. We let DefS denote the functor from CO to sets which sends R to the set
of deformations [(R, r, {Fil iq})] of type S.
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We need to introduce a variant of the cohomology group H i(Γ, ad r). More

specifically we will denote by H i(Γ, {Fil
i

q}, ad r) the homology in degree i of
the complex

Ci(Γ, {Fil
i

q}, ad r) = Ci(Γ, ad r)⊕
⊕

q∈S0

Ci−1(∆q, ad r/Fil 0
qad r),

where the boundary map sends

Ci(Γ, {Fil
i

q}, ad r) −→ Ci+1(Γ, {Fil
i

q}, ad r)
(φ, (ψq)) 7−→ (∂φ, (φ|∆q − ∂ψq)).

Note that we have long exact sequences with a morphism between them:

↓ ↓
H i(Γ, {Fil

i

q}, ad r) −→ ⊕
q∈S0

H i(∆q,Fil 0
qad r)

↓ ↓
H i(Γ, ad r) −→ ⊕

q∈S0
H i(∆q, ad r)

↓ ↓⊕
q∈S0

H i(∆q, ad r/Fil 0
qad r) =

⊕
q∈S0

H i(∆q, ad r/Fil 0
qad r)

↓ ↓ .

Similarly if (r, {Fil iq}) is a lifting of (r, {Fil
i

q}) to O then we will denote by

H i(Γ, {Fil iq}, ad r ⊗ K/O) the homology in degree i of the complex

Ci(Γ, {Fil iq}, ad r ⊗K/O) defined as

Ci(Γ, ad r ⊗K/O)⊕
⊕

q∈S0

Ci−1(∆q, ad r/Fil 0
qad r ⊗K/O),

where the boundary map sends

Ci(Γ, {Fil iq}, ad r ⊗K/O) −→ Ci+1(Γ, {Fil iq}, ad r ⊗K/O)
(φ, (ψq)) 7−→ (∂φ, (φ|∆q − ∂ψq)).

Note that we have a morphism:

H i(Γ, {Fil iq}, ad r ⊗K/O) −→
⊕

q∈S0

H i(∆q,Fil 0
qad r ⊗K/O).

We will also denote by H i
S(Γ, ad r) the cohomology of the complex

Ci
S(Γ, ad r) = Ci(Γ, ad r)⊕

⊕

q∈S

Ci−1(∆q, ad r)/Li−1
q ,
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where Liq = (0) for i > 1,

L0
q = C0(∆q,Fil 0ad r)

and L1
q denotes the preimage of Lq in C1(∆q,Fil 0ad r). The boundary map

sends
Ci
S(Γ, ad r) −→ Ci+1

S (Γ, ad r)
(φ, (ψq)) 7−→ (∂φ, (φ|∆q − ∂ψq)).

We have long exact sequences

(0) →
→ H0

S(Γ, ad r) → H0(Γ, ad r) → ⊕
q ker(H0(∆q, ad r/Fil 0ad r)→
→ H1(∆q, Fil 0ad r)/Lq) →

→ H1
S(Γ, ad r) → H1(Γ, ad r) → ⊕

q H1(∆q, ad r)/Lq →
→ H2

S(Γ, ad r) → H2(Γ, ad r) → ⊕
q H2(∆q, ad r) →

→ H3
S(Γ, ad r) → H3(Γ, ad r) → ...

and

(0) →
→ H0

S(Γ, ad r) → H0(Γ, {Fil
i
q}, ad r) → (0) →

→ H1
S(Γ, ad r) → H1(Γ, {Fil

i
q}, ad r) → ⊕

q H1(∆q, Fil 0ad r)/Lq →
→ H2

S(Γ, ad r) → H2(Γ, {Fil
i
q}, ad r) → ⊕

q H2(∆q, Fil 0ad r) →
→ H3

S(Γ, ad r) → H3(Γ, {Fil
i
q}, ad r) → ...

Lemma 1.2.2 Suppose that all the groups H i(Γ, ad r) and H i(∆q, ad r) are
finite and that they all vanish for i sufficiently large. Set

χ(Γ, ad r) =
∏

i

#H i(Γ, ad r)(−1)i

,

and
χ(∆q, ad r) =

∏

i

#H i(∆q, ad r)(−1)i

,

and
χS(Γ, ad r) =

∏

i

#H i
S(Γ, ad r)(−1)i

.

Then

χS(Γ, ad r) = χ(Γ, ad r)
∏

q

(χ(∆q, ad r)−1#H0(∆q,Fil 0ad r)/#Lq).
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The next result is a variant of well known results for GLn without filtra-
tions. Filtrations were introduced into the picture by Dickinson [Dic2]. Our
proof follows his.

Proposition 1.2.3 Keep the above notation and assumptions. Then DefS is
represented by an object Runiv

S of CO. We will let runiv
S denote the universal

deformation over Runiv
S . There is a canonical isomorphism

Hom cts(mRuniv
S
/(m2

Runiv
S
, λ), k) ∼= H1

S(Γ, ad r).

If H1
S(Γ, ad r) is finite dimensional then Runiv

S is a complete local noetherian
O-algebra.

Proof: First we consider representability. By properties 1, 2, 3 and 4 of Dq
we see that the functor sending R to the set of all lifts of (r, {Fil

i

q}) to R of
type S is representable. By property 5 we see that DefS is the quotient of this
functor by the smooth group valued functor R 7→ ker(GLn(R) → GLn(k))
acting by conjugation. Thus by [Dic1] it suffices to check that if φ : R→→ S in

CO, if (r, {Fil iq}) is a lift of (r, {Fil
i

q}) to R, and if g ∈ 1 +Mn(mS) conjugates

φ(r, {Fil iq}) to itself, then there is a lift g̃ of g in 1+Mn(mR) which conjugates

(r, {Fil iq}) to itself. This is clear from lemma 1.1.5.
Recall that

Hom cts(mRuniv
S
/(m2

Runiv
S
, λ), k) ∼= Hom(Runiv

S , k[ǫ]/(ǫ2)) ∼= DefS(k[ǫ]/(ǫ
2)).

For q ∈ S0 define a filtration Fil q on ad r by setting

Fil iqad r = {a ∈ ad r : aFil jq ⊂ Fil j+iq ∀j}.

Any lifting (r, {Fil iq}) of (r, {Fil
j

q}) to k[ǫ]/(ǫ2) is of the form

• r = (1 + φǫ)r,

• Fil iq = (1 + aqǫ)Fil
i

q + ǫFil
i

q,

where

• φ ∈ Z1(Γ, ad r),

• aq ∈ ad r/Fil 0
qad r, and

• φ = (1− ad r)aq in Z1(∆q, ad r/Fil 0
qad r).
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This establishes a bijection between lifts of (r, {Fil
j

q}) to k[ǫ]/(ǫ2) and col-
lections of data (φ, {aq}) satisfying these conditions. Two collections of data
(φ, {aq}) and (φ′, {a′q}) correspond to equivalent lifts if there is an A ∈ ad r
such that

• φ′ = φ+ (1− ad r)A and

• a′q = aq + A.

It is straightforward to complete the proof of the proposition. 2

Lemma 1.2.4 Suppose that R is an object of CO and that I is an ideal of R

with mRI = (0). Suppose that (r, {Fil iq}) is a lifting of (r, {Fil
i

q}) to R/I of

type S. Suppose moreover that for each q ∈ S the restriction (r|∆q , {Fil iq})
has a lift to R in Dq. Pick such a lifting (r̂q, {F̂il

i

q}) and for each γ ∈ Γ pick

a lifting r̃(γ) of r(γ) to Gn(R). Set

φ(γ, δ) = r̃(γδ)r̃(δ)
−1
r̃(γ)

−1
− 1

and, for δ ∈ ∆q, set

ψq(δ) = r̃(δ)r̂(δ)−1 − 1.

Then (φ, (ψq)) defines a class obsS,R,I(r, {Fil iq}) ∈ H2
S(Γ, ad r) ⊗ I which is

independent of the various choices and vanishes if and only if (r, {Fil iq}) has
a lifting to R of type S.

Proof: We leave the proof to the reader. 2

Corollary 1.2.5 Suppose that each Dq is liftable and that H2
S(Γ, ad r) = (0).

Then Runiv
S is a power series ring in dimH1

S(Γ, ad r) variables over O.

Corollary 1.2.6 Suppose that for each q ∈ S the ring Rloc
q is a complete in-

tersection. Then Runiv
S is the quotient of a power series ring in dimH1

S(Γ, ad r)
variables by

dimH2
S(Γ, ad r) +

∑

q∈S

(n2 + 1 + dimLq − dimRloc
q /Iq − dimH0(∆q,Fil 0

qad r))

relations. Thus Runiv
S has Krull dimension at least

1 + dimH1
S(Γ, ad r)− dimH2

S(Γ, ad r)+
+
∑

q∈S(dimRloc
q /Iq − n2 − 1 + dimH0(∆q,Fil 0

qad r)− dimLq).
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Proof: Rloc
q is topologically generated by dimLq+n

2−dimH0(∆q,Fil 0
qad r)

elements. 2

Now suppose that α : Runiv
S →→ O and let (r, {Fil iq}) be a corresponding

lift of (r, {Fil
i

q}). Let H1
S(Γ, ad r ⊗K/O) denote the kernel of

H1(Γ, {Fil iq}, ad r ⊗K/O) −→
⊕

q∈S

H1(∆q,Fil 0
qad r ⊗K/O)/Lq(rq).

The next lemma is now immediate.

Lemma 1.2.7 Keep the notation and assumptions of the previous paragraph.
Then there is a natural isomorphism

HomO(kerα/(kerα)2,K/O) ∼= H1
S(Γ, ad r ⊗O K/O).

1.3 Deformations of Galois representations

Fix an odd prime l. Also fix an imaginary quadratic field E in which l splits
and a totally real field F+. Set F = F+E. Fix an algebraic extension k of
Fl and a finite totally ramified extension K of the fraction field of W (k). Let
O denote the ring of integers of K and λ the maximal ideal of O. We will

suppose that K contains the image of each embedding of F into Q̂l. Fix a
character χ : GF → O×. Let S∞ (resp. Sl, resp. Il) denote the places of
F+ above ∞ (resp. places of F+ above l, resp. embeddings F+ →֒ K). For
v ∈ S∞, write cv for the notrivial element of GFv . There is a natural surjection
Il →→ Sl. Choose a prime of E above l and let S̃l denote the set of primes of
F above this prime and Ĩl the set of embeddings of F into Ql above S̃l. Thus
Sl and S̃l (resp. Il and Ĩl) are in natural bijection. If v ∈ Sl (resp. τ ∈ Il)
we write ṽ (resp. τ̃) for its lifting to S̃l (resp. Ĩl). Let ǫ denote the l-adic
cyclotomic character. We will write M(a) for M ⊗Zl

Zl(ǫ
a).

Fix a finite set of primes S of F+ which split in F and such that S ⊃ Sl.
Also choose a set S̃ ⊃ S̃l consisting of the choice of one prime of F above each
prime in S. Let S0 ⊂ S contain all ramified elements of Sl. Set Sl,0 = Sl ∩ S0,

set S̃0 equal to the preimage of S0 in S̃ and set S̃l,0 equal to the preimage of Sl,0
in S̃. Let F (S)/F denote the maximal extension unramified outside S and set
GF+,S = Gal (F (S)/F+) (resp. GF,S = Gal (F (S)/F )). Let n < l be a positive
integer and let r : GF+,S → Gn(k) be a continuous Schur homomorphism such
that GF,S = r−1(GLn(k)) and ν ◦ r = χ mod λ.

We suppose that for each ṽ ∈ S̃l,0 there are n characters

χev,0, ..., χev,n−1 : GFev
−→ k×,
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and a GFev
-invariant decreasing filtration Fil iev on kn such that

• Fil
i

ev = (0) for i ≥ n;

• Fil
i

ev = kn for i ≤ 0;

• if i = 0, ..., n− 1 then dim gr ievk
n = 1 and GFev

acts on gr iev by χev,i;

• if i > j + 1 then χev,i 6= χev,jǫ.

We need to impose one more assumption at primes ṽ ∈ S̃l,0, for which we
will require some preliminaries. Suppose that R is an object of CO and that
M is a free rank two R module M with a continuous action of GFev

and a
GFev

-invariant submodule Fil with M/Fil free of rank one over R. Suppose
moreover that, if GFev

acts on Fil (resp. M/Fil ) by χ0 (resp. χ1), then χ1ǫχ
−1
0

is unramified. Then we will define an invariant val (M,Fil ) ∈ R as follows.
Suppose first that R is Artinian. Choose a finite unramified extension F ′/Fev
such that χ0 = χ1ǫ on GF ′ . Thus, as a GF ′-module, (M,Fil ) is an extension
of R(χ1) by R(χ1ǫ) and so gives rise to a class in

H1(GF ′ , R(1)) ∼= (F ′)× ⊗R.

(By (F ′)× ⊗R we mean (F ′)×/((F ′)×)l
a ⊗Z/laZ R for any sufficiently large a.)

The invariant val (M,Fil ) is just the image of this class in Z⊗R = R under the
valuation map. Note that this does not depend on the choice of F ′. Also note
that if R → S in CO then val (M ⊗R S,Fil ⊗R S) is the image of val (M,Fil )
in S. We extend the definition to the case that R is any object of CO by
using inverse limits. This preserves the invariance of val under pushforwards
by morphisms in CO. Our additional assumption is that if χev,i+1 = χev,iǫ then

val (Fil iev/Fil i+2
ev ,Fil i+1

ev /Fil i+2
ev ) = 0.

Suppose that ṽ ∈ S̃l − S̃l,0. Let MFO,ev denote the category of finite
OF,ev ⊗Zl

O-modules M together with

• a decreasing filtration Fil iM by OF,ev ⊗Zl
O-submodules which are OF,ev

direct summands with Fil 0M = M and Fil l−1M = (0);

• and Fr ⊗ 1-linear maps Φi : Fil iM → M with Φi|Fil i+1M = lΦi+1 and∑
i Φ

iFil iM = M .

Let MFk,ev denote the full subcategory of objects killed by λ. Fontaine and
Lafaille (see [FL]) define an exact, fully faithful functor of O-linear categories
Gev fromMFO,ev to the category of finite O-modules with a continuous action
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of GFev
. They show that the image of Gev is closed under taking sub-objects

and quotients and that [OF/ṽ : Fl] times the length of Gev(M) as an O-module
is the length of M as a O-module. (In fact in [FL] a slight variant US of Gev
is defined. We define Gev(M) = US(Hom (M,Fev/OF,ev{l − 2})))(2 − l). Here
Hom (M,Fev/OF,ev{l − 2})) ∈MFO,ev is defined as follows.

• The underlying O-module is HomOF,ev
(M,Fev/OF,ev).

• Fil aHom(M,Fev/OF,ev{l − 2})) = HomOF,ev
(M/Fil l−1−aM,Fev/OF,ev).

• If f ∈ HomOF,ev
(M/Fil l−1−aM,Fev/OF,ev) and if m ∈ ΦbFil bM set

Φa(f)(m) = ll−2−a−bFrf(Φb)−1(m)).

To check that Φaf is well defined one uses the exact sequence

(0) → ⊕l−2
i=1 Fil iM → ⊕l−2

i=0 Fil iM → M → (0)
(mi) 7→ (lmi −mi+1)i

(mi) 7→ ∑
Φimi.

To check that

HomOF,ev
(M,Fev/OF,ev) =

∑

a

ΦaHomOF,ev
(M/Fil l−1−aM,Fev/OF,ev)

it suffices to check that

HomOF,ev
(M [l], Fev/OF,ev) =

∑

a

ΦaHomOF,ev
(M [l]/Fil l−1−aM [l], Fev/OF,ev).

But M [l] =
⊕

i Φ
igr iM [l] and ΦaHomOF,ev

(M [l]/Fil l−1−aM [l], Fev/OF,ev) =
HomOF,ev

(Φl−2−agr l−2−aM [l], Fev/OF,ev).) For any objects M and N ofMFO,ev
(resp. MFk,ev), the map

Ext 1
MFO,ev

(M,N) −→ Ext 1
O[GF

ev
](Gev(M),Gev(N))

(resp.

Ext 1
MFk,ev

(M,N) −→ Ext 1
k[GF

ev
](Gev(M),Gev(N))

∼= H1(GFev
,Hom k(Gev(M),Gev(N))))

is an injection. Moreover

HomMFO,ev
(M,N)

∼−→ H0(GFev
,HomO(Gev(M),Gev(N))).
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For ṽ ∈ S̃l − S̃l,0, we will assume that r|GF
ev

is in the image of Gev and that for

each i and each τ̃ ∈ Ĩl above ṽ we have

dimk(gr iG−1
ev (r|GF

ev
))⊗OF

ev
,eτ O ≤ 1.

For τ̃ ∈ Ĩl above ṽ ∈ S̃l − S̃l,0, we will denote by meτ ,0 ≤ ... ≤ meτ ,n−1 the
integers l − 2 ≥ m ≥ 0 such that

dimk(grmG−1
ev (r|GF

ev
))⊗OF

ev
,eτ O = 1.

For ṽ ∈ S̃0 − S̃l,0 fix a GFev
-invariant filtration {Fil

i

ev} of kn such that

• Fil
i

ev = (0) for i >> 0, and

• Fil
i

ev = kn for i << 0.

We are going to define a deformation problem

(GF+,S ⊃ GF,S , S ⊃ S0, {GFev
}v∈S,O, r, χ, {Fil

i

ev}, {Dev}, {Lev})

as in the last section. It remains to describe the Dev and the Lev.

1.3.1 Ordinary deformations

The following discussion is a bit ad hoc. We do not feel that we have found
the right degree of generality here.

First of all we will discuss ṽ ∈ S̃l,0. For i = 0, . . . , n− 1 choose characters
χev,i : GFev

→ O× lifting χev,i with the following properties.

1. For each τ̃ ∈ Ĩl,0 above ṽ there are integers meτ ,0 ≤ . . . ≤ meτ,n−1 such
that if we consider χev,i|Iev

as a character of O×F,ev (by class field theory)
then

χev,i(x) =
∏

eτ
(τ̃x)meτ,i .

2. If χev,i+1 = χev,iǫ then χev,i+1 = χev,iǫ.

We will take Dev to be the set of all lifts (r, {Fil iev}) of (r|GF
ev
, {Fil

i

ev}) to objects

R of CO such that IFev
acts on gr ievR

n by χev,i and such that, if χev,i+1 = χev,iǫ

then val (Fil ievR
n/Fil i+2

ev Rn) = 0. It is easy to see that Dev is a local deformation
problem.
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Set
L′ev = ker(H1(GFev

,Fil 0
evr) −→ H1(IFev

, gr 0
evad r)).

Then there is a natural map

L′ev → H1(IFev
,Fil 1

evad r)/∂H0(IFev
, gr 0

evad r)→
n−1⊕

i=1

H1(IFev
, k(χev,i−1/χev,i))/〈ci〉,

where ci is the class defined by the extension Fil
i−1

ev /Fil
i+1

ev . Then it is not
hard to see that Lev = Lev(Dev) is the kernel of the composite

L′ev −→
⊕

j

H1(IFev
, k(χev,j−1/χev,j))/〈cj〉 val−→

⊕

j

k,

where j runs over indices such that χj−1 = χjǫ.

Lemma 1.3.1 For ṽ ∈ S̃l,0 the set Dev is liftable.

Proof: Suppose that R is an object of CO and I is a closed ideal of R
with mRI = (0). Suppose also that (r, {Fil iev}) is a deformation in Dev of

(r|GF
ev
, {Fil

i

ev}) to R/I. We will show by reverse induction on i that we can

find a lifting Fil i of Fil ievr to R so that for j ≥ i, IFev
acts on gr jevFil i by χev,j

and, if χev,j+1 = χev,jǫ, then val (Fil jevFil i/Fil j+2
ev Fil i) = 0.

The case i = n − 1 is trivial. Suppose that Fil i+1 is such a lifting. Also
choose a lifting gr i of gr ievr such that IFev

acts by χev,i. We will choose Fil i

to be an extension of gr i by Fil i−1 which lifts Fil ievr. Such extensions are
parametrised by H1(GFev

,Hom (gr i,Fil i+1)).
We have a commutative diagram with its first two columns exact:

H1(GF
ev

, Hom (gr i

ev
r, IFil i+1)) → H1(GF

ev
, Hom (gr i

ev
r, Igr i+1))

val
→ (Hom (gr i

ev
r, Igr i+1)(ǫ−1)IF

ev

)
GF

ev

↓ ↓ ↓

H1(GF
ev

, Hom (gr i, Fil i+1)) → H1(GF
ev

, Hom (gr i, gr i+1))
val
→ (Hom (gr i, gr i+1)(ǫ−1)IF

ev

)
GF

ev

↓ ↓ ↓

H1(GF
ev

, Hom (gr i

ev
r, Fil i+1

ev
r)) → H1(GF

ev
, Hom (gr i

ev
r, gr i+1

ev
r))

val
→ (Hom (gr i

ev
r, gr i+1

ev
r)(ǫ−1)IF

ev

)
GF

ev

↓ ↓

H2(GF
ev

, Hom (gr i

ev
r, IFil i+1)) → H2(GF

ev
, Hom (gr i

ev
r, Igr i+1)).

The last column is also exact, as either each term is zero or IFev
acts trivially

on each of the modules so that we can suppress the IFev
-coinvariants.

It suffices to check that the kernel of the map

H1(GFev
,Hom (gr ievr,Fil i+1

ev r))→ H2(GFev
,Hom (gr ievr, IFil i+1))
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contains the kernel of the map

H1(GFev
,Hom (gr ievr,Fil i+1

ev r))→ (Hom (gr ievr, gr i+1
ev r)(ǫ−1)IF

ev
)GF

ev ,

and that, in the case χev,i+1 = χev,iǫ, the map

H1(GFev
,Hom (gr ievr, IFil i+1))→ (Hom (gr ievr, Igr i+1)(ǫ−1)IF

ev
)GF

ev

is surjective.
For the first property we dualise. If M is a Zl[GFev

]-module we set M ∗ =
Hom(M,Ql/Zl(ǫ)). We have the commutative diagram

H1(GFev
/Iev, (Hom (gr ievr, gr i+1

ev r)∗)IFev )
↓

H0(GFev
,Hom (gr ievr, Igr i+1)∗) → H1(GFev

,Hom (gr ievr, gr i+1
ev r)∗)

↓ ↓
H0(GFev

,Hom (gr ievr, IFil i+1)∗) → H1(GFev
,Hom (gr ievr,Fil i+1

ev r)∗)

and we need to check that the image of

H1(GFev
/Iev, (Hom (gr ievr, gr i+1

ev r)∗)IFev )→ H1(GFev
,Hom (gr ievr,Fil i+1

ev r)∗)

contains the image of

H0(GFev
,Hom (gr ievr, IFil i+1)∗)→ H1(GFev

,Hom (gr ievr,Fil i+1
ev r)∗).

The map in the last row equals

H0(GFev
,Hom (Fil i+1

ev r, gr ievr)(ǫ))⊗ I∗ ← H0(GFev
,Hom (gr i+1

ev r, gr ievr)(ǫ))⊗ I∗.

It is surjective because, by our assumptions,

H0(GFev
,Hom (gr jevr, gr ievr)(ǫ)) = (0)

for j > i+ 1. Thus we need only show that the image of

H1(GFev
/Iev, (Hom (gr ievr, gr i+1

ev r)∗)IFev )→ H1(GFev
,Hom (gr ievr, gr i+1

ev r)∗)

contains the image of

H0(GFev
,Hom (gr ievr, Igr i+1)∗)→ H1(GFev

,Hom (gr tv
ir, gr i+1

ev r)∗),

i.e. that

H0(GFev
,Hom (gr ievr, Igr i+1)∗)→ H1(IFev

,Hom (gr ievr, gr i+1
ev r)∗)
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is zero. If χev,i+1 6= χev,iǫ then the domain is trivial so there is nothing to prove.
Otherwise IFev

acts trivially Hom (gr i, gr i+1)∗ and again we see this map is
zero.

For the second property we suppose that χev,i+1 = χev,iǫ. It suffices to check
that

H1(GFev
,Hom (gr ievr, IFil i+1))→ H1(GFev

,Hom (gr ievr, Igr i+1))

is surjective, or even that

H2(GFev
,Hom (gr ievr, IFil i+2)) = H2(GFev

,Hom (gr ievr,Fil i+2
ev r))⊗ I = (0).

Dually it suffices to check that

H0(GFev
,Hom (Fil i+2

ev r, gr ievr)(ǫ)) = (0),

which follows from our assumption that χev,i/χev,j 6= ǫ for j > i+ 1. 2

Lemma 1.3.2

lgO L
′
ev − lgOH

0(GFev
,Fil 0

evad r) =
n(n− 1)[Fev : Ql]/2 + lgO ker(H0(GFev

, (ad r/Fil 0
evad r)(ǫ))→ gr 0

evad r),

where the last map is the composite of

H0(GFev
, (ad r/Fil 0

evad r)(ǫ))
∂−→ H1(GFev

, (gr 0
evad r)(ǫ))

and
H1(GFev

, (gr 0
evad r)(ǫ)) = (gr 0

evad r)⊗ F×ev
val−→ gr 0

evad r.

Proof: Looking at the diagram

(0)
↓

H1(GFev
/IFev

, gr 0
evad r)

↓
H1(GFev

,Fil 0
evad r) −→ H1(GFev

, gr 0
evad r) −→ H2(GFev

,Fil 1
evad r)

↓
H1(IFev

, gr 0
evad r)

with an exact row and column, we see that

lgO L
′
ev = lgO ker(H1(GFev

,Fil 0
evad r)→ H1(G, gr 0

evad r))+
lgO ker(H1(GFev

/IFev
, gr 0

evad r)→ H2(GFev
,Fil 1

evad r)).
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The long exact sequence corresponding to the short exact sequence

(0) −→ Fil 1
evad r −→ Fil 0

evad r −→ gr 0
evad r −→ (0)

tells us that

lgO ker(H1(GFev
,Fil 0

evad r)→ H1(G, gr 0
evad r)) =

lgOH
1(GFev

,Fil 1
evad r)− lgOH

0(GFev
, gr 0

evad r)+
+ lgOH

0(GFev
,Fil 0

evad r)− lgOH
0(GFev

,Fil 1
evad r).

The local Euler characteristic formula in turn, tells us that this is

[Fev : Ql]n(n−1)/2+lgOH
0(GFev

,Fil 0
evad r)−lgO gr 0

evad r+lgOH
2(GFev

,Fil 1
evad r).

On the other hand local duality tells us that

lgO ker(H1(GFev
/IFev

, gr 0
evad r)→ H2(GFev

,Fil 1
evad r)) =

lgO coker (H0(GFev
, (ad r/Fil 0

evad r)(ǫ))→ gr 0
evad r),

where the second map is the one described in the statement of the lemma.
Local duality also tells us that

lgOH
2(GFev

,Fil 1
evad r) = lgOH

0(GFev
, (ad r/Fil 0

evad r)(ǫ)).

Thus

lgO L
′
ev − lgOH

0(GFev
,Fil 0

evad r) =
[Fev : Ql]n(n− 1)/2− lgO gr 0

evad r + lgOH
0(GFev

, (ad r/Fil 0
evad r)(ǫ))+

lgO coker (H0(GFev
, (ad r/Fil 0

evad r)(ǫ))→ gr 0
evad r),

and the lemma follows. 2

Corollary 1.3.3

lgO L
′
ev − lgOH

0(GFev
,Fil 0

evad r) = n(n− 1)[Fev : Ql]/2+
+ lgOH

0(GFev
, (gr −1

ev ad r)(ǫ)).

Proof: The natural map

(gr −1
ev ad r)(ǫ)GF

ev −→ (ad r/Fil 0
evad r)(ǫ)GF

ev

is an isomorphism. The map

(gr−1
ev ad r)(ǫ)GF

ev
val ◦∂−→ gr 0

evad r

is zero, because for all j we have val (Fil
j−1

ev /Fil
j+1

ev ) = 0. Thus

(gr −1
ev ad r)(ǫ)GF

ev
∼−→ ker(H0(GFev

, (ad r/Fil 0
evad r)(ǫ))→ gr 0

evad r).

2
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Lemma 1.3.4 The composite

H1(GFev
,Fil 1

evad r) −→ H1(GFev
, gr 1

evad r)
val−→ ((gr 1

evad r)(ǫ−1)IF
ev
)GF

ev

is surjective.

Proof: We must show that

ker(H1(GFev
, gr 1

evad r) −→ H2(GFev
,Fil 2

evad r))
val→→ ((gr 1

evad r)(ǫ−1)IF
ev
)GF

ev .

Dually it suffices to show that

H1(GFev
/IFev

, (gr −1
ev ad r)(ǫ)IFev )

injects into the cokernel of the map

H0(GFev
, (ad r/Fil −1

ev ad r)(ǫ)) −→ H1(GFev
, gr −1

ev ad r(ǫ)).

Equivalently we must check that

H1(GFev
/IFev

, (gr −1
ev ad r)(ǫ)IFev ) −→ H1(GFev

/IFev
, (ad r/Fil 0

evad r)(ǫ)IFev )

is injective. This follows because

((ad r/Fil 0
evad r)(ǫ)IFev/(gr−1

ev ad r)(ǫ)IFev )GF
ev = (0).

2

Corollary 1.3.5

lgO Lev − lgOH
0(GFev

,Fil 0
evad r) = [Fev : Ql]n(n− 1)/2.

Proof: The lemma tells us that

lgO L
′
ev − lgO Lev = lgO((gr 1

evad r)(ǫ−1)IF
ev
)GF

ev = lgO(gr −1
ev ad r)(ǫ)GF

ev .

2

31



1.3.2 Crystalline deformations

Secondly we will second discuss the case ṽ ∈ S̃l − S̃l,0. In this case we will let
Dev consist of all lifts r : GFev

→ GLn(R) of r|GF
ev

such that, for each Artinian
quotient R′ of R, r ⊗R R′ is in the essential image of Gev. It is easy to verify
that this is a local deformation problem and that

Lev = Lev(Dev) = Ext 1
MFk,ev

(G−1
ev (r),G−1

ev (r)) →֒ H1(GFev
, ad r).

Lemma 1.3.6 For ṽ ∈ S̃l − S̃l,0 the set Dev is liftable.

Proof: Suppose that R is an Artinian object of CO and I is an ideal of
R with mRI = (0). Suppose also that r is a deformation in Dev of r|GF

ev
to

R/I. Write M = G−1
ev (r) and for τ̃ : Fev →֒ K write Meτ = M ⊗OF,ev⊗Zl

O,eτ⊗1 O.

Then Fil iM =
⊕

eτ Fil iMeτ for all i. As M/mRM = G−1
ev (r) we see that we

can find a surjection (R/I)n →→ Meτ such that (R/I)i →→ Filmeτ ,n−iMeτ for all i
(where (R/I)i ⊂ (R/I)n consists of vectors whose last n− i entries are zero).
Counting orders we see that (R/I)n

∼→ Meτ , and hence (R/I)i
∼→ Filmeτ ,n−iMeτ

for all i. Define an object N =
⊕

eτ Neτ of MFO,ev with an action of R as
follows. We take Neτ = Rn with an OF,ev-action via τ̃ . We set Fil jNeτ = Ri

where meτ ,n−i ≥ j > meτ ,n−1−i (and where we set meτ,n = ∞ and meτ,−1 =
−∞). Then N/I ∼= M as filtered OF,ev ⊗Zl

R-modules. Finally we define
Φmeτ,i : Filmeτ,iNeτ → Neτ◦Frobl

by reverse recursion on i. For i = n − 1 we
take any lift of Φmeτ,n−1 : Filmeτ,n−1Meτ → Meτ◦Frobl

. In general we choose any
lift of Φmeτ,i : Filmeτ,iMeτ → Meτ◦Frobl

which restricts to lmeτ,i+1−meτ,iΦmeτ,i+1 on
Filmeτ,i+1Neτ . This is possible as Filmeτ,i+1Meτ is a direct summand of Filmeτ,iMeτ .
Nakayama’s lemma tells us that

∑
i Φ

meτ,iFilmeτ,iNeτ = Neτ◦Frobl
, so that N is an

object ofMFO,ev. As our lifting of r we take Gev(N). 2

We will need to calculate lgO Lev. To this end we have the following lemma.

Lemma 1.3.7 Suppose that M and N are objects of MFk,ev. Then there is
an exact sequence

(0)→ HomMFk,ev
(M,N)→ Fil 0HomOF,ev⊗Zl

O(M,N)→
→ HomOF,ev⊗Zl

O,Fr⊗1(grM,N)→ Ext 1
MFk,ev

(M,N)→ (0),

where Fil iHomOF,ev⊗Zl
O(M,N) denotes the subset of HomOF,ev⊗Zl

O(M,N) con-

sisting of elements which take Fil jM to Fil i+jN for all j and where grM =⊕
i gr iM . The central map sends β to (βΦi

M − Φi
Nβ).
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Proof: Any extension

(0) −→ N −→ E −→M −→ (0)

in MFk,ev can be written E = N ⊕ M such that Fil iE = Fil iN ⊕ Fil iM
(and such that N → E is the natural inclusion and E → M is the natural
projection). Then

Φi
E =

(
Φi
N αi
0 Φi

M

)

with αi ∈ HomOF,ev⊗Zl
O,Fr⊗1(gr iM,N). Conversly, any

α = (αi) ∈ HomOF,ev⊗Zl
O,Fr⊗1(grM,N)

gives rise to such an extension. Two such extensions corresponding to α and
α′ are isomorphic if there is a β ∈ HomOF,ev⊗Zl

O(M,N) which preserves the
filtrations and such that for all i

(
1 β
0 1

)(
Φi
N αi
0 Φi

M

)
=

(
Φi
N α′i
0 Φi

M

)(
1 β|gr iM

0 1

)
.

The lemma now follows easilly. 2

Corollary 1.3.8 Keep the above notation. We have

lgO Lev − lgOH
0(GFev

, ad r) = [Fev : Ql]n(n− 1)/2.

Proof: If M is an object ofMFO,ev and if τ̃ : Fev →֒ K set

Meτ = M ⊗OF,ev⊗Zl
O,τ⊗1 O.

Thus Fil iM =
⊕

eτ Fil iMeτ and Φi : Fil iMeτ →Meτ◦Fr−1. We have

Fil 0HomOF,ev⊗Zl
O(M,N) ∼=

⊕

eτ
Fil 0HomO(Meτ , Neτ )

and
HomOF,ev⊗Zl

O,Fr⊗1(grM,N) ∼=
⊕

eτ
HomO(grMeτ , Neτ◦Fr−1).

Note that dimk Fil 0Hom k(G
−1
ev (r)eτ ,G

−1
ev (r)eτ ) = n(n+ 1)/2 and that

dimk Hom k(gr G−1
ev (r)eτ ,G

−1
ev (r)eτ◦Fr−1) = n2. The corollary follows. 2
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Corollary 1.3.9 If n = 1 then

Lev = H1(GFev
/IFev

, ad r).

Proof: One checks that Lev ⊃ H1(GFev
/IFev

, ad r) and then uses the equality
of dimensions. 2

The next lemma is clear.

Lemma 1.3.10 If r|GF
ev

= ⊕isi then

H1(GFev
, ad r) = ⊕i,jH1(GFev

,Hom (si, sj))

and Lev = ⊕i,j(Lev)i,j, where (Lev)i,j denotes the image of

Ext 1
MFk,ev

(G−1
ev (si),G

−1
ev (sj)) −→ H1(GFev

,Hom (si, sj)).

1.3.3 Unrestricted deformations

Suppose ṽ ∈ S̃ − S̃l. We can take Dev to consist of all lifts of (r|GF
ev
, {Fil

i

ev})
and Lev = Lev(Dev) = H1(GFev

,Fil 0
evad r). In this case

lgO Lev − lgOH
0(GFev

,Fil 0
evad r) = lgOH

0(GFev
, (ad r/Fil 1

ev)(1)).

If H0(GFev
, (ad r/Fil 1

ev)(1)) = (0) then Lev is minimal and (using local duality,
we see that) Dev is liftable.

1.3.4 Minimal deformations

Suppose ṽ ∈ S̃ − S̃l. Suppose moreover that Fil
0

evr = (0) and that for i <

0, Fil
i

evr/Fil
i+1

ev r is the maximal submodule of r/Fil
i+1

ev r on which IFev
acts

semisimply. (Thus if r|IF
ev

is semisimple then ṽ 6∈ S̃0, while otherwise ṽ ∈ S̃0.)
For every ṽ 6 |l, there is a unique such filtration on r.

Before describing Dev we first give a description of all lifts of (r|GF
ev
, {Fil

i

ev}i).
Let PFev

denote the kernel of any surjection IFev
→→ Zl. (Hence it is the kernel

of every such surjection.) Then PFev
has (pro-)order prime to l and IFev

is the
semidirect product of PFev

by Zl. Let σ denote a topological generator of this

Zl. Moreover GFev
is the semidirect product of IFev

by Ẑ. Let φ be a topological

generator of this Ẑ which lifts Frob−1
ev . Then φZlφ

−1 is a Sylow pro-l-subgroup
of IFev

and so φZlφ
−1 = τZlτ

−1 for some τ ∈ IFev
. Replacing φ by τ−1φ we may

assume that φσφ−1 = σ#k(ev). Set TFev
= GFev

/PFev
. Thus we have written GFev

as the semidirect product of PFev
by TFev

.
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Suppose that τ is an irreducible representation of PFev
over k. Then τ

admits a unique lift τ̃ to O. Let Gτ denote the set of σ ∈ GFev
with τσ ∼ τ .

Write Iτ for Gτ ∩ IFev
and Tτ for Gτ ∩ TFev

. Then Iτ is the semidirect product
of PFτ by 〈σlaτ 〉 for some aτ ∈ Z≥0. Write στ = σl

aτ
. Moreover we can find

φτ ∈ TFev
such that Tτ is the semidirect product of Iτ ∩ TFev

by the copy of Ẑ
with topological generator φτ . Note that l 6 | dim τ , as PFev

has pro-order prime
to l.

The representation τ has a unique (up to equivalence) extension to Iτ .
(Suppose τ(στgσ

−1
τ ) = Aτ(g)A−1 for all g ∈ PFev

. Suppose also that σl
b

τ

centralises τPFev
. Then we see that z = Al

b
lies in the centraliser Zτ of

the image of τ . As τ is irreducible we see that Zτ is the multiplicative
group of a finite extension of k and so is a torsion abelian group with or-
ders prime to l. Moreover Z/lbZ acts on Zτ by letting 1 act by conjuga-
tion by A. As H2(Z/lbZ, Zτ ) = (0) we see that there is w ∈ Zτ with
z−1 = w(AwA−1)(A2wA−2)...(Al

b−1wA1−lb) = (wA)l
b
A−l

b
. We can extend

τ to Iτ by sending στ to wA. Now write A for wA. Any other extension
sends στ to uA for some u ∈ Zτ with u(AuA−1)...(Al

b−1uA1−lb) equalling an
element of Zτ of l-power order, i.e. equalling 1. As H1(Z/lbZ, Zτ ) = 1 we see
that u = v−1AvA−1 for some v ∈ Zτ . Hence our second extension of τ |PF

ev
is

v−1τv, i.e. our extension is unique up to equivalence.) Similarly the lifting τ̃
has a unique extension to Iτ with determinant of order prime to l. (Argue as
before but choose A with detA having order prime to l, which is possible as
for z ∈ O× we have det(zA) = zdim τ det(A). Then take Zτ to be the set of
elements of the centraliser of τ(PFev

) with order prime to l. The same argument
shows the existence of one extension with determinant of order prime to l and
also its uniqueness.)

By the uniqueness of the extension, τ̃ and τ̃φτ are equivalent as represen-
tations of Gτ ∩ IFev

. Hence τ̃ extends to a representation of Gτ . Pick one such
extension and let τ denote its reduction modulo λ.

Suppose that R is an object of CO and that M is a finite R-module with a
continuous action of GFev

. Then we can write

M =
⊕

τ

Mτ

where τ runs over irreducible k[PFev
]-modules and where Mτ is the biggest

R[PFev
]-submodule all whose irreducible subquotients are isomorphic to τ .

Then Mτ is in fact a R[Gτ ]-module. Moreover M ′
τ = HomO[PF

ev
](τ̃ ,M) is

naturally an R[Tτ ]-module and

Mτ = τ̃ ⊗OM ′
τ .
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Moreover we see that

M =
⊕

[τ ]

Ind
GF

ev
Gτ

(τ̃ ⊗OM ′
τ ),

where [τ ] runs over GFev
-conjugacy classes of irreducible k[PFev

]-modules. In
fact the category of finite R-modules with continuous GFev

-action is naturally
equivalent to the direct sum over [τ ] of the categories of finite R-modules with
a continuous action of Tτ . This equivalence sends M to (M ′

τ )[τ ]. We will say
that M lacks unipotent ramification if each M ′

τ is unramified, i.e. the action
of Tτ restricts trivially to (IFev

∩Gτ )/PFev
. In this case

M |IF
ev

∼=
⊕

[τ ]

(Ind
IF

ev
Iτ
τ̃)⊗O (M ′

τ)
[GF

ev
:IF

ev
Gτ ].

Conversely if

M |IF
ev

∼=
⊕

[τ ]

(Ind
IF

ev
Iτ
τ̃)⊗OM ′′

τ

for some trivial IFev
-modules M ′′

τ then M lacks unipotent monodromy.

We now return to lifts of (r, {Fil iev}) of (r|GF
ev
, {Fil

i

ev}) over an object R

of CO. We will say that such a lift is minimally ramified if each gr ievr lacks
unipotent ramification. Let Dev denote the set of minimally ramified lifts.
Using the above equivalence of categories it is easy to see that Dev is a local
deformation problem. Moreover

Lev = Lev(Dev) = ker(H1(GFev
,Fil 0

evad r) −→ H1(IFev
, gr 0

evad r)).

Note that
Fil

j

evr ∩ r′τ = Fil
j

evr
′
τ = ker(στ − 1)−j|r′τ .

Lemma 1.3.11 Lev is minimal.
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Proof:

dimk Lev − dimkH
0(GFev

,Fil 0
evad r)

= dimk Im (H1(GFev
,Fil 1

evad r)→ H1(GFev
,Fil 0

evad r))+
+ dimk ker(H1(GFev

/IFev
, (gr 0

evad r)IFev )→ H2(GFev
,Fil 1

evad r))−
− dimkH

0(GFev
,Fil 0

evad r)

= dimkH
1(GFev

,Fil 1
evad r)− dimkH

0(GFev
, gr 0

evad r)−
− dimkH

0(GFev
,Fil 1

evad r)− dimkH
2(GFev

,Fil 1
evad r)+

+ dimkH
1(GFev

/IFev
, (gr 0

evad r)IFev )+
+ dimk coker (H1(GFev

/IFev
, (gr 0

evad r)IFev )→ H2(GFev
,Fil 1

evad r))

= dimk ker(H0(GFev
, (ad r/Fil 0

evad r)(1))→ H1(IFev
, (gr 0

evad r)(1))).

Thus to prove the lemma it suffices to show that

H0(GFev
, (ad r/Fil 0

evad r)(1)) −→ H1(IFev
, (gr 0

evad r)(1))

is injective.
We have

ad r =
⊕

[τ ],[τ ′]

Hom k(Ind
GF

ev
Gτ ′

(τ̃ ′ ⊗ r′τ ′), Ind
GF

ev
Gτ

(τ̃ ⊗ r′τ )).

Hence

(ad r)PF
ev =

⊕
[τ ],[τ ′] Ind

TF
ev

Tτ
Hom k[PF

ev
](Ind

GF
ev

Gτ ′
(τ̃ ′ ⊗ r′τ ′), (τ̃ ⊗ r′τ ))

=
⊕

[τ ](End k[PF
ev
](τ)⊗ Ind

TF
ev

Tτ
ad r′τ .

Thus we must show that for each [τ ] the map

H0(Tτ , (ad r′τ/Fil 0
evad r′τ )(1)) −→ H1(Iτ/PFev

, (gr 0
evad r′τ )(1))

is injective. In fact it suffices to show that

H0(Iτ/PFev
, (ad r′τ/Fil 0

evad r′τ )) −→ H1(Iτ/PFev
, (gr 0

evad r′τ )) = gr 0
evad r′τ

is injective. (Note that Iτ/PFev
acts trivially on each gr jevr

′
τ .) In concrete terms,

it suffices to show that if α ∈ ad r′τ and στασ
−1
τ − α sends Fil

j

evr
′
τ to Fil

j+1

ev r′τ
for all j then α sends Fil

j

evr
′
τ to Fil

j

evr
′
τ for all j.
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We prove this last assertion by reverse induction on j. It is vacuously true
for j ≥ 0. Now consider j < 0. Our assumption tells us that

((στ − 1)α− α(στ − 1))Fil
j

evr
′
τ ⊂ Fil

1+j

ev r′τ .

The inductive hypothesis and the fact that (στ − 1)Fil
j

evr
′
τ ⊂ Fil

1+j

ev r′τ implies
that

(στ − 1)αFil
j

evr
′
τ ⊂ Fil

1+j

ev r′τ .

Hence αFil
j

evr
′
τ ⊂ Fil

j

evr
′
τ , as desired. 2

Lemma 1.3.12 Dev is liftable.

Proof: Because of the equivalence of categories discussed above it suffices
to prove the corresponding result for representations of Tτ . More precisely

suppose that r′τ is a representation of Tτ over k. Define a filtration Fil
j

on r′τ
by setting Fil

j
r′τ = (0) for j ≥ 0 and = ker(r(στ ) − 1)−j for j ≤ 0. Let D

denote the set of liftings (r, {Fil j}) of (r′τ , {Fil
j}) such that στ acts trivially

on gr jr for all j. We need to show that D is liftable.
Let R be an object of CO and let I be an ideal of R with mRI = (0). Let

(r, {Fil j}) be a lifting of (r′τ , {Fil
j}) to R/I. We will show by induction on i

that (r/Fil i, {Fil j/Fil i}j) can be lifted to R in such a way that στ acts trivially
on each graded piece. For i sufficiently negative this is vacuous. Assume we
have done this for i − 1 and we will show it for i. Choose bases compatible
with the filtration. Write

r(στ ) =

(
1 X0

0 V0

)
r(φτ ) =

(
A0 B0

0 D0

)
.

Let m = (#k(ṽ))[GF
ev
:IF

ev
Gτ ]. Then V0 is unipotent; A0 and D0 are invertible;

D0V0 = V r
0 D0 and

A0X0 +B0V0 = B0 +X0(1 + V0 + ...+ V m−1
0 )D0.

Moreover we are assuming that we are given lifts D of D0 and V of V0 to R
such that V is unipotent and DV = V rD. We wish to show we can find lifts
A of A0, B of B0 and X of X0 such that

AX +BV = B +X(1 + V + ...+ V m−1)D.
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Choose any lifts A1, B1 and X1 and set A = A1 + A2, B = B1 + B2 and
X = X1 where A2 and B2 are matrices with entries in I. We need to find A2

and B2 such that

A2X +B2(V − 1) = B1(1− V ) +X(1 + V + ...+ V m−1)D − A1X.

By assumption the right hand side is a matrix with entries in I. Thus it
suffices to show that after reduction modulo mR the rows of X and V − 1

taken together span kdim r/Fil
i−1

r, i.e. that στ − 1 acting on r/Fil
i
r has rank

dim(r/Fil
i−1
r) . This follows because Fil

i−1
r/Fil

i
r is the kernel of στ − 1

acting on r/Fil
i
r. 2

Lemma 1.3.13 H0(GFev
, ad r/Fil 0

evad r) →֒ H1(GFev
,Fil 0

evad r)/Lev.

Proof: It suffices to show that

H0(IFev
, ad r/Fil 0

evad r) →֒ H1(IFev
, gr 0

evad r)

or equivalently that

H0(IFev
, gr 0

evad r)→→ H0(IFev
, ad r/Fil 1

evad r).

In fact we will show by induction on j that

H0(IFev
, gr 0

evad (r/Fil
j

evr))→→ H0(IFev
, ad (r/Fil

j

evr)/Fil 1
evad (r/Fil

j

evr)).

To establish the claim for j + 1 consider the commutative diagram with exact
columns

(0) (0)
↓ ↓

H0(IFev
, ad gr jevr)

∼−→ H0(IFev
, Hom (gr jevr, r/Fil

j+1
ev r))

↓ ↓
H0(IFev

, gr 0
evad (r/Fil

j+1
ev r)) −→ H0(IFev

, ad (r/Fil
j+1
ev r)/Fil 1

evad (r/Fil
j+1
ev r))

↓ ↓
H0(IFev

, gr 0
evad (r/Fil

j
evr))

∼−→ H0(IFev
, ad (r/Fil

j
evr)/Fil 1

evad (r/Fil
j
evr))

↓
(0).

(The top horizontal arrow is an isomorphism by the definition of Fil
j

ev, and
the bottom horizontal arrow is an isomorphism by the inductive hypothesis.)
2

For example if r is unramified at ṽ then Dev consists of all unramified lifts.
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1.3.5 Discrete series deformations

Suppose that m|n, that there is a representation r̃ev : GFev
→ GLn/m(O) with

r̃ev ⊗ k absolutely irreducible. Note that if R→→ S is a surjection in CO then

Z1+Mn/m(mR)(r̃ev(GFev
)) = 1 + mR →→ 1 + mS = Z1+Mn/m(mS)(r̃ev(GFev

)).

Lemma 1.3.14 If R→→ S is a surjection in CO then

Z1+Mn/m(mR)(r̃ev(IFev
))→→ Z1+Mn/m(mS)(r̃ev(IFev

)),

and both groups are abelian.

Proof: It suffices to prove that

ZMn/m(R)(r̃ev(IFev
))→→ ZMn/m(S)(r̃ev(IFev

)).

As these modules are defined linearly and because W (k) is free over W (k) it
suffices to prove this after tensoring with W (k). Thus we may assume that k
is algebraicly closed.

Let r1 be an irreducible constituent of r̃ev|IF
ev
⊗ k and let r′1 denote the

r1-isotypic component of r̃ev|IF
ev
⊗k. Let H ⊂ GFev

denote the group of σ ∈ GFev

such that rσ1
∼= r1. Thus r′1 is an H-module and Ind

GF
ev

H r′1 →֒ r̃ev|IF
ev
⊗ k.

Because H/IFev
is pro-cyclic we can extend r1 to a representation of H and we

get
r′1 = r1 ⊗ Hom IF

ev
(r1, r

′
1)

as H-modules. Because r̃ev ⊗ k is an irreducible GFev
-module we see that

Hom IF
ev
(r1, r

′
1) must be an irreducible H/IFev

-module and hence one dimen-
sional. Twisting r1 by a character of H/IFev

we may assume that

r̃ev ⊗ k = Ind
GF

ev
H r1

where r1|IF
ev

is irreducible. Thus

r̃ev|IF
ev
⊗ k = r1 ⊕ ...⊕ rs

where each ri is irreducible and where ri 6∼= rj if i 6= j.
We claim that r̃ev|IF

ev
= r1 ⊕ ... ⊕ rs where ri is a lifting of ri. We prove

this modulo λt by induction on t, the case t = 1 being immediate. So suppose
this is true modulo λt. As IFev

has cohomological dimension 1 we see that we
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may lift ri to a continuous representation r′i : IFev
→ GLdim r1(O/λt+1). Then

r̃ev|IF
ev

mod λt+1 differs from r′1 ⊕ ...⊕ r′s by an element of

H1(IFev
, ad r̃ev ⊗ k) =

⊕

i,j

H1(IFev
,Hom (ri, rj)).

For i 6= j we have Hom (ri, rj)IF
ev

= (0) so

H1(IFev
, ad r̃ev ⊗ k) =

⊕

i

H1(IFev
, ad ri).

Hence r̃ev|IF
ev

mod λt+1 = r1 ⊕ ...⊕ rs, as desired.
We deduce (from lemma 1.1.7) that

ZMn/m(R)(r̃ev(IFev
)) = Rs

and the lemma follows. 2

Note that (1+Mn/m(mR))-conjugacy classes of lifts toR of r̃ev⊗k correspond
to

Z1+Mn/m(mR)(r̃ev(IFev
)))/ ∼

where z ∼ z′ if and only if

z′ = r̃ev(Frobev)
−1wr̃ev(Frobev)z

′w−1

for some w ∈ Z1+Mn/m(mR)(r̃ev(IFev
)). This correspondence sends z to the lift

g 7−→ r̃ev(g)z
val lg,

where val l : GFev
/IFev

→→ Zl sends Frobev to 1.

Suppose that there is a filtration Fil
i

ev of r|GF
ev

and an isomorphism

κev : (r̃ev ⊗ k)|IF
ev

∼−→ (gr 0
evr)|IF

ev

such that
gr ievr

∼= (gr 0
evr)(ǫ

i)

for i = 1, ...,m− 1. Suppose moreover that for j = 0, ...,m− 2 we have

Hom k[GF
ev
](Fil

j

evr, gr jevr) = k.

(This will be true if for instance

H0(GFev
, ad r̃ev ⊗ k(ǫi)) = (0)
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for i = 1 −m, ...,−1.) In this case an easy induction on j shows that Fil
j

ev is
determined uniquely by the isomorphism class of gr 0

evr as a k[GFev
]-module.

Let Dev be the set of all liftings r of r|GF
ev

such that r has a filtration Fil iev

by direct summands which lifts Fil
i

ev and satisfies

• κev lifts to an isomorphism

(r̃ev ⊗R)|IF
ev

∼−→ (gr 0
evr)|IF

ev

• and,
gr ievr

∼= (gr 0
evr)(ǫ

i)

for i = 1, ...,m− 1.

If such a filtration Fil jev exists it is unique. (To see this one can reduce to
the case that R is Artinian and then argue by induction on the length of R.
Thus suppose that R is Artinian and I is an ideal of R of length 1. Suppose
the filtration on r ⊗R R/I is unique. Any other such filtration is of the form

(1n +h)Fil jev where h ∈Mn(I) ∼= ad r has image in ad r/Fil
0

evad r fixed by GFev
.

Thus h has an image in

H1(GFev
,Fil

0

evad r) −→ H1(GFev
, gr 0

evad r) =
m−1⊕

i=0

H1(GFev
, ad gr ievr.

Note that H1(GFev
/IFev

, (ad gr 0
evr)

IF
ev ) = H1(GFev

/IFev
, k1n/m). Thus we require

the image of h in H1(GFev
, gr 0

evad r) to lie in H1(GFev
/IFev

, k1n). Altering h by
an element of Fil 0

evad r does not change (1n + h)Fil j . Thus possible filtrations
are parametrised by elements of

ker(H0(GFev
, ad r/Fil

0

evad r) −→ H1(GFev
, gr 0

evad r)/H1(GFev
/IFev

, k1n)).

As
H1(GFev

/IFev
, k1n) →֒ H1(GFev

, ad r/Fil
1

evad r)

we see that possible filtrations are actually parametrised by elements of

ker(H0(GFev
, ad r/Fil

0

evad r) −→ H1(GFev
, gr 0

evad r)).

We prove by reverse induction on i that

ker

(
H0(GFev

,Hom (r,Fil
i
r)/Fil

0

evHom (r,Fil
i
r)) −→

m−1⊕

j=i

H1(GFev
, ad gr jevr)

)
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is trivial. For this consider the commutative diagram with left column exact
at the centre:

H0(GFev
, Hom(r, Fil

i
r)/Fil

0

evHom(r, Fil
i
r)) −→ ⊕m−1

j=i H1(GFev
, ad gr j

evr)

↓ ↓
H0(GFev

, Hom(r, Fil
i−1

r)/Fil
0

evHom(r, Fil
i−1

r)) −→ ⊕m−1
j=i−1 H1(GFev

, ad gr j
evr)

↓ ↓
H0(GFev

, Hom(Fil
i
r, gr i−1r)) −→ H1(GFev

, ad gr i
evr).

The injectivity of the last horizontal arrow follows from our assumption that

Hom k[GF
ev
](Fil

i−1

ev r, gr i−1
ev r) = k.) It follows from this and from lemma 1.3.14

that Dev is a local deformation problem.
Note that

#H1(GFev
/IFev

, (ad gr 0
evr)

IF
ev ) = #H0(GFev

, ad gr 0
evr) = #k

and so
H1(GFev

/IFev
, (ad gr 0

evr)
IF

ev ) = H1(GFev
/IFev

, k1n/m).

Let
αi : gr ievr

∼−→ (gr 0
evr)(ǫ

i).

This map is unique up to scalars. We see that
(
m−1∑

i=0

ad (αi)

)
H1(GFev

/IFev
, (ad gr 0

evr)
IF

ev ) = H1(GFev
/IFev

, k1n).

From this it is not hard to see that we may take Lev = Lev(Dev) to be the kernel
of the map

H1(GFev
, ad r) −→ H1(GFev

, ad r/Fil
1

evad r)/H1(GFev
/IFev

, k1n).

Lemma 1.3.15 Recall our assumption that

H0(GFev
,Hom (Fil

j

evr, gr jevr)) = k

for j = 0, ...,m− 2. Then Lev is minimal and Dev is liftable.

Proof: We see that

dimLev = 1 + dim ker(H1(GFev
, ad r) −→ H1(GFev

, ad r/Fil
1

evad r)).

(Because H1(GFev
/IFev

, k1n) is a subspace of H1(GFev
, ad r) of dimension 1.)

Hence

dimLev − dimH0(GFev
, ad r) = 1 + dimH1(GFev

,Fil
1

evad r)−
− dimH0(GFev

, (ad r)/Fil
1

evad r)− dimH0(GFev
,Fil

1

evad r).
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Applying the local Euler characteristic formula this becomes

dimLev − dimH0(GFev
, ad r) =

1 + dimH0(GFev
, ((ad r)/(Fil

0

evad r))(1))− dimH0(GFev
, (ad r)/(Fil

1

evad r)).

From the exact sequence

(0)→ ((ad r)/(Fil
0

evad r))(1)→ (ad r)/(Fil
1

evad r)→ Hom (r, gr 0
evr)→ (0)

we see that dimLev − dimH0(GFev
, ad r) equals the dimension of the cokernel

H0(GFev
, (ad r)/(Fil

1

evad r)) −→ H0(GFev
,Hom (r, gr 0

evr)).

By assumption the latter group is k and is in the image of

H0(GFev
, k1n) ⊂ H0(GFev

, (ad r)/(Fil
1

evad r)).

Thus the cokernel is trivial and Lev is minimal.
We finally turn to the liftability of Dev. Suppose that R is an object of

CO and that I is a closed ideal of R with mRI = (0). Suppose also that r
is a lifting of r|GF

ev
to R/I in Dev. Let {Fil i} be the corresponding filtration

of (R/I)n. Choose a lifting gr 0 of gr 0r to R such that the isomorphism of
R/I[IFev

]-modules
r̃ev ⊗ R/I ∼−→ gr 0r

lifts to an isomorphism of R[IFev
]-modules

r̃ev ⊗ R ∼→ gr 0.

We will show by reverse induction on i that Fil ir is liftable to a free R module
Fil i with a filtration and GFev

-action such that for j = i, ...,m − 1 there is
an isomorphism gr 0(ǫj)

∼→ gr jFil i. This is certainly possible for i = m − 1.
Suppose it is true for i+ 1. It suffices to show that

H1(GFev
,Hom R(gr 0(ǫi),Fil i+1))→→ H1(GFev

,Hom R((gr 0r)(ǫi),Fil i+1r)),

or equivalently that

H2(GFev
, IHom R(gr 0(ǫi),Fil i+1)) →֒ H2(GFev

,Hom R(gr 0(ǫi),Fil i+1)).

Dualising, this is equivalent to the surjectivity of the map

H0(GFev
,Hom R(Fil i+1, gr 0(ǫi+1))⊗R R∨)→ H0(GFev

,Hom R(Fil i+1, gr 0(ǫi+1))⊗R I∨),
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where M∨ denotes Hom (M,Ql/Zl). However

H0(GFev
,Hom R(Fil i+1, gr 0(ǫi+1))⊗R I∨)

= H0(GFev
,Hom k(Fil

i+1

ev r, gr 0
evr(ǫ

i+1)))⊗k I∨
= H0(GFev

,Hom k(gr i+1
ev r, gr i+1

ev r))⊗k I∨
= I∨.

As the composite

R∨ = H0(GFev
,Hom (gr i+1, gr i+1)⊗R R∨

→ H0(GFev
,Hom R(Fil i+1, gr 0(ǫi+1))⊗R R∨)

→ H0(GFev
,Hom R(Fil i+1, gr 0(ǫi+1))⊗R I∨)

= I∨

is surjective, it follows that the map

H0(GFev
,Hom R(Fil i+1, gr 0(ǫi+1))⊗R R∨)→ H0(GFev

,Hom R(Fil i+1, gr 0(ǫi+1))⊗R I∨),

is surjective and hence Dev is liftable. 2

1.3.6 Taylor-Wiles deformations

Suppose that Nṽ ≡ 1 mod l, that r is unramified at ṽ and that r|GF
ev

= ψ ⊕ s
where dimk ψ = 1 and s does not contain ψ as a sub-quotient. Take Dev to
consist of all lifts of r|GF

ev
which are (1 + Mn(mR))-conjugate to one of the

form ψ ⊕ s where ψ lifts ψ, and where s lifts s and is unramified. Then Dev is
a local deformation problem and

Lev = Lev(Dev) = H1(GFev
/IFev

, ad s)⊕H1(GFev
, adψ).

Note that in this case

lgO Lev − lgOH
0(GFev

, ad r) = lgOH
1(IFev

, adψ)GF
ev = 1.

We will write ∆ev for the maximal l-power quotient of the inertia subgroup
of Gab

Fev
. It is cyclic of order the maximal power of l dividing Nṽ − 1. If r is

any deformation of r|GF
ev

in Dev over a ring R then det r : ∆ev → R× and so
R becomes an O[∆ev]-module. If aev denotes the augmentation ideal of O[∆ev]
then R/aevR is the maximal quotient of R over which r becomes unramified at
ṽ.
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1.3.7 Ramakrishna deformations

Suppose that (Nṽ) 6≡ 1 mod l and that r|GF
ev

= ψǫ ⊕ ψ ⊕ s, where ψ and s

are unramified and s contains neither ψ nor ψǫ as a sub-quotient. Take Dev to
consist of the set of lifts of r|GF

ev
which are (1 + Mn(mR))-conjugate to a lift

of the form 


ψǫ ∗ 0
0 ψ 0
0 0 s




with ψ an unramified lift of ψ and s an unramified lift of s. Then Dev is a local
deformation problem and Lev = Lev(Dev) is

H1(GFev
/IFev

, k

(
12 0
0 0

)
)⊕H1(GFev

,Hom (ψ, ψǫ))⊕H1(GFev
/IFev

, ad s).

Then dimk Lev = 2 + dimkH
1(GFev

/IFev
, ad s) = 2 + dimkH

0(GFev
, ad s) =

dimkH
0(GFev

, ad r). Thus Lev is minimal. Moreover Dev is liftable. (Because if
R is an object of CO and if I is a closed ideal of R then

H1(GFev
, R(ǫ))→→ H1(GFev

, (R/I)(ǫ)).)

1.3.8 One more deformation

Suppose again that (Nṽ) 6≡ 1 mod l and that r|GF
ev

= ψǫ⊕ψ⊕ s, where ψ and

s are unramified and s contains neither ψ nor ψǫ as a sub-quotient. Take Dev
to consist of the set of lifts of r|GF

ev
which are (1+Mn(mR))-conjugate to a lift

of the form 


ψ1 ∗ 0
0 ψ2 0
0 0 s




with ψ1 (resp. ψ2) an unramified lift of ψǫ (resp. ψ) and s an unramified lift
of s. Note that Dev includes all unramified lifts and all Ramakrishna lifts (see
section 1.3.7). It is a local deformation problem and Lev = Lev(Dev) is

H1(GFev
/IFev

,Hom (ψǫ, ψǫ)⊕ Hom (ψ, ψ))⊕H1(GFev
,Hom (ψ, ψǫ))⊕

⊕H1(GFev
/IFev

, ad s).

Then dimk Lev = 3 + dimkH
1(GFev

/IFev
, ad s) = 3 + dimkH

0(GFev
, ad s) = 1 +

dimkH
0(GFev

, ad r).

The next lemma is immediate.
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Lemma 1.3.16 Suppose that

S = (GF+,S ⊃ GF,S , S ⊃ S0, {GFev
}v∈S,O, r, χ, {Fil

i

ev}, {Dev}, {Lev})

is a deformation problem as above. Suppose that S ′ ⊃ S is a finite set of
primes of F+ which split in F and choose a set S̃ ′ ⊃ S̃ consisting of one prime
of F above each prime of S ′. Define a deformation problem

S ′ = (GF+,S′ ⊃ GF,S′ , S ′ ⊃ S0, {GFev
}v∈S′ ,O, r, χ, {Fil

i

ev}, {Dev}, {Lev}),

where, for v ∈ S the {Fil
i

ev}, Dev and Lev are as in S, and for v 6∈ S the set
Dev consists of all unramified deformations and Lev = H1(GFev

/IFev
, ad r). Then

DefS is naturally isomorphic to DefS′ and in particular Runiv
S = Runiv

S′ .

Lemma 1.3.17 Suppose that

S = (GF+,S ⊃ GF,S , S ⊃ S0, {GFev
}v∈S,O, r, χ, {Fil

i

ev}, {Dev}, {Lev})

is a deformation problem as above. Suppose that R ⊂ S−(S0∪Sl) only contains
primes v for which r is unramified at v and Dev consists of all unramified lifts
of r|GF

ev
. Define a new deformation problem

S ′ = (GF+,S ⊃ GF,S , S ⊃ S0, {GFev
}v∈S,O, r, χ, {Fil

i

ev}, {D′ev}, {L′ev}),

where

• for v ∈ S −R, D′ev = Dev and L′ev = Lev, and

• for v ∈ R, D′ev consists of all deformations of r|GF
ev

and

L′ev = H1(GFev
, ad r).

Suppose that φ : Runiv
S → O and let φR denote the composite of φ with the

natural map Runiv
S′ →→ Runiv

S . Also let rφ denote φ(runiv
S ). Then

lgO kerφR/(kerφR)2 ≤ lgO kerφ/(kerφ)2 +
∑

v∈R

lgOH
0(GFev

, (ad rφ)(ǫ
−1)).

Proof: As described at the end of section 1.2 a class [ψ] ∈ H1
S′(GF+,S, ad rφ⊗

λ−N/O) corresponds to a deformation (1 + ψǫ)rφ of rφ mod λN . This defor-
mation corresponds to an element of H1

S(GF+,S, ad rφ⊗ λ−N/O) if and only if
(1 + ψǫ)rφ is unramified at all v ∈ R if and only if ψ(IFev

) = 0 for all v ∈ R.
Note that, for v ∈ R, we have

H1(IFev
, ad rφ ⊗O λ−N/O) = Hom (IFev

, ad rφ ⊗O λ−N/O)
= (ad rφ)⊗O λ−N/O(ǫ−1).
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Thus we have an exact sequence

(0) −→ H1
S(GF+,S, ad rφ ⊗ λ−N/O) −→ H1

S′(GF+,S, ad rφ ⊗ λ−N/O) −→
−→⊕

v∈RH
0(GFev

, (ad rφ)⊗O λ−N/O(ǫ−1)).

Taking a direct limit and applying lemma 1.2.7 we then get an exact sequence

(0) −→ Hom (kerφ/(kerφ)2,K/O) −→ Hom(kerφR/(kerφR)2,K/O) −→
−→⊕

v∈RH
0(GFev

, (ad rφ)⊗O K/O(ǫ−1))

and the lemma follows. 2

1.4 Galois theory.

We will keep the notation and assumptions of the last section.
We will start with a lemma from algebraic number theory, which may be

standard but for which we do not know a reference.

Lemma 1.4.1 Let E/F be a Galois extension of number fields. Let S be a
finite set of finite places of F and let E(S)/E be the maximal extension unram-
ified outside S. Thus E(S)/F is Galois. Let M be a continuous Gal (E(S)/F )-
module of finite cardinality coprime to [E : F ]. Suppose that S contains all
finite places v such that v|#M . Then

#H1(Gal (E(S)/F ),M)

#H0(Gal (E(S)/F ),M)#H2(Gal (E(S)/F ),M)

∏

v|∞

#H0(Gal (F v/Fv),M)

equals (#M)[F :Q].

Proof: This is proved in exactly the same way as the usual global Euler
characteristic formula.

Firstly one shows that if there is a short exact sequence

(0)→M1 →M2 →M3 → (0)

and the theorem is true for two of the terms, then it is also true for the third.
To do this one considers the long exact sequences with H i(Gal (E(S)/F ), )
and H i(Gal (F v/Fv), ). The key point is that

coker (H2(Gal (E(S)/F ),M2) −→ H2(Gal (E(S)/F ),M3))
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is isomorphic to

coker (
⊕

v|∞

H0(Gal (F v/Fv),M2) −→
⊕

v|∞

H0(Gal (F v/Fv),M3)).

This follows from the equalities

H3(Gal (E(S)/F ),Mi) = H3(Gal (E(S)/E),Mi)
Gal (E/F )

∼= (
⊕

w|∞H
1(Gal (Ew/Ew),Mi))

Gal (E/F )

=
⊕

v|∞H
1(Gal (F v/Fv),Mi).

Thus we are reduced to the case that M is an Fl-module for some prime
l 6 |[E : F ].

Next choose a subfield L of E(S) which contains E(ζl), which is totally
imaginary and which is finite, Galois over F . Suppose that M is a Gal (L/F )-
module. Let L ⊃ K ⊃ F and let RFl

(Gal (L/K)) denote the representation
ring for Gal (L/K) acting on finite dimensional Fl-vector spaces. Define a
homomorphism

χK : RFl
(Gal (L/K))⊗Z Q −→ Q

by

χ[M ] = dimH1(Gal (E(S)/K),M)− dimH0(Gal (E(S)/K),M)
− dimH2(Gal (E(S)/K),M) +

∑
v|∞H

0(Gal (Kv/Kv),M).

This is well defined by the observation of the previous paragraph. We need to
show that

χF = [F : Q] dim .

It is easy to check that

χF ◦ Ind
Gal (L/F )
Gal (L/K) = χK .

As RFl
(Gal (L/F )) ⊗ Q is spanned by Ind

Gal (L/F )
Gal (L/K)RFl

(Gal (L/K)) as K runs

over intermediate fields with L/K cyclic of degree prime to l, it suffices to
prove that χK = [K : Q] dim when K is an intermediate field with L/K cyclic
of degree prime to l.

Now assume that L ⊃ K ⊃ F with L/K cyclic of degree prime to l. Define

χ̃K : RFl
(Gal (L/K)) −→ RFl

(Gal (L/K))

by

χ̃K [M ] =
∑

v|∞[M ⊗ Ind
Gal (L/K)
Gal (Lw/Kv)Fl] + [H1(Gal (E(S)/L),M)]

−[H0(Gal (E(S)/L),M)]− [H2(Gal (E(S)/L),M)],
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where w denotes a place of L above v. This is well defined because L to-
tally imaginary implies H3(Gal (E(S)/L),M) = (0). Note that χ̃K([M ]) =
[M(−1)]⊗ χ̃K([µl]). Moreover as l 6 |[L : K] we see that

χK = H0(Gal (L/K), ) ◦ χ̃K ,
so that

χk([M ]) = H0(Gal (L/K), [M(−1)]⊗ χ̃K([µl])).

Thus it suffices to prove that

χ̃K([µl]) = [K : Q][Ind
Gal (L/K)
{1} Fl].

As E(S) is the maximal extension of L unramified outside S one has the
standard formulae

[H0(Gal (E(S)/L), µl)] = [µl]

and
[H1(Gal (E(S)/L), µl)] = [OL[1/S]× ⊗ Fl] + [ClS(L)[l]]

and

[H2(Gal (E(S)/L), µl)] = [ClS(L)⊗ Fl]− [Fl] +
∑

v∈S

[
⊕

w|v

Br (Lw)[l]],

where LS(L) denotes the S-class group of L (i.e. the quotient of the class
group by classes of ideals supported over S) and Br (Lw) denotes the Brauer
group of Lw. Using these formulae the proof is easily completed, just as in the
case of the usual global Euler characteristic formula. 2

We will write L⊥ev for the annihilator in H1(GFev
, ad r(1)) of the image of Lev

in H1(GFev
, ad r). We will also write H1

L⊥(GF+,S, ad r(1)) for the kernel of the
map

H1(GF+,S, ad r(1)) −→
⊕

ev∈S
H1(GFev

, ad r(1))/L⊥ev .

Lemma 1.4.2 1. H i
S(GF+,S, ad r) = (0) unless i = 1, 2 or 3.

2. dimkH
3
S(GF+,S, ad r) = dimkH

0(GF+,S, ad r(1)).

3. dimkH
2
S(GF+,S, ad r) = dimkH

1
L⊥(GF+,S, ad r(1)).

4.

dimkH
1
S(GF+,S, ad r)

= dimkH
1
L⊥(GF+,S, ad r(1))− dimkH

0(GF+,S, ad r(1))
−n∑v|∞(χ(cv) + 1)/2 +

∑
ev∈eS−eSl

(dimk Lev − dimkH
0(GFev

, ad r)).
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Proof: For the first part we use the long exact sequences before lemma 1.2.2
and the vanishing of H i(GF+,S, ad r) = H i(GF,S , ad r)Gal (F/F+) for i 6= 1 or 2.

For the second and third parts one compares the exact sequences

H1(GF+,S, ad r) → ⊕
ev∈eS H

1(GFev
, ad r)/Lev

↓⊕
ev∈eS H

2(GFev
, ad r) ← H2(GF+,S, ad r) ← H2

S(GF+,S, ad r)
↓

H3
S(GF+,S, ad r) → (0)

and

H1(GF+,S, ad r) → ⊕
ev∈eS H

1(GFev
, ad r)/Lev

↓⊕
ev∈eS H

2(GFev
, ad r) ← H2(GF+,S, ad r) ← H1

L⊥(GF+,S, ad r(1))∨

↓
H0(GF+,S, ad r(1))∨ → (0).

(The latter exact sequence is a consequence of Poitou-Tate global duality and
the identifications H i(GF+,S, ad r) = H i(GF,S , ad r)Gal (F/F+) for i = 1, 2 and

H i(GF+,S, (ad r)(1)) = H i(GF,S , (ad r)(1))Gal (F/F+) for i = 0, 1.)
For the fourth part we have the Euler characteristic formula

dimkH
1(GF+,S, ad r)− dimkH

0(GF+,S, ad r)− dimkH
2(GF+,S, ad r)

= n2[F+ : Q]−∑v|∞ dimkH
0(GF+

v
, ad r).

(See lemma 1.4.1.) This, lemma 1.2.2, and the local Euler characteristic for-
mulae tell us that

dimkH
1
S(GF+, ad r)− dimkH

2
S(GF+ , ad r) + dimkH

3
S(GF+, ad r) =∑

v|∞(n2 − dimkH
0(GF+

v
, ad r))−∑ev∈eSl

n2[Fev : Ql]

+
∑

ev∈eSl
n(n− 1)[Fev : Ql]/2 +

∑
ev∈eS−eSl

(dimk Lev − dimkH
0(GFev

, ad r)).

Lemma 1.1.2 tells us that for v|∞

H0(GF+
v
, ad r) = n(n+ (ν ◦ r)(cv))/2 = n(n− 1)/2 + n(1 + χ(cv))/2.

The fourth part of the lemma follows. 2

Corollary 1.4.3 Suppose that for ṽ ∈ S̃l the deformation problem Dev is as in
section 1.3.1 or 1.3.2. Suppose that for all ṽ ∈ S̃ − S̃l the set Dev is liftable.
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Suppose also that H1
L⊥(GF+,S, ad r(1)) = (0). Then Runiv

S is a power series
ring over O in

∑
ev∈eS−eSl

(dimk Lev − dimkH
0(GFev

, ad r))

− dimkH
0(GF+,S, ad r(1))− n∑v|∞(χ(cv) + 1)/2

variables.

Corollary 1.4.4 Suppose that for ṽ ∈ S̃l the deformation problem Dev is as in
section 1.3.1 or 1.3.2. Suppose that there is a subset Q ⊂ S̃ − S̃l such that

• for ṽ ∈ S̃ − (S̃l ∪Q), Lev is minimal, and

• for ṽ ∈ Q the pair (Dev, Lev) is as in example 1.3.6.

Then

dimkH
1
S(GF+,S, ad r) =

#Q+ dimkH
1
L⊥(GF+,S, ad r(1))− dimkH

0(GF+,S, ad r(1))
−n∑v|∞(χ(cv) + 1)/2.

We will call a subgroup H ⊂ Gn(k) big if the following conditions are
satisfied.

• H0(H, gn(k)) = (0).

• H1(H, gn(k)) = (0).

• For all irreducible k[H]-submodules W of gn(k) we can find h ∈ H∩G0
n(k)

and α ∈ k with the following properties. The α generalised eigenspace
Vh,α of h in kn is one dimensional. Let πh,α : kn → Vh,α (resp. ih,α)
denote the h-equivariant projection of kn to Vh,α (resp. h-equivariant
injection of Vh,α into kn). Then πh,α ◦W ◦ ih,α 6= (0).

We note that the third property will also hold for any non-zero Fl[H]-subspace
W of gn(k). (Because it holds forW if and only if it holds for its k-linear span.)
Also note that the first two properties are implied by

• H0(H ∩ G0
n(k), g

0
n(k)) = (0), and

• H1(H ∩ G0
n(k), g

0
n(k)) = (0).

The next proposition assures the existence of global ‘Taylor-Wiles’ type
deformations.
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Proposition 1.4.5 Suppose that for ṽ ∈ S̃l the deformation problem Dev is
as in section 1.3.1 or 1.3.2. Suppose that for all ṽ ∈ S̃ − S̃l the space Lev is
minimal. Suppose also that for all m ∈ Z≥1 the group r(GF+(ζlm)) is big. Then
we can find an integer r with the following properties. If N ∈ Z≥1 then we can
find a set Q of primes of F+ which don’t lie in S and which split in F , with
the following properties.

• #Q = r.

• If v ∈ Q the Nv ≡ 1 mod lN .

• For each prime v ∈ Q we can choose a prime ṽ of F above v and a set
of deformations Dev of r|GF

ev
as in example 1.3.6 such that, if S ′ denotes

the extended deformation problem obtained by adding Q and these Dev to
S, then

dimH1
S′(GF+,S∪Q, ad r) = r − n

∑

v|∞

(χ(cv) + 1)/2.

Proof: Suppose that Q is any finite set of primes of F+ which don’t lie in
S, which split in F ; and suppose that for v ∈ Q there is a prime ṽ of F above
v and a pair (Dev, Lev) as in example 1.3.6. Write Q̃ for the set of ṽ for v ∈ S.
Also write S ′ for the deformation problem obtained from S by adjoining Q
and the Dev for ṽ ∈ Q̃. If ṽ ∈ Q̃ write r = ψev ⊕ sev as in example 1.3.6. Note
that

(0) −→ H1(GF+,S, (ad r)(ǫ)) −→ H1(GF+,S∪Q, (ad r)(ǫ)) −→
−→⊕

ev∈ eQH
1(IFev

, (ad r)(ǫ))GF
ev

is left exact. As #H1(IFev
,Hom (ψev, sev)(ǫ))

GF
ev = #Hom(ψev, sev)GF

ev
= 1 and

#H1(IFev
,Hom (sev, ψev)(ǫ))

GF
ev = #Hom(sev, ψev)GF

ev
= 1 we have a left exact

sequence

(0) −→ H1(GF+,S, (ad r)(ǫ)) −→ H1(GF+,S∪Q, (ad r)(ǫ)) −→
−→⊕

ev∈ eQ(H1(IFev
, (ad sev)(ǫ))

GF
ev ⊕H1(IFev

, (adψev)(ǫ))
GF

ev ),

and hence a left exact sequence

(0) −→ H1
(L′)⊥(GF+,S∪Q, (ad r)(ǫ)) −→ H1

L⊥(GF+,S, (ad r)(ǫ)) −→
−→⊕

ev∈ eQH
1(GFev

/IFev
, (adψev)(ǫ)) =

⊕
ev∈ eQ k.

The latter map sends the class of a cocycle φ ∈ Z1(GF+,S, (ad r)(ǫ)) to

(πFrobev,ψev(Frobev) ◦ φ(Frobev) ◦ iFrobev,ψev(Frobev))ev∈ eQ.
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We take r = dimkH
1
L⊥(GF+,S, (ad r)(ǫ)). By corollary 1.4.4 it suffices to

find a set Q of primes of F+ disjoint from S such that

• if v ∈ Q then v splits completely in F (ζlN );

• if v ∈ Q then r(Frobv) has an eigenvalue ψev(Frobev) whose generalised
eigenspace has dimension 1;

• H1
L⊥(GF+,S, (ad r)(ǫ)) →֒⊕

ev∈ eQH
1(GFev

/IFev
, (adψev)(ǫ)).

(If necessary we can then shrink Q to a set of cardinality r with the same
properties.) By the Cebotarev density it suffices to show that if φ is an element
of Z1(GF+,S, (ad r)(ǫ)) with non-zero image in H1(GF+,S, (ad r)(ǫ)), then we
can find σ ∈ GF (ζ

lN
) such that

• r(σ) has an eigenvalue α whose generalised eigenspace has dimension 1;

• πσ,α ◦ φ(σ) ◦ iσ,α 6= 0.

Let L/F (ζlN ) be the extension cut out by ad r. If σ′ ∈ GL then r(σ′σ) ∈ k×r(σ)
and φ(σ′σ) = φ(σ′) + φ(σ). Thus it suffices to find σ ∈ GF (ζ

lN
) such that

• r(σ) has an eigenvalue α whose generalised eigenspace has dimension 1;

• πσ,α ◦ (φ(GL) + φ(σ)) ◦ iσ,α 6= 0.

It even suffices to find σ ∈ Gal (L/F (ζlN )) such that

• r(σ) has an eigenvalue α whose generalised eigenspace has dimension 1;

• πσ,α ◦ φ(GL) ◦ iσ,α 6= 0.

As H1(Gal (L/F (ζlN )), ad r) = (0) we see that [φ] 6= 0 implies that φ(GL) 6=
(0). Then the existence of such a φ follows from our assumptions. 2

Next we will prove a generalisation of Ramakrishna’s lifting theorem [Ra].
The statement is rather complicated as we want to be able to apply it to
certain representations r with small image, in particular r which are induced
from a character.

Suppose that ad r is a semisimple k[GF+ ]-module. If W ⊂ ad r is a k[GF+ ]-
submodule we will define

H1
L(GF+,S,W ) = ker(H1(GF+,S,W ) −→

⊕

ev∈eS

H1(GFev
,W )/(Lev ∩H1(GFev

,W )))

and H1
L⊥(GF+,S,W (1)) to be the kernel of

H1(GF+,S,W (1)) −→
⊕

ev∈eS

H1(GFev
,W (1))/(L⊥ev ∩H1(GFev

,W (1))).
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Theorem 1.4.6 Keep the notation and assumptions of section 1.3. In addi-
tion make the following assumptions.

• For all ṽ ∈ S̃l the local deformation problem Dev is as in section 1.3.1 or
1.3.2.

• For all ṽ ∈ S̃ − S̃l the space Lev is minimal and the set Dev is liftable.
(This is true if Dev is as in section 1.3.4 or section 1.3.5.)

• For ṽ ∈ S̃0

H0(GFev
, ad r/Fil 0

evad r) →֒ H1(GFev
,Fil 0

evad r)/Lev.

(This is true if Dev is as in section 1.3.4; or as in section 1.3.1 with
χi 6= χj for i 6= j.)

• For each infinite place v of F+ we have χ(cv) = −1.

• ad r and (ad r)(1) are semisimple k[GF+ ]-modules and have no irre-
ducible constituent in common.

• H i((ad r)(GF+(ζl)), gn(k)) = (0) for i = 0 and 1.

• W0 (resp. W1) is a GF+-submodule of ad r with H1
L(GF+,S,W0) = (0)

(resp. H1
L⊥(GF+,S,W1(1)) = (0)).

Suppose moreover that for all irreducible k[GF+,S]-submodules W and W ′ of
gn(k) with W ′ 6⊂W0 and W 6⊂W1 we can find σ ∈ Gal (F/F ) and α ∈ k with
the following properties:

• ǫ(σ) 6≡ 1 mod l.

• The α generalised eigenspace Vσ,α and the αǫ(σ) generalised eigenspace
Vσ,αǫ(σ) of r(σ) are one dimensional. Let iσ,α (resp. iσ,αǫ(σ)) denote the
inclusions Vσ,α →֒ kn (resp. Vσ,αǫ(σ) →֒ kn). Let πσ,α : kn → Vσ,α (resp.
πσ,αǫ(σ) : kn → Vσ,αǫ(σ)) denote the σ-equivariant projections.

• iσ,αǫ(σ)πσα 6∈W0.

• (iσ,αǫ(σ)πσ,αǫ(σ) − iσ,απσ,α) 6∈W1.

• πσ,α ◦W ◦ iσ,αǫ(σ) 6= (0).

• πσ,α ◦ w′ ◦ iσ,α 6= πσ,αǫ(σ) ◦ w′ ◦ iσ,αǫ(σ) for some w′ ∈ W ′.
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(We note that this property will also hold for any non-zero Fl[GF+,S]-subspaces
W and W ′ of gn(k) with W ′ 6⊂W0 and W 6⊂W1. Because it holds for W and
W ′ if and only if it holds for their k-linear spans.)

Then we can find a finite set Q of primes of F+ which don’t lie in S and
which split in F with the following properties. Choose a set Q̃ consisting of
one prime of F above each element of Q.

• If v ∈ Q then Nv 6≡ 1 mod l.

• If ṽ ∈ Q̃ then r|GF
ev

= tev ⊕ sev where tev = ψev ⊕ ψevǫ and neither ψev nor

ψevǫ is a subquotient of sev. Let D′ev and L′ev be chosen as in example 1.3.7.

• If S ′ denotes the problem obtained from S adding Q to S with the con-
dition Dev for ṽ ∈ Q̃ then

Runiv
S′ = O.

In particular there is a lifting (r, {Fil iev}) of (r, {Fil
i

ev}) where r : GF+,S∪Q →
Gn(O), where ν ◦ r = χ, and where for all ṽ ∈ S̃ the restriction (r|GF

ev
, {Fil iev})

lies in Dev.

Proof: If H1
L⊥(GF+,S, ad r(1)) = (0) then the proposition follows at once

from lemma 1.4.2 and corollary 1.4.3 (with Q = ∅). In the general case we
need only show that we can find a prime v 6∈ S of F+ which splits as ṽcṽ in F
such that

• Nv 6≡ 1 mod l.

• r|GF
ev

= tev ⊕ sev where tev = ψev ⊕ψevǫ and neither ψev nor ψevǫ is a subquo-
tient of sev. Let D′ev and L′ev be chosen as in example 1.3.7.

• If S ′ denotes the problem obtained from S adding v to S with the con-
dition D′ev then

dimH1
(L′)⊥(GF+,S∪{v}, (ad r)(1)) < dimH1

L⊥(GF+,S, (ad r)(1)).

• H1
L′(GF+,S∪{v},W0) = (0) and H1

(L′)⊥(GF+,S∪{v},W1(1)) = (0).

(Then one can add primes v as above to S recursively until

H1
(L′)⊥(GF+,S∪Q, (ad r)(1)) = (0).)

So let v 6∈ S be a prime of F+ which splits as ṽcṽ in F such that
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• Nv 6≡ 1 mod l.

• r|GF
ev

= tev ⊕ sev where tev = ψev ⊕ψevǫ and neither ψev nor ψevǫ is a subquo-
tient of sev.

• Let πψev
(resp. iψev

, resp. πψevǫ
, resp. iψevǫ

) denote the GFev
-equivariant

projection r →→ ψev (resp. inclusion ψev →֒ r, resp. projection r →→ ψevǫ,
resp. inclusion ψevǫ →֒ r). Then iψevǫ

πψev
6∈W0 and iψevǫ

πψevǫ
−iψev

πψev
6∈ W1.

Set S ′ = S ∪{v} and consider three pairs (Dev, Lev), (D′ev, L′ev), (D′′ev , L′′ev) defining
three extensions Sv, S ′v and S ′′v of S:

• Dev consists of all unramified lifts of r|GF
ev

and Lev = H1(GFev
/IFev

, ad r) =

H1(GFev
/IFev

, ad t)⊕H1(GFev
/IFev

, ad s);

• D′ev and L′ev are as in example 1.3.7; and

• D′′ev and L′′ev are as in example 1.3.8.

Note that
H1
Sv

(GF+,S′ , ad r) = H1
S(GF+,S, ad r)

and
H1
L⊥v

(GF+,S′ , (ad r)(1)) = H1
L⊥(GF+,S, (ad r)(1)).

Also note that there are left exact sequences

(0) −→ H1
Sv

(GF+,S′ , ad r) −→ H1
S′′v

(GF+,S′ , ad r) −→ H1(IFev
, ad r)

and (by our second assumption)

(0)→ H1
S′v

(GF+,S′ , ad r)→ H1
S′′v

(GF+,S′ , ad r)→ H1(GFev
/IFev

, k(iψevǫ
πψevǫ

− iψev
πψev

))

and

(0)→ H1
(L′′v )⊥

(GF+,S′ , (ad r)(1))→ H1
(Lv)⊥

(GF+,S′ , (ad r)(1))→
→ H1(GFev

/IFev
, ((ad t)/k(iψevǫ

πψev
))(1)).

It follows from lemma 1.4.2 (and the discussions of sections 1.3.7 and 1.3.8)
that

dimH1
(L′v)⊥(GF+,S′ , (ad r)(1))− dimH1

(L′′v )⊥(GF+,S′ , (ad r)(1))

= dimH1
S′v

(GF+,S′ , ad r)− dimH1
S′′v

(GF+,S′ , ad r) + dimL′′ev − dimL′ev
= dimH1

S′v
(GF+,S′ , ad r)− dimH1

S′′v
(GF+,S′ , ad r) + 1.
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Moreover because iψevǫ
πψev
6∈ W0 we see that H1(GFev

,W0) ∩ L′ev is contained

in H1(GFev
/IFev

,W0) and so H1
L′v

(GF+,S′ ,W0) ⊂ H1
L(GF+,S,W0) = (0). Simi-

larly because (iψevǫ
πψevǫ
− iψev

πψev
) 6∈W1 we see that H1(GFev

,W1(1)) ∩ (L′ev)
⊥ ⊂

H1(GFev
/IFev

,W1(1)) and so H1
(L′v)⊥

(GF+,S′ ,W1(1)) ⊂ H1
L⊥(GF+,S,W1(1)) =

(0).
Thus the prime v will have the desired properties if

H1
L⊥(GF+,S, (ad r)(1))→ H1(GFev

/IFev
, ((ad t)/k(iψevǫ

πψev
))(1))

and

H1
S(GF+,S, ad r) →֒ H1

S′′v
(GF+,S′ , ad r)→ H1(GFev

/IFev
, k(iψevǫ

πψevǫ
− iψev

πψev
))

are both non-trivial.
Suppose that H1

L⊥(GF+,S, (ad r)(1)) 6= (0). It follows from lemma 1.4.2
that

dimH1
S(GF+,S, ad r) = dimH1

L⊥(GF+,S, (ad r)(1)) > 0.

Choose a non-zero classes [ϕ] ∈ H1
L⊥(GF+,S, (ad r)(1)) and a non-zero class

[ϕ′′] ∈ H1
S(GF+,S, ad r). By the Cebotarev density theorem it suffices to show

that we can choose σ ∈ GF and α ∈ k with the following properties.

• σ|F (ζl) 6= 1.

• r(σ) has eigenvalues α and αǫ(σ) and the corresponding generalised
eigenspaces U and U ′ have dimension 1. Let i (resp. i′) denote the
inclusion of U (resp. U ′) into kn and let π (resp. π′) denote the σ-
equivariant projection of kn onto U (resp. U ′).

• i′π 6∈W0.

• i′π′ − iπ 6∈ W1.

• π ◦ ϕ(σ) ◦ i′ 6= 0.

• π ◦ ϕ′′(σ) ◦ i 6= π′ ◦ ϕ′′(σ) ◦ i′.

Let L denote the extension of F (ζl) cut out by ad r. Replacing σ by σ′σ
with σ′ ∈ GL we need only show that we can find σ ∈ GF and α ∈ k with the
following properties.

• σ|F (ζl) 6= 1.
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• r(σ) has eigenvalues α and αǫ(σ) and the corresponding generalised
eigenspaces U and U ′ have dimension 1. Let i (resp. i′) denote the
inclusion of U (resp. U ′) into kn and let π (resp. π′) denote the σ-
equivariant projection of kn onto U (resp. U ′).

• i′π 6∈W0.

• i′π′ − iπ 6∈ W1.

• π ◦ ϕ(GL) ◦ i′ 6= 0.

• σ′ 7→ π ◦ ϕ′′(σ′) ◦ i− π′ ◦ ϕ′′(σ′) ◦ i′ is not identically zero on GL.

Note that ϕ(GL) 6⊂ W0 and ϕ′′(GL) 6⊂ W1 (because H1
L(GF+,S,W0) = (0)

and H1
L⊥(GF+,S,W1(1)) = (0)). Hence the existence of σ follows from the

assumptions of the lemma. 2

Because the hypotheses of this theorem are so complicated we give a con-
crete instance of the theorem. We will write Cl(F ) for the class group of a
number field F .

Corollary 1.4.7 Suppose that n > 1 is an integer, that F+ is a totally real
field and that E is an imaginary quadratic field. Let Cl(EF+) denote the class
group of EF+. Suppose that l > n is a prime which is split in E, which is
unramified in F+ and which does not divide the order of the Gal (EF+/F+)-
coinvariants Cl(EF+)Gal (EF+/F+). Suppose moreover that

r : GF+ −→ Gn(Fl)

is a continuous, surjective homomorphism such that

• r−1GLn(Fl) = GEF+;

• r|GEF+ only ramifies at primes which are split over F+;

• ν ◦ r(c) = −1 for any complex conjugation c;

• for any place w of EF+ above l then r|G(EF+)w
is in the image of Gw and

for each i = 0, ..., l − 2 we have

dimk(w) gr iG−1
w r|G(EF+)w

≤ 1.
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Then there is a finite extension k/Fl such that r lifts to a continuous ho-
momorphism

r : GF+ −→ Gn(W (k))

which ramifies at only finitely many primes and which is crystalline at all
primes of EF+ above l.

Proof: We apply the theorem. We take O = W (k) for a suitably large
finite extension k/Fl. We take S to be the set of places above l or below a

prime of F = EF+ at which r|GF
is ramified. For ṽ ∈ S̃l we take Dev as

in section 1.3.2. For ṽ ∈ S̃ − S̃l we take Dev as in section 1.3.4. As l > n
we have ad r = k1n ⊕ ad 0r and both summands are irreducible GF -modules.
As F+(ζl) is linearly disjoint from F+E over F+ (look at ramification above
l) we have that H0(ad rGF+(ζl), k1n) = (0) and H1(ad rGF+(ζl), k1n) = (0).
Clearly H0(ad rGF+(ζl), g

0
n(k)) = (0). By [CPS] (see table (4.5)) we have

H1(SLn(Fl),Mn(Fl)
tr=0) = (0), and so H1(ad rGF+(ζl), g

0
n(k)) = (0). We take

W0 = k1n and W1 = (k1n)(1). Then

H1
L(GF+,S,W0) = ker(H1(GF+, k1n) −→

⊕
evH

1(IFev
, k1n))

= ker(H1(GF+, k1n) −→
⊕

vH
1(IF+

v
, k1n))

= ker(H1(GF , k1n) −→
⊕

evH
1(IFev

, k1n))
Gal (F/F+)

= Hom(Cl(F )/(c− 1)Cl(F ), k) = (0).

(Note that if ṽ is a prime of F ramified over F+ then H1(IF+
ev
, k1n) →֒

H1(IFev
, k1n).) Also

H1
L⊥(GF+,S,W1) = ker(H1(GF+, (k1n)(1)) −→

⊕

v

H1(IF+
v
, (k1n)(1))).

(Note that if ṽ is a prime of F ramified over F+ then H1(IF+
ev
, (k1n)(1)) →֒

H1(IFev
, (k1n)(1)).) By, for instance, theorem 2.19 of [DDT] we see that

H1
L⊥(GF+,S,W1) = (0).

The rest of the hypotheses of the theorem are easy to verify and the corollary
follows. 2
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2 Hecke algebras.

2.1 GLn over a local field: characteristic zero theory.

In this section let p be a rational prime and let Fw be a finite extension of
Qp. Let OFw denote the maxinal order in Fw, let ℘w denote the maximal ideal
in OFw , let k(w) = OFW

/℘w and let qw = #k(w). We will use ̟w to denote
a generator of ℘w in situations where the particular choice of generator does
not matter. Also let K denote an algebraic closure of Ql. Also fix a positive
integer n. We will write Bn for the Borel subgroup of GLn consisting of upper
triangular matrices.

We will use some, mostly standard, notation from [HT] without comment.
For instance n-Ind , ⊞, Spm, JL , rec and Rl. On the other hand, if π is an
irreducible smooth representation of GLn(Fw) over K we will use the notation
rl(π) for the l-adic representation associated (as in [Tat]) to the Weil-Deligne
representation

recl(π
∨ ⊗ | |(1−n)/2),

when it exists (i.e. when the eigenvalues of rec(π∨ ⊗ | |(1−n)/2)(φw) are l-adic
units for some lift φw of Frobw). In [HT] we used rl(π) for the semisimplification
of this representation.

For any integer m ≥ 0 we will let U0(w
m) (resp. U1(w

m)) denote the sub-
group of GLn(OFw) consisting of matices with last row congruent to (0, ..., 0, ∗)
(resp. (0, ..., 0, 1)) modulo ℘mw . Thus U1(w

m) is a normal subgroup of U0(w
m)

and we have a natural identification

U0(w
m)/U1(w

m) ∼= (OFw/℘
m
w )×

by projection to the lower right entry of a matrix. We will also denote by Iw(w)
the subgroup of GLn(OFw) consisting of matrices which are upper triangular
modulo ℘w and by Iw1(w) the subgroup of Iw(w) consisting of matrices whose
diagonal entries are all congruent to one modulo ℘w. Thus Iw1(w) is a normal
subgroup of Iw(w) and we have a natural identification

Iw(w)/Iw1(w) ∼= (k(w)×)n.

We will let αw,j denote the matrix
(
̟w1j 0

0 1n−j

)
.

For j = 1, ..., n let T
(j)
w denote the Hecke operator

[GLn(OFw)αw,jGLn(OFw)].
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For j = 1, ..., n− 1 and for m > 0 let U
(j)
w denote the Hecke operator

[U0(w
m)αw,jU0(w

m)]

or
[U1(w

m)αw,jU1(w
m)].

If W is a smooth representation of GLn(Fw) and if m1 > m2 > 0 then the

action of U
(j)
w is compatible with the inclusions

WU0(wm2) ⊂WU1(wm2) ⊂WU1(wm1).

(This follows easilly from the coset decompositions given in [M1] for
U1(w

m)αw,jU1(w
m)/U1(w

m).)
If α ∈ F×w has non-negative valuation we will write Vα for the Hecke oper-

ators

[U0(w)

(
1n−1 0

0 α

)
U0(w)]

and

[U1(w)

(
1n−1 0

0 α

)
U1(w)].

IfW is a smooth representation of GLn(Fw) then the action of Vα is compatible
with the inclusion

WU0(w) ⊂ WU1(w).

(This follows from the easily verified equalities

U1(w)

(
U0(w) ∩

(
1n−1 0

0 α

)
U0(w)

(
1n−1 0

0 α−1

))
= U0(w)

and

U1(w) ∩
(

1n−1 0
0 α

)
U0(w)

(
1n−1 0

0 α−1

)

= U1(w) ∩
(

1n−1 0
0 α

)
U1(w)

(
1n−1 0

0 α−1

)
.)

It is well known that there is an isomorphism

Z[GLn(OFw)\GLn(Fw)/GLn(OFw)] ∼= Z[T1, T2, ..., Tn, T
−1
n ],

under which Tj corresponds to T
(j)
w . (The latter ring is the polynomial algebra

in the given variables.) Alternatively we have the Satake isomorphism

Z[1/qw][GLn(OFw)\GLn(Fw)/GLn(OFw)] ∼= Z[1/qw][X±1
1 , ..., X±1

n ]Sn ,
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under which T
(j)
w corresponds to q

j(1−j)/2
w sj(X1, ..., Xn), where sj is the jth

elementary symmetric function (i.e. the sum of all square free monomials of
degree j). This is not the standard normalisation of the Satake isomorphism.

Lemma 2.1.1 Suppose that χ1, ..., χn are unramified characters of F×w . Then

(n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn))

GLn(OFw ) is one dimensional and T
(j)
w acts on it by

q
j(n−j)/2
w sj(χ1(̟w), ..., χn(̟w)), where sj is the jth elementary symmetric func-

tion (i.e. the sum of all square free monomials of degree j). If

T ∈ Z[GLn(OFw)\GLn(Fw)/GLn(OFw)]

has Satake transform P (X1, ..., Xn) then the eigevalue of T on

(n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn))

GLn(OFw )

is P (q
(n−1)/2
w χ1(̟w), ..., q

(n−1)/2
w χn(̟w)).

Proof: The fixed space (n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn))

GLn(OFw ) is spanned by the
function ϕ0 where

ϕ0(bu) =
n∏

i=1

χi(bii)|bii|(n+1)/2−i

for b ∈ Bn(Fw) and u ∈ GLn(OFw). Then (T
(j)
w ϕ0)(1) equals the eigenvalue of

T
(j)
w on (n-Ind

GLn(Fw)
Bn(Fw) (χ1, ..., χn))

GLn(OFw ). Let X denote a set of representa-

tives for k(w) in OFw . Then

(T (j)
w ϕ0)(1) =

∑

I

∑

b

ϕ0(b)

where I runs over j element subsets of {1, ..., n} and b runs over elements of
Bn(Fw) with

• bii = ̟w if i ∈ I and bii = 1 otherise;

• if j > i, i ∈ I and j 6∈ I then bij ∈ X;

• if j > i and either i 6∈ I or j ∈ I then bij = 0.

Thus

(T
(j)
w ϕ0)(1) =

∑
I q

Pj
k=1(n−j+k−ik)

w

∏
i∈I χi(̟w)q

i−(n+1)/2
w

= q
j(n−j)/2
w

∑
I

∏
i∈I χi(̟w),

where I = {i1 < ... < ij} runs over j element subsets of {1, ..., n}. The lemma
follows. 2
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Corollary 2.1.2 Suppose that π is an unramified irreducible admissible rep-
resentation of GLn(Fw) over K. Let t

(j)
π denote the eigenvalue of T

(j)
w on

πGLn(OFw ). Then rl(π)∨(1− n)(Frobw) has characteristic polynomial

Xn − t(1)
π Xn−1 + ...+ (−1)jqj(j−1)/2

w t(j)π Xn−j + ...+ (−1)nqn(n−1)/2
w t(n)

π .

Proof: Suppose that π = χ1 ⊞ ...⊞ χn. Then

rl(π)∨(1− n) =
⊕

i

(χi| |(1−n)/2) ◦ Art −1,

so that rl(π)∨(1− n)(Frobw) has characteristic polynomial

(X − χ1(̟w)q(n−1)/2
w )...(X − χn(̟w)q(n−1)/2

w ).

2

Lemma 2.1.3 Suppose that π is an unramified irreducible admissible rep-
resentation of GLn(Fw) over K. Let t

(j)
π denote the eigenvalue of T

(j)
w on

πGLn(OFw ). Then πU0(w) = πU1(w) and the characteristic polynomial of V̟w on
πU0(w) divides

Xn − t(1)
π Xn−1 + ...+ (−1)jqj(j−1)/2

w t(j)π Xn−j + ...+ (−1)nqn(n−1)/2
w t(n)

π .

Proof: The first assertion is immediate because the central character of π is

unramified. Choose unramified characters χi : F×w → K
×

for i = 1, .., n such

that the q
(n−1)/2
w χi(̟w) are the roots of

Xn − t(1)
π Xn−1 + ...+ (−1)jqj(j−1)/2

w t(j)π Xn−j + ...+ (−1)nqn(n−1)/2
w t(n)

π

with multiplicities. From the last lemma we see that π is a subquotient of
n-Ind

GLn(Fw)
Bn(Fw) (χ1, ..., χn). Thus it suffices to show that the eigenvalues of V̟

on n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn)

U0(w) are {q(n−1)/2
w χi(̟w)}, with multiplicities (as

roots of the characteristic polynomial).
Let wm denote the m × m-matrix with (wm)ij = 1 if i + j = n + 1 and

(wm)ij = 0 otherwise. Let wn,i denote the matrix

(
1i−1 0
0 wn+1−i

)
.
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The space n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn)

U0(w) has a basis of functions ϕi for i =

1, ..., n where the support of ϕi is contained in Bn(Fw)wn,iU0(w) and ϕi(wn,i) =
1. We have

V̟wϕi =
∑

j

(V̟wϕi)(wn,j)ϕj.

Let X denote a set of representatives for k(w) in OFw containing 0. Then

(V̟wϕi)(wn,j) =
∑

x∈Xn−1 ϕi

(
wn,j

(
1n−1 0
̟wx ̟x

))

=
∑

x∈Xj−1

∑
y∈Xn−j ϕi




1j−1 0 0
̟wx ̟wy ̟w

0 wn−j 0




= q
(n−1)/2
w χj(̟w)

∑
x∈Xj−1 ϕi




1j−1 0 0
x 0 1
0 wn−j 0




A matrix g ∈ GLn(OFw) lies in Bn(OFw)wn,iU0(w) if and only if i is the largest
integer such that (0, ..., 0, 1) lies in the k(w) span of the reduction modulo ℘w
of the last n+ 1− i rows of g. Thus

(V̟wϕi)(wn,j)

is

• 0 if i > j,

• q(n−1)/2
w χj(̟w) if i = j, and

• (qw − 1)qj−i−1
w q

(n−1)/2
w χj(̟w) if i < j.

Thus the matrix of V̟w with respect to the basis {ϕi} of the space

n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn)

U0(w) is triangular with diagonal entries q
(n−1)/2
w χj(̟w).

The lemma follows. 2

Lemma 2.1.4 Suppose that we have a partition n = n1 + n2 and that π1

(resp. π2) is a smooth representation of GLn1(Fw) (resp. GLn2(Fw)). Let
P ⊃ Bn denote the parabolic corresponding to the partition n = n1 + n2. Set
π = n-Ind

GLn(Fw)
P (Fw) (π1 ⊗ π2). Then

πU1(w) ∼= (π
GLn1(OFw )
1 ⊗ πU1(w)

2 )⊕ (π
U1(w)
1 ⊗ πGLn2(OFw )

2 ).
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Moreover U
(j)
w acts as (

A 0
∗ B

)

where
A =

∑

j1+j2=j

q(n1j2+n2j1)/2−j1j2
w (T (j1)

w ⊗ U (j2)
w )

and
B =

∑

j=j1+j2

q(n1j2+n2j1)/2−j1j2
w (U (j1)

w ⊗ T (j2)
w )

and if α ∈ F×w has positive valuation then Vα acts as

(
|α|−n1/2(1⊗ Vα) ∗

0 |α|−n2/2(Vα ⊗ 1)

)
.

Proof: Let

ω =




1n1−1 0 0
0 0 1
0 1n2 0


 .

Then
GLn(Fw) = P (Fw)U1(w)

∐
P (Fw)ωU1(w)

so that
(n-Ind

GLn(Fw)
P (Fw) π1 ⊗ π2)

U1(w)

= (π1 ⊗ π2)
P (Fw)∩U1(w) ⊕ (π1 ⊗ π2)

P (Fw)∩ωU1(w)ω−1

= π
GLn1(OFw )
1 ⊗ πU1(w)

2 ⊕ πU1(w)
1 ⊗ πGLn2(OFw )

2 .

Specifically x ∈ π
GLn1(OFw )
1 ⊗ πU1(w)

2 corresponds to a function ϕx supported

on P (Fw)U1(w) with ϕx(1) = x, and y ∈ πU1(w)
1 ⊗ πGLn2(OFw )

2 corresponds to a
function ϕ′y supported on P (Fw)ωU1(w) with ϕ′y(ω) = y.

Choose a set X of representatives for k(w) in OFw , which contains 0. If

ϕ ∈ (n-Ind
GLn(Fw)
P (Fw) π1 ⊗ π2)

U1(w) then

(U (j)
w ϕ)(a) =

∑

I

∑

b

ϕx(ab)

where I runs over j element subsets of {1, ..., n − 1} and where b runs over
elements of Bn−1(Fw) with

• bii = ̟w if i ∈ I and = 1 otherwise,

• bij ∈ X if j > i, and = 0 unless i ∈ I and j 6∈ I.
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Thus
(U (j)

w ϕ′y)(1) =
∑

I

∑

b

ϕ′y(b) = 0

and

(U (j)
w ϕx)(1) =

∑

I1,I2

∑

a,b,c

(
a b
0 c

)
x

where I1 runs over subsets of {1, ..., n1}, I2 runs over subsets of {1, ..., n2− 1},
a ∈ Bn1(Fw), b ∈Mn1×n2(Fw) and c ∈ Bn2(Fw) such that

• #I1 + #I2 = j,

• aii = ̟w if i ∈ I1 and = 1 otherwise,

• cii = ̟w if i ∈ I2 and = 1 otherwise,

• if j > i then aij ∈ X and = 0 unless i ∈ I1 and j 6∈ I1,

• if j > i then cij ∈ X and = 0 unless i ∈ I2 and j 6∈ I2,

• bij ∈ X and = 0 unless i ∈ I1 and j 6∈ I2.

Equivalently

(U (j)
w ϕx)(1) =

∑

j1+j2=j

q(n1j2+n2j1)/2−j1j2
w (T (j1)

w ⊗ U (j2)
w )x.

Similarly

(U (j)
w ϕ′y)(ω) =

∑

I1,I2

∑

a,b,c,d,e

ϕ′y(




a c b
0 1 0
0 e d


ω),

where I1 ⊂ {1, ..., n1−1}, I2 ⊂ {1, ..., n2}, a ∈ Bn1−1(Fw), b ∈M(n1−1)×n2(Fw),
c ∈ F n1−1

w , d ∈ Bn2(Fw) and e ∈ F n2
w with

• #I1 + #I2 = j,

• aii = ̟w if i ∈ I1 and = 1 otherwise,

• dii = ̟w if i ∈ I2 and = 1 otherwise,

• if j > i then aij ∈ X and = 0 unless i ∈ I1 and j 6∈ I1,

• if j > i then dij ∈ X and = 0 unless i ∈ I2 and j 6∈ I2,
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• bij ∈ X and = 0 unless i ∈ I1 and j 6∈ I2,

• ci ∈ X and = 0 unless i ∈ I1,

• ei ∈ X and = 0 unless i ∈ I2.

The matrix 


a c b
0 1 0
0 e d


ω ∈ P (Fw)ωU1(w)

if and only if 


a c b
0 1 0
0 d−1e 1n2


 ∈ P (Fw)ωU1(w)ω−1

if and only if e = 0. Thus

(U (j)
w ϕ′y)(ω) =

∑

j=j1+j2

q(n1j2+n2j1)/2−j1j2
w (U (j1)

w ⊗ T (j2)
w )y.

Now suppose α ∈ F×w has non-negative valuation. If ϕ ∈ (n-Ind
GLn(Fw)
P (Fw) π1⊗

π2)
U1(w) then

(Vαϕ)(a) =
∑

b∈(OFw/(α))n−1

ϕ(a

(
1n−1 0
̟wb α

)
).

Thus

(Vαϕx)(1) =
∑

b∈(OFw/(α))n1

∑

c∈(OFw/(α))n2−1

ϕx




1n1 0 0
0 1n2−1 0

̟wb ̟wc α


 .

However 


1n1 0 0
0 1n2−1 0

̟wb ̟wc α


 ∈ P (Fw)U1(w)

if and only if 


1n1 0 0
0 1n2−1 0

α−1̟wb 0 1


 ∈ P (Fw)U1(w)
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if and only if b = 0. Hence

(Vαϕx)(1) =
∑

c∈(OFw/(α))n2−1 ϕx




1n1 0 0
0 1n2−1 0
0 ̟wc α




= |α|−n1/2(1⊗ Vα)x.

On the other hand

(Vαϕx)(ω) =
∑

b∈(OFw/(α))n1−1

∑

c∈(OFw/(α))n2

ϕx






1n1−1 0 0
̟wb α ̟wc

0 0 1n2


ω


 = 0.

Similarly

(Vαϕ
′
y)(ω) =

∑
b∈(OFw/(α))n1−1

∑
c∈(OFw/(α))n2 ϕx






1n1−1 0 0
̟wb α ̟wc

0 0 1n2


ω




= |α|−n2/2(Vα ⊗ 1)y.

The lemma follows. 2

Lemma 2.1.5 Suppose that π is an irreducible admissible representation of
GLn(Fw) over K with a U1(w) fixed vector but no GLn(OFw)-fixed vector.

Then dim πU1(w) = 1 and there is a character with open kernel, Vπ : F×w → K
×

such that Vπ(α) is the eigenvalue of Vα on πU1(w) for all α ∈ F×w with non-

negative valuation. For j = 1, ..., n − 1, let u
(j)
π denote the eigenvalue of U

(j)
w

on πU1(w). Then there is an exact sequence

(0)→ s→ rl(π)∨(1− n)→ Vπ ◦ Art −1
Fw
→ (0)

where s is unramified and s(Frobw) has characteristic polynomial

Xn−1−u(1)
π Xn−2+ ...+(−1)jqj(j−1)/2

w u(j)
π Xn−1−j+ ...+(−1)nq(n−1)(n−2)/2

w u(n−1)
π .

If πU0(w) 6= (0) then q−1
w Vπ(̟w) is a root of

Xn−1−u(1)
π Xn−2+ ...+(−1)jqj(j−1)/2

w u(j)
π Xn−1−j+ ...+(−1)nq(n−1)(n−2)/2

w u(n−1)
π .

If πU0(w) = (0) then rl(π)∨(1− n)(Gal (Fw/Fw)) is abelian.
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Proof: If π is an irreducible, cuspidal, smooth representation of GLm(Fw)
then the conductor of rec(π) ≥ m unless m = 1 and π is unramified. If π
is an irreducible, square integrable, smooth representation of GLm(Fw) then
the conductor of rec(π) ≥ m unless π = Spm(χ) for some unramified char-
acter χ, in which case the conductor is m − 1. As any irreducible, square
integrable, smooth representation π of GLm(Fw) is generic we see from [JPSS]
that πU1(w) 6= (0) if and only if either m = 1 and π has conductor ≤ 1, or
m = 2 and π = Sp 2(χ) for some unramified character χ of F×w .

Now suppose that n = n1 + ... + nr is a partition of n and let P ⊃ Bn

denote the corresponding parabolic. Let πi be an irreducible, square integrable,
smooth representation of GLni

(Fw). If

(n-Ind
GLn(Fw)
P (Fw) π1 ⊗ ...⊗ πr)U1(w) 6= (0)

then by the last lemma there must exist an index i0 such that:

• For i 6= i0 we have ni = 1 and πi unramified.

• Either ni0 = 1 and πi0 has conductor ≤ 1 or ni0 = 2 and πi0 = Sp 2(χ)
for some unramified character χ of F×w .

Thus if π is an irreducible smooth representation of GLn(Fw) with a U1(w)
fixed vector but no GLn(OFw) fixed vector then

1. either π = χ1 ⊞ ... ⊞ χn with χi an unramified character of F×w for
i = 1, ..., n− 1 and with χn a character of F×w with conductor 1,

2. or π = χ1 ⊞ ... ⊞ χn−2 ⊞ Sp 2(χn−1) with χi an unramified character of
F×w for i = 1, ..., n− 1.

Consider first the first of these two cases. Let π′ = χ1⊞...⊞χn−1, an unram-
ified representation of GLn−1(Fw). Also let P ⊃ Bn denote the parabolic cor-

responding to the partition n = (n− 1) + 1. As (n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn))

U1(w)

and (n-Ind
GLn(Fw)
P (Fw) π′ ⊗ χn)U1(w) are one dimensional we must have

πU1(w) = (n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn))

U1(w)

= (n-Ind
GLn(Fw)
P (Fw) π′ ⊗ χn)U1(w)

= (π′)GLn−1(OFw ) ⊗ χn.

From the last lemma we see that Vπ = χn| |(1−n)/2 and that U
(j)
w acts as

q
j/2
w T

(j)
w ⊗ 1. In particular π has no U0(w) fixed vector. Because

rl(π
′
⊞ χn)

∨(1− n) = rl(π
′)∨(2− n)|Art −1

Fw
|−1/2 ⊕ (Vπ ◦ Art −1

Fw
)
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the lemma follows.
Consider now the second of our two cases. Let π′ = χ1 ⊞ ... ⊞ χn−2, an

unramified representation of GLn−2(Fw). Also let P ⊃ Bn (resp. P ′ ⊃ Bn)
denote the parabolic corresponding to the partition n = (n − 2) + 2 (resp.

n = 1+...+1+2). Because dim(n-Ind
GLn(Fw)
P ′(Fw) χ1⊗...⊗χn−2⊗Sp 2(χn))

U1(w) = 1

and dim(n-Ind
GLn(Fw)
P (Fw) π′ ⊗ Sp 2(χn))

U1(w) = 1 we must have

πU1(w) = (n-Ind
GLn(Fw)
P ′(Fw) χ1 ⊗ ...⊗ χn−2 ⊗ Sp 2(χn))

U1(w)

= (n-Ind
GLn(Fw)
P (Fw) π′ ⊗ Sp 2(χn))

U1(w)

= (π′)GLn−2(OFw ) ⊗ Sp 2(χn)
U1(w).

Moreover Vα acts as |α|(2−n)/2(1⊗ Vα) and U
(j)
w acts as

qjw(T (j)
w ⊗ 1) + qn/2−1

w (T (j−1)
w ⊗ U (1)

w ).

The representation n-Ind
GL2(Fw)
B2(Fw) (χn, χn| |) has two irreducible constituents

(χn| |1/2) ◦ det and Sp 2(χn). On Sp 2(χn)
U1(w) we have

Vα =

(
|α|1/2χn(α) ∗

0 |α|−1/2χn(α)

)

and

U (1)
w =

(
q
1/2
w χn(̟w) 0

∗ q
−1/2
w χn(̟w)

)
.

On (χn| |1/2) ◦ det we have

Vα = |α|1/2χn(α)

and
U (1)
w = q1/2

w χn(̟w).

Thus on Sp 2(χn)
U1(w) we have

Vα = |α|−1/2χn(α)

and
U (1)
w = q−1/2

w χn(̟w).

Hence on πU1(w) we have

Vα = |α|(1−n)/2χn(α)
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and
U (j)
w = qjw(T (j)

w ⊗ 1) + q(n−3)/2
w (T (j−1)

w ⊗ χn(̟w)).

On the other hand

(0)→ (rl(π
′)∨(3− n)|Art −1

Fw
|−1 ⊕ (χn| |(3−n)/2) ◦ Art −1

Fw
)→

→ rl(π
′
⊞ Sp 2(χn))

∨(1− n)→ (χn| |(1−n)/2) ◦ Art −1
Fw
→ (0).

This is a short exact sequence of the desired form and s(Frobw) has charac-

teristic polynomial (X − q(n−3)/2
w χn(̟w)) times

Xn−2 − qwt(1)Xn−3 + ... + (−1)jqj+j(j−1)
w t(j)Xn−2−j + ... + (−1)nq(n−2)+(n−2)(n−3)

w t(n−2),

where t(j) is the eigenvalue of T
(j)
w on (π′)GLn−2(OFw ). The lemma follows. 2

Lemma 2.1.6 Let π be an irreducible smooth representation of GLn(Fw) over
K.

1. If πIw1(w) 6= (0) then rl(π)∨(1 − n)ss is a direct sum of one dimensional
representations.

2. Suppose

χ = (χ1, ..., χn) : (k(w)×)n → K
×

and χi 6= χj whenever i 6= j. If πIw0(w),χ 6= (0) Then

r(π)∨(1− n)|IFw
= (χ1 ◦ Art −1

Fw
)⊕ ...⊕ (χn ◦ Art −1

Fw
).

(Here we think of χi as a character of O×Fw
→→ k(w)×.)

Proof: The key point is that πIw1(w) 6= (0) if and only if π is a subquotient of

a principal series representation n-Ind
GLn(Fw)
Bn(Fw) (χ′1, ..., χ

′
n) with each χ′i tamely

ramified. More precisely πIw0(w),χ 6= (0) if and only if π is a subquotient of a

principal series representation n-Ind
GLn(Fw)
Bn(Fw) (χ′1, ..., χ

′
n) with each χ′i|O×

Fw
= χi.

(See theorem 7.7 of [Ro]. In section 4 of that article some restrictions were
placed on the characteristic of OFw/℘w. However it is explained in remark
4.14 how these restrictions can be avoided in the case of GLn. More precisely
it is explained how to avoid these restrictions in the proof of theorem 6.3.
The proof of theorem 7.7 relies only on lemma 3.6 and, via lemma 7.6, on
lemma 6.2 and theorem 6.3. Lemmas 3.6 and 6.2 have no restrictions on the
characteristic.) 2
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2.2 GLn over a local field: finite characteristic theory.

We will keep the notation and assumptions of the last section. Let l 6 |qw be a
rational prime, K a finite extension of the field of fractions of the Witt vectors
of an algebraic extension of Fl, O the ring of integers of K, λ the maximal
ideal of O and k = O/λ. We will call l quasi-banal for GLn(Fw) if either
l 6 |#GLn(k(w)) (the banal case), or l > n and qw ≡ 1 mod l (the limit case).

Lemma 2.2.1 Suppose that l > n and l|(qw − 1). Suppose also that π is
an unramified irreducible smooth representation of GLn(Fw) over Fl. Then

dim πGLn(OFw ) = 1. Let t
(j)
π denote the eigenvalue of T

(j)
w on πGLn(OFw ). Set

Pπ(X) = Xn− t(1)
π Xn−1 + ...+ (−1)jqj(j−1)/2

w t(j)π Xn−j + ...+ (−1)nqn(n−1)/2
w t(n)

π .

Suppose that Pπ(X) = (X − a)mQ(X) with m > 0 and Q(a) 6= 0. Then

Q(V̟w)πGLn(OFw ) 6= (0).

(Considered in πU0(w).)

Proof: According to assertion VI.3 of [V2] we can find a partition n = n1 +
...+nr corresponding to a parabolic P ⊃ Bn and distinct, unramified characters

χ1, ..., χr : F×w → F
×

l such that π = n-Ind
GLn(Fw)
P (Fw) (χ1 ◦ det, ..., χr ◦ det). Then

Pπ(X) =
r∏

i=1

(X − χi(̟w))ni.

Suppose without loss of generality that a = χ1(̟w).

For i = 1, ..., r set w′i = wn,n1+...+ni−1. Then n-Ind
GLn(Fw)
P (Fw) (χ1 ◦ det, ..., χr ◦

det)U0(w) has a basis consisting of functions ϕi for i = 1, ..., r, where the support

of ϕi is P (Fw)w′iU0(w) and ϕi(w
′
i) = 1. Note that n-Ind

GLn(Fw)
P (Fw) (χ1◦det, ..., χr◦

det)GLn(OFw ) is spanned by ϕ1 + ...+ ϕr.
We have

V̟wϕi =
∑

j

(V̟wϕi)(w
′
j)ϕj.

But, as in the proof of lemma 2.1.3, we also have

(V̟wϕi)(w
′
j) = χj(̟w)

∑

x∈Xn1+...+nj−1

ϕi




1n1+...+nj−1 0 0
x 0 1
0 wnj+1+...+nr 0


 ,
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where X is a set of representatives for k(w) in OFw . A matrix g ∈ GLn(OFw)
lies in P (OFw)w′iU0(w) if and only if i is the largest integer such that (0, ..., 0, 1)
lies in the k(w) span of the reduction modulo ℘w of the last ni + ...+ nr rows
of g. Thus

(V̟wϕi)(w
′
j)

is

• 0 if i > j,

• qni−1
w χj(̟w) = χj(̟w) if i = j, and

• (qni
w − 1)q

ni+1+...+nj−1
w χj(̟w) = 0 if i < j.

Thus, for i = 1, ..., r, we have

V̟wϕi = χi(̟w)ϕi

and
Q(V̟w)(ϕ1 + ...+ ϕr) = Q(χ1(̟w))ϕ1

and the lemma follows. 2

Lemma 2.2.2 Suppose that l > n and l|(qw − 1). Let R be a complete local
O-algebra. Let M be an R-module with a smooth action of GLn(Fw) such that
for all open compact subgroups U ⊂ GLn(Fw) the module of invariants MU

is finite and free over O. Suppose also that for j = 1, .., n there are elements
tj ∈ R with T

(j)
w = tj on MGLn(OFw ). Set

P (X) = Xn +
n∑

j=1

(−1)jqj(j−1)/2
w tjX

n−j ∈ R[X].

Suppose that in R[X] we have a factorisation P (X) = (X − a)Q(X) with
Q(a) ∈ R×. Suppose finally that M ⊗O K is semi-simple over R[GLn(Fw)]
and that, if π is an R-invariant irreducible GLn(Fw)-constituent of M ⊗O K
with a U0(w)-fixed vector, then either π is unramified or

P (X) = (X − V̟w)(Xn−1 − U (1)
w Xn−2 + ...+ (−1)jq

j(j−1)/2
w U

(j)
w Xn−1−j+

+...+ (−1)nq
(n−1)(n−2)/2
w U

(n−1)
w )

on πU0(w). Then Q(V̟) gives an isomorphism

Q(V̟w) : MGLn(OFw ) ∼−→MU0(w),V̟w=a.
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Proof: Lemma 2.1.3 tells us that

Q(V̟w) : MGLn(OFw ) −→MU0(w),V̟w=a.

Let π be an R-invariant irreducible GLn(Fw)-constituent of M ⊗O K with
πU0(w),V̟w=a 6= (0). If π is ramified then lemma 2.1.5 tells us that

(q−1
w a)n−1 − U (1)

w (q−1
w a)n−2...+ (−1)jq

j(j−1)/2
w U

(j)
w (q−1

w a)n−1−j+

+...+ (−1)nq
(n−1)(n−2)/2
w U

(n−1)
w = 0

on πU0(w). Thus Q(a) ∈ mR, which contradicts our hypothesis. Thus π is
unramified. Lemma 2.1.3 and the assumption that a is a simple root of P (X),
we see that dim πU0(w),V̟w=a ≤ 1 = dim πGLn(OFw ). Thus

dim(M ⊗O K)U0(w),V̟w=a ≤ dim(M ⊗O K)GLn(OFw ).

Hence it suffices to show that Q(Vϕw)⊗k is injective. Suppose not. Choose
a non-zero vector x ∈ ker(Q(Vϕw)⊗k) such that mRx = (0). Let N ′ denote the
k[GLn(Fw)]-submodule of M⊗Ok generated by x. Let N denote an irreducible
quotient of N ′. Then by lemma 2.2.1

Q(V̟w)NGLn(OFw ) 6= (0),

a contradiction and the lemma is proved. 2

Suppose that U is an open subgroup of GLn(OFw) and that

φ : k[GLn(OFw)\GLn(Fw)/GLn(OFw)] −→ k

is a k-algebra homomorphism. Set

k[GLn(Fw)/GLn(OFw)]φ
= k[GLn(Fw)/GLn(OFw)]⊗k[GLn(OFw )\GLn(Fw)/GLn(OFw )],φ k

and

k[U\GLn(Fw)/GLn(OFw)]φ
= k[U\GLn(Fw)/GLn(OFw)]⊗k[GLn(OFw )\GLn(Fw)/GLn(OFw )],φ k

If V is any smooth k[GLn(Fw)]-module and if v ∈ V GLn(OFw ) satisfies Tv =
φ(T )v for all T ∈ k[GLn(OFw)\GLn(Fw)/GLn(OFw)], then there is a unique
map of k[GLn(Fw)]-modules

k[GLn(Fw)/GLn(OFw)]φ −→ V
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sending [GLn(OFw)] to v, and a unique map of k[U\GLn(Fw)/U ]-modules

k[U\GLn(Fw)/GLn(OFw)]φ −→ V U

sending [GLn(OFw)] to v. (These observations were previously used in a similar
context by Lazarus [La].)

Fix an additive character ψ : Fw → k with kernel OFw . Let Bn denote
the Borel subgroup of GLn consisting of upper triangular matrices and let Nn

denote its unipotent radical. Let Pn denote the subgroup of GLn consisting of
matrices of the form (

a b
0 1

)

with a ∈ GLn−1. We will think of ψ as a character of Nn(Fw) by

ψ :




1 a12 a13 ... a1n−1 a1n

0 1 a23 ... a2n−1 a2n

0 0 1 ... a3n−1 a3n

. . .
...

...
0 0 0 ... 1 an−1n

0 0 0 ... 0 1




7−→ ψ(a12 + a23 + ...+ an−1n).

We will genn the compact induction c-Ind
Pn(Fw)
Nn(Fw)ψ and by Wn the induction

Ind
GLn(Fw)
Nn(Fw) ψ. We will use the theory of derivatives over k as it is developed in

section III.1 of [V1]. Note that if π is a smooth k[GLn(Fw)]-module then

Hom GLn(Fw)(π,Wn) ∼= π∨Nn(Fw),ψ
∼= Hom Pn(Fw)(genn, π)∨,

where ∨ denote linear dual and πNn(Fw),ψ denotes the maximal quotient of π
on which Nn(Fw) acts by ψ. If π is irreducible we will call it generic if these
spaces are non-trivial.

The next lemma is proved exactly as in characteristic zero (see [Sh]).

Lemma 2.2.3 Suppose that φ : k[GLn(OFw)\GLn(Fw)/GLn(OFw)] → k is a

homomorphism. Then the φ eigenspace in WGLn(OFw )
n is one dimensional and

spanned by a function W 0
φ with W 0

φ(1) = 1.

The next lemma is due to Vignéras, see parts 1 and 3 of theorem 1 of her
appendix to this article.
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Lemma 2.2.4 (Vignéras) Suppose that l is quasi-banal for GLn(Fw). Then
the functor V 7→ V Iw(w) is an equivalence of categories from the category of
smooth k[GLn(Fw)]-modules generated by their Iw(w)-fixed vectors to the cat-
egory of k[Iw(w)\GLn(Fw)/Iw(w)]-modules. Moreover the category of smooth
k[GLn(Fw)]-modules generated by their Iw(w)-fixed vectors is closed under pas-
sage to subquotients (in the category of smooth k[GLn(Fw)]-modules).

Lemma 2.2.5 Suppose that l is quasi-banal for GLn(Fw) and that

φ : k[GLn(OFw)\GLn(Fw)/GLn(OFw)] −→ k

is a k-algebra homomorphism. Then k[GLn(Fw)/GLn(OFw)]φ has finite length
(as a smooth k[GLn(Fw)]-module) and its Jordan-Holder constituents are the
same as those of any unramified principal series representation π for which
k[GLn(OFw)\GLn(Fw)/GLn(OFw)] acts on πGLn(OFw ) by φ. In particular the
smooth representation k[GLn(Fw)/GLn(OFw)]φ has exactly one generic irre-
ducible subquotient.

Proof: In the banal case this is due to Lazarus [La].
By lemma 2.2.4 the Iw(w)-invariants functor is exact on the category of

subquotients of smooth k[GLn(Fw)]-modules generated by their Iw(w)-fixed
vectors.

Let T1, ..., Tn+1 generate k[GLn(OFw)\GLn(Fw)/GLn(OFw)] as a k-algebra.
Then we have an exact sequence

(0)→∑
i k[GLn(Fw)/GLn(OFw)](Ti − φ(Ti))→ k[GLn(Fw)/GLn(OFw)]→

→ k[GLn(Fw)/GLn(OFw)]φ → (0).

Thus

(0)→ (
∑

i k[GLn(Fw)/GLn(OFw)](Ti − φ(Ti)))
Iw(w) →

→ k[Iw(w)\GLn(Fw)/GLn(OFw)]→ (k[GLn(Fw)/GLn(OFw)]φ)
Iw(w) → (0)

is exact. On the other hand if A and B are two k[GLn(Fw)]-submodules of
k[GLn(Fw)/GLn(OFw)] then the exact sequence

(0)→ A→ A+B → B/(A ∩B)→ (0)

gives an exact sequence

(0)→ AIw(w) → (A+B)Iw(w) → BIw(w)/(AIw(w) ∩BIw(w))→ (0).

Thus
(A+B)Iw(w) = AIw(w) +BIw(w)
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and we get an exact sequence

(0)→∑
i(k[GLn(Fw)/GLn(OFw)](Ti − φ(Ti)))

Iw(w) →
→ k[Iw(w)\GLn(Fw)/GLn(OFw)]→ (k[GLn(Fw)/GLn(OFw)]φ)

Iw(w) → (0).

As

(Ti − φ(Ti)) : k[GLn(Fw)/GLn(OFw)]→→ k[GLn(Fw)/GLn(OFw)](Ti − φ(Ti))

we see that (Ti − φ(Ti)) maps

k[Iw(w)\GLn(Fw)/GLn(OFw)]→→ (k[GLn(Fw)/GLn(OFw)](Ti − φ(Ti)))
Iw(w).

Finally we get an exact sequence

(0)→∑
i k[Iw(w)\GLn(Fw)/GLn(OFw)](Ti − φ(Ti))→

→ k[Iw(w)\GLn(Fw)/GLn(OFw)]→ (k[GLn(Fw)/GLn(OFw)]φ)
Iw(w) → (0)

and we see that

(k[GLn(Fw)/GLn(OFw)]φ)
Iw(w) = k[Iw(w)\GLn(Fw)/GLn(OFw)]φ.

Following Kato and Lazarus [La] we see that the Satake isomorphism ex-
tends to an isomorphism

k[Iw(w)\GLn(Fw)/GLn(OFw)] ∼= k[X±1
1 , ..., X±1

n ]

as k[GLn(OFw)\GLn(Fw)/GLn(OFw)] ∼= k[X±1
1 , ..., X±1

n ]Sn-modules. We de-
duce immediately that

dimk k[Iw(w)\GLn(Fw)/GLn(OFw)]φ = n!

and hence (from lemma 2.2.4) that k[GLn(Fw)/GLn(OFw)]φ has finite length.
Moreover the argument of section 3.3 of [La] then shows that the Jordan-
Holder constituents of k[GLn(Fw)/GLn(OFw)]φ are the same as the Jordan-
Holder constituents of any unramified principal series representation π for
which k[GLn(OFw)\GLn(Fw)/GLn(OFw)] acts on πGLn(OFw ) by φ. The final
assertion of the lemma then follows from the results of section III.1 of [V1]. 2

We will now recall some results of Russ Mann [M1] and [M2]. See also
appendix A of this article.

The first result follows at once from proposition 4.4 of [M1].
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Lemma 2.2.6 (Mann) Suppose that χ1, ..., χn are unramified characters

F×w → K
×

and set π = n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn). The simultaneous eigenspaces

of the operators U
(j)
w (for j = 1, ..., n− 1) on πU1(wn) are parametrised by sub-

sets A ⊂ {1, ..., n} of cardinality less than n. Let u
(j)
A denote the eigenvalue of

U
(j)
w on the eigenspace corresponding to A. Then

Xn − q(1−n)/2
w u

(1)
A Xn−1 + ...+ (−1)jq

j(j−n)/2
w u

(j)
A Xn−j+

+...+ (−1)n−1q
(n−1)/2
w u

(n−1)
A X = Xn−#A

∏
i∈A(X − χi(̟w)).

Moreover the generalised eigenspace corresponding to a subset A has dimension(
n− 1
#A

)
.

The next two results are proved in [M2]. As this is not currently available,
proofs repeated in appendix A.

Lemma 2.2.7 (Mann) Suppose that

φ : k[GLn(OFw)\GLn(Fw)/GLn(OFw)] −→ k

is a homomorphism. Then the map

k[U1(w
n)\GLn(Fw)/GLn(OFw)]φ −→ Wn

T 7−→ TW 0
φ

is an injection.

Let ηw denote the diagonal matrix diag(1, ..., 1, ̟n
w). Then there is a bijec-

tion̂:
Z[1/qw][U1(w

n)\GLn(Fw)/GLn(OFw
)] −→ Z[1/qw][GLn(OFw

)\GLn(Fw)/U1(w
n)]

[U1(w
n)gGLn(OFw

)] 7−→ [GLn(OFw
)tgη−1

w U1(w
n)].

(This is because U1(w
n) = ηw

tU1(w
n)η−1

w .)

Proposition 2.2.8 (Mann) There exists an element

θn,w ∈ Zl[U1(w
n)\GLn(Fw)/GLn(OF,w)]

with the following properties.

1. For i = 1, ..., n− 1 we have U
(i)
w θn,w = 0.

2. For any homomorphism φ : k[GLn(OFw)\GLn(Fw)/GLn(OFw)] → k we
have θn,wW

0
φ 6= 0 in Wn.
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3. If χ1, ..., χn are unramified characters F×w → K× such that the induced

representation π = n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn) is irreducible, and if 0 6= v ∈

πGLn(OFw ) then θn,wv is nonzero and so a basis of πU1(wn),U
(1)
w =...=U

(n−1)
w =0.

4. The composite

θ̂n,wθn,w ∈ Zl[GLn(OFw)\GLn(Fw)/GLn(OFw)]

has Satake transform

qn
2(n−1)/2

w (X1...Xn)
−(n+1)

n∏

i=1

n∏

j=1

(qwXi −Xj).

Corollary 2.2.9 Suppose that π is an irreducible unramified representation
of GLn(Fw) over K such that rl(π)∨(1−n) is defined over K. If θ̂n,wθn,w acts
on πGLn(OF,w) by α then α ∈ O and

lgOO/α ≥ lgOH
0(Gal (Fw/Fw), (ad rl(π)∨(1− n))⊗O (K/O)(−1)).

Let M be an admissible k[GLn(Fw)]-module. We will say that M has
the Ihara property if for every v ∈ MGLn(OFw ) which is an eigenvector of
k[GLn(OFw)\GLn(Fw)/GLn(OFw)], every irreducible submodule of the
k[GLn(Fw)]-module generated by v is generic.

Lemma 2.2.10 Suppose that l is quasi-banal for GLn(Fw). Suppose also that
M is an admissible k[GLn(Fw)]-module with the Ihara property and that

ker(θn,w : MGLn(OFw ) −→M)

is a k[GLn(OFw)\GLn(Fw)/GLn(OFw)]-module. Then

θn,w : MGLn(OFw ) →֒MU1(wn),U
(1)
w =...=U

(n−1)
w =0

is injective.

Proof: Suppose θn,w were not injective on MGLn(OF,w). We could choose a
k[GLn(OFw)\GLn(Fw)/GLn(OFw)]-eigenvector 0 6= v ∈ ker θn,w, say

Tv = φ(T )v

where
φ : k[GLn(OFw)\GLn(Fw)/GLn(OFw)] −→ k
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is a k-algebra homomorphism.
Let A denote the kernel of the map

k[GLn(Fw)/GLn(OFw)]φ −→ Wn

T 7−→ TW 0
φ .

Thus A has no generic subquotient and k[GLn(Fw)/GLn(OFw)]φ/A has a
unique irreducible submodule B/A. The module B/A is generic, but no sub-
quotient of k[GLn(Fw)/GLn(OFw)]φ/B is generic.

Now consider the map

k[GLn(Fw)/GLn(OFw)]φ −→ M
T 7−→ Tv.

As M has the Ihara property, any irrreducible submodule of the image is
generic. Thus A is contained in the kernel and moreover the induced map

k[GLn(Fw)/GLn(OFw)]φ/A −→M

must be injective. Thus we have an injection

〈GLn(Fw)W 0
φ〉 →֒ M
W 0
φ 7−→ v.

Proposition 2.2.8 then tells us that θn,wv 6= 0, a contradiction. 2

We would conjecture that the previous lemma remains true without the
quasi-banal hypothesis. In fact, it is tempting to conjecture that the natural
map

k[GLn(Fw)/GLn(OFw)]φ −→ Wn

[GLn(OFw)] 7−→ W 0
φ

is in general injective.

2.3 Automorphic forms on unitray groups.

Fix a positive integer n ≥ 2 and a prime l > n.
Fix an imaginary quadratic field E in which l splits and a totally real

field F+. Fix a finite non-empty set of places S(B) of places of F+ with the
following properties:

• Every element of S(B) splits in F .

• S(B) contains no place above l.
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• If n is even then

n[F+ : Q]/2 + #S(B) ≡ 0 mod 2.

Choose a division algebra B with centre F with the following properties:

• dimF B = n2.

• Bop ∼= B ⊗E,c E.

• B splits outside S(B).

• If ṽ is a prime of F above an element of S(B), then Bev is a division
algebra.

If ‡ is an involution on B with ‡|F = c then we can define a reductive algebraic
group G‡/F

+ by setting

G‡(R) = {g ∈ B ⊗F+ R : g‡⊗1g = 1}

for any F+-algebra R. Fix an involution ‡ on B such that

• ‡|F = c,

• for a place v|∞ of F+ we have G‡(F
+
v ) ∼= U(n), and

• for a finite place v 6∈ S(B) of F+ the group G‡(F
+
v ) is quasi-split.

This is always possible, by an argument exactly analogous to the proof of
lemma 1.7.1 of [HT]. From now on we will write G for G‡.

We will also define an algebraic group G′/F+ by setting

G′(R) = {g ∈ Bop ⊗F+ R : g‡⊗1g = 1}

for any F+-algebra R. Note that there is an isomorphism

I : G
∼−→ G′

g 7−→ g−1.

We can choose an order OB in B such that O‡B = OB and OB,w is maximal
for all primes w of F which are split over F+. (Start with any order. Replacing
it by its intersection with its image under ‡ gives an order O′B with (O′B)‡ =
O′B. For all but finitely many primes v of F+ the completion O′B,v will be a
maximal order in Bv. Let R denote the finite set of primes which split in F
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and for which O′B,v is not maximal. For v ∈ R choose a maximal order O′′B,v
of Bv with (O′′B,v)‡ = O′′B,v (e.g. OB,w ⊕O‡B,w where w is a prime of F above
v and OB,w is a maximal order in Bw). Let OB be the unique order with
OB,v = O′′B,v if v ∈ R and OB,v = O′B,v otherwise.) This choice gives models
of G and G′ over OF+. (These models may be very bad at primes v which do
not split in F , but this will not concern us.)

Let v be a place of F+ which splits in F . If v 6∈ S(B) choose an isomorphism
iv : OB,v ∼→Mn(OFv) such that iv(x

‡) = tiv(x)
c. The choice of a prime w of F

above v then gives us an identification

iw : G(F+
v )

∼−→ GLn(Fw)
i−1
v (x, tx−c) 7−→ x

with iwG(OF+,v) = GLn(OF,w) and iwc = t(c ◦ iw)−1. Using tiv in place of iv
we also get

itw : G′(F+
v )

∼−→ GLn(Fw)

with itwG
′(OF+,v) = GLn(OF,w) and itw ◦ I = t(iw)−1 = c◦ iwc. If v ∈ S(B) and

w is a prime of F above v we get an isomorphism

iw : G(F+
v )

∼−→ B×w

with iwG(OF+,v) = O×B,w and iwc = i−‡w . We also get

i′w : G′(F+
v )

∼−→ (Bop
w )×

with i′wG
′(OF+,v) = O×Bop,w.

Let Sl denote the primes of F+ above l and let T ⊃ Sl ∪ S(B) denote a

finite set of primes of F+ which split in F . Fix a set T̃ of primes of F such
that T̃

∐
cT̃ is the set of all primes of F above T . If S ⊂ T write S̃ for the

preimage of S in T̃ . If v ∈ T we will write ṽ for the element of T̃ above v.
Write S∞ for the set of infinite places of F+.

Let k be an algebraic extension of Fl and K a finite, totally ramified ex-
tension of the fraction field of the Witt vectors of k such that K contains
the image of every embedding F →֒ K. Let O denote the ring of integers of
K and let λ denote its maximal ideal. Let Il denote the set of embeddings
F+ →֒ K, so that there is a natural surjection Il →→ Sl. Let Ĩl denote the
set of embeddings F →֒ K which give rise to a prime of S̃l. Thus there is a
natural bijection Ĩl

∼→ Il.
For an n-tuple of integers a = (a1, ..., an) with a1 ≥ ... ≥ an there is an

irreducible representation defined over Q:

ξa : GLn −→ GL(Wa)
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with highest weight

diag(t1, ..., tn) 7−→
n∏

i=1

tai
i .

(N.B. This is not the same convention used in [HT].) There is also a (unique
up to scalar multiples) perfect pairing

〈 , 〉a : Wa ×Wa −→ Q

such that
〈ξa(g)w,w′〉a = 〈w, ξa(tg)w′〉a

for all w,w′ ∈Wa and g ∈ GLn(Q). We can choose a model

ξa : GLn −→ GL(Ma)

of ξa over Z. (So Ma is a Z-lattice in Wa.) Let M ′
a denote the 〈 , 〉a dual of

Ma and
ξ′a : GLn −→ GL(M ′

a)

the corresponding model over Z of ξa.
Let Wtn denote the subset of (Zn)Hom(F,Ql) consisting of elements a which

satisfy

• aτc,i = −aτ,n+1−i and

• aτ,1 ≥ ... ≥ aτ,n.

If a ∈Wtn then we get a K-vector space Wa and irreducible representations

ξa : G(F+
l ) −→ GL(Wa)
g 7−→ ⊗τ∈eIlξaτ (τiτg)

and
ξ′a : G′(F+

l ) −→ GL(Wa)
g 7−→ ∏

τ∈eIl ξaτ (τi
t
τg).

The representation ξa contains a G(OF+,l)-invariant O-lattice Ma and the rep-
resentation ξ′a contains a G′(OF+,l)-invariant O-lattice M ′

a such that there is
a perfect pairing

〈 , 〉a : Ma ×M ′
a −→ O

with
〈ξa(g)x, ξ′a(I(g))y〉a = 〈x, y〉a.
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For v ∈ S(B), let ρv : G(F+
v ) → GL(Mρv) denote a representation of

G(F+
v ) on a finite free O-module such that ρv has open kernel and Mρv ⊗O K

is irreducible. Let M ′
ρv

= Hom (Mρv ,O) and define ρ′v : G(F+
v ) → GL(M ′

ρv
)

by
ρ′v(g)(x)(y) = x(ρv(I

−1(g))−1y).

If we identify G(F+
v ) ∼= B×w and G′(F+

v ) ∼= (Bop
w )× and if g ∈ B×w and g′ ∈

(Bop
w )× have the same characteristic polynomials then tr ρv(g) = tr ρv(g

′). Let
e(ρv) denote the number of irreducible constituents of ρv|G(OF+,v) ⊗K K.

If JL (ρv ◦ i−1
w ) = Spmv

(πw) then set

r̃w = rl(πw| |(n/m−2)(1−m)/2).

Note that we also have JL (ρ′v ◦ i−1
w ) = Spmv

(πw). We will suppose that

r̃w : Gal (Fw/Fw) −→ GLn/m(O)

(as opposed to GLn/m(K)) and that the reduction of r̃w is absolutely irre-
ducible. Thus r̃w is well defined over O.

We will call an open compact subgroup U ⊂ G(A∞F+) sufficiently small if
for some place v its projection to G(F+

v ) contains only one element of finite
order, namely 1.

Suppose that U is an open compact subgroup of G(A∞F+), that a ∈ Wtn
and that for v ∈ S(B), ρv is as in the last paragraph. Set

Ma,{ρv} = Ma ⊗
⊗

v∈S(B)

Mρv

and
Ma,{ρv} = M ′

a ⊗
⊗

v∈S(B)

M ′
ρv
.

Suppose that either R is a K-algebra or that the projection of U to G(F+
l ) is

contained in G(OF+,l). Then we define a space of automorphic forms

Sa,{ρv}(U,R)

to be the space of functions

f : G(F+)\G(A∞F+) −→ R ⊗OMa,{ρv}

such that
f(gu) = u−1

S(B),lf(g)
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for all u ∈ U and g ∈ G(A∞F+). Here uS(B),l denotes the projection of u to
G(F+

l )×∏v∈S(B)G(F+
v ). If V is any compact subgroup of G(A∞F+) we define

Sa,{ρv}(V,R) to be the union of the Sa,{ρv}(U,R) as U runs over open compact
subgroups containing V . Similarly, if U ′ is an open compact subgroup of
G′(A∞F+) and either R is a K-algebra or the projection of U ′ to G′(F+

l ) is
contained in G′(OF+,l) we define

S ′a,{ρv}(U
′, R)

to be the space of functions

f : G′(F+)\G′(A∞F+) −→ R⊗OM ′
a,{ρv}

such that
f(gu) = u−1

S(B),lf(g)

for all u ∈ U ′ and g ∈ G′(A∞F+). We make a corresponding definition of
S ′a,{ρv}

(V ′, R) for V ′ any compact subgroup of G′(A∞F+).

If g ∈ G(A∞F+) (and either R is a K-algebra or gl ∈ G(OF+,l)) and if
V ⊂ gUg−1 then there is a natural map

g : Sa,{ρv}(U,R) −→ Sa,{ρv}(V,R)

defined by
(gf)(h) = gl,S(B)f(hg).

We see that if V is a normal subgroup of U then

Sa,{ρv}(U,R) = Sa,{ρv}(V,R)U .

If U is open then the R-module Sa,{ρv}(U,R) is finitely generated. If U is open
and sufficiently small then it is free of rank #G(F+)\G(A∞F+)/U . If R is flat
over O or if U is sufficiently small then

Sa,{ρv}(U,R) = Sa,{ρv}(U,O)⊗O R.
Suppose that U1 and U2 are compact subgroups and g ∈ G(A∞F+). If R is
not a K-algebra suppose that gl ∈ G(OF+,l) and that ul ∈ G(OF+,l) for all
u ∈ U1 ∪ U2. Suppose also that #U1gU2/U2 < ∞. (This will be automatic if
U1 and U2 are open.) Then we define a linear map

[U1gU2] : Sa,{ρv}(U2, R) −→ Sa,{ρv}(U1, R)

by

([U1gU2]f)(h) =
∑

i

(gi)l,S(B)f(hgi)

if U1gU2 =
∐

i giU2. Exactly similar statements hold for G′.
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Lemma 2.3.1 Let U ⊂ G(A∞F+) be a sufficiently small open compact subgroup
and let V ⊂ U be a normal open subgroup. Let R be an O-algebra. Suppose
that either R is a K-algebra or the projection of U to G(F+

l ) is contained in
G(OF+,l). Then Sa,{ρv}(V,R) is a finite free R[U/V ]-module and tr U/V gives
an isomorphism from the coinvariants Sa,{ρv}(V,R)U/V to Sa,{ρv}(U,R).

Proof: Suppose that

G(A∞F+) =
∐

j∈J

G(F+)gjU.

Then
G(A∞F+) =

∐

j∈J

∐

u∈U/V

G(F+)gjuV.

Moreover for all j ∈ J we have g−1
j G(F+)gj ∩ U = {1}. (Because this inter-

section is finite and U is sufficiently small.) Thus

Sa,{ρv}(U,R)
∼−→ ⊕

j∈JMa,{ρv} ⊗O R
f 7−→ (f(gj))j.

and
Sa,{ρv}(V,R)

∼−→ ⊕
j∈J

⊕
u∈U/V Ma,{ρv} ⊗O R

f 7−→ (f(gju))j,u.

Alternatively we get an isomorphism of R[U/V ]-modules

Sa,{ρv}(V,R)
∼−→ ⊕

j∈JMa,{ρv} ⊗O R[U/V ]

f 7−→ (
∑

u∈U/V uS(B),lf(gju)⊗ u−1)j.

Then
Sa,{ρv}(V,R)U/V

∼−→ ⊕
j∈JMa,{ρv} ⊗O R

f 7−→ (
∑

u∈U/V uS(B),lf(gju))j.

In fact we have a commutative diagram

Sa,{ρv}(V,R)U/V
tr U/V−→ Sa,{ρv}(U,R)

↓ ↓⊕
j∈JMa,{ρv} ⊗O R =

⊕
j∈JMa,{ρv} ⊗O R

where the vertical maps are the above isomorphisms. The lemma follows. 2

Suppose that U is an open compact subgroup of G(A∞F+) and that η ∈
G′(A∞F+). If R is not a K-algebra further assume that ηl ∈ G′(OF+,l) and that
for all u ∈ U we also have ul ∈ G(OF+,l). Set U ′ = η−1I(U)η. Define a pairing

〈 , 〉U,η : Sa,{ρv}(U,R)× S ′a,{ρv}(U
′, R) −→ R
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by

〈f, f ′〉U,η =
∑

g∈G(F+)\G(A∞
F+)/U

〈f(g), ηl,S(B)f
′(I(g)η)〉a,{ρv}.

If U is sufficiently small, or if R is a K-algebra, this is a perfect pairing. If
we have two such pairs (U1, η1) and (U2, η2) with each Ui sufficiently small,
if U ′i = η−1

i I(Ui)ηi and if g ∈ G(A∞F+) (with gl ∈ G(OF+,l) if R is not a
K-algebra) then

〈[U1gU2]f, f
′〉U1,η1 = 〈f, [U ′2η−1

2 I(g)−1η1U
′
1]f
′〉U2,η2 .

Proposition 2.3.2 Fix ι : K →֒ C.

1. Sa,{ρv}({1},C) is a semi-simple admissible G(A∞F+)-module.

2. If S(B) 6= ∅ and π = ⊗vπv is an irreducible constituent of Sa,{ρv}({1},C)
then there is an automorphic representation BC ι(π) of (B ⊗ A)× with
the following properties.

• BC ι(π) ◦ (−‡) = BCι(π).

• If a prime v of F+ splits as wwc in F then BCι(π)w ∼= πv ◦ i−1
w .

• If v is an infinite place of F+ and τ : F →֒ C lies above v then
BC ι(π)v is cohomological for (ξaι−1τ

◦ τ)⊗ (ξaι−1τc
◦ τc).

• If v is a prime of F+ which is unramified, inert in F and if πv has a
fixed vector for a hyperspecial maximal compact subgroup of G(Fv)
then BC ι(π)v has a GLn(OF,v)-fixed vector.

• If v ∈ S(B) and πv has a G(OF,v) fixed vector and w is a prime of
F above v then BC ι(π)w is an unramified twist of (ιρ∨v ) ◦ i−1

w .

3. If S(B) 6= ∅ and π = ⊗vπv is an irreducible constituent of Sa,{ρv}({1},C)
such that for v ∈ S(B) the representation πv has a G(OF+,v)-fixed vec-
tor, then one of the following two possibilities obtains. Either there is
a cuspidal automorphic representation Π of GLn(AF ) with the following
properties.

• Π ◦ c = Π∨.

• If a prime v 6∈ S(B) of F+ splits as wwc in F then Πw
∼= πv ◦ i−1

w .

• If v is an infinite place of F+ and τ : F →֒ C lies above v then Πv

is cohomological for (ξaι−1τ
◦ τ)⊗ (ξaι−1τc

◦ τc).
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• If v is a prime of F+ which is unramified, inert in F and if πv has a
fixed vector for a hyperspecial maximal compact subgroup of G(Fv)
then Πv has a GLn(OF,v)-fixed vector.

• If v ∈ S(B) and w is a prime of F above v then Πw is an unramified
twist of JL ((ιρ∨v ) ◦ i−1

w ).

Or there is an integer m|n and a cuspidal automorphic representation Π
of GLn/m(AF ) with the following properties.

• Π∨ ◦ c = Π| |m−1.

• If a prime v 6∈ S(B) of F+ splits as wwc in F then Πw ⊞ Πw| | ⊞
...⊞ Πw| |m−1 ∼= πv ◦ i−1

w .

• If v is an infinite place of F+ and τ : F →֒ C lies above v then
Πv| |n(m−1)/(2m) is cohomological for (ξbτ ◦ τ)⊗ (ξbτc ◦ τc) and bτ,i =
aτ,m(i−1)+j + (m− 1)(i− 1) for every j = 1, ...,m.

• If v is a prime of F+ which is unramified, inert in F and if πv has a
fixed vector for a hyperspecial maximal compact subgroup of G(Fv)
then Πv has a GLn/m(OF,v)-fixed vector.

• If v ∈ S(B) and w is a prime of F above v then Πw is cuspidal and
JL (ιρv ◦ i−1

w )∨ is an unramified twist of Spm(Πw).

If for one place v0 6∈ S(B) of F+, which splits in F , the representation
πv0 is generic, then for all places v 6∈ S(B) of F+, which split in F , the
representation πv is generic.

4. Suppose that Π is a cuspidal automorphic representation of GLn(AF )
with the following properties.

• Π∨ ◦ c = Π.

• If v is an infinite place of F+ and τ : F →֒ C lies above v then Πv

is cohomological for (ξaι−1τ
◦ τ)⊗ (ξaι−1τc

◦ τc).
• If v ∈ S(B) and w is a prime of F above v then Πw is an unramified

twist of JL ((ιρ∨v ) ◦ i−1
w ).

Then there is an irreducible constituent π of Sa,{ρv}({1},C) with the fol-
lowing properties.

• For v ∈ S(B) the representation πv has a G(OF+,v)-fixed vector.

• If a prime v 6∈ S(B) of F+ splits as wwc in F then πv ∼= Πw ◦ iw.
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• If v is a prime of F+ which is inert and unramified in F and if Πw

is unramified then πv has a fixed vector for a hyperspecial maximal
compact subgroup of G(Fv).

Exactly similar results hold for G′ (with itw replacing iw).

Proof: If τ ∈ Ĩl then ιτ : F → C and hence F∞ → C. Then Wa ⊗K,ι C is
naturally a G(R)-module:

g 7−→ ⊗τ∈eIlξaτ (ιτg).

Denote this action by ξa,ι. Let A denote the space of automorphic forms on
G(F+)\G(AF+). We have an isomorphism

i : Sa,{ρv}(U,C)
∼−→ Hom U×G(F+

∞)((Ma,{ρv} ⊗O,ι C)∨,A)

given by
i(f)(α)(g) = α(ξa,ι(g∞)−1(ξa(gl)f(g∞))).

The first part now becomes a standard fact. The second part follows
from theorem A.5.2 of [CL], except that theorem A.5.2 of [CL] only identi-
fies BC ι(π)v for all but finitely many v. We can easilly adapt the argument
to identify BC ι(π)v at all split places, as we described in the proof of theorem
VI.2.1 of [HT] (page 202). It is equally easy to control BC ι(π)v at places where
πv has a fixed vector for a hyperspecial maximal compact subgroup. One just
chooses the set S in the proof of theorem A.5.2 of [CL] not containing v. The
third part follows from the second, theorem VI.1.1 of [HT] and the main re-
sult of [MW]. As for the fourth part, the existence of some descent (controlled
at all but finitely many places) follows from theorem VI.1.1 of [HT] and the
argument for proposition 2.3 of [Cl] as completed by theorem A.3.1 of [CL].
That this descent has all the stated properties follows from the earlier parts
of this proposition. 2

Corollary 2.3.3 Sa,{ρv}({1},K) (resp. S ′a,{ρv}
({1},K)) is a semi-simple ad-

missible G(A∞F+)-module (resp. G′(A∞F+)-module).

Combining the above proposition with theorem VII.1.9 of [HT] we obtain
the following result.

Proposition 2.3.4 Let K
0

denote the algebraic closure of Ql in K. Suppose
that π = ⊗vπv is an irreducible constituent of Sa,{ρv}({1},K) then there is a
continuous semi-simple representation

rπ : Gal (F/F ) −→ GLn(K
0
)

with the following properties.
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1. If v 6∈ S(B) ∪ Sl is a prime of F+ which splits v = wwc in F , then

rπ|ssGFw
= (rl(πw ◦ i−1

w )∨(1− n))ss.

2. rcπ
∼= r∨π ǫ

1−n.

3. If v ∈ S(B) splits v = wwc in F then

rπ|ssGFw
= (rl(JL (πw ◦ i−1

w ))∨(1− n))ss.

4. If v is a prime of F+ which is inert and unramified in F and if πv has a
fixed vector for a hyperspecial maximal compact subgroup of G(F+

v ) then
rπ|WFv

is unramified.

5. If w is a prime of F above l then rπ is potentially semi-stable at w. If
moreover πw|F+ is unramified then rπ is crystalline at w.

6. If τ : F →֒ K gives rise to a prime w of F then

dim
K

0 gr i(rπ ⊗τ,Fw BDR)Gal (Fw/Fw) = 0

unless i = aτ,j + n− j for some j = 1, ..., n in which case

dim
K

0 gr i(rπ ⊗τ,Fw BDR)Gal (Fw/Fw) = 1.

7. If for some place v 6∈ S(B) of F+ which splits in F the representation
πv is not generic then rπ is reducible.

Exactly similar results hold for G′ (with itw replacing iw).

Proof: If the first possibility of part 3 of proposition 2.3.2 obtains then by
theorem VII.1.9 of [HT] rπ = Rl(Π)∨(1−n) will suffice. So suppose the second
possibility obtains. Let S ′ ⊃ Sl be any finite set of finite places of F+ which
are unramified in F . Choose a character ψ : A×F → C× such that

• ψ−1 = ψc;

• ψ is unramified above S ′; and

• if τ : F →֒ C gives rise to an infinite place v of F then

ψv : z 7−→ (τz/|τz|)δτ

where |z|2 = zzc and δτ = 0 if either m or n/m is odd and δτ = ±1
otherwise.
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The existence of such a character is proved as in the proof of lemma VII.2.8
of [HT]. Then

rπ = Rl(Π⊗ψ| |(m−1)/2)∨(1−n)⊗Rl(ψ
−1| |(n/m−1)(m−1)/2)∨⊗(1⊕ǫ−1⊕...⊕ǫ1−m)

is independent of the choice of S ′ and ψ and satisfies the requirements of the
proposition. (We use the freedom to vary S ′ to verify property 4.) 2

2.4 Unitary group Hecke algebras.

Keep the notation and assumptions of the last section. Further suppose that

U =
∏

v

Uv ⊂ G(A∞F+)

is a sufficiently small open compact subgroup and that, if v 6∈ T splits in F ,
then Uv = G(OF+,v). We will denote by

TT
a,{ρv}(U)

the O-subalgebra of End (Sa,{ρv}(U,O)) generated by the Hecke operators T
(j)
w

(or strictly speaking i−1
w (T

(j)
w ) × U v) and (T

(n)
w )−1 for j = 1, ..., n and for w

a place of F which is split over a place v 6∈ T of F+. (Note that T
(j)
wc =

(T
(n)
w )−1T

(n−j)
w , so we need only consider one place w above a given place v of

F+.) If X is a TT
a,{ρv}

(U)-stable subspace of Sa,{ρv}(U,K) then we will write

TT (X)

for the image of TT
a,{ρv}

(U) in EndK(X).
Similarly suppose that

U ′ =
∏

v

U ′v ⊂ G′(A∞F+)

is a sufficiently small open compact subgroup and that, if v 6∈ T splits in F ,
then U ′v = G(OF+,v). We will denote by

TT
a,{ρv}(U

′)′

the O-subalgebra of End (S ′a,{ρv}
(U ′,O)) generated by the Hecke operators

T
(j)
w (or strictly speaking (itw)−1(T

(j)
w ) × (U ′)v) and (T

(n)
w )−1 for j = 1, ..., n

and for w a place of F which is split over a place v 6∈ T of F+. (Again

92



T
(j)
wc = (T

(n)
w )−1T

(n−j)
w , so we need only consider one place w above a given

place v of F+.) If X ′ is a TT
a,{ρv}

(U ′)′-stable subspace of S ′a,{ρv}
(U ′,K) then we

will write
TT (X ′)′

for the image of TT
a,{ρv}

(U ′)′ in EndK(X ′).

Note that TT (X) and TT (X ′)′ are finite and free as O-modules. Also by
corollary 2.3.3 we see that they are reduced.

Proposition 2.4.1 Suppose that m is a maximal ideal of TT
a,{ρv}

(U). Then
there is a unique continuous semisimple representation

rm : Gal (F/F ) −→ GLn(T
T
a,{ρv}(U)/m)

with the following properties. The first two of these properties already charac-
terise rm uniquely.

1. rm is unramified at all but finitely many places.

2. If a place v 6∈ T of F+ splits as wwc in F then rm is unramified at w
and rm(Frobw) has characteristic polynomial

Xn − T (1)
w Xn−1 + ...+ (−1)j(Nw)j(j−1)/2T

(j)
w Xn−j+

+...+ (−1)n(Nw)n(n−1)/2T
(n)
w .

3. If a place v of F+ such that V is inert and unramified in F and such
that Uv is a hyperspecial maximal compact, then rm is unramified above
v.

4. rc
m

∼= r∨
m
⊗ ǫ1−n.

5. Suppose v ∈ S(B), Uv = G(OF+,v) and w is a prime of F above v. Then

rm has a Gal (Fw/Fw)-invariant filtration Fil
i

w with

gr 0
wrm|IFw

∼= r̃w|IFw
⊗O k

and
gr iwrm|Gal (Fw/Fw)

∼= (gr 0
wrm|Gal (Fw/Fw)(ǫ

i)

for i = 0, ...,mv − 1 (and = (0) otherwise). If (for instance) we further
have

r̃w ⊗O k(ǫj) 6∼= r̃w ⊗O k
for j = 1, ...,mv, then this filtration is unique and

Hom Gal (Fw/Fw)(Fil
j

wrm, gr jwrm) = k

for j = 0, ...,mv − 1.
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6. Suppose that w ∈ S̃l is unramified over l, that Uw|F+ = G(OF+,w) and

that for each τ ∈ Ĩl above w we have

l − 1− n ≥ aτ,1 ≥ ... ≥ aτ,n ≥ 0.

Then
rm|Gal (Fw/Fw) = Gw(Mm,w)

for some object Mm,w of MFTT
a,{ρv}

(U)/m,w. Moreover for all τ ∈ Ĩl over

w we have
dimTT

a,{ρv}
(U)/m(gr iMm,w)⊗τ⊗1 O = 1

if i = aτ,j + n− j for some j = 1, ..., n and = 0 otherwise.

Exactly similar statements are true for maximal ideals m′ of TT
a,{ρv}

(U ′)′.

Proof: Choose a minimal prime ideal ℘ ⊂ m and an irreducible constituent
π of Sa,{ρv}({1},K) such that πU 6= (0) and TT

a,{ρv}
(U) acts on πU via the quo-

tient TT
a,{ρv}

(U)/℘. Choosing an invariant lattice in rπ, reducing and semisim-
plifying gives us the desired representation rm, except that it is defined over
the algebraic closure of TT

a,{ρv}
(U)/m. However, as the characteristic polyno-

mial of every element of the image of rm is rational over TT
a,{ρv}

(U)/m and as

TT
a,{ρv}

(U)/m is a finite field we see that (after conjugation) we may assume
that

rm : Gal (F/F ) −→ GLn(T
T
a,{ρv}(U)/m).

2

We will call m (resp. m′) Eisenstein if rm (resp. rm
′) is absolutely reducible.

Proposition 2.4.2 Suppose that m is a non-Eisenstein maximal ideal of the
Hecke algebra TT

a,{ρv}
(U) with residue field k. Then rm has an extension to a

continuous homomorphism

rm : Gal (F/F+) −→ Gn(k).

Pick such an extension. There is a unique continuous lifting

rm : Gal (F/F+) −→ Gn(TT
a,{ρv}(U)m)

of rm with the following properties. The first two of these properties already
characterise the lifting rm uniquely.
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1. rm is unramified at all but finitely many places.

2. If a place v 6∈ T of F+ splits as wwc in F then rm is unramified at w
and rm(Frobw) has characteristic polynomial

Xn − T (1)
w Xn−1 + ... + (−1)j(Nw)j(j−1)/2T (j)

w Xn−j + ... + (−1)n(Nw)n(n−1)/2T (n)
w .

3. If a place v of F+ such that v is inert and unramified in F and if Uv is
a hyperspecial maximal compact then rm is unramified at v.

4. ν◦rm = ǫ1−nδµm

F/F+, where δF/F+ is the nontrivial character of Gal (F/F+)

and where µm ∈ Z/2Z.

5. Suppose that w ∈ S̃l is unramified over l, that Uw|F+ = G(OF+,w) and

that for each τ ∈ Ĩl above w we have

l − 1− n ≥ aτ,1 ≥ ... ≥ aτ,n ≥ 0.

Then for each open ideal I ⊂ TT
a,{ρv}

(U)m

(rm⊗TT
a,{ρv}

(U)m

TT
a,{ρv}(U)m/I)|Gal (Fw/Fw) = Gw(Mm,I,w)

for some object Mm,I,w of MFO,w.

6. Suppose v ∈ S(B), Uv = G(OF+,v), that w is a prime of F above v and
that for j = 1, ...,mv

r̃w ⊗O k 6∼= r̃w ⊗O k(ǫj).

Then rm has a Gal (Fw/Fw)-invariant filtration Fil iw such that

gr 0
wrm|IFw

∼= r̃w|IFw
⊗O TT

a,{ρv}(U)m

lifting any fixed isomorphism gr 0
wrm|IFw

∼= r̃w|IFw
⊗O k, and

gr iwrm

∼= (gr 0
wrm)(ǫi)

if i = 0, ...,mv − 1 (and = (0) otherwise).

7. Suppose that a place v ∈ T − (Sl ∪ S(B)) splits as wwc in F and that
Uv = iwU1(w). Let φw be a lift of Frobw to Gal (Fw/Fw) and let ̟w

be an element of F×w such that Art Fw̟w = φw on the maximal abelien
extension of Fw. Suppose that a ∈ k is a simple root of the characteristic
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polynomial of rm(φw). Then there is a unique root A ∈ TT
a,{ρv}

(U)m of

the characteristic polynomial of rm(φw) which lifts a.

Suppose further that Y is a TT
a,{ρv}

(U)[V̟w ]-invariant subspace of

Sa,{ρv}(U,K)m such that V̟w−a is topologically nilpotent on Y . Then for
each α ∈ F×w with non-negative valuation the element Vα (in EndK(Y ))
lies in TT (Y ). Moreover α 7→ Vα extends to a continuous character
V : F×w → TT (Y )×. Further (X − V̟w) divides the characteristic poly-
nomial of rm(φw) over TT (Y ).

If Nw ≡ 1 mod l then

rm|Gal (Fw/Fw) = s⊕ (V ◦ Art −1
Fw

),

where s is unramified.

Exactly similar statements are true for non-Eisenstein maximal ideals m′ of
TT
a,{ρv}

(U ′)′.

Proof: By lemma 1.1.3 we can extend rm to a homomorphism

rm : Gal (F/F+) −→ Gn(k)

with ν ◦ rm = ǫn−1δµm

F/F+ and rm(cv) 6∈ GLn(k) for any infinite place v of

F+. Moreover, up to GLn(k)-conjugation, the choices of such extensions are
parametrised by k×/(k×)2.

Similarly, for any minimal primes ℘ ⊂ m we have a continuous homomor-
phism r℘ from Gal (F/F+) to the the points of Gn over the algebraic closure
of Ql in the algebraic closure of the field of fractions of TT

a,{ρv}
(U)/℘ such that

• r℘ is unramified almost everywhere;

• r−1
℘ GLn = Gal (F/F ); and

• for all places v 6∈ T of F+ which split v = wwc in F the characteristic
polynomial of rm(Frobw) is

Xn − T (1)
w Xn−1 + ... + (−1)j(Nw)j(j−1)/2T (j)

w Xn−j + ... + (−1)n(Nw)n(n−1)/2T (n)
w .

According to lemma 1.1.6 we may assume that r℘ is actually valued in Gn(O℘)
where O℘ is the ring of integers of some finite extension of the field of fractions
of TT

a,{ρv}
(U)/℘. Then by lemma 1.1.3 again we may assume that the reduction

of r℘ modulo the maximal ideal of O℘ equals rm. (Not simply conjugate to
rm.) Let R denote the subring of k⊕⊕℘⊂m

O℘ consisting of elements (am, a℘)
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such that for all ℘ the reduction of a℘ modulo the maximal ideal of O℘ is am.
Then

⊕℘r℘ : Gal (F/F+) −→ Gn(R).

Moreover the natural map

TT
a,{ρv}(U)m −→ R

is an injection. (Because TT
a,{ρv}

(U)m is reduced.) Thus by lemma 1.1.10 we

see that ⊕℘r℘ is GLn(R) conjugate to a representation

rm : Gal (F/F+) −→ Gn(TT
a,{ρv}(U)m)

such that:

• If a place v 6∈ T of F+ splits as wwc in F then rm is unramified at w and
rm(Frobw) has characteristic polynomial

Xn − T (1)
w Xn−1 + ... + (−1)j(Nw)j(j−1)/2T (j)

w Xn−j + ... + (−1)n(Nw)n(n−1)/2T (n)
w .

• If a place v of F+ is inert in F then rm is unramified at v.

It is easy to verify that rm also satisfies properties 4 and 5 of the proposition.
We next turn to assertion 6. After base changing to an algebraicly closed

field each r℘|Gal (Fw/Fw) has a unique filtration such that gr 0r℘|IFw
∼= r̃w|IFw

,
and

gr ir℘|Gal (Fw/Fw)
∼= (gr 0r℘|Gal (Fw/Fw))(ǫ

i)

for i = 0, ...,mv − 1 (and = (0) otherwise). Enlarging O℘ if need be we may
assume that this filtration is defined over the field of fractions ofO℘. As r̃w⊗Ok
is irreducible, such a filtration also exists over O℘. Because of the uniqueness

of the filtration Fil
i

w on rm we see that these filtrations piece together to give
a filtration of ⊕℘r℘ over R. As the isomorphisms gr iwrm

∼= (gr 0
wrm)(ǫi) are

unique up to scalar multiples we get a isomorphisms

gr iw(⊕℘r℘) ∼= (gr 0
w(⊕℘r℘))(ǫi)

over R[Gal (Fw/Fw)] which are compatible with the chosen isomorphism be-
tween gr iwrm and (gr 0

wrm)(ǫi). As

ZGLn/mv (O℘)(gr 0r℘(IFw))→→ ZGLn/mv (O℘/mO℘)(gr 0r℘(IFw))

(see lemma 1.3.14), we see that we get an isomorphism

gr 0
w(⊕℘r℘) ∼= r̃w ⊗O R

97



over R[IFw ] compatible with the chosen isomorphism gr 0
wrm

∼= r̃w ⊗O k. Then
using lemmas 1.1.8 and 1.3.14 we see that these isomorphism persist over
TT
a,{ρv}

(U)m.
Finally we turn to part 7 of the proposition. The existence of A fol-

lows at once from Hensel’s lemma. Let P (X) ∈ TT
a,{ρv}

(U)m[X] denote the

characteristic polynomial of rm(φw). Thus P (X) = (X − A)Q(X) where
Q(A) ∈ TT

a,{ρv}
(U)×

m
.

Write Y ⊗K K =
⊕

((Y ⊗ K) ∩ π) as π runs over irreducible smooth
representations of G(A∞F+). From lemmas 2.1.3 and 2.1.5 and the fact that
V̟w − a is topologically nilpotent we see that dim((Y ⊗K)∩ π) ≤ 1 for all π.
Let φ′w be any lift of Frobw to Gal (Fw/Fw) and let Art Fw̟

′
w = φ′w. Let P ′

denote the characteristic polynomial of rm(φ′w) and let A′ be its unique root in
TT (Y ) over a. As V̟w and V̟′

w
commute, each (Y ⊗K)∩π is invariant under

V̟′
w
. By lemma 2.1.5 V̟′

w
V −1
̟w

is topologically unipotent on (Y ⊗ K) ∩ π.

Lemmas 2.1.3 and 2.1.5 imply that P ′(V̟′
w
) = 0 on (Y ⊗ K) ∩ π. Thus

V̟′
w

= A′ on (Y ⊗K) ∩ π. Hence V̟′
w

= A′ ∈ TT (Y ) ⊂ EndK(Y ). It follows
that Vα ∈ TT (X) for all α ∈ F×w with non-negative valuation and that α 7→ Vα
extends to a continuous character V : F×w → TT (Y )×.

Now suppose that Nw ≡ 1 mod l. From lemma 2.1.5 we see that if
(Y ⊗ K) ∩ π 6= (0) then either π is unramified or πU0(w) = (0). Thus
(rm⊗ TT (Y ))(Gal (Fw/Fw)) is abelian. We have a decomposition

TT (Y )n = Q(φw)TT (Y )n ⊕ (φw − A)TT (Y )n.

As (rm ⊗ TT (Y ))(Gal (Fw/Fw)) is abelian we see that this decomposition is
preserved by Gal (Fw/Fw). By lemma 2.1.5 we see that after projection to
any π ∩ (Y ⊗ K), Gal (Fw/Fw) acts on Q(φw)TT (Y )n by Vπ ◦ Art −1

Fw
and its

action on (φw −A)TT (Y )n is unramified. We conclude that Gal (Fw/Fw) acts
on Q(φw)TT (Y )n by V and that its action on (φw − A)TT (Y )n is unramified.
This completes the proof of part 7 of the proposition. 2

Corollary 2.4.3 Suppose that m is a non-Eistenstein maximal ideal of the
Hecke algebra TT

a,{ρv}
(U). Suppose also that v ∈ T − (S(B) ∪ Sl) and that

Uv = G(OF+,v). If w is a prime of F above v then for j = 1, ..., n we have

T (j)
w ∈ TT

a,{ρv}(U)m ⊂ End (Sa,{ρv}(U,K)m).

An exactly similar statement is true for a non-Eistenstein maximal ideal m′ of
TT
a,{ρv}

(U ′)′.
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Proof: One need only remark that

T (j)
w = (Nw)j(1−j)/2tr ∧j rm(Frobw).

2

Lemma 2.4.4 Let R ⊂ T − (S(B) ∪ Sl) and let R̃
∐
R̃c be a partition of

the primes of F above R. For v ∈ R let ṽ denote the prime of R̃ above
v. Suppose that for v ∈ R the group Uv is i−1

w Iw1(ṽ). Suppose also that
V = UR ×∏v∈R i

−1
ev Iw(ṽ) is sufficiently small. Then V/U =

∏
ev∈ eR(k(ṽ)×)n

acts on Sa,{ρv}(U,K). Suppose that χ and χ′ are two characters V/U → O×
with χ mod λ = χ′ mod λ. Let m be a maximal ideal of TT

a,{ρv}
(U). Then

Sa,{ρv}(U,K)χ
m
6= (0)

if and only if
Sa,{ρv}(U,K)χ

′

m
6= (0).

Proof: If R is an O-algebra and ψ : V/U → O× let Sa,{ρv},ψ(V,R) denote
the set of functions

f : G(F+)\G(A∞F+)→Ma,{ρv} ⊗O R

such that
f(gu) = ψ(uR)−1u−1

l,S(B)f(g)

for all u ∈ V and g ∈ G(A∞F+). As V is sufficiently small we see that
Sa,{ρv},ψ(V,O) is finite and free over O and that

Sa,{ρv},ψ(V,R) = Sa,{ρv},ψ(V,O)⊗O R.

The spaces Sa,{ρv},ψ(V,R) have a natural action of TT
a,{ρv}

(U). We have

Sa,{ρv}(U,K)χ
m

= Sa,{ρv},χ−1(U,K)m

and
Sa,{ρv}(U,K)χ

′

m
= Sa,{ρv},(χ′)−1(U,K)m.

Moreover Sa,{ρv},χ−1(U,K)m = (0) (resp. Sa,{ρv},(χ′)−1(U,K)m = (0)) if and
only if Sa,{ρv},χ−1(U,O)m = (0) (resp. Sa,{ρv},(χ′)−1(U,O)m = (0)) if and only if
Sa,{ρv},χ−1(U, k)m = (0) (resp. Sa,{ρv},(χ′)−1(U, k)m = (0)). However

Sa,{ρv},χ−1(U, k)m = Sa,{ρv},(χ′)−1(U, k)m

and the lemma follows. 2
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2.5 Ihara’s lemma and raising the level.

In this section we will discuss congruences between modular forms of different
levels. Unfortunately we can not prove anything. Rather we will explain how
the congruence results we expect would follow from an analogue of Ihara’s
lemma for elliptic modular forms (see [I], [Ri]). Let us first describe this
conjecture more precisely.

Conjecture I Let G, l, T and U be as in the last section with U sufficiently
small. Suppose that v ∈ T − (S(B) ∪ Sl) with Uv = G(OF+,v) and that m is
a non-Eisenstein maximal ideal of TT

0,{1}(U). If f ∈ S0,{1}(U, k)[m] and if π is

an irreducible G(F+
v )-submodule of

〈G(F+
v )f〉 ⊂ S0,{1}(U

v, k)

then π is generic.

In fact we suspect something stronger is true. Although we will not
need this stronger form we state it here. We will call an irreducible G(F+

v )-
submodule π of Sa,{ρv}({1}, k) Eisenstein if for some (and hence all) open
compact subgroups U =

∏
x Ux with πU 6= (0) there is a finite set T (con-

taining v) of split primes and an Eisenstein maximal ideal m of TT
a,{ρv}

({1}, k)
with πm 6= (0).

Conjecture II Let G and l be as in the last section. Suppose that v 6∈ S(B)∪
Sl is a prime of F+ which splits in F . Let π be a non-Eisenstein irreducible
G(F+

v )-submodule of S0,{1}({1}, k). Then π is generic.

We should point out that these conjectures are certainly false if we re-
place ‘submodule’ by ‘subquotient’. If we replace k by K and TT

0,{1}(U) by

TT
0,{1}(U) ⊗O K, then the conjectures would be true by part 7 of proposition

2.3.4. In the case n = 2 the conjecture is an easy consequence of the strong
approximation theorem for G. We believe that we can prove many cases of
conjecture I in the case n = 3. We hope to return to this in another paper.

Lemma 2.5.1 Let G be as in the last section. Suppose conjecture I holds for
all T and U with U sufficiently small. Let T , U , a and {ρv} be as in the
last section. Let v ∈ T − (S(B) ∪ Sl) with Uv = G(OF+,v) and let m be a
non-Eisenstein maximal ideal of TT

a,{ρv}
(U). If f ∈ Sa,{ρv}(U, k)[m] and if π is

an irreducible G(F+
v )-submodule of

〈G(F+
v )f〉 ⊂ Sa,{ρv}(U

v, k)

then π is generic.
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Proof: We need only prove the lemma for U small, because its truth for
some U implies its truth for all U ′ ⊃ U . But for U small enough we have

Sa,{ρv}(U, k) = S0,{1}(U, k)
r

for some r. 2

Lemma 2.5.2 Conjecture II (and hence conjecture I) is true if n = 2.

Proof: Let G1 denote the derived subgroup of G. Then we have exact
sequences

(0) −→ G1(F
+) −→ G(F+)

det−→ FNF/F+=1

and

(0) −→ G1(A
∞
F+) −→ G(A∞F+)

det−→ A
NF/F+=1

F .

Suppose π is as in the statement of conjecture II, but π is not generic.
Then π is one dimensional and trivial on G1(F

+
v ). Let 0 6= f ∈ π be invarinat

by an open compact U . Then for all g ∈ G(A∞F+), the function f is constant
on

G(F+)gUG1(F
+
v ) = G(F+)G1(A

∞
F+)gU

(by the strong approximation theorem). Thus f factors through

det : G(F+)\G(A∞F+)/U −→ detG(F+)\(A∞F )N=1/ detU.

Thus we can find a character

χ : detG(F+)\(A∞F )N=1/ detU −→ k
×

such that ∑

g∈(detG(F+))\(detG(A∞
F+ ))/(detU)

χ(g)−1f(g) 6= 0.

It follows that, for all but finitely many places w of F which are split over F+,
rm(Frobw) has characteristic polynomial

(X − χ(̟w/̟
c
w))(X − qwχ(̟w/̟

c
w))...(X − qn−1

w χ(̟w/̟
c
w)).

We deduce that

(ad rm)ss =
n−1⊕

i=1−n

(ǫi)⊕(n−|i|).

Thus rm is reducible and m is Eisenstein. 2
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We now turn to ‘raising the level’ congruences. For the rest of this section
we keep the notation and assumptions of the last two sections.

Let R ⊂ T − (S(B) ∪ Sl) and assume that Uv = G(OF+,v) for all v ∈ R.
For v ∈ R choose a prime ṽ of F above v. Let m be a non-Eisenstein maximal
ideal of TT

a,{ρv}
(U) and let

φ : TT
a,{ρv}(U)m −→ O.

If S ⊂ R set
U(S) = US

∏

v∈S

i−1
ev U1(ṽ

n).

Also set
XS = Sa,{ρv}(U(S),O)m,n

where n denotes the maximal ideal

(λ, U
(1)
ev , ..., U

(n−1)
ev : v ∈ S)

of O[U
(1)
ev , ..., U

(n−1)
ev : v ∈ S]. Further set

TS = TT (XS),

so that T∅ = TT
a,{ρv}

(U)m.
If S ⊂ R let

θS =
∏

v∈R

i−1
ev θn,ev.

If S1 ⊂ S2 ⊂ R then we get an injection

θS2−S1 : XS1 →֒ XS2.

(To see that this map is an injection we may suppose that S2 = S1 ∪ {v}. Let
π be an irreducible constituent of Sa,{ρv}({1},K) with π∩XS1 6= (0). Because
m is not Eisenstein we see that πv is generic (see part 7 of proposition 2.3.4).
Thus by proposition 2.2.8

i−1
ev θn,ev : π ∩XS1 →֒ π ∩XS2 .)

Thus we also have a surjection

TS2 →→ TS1

which takes T
(j)
w to T

(j)
w for all w (a prime of F which is split over a prime of

F+ not in T ) and j (= 1, ..., n). Let φS denote the composite

φS : TS →→ T∅
φ−→ O.
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We will be interested in congruences between φ and other homomorphisms
TS → K. In particular we will be interested in how these congruences vary
with S. A useful measure of these congruences is provided by the ideal cS(φ),
defined by

φS : TS/(kerφS + Ann TS
kerφS)

∼−→ O/cS(φ).

If S ⊂ R let XS[φ] denote the subspace of XS where TS acts via φS. Let
iS : XS[φ] →֒ XS denote the canonical inclusion and let πS : XS →→ XS[φ]
denote the TS-equivariant projection. (This exists because TS is reduced.)
The next lemma is now clear.

Lemma 2.5.3 Keep the above notation. The module XS[φ]/πSiSXS[φ] is an
O/cS(φ)-module. If XS is free over TS then XS[φ]/πSiSXS[φ] is free over
O/cS(φ).

Lemma 2.5.4 Keep the above notation. Then

θS : X∅[φ]⊗O K ∼−→ XS[φ]⊗O K.

Proof: It suffices to prove that if π is an irreducible constituent of the space
Sa,{ρv}({1},K) then

θS : (X∅[φ]⊗O K) ∩ π ∼−→ (XS[φ]⊗O K) ∩ π.

As φrm is unramified at v ∈ S, proposition 2.3.4 tells us that if (XS[φ] ⊗O
K) ∩ π 6= (0) then πv is unramified. In particular (X∅[φ] ⊗O K) ∩ π 6= (0).
If (X∅[φ] ⊗O K) ∩ π 6= (0) then for v ∈ S the representation πv is unramified
and, by part 7 of proposition 2.3.4, generic. Write

πv ◦ i−1
ev = n-Ind

GLn(Fev)
Bn(Fev) (χv,1, ..., χv,n)

with each χv,i unramified. Again by proposition 2.3.4 we see that for v ∈ S,
each χv,i(̟ev) ∈ O×K . From lemma 2.2.6 we deduce that

πU(S)
n

is the subspace of πU(S) on which i−1
ev U

(j)
ev = 0 for each v ∈ S and each j =

1, ..., n− 1. Proposition 2.2.8 then tells us that

θS : πU(∅) ∼−→ πU(S)
n

as desired. 2
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Proposition 2.5.5 Keep the above notation and assumptions. In particular
assume that U is sufficiently small. Suppose that conjecture I is true for the
groups G and G′, for l, for T , for v ∈ R and for the various open compact
subgroups US (with S ⊂ R). Also suppose that X∅ is free over T∅. Finally
suppose that for each v ∈ R, l is quasi-banal for G(F+

v ). Then

lgOO/cR(φ) ≥ lgOO/c∅(φ)+
∑

v∈R

lgOH
0(Gal (F ev/Fev), (ad rm)⊗T∅,φK/O(ǫ−1)).

Proof: Let η∅ ∈ G′(A∞F+) equal 1 away from T − (R∪ S(B)∪ Sl). If S ⊂ R
set

ηS = η∅
∏

v∈S

(itev)
−1

(
1n−1 0

0 ̟n
ev

)

and
U(S)′ = η−1

S U(S)ηS = (U(∅)′)S ×
∏

v∈S

(itev)
−1U1(ṽ

n).

Let m′ denote the ideal of TT
a,{ρv}

(U(S)′)′ generated by λ and T
(j)
w −a whenever

a ∈ O, w is a prime of F split above a prime of F+ not in T and T
(j)
w − a ∈ m.

Then m′ is either maximal or the whole Hecke algebra. Set

X ′S = S ′a,{ρv}(U(S)′,O)m
′,n

where n denotes the maximal ideal

(λ, U
(1)
ev , ..., U

(n−1)
ev )

of O[U
(1)
ev , ..., U

(n−1)
ev ], and

T′S = TT (XS)
′.

Also set
θ′S =

∏

v∈R

(itev)
−1θn,ev

and
θ̂′S =

∏

v∈S

(itev)
−1(θ̂n,ev).

If S1 ⊂ S2 ⊂ R then we get an injection

θ′S2−S1
: X ′S1

→֒ X ′S2

and exactly as in the proof of lemma 2.5.4 we see that

θ′S2−S1
: X ′S1

⊗O K ∼−→ X ′S2
⊗O K.
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Also by corollary 2.4.3

θ̂′SθS =
∏

v∈S

i−1
ev (θ̂n,evθn,ev)

acts on X∅ by an element of T∅.
Under the perfect pairing

〈 , 〉U(S),ηS
: Sa,{ρv}(U(S),O)× S ′a,{ρv}(U(S)′,O) −→ O

we have that:

• for v ∈ S the adjoint of i−1
ev U

(j)
ev is (itev)

−1U
(j)
ev , and

• for w a prime of F split over a prime of F+ not in T , the adjoint of T
(j)
w

is T
(j)
w .

Thus TS
∼= T′S (with T

(j)
w matching T

(j)
w for w a prime of F split over a prime

of F+ not in T ), and 〈 , 〉U(S),ηS
induces a perfect pairing

〈 , 〉S : XS ×X ′S −→ O

under which the actions of TS
∼= T′S are self-adjoint. If S1 ⊂ S2 ⊂ R, then

θ̂′S2−S1
: XS2 −→ XS1

is the adjoint of θ′S2−S1
.

It follows from conjecture I and lemma 2.2.10 that

θ{v} : XS −→ XS∪{v}

has torsion free cokernel, and that

θ̂′{v} : XS∪{v} −→ XS

is surjective. Thus
θR : X∅ −→ XR

has torsion free cokernel, and

θ̂′R : XR −→ X∅

is surjective. In particular

θR : X∅[φ]
∼−→ XR[φ],
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and we may take
iR = θR ◦ i∅ ◦ θR|−1

X∅[φ]

and
πR = θR|X∅[φ] ◦ π∅ ◦ θ̂′R.

Thus

XR[φ]/πRiRXR[φ] ∼= X∅[φ]/φ(θ̂′RθR)π∅i∅X∅[φ]
∼= X∅[φ]/(

∏
v∈R φi

−1
ev (θ̂n,evθn,ev))π∅i∅X∅[φ].

The proposition follows from corollary 2.2.9. 2
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3 R = T theorems.

Fix a positive integer n ≥ 2 and a prime l > n.
Fix an imaginary quadratic field E in which l splits and a totally real field

F+ such that

• F = F+E/F+ is unramified at all finite primes, and

• F+/Q is unramified at l.

Fix a finite non-empty set of places S(B) of places of F+ with the following
properties:

• Every element of S(B) splits in F .

• S(B) contains no place above l.

• If n is even then

n[F+ : Q]/2 + #S(B) ≡ 0 mod 2.

Choose a division algebra B with centre F with the following properties:

• dimF B = n2.

• Bop ∼= B ⊗E,c E.

• B splits outside S(B).

• If ṽ is a prime of F above an element of S(B), then Bev is a division
algebra.

Fix an involution ‡ on B such that

• ‡|F = c,

• for a place v|∞ of F+ we have G‡(F
+
v ) ∼= U(n), and

• for a finite place v 6∈ S(B) of F+ the group G‡(F
+
v ) is quasi-split.

Also define an algebraic group G′/F+ by setting

G′(R) = {g ∈ Bop ⊗F+ R : g‡⊗1g = 1}

for any F+-algebra R.
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Choose an order OB in B such that O‡B = OB and OB,w is maximal for
all primes w of F which are split over F+. This gives a model of G over
OF+. If v 6∈ S(B) is a prime of F+ which splits in F choose an isomorphism
iv : OB,v ∼→Mn(OF,v) such that iv(x

‡) = tiv(x)
c. If w is a prime of F above v

this gives rise to an isomorphism iw : G(F+
v )

∼→ GLn(Fw) as in section 2.3. If
v ∈ S(B) and w is a prime of F above v choose isomorphisms iw : G(F+

v )
∼→ B×w

such that iwc = i−‡w and iwG(OF+,v) = O×B,w.
Let Sl denote the set of primes of F+ above l. Let S1 denote a non-empty

set, disjoint from Sl ∪ S(B), of primes of F+ such that

• if v ∈ S1 then v splits in F , and

• if v ∈ S1 lies above a rational prime p then [F (ζp) : F ] > n.

Let R denote a set, disjoint from Sl ∪ S(B) ∪ S1, of primes of F+ such that

• if v ∈ R then v splits in F , and

• if v ∈ R then either Nv ≡ 1 mod l or l 6 |#GLn(k(v)).

Let T = R ∪ S(B) ∪ Sl ∪ S1. Let T̃ denote a set of primes of F above T such

that T̃
∐
T̃ c is the set of all primes of F above T . If v ∈ T we will let ṽ denote

the prime of T̃ above v. If S ⊂ T we will let S̃ denote the set of ṽ for v ∈ S.
If S ⊂ R let U(S) =

∏
v U(S)v denote an open compact subgroup of

G(A∞F+) such that

• if v is not split in F then Uv is a hyperspecial maximal compact subgroup
of G(F+

v ),

• if v 6∈ S1 ∪ S splits in F then Uv = G(OF+,v),

• if v ∈ S then Uv = i−1
ev U1(ṽ

n), and

• if v ∈ S1 then Uv = i−1
ev ker(GLn(OF,ev) → GLn(OF,ev/(̟mv

ev ))) for some
mv ≥ 1.

Then U(S) is sufficiently small. If S = ∅ we will drop it from the notation,
i.e. we will write U =

∏
v Uv for U(∅).

LetK/Ql be a finite extension which contains the image of every embedding
F+ →֒ K. Let O denote its ring of integers, λ the maximal ideal of O and k
the residue field O/λ.

For each τ : F →֒ K choose integers aτ,1, ..., aτ,n such that

• aτc,i = −aτ,n+1−i, and
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• if τ gives rise to a place in S̃l then

l − 1− n ≥ aτ,1 ≥ ... ≥ aτ,n ≥ 0.

For each v ∈ S(B) let ρv : G(F+
v ) −→ GL(Mρv) denote a representation of

G(F+
v ) on a finite free O-module such that ρv has open kernel and Mρv ⊗O K

is irreducible. For v ∈ S(B), define mv, πev and r̃ev by

JL (ρv ◦ i−1
ev ) = Spmv

(πev)

and
r̃ev = rl(πev| |(n/mev−1)(1−mev)/2).

We will suppose that

r̃ev : Gal (Fw/Fw) −→ GLn/mev
(O)

(as opposed to GLn/mev
(K)), that the reduction of r̃ev mod λ is absolutely irre-

ducible and that for i = 1, ...,mv we have

r̃ev ⊗O k 6∼= r̃ev ⊗O k(ǫi).

Let m be a non-Eisenstein maximal ideal of TT
a,{ρv}

(U) with residue field k
and let

rm : Gal (F/F+) −→ Gn(k)
be a continuous homomorphism associated to m as in propositions 2.4.1 and
2.4.2. Note that

ν ◦ rm = ǫ1−nδµm

F/F+

where δF/F+ is the non-trivial character of Gal (F/F+) and where µm ∈ Z/2Z.
We will assume that rm has the following properties.

• rm(Gal (F/F+(ζl))) is big in the sense of section 1.4.

• If v ∈ S1 then rm is unramified at v and

H0(Gal (F ev/Fev), (ad rm)(1)) = (0).

We will also assume that TT
a,{ρv}

(U) admits a section TT
a,{ρv}

(U)→ O.

Recall that if v ∈ S(B) then by proposition 2.4.1 there is a unique filtration

Fil
i

ev of rm invariant by Gal (F ev/Fev) and such that

gr 0
evrm|IF

ev

∼= r̃ev|IF
ev
⊗O k
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and
gr ievrm|Gal (F ev/Fev)

∼= (gr 0
evrm|Gal (F ev/Fev))(ǫ

i)

for i = 1, ...,mv − 1 and = (0) otherwise. Moreover

Hom Gal (F ev/Fev)(Fil
i

evrm, gr ievrm) = k

for i = 0, ...,mv − 1.
For S ⊂ R write Xm,S for the space

Sa,{ρv}(U(S),O)m,n

where n is the maximal ideal

(λ, U
(1)
ev , ..., U

(n−1)
ev : v ∈ S)

of O[U
(1)
ev , ..., U

(n−1)
ev : v ∈ S]. Also write Tm,S for the algebra TT (Xm,S). Thus

Tm,S is a quotient of TT
a,{ρv}

(U(S))m, and these two algebras are equal if S = ∅.
The algebra Tm,S is local and reduced. It is finite and free as a O-module. Let

rm,S : Gal (F/F+) −→ Gn(Tm,S)

denote the continuous lifting of rm provided by proposition 2.4.2. Then Tm,S

is generated as a O-algebra by the coefficients of the characteristic polynimials
of rm,S(σ) for σ ∈ Gal (F/F ).

For S ⊂ R, consider the deformation problem SS given by

(GF+,T ⊃ GF,T , T ⊃ S(B), {Gal (F ev/Fev)}v∈T ,O, rm, ǫ
1−nδµm

F/F+ , {Fil
i

ev}ev∈S(B),

{Dev}v∈T , {Lev}v∈T )

where:

• For v ∈ S1, Dev will consist of all lifts of rm|Gal (F ev/Fev) and

Lev = H1(Gal (F ev/Fev), ad rm) = H1(Gal (F ev/Fev)/IFev
, ad rm).

• For v ∈ Sl, Dev and Lev are as described in section 1.3.1 or 1.3.2.

• For v ∈ S(B), Dev and Lev are as described in section 1.3.5.

• For v ∈ R− S, Dev will consist of all unramified lifts of rm|Gal (F ev/Fev) and

Lev = H1(Gal (F ev/Fev)/IFev
, ad rm).
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• For v ∈ S, Dev will consist of all lifts of rm|Gal (F ev/Fev) and

Lev = H1(Gal (F ev/Fev), ad rm).

Also let
runiv
m,S : Gal (F/F+) −→ Gn(Runiv

m,S )

denote the universal deformation of rm of type SS. By proposition 2.4.2 there
is a natural surjection

Runiv
S →→ Tm,S

such that runiv
m,S pushes forward to rm.

We can now state and prove our main results.

Theorem 3.1.1 Keep the notation and assumptions of the start of this sec-
tion. Then

Runiv
m,∅

∼−→ Tm,∅

is an isomorphism of complete intersections and Xm,∅ is free over Tm,∅. More-
over µm ≡ n mod 2.

Proof: To prove this we will appeal to Diamond’s and Fujiwara’s improve-
ment to Faltings’ understanding of the method of [TW]. More precisely we will
appeal to theorem 2.1 of [Dia]. We remark that one may easilly weaken the
hypotheses of this theorem in the following minor ways. The theorem with the
weaker hypotheses is easilly deduced from the theorem as it is stated in [Dia].
In the notation of [Dia] one can take B = k[[X1, ..., Xr′ ]] with r′ ≤ r. Also in
place of his assumption (c) one need only assume that Hn is free over A/nn,
where nn is an open ideal contained in n with the property that

⋂
n nn = (0).

We also remark with these weakened hypotheses one may also deduce from
the proof of theorem 2.1 of [Dia] that in fact r = r′.

Choose an integer r as in proposition 1.4.5. Set

r′ = r − n[F+ : Q](1 + (−1)n−1+µm)/2.

For each N ∈ Z≥1 choose a set of primes QN of F+ as in proposition 1.4.5,
and, for each v ∈ QN , choose a prime ṽ of F above v and an eigenvalue aev
of rm(Frobev) as in example 1.3.6. (In the notation of example 1.3.6, aev =
χ(Frobev).) Let S∅,QN

denote the deformation problem

(GF+,T∪QN
⊃ GF,T∪QN

, T ∪QN ⊃ S(B), {Gal (F ev/Fev}v∈T∪QN
,O, rm,

ǫ1−nδµm

F/F+ , {Fil
i

ev}ev∈S(B), {Dev}v∈T∪QN
, {Lev}v∈T∪QN

),
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where for v ∈ T , Dev and Lev are as in S∅, and for v ∈ QN they are as in
section 1.3.6. (Thus in the notation of theorem 1.4.5 S∅,QN

= S ′.) Let Runiv
m,∅,QN

denote the universal deformation ring Runiv
S∅,QN

. By proposition 1.4.5 there is a

surjection
O[[X1, ..., Xr′ ]]→→ Runiv

m,∅,QN
.

Let ψN denote the composite

ψN : O[[X1, ..., Xr′ ]]→→ Runiv
m,∅,QN

→→ Runiv
m,∅ .

For v ∈ QN let ∆ev denote the maximal l-power quotient of O×F,ev. Let

∆QN
=
∏

v∈QN
∆ev. As explained in example 1.3.6, Runiv

m,∅,QN
is naturally a

O[∆QN
]-module and (Runiv

m,∅,QN
)∆QN

= Runiv
m,∅ . There is a surjection

O[[S1, ..., Sr]]→→ O[∆QN
]

such that, if nN denotes the kernel, then
⋂
N nN = (0). We can lift the map

O[[S1, ..., Sr]]→→ O[∆QN
] −→ Runiv

m,∅,QN

to a map
φN : O[[S1, ..., Sr]] −→ O[[X1, ..., Xr′ ]].

Then the composite

O[[S1, ..., Sr]]
ψN◦φN−→ Runiv

m,∅ /λ

has kernel (λ, S1, ..., Sr).
Note that Xm,∅ is a Runiv

m,∅ -module via Runiv
m,∅ →→ Tm,∅.

Define open compact subgroups U1(QN) =
∏

v U1(QN)v and U0(QN) =∏
v U0(QN)v of G(A∞F+) by

• U1(QN)v = U0(QN)v = Uv if v 6∈ QN ,

• U1(QN)v = i−1
ev U1(ṽ) if v ∈ QN , and

• U0(QN)v = i−1
ev U0(ṽ) if v ∈ QN .

By corollary 2.4.3 we see that we have

TT∪QN

a,{ρv}
(U1(QN))m→→ TT∪QN

a,{ρv}
(U0(QN))m→→ TT∪QN

a,{ρv}
(U)m = TT

a,{ρv}(U)m.

For v ∈ QN choose φev ∈ Gal (F ev/Fev) lifting Frobev and ̟ev ∈ F×ev with
φev = Art Fev

̟ev on the maximal abelian extension of Fev. Let

Pev ∈ TT∪QN

a,{ρv}
(U1(QN))m[X]
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denote the characteristic polynomial of rm(φev). By Hensel’s lemma we have a
unique factorisation

Pev(X) = (X − Aev)Qev(X)

over TT∪QN

a,{ρv}
(U1(QN))m, where Aev lifts aev and Qev(Aev) ∈ TT∪QN

a,{ρv}
(U1(QN))×

m
. By

lemmas 2.1.3 and 2.1.5 we see that Pev(V̟ev
) = 0 on Sa,{ρv}(U1(QN),O)m. Set

H1,QN
= (

∏

v∈QN

Qev(V̟ev
))Sa,{ρv}(U1(QN),O)m

and
H0,QN

= (
∏

v∈QN

Qev(V̟ev
))Sa,{ρv}(U0(QN),O)m.

We see that H1,QN
is a TT∪QN

a,{ρv}
(U1(QN))-direct summand of Sa,{ρv}(U1(QN),O),

and hence by lemma 2.3.1

tr U0(QN )/U1(QN ) : (H1,QN
)U0(QN )/U1(QN )

∼−→ H0,QN
.

Moreover for all v ∈ QN , V̟ev
= Aev on H1,QN

. By part 7 of proposition 2.4.2
we see that for each v ∈ QN there is a character

Vev : F×ev −→ TT∪QN (H1,QN
)×

such that

• if α ∈ F×ev ∩ OF,ev then Vev(α) = Vα on H1,QN
, and

• rm|WF
ev

= s⊕ (Vev ◦ Art −1
Fev

) where s is unramified.

Thus rm gives rise to a surjection

Runiv
m,∅,QN

→→ TT∪QN (HQN
).

The composite

∏

v∈QN

O×F,ev →→ ∆QN
−→ (Runiv

m,∅,QN
)× −→ TT∪QN (HQN

)×

is just
∏

v Vev. As H1,QN
is a direct summand of Sa,{ρv}(U1(QN),O) over

TT∪QN

a,{ρv}
(U1(QN)), lemma 2.3.1 now tells us that H1,QN

is a free O[∆QN
]-module

and that
(H1,QN

)∆QN

∼−→ H0,QN
.
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Also lemma 2.2.2, combined with lemma 2.1.5, tells us that

(
∏

v∈QN

Qev(V̟tv)) : Xm,∅
∼−→ H0,QN

.

Now we apply theorem 2.1 of [Dia] (as reformulated in the first paragraph
of this proof) to A = k[[S1, ..., Sr]], B = k[[X1, ..., Xr′ ]], R = Runiv

m,∅ /λ, H =
Xm,∅/λ and HN = H1,QN

/λ. We deduce that r = r′, that Xm,∅/λ is free over
Runiv

m,∅ /λ via Runiv
m,∅ /λ→→ Tm,∅/λ and that Runiv

m,∅ /λ is a complete intersection. As

Xm,∅ is free over O we see that Xm,∅ is also free over Runiv
m,∅ via Runiv

m,∅ →→ Tm,∅.

Thus Runiv
m,∅

∼→ Tm,∅ is free over O and hence a complete intersection. The
equality r = r′ tells us that µm ≡ n mod 2. 2

Theorem 3.1.2 Keep the notation and assumptions of the start of this sec-
tion. Assume also that conjecture I is true for G and G′. Then

Runiv
m,R

∼−→ Tm,R

is an isomorphism of complete intersections.

Proof: As in section 2.5 we see that we have a commutative diagram

Runiv
m,R →→ Tm,R

↓ ↓
Runiv

m,∅

∼−→ Tm,∅
φ−→ O.

Let φR denote the composite Tm,R → Tm,∅
φ−→ O. Let c∅(φ) (resp. cR(φ))

be the ideals φ(Ann T
m,∅

kerφ) (resp. φR(Ann Tm,R
kerφR)). Also let ℘∅ (resp.

℘R) denote the kernel of the composite Runiv
m,∅ →→ Tm,∅

φ−→ O (resp. Runiv
m,R →→

Tm,R
φR−→ O).

Because Runiv
m,∅

∼→ Tm,∅ is an isomorphism of complete intersections we see
from the main theorem of [Le] that

lgO ℘∅/℘
2
∅ = lgOO/c∅(φ).

Hence by lemma 1.3.17 and proposition 2.5.5 we see that

lgO ℘R/℘
2
R

≤ lgO ℘∅/℘
2
∅ +

∑
v∈R lgOH

0(Gal (F ev/Fev), (ad rm)⊗T
m,∅,φ K/O(ǫ−1))

≤ lgOO/cR(φ).

Another application of the main theorem of [Le] tells us that Runiv
m,R → Tm,R is

an isomorphism of complete intersections. 2
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4 Applications.

4.1 Some algebraic number theory.

We start with some elementary algebraic number theory. The first three lem-
mas are well known.

Lemma 4.1.1 Suppose that F is a number field and that S is a finite set of
places of F . Suppose also that

χS :
∏

v∈S

F×v −→ Q
×

is a continuous character of finite order. Then there is a continuous character

χ : F×\A×F −→ Q
×

such that χ|Q
v∈S F

×
v

= χS.

Proof: One may suppose that S contains all infinite places. Then we choose
an open subgroup U ⊂ (AS

F )× such that χS is trivial on U ∩F×. Then we can
extend χS to U

∏
v∈S F

×
v /(U ∩ F×) by setting it to one on U . Finally we can

extend this character to A×F/F
× (which contains U

∏
v∈S F

×
v /(U ∩ F×) as an

open subgroup). 2

Lemma 4.1.2 Suppose that F is a number field, D/F is a finite Galois ex-
tension and S is a finite set of places of F . For v ∈ S let E ′v/Fv be a finite
Galois extension. Then we can find a finite, soluble Galois extension E/F
linearly disjoint from D such that for each v ∈ S and each prime w of E above
v, the extension Ew/Fv is isomorphic to E ′v/Fv.

Proof: For each D ⊃ Di ⊃ F with Di/F Galois with a simple Galois group,
choose a prime vi 6∈ S of F which does not split completely in F . Add the
vi to S along with E ′vi

= Fvi
. Then we can drop the condition that E/F is

disjoint from D/F - it will be automatically satisfied.
Using induction on the maximum of the degrees [E ′v : Fv] we may reduce

to the case that each E ′v/Fv is cyclic. Then we can choose a continuous finite
order character

χS :
∏

v∈S

F×v −→ Q
×
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such that kerχS|F×
v

corresponds (under local class field theory) to E ′v/Fv for
all v ∈ S. According to the previous lemma we can extend χ to a continuous
character

χ : F×\A×F −→ Q
×
.

Let E/F correspond, under global class field theory, to kerχ. 2

Let F be a number field. A character

χ : A×F/F
× −→ C×

is called algebraic if for τ ∈ Hom (F,C) there exist mτ ∈ Z such that

χ|(F×
∞)0(x) =

∏

τ∈Hom(F,C)

τ(x)−mτ .

A set of integers {mτ} arises from some algebraic character if and only if there
is an integer d and a CM subfield E ⊂ F such that if τ1|E = (τ2|E) ◦ c then
d = mτ1 +mτ2. For this and the proof of the next lemma see [Se].

We will call a continuous character

χ : Gal (F/F ) −→ Q
×

l

algebraic if it is de Rham at all places above l.

Lemma 4.1.3 Let ı : Ql
∼→ C. Let F be a number field. Let

χ : A×F/F
× −→ C×

be an algebraic character and for τ ∈ Hom(F,C) let mτ ∈ Z satisfy

χ|(F×
∞)0(x) =

∏

τ∈Hom(F,C)

τ(x)−mτ .

Then there is a continuous character

rl,ı(χ) : Gal (F/F ) −→ Q
×

l

with the following properties.

1. For every prime v 6 |l of F we have

rl,ı(χ)|Gal (F v/Fv) = χv ◦ Art −1
Fv
.
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2. If v|l is a prime of F then rl,ı(χ)|Gal (F v/Fv) is potentially semistable, and
if χv is unramified then it is crystalline.

3. If v|l is a prime of F and if τ : F →֒ Ql lies above v then

dimQl
gr i(rl,ı(χ)⊗τ,Fv BDR)Gal (F v/Fv) = 0

unless i = mıτ in which case

dimQl
gr i(rl,ı(χ)⊗τ,Fv BDR)Gal (F v/Fv) = 1.

Any continuous algebraic character ψ : Gal (F/F ) −→ Q
×

l arises in this
way.

The character rl,ı(χ) is explicitly χ(l) ◦Art −1
F where χ(l) : A×F/F

×(F×∞)0 →
Q
×

l is given by

χ(l)(x) =


 ∏

τ∈Hom(F,C)

(ı−1τ)(xl)
−mτ


 ı−1




 ∏

τ∈Hom(F,C)

τ(x∞)mτ


χ(x)


 .

Lemma 4.1.4 Let F be an imaginary CM field with maximal totally real sub-
field F+. Let S be a finite set of primes of F+ which split in F . Let I be a set
of embeddings F →֒ C such that I

∐
Ic is the set of all embeddings F →֒ C.

For τ ∈ I let mτ be an integer. Suppose that

χ : A×F+/(F
+)× −→ C×

is algebraic, unramified at S and such that χv(−1) is independent of v|∞.
Then there is an algebraic character

ψ : A×F/F
× −→ C×

which is unramified above S and satisfies

ψ ◦NF/F+ = χ ◦NF/F+

and
ψ|F×

∞
=
∏

τ∈I

τmτ (cτ)w−mτ

for some w.
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Proof: From the discussion before lemma 4.1.3 we have that

χ|((F+
∞)×)0 =

∏

τ∈I

τw

for some integer w. Choose an algebraic character

φ : A×F/F
× −→ C×

which is unramified above S and such that

φ|F×
∞

=
∏

τ∈I

τmτ (cτ)w−mτ .

Replacing χ by χφ|×
A

+
F

we may suppose that χ has finite order and that mτ = 0

for all τ ∈ I.
Let US =

∏
v∈S O×F,v and U+

S =
∏

v∈S O×F+,v. It suffices to prove that

χ|
(NF/F+A

×
F )∩USF×F×

∞
= 1.

If γi ∈ F× and xi ∈ F×∞ and γixi tends to an element of A×F+US, then γci /γi ∈
FNF/F+=1 is a unit at all primes above S and tends to 1 in (AS,∞

F )×. As

ONF/F+=1

F is the group of roots of unity in F and hence is finite, we conclude
that for i sufficiently large γci /γi = 1, i.e. γi ∈ F+. Thus

(NF/F+A×F ) ∩ USF×F×∞ = (NF/F+A×F ) ∩ U+
S (F+)×(F+

∞)×.

We know that χ is trivial on (NF/F+A×F ) ∩ U+
S (F+)×((F+

∞)×)0.
Note that A×F+/(NF/F+A×F )(F+)×(F+

∞)× corresponds to the maximal quo-
tient of Gal (F/F+) in which all complex conjugations are trivial. Hence
A×F+ = (NF/F+A×F )(F+)×(F+

∞)× and we have an exact sequence

(0)→ ((NF/F+A×F ) ∩ U+
S (F+)×(F+

∞)×)/((NF/F+A×F ) ∩ U+
S (F+)×((F+

∞)×)0)

→ (F+)×(NF/F+A×F )/U+
S (F+)×((F+

∞)×)0 → A×F+/U
+
S (F+)×(F+

∞)×)→ (0).

If M/F+ denotes the maximal abelian extension unramified in S and if L/F+

denotes the maximal totally real abelian extension unramified in S, then by
class field theory this exact sequence corresponds to the exact sequence

(0)→ Gal (M/LF )→ Gal (M/F )→ Gal (L/F+)→ (0).

If v|∞ write cv for a complex conjugation at v. As Gal (M/LF ) is generated
by elements cv1cv2 where v1 and v2 are infinite places we see that the im-
age of ((NF/F+A×F ) ∩ U+

S (F+)×(F+
∞)×)/((NF/F+A×F ) ∩ U+

S (F+)×((F+
∞)×)0) in
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(F+)×(NF/F+A×F )/U+
S (F+)×((F+

∞)×)0 is generated by elements (−1)v1(−1)v2,
where v1 and v2 are two infinite places. Thus χ will be trivial on (NF/F+A×F )∩
U+
S (F+)×(F+

∞)× if and only if χv1(−1)χv2(−1) = 1 for all infinite places v1 and
v2. The lemma follows. 2

Lemma 4.1.5 Let F be an imaginary CM field with maximal totally real sub-
field F+. Let I be a set of embeddings F →֒ Ql such that I

∐
Ic is the set of

all such embeddings. Choose an integer mτ for all τ ∈ I. Choose a finite set
S of primes of F+ which split in F and do not lie above l. Suppose that

χ : Gal (F/F+) −→ Q
×

l

is a continuous algebraic character which is unramified above S, crystalline at
all primes above l and for which χ(cv) is independent of the infinite place v of
F+. (Here cv denotes complex conjugation at v.) Then there is a continuous
algebraic character

ψ : Gal (F/F ) −→ Q
×

l

which is unramified above S and crystalline above l, such that

ψψc = χ|Gal (F/F ),

and
grmτ (Ql(ψ)⊗τ,Fv(τ)

BDR)Gal (F v(τ)/Fv(τ)) 6= (0)

for all τ ∈ I. (Here v(τ) is the place above l induced by τ .)

Proof: This is the Galois theoretic analogue of the previous lemma. It
follows from lemmas 4.1.3 and 4.1.4. 2

A slight variant on these lemmas is the following.

Lemma 4.1.6 Suppose that l > 2 is a rational prime. Let F be an imaginary
CM field with maximal totally real subfield F+. Let S be a finite set of finite
places of F containing all primes above l and satisfying Sc = S. Let

χ : Gal (F/F+) −→ O×
Ql

and
θ : Gal (F/F ) −→ F

×

l

be continuous characters with θθ
c

equal to the reduction of χ|Gal (F/F ). For
v ∈ S, let

ψv : Gal (F v/Fv) −→ O×Ql
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be a continuous character lifting θ|Gal (F v/Fv) such that

(ψvψ
c
vc)|IFv

= χ|IFv
.

Suppose also that if τ : F →֒ Ql lies above v ∈ S then

dimQl
grmτ (ψv ⊗τ,Fv BDR)Gal (F v/Fv) = 1,

and that mτ +mτ◦c is independent of τ .
Then there is a continuous character

θ : Gal (F/F ) −→ O×
Ql

lifting θ and such that
θθc = χ|Gal (F/F )

and, for all v ∈ S,
θ|IFv

= ψ|IFv
.

In particular θ is algebraic.

Proof: Choose an algebraic character φ of Gal (F/F ) such that if τ : F →֒
Ql lies above v ∈ S then

dimQl
grmτ (φ⊗τ,Fv BDR)Gal (F v/Fv) = 1.

Replace ψv by ψvφ|−1
Gal (F v/Fv)

; θ by θφ−1; and χ by χφ−1
0 , where φ0 denotes φ

composed with the transfer Gal (F/F+)ab → Gal (F/F )ab. Then we see that
we may suppose that χ has finite image and each ψv|IFv

has finite image.

Using class field theory, think of χ as a character of A×F+/(F+)×((F+
∞)×)0;

θ as a character of A×F/F
×F×∞; and ψv as a character of O×F,v. Let US =

∏
v∈S O×F,v, U+

S =
∏

v∈S O×F+,v and ψ =
∏

v∈S ψv : US → Q
×

l . Note that

ψ|U+
S

= χ|U+
S
, that the reduction of χ equals θ on NF/F+A×F and that the

reduction of ψ equals θ on US.
We get a character

χ′ = χψ : USNF/F+A×F/((U
+
S NF/F+A×F ) ∩ (F+)×((F+

∞)×)0) −→ O×
Ql
.

The reduction of χ′ equals θ. As in the proof of lemma 4.1.4 we see that

US(NF/F+A×F ) ∩ F×F×∞ = U+
S (NF/F+A×F ) ∩ (F+)×(F+

∞)×.
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However

(U+
S (NF/F+A×F ) ∩ (F+)×(F+

∞)×)/((U+
S NF/F+A×F ) ∩ (F+)×((F+

∞)×)0)

is a 2-group on which θ vanishes. As l > 2 we see that χ′ also vanishes on this
group.

Extend χ′ to a continuous character

χ′ : A×F/F
×F×∞ −→ Q

×

l

and let χ′ denote its reduction. Then θ(χ′)−1 is a continuous character

A×F/(US(NF/F+A×F )F×F×∞ −→ F
×

l .

Lift it to a continuous character

χ′′ : A×F/(US(NF/F+A×F )F×F×∞ −→ Q
×

l .

Then θ = χ′χ′′ will suffice. 2

4.2 Some determinants.

Lemma 4.2.1 We have the following evaluations of determinants.

1. For an n× n determinant:

det




1 b 0 0 0 0
1 c b 0 . . . 0 0
1 c c b 0 0

...
. . .

...
1 c c c c b
1 c c c . . . c c




= (c− b)n−1.

2. For an n× n determinant:

det




a b b b b b
c a b b . . . b b
c c a b b b

...
. . .

...
c c c c a b
c c c c . . . c a




= (c(a− b)n − b(a− c)n)/(c− b).
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3. For an (n+ 1)× (n+ 1) determinant:

det




0 1 2 3 n− 2 n− 1 2n− 1
n 0 1 2 . . . n− 3 n− 2 2n− 1

n + 1 n 0 1 n− 4 n− 3 2n− 1
...

. . .
...

2n− 3 2n− 4 2n− 5 2n− 6 0 1 2n− 1
2n− 2 2n− 3 2n− 4 2n− 5 . . . n 0 2n− 1
2n− 1 2n− 1 2n− 1 2n− 1 2n− 1 2n− 1 2(2n− 1)




= (−1)n(2n− 1)((n + 1)n + (n− 1)n)/2.

Proof: For the first part subtract the penultimate row from the last row,
then the three from last row from the penultimate row and so on finally sub-
tracting the first row from the second. One ends up with an upper triangular
matrix.

For the second matrix let ∆n denote the determinant. Subtract the first
row from each of the others and expand down the last column. Using the first
part, we obtain

∆n = b(a− c)n−1 + (a− b) det




a b b b b
c− a a− b 0 0 . . . 0
c− a c− b a− b 0 0

...
. . .

...
c− a c− b c− b c− b . . . a− b




= b(a− c)n−1 + (a− b)∆n−1.

The second assertion follows easilly by induction.
For the third matrix subtract the second row from the first, the third from

the second and so on, finally subtracting the penultimate row from the two
from last row. One obtains

det




−n 1 1 1 1 1 0
−1 −n 1 1 . . . 1 1 0
−1 −1 −n 1 1 1 0

...
. . .

...
−1 −1 −1 −1 −n 1 0

2n− 2 2n− 3 2n− 4 2n− 5 . . . n 0 2n− 1
2n− 1 2n− 1 2n− 1 2n− 1 2n− 1 2n− 1 2(2n− 1)




.

Then add half the sum of the first n− 1 rows to the penultimate row making
it

n− 1 n− 1 n− 1 n− 1 . . . n− 1 (n− 1)/2 2n− 1.
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Now subtract 1/2 of the last column from each of the first n columns. This
leaves the first n− 1 rows unchanged and the last two rows become

−1/2 −1/2 −1/2 −1/2 . . . −1/2 −n/2 2n− 2
0 0 0 0 . . . 0 0 2(2n− 1).

Thus the determinant becomes

(2n− 1) det




−n 1 1 1 1 1
−1 −n 1 1 . . . 1 1
−1 −1 −n 1 1 1

...
. . .

...
−1 −1 −1 −1 −n 1
−1 −1 −1 −1 . . . −1 −n




.

The result follows on applying the second part. 2

4.3 CM fields I.

Let F be a CM field. By a RACSDC (regular, algebraic, conjugate self dual,
cuspidal) automorphic representation π of GLn(AF ) we mean a cuspidal au-
tomorphic representation such that

• π∨ ∼= πc, and

• π∞ has the same infinitessimal character as some irreducible algebraic
representation of the restriction of scalars from F to Q of GLn.

Let a ∈ (Zn)Hom(F,C) satisfy

• aτ,1 ≥ ... ≥ aτ,n, and

• aτc,i = −aτ,n+1−i.

Let Ξa denote the irreducible algebraic representation of GL
Hom(F,C)
n which

is the tensor product over τ of the irreducible representations of GLn with
highest weights aτ . We will say that a RACSDC automorphic representation
π of GLn(AF ) has weight a if π∞ has the same infinitessimal character as Ξ∨a .

Let S be a finite set of finite places of F . For v ∈ S let ρv be an irreducible
square integrable representation of GLn(Fv). We will say that a RACSDC
automorphic representation π of GLn(AF ) has type {ρv}v∈S if for each v ∈ S,
πv is an unramified twist of ρ∨v .

The following is a restatement of theorem VII.1.9 of [HT].
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Proposition 4.3.1 Let ı : Ql
∼→ C. Let F be an imaginary CM field, S a

finite non-empty set of finite places of F and, for v ∈ S, ρv a square integrable
representation of GLn(Fv). Let a ∈ (Zn)Hom(F,C) be as above. Suppose that π
is a RACSDC automorphic representation of GLn(AF ) of weight a and type
{ρv}v∈S. Then there is a continuous semisimple representation

rl,ı(π) : Gal (F/F ) −→ GLn(Ql)

with the following properties.

1. For every prime v 6 |l of F we have

rl,ı(π)|ss
Gal (F v/Fv)

= rl(ı
−1πv)

∨(1− n)ss.

2. rl,ı(π)c = rl,ı(π)∨ǫ1−n.

3. If v|l is a prime of F then rl,ı(π)|Gal (F v/Fv) is potentially semistable, and
if πv is unramified then it is crystalline.

4. If v|l is a prime of F and if τ : F →֒ Ql lies above v then

dimQl
gr i(rl,ı(π)⊗τ,Fv BDR)Gal (F v/Fv) = 0

unless i = aıτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(rl,ı(π)⊗τ,Fv BDR)Gal (F v/Fv) = 1.

Proof: We can take rl,ı(π) = Rl(π
∨)(1 − n) in the notation of [HT]. Note

that the definition of highest weight we use here differs from that in [HT].
2

The representation rl,ı(π) can be taken to be valued in GLn(O) where O
is the ring of integers of some finite extension of Ql. Thus we can reduce
it modulo the maximal ideal of O and semisimplify to obtain a continuous
semisimple representation

rl,ı(π) : Gal (F/F ) −→ GLn(Fl)

which is independent of the choices made. Note that if rl,ı(π) (resp. rl,ı(π)) is
irreducible it extends to a continuous homomorphism

rl,ı(π)′ : Gal (F/F+) −→ Gn(Ql)
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(resp.
rl,ı(π)′ : Gal (F/F+) −→ Gn(Fl)).

We will call a continuous semisimple representation

r : Gal (F/F ) −→ GLn(Ql)

(resp.
r : Gal (F/F ) −→ GLn(Fl))

automorphic of weight a and type {ρv}v∈S if it equals rl,ı(π) (resp. rl,ı(π)) for
some ı : Ql

∼→ C and some RACSDC automorphic form π of weight a and type
{ρv}v∈S (resp. and with πl unramified). We will say that r is automorphic
of weight a and type {ρv}v∈S and level prime to l if it equals rl,ı(π) for some
ı : Ql

∼→ C and some RACSDC automorphic form π of weight a and type
{ρv}v∈S with πl unramified.

The following lemma is well known.

Lemma 4.3.2 Suppose that E/F is a soluble Galois extension of CM fields.
Suppose that

r : Gal (F/F ) −→ GLn(Ql)

is a continuous semisimple representation and that r|Gal (F/E) is irreducible and
automorphic of weight a and type {ρv}v∈S. Let SF denote the set of places of
F under an element of S. Then we have the following.

1. aτ = aτ ′ if τ |F = τ ′|F so we can define aF by aF,σ = aeσ for any extension
σ̃ of σ to E.

2. r is automorphic over F of weight aF and type {ρ′v}v∈SF
for some square

integrable representations ρ′v.

Proof: Inductively we may reduce to the case that E/F is cyclic of prime
order. Suppose that Gal (E/F ) = 〈σ〉 and that r = rl,ı(π), for π a RACSDC
automorphic representation of GLn(AE) of weight a and level {ρv}v∈S. Then
r|σ

Gal (F/E)
∼= r|Gal (F/E) so that πσ = π. By theorem 4.2 of [AC] π descends

to a RACSDC automorphic representation πF of GLn(AF ). As r and rl,ı(πF )
are irreducible and have the same restriction to Gal (F/E) we see that r =
rl,ı(πF ) ⊗ χ = rl,ı(πF ⊗ (χ ◦ Art F )) for some character χ of Gal (E/F ). The
lemma follows. 2
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Lemma 4.3.3 Let F+ be a totally real field of even degree and E an imaginary
quadratic field such that F = F+E/F+ is unramified at all finite primes. Let
n ∈ Z≥2 and let l > n be a prime which splits in E. Let ı : Ql

∼→ C and let
Sl denote the set of primes of F above l. Let π be a RACSDC automorphic
representation of GLn(AF ) of weight a and type {ρv}v∈S where S is a finite
non-empty set of primes split over F+. Assume that 4|#(S ∪ Sc). Suppose
that πv is unramified if v is not split over F+ or if v|l. Let R be a finite set of
primes of F such that if v ∈ R then

• v 6∈ S ∪ Sc ∪ Sl,

• v is split over F+,

• Nv ≡ 1 mod l,

• πIw(v)
v 6= (0).

Let S1 be a non-empty finite set of primes of F such that S1 = Sc1 and S1 ∩
(R ∪ S ∪ Sl) = ∅.

Then there is a RACSDC automorphic representation π′ of GLn(AF ) of
weight a and type {ρv}v∈S with the following properties:

• rl,ı(π) ∼= rl,ı(π
′);

• if v 6∈ S1 and πv is unramified then π′v unramified;

• if v in R then rl(π
′
v)
∨(1− n)(IFv) is finite.

Proof: Let S(B) denote the set of primes of F+ below an element of S.
Choose B and ‡ as at the start of section 2.3. These define an algebraic group
G. Consider open campact subgroups U =

∏
v Uv of G(A∞F+) where

• if v is inert in F , then Uv is a hyperspecial maximal compact subgroup
of G(F+

v );

• if v is split in F and v lies below S then Uv = G(OF+,v);

• if v does not lie below R ∪ S1, if v is split in F and if πv is unramified
then Uv = G(OF+,v);

• if v lies below R and if w is a prime of F above v then Uv = i−1
w Iw(w);

• if v lies below S1 then Uv conatins only one element of finite order,
namely 1.

126



The lemma now follows from lemma 2.1.6, proposition 2.3.2 and lemma 2.4.4.
2

Theorem 4.3.4 Let F be an imaginary CM field and let F+ denote its max-
imal totally real subfield. Let n ∈ Z≥1 and let l > n be a prime which is
unramified in F . Let

r : Gal (F/F ) −→ GLn(Ql)

be a continuous irreducible representation with the following properties. Let
r denote the semisimplification of the reduction of r and let r′ denote the
extension of r to a continuous homomorphism Gal (F/F+) −→ Gn(Ql).

1. rc ∼= r∨ǫ1−n.

2. r is unramified at all but finitely many primes.

3. For all places v|l of F , r|Gal (F v/Fv) is crystalline.

4. There is an element a ∈ (Zn)Hom(F,Ql) such that

• for all τ ∈ Hom(F,Ql) we have

l − 1− n ≥ aτ,1 ≥ ... ≥ aτ,n ≥ 0

or
l − 1− n ≥ aτc,1 ≥ ... ≥ aτc,n ≥ 0;

• for all τ ∈ Hom(F,Ql) and all i = 1, ..., n

aτc,i = −aτ,n+1−i;

• for all τ ∈ Hom(F,Ql) above a prime v|l of F ,

dimQl
gr i(r ⊗τ,Fv BDR)Gal (F v/Fv) = 0

unless i = aτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(r ⊗τ,Fv BDR)Gal (F v/Fv) = 1.
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5. There is a non-empty finite set S of places of F not dividing l and for
each v ∈ S a square integrable representation ρv of GLn(Fv) over Ql

such that
r|ss

Gal (F v/Fv)
= rl(ρv)

∨(1− n)ss.

If ρv = Spmv
(ρ′v) then set

r̃v = rl((ρ
′
v)
∨| |(n/mv−1)(1−mv)/2).

Note that r|Gal (F v/Fv) has a unique filtration Fil jv such that

gr jvr|Gal (F v/Fv)
∼= r̃vǫ

j

for j = 0, ...,mv − 1 and equals (0) otherwise. We assume that r̃v has

irreducible reduction rv. Then r|Gal (F v/Fv) inherits a filtration Fil
j

v with

gr jvr|Gal (F v/Fv)
∼= rvǫ

j

for j = 0, ...,mv − 1. Finally we suppose that for j = 1, ...,mv we have

rv 6∼= rvǫ
i.

6. Assume that F
ker ad r

does not contain F (ζl).

7. Assume that ad r′Gal (F/F+(ζl)) is big in the sense of section 1.4.

8. Assume that the representation r is irreducible and automorphic of weight
a and type {ρv}v∈S with S 6= ∅.

Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then r is automorphic of weight a and type {ρv}v∈S and level prime to l.

Proof: Suppose that r = rl,ı(π), where π is a RACSDC automorphic repre-
sentation of GLn(AF ) of weight a and type {ρv}v∈S. Let Sl denote the primes
of F above l. Let R denote the primes of F outside Sc ∪ S ∪ Sl at which r or

π is ramified. Because F
ker ad r

does not contain F (ζl), we can choose a prime
v1 of F with the following properties

• v1 6∈ R ∪ Sl ∪ S ∪ Sc,

• v1 is unramified over a rational prime p for which [F (ζp) : F ] > n,
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• v1 does not split completely in F (ζl),

• ad r(Frobv1) = 1.

Choose a CM field L/F with the following properties

• L = L+E with E an imaginary quadratic field and L+ totally real.

• [L+ : F+] is even.

• L/F is Galois and soluble.

• L is linearly disjoint from F
ker r

(ζl) over F .

• L/L+ is everywhere unramified.

• l splits in E and is unramified in L.

• v1 splits completely in L/F and in L/L+.

• All primes in S split completely in L/F and in L/L+.

• Let πL denote the base change of π to L. If v is a prime of L not lying
above S ∪ Sc then π

Iw(v)
v 6= (0).

• If v is a place of L above R then Nv ≡ 1 mod l.

Let S(L) (resp. Sl(L)) denote the set of places of L above S (resp. l). Let

aL ∈ (Zn)Hom(L,Ql) be defined by aL,τ = aτ |F . By theorem 4.2 of [AC] we know
that r|Gal (F/L) is automorphic of weight aL and type {ρv|F }v∈S(L). (The base
change must be cuspidal as it is square integrable at finite places in S.) By
lemma 4.3.3 there is a RACSDC automorphic representation π′ of GLn(AL)
of weight aL and type {ρv|F }v∈S(L) such that

• r|Gal (F/L) = rl,ı(π
′), and

• rl,ı(π′) is finitely ramified at all primes outside S(L) ∪ S(L)c ∪ Sl(L).

Choose a CM field M/L with the following properties.

• M/L is Galois and soluble.

• M is linearly disjoint from F
ker r

(ζl) over L.

• l is unramified in M .
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• v1 splits completely in M/F .

• All primes in S split completely in M/L.

• Let π′M denote the base change of π′ to M . If v is a prime of M not
lying above S ∪ Sc then π′M,v is unramified.

Let S(M) denote the set of places of M above S. Let aM ∈ (Zn)Hom(M,Ql) be
defined by aM,τ = aτ |F . Let S(M+) denote the set of places of M+ below an
element of S(M). Then #S(M+) is even and every element of S(M+) splits in
M . Choose a division algebra B/M and an involution ‡ of B as at the start of
section 2.3, with S(B) = S(M+). Let R(M+) denote the set of primes of M+

above the restriction to F+ of a prime of R. Let Sl(M
+) denote the primes

of M+ above l and let S1(M
+) denote the primes of M+ above v1|F+ . Let

T (M+) = S(M+) ∪ Sl(M+) ∪ R(M+) ∪ S1(M
+). It follows from proposition

2.3.2 and theorem 3.1.2 that r|Gal (F/M) is automorphic of weight aM and type
{ρv|F}v∈S(M). The theorem now follows from lemma 4.3.2. 2

4.4 CM Fields II

In this section we will consider the following situation.

• M/Q is a Galois imaginary CM field of degree n with Gal (M/Q) cyclic
generated by an element τ .

• l > 1 + (n− 1)((n+ 2)n/2− (n− 2)n/2)/2n−1 (e.g. l > 8((n+ 2)/4)1+n/2)
is a prime which splits completely in M and is ≡ 1 mod n.

• p is a rational prime which is inert and unramified in M .

• Q 6∋ l is a finite set of rational primes, such that if q ∈ Q then q splits
completely in M and qi 6≡ 1 mod l for i = 1, ..., n− 1.

• θ : Gal (Q/M) −→ F
×

l is a continuous character such that

– θθc = ǫ1−n;

– there exists a prime w|l of M such that for i = 0, ...., n/2 − 1 we
have θ|Iτiw

= ǫ−i;

– if v1, ..., vn are the primes of M above q ∈ Q then {θ(Frobvi
)} =

{αqq−j : j = 0, ..., n− 1} for some αq ∈ F
×

l ;

– θ|Gal (Mp/Mp) 6= θ
τ j

|Gal (Mp/Mp) for j = 1, ..., n− 1.
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Let S(θ) denote the set of rational primes above whichM or θ is ramified.

• E/Q is an imaginary quadratic field linearly disjoint from the Galois

closure of M
ker θ

(ζl)/Q in which every element of S(θ)∪Q∪{l, p} splits;
and whose class number is not divisible by l.

Set L/Q equal to the composite ofE with the Galois closure ofM
ker θ

(ζl)/Q.
Also let (EM)+ denote the maximal totally real subfield of EM . Then θ
extends to a homomorphism, which we will also denote θ,

θ : Gal (L/(EM)+) −→ G1(Fl)

such that θ(c) = (1, 1, ) and ν ◦ θ = ǫ1−n. Let r : Gal (L/Q) → Gn(Fl)
denote the induction with multiplier ǫ1−n from (Gal (L/(EM)+),Gal (L/EM))
to (Gal (L/Q),Gal (L/E)) of θ.

We have an embedding

Gal (L/EM) →֒ (F
×

l )n/2 × F×l

α 7−→ (θ(α), θ
τ
(α), ..., θ

τn/2−1

(α); ǫ(α)).

fix a primitive nth root of unity ζn ∈ Fl. Suppose α = (α0, ..., αn/2−1) ∈
(F
×

l )n/2, β2 = α0...αn/2−1. If n/2 ≤ i ≤ n − 1 set αi = α−1
i−n/2. Let Γα,β =

Γ denote the group generated by (F
×

l )n/2 × F×l and two elements C and T
satisfying

• C2 = 1 and T n = 1;

• CTCT−1 = (α0, ..., αn/2−1; 1);

• T (a0, ..., an/2−1; b)T
−1 = (a1, ..., an/2−1, b

1−na−1
0 ; b);

• and C(a0, ..., an/2−1; b)C = (b1−na−1
0 , ..., b1−na−1

n/2−1; b).

Define characters Ξ : Γ→ F×l by

• Ξ(T ) = ζn,

• Ξ(C) = −1,

• and Ξ(a0, ..., an/2−1; b) = b;

and Θ : 〈(F×l × F×l , CT
n/2〉 → F

×

l such that
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• Θ(a0, ..., an/2−1; b) = a0,

• and Θ(CT n/2) = β.

Note that

• Θ(CT iCT−i) = α0...αi−1 (because (CTCT−1)T (CT iCT−i)T−1 =
CT i+1CT−(i+1)), and

• Θ(T iCT n/2T−i) = β(α0...αi−1)
−1 (because (CT iCT−i)T i(CT n/2)T−i =

CT n/2).

Let Γ0 = Γα,β,0 denote the subgroup generated by ((F×l )κn)⊕n/2+1 and by C
and T , where κn = (n− 1)((n+ 2)n/2 + (n− 2)n/2)/2n+1.

Lemma 4.4.1 There exist α and β such that the embedding

Gal (L/EM) →֒ (F
×

l )n/2 × F×l

extends to an embedding
j : Gal (L/Q) →֒ Γ

satisfying

• Ξ ◦ j = ǫ;

• Θ ◦ j = θ;

• the image of j contains Γ0;

• some complex conjugation maps to C;

• and some lifting τ̃ ∈ Gal (L/E) of the generator τ of Gal (EM/E)
∼→

Gal (M/Q) maps to T .

If such an embedding exists for some α it also exists for any element of
α((F×l )2κn)⊕n/2.

Proof: Note that EM and Q(ζl) are linearly disjoint over Q. Thus we
may choose a lifting τ̃ ∈ Gal (L/E) of the generator τ of Gal (EM/E)

∼→
Gal (M/Q) with ǫ(τ̃) = ζn. Also choose a complex conjugation c ∈ Gal (Q/Q).
Then ǫ(cτ̃n/2) = 1 and so

θ(τ̃n) = θ(c(cτ̃n/2)c(cτ̃n/2))

= (θθ
c
)(cτ̃n/2)

= ǫ(cτ̃n/2)1−n

= 1.
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Also note that ǫ(cτ̃cτ̃−1) = 1. Setting αi = θ
τ i

(cτ̃cτ̃−1) we get a homomor-
phism

j : Gal (L/Q) →֒ Γ

extending the embedding Gal (L/EM) →֒ (F
×

l )n/2 × F×l and which sends τ̃ to
T and c to C. We have Ξ ◦ j = ǫ. Note that

θ(cτ̃n/2)2 = θ(cτ̃n/2cτ̃−n/2) = θ(cτ̃ cτ̃−1)θ
τ
(cτ̃ cτ̃−1)...θ

τn/2−1

(cτ̃ cτ̃−1),

and so for some choice of β we have Θ ◦ j = θ.
Choose a place u of E above l. Let A denote the subgroup of the image

of Ind
Gal (E/E)

Gal (E/EM)
θ generated by the decomposition groups above u. Let w be a

place of EM above u. For any integer i define βi to be

• −i0 if i ≡ i0 mod n and 0 ≤ i0 ≤ n/2− 1, and

• i0 + 1− 3n/2 if i ≡ i0 mod n and n/2 ≤ i0 ≤ n− 1.

Note that βi + βi+n/2 = 1− n. We have

n−1∏

i=0

IMσiw
→→

n−1∏

i=0

F×l →→ A →֒ (F
×

l )n/2+1.

The composite map sends

(ai)i 7−→ (
n−1∏

i=0

aβi

i ,
n−1∏

i=0

a
βi−1

i , ...,
n−1∏

i=0

a
βi+1−n/2

i , (
n−1∏

i=0

ai)
1−n).

Moreover by lemma 4.2.1 we see that the image has index dividing κn. Thus
the image of j contains Γ0.

Finally note that
((a0, ..., an/2−1; 1)T )n = 1

and

C(a0, ..., an/2−1; 1)TC((a0, ..., an/2−1; 1)T )−1 = (α0a
−2
0 , ..., αn/2−1a

−2
n/2−1; 1).

2

There is a homomorphism

Θ̃ : 〈(F×l )n/2 × F×l , C〉 −→ G1(F
×

l )
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extending Θ|
(F

×
l )n/2×F

×
l

and with ν ◦ Θ̃ = Ξ1−n. It takes C to (1, 1, ). Consider

I, the induction of Θ̃ from (〈(F×l )n/2×F×l , C〉, (F
×

l )n/2×F×l ) to (Γ, 〈(F×l )n/2×
F×l , T 〉) with multiplier Ξ1−n. Then I has a basis consisting of functions ei for
i = 0, ..., n − 1 with ei(T

j) = δij for j = 0, ..., n − 1. Let f0, ..., fn−1 be the

dual basis of I∨. If (a0, ..., an/2−1; b) ∈ (F
×

l )n/2 × F×l set ai = b1−na−1
i−n/2 for

i = n/2, ..., n− 1. Then we have

• Tei = ei−1 (with e−1 = en−1);

• (a0, ..., an/2−1; b)ei = aiei for i = 0, ..., n− 1;

• Tfi = fi−1;

• and (a0, ..., an/2−1; b)fi = a−1
i fi for i = 0, ..., n− 1.

Moreover
〈ei, ej〉 = ζ inα0...αi−1δij .

We have r = I ◦ j.
Then Γ acts on ad I via

• Tei ⊗ fj = ei−1 ⊗ fj−1;

• (a0, ..., an/2−1; b)ei ⊗ fj = ai/ajei ⊗ fj;

• Cei ⊗ fj = −ζ i−jn αj...αi−1ej ⊗ fi if 0 ≤ j ≤ i ≤ n− 1;

• and Cei ⊗ fj = −ζ i−jn (αi...αj−1)
−1ej ⊗ fi if 0 ≤ i ≤ j ≤ n− 1.

Hence if 0 ≤ i ≤ j ≤ n/2− 1 then

• CT n/2ei ⊗ fj = −ζ i−jn αi...αj−1ej+n/2 ⊗ fi+n/2;

• CT n/2ej+n/2 ⊗ fi+n/2 = −ζj−in αi...αj−1ei ⊗ fj;

• CT n/2ej ⊗ fi = −ζj−in α−1
i ...α−1

j−1ei+n/2 ⊗ fj+n/2;

• CT n/2ei+n/2 ⊗ fj+n/2 = −ζ i−jn α−1
i ...α−1

j−1ej ⊗ fi;

• CT n/2ei ⊗ fj+n/2 = ζ i−jn α−1
0 ...α−1

i−1αj...αn/2−1ej ⊗ fi+n/2;

• CT n/2ej ⊗ fi+n/2 = ζj−in α−1
0 ...α−1

i−1αj...αn/2−1ei ⊗ fj+n/2;

• CT n/2ei+n/2 ⊗ fj = ζ i−jn α0...αi−1α
−1
j ...α−1

n/2−1ej+n/2 ⊗ fi;
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• and CT n/2ej+n/2 ⊗ fi = ζj−in α0...αi−1α
−1
j ...α−1

n/2−1ei+n/2 ⊗ fj .

For j = 1, ..., n/2− 1 let W±
j denote the span of the vectors

ei ⊗ fi+j ∓ ζ−jn en/2+i+j ⊗ fn/2+i

for i = 0, ..., n−1 (and where we consider the subscripts modulo n). Then W±
j

is a Γ-invariant subspace of ad I. The space W+
j is isomorphic to the induction

from 〈(F×l )n/2 × F×l , CT
n/2〉 to Γ of Θ/ΘT j

. The space W−
j is isomorphic to

the induction from 〈(F×l )n/2 × F×l , CT
n/2〉 to Γ of Θ/ΘT j

times the order two

character with kernel (F
×

l )n/2 × F×l .

If χ is a character of Γ/((F
×

l )n/2 × F×l ) with χ(C) = −1 let Wχ denote the
span of

e0 ⊗ f0 + χ(T )e1 ⊗ f1 + ...+ χ(T )n−1en−1 ⊗ fn−1.

Then Wχ is an Γ invariant subspace of ad I on which Γ acts via χ.
Let Wn/2 denote the span of the vectors ei⊗fi+n/2 for i = 0, ..., n−1 (with

the subscripts taken modulo n). Then Wn/2 is a Γ-invariant subspace of ad I

isomorphic to the induction from 〈(F×l )n/2 × F×l , CT
n/2〉 to Γ of Θ/ΘTn/2

. We
have

ad I = Wn/2 ⊕ (
⊕

χ

Wχ)⊕ (

n/2−1⊕

j=1

W+
j )⊕ (

n/2−1⊕

j=1

W−
j ).

Lemma 4.4.2 The restrictions to ΓΞ=1
0 of the 2n − 1 representations Wn/2,

W±
j (for j = 1, ..., n/2−1) and Wχ are all irreducible, non-trivial and pairwise

non-isomorphic.

Proof: It suffices to show the following:

• If 1 ≤ j ≤ n/2 then Θ 6= ΘT j
on ((F

×

l )κn)⊕n/2 × {1}.

• If 1 ≤ j, j′ ≤ n/2 and 0 ≤ k ≤ n− 1 then

Θ/ΘT j 6= ΘT k

/ΘT j′+k

on ((F
×

l )κn)⊕n/2 × {1} unless j = j′ and k = 0.

These facts are easily checked because (l − 1)/κn > 4. 2
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Lemma 4.4.3 Keep the notation and assumptions listed at the start of this
section. There is a continuous homomorphism

r : GQ −→ Gn(OQl
)

such that

• r lifts r;

• ν ◦ r = ǫ1−n;

• r is ramified at only finitely many primes, all of which split in E;

• for all places v|l of E, r|Gal (Ev/Ev) is crystalline;

• for all τ ∈ Hom (E,Ql) above a prime v|l of E;

dimQl
gr i(r ⊗τ,Ev BDR)Gal (Ev/Ev) = 1

for i = 0, ..., n− 1 and = 0 otherwise;

• for any place v of E above a rational prime q ∈ Q, the restriction
r|ss

Gal (Ev/Ev)
is unramified and r|ss

Gal (Ev/Ev)
(Frobv) has eigenvalues {αq−j :

j = 0, ..., n− 1} for some α ∈ Q
×

l .

Proof: Consider the following deformation problem S1 for r. We take S1,0 =

Q and S1 = Q ∪ S(θ) ∪ {l}. Let S̃1 denote a choice of one prime of E above

each prime of S1. For v ∈ S̃1 we define Dv and Lv as follows.

• If v|l the choice of Dv and Lv is described in subsection 1.3.2.

• If v|q ∈ Q then (Dv, Lv) is as in example 1.3.5 with m = n and r̃ev = 1.

• If v|r ∈ S(θ) then (Dv, Lv) is as in example 1.3.4.

Also set W0 =
⊕

χWχ ⊂ ad r and δE/Q : GQ →→ Gal (E/Q) ∼= {±1}.
Then H1

L1
(GQ,S1 ,W0) is the kernel of

H1(GQ,W0) −→
⊕

v 6∈Q

H1(IQv ,W0)⊕
⊕

v∈Q

(H1(IQv ,WδE/Q
)⊕

⊕

χ 6=δE/Q

H1(GQv ,Wχ)).
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(See the definition of Lv for v|q ∈ Q given in sectiuon 1.3.5 at the start of the
second paragraph after lemma 1.3.14.) Because l does not divide the order of
the class group of E we see that

ker

(
H1(GQ,WδE/Q

) −→
⊕

v

H1(IQv ,WδE/Q
)

)
= (0).

On the other hand if χ 6= δE/Q then

ker

(
H1(GQ,Wχ) −→

⊕

v 6∈Q

H1(IQv ,Wχ)⊕
⊕

v∈Q

H1(GQv ,Wχ)

)

is contained in Hom (ClQ(EM), k), where ClQ(EM) denotes the quotient of the
class group of EM by the subgroup generated by the classes of primes above
elements of Q. Because the maximal elementary l extension of EM unramified
everywhere is linearly disjoint from L over EM , the Cebotarev density theorem
implies that we can enlarge Q so that Hom (ClQ(EM), k) = (0). Make such
an enlargement. Then H1

L1
(GQ,S1 ,W0) = (0).

Moreover H1
L⊥1

(GQ,WδE/Q
(1)) is the kernel of

H1(GQ, WδE/Q
(1))→ H1(GQl

, WδE/Q
(1))/H1(GQl

/IQl
, WδE/Q

)⊥ ⊕
⊕

v 6=l

H1(IQv , W0).

From theorem 2.19 of [DDT] we deduce that

#H1
L⊥1

(GQ,S1 ,WδE/Q
(1)) = #H1

L1
(GQ,S1 ,WδE/Q

) = 1,

i.e. H1
L⊥1

(GQ,S1 ,WδE/Q
(1)) = (0).

Now consider a second deformation problem S2 for r. We take S2,0 = Q
and S2 = Q ∪ S(θ) ∪ {l} ∪ Q′, where Q′ will be a set of primes disjoint from
S1 such that if q′ ∈ Q′ then

j(Frobq′) = T (a0(q
′), ..., an/2−1(q

′); b(q′))

with b(q′)n = 1 and ζnb(q
′) 6= 1. Thus the eigenvalues of r(Frobq′) are the nth

roots of b(q′)n/2 each with multiplicity 1, and ǫ(Frobq′) 6= 1. Set ai+n/2(q
′) =

b(q′)1−nai(q
′)−1 for i = 0, ..., n/2 − 1. Let S̃2 ⊃ S̃1 denote a choice of one

prime of E above each prime of S2. For v ∈ S̃1 we define Dv and Lv as
before. For v ∈ S̃2 above Q′ choose an unramified character χv of GEv with
χv(Frobv)

n = b(q′)n/2, and let Dv and Lv be as in example 1.3.7 with χ = χv.
Let πv (resp. iv, resp. π′v, resp. i′v) denote the projection onto the χv(Frobv)
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(resp. inclusion of the χv(Frobv), resp. projection onto the b(q′)ζnχv(Frobv),
resp. inclusion of the b(q′)ζnχv(Frobv)) eigenspace of Frobv in r. Then i′vπv is
in the k-span of

n−1∑

i,j=0

b(q′)iζ inχv(Frobv)
i−j(a1(q

′)...ai(q
′))−1a1(q

′)...aj(q
′)ei ⊗ fj.

Thus i′vπv 6∈W0 and so H1
L2

(GQ,S2,W0) ⊂ H1
L1

(GQ,S1 ,W0) = (0).
On the other hand i′vπ

′
v − ivπv is in the k-linear span of

n−1∑

i,j=0

((b(q′)ζn)
i−j − 1)χv(Frobv)

i−j(a1(q
′)...ai(q

′))−1a1(q
′)...aj(q

′)ei ⊗ fj

and so i′vπ
′
v − ivπv 6∈W0 (because b(q′)ζn 6= 1). Thus

H1
L⊥2

(GQ,S2 ,W0(1)) = ker

(
H1
L⊥1

(GQ,S1 ,W0(1)) −→
⊕

q′∈Q′

H1(GQq′
/IQq′

, k)

)
,

where the map onto the factor H1(GQq′
/IQq′

, k) is induced by A 7−→ πvAi
′
v for

v ∈ S̃2 with v|q′, i.e. by

n−1∑

i=0

xiei ⊗ fi 7−→
n−1∑

i=0

xi(b(q
′)ζn)

i.

If [φ] ∈ H1
L⊥1

(GQ,S1 ,W0(1)) then the extension Pφ of EM cut out by φ

is nontrivial and l-power order and hence linearly disjoint from L over EM .
Because H1

L⊥1
(GQ,S1,WδE/Q

(1)) = (0) we see that φ(Gal (Pφ/EM)) 6⊂WδE/Q
(1).

Thus we can choose b 6= ζ−1
n so that

n−1∑

i=0

xiei ⊗ fi 7−→
n−1∑

i=0

xi(bζn)
i

is not identically zero on φ(Gal (Pφ/EM)). Then choose a0, ..., an/2−1 ∈ F
×

l

and σ ∈ Gal (LPφ/Q) such that j(σ) = T (a0, ..., an/2−1; b) and, if

φ(σ) =
n−1∑

i=0

φi(σ)ei ⊗ fi
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then
n−1∑

i=0

(bζn)
iφi(σ) 6= 0.

Let q′ 6∈ S1 be a rational prime unramified in LPφ with Frobq′ = σ ∈
Gal (LPφ/Q). Then if q′ ∈ Q′ and b(q′) = b then [φ] 6∈ H1

L⊥2
(GQ,S2 ,W0(1)).

Thus we can choose Q′ and the b(q′) for q′ ∈ Q′ such that

H1
L⊥2

(GQ,S2 ,W0(1)) = (0).

Make such a choice.
Finally we will apply theorem 1.4.6 with W1 = W0 to complete the proof

of the lemma. In the notation of theorem 1.4.6, given W and W ′, each equal
to Wn/2 or some W±

j , we will show that the conditions of theorem 1.4.6 can be
verified with σ a lift of T (a0, ..., an/2−1; b) ∈ Γ0 for a suitable a0, ..., an/2−1, b.
We shall suppose that bn = 1 but that b 6= ζ−1

n , so that ǫ(σ)n = 1 but ǫ(σ) 6= 1.
For i = 0, ..., n/2− 1 write ai+n/2 = b1−na−1

i . There is a decomposition

r =
⊕

µn=bn/2

Vµ

into σ-eigenspaces, where σ acts on Vµ as µ and where Vµ is the span of

e0 + µa−1
1 e1 + ...+ µn−1a−1

1 ...a−1
n−1en−1.

Let iµ denote the inclusion Vµ →֒ r and let πµ denote the σ-equivariant pro-
jection r →→ Vµ, so that πµiµ = IdVµ . Note that

• iµǫ(σ)πµ =
∑n−1

i,j=0 a1...aj(a1...ai)
−1µi−jǫ(σ)iei ⊗ fj 6∈W0

• and iµǫ(σ)πµǫ(σ) − iµπµ =
∑n−1

i,j=0 a1...aj(a1...ai)
−1µi−j(ǫ(σ)i−j − 1) 6∈W0.

Moreover

• πµ(ei ⊗ fi+n/2)iµǫ(σ) = ǫ(σ)i+n/2µn/2(ai+1...ai+n/2)
−1;

• πµ(ei ⊗ fi+j ∓ ζ−jn en/2+i+j ⊗ fn/2+i)iµǫ(σ) = (ai+1...ai+j)
−1µjǫ(σ)i+j(1 ±

bn/2(µζn)
−2j);

• πµǫ(σ)(ei ⊗ fi+n/2)iµǫ(σ) − πµ(ei ⊗ fi+n/2)iµ = (ǫ(σ)n/2 − 1)µn/2

(ai+1...ai+n/2)
−1;

• and πµǫ(σ)(ei⊗fi+j∓ζ−jn en/2+i+j⊗fn/2+i)iµǫ(σ)−πµ(ei⊗fi+j∓ζ−jn en/2+i+j⊗
fn/2+i)iµ = (1± (ζnµ)−2j)(ǫ(σ)j − 1)µj(ai+1...ai+j)

−1.
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Let β (resp. γ) denote a primitive (n/2)th (resp. (2n)th) root of 1. Then we
have:

• In the cases W,W ′ ∈ {Wn/2,W
−
1 , ...,W

−
n/2−1} taking b = µ = 1 will

satisfy the conditions of theorem 1.4.6.

• In the cases W,W ′ ∈ {Wn/2,W
+
1 , ...,W

+
n/2−1} taking b = 1 and µ = ζ−1

n

will satisfy the conditions of theorem 1.4.6.

• If W,W ′ ∈ {W±
1 , ...,W

±
n/2−1} taking b = ζ−1

n β and µ = ζ−1
n γ will satisfy

the conditions of theorem 1.4.6.

2

Theorem 4.4.4 Keep the notation and assumptions listed at the start of this
section. Let F/F0 be a Galois extension of imaginary CM fields with F lin-

early disjoint from the normal closure of M
ker θ

(ζl) over Q. Assume that l is
unramified in F and that there is a prime vp,0 of F0 split above p. Let

r : Gal (F/F ) −→ GLn(Ql)

be a continuous irreducible representation with the following properties. Let r
denote the semisimplification of the reduction of r.

1. r ∼= Ind
Gal (F/F )

Gal (F/FM)
θ|Gal (F/FM).

2. rc ∼= r∨ǫ1−n.

3. r ramifies at only finitely many primes.

4. For all places v|l of F , r|Gal (F v/Fv) is crystalline.

5. For all τ ∈ Hom (F,Ql) above a prime v|l of F ,

dimQl
gr i(r ⊗τ,Fv BDR)Gal (F v/Fv) = 1

for i = 0, ..., n− 1 and = 0 otherwise.

6. There is a place vq of F above a rational prime q ∈ Q such that
(#k(vq))

j 6≡ 1 mod l for j = 1, ..., n, and such that r|ss
Gal (F vq/Fvq )

is un-

ramified, and such that r|ss
Gal (F vq/Fvq )

(Frobvq) has eigenvalues

{α(#k(vq))
j : j = 0, ..., n− 1} for some α ∈ Q

×

l .

140



Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then r is automorphic over F of weight 0 and type {Sp n(1)}{vq} and level
prime to l.

Proof: Replacing F by EF if necessary we may suppose that F ⊃ E (see
lemma 4.3.2).

Choose a continuous character

θ : Gal (M/M) −→ O×
Ql

such that

• θ lifts θ;

• θ−1 = ǫn−1θc;

• for i = 0, ..., n/2− 1 we have θ|IM
σiw

= ǫ−i; and

• l 6 |#θ(Iv) for all places v|p of M .

(See lemma 4.1.6.) We can extend θ|Gal (E/EM) to a continuous homomorphism

θ : Gal (E/(EM)+) −→ G1(OQl
)

with ν ◦ θ = ǫ1−n. We will let θ also denote the reduction

θ : Gal (E/(EM)+) −→ G1(Fl)

of θ. Consider the pairs Gal (E/(EM)+) ⊃ Gal (E/(EM)) and Gal (E/Q) ⊃
Gal (E/E). Set

r0 = Ind
Gal (E/Q),ǫ1−n

Gal (E/(EM)+)
θ : Gal (E/Q) −→ Gn(OQl

).

Note also that

r0|Gal (E/E) = ((Ind
Gal (E/Q)

Gal (E/M)
θ)|Gal (E/E), ǫ

1−n).

By lemma 4.4.3 there is a continuous homomorphism

r1 : Gal (E/Q) −→ Gn(OQl
)

with the following properties.
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• r1 lifts Ind
Gal (E/Q),ǫ1−n

Gal (E/(EM)+)
θ.

• ν ◦ r1 = ǫ1−n.

• For all places w|l of E, r1|Gal (Ew/Ew) is crystalline.

• For all τ ∈ Hom(E,Ql) corresponding to prime w|l,

dimQl
gr i(r1 ⊗τ,Ew BDR)Gal (Ew/Ew) = 1

for i = 0, ..., n− 1 and = 0 otherwise.

• r1|ssGal (Evq/Evq )
is unramified and r|ss

Gal (Evq/Evq )
(Frobvq|E) has eigenvalues

{αq−j : j = 0, ..., n− 1} for some α ∈ Q
×

l .

• r1|Gal (Evp/Evp ) is an unramified twist of Ind
Gal (Qp/Qp)

Gal (Qp/Mp)
θ|Gal (Qp/Mp).

Let vp be a prime of F above vp,0 and let F1 ⊂ F denote the fixed field of
the decomposition group of vp in Gal (F/F0). Thus vp|F1 is split over p and
F/F1 is soluble.

The restriction r0|Gal (E/F1)
is automorphic of weight 0 and type {ρp}{vp|F1

}

and level prime to l, for a suitable cuspidal representation ρp (by theorem 4.2 of
[AC]). We will apply theorem 4.3.4 to deduce that r1|Gal (F/F1)

is automorphic
of weight 0 and type {ρp}{vp|F1

} and level prime to l. We need only check that
r1(GF+(ζl)) is big (see section 1.4). This follows from lemmas 4.4.1 and 4.4.2,
the fact that l 6 |#r0(GQ) and the following calculations.

• Take a0 ∈ (F×l )κn with a2
0 6= 1 and take σ ∈ GF (ζl) with j(σ) =

(a0, 1, ..., 1; 1) ∈ ∆0. Then

πσ,a0Wχiσ,a0 6= (0).

• Take (a0, ..., an/2−1) ∈ (F×l )⊕n/2 and σ ∈ GF (ζl) with j(σ) =
T (a0, ..., an/2−1; ζ

−1
n ). Also take µ to be the product of ζ−1

n with a prim-
itive (2n)th root of 1. Set ai+n/2 = ζ−1

n ai for i = 0, ..., n/2− 1. Then

πσ,µei ⊗ fi+n/2iσ,µ = µn/2(ai+1...ai+n/2)
−1

and

πσ,µ(ei⊗fi+j∓ ζ−jn en/2+i+j⊗fn/2+i)iσ,µ = (1∓ (µζn)
−2j)µj(ai+1...ai+j)

−1.

Thus πσ,µWn/2iσ,µ 6= (0) and πσ,µW
±
j iσ,µ 6= (0).
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It follows from corollary VII.1.11 of [HT] that r1|Gal (F/F1)
is also automor-

phic of weight 0 and type {Sp n(1)}{vq|F1
} and level prime to l. (The only

tempered representations π of GLn(F1,vq|F1
) for which rl(π)∨(1− n)ss unram-

ified and rl(π)∨(1 − n)ss(Frobvq|F1
) has eigenvalues of the form {αq−j : j =

0, ..., n − 1} are unramified twists of Sp n(1).) From theorem 4.2 of [AC] we
deduce that r1|Gal (F/F ) is automorphic of weight 0 and type {Sp n(1)}{vq} and
level prime to l. (The base change must be cuspidal as it is square integrable
at one place.)

Finally we again apply theorem 4.3.4 to deduce that r is automorphic of
weight 0 and type {ρp}{vp} and level prime to l. The verification that r(GF+(ζl))
is big is exactly as above. 2

4.5 Totally real fields.

Let F+ be a totally real field. By a RAESDC (regular, algebraic, essentially
self dual, cuspidal) automorphic representation π of GLn(AF+) we mean a
cuspidal automorphic representation such that

• π∨ ∼= χπ for some character χ : (F+)×\A×F+ → C× with χv(−1) inde-
pendent of v|∞, and

• π∞ has the same infinitessimal character as some irreducible algebraic
representation of the restriction of scalars from F+ to Q of GLn.

One can ask whether if these conditions are met for some χ : (F+)×\A×F+ →
C×, they will automatically be met for some such χ′ with χ′v(−1) independent
of v|∞. This is certainly true if n is odd. (As then χn is a square, so that
χv(−1) = 1 for all v|∞.) It is also true if n = 2 (As in this case we can take
χ to be the inverse of the central character of π and the parity condition is
equivalent to the fact that if a holomorphic Hilbert modular form has weight
(kτ )τ∈Hom(F+,R) then kτ mod 2 is independent of τ .)

Let a ∈ (Zn)Hom(F+,C) satisfy

aτ,1 ≥ ... ≥ aτ,n

Let Ξa denote the irreducible algebraic representation of GL
Hom(F+,C)
n which

is the tensor product over τ of the irreducible representations of GLn with
highest weights aτ . We will say that a RAESDC automorphic representation
π of GLn(AF ) has weight a if π∞ has the same infinitessimal character as Ξ∨a .
In that case there is an integer wa such that

aτ,i + aτ,n+1−i = wa
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for all τ ∈ Hom (F+,C) and all i = 1, ..., n.
Let S be a finite set of finite places of F+. For v ∈ S let ρv be an irreducible

square integrable representation of GLn(F
+
v ). We will say that a RAESDC

automorphic representation π of GLn(AF+) has type {ρv}v∈S if for each v ∈ S,
πv is an unramified twist of ρ∨v .

Proposition 4.5.1 Let ı : Ql
∼→ C. Let F+ be a totally real field, S a finite

non-empty set of finite places of F+ and, for v ∈ S, ρv a square integrable
representation of GLn(F

+
v ). Let a ∈ (Zn)Hom(F+,C) be as above. Suppose that

π is a RAESDC automorphic representation of GLn(AF+) of weight a and
type {ρv}v∈S. Specifically suppose that π∨ ∼= πχ where χ : A×F+/(F

+)× → C×.
Then there is a continuous semisimple representation

rl,ı(π) : Gal (F
+
/F+) −→ GLn(Ql)

with the following properties.

1. For every prime v 6 |l of F+ we have

rl,ı(π)|ss
Gal (F

+
v /F

+
v )

= rl(ı
−1πv)

∨(1− n)ss.

2. rl,ı(π)∨ = rl,ı(π)ǫn−1rl,ı(χ).

3. If v|l is a prime of F+ then rl,ı(π)|
Gal (F

+
v /F

+
v )

is potentially semistable,

and if πv is unramified then it is crystalline.

4. If v|l is a prime of F+ and if τ : F+ →֒ Ql lies above v then

dimQl
gr i(rl,ı(π)⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 0

unless i = aıτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(rl,ı(π)⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 1.

Proof: Let F be an imaginary CM field with maximal totally real subfield
F+, such that all primes above l and all primes in S split in F/F+. Choose an
algebraic character ψ : A×F/F

× → C× such that χ ◦NF/F+ = ψ ◦NF/F+. (See
lemma 4.1.4.) Let πF denote the base change of π to F . Applying proposition
4.3.1 to πFψ, we obtain a continuous semi-simple representation

rF : Gal (F
+
/F ) −→ GLn(Ql)
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such that for every prime v 6 |l of F we have

rF |ssGal (F
+
v /Fv)

= rl(ı
−1πv|F+ )∨(1− n)|ss

Gal (F
+
v /Fv)

.

Letting the field F vary we can piece together the representations rF to obtain
r. (See the argument of the second half of the proof of theorem VII.1.9 of
[HT].) 2

The representation rl,ı(π) can be taken to be valued in GLn(O) where O
is the ring of integers of some finite extension of Ql. Thus we can reduce
it modulo the maximal ideal of O and semisimplify to obtain a continuous
semisimple representation

rl,ı(π) : Gal (F
+
/F+) −→ GLn(Fl)

which is independent of the choices made.
We will call a continuous semisimple representation

r : Gal (F
+
/F+) −→ GLn(Ql)

(resp.

r : Gal (F
+
/F+) −→ GLn(Fl))

automorphic of weight a and level {ρv}v∈S if it equals rl,ı(π) (resp. rl,ı(π)) for
some ı : Ql

∼→ C and some RAESDC automorphic form π of weight a and type
{ρv}v∈S (resp. and with πl unramified). We will say that r is automorphic
of weight a and type {ρv}v∈S and level prime to l if it equals rl,ı(π) for some
ı : Ql

∼→ C and some RAESDC automorphic form π of weight a and type
{ρv}v∈S with πl unramified.

The following lemma is proved just as lemma 4.3.2.

Lemma 4.5.2 Suppose that E+/F+ is a soluble Galois extension of CM fields.
Suppose that

r : Gal (F
+
/F+) −→ GLn(Ql)

is a continuous semisimple representation and that r|
Gal (F

+
/E+)

is irreducible

and automorphic of weight a and type {ρv}v∈S. Let SF+ denote the set of
places of F+ under an element of S. Then we have the following.

1. aτ = aτ ′ if τ |F+ = τ ′|F+ so we can define aF+ by aF+,σ = aeσ for any
extension σ̃ of σ to E+.

2. r is automorphic over F+ of weight aF+ and type {ρ′v}v∈SF+ for some
square integrable representations ρ′v.
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Theorem 4.5.3 Let F+ be a totally real field. Let n ∈ Z≥1 and let l > n be a
prime which is unramified in F+. Let

r : Gal (F
+
/F+) −→ GLn(Ql)

be a continuous irreducible representation with the following properties. Let r
denote the semisimplification of the reduction of r.

1. r∨ ∼= rǫn−1χ for some character χ : Gal (F
+
/F+) −→ Q

×

l with χ(cv)
independent of v|∞. (Here cv denotes a complex conjugation at v.)

2. r ramifies at only finitely many primes.

3. For all places v|l of F+, r|
Gal (F

+
v /F

+
v )

is crystalline.

4. There is an element a ∈ (Zn)Hom(F+,Ql) such that

• for all τ ∈ Hom(F+,Ql) we have

l − 1− n+ aτ,n ≥ aτ,1 ≥ ... ≥ aτ,n;

• for all τ ∈ Hom(F+,Ql) above a prime v|l of F+,

dimQl
gr i(r ⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 0

unless i = aτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(r ⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 1.

5. There is a finite non-empty set S of places of F+ not dividing l and for
each v ∈ S a square integrable representation ρv of GLn(F

+
v ) over Ql

such that
r|ss

Gal (F
+
v /F

+
v )

= rl(ρv)
∨(1− n)ss.

If ρv = Spmv
(ρ′v) then set

r̃v = rl((ρ
′
v)
∨| |(n/mv−1)(1−mv)/2).

Note that r|
Gal (F

+
v /F

+
v )

has a unique filtration Fil jv such that

gr jvr|Gal (F
+
v /F

+
v )
∼= r̃vǫ

j

146



for j = 0, ...,mv − 1 and equals (0) otherwise. We assume that r̃v has
irreducible reduction rv such that

rv 6∼= rvǫ
j

for j = 1, ...,mv. Then r|
Gal (F

+
v /F

+
v )

inherits a unique filtration Fil
j

v with

gr jvr|Gal (F
+
v /F

+
v )
∼= rvǫ

j

for j = 0, ...,mv − 1.

6. (F
+
)ker ad r does not contain F+(ζl).

7. H i(ad rGal (F
+
/F+(ζl)), ad 0r) = (0) for i = 0 and 1.

8. For all irreducible k[ad rGal (F
+
/F+(ζl))]-submodules W of ad r we can

find h ∈ ad rGal (F
+
/F+(ζl)) and α ∈ k with the following properties.

The α generalised eigenspace Vh,α of h in r is one dimensional. Let
πh,α : r → Vh,α (resp. ih,α) denote the h-equivariant projection of r to
Vh,α (resp. h-equivariant injection of Vh,α into r). Then πh,α ◦W ◦ ih,α 6=
(0).

9. r is irreducible and automorphic of weight a and type {ρv}v∈S with S 6= ∅.

Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then r is automorphic of weight a and type {ρv}v∈S and level prime to l.

Proof: Choose an imaginary CM field F with maximal totally real subfield
F+ such that

• all primes above l split in F/F+,

• all primes in S split in F/F+, and

• F is linearly disjoint from (F
+
)ker r(ζl) over F+.

Choose an algebraic character

ψ : Gal (F
+
/F ) −→ Q

×

l

such that

• χ|
Gal (F

+
/F )

= ψψc,
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• ψ is unramified above S,

• ψ is crystalline above l, and

• for each τ : F+ →֒ Ql there exists an extension τ̃ : F →֒ Ql such that

gr−aτ,n(Ql(ψ)⊗eτ ,Fv(eτ)
BDR)Gal (F v(eτ)/Fv(eτ)) 6= (0),

where v(τ̃ ) is the place of F above l determined by τ̃ .

(This is possible by lemma 4.1.5.) Now apply theorem 4.3.4 to r|
Gal (F

+
/F )
ψ

and this theorem follows easilly by the argument for lemma 4.3.2. 2

As the conditions of this theorem are a bit complicated we give a special
case as a corollary.

Corollary 4.5.4 Let n ∈ Z≥1 be even and let l > max{3, n} be a prime. Let

r : Gal (Q/Q) −→ GSpn(Zl)

be a continuous irreducible representation with the following properties.

1. r ramifies at only finitely many primes.

2. r|Gal (Ql/Ql)
is crystalline.

3. dimQl
gr i(r ⊗Ql

BDR)Gal (Ql/Ql) = 0 unless i ∈ {0, 1, ..., n − 1} in which
case it has dimension 1.

4. There is a prime q 6= l such that qi 6≡ 1 mod l for i = 1, ..., n and r|ssGQq

is unramified and r|ssGQq
(Frobq) has eigenvalues {αqi : i = 0, 1, ..., n− 1}

for some α.

5. The image of r mod l contains Spn(Fl).

6. r mod l is automorphic of weight 0 and type {Sp n(1)}{q}.

Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then r is automorphic of weight 0 and type {Sp n(1)}{q} and level prime
to l.
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Proof: Let r = r mod l. As PSpn(Fl) is simple, the maximal abelian quo-
tient of ad r(GQ) is

r(GQ)/(r(GQ) ∩ F×l )Spn(Fl) ⊂ PGSpn(Fl)/PSpn(Fl)
∼−→ (F×l )/(F×l )2.

Thus Q
ker ad r

does not contain Q(ζl).
Suppose that Spn = {g ∈ GLn : gJ tg = J} where

J =

(
0 1n/2
−1n/2 0

)
.

Define submodules R0, R1 and R2 of ad r as follows. R0 consists of scalar
matrices. R1 consists of matrices A such that AJ + J tA = 0. Finally R2

consists of matrices A such that trA = 0 and AJ−J tA = 0. Each is preserved
by GSpn(Fl). As l > n we see that

ad r = R0 ⊕ R1 ⊕ R2

and each Ri is an irreducible Spn(Fl)-module. (The latter fact is because each
Ri is a Weyl module with l-restricted highest weight.) ThusH0(GQ(ζl), ad 0r) =
(0). Moreover condition 8 of the theorem is verified by choosing α ∈ F×l with
α2 6= 1 and taking h to be the diagonal matrix

diag(α, 1, ..., 1, α−1, 1, ..., 1)

in Spn(Fl).
Finally let Bn denote the Borel subgroup of elements of Spn of the form

(
a b
0 ta−1

)

with a upper triangular. Then (ad r)Bn(Fl) = R0. Also let Tn denote the
subgroup of Spn consisting of diagonal elements. Associate the character group
X∗(Tn) with Zn/2 by

(a1, ..., an/2)diag(t1, ..., tn/2, t
−1
1 , ..., t−1

n/2) = ta1
1 ...t

an/2

n/2 .

Corollary 2.9 of [CPS] tells us that H1(Spn(Fl), ad 0r) = (0). (According to
footnote (23) on page 182 of [CPS], because l > 3, we may take ψ of corollary
2.9 of [CPS] to consist of (1,−1, 0, ..., 0), (0, 1,−1, ..., 0), ..., (0, 0, ..., 1,−1),
and (0, 0, ..., 0, 2). Then that corollary tells us that

dimH1(Spn(Fl), ad 0r) = 2(n/2− 1) + 1− (n− 1) = 0.)

It follows that H1(GQ(ζl), ad 0r) = (0).
The corollary now follows from the theorem. 2
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Theorem 4.5.5 Let n > 1 be an even integer. Let M/Q be an imaginary CM
field which is cyclic Galois of degree n. Let τ generate Gal (M/Q). Let l be
a rational prime such that l > 8((n + 2)/4)n/2+1, l ≡ 1 mod n, and l splits
completely in M . Let p be a prime which is inert and unramified in M . Let
q 6= l be a prime which splits completely in M and satisfies qi 6≡ 1 mod l for
i = 1, ..., n.

Let
θ : Gal (Q/M) −→ F

×

l

be a continuous character such that

• θθc = ǫ1−n;

• there exists a prime w|l of M such that for i = 0, ..., n/2 − 1 we have
θ|IM

τiw
= ǫ−i;

• θ is unramified above q;

• and for j = 1, ..., n− 1 we have θ|Gal (Mp/Mp) 6= θ
τ j

|Gal (Mp/Mp).

Suppose that there exists an imaginary quadratic field E/Q linearly disjoint

from M
ker θ

(ζl) in which l, p, q and all primes above which θ or M is ramified
split, and such that l does not divide the class number of E.

Let F+/F+
0 be a Galois extension of totally real fields with F+ linearly

disjoint from the Galois closure of E(ζl)M
ker θ

over Q. Suppose that that l is
unramified in F+ and that there is a prime vp,0 of F+

0 split over p. Let

r : Gal (F+/F+) −→ GLn(Ql)

be a continuous representation such that

• r ∼= (Ind
Gal (Q/Q)

Gal (Q/M)
θ)|Gal (Q/F+);

• r∨ ∼= rǫn−1;

• r is unramified at all but finitely many primes;

• For all places v|l of F+, r|
Gal (F

+
v /F

+
v )

is crystalline.

• For all τ ∈ Hom (F+,Ql) above a prime v|l of F+,

dimQl
gr i(r ⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 1

for i = 0, ..., n− 1 and = 0 otherwise.
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• There is a place vq|q of F+ such that #k(vq)
j 6≡ 1 mod l for

j = 1, ..., n−1, and such that r|ss
Gal (F

+
vq
/F+

vq )
is unramified and finally such

that r|ss
Gal (F

+
vq
/F+

vq )
(Frobvq) has eigenvalues {α(#k(vq))

j : j = 0, ..., n−1}

for some α ∈ Q
×

l .

Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then r is automorphic over F+ of weight 0 and type {Sp n(1)}{vq} and level
prime to l.

Proof: Apply theorem 4.4.4 to F = F+E and use the argument of lemma
4.3.2. 2
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valeurs dans un anneau local complet, in “p-adic monodromy and the
Birch and Swinnerton-Dyer conjecture”, Contemp. Math. 165 (1994),
213–237.

[Cl] L.Clozel, On the cohomology of Kottwitz’s arithmetic varieties, Duke
Math. J. 72 (1993), 757-795.

[CL] L.Clozel and J.-P.Labesse, Changement
de base pour les représentations cohomologiques des certaines groupes
unitaires, appendix to “Cohomologie, stabilisation et changement de
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APPENDIX A: The level raising operator

after Russ Mann.

In this appendix we will explain Russ Mann’s proof of lemma 2.2.7 and propo-
sition 2.2.8. A preliminary write-up of most of the arguments can be found in
[M2], but as Russ has left academia it seems increasingly unlikely that he will
finish [M2]. Hence this appendix. Russ actually found more general results
concerning level raising for forms of level greater than 1, which we do not re-
port on here. We stress that the arguments of this appendix are entirely due
to Russ Mann, though we of course take responsibility for any errors in their
presentation.

Write Bn for the Borel subgroup of GLn consisting of upper triangular
matrices and write Nn for its unipotent radical. Also write Tn for the maximal
torus in GLn consisting of diagonal matrices and write Pn for the subgroup of
GLn consisting of matrices with last row (0, ..., 0, 1).

Let Fw be a finite extension of Qp with ring of integers OFw . Let w :
F×w →→ Z denote the valuation, let ̟w denote a uniformiser of OFw and let

qw = #OFw/(̟w). Also let O denote the subring of C generated by q
−1/2
w and

all p-power roots of 1. Let Sn denote the symmetric group on n letters and set

R+
n = O[X1, ..., Xn]

Sn ⊂ Rn = O[X±1
1 , ..., X±1

n ]Sn ,

where Sn permutes the variables Xi. Sometimes we will want to consider
Rn and Rn−1 at the same time. To make the notation clearer we will write
Rn−1 = O[Y ±1

1 , ..., Y ±1
n−1]

Sn−1 and R+
n−1 = O[Y1, ..., Yn−1]

Sn−1. We will also set

R∧n−1 = O[[Y1, ..., Yn−1]]
Sn−1

and R≤mn−1 to equal to the O-submodule of R+
n−1 consisting of polynomials of

degree ≤ m in each variable separately.
Let αj = ̟w1j ⊕ 1n−j and let T (j) denote the double coset

T (j) = GLn(OFw)αjGLn(OFw).

Let GLn(OFw)+ denote the sub-semigroup of GLn(Fw) consisting of matrices
with entries in OFw . Then

O[GLn(OFw)\GLn(Fw)+/GLn(OFw)] = O[T (1), T (2), ..., T (n)]

and

O[GLn(OFw)\GLn(Fw)/GLn(OFw)] = O[T (1), T (2), ..., T (n), (T (n))−1].
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Define ∼ from O[GLn(OFw)\GLn(Fw)/GLn(OFw)] to itself by

[GLn(OFw)gGLn(OFw)]∼ = [GLn(OFw)g−1GLn(OFw)].

Then (T (j))∼ = (T (n))−1T (n−j).
There is an isomorphism (a certain normalisation of the the Satake isomor-

phism)
S : O[GLn(OFw)\GLn(Fw)/GLn(OFw)]

∼−→ Rn

which sends T (j) to q
j(1−j)/2
w times the jth elementary symmetric function in

the Xi’s (i.e. to the sum of all products of j distinct Xi’s). We have

S(O[GLn(OFw)\GLn(Fw)+/GLn(OFw)]) = R+
n

and
S(T∼)(X1, ..., Xn) = S(T )(qn−1

w X−1
1 , ..., qn−1

w X−1
n ).

If we write
O[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m

for the submodule of O[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)] spanned by
the double cosets

GLn−1(OFw)diag(t1, ..., tn−1)GLn−1(OFw),

where m ≥ w(t1) ≥ ... ≥ w(tn−1) ≥ 0, then

S(O[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m) = (O[Y1, ..., Yn−1]
Sn−1)≤m.

Let U1(w
m) denote the subgroup of GLn(OFw) consisting of elements which

reduce modulo ̟m
w to an element of Pn(OFw/(̟

m
w )). For j = 1, ..., n− 1 let

U (j) = Pn(OFw)αjPn(OFw).

Note that U (j)/Pn(OFw) has finite cardinality. If π is a smooth representation
of GLn(Fw) and if m ∈ Z≥1 then

• the operators U (j) on πPn(OFw ) commute, and

• the action of U (j) preserves πU1(wm) and in fact acts the same way as

U1(w
m)αjU1(w

m)

on this space.
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(This is proved by writing down explicit coset decompositions, see for instance
proposition 4.1 of [M1] .)

Let A be an O-module and suppose that

T =
∑

i

aiGLn−1(OFw)giGLn−1(OFw)

is in A[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]. Define

V (T ) =
∑

i

ai| det gi|n−1/2Pn(OFw)

(
g−1
i 0
0 1

)
GLn(OFw).

Note that if h ∈ GLn−1(Fw)+ and

GLn−1(OFw)h−1GLn−1(OFw) =
∐

j

hjGLn−1(OFw)

then

Pn(OFw)

(
h−1 0
0 1

)
GLn(OFw) =

∐

j

(
hj 0
0 1

)
GLn(OFw).

Similarly if m ∈ Z≥1 and if

T =
∑

i

aiGLn−1(OFw)giGLn−1(OFw)

is in A[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m define

Vm(T ) =
∑

i

ai| det gi|n−1/2U1(w
m)

(
g−1
i 0
0 1

)
GLn(OFw).

Note that if h ∈ GLn−1(Fw)+ is such that GLn−1(OFw)hGLn−1(OFw) lies in
A[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m, and if

GLn−1(OFw)h−1GLn−1(OFw) =
∐

j

hjGLn−1(OFw)

then

U1(w
m)

(
h−1 0
0 1

)
GLn(OFw) =

∐

j

(
hj 0
0 1

)
GLn(OFw).

We deduce that if π is any smooth representation of GLn(Fw) and if T ∈
A[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m then V (T ) preserves the space
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πU1(wm) and acts on it via Vm(T ). In the case A = Rn the map Vm induces a
map, which we will also denote Vm:

Rn[GLn−1(OFw
)\GLn−1(Fw)+/GLn−1(OFw

)]≤m → O[U1(w
m)\GLn(Fw)/GLn(OFw

)]

by the formula

Vm(
∑

i ai[GLn−1(OFw)giGLn−1(OFw)])

=
∑

i | det gi|n−1/2

[
U1(w

m)

(
g−1
i 0
0 1

)
GLn(OFw)

]
◦ S−1(ai).

Proposition 5.2 of [M1] says that the set of

Vm(GLn−1(OFw)diag(t1, ..., tn−1)GLn−1(OFw)),

where t ∈ Tn−1(Fw)/Tn−1(OFw) with m ≥ w(t1) ≥ ... ≥ w(tn−1) ≥ 0 is a basis
of O[U1(w

m)\GLn(Fw)/GLn(OFw)] as a right Rn-module. Hence

Vm : Rn[GLn−1(OFw
)\GLn−1(Fw)+/GLn−1(OFw

)]≤m → O[U1(w
m)\GLn(Fw)/GLn(OFw

)]

is an isomorphism of free Rn-modules.
Let

ψ : Fw −→ O×

be a continuous character with kernel OFw . We will also think of ψ as a
character of Nn(Fw) by setting

ψ(u) = ψ(u1,2 + u2,3 + ...+ un−1,n).

If A is a O-algebra we will write Wn(A,ψ) for the set of functions

W : GLn(Fw) −→ A

such that

• W (ug) = ψ(u)W (g) for all g ∈ GLn(Fw) and u ∈ Nn(Fw),

• and W is invariant under right translation by some open subgroup of
GLn(Fw).

Thus Wn(A,ψ) is a smooth representation of GLn(Fw) (acting by right trans-
lation).

There is a unique element W 0
n(ψ) ∈ Wn(Rn, ψ)GLn(OFw ) such that

• W 0
n(ψ)(1n) = 1 and
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• TW 0
n(ψ) = S(T )W 0

n(ψ) for all T ∈ O[GLn(OFw)\GLn(Fw)/GLn(OFw)].

Moreover if the last row of g is integral then W 0
n(ψ)(g) ∈ R+

n . (These facts are
proved exactly as in [Sh].)

Suppose again that A is a O-algebra. If W ∈ Wn(A,ψ)Pn(OFw ) we heuris-
tically define Φ(W ) ∈ A⊗O R∧n−1 = A[[Y1, ..., Yn−1]]

Sn−1 by

Φ(W ) =

∫

Nn−1(Fw)\GLn−1(Fw)

W

(
g 0
0 1

)
W 0
n−1(ψ

−1)(g)| det g|s−n+1/2dg

∣∣∣∣
s=0

where the implies Haar measures give GLn−1(OFw) and Nn−1(OFw) volume 1.
Rigorously one can for instance set

Φ(W ) =
∑

t

W

(
t 0
0 1

)
W 0
n−1(ψ

−1)(t)| det t|s−n+1/2|t1|2−n|t2|4−n...|tn−1|n−2

where t = diag(t1, ..., tn−1) runs over elements of Tn−1(Fw)/Tn−1(OFw) with

w(t1) ≥ w(t2) ≥ ... ≥ w(tn−1) ≥ 0.

For such t the value W 0
n−1(ψ

−1)(t) is a homogeneous polynomial in the Yi’s
of degree w(det t) and these polynomials are linearly independent over A for
t ∈ Tn−1(Fw)/Tn−1(OFw) with w(t1) ≥ w(t2) ≥ ... ≥ w(tn−1) ≥ 0. (As in [Sh].)
In particular if W ∈ Wn(A,ψ)Pn(OFw ) then Φ(W ) determines W |Pn(Fw). As in
section (1.4) of [JS2] we see that

Φ(W 0
n(ψ)) =

∏

i,j

(1−XiYj)
−1.

Fix an embedding ı : Rn →֒ C. There is a unique irreducible smooth rep-
resentation π of GLn(Fw) such that O[GLn(OFw)\GLn(Fw)/GLn(OFw)] acts
on πGLn(OFw ) via ı ◦ S. Moreover there is an embedding π →֒ Wn(C, ψ) which
is unique up to C×-multiples. It follows from [Sh] that ıW 0

n(ψ) is in the image
of π. It follows from sections (3.5) and (4.2) of [JPSS] that

Φ : (Rn[GLn(Fw)]W 0
n(ψ))Pn(OFw ) →֒

∏

i,j

(1−XiYj)
−1Rn[Y1, ..., Yn−1]

Sn−1.

From corollary 3.5 of [M1] we see also see that

dimC(Rn[GLn(Fw)]W 0
n(ψ))U1(wm))⊗Rn,ı C ≤ dimC π

U1(wm) =

(
m+ n− 1
n− 1

)
.
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If W ∈ (Rn[GLn(Fw)]W 0
n(ψ))Pn(OFw ) and Φ(W ) = 1 then we see that

W |Pn(Fw) is supported on Nn(Fw)Pn(OFw) and that W (1n) = 1. Thus we
have (U (j)W )|Pn(Fw) = 0. (Recall that we only have to check this at ele-
ments diag(t1, ..., tn−1, 1) and that any element of Wn(Rn, ψ) will vanish at
diag(t1, ..., tn−1, 1) unless w(ti) ≥ 0 for all i. To check at the remaining diag-
onal matrices one uses the explicit single coset decomposition in proposition
4.1 of [M1].) Hence Φ(U (j)W ) = 0 and so U (j)W = 0.

Recall that if h ∈ GLn−1(Fw)+ and

GLn−1(OFw)h−1GLn−1(OFw) =
∐

j

hjGLn−1(OFw)

then

Pn(OFw)

(
h−1 0
0 1

)
GLn(OFw) =

∐

j

(
hj 0
0 1

)
GLn(OFw).

From this and a simple change of variable in the integral defining Φ we see that
if T ∈ A[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)] and f ∈ Wn(A,ψ)GLn(OFw )

then
Φ(V (T )f) = S(T )Φ(f).

Thus we have

Rn[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m T
↓ ↓

(Rn[GLn(Fw)]W 0
n(ψ))U1(wm) Vm(T )W 0

n(ψ) W
↓ ↓∏

i,j(1−XiYj)
−1Rn[Y1, ..., Yn−1]

Sn−1 Φ(W ).

The composite sends

T 7−→ S(T )
∏

i,j

(1−XiYj)
−1.

The composite is an isomorphism to its image:
∏

i,j

(1−XiYj)
−1(Rn[Y1, ..., Yn−1]

Sn−1)≤m,

which is a direct summand of
∏

i,j(1 −XiYj)
−1Rn[Y1, ..., Yn−1]

Sn−1 and which
is free over Rn of rank (

m+ n− 1
n− 1

)
.
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As

dimC(Rn[GLn(Fw)]W 0
n(ψ))U1(wm))⊗Rn,ı C ≤

(
m+ n− 1
n− 1

)
,

we deduce that

Rn[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m
∼−→ O[U1(w

m)\GLn(Fw)/GLn(OFw)]
∼−→ (Rn[GLn(Fw)]W 0

n(ψ))U1(wm)

∼−→ ∏
i,j(1−XiYj)

−1(Rn[Y1, ..., Yn−1]
Sn−1)≤m.

Lemma 2.2.7 follows immediately from this.
Let θ denote the element of

O[U1(w
m)\GLn(Fw)/GLn(OFw)]

which is Vn(
∏

i,j(1−XiYj)). Then

Φ(θW 0
n(ψ)) = 1.

Moreover U (j)θW 0
n(ψ) = 0 and so U (j)θ = 0 for j = 1, ..., n−1. Thus θ satisfies

the first three parts of proposition 2.2.8.
We now turn to the proof the final part of proposition 2.2.8. Write

θ =
∑

a

[U1(w
n)diag(̟−a1

w , ..., ̟−an−1
w , 1)GLn(OFw)]Ta

where Ta ∈ O[GLn(OFw)\GLn(Fw)/GLn(OFw)] and where a = (a1, ..., an−1)
runs over elements of Zn−1 with

n ≥ a1 ≥ ... ≥ an−1 ≥ 0.

As
∑

a

S(Ta)S(GLn−1(OFw)diag(̟a1
w , ..., ̟

an−1
w )GLn−1(OFw)) =

∏

i,j

(1−XiYj)

we see that
S(T(n,...,n)) = (X1...Xn)

n−1,

i.e. T(n,...,n) = q
n(n−1)2/2
w (T (n))n−1. Let η = 1n−1 ⊕ ̟n

w and define θ̂ as we did
just before proposition 2.2.8. Thus we have

θ̂ =
∑

a

(T (n))−nTa[GLn(OFw)diag(̟n−a1
w , ..., ̟n−an−1

w , 1)U1(w
n)].
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Again π denote the GLn(Fw)-subrepresentation of Wn(C, ψ) generated by
ıW 0

n(ψ). Define ı̃ : Rn →֒ C to be the O-linear map sending Xi to qn−1
w ı(Xi)

−1.
Let π̃ denote the GLn(Fw)-subrepresenetation of Wn(C, ψ

−1) generated by
ı̃(W 0

n(ψ−1)). Then π̃ is the contragredient of π. Write genn for the compact

induction c-Ind
Pn(Fw)
Nn(Fw)C(ψ). It follows from proposition 3.2 and lemma 4.5 of

[BZ] that gen embeds in π|Pn(Fw) and in π̃|Pn(Fw). Moreover it follows from
proposition 3.8 and lemma 4.5 of [BZ] that any Pn(Fw) bilinear form

〈 , 〉 : π × π̃ −→ C

restricts non-trivially to genn × genn. Hence there is a unique such bilinear
form up to scalar multiples and so any Pn(Fw)-bilinear pairing π × π̃ → C is
also GLn(Fw)-bilinear. Such a pairing is given by

〈W, W̃ 〉 =

∫

Nn(Fw)\Pn(Fw)

W (g)W̃ (g)| det g|sdg
∣∣∣∣
s=0

.

Here we use a Haar measure on Nn(Fw) giving Nn(OFw) volume 1 and a right
Haar measure on Pn(Fw) giving Pn(OFw) volume 1. The integral may not
converge for s = 0, but in its domain of convergence it is a rational function
of qsw and so has meromorphic continuation to the whole complex plane.

We will complete the proof of proposition 2.2.8 by evaluating

〈ıθ̂θW 0
n(ψ), ı̃W 0

n(ψ−1)〉

in two ways. Firstly moving the θ̂ to the other side of the pairing we obtain

[GLn(OFw) : U1(w
n)]
∑

a ı̃ ◦ S(T̃a(T
(n))n)

〈ıθW 0
n(ψ), ı̃[U1(w

n)diag(̟a1−n
w , ..., ̟an−1−n

w , 1)GLn(OFw)]W 0
n(ψ−1)〉.

But (θW 0
n(ψ))|Pn(Fw) is supported onNn(Fw)Pn(OFw) and equals 1 on Pn(OFw).

Thus 〈ıθW 0
n(ψ), W̃ 〉 simply equals W̃ (1n). We deduce that

〈ıθ̂θW 0
n(ψ), ı̃W 0

n(ψ−1)〉 = (qnw − 1)q
n(n−1)
w

∑
a ı̃ ◦ S(T̃a(T

(n))n)

ı̃([U1(w
n)diag(̟a1−n

w , ..., ̟an−1−n
w , 1)GLn(OFw)]W 0

n(ψ−1))(1n).

The terms of this sum are zero except for the term a1 = ... = an−1 = n which
gives

(qnw − 1)qn(n−1)
w ı̃S(qn(n−1)2/2

w T (n)),

i.e.
(qnw − 1)q(n+2)n(n−1)/2

w ı(X1...Xn)
−1.
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On the other hand
〈ıθ̂θW 0

n(ψ), ı̃W 0
n(ψ−1)〉

equals
ı(S(θ̂)θ)〈ıW 0

n(ψ), ı̃W 0
n(ψ−1)〉.

We consider the integral
∫

Nn(Fw)\Pn(Fw)

W (g)W̃ (g)| det g|sdg

with the Haar measures described above. It equals
∑

t

ı(W 0
n(ψ)(t))̃ı(W 0

n(ψ−1)(t))|t1|2−n+s|t2|4−n+s...|tn|n+s,

where the sum runs over t = diag(t1, ..., tn) ∈ Tn(Fw)/Tn(OFw) with

w(t1) ≥ w(t2) ≥ ... ≥ w(tn) = 0.

Because ı(W 0
n(ψ)(t))̃ı(W 0

n(ψ−1)(t)) is invariant under the multiplication of t
by an element of F×w this in turn equals

(1− q−n(s+1)
w )

∑

t

ı(W 0
n(ψ)(t))̃ı(W 0

n(ψ−1)(t))|t1|2−n+s|t2|4−n+s...|tn|n+s,

where now the sum runs over t = diag(t1, ..., tn) ∈ Tn(Fw)/Tn(OFw) with

w(t1) ≥ w(t2) ≥ ... ≥ w(tn) ≥ 0.

This in turn equals (1− q−n(s+1)
w ) times

∫

Nn(Fw)\GLn(Fw)

ı(W 0
n(ψ)(g))̃ı(W 0

n(ψ−1)(g))ϕ((0, ..., 0, 1)g)| det g|1+sdg,

where ϕ is the characteristic function of On
Fw

and where we use the Haar
measures on Nn(Fw) (resp. GLn(Fw)) which give Nn(OFw) (resp. GLn(OFw))
volume 1. As in proposition 2 of [JS1] this becomes

(1− q−n(s+1)
w )

n∏

i=1

n∏

j=1

(1− ı(Xi/Xj)q
−(1+s)
w )−1.

Thus

〈ıθ̂θW 0
n(ψ), ı̃W 0

n(ψ−1)〉 = ı(S(θ̂)θ)(1− q−nw )
n∏

i=1

n∏

j=1

(1− ı(Xi/Xj)q
−1
w )−1.
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Thus we conclude that

S(θ̂θ) = qn
2(n−1)/2

w (X1...Xn)
−(n+1)

n∏

i=1

n∏

j=1

(qwXi −Xj),

and we have completed the proof of proposition 2.2.8.
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APPENDIX B: Unipotent representations of

GL(n, F ) in the quasi-banal case.

By M.-F.Vigneras

Let F be a local non archimedean field of residual characteristic p and let R
be an algebraically closed field of characteristic 0 or ℓ > 0 different from p.
Let G = GL(n, F ). The category ModRG of (smooth) R-representations of
G is equivalent to the category of right modules HR(G) for the global Hecke
algebra (the convolution algebra of locally constant functions f : G→ R with
compact support, isomorphic to the opposite algebra by f(g)→ f(g−1).)

ModRG ≃ ModHR(G).

Definitions. We are in the quasi-banal case when the order of the maximal
compact subgroup of G is invertible in R (the banal case), or when q = 1 in
R and the characteristic of R is ℓ > n (the limit case).

A block of ModRG is an abelian subcategory of ModRG which is a direct
factor of ModRG and is minimal for this property. One proves that ModRG
is a product of blocks [V2, III.6]. The unipotent block BR,1(G) is the block
containing the trivial representation. An R-representation of G is unipotent if
it belongs to the unipotent block.

Notations. Let I, B = TU be a standard Iwahori, Borel, diagonal, stritly
upper triangular subgroup of G, To the maximal compact subgroup of T , Ip the
pro-p-radical of I. The functor Ind G

B : ModRB → ModRG is the normalized
induction. The group I has a normal subgroup Iℓ of pro-order prime to ℓ and
a finite ℓ subgroup Iℓ such that I = IℓIℓ. To get a uniform notation, we set
Iℓ = I, Iℓ = {1} when the characteristic of R is 0. We have I = Iℓ, Iℓ = {1}
in the banal case and I 6= Iℓ, Iℓ 6= {1} in the limit case. Let ModHR(G, I) be
the category of right modules for the Iwahori Hecke algebra (isomorphic to its
opposite)

HR(G, I) := End RGR[I\G] ≃R R[I\G/I].
Let ModR(G, I) be the category of R-representations of G generated by their
I-invariant vectors.
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1 Theorem In the quasi-banal case,
1) The category ModR(G, I) is stable by subquotients.
2) For any V ∈ ModR(G, I), one has V Ip = V I , in particular R[I\G] is

projective in ModR(G, I).
3) The I-invariant functor

V → V I : ModR(G, I)→ ModHR(G, I)

is an equivalence of categories.
4) The Iℓ-invariant functor on the unipotent block BR,1(G)

V → V Iℓ

: BR,1(G)→ ModHR(G, Iℓ)

is an equivalence of categories.
5) In the banal case, ModR(G, I) is the unipotent block.
6) In the limit case, ModR(G, I) is not the unipotent block.
7) The parabolically induced representation Ind G

B1 is semi-simple (hence
also Ind G

P 1 for all parabolic subgroups P of G). In the limit case, Ind G
BX is

semi-simple for any unramified R-character X : T/To → R∗ of T .
8) In the limit case, HR(G, Iℓ) ≃ HR(G, I)⊗R R[Iℓ].

The proof of the theorem uses some general results (A), . . . , (H), valid in
the non quasi-banal case (except (E) and (G)) and for most of them when G
is a general reductive connected p-adic group. We recall them first.

(A) The algebra R[T/To] is identified to its image in HR(G, I) by the
Bernstein embedding

(1) tB : R[T/To]→ HR(G, I)

such that the U -coinvariants induces a R[T/To]-isomorphism

(2) V I ≃ (VU)To

for any V ∈ ModRG [V2, II.10.2].

(B) By [Dat], we have a (G,R[T/To])-isomorphism

(3) R[I\G] ≃ Ind G
BR[T/To]

when R[T/To] is embedded in HR(G, I) by the Bernstein embedding tB :
R[T/To] → HR(G, I), defined by the opposite (lower triangular) B of B as
in (A), where R[T/To] is the universal representation of T inflated to B.
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Hence for any character X : T/To → R∗ i.e. an algebra homomorphism
R[T/To]→ R

(4) R ⊗X,R[T/To],tB
R[I\G] ≃ Ind G

BX

(5) R ⊗X,R[T/To],tB
HR(G, I) ≃ (Ind G

BX)I .

(C) The compact induction from an open compact subgroup K of G to
G has a right adjoint the restriction from G to K [V1, I.5.7]. In particular,
a representation generated by its I-invariant vectors is a quotient of a direct
sum of R[I\G] (denoted ⊕R[I\G]).

(D) The double cosets of G modulo (Ip, I) are in bijection with the double
cosets of G modulo (I, I). This is clear by the Bruhat decomposition. In
particular, the Ip-invariants of R[I\G] is equal to the I-invariants.

(E) In the quasi-banal case, every cuspidal irreducible representation of
every Levi subgroup of G is supercuspidal [V1, III.5.14].

(F) The irreducible unipotent representations are the irreducible subquo-
tients of R[I\G] by [V2, IV.6.2].

(G) When q = 1 in R, the Iwahori-Hecke algebra is the group algebra of
the affine symmetric group

N/To ≃ W.(T/To) ≃ SnZ
n

(semi-direct product) where N is the normalizer of T in G and W := N/T with
its natural action on T/To. Naturally T/To ≃ Zn by choice of a uniformizing
parameter pF of F and W ≃ Sn the symmetric group on n letters with its
natural action on Zn. The natural embedding

(6) R[T/To]→ HR(G, I) ≃ R[W.(T/To)]

is equal to tB = tB. These properties are deduced without difficulty from [V1,
I.3.14], [V2, II.8].

(H) When q = 1 in R, let πi be an irreducible R-representation of the
group GL(nidi, F ) wich cuspidal support ⊗niσi, for an irreducible cuspidal
R-representation σi of GL(di, F ) for all 1 ≤ i ≤ k. Suppose that σi is not
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equivalent to σj if i 6= j. Then the representation of GL(
∑

i nidi, F ) parabol-
ically induced from π1 ⊗ . . .⊗ πk is irreducible by [V2, V.3].

Proof of the theorem 1 We suppose that we are in the quasi-banal case.
a) We prove that any irreducible subquotient V of R[I\G] has a non zero

I-invariant vector. The U -coinvariants VU of any irreducible subquotient V of
the representation (3) have a non zero vector invariant by To, by (E). By (2),
VU has a non zero I-invariant vector.

b) We prove that if W ⊂ V are subrepresentations of ⊕R[I\G], then
W I = V I implies W = V , and V I = V Ip . The geometric property (D) implies
that the Ip-invariants of any subrepresentation of ⊕R[I\G] is equal to its I-
invariants. Hence W I = W Ip , V I = V Ip . The functor of Ip-invariants is exact
and any irreducible subquotient of R[I\G] has a non zero Ip-invariant vector
by a). Hence W Ip = V Ip implies W = V .

c) We prove the property 1) of the theorem. The property is trivial with
quotient instead of subquotient. Let Y ⊂ X and p : ⊕R[I\G]→ X a surjective
G-homomorphism. Let us denote by V the inverse image of Y by p, and
by W the subrepresentation of V generated by V I . We have W I = V I by
construction, hence W = V by b). Hence V is generated by its I-invariant
vectors. The same is true for its quotient Y .

d) We prove the property 2) of the theorem. In c) V is a subrepresentation
of⊕R[I\G] hence we have V I = V Ip by b). The functor of Ip-invariants is exact
hence p(V Ip) = Y Ip. As Y I ⊂ Y Ip and p(V I) ⊂ Y I we have Y I = Y Ip = p(V I).
This is valid for any Y hence for any representation of ModR(G, I).

e) We prove the property 3) of the theorem. All the conditions of the
theorem of Arabia [A, th.4 2) (b-2)] are satisfied.

f) We prove the property 4) of the theorem. Let V be a unipotent repre-
sentation. Then V is generated by V Iℓ

by (F). The irreducible subquotients of
the action of I on V Iℓ

are trivial, because I/Iℓ is an ℓ-group. Conversely let V
be a representation generated by V Iℓ

. Then the irreducible subquotients of V
are unipotent, and a representation such that all its irreducible subquotients
are unipotent is unipotent. As the pro-order of Iℓ is invertible in R, and the
unipotent block is generated by Ind G

Iℓ1R = R[Iℓ\G], the Iℓ-invariant functor
is an equivalence of category with the Hecke algebra HR(G, Iℓ).

g) We prove the property 5) of the theorem. In the banal case I = Iℓ and
compare the properties 3) and 4) of the theorem.

h) We prove the property 6) of the theorem. In the limit case, I 6= Iℓ.
The I-invariants of Ind G

Iℓ1 can be computed using the decomposition of the
parahoric restriction-induction functor [V3, C.1.4] and the simple property

dim(Ind I
Iℓ1)I = 1.
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One finds that the I-invariants of Ind G
Iℓ1 are the I-invariants of its proper sub-

representation Ind G
I 1 = R[I\G]. Hence the unipotent representation Ind G

Iℓ1
is not generated by its I-invariant vectors.

i) We prove the property 7) of the theorem. In the banal case Ind G
B1

is irreducible. We suppose that we are in the limit case. By (4), Ind G
B1 is

generated by its I-invariant vectors. Hence by the property 3) of the theorem,
Ind G

B1 is semi-simple if (Ind G
B1)I is a semi-simple right HR(G, I)-module. By

(5) for the trivial character of T , we have

(Ind G
B1)I ≃ R⊗1,R[T/To],tB

HR(G, I).

By (6), the action of HR(G, I) ≃ R[W.(T/To)] on (Ind G
B1)I restricted to

R[T/To] is trivial. As R[W ] is semi-simple, (Ind G
B1)I is a semi-simple right

HR(G, I)-module.
Every parabolic subgroup of G is conjugate to a parabolic group P which

contains B, and the isomorphism class of Ind G
P1 does not change when P

is replaced by a conjugate in G. We have an inclusion Ind G
P1 ⊂ Ind G

B1 in
ModRG. As Ind G

B1 is semi-simple, the same is true for Ind G
P1.

Let X be an unramified R-character of T . Modulo conjugaison X = ⊗iXi

is the external product of characters Xi := xi1 of the diagonal subgroups Ti
of Gi := GL(ni, F ), which are different multiples of the identity character,
xi 6= xj ∈ R∗ if i 6= j and

∑
i ni = n. The parabolic induction ModR

∏
iGi →

ModRG sends any irreducible subquotient of ⊗iInd G
Bi
xi1 to an irreducible

representation of G by (H). This implies the semi-simplicity of Ind G
BX.

j) The property 8) of the theorem results from the (known) formula (8)
and (10) below, applied to V = R[I/Iℓ].

Let R be any commutative ring. An R-representation σ : I/Ip → GLRV
of I/Ip identifies to an R-representation of I trivial on Ip. We have I = ToIp.
The Weyl group W ≃ Sn acts on To/To ∩ Ip ≃ I/Ip by conjugation, and by
inflation the affine group W.(T/To) acts on I/Ip. One denotes by Intw.V the
representation of I/Ip deduced from V by conjugation by w ∈W.(T/To). The
endomorphism algebra End RGInd G

I V is isomorphic as an R-module to ([V2,
II.2 page 562] and [V3,C.1.5]):

(8) End RGInd G
I V ≃ ⊕w∈W.(T/To)Hom RI(V, Intw.V ),

where Hom RI(V, Intw.V ) is the space of A ∈ End RV such that A ◦ σ(k) =
σ(wkw−1) ◦ A, ∀k ∈ I/Ip. A function in Ind G

I V with support Ig and value v
at g is denoted by [Ig, v] for all g ∈ G, v ∈ V . The representation Ind G

I V is
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generated by [I, v] for all v ∈ V . The endomorphism Tw,A in End RGInd G
I V

corresponding to (w,A) by (8) sends [I, v] to [V2, II.2 page 562]:

(9) [I, v]Tw,A =
∑

x

[Ix,Ax(v)]

where IwI = ∪xIx is a disjoint decomposition and Ax = A ◦ σ(w−1x). Let
w,w′ ∈ W.(T/To) and A ∈ Hom RI(V, Intw′.V ), B ∈ Hom RI(V, Intw′.V ). We
use that the image of [I, v] by g−1 is g−1[I, v] = [Ig, v] for g ∈ G, v ∈ V , (9)
and the G-equivariance of Tw′,B, to see that the product Tw,ATw′,B sends [I, v]
to

(10) [I, v]Tw,ATw′,B =
∑

x

[Ix,Ax(v)]Tw′,B =
∑

x,y

[Iyx, (By ◦ Ax)(v)],

where IwI = ∪xIx, Iw′I = ∪yIy. One can choose x, y ∈ Iℓ because Iℓ ⊂ To ⊂
I ∩ wIw−1 for any w ∈W.(T/To).

We prove the property 8. The Iwahori-Hecke algebra HR(G, I) is the al-
gebra of RG endomorphisms of Ind G

I 1R. The canonical basis (Tw)w∈W.(T/To)

corresponds to A = Id for all w. When V = R[I/Iℓ], Hom RI(V, Intw.V ) =
End RIV ≃ R[Iℓ]. The group Iℓ is commutative, and Ax = A commute with
By = B for any x, y in (10). ⋄

We suppose again that R is an algebraically closed field of characteristic
0 or ℓ > 0 different from p. Let JR be the annihilator of R[G/I]. The Schur
R-algebra of G is Morita equivalent to HR(G)/JR [V3, 2]. It is clear that the
abelian category ModR(G, I) is annihilated by JR.

2 Theorem In the quasi-banal case, the category ModR(G, I) is the
category of representations of G which are annihilated by JR. In other terms,
the Schur R-algebra of G is Morita equivalent to the Iwahori-Hecke R-algebra
of G.

This is already known in the banal case. The proof of the theorem results
from properties of the Gelfand-Graev representation ΓR and of the Steinberg
representation StR of GL(n,Fq).

We need more notation.
a) The subcategory ModR,1GL(n,Fq) of ModRGL(n,Fq) generated by (the

irreducible subquotients of) R[GL(n,Fq)/B(Fq)] is a sum of blocks by a theo-
rem of Broué-Malle. Representations in ModR,1GL(n,Fq) are called unipotent.
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The annihilator JR(q) of R[GL(n,Fq)/B(Fq)] in R[GL(n,Fq)] is the Jacobson
radical of the unipotent part of the group algebra R[GL(n,Fq)], because the
representation R[GL(n,Fq)/B(Fq)] is semi-simple.

b) Let ψ : Fq → R∗ be a non trivial character. We extend ψ to a char-
acter (ui,j) → ψ(

∑
ui,i+1) of the strictly upper triangular subgroup U(Fq) of

GL(n,Fq), still denoted by ψ. The representation of GL(n,Fq) induced by the
character ψ of U(Fq) is the Gelfand-Graev representation ΓR. Its isomorphism
class does not depend on ψ. We denote by ΓR,1 the unipotent part of ΓR.

c) The Steinberg representation StR of GL(n,Fq) is the unique irreducible
R-representation such that its B(Fq)-invariants is isomorphic to the sign rep-
resentation as a right module for the Hecke algebra HR(GL(n,Fq), B(Fq)).

d) The inflation followed by the compact induction is an exact functor

iG : ModRGL(n,Fq)→ ModRGL(n,OF )→ ModRG

e) The global Hecke algebra HR(G) contains the Hecke algebra

Ho
R := HR(GL(n,OF ), 1 + pFM(n,OF ))

isomorphic via inflation to the group algebra R[GL(n,Fq)]. The Jacobson
radical JR(q) of the unipotent part of the group algebra R[GL(n,Fq)] identifies
with a two-sided ideal of Ho

R.

We recall [V3, theorem 4.1.4]:

(I) The representation of GL(n,Fq) on the 1 + pFM(n,OF )-invariants of
R[G/I] is isomorphic to a direct sum ⊕R[GL(n,Fq)/B(Fq)].

(J) iGV is generated by its I-invariant vectors if V ∈ ModRGL(n,Fq) is
generated by its B(Fq)-invariant vectors.

4 Lemma Suppose that we are in the quasi-banal case. Then
1) JR is the Jacobson radical of the unipotent bloc of ModRG (same for

JR(q) and GL(n,Fq)).
2) The unipotent part ΓR,1 of the Gelfand-Graev R-representation of the

group GL(n,Fq) is the projective cover of the Steinberg R-representation StR
of GL(n,Fq).

3) ΓR,1JR(q) is the kernel of the map ΓR,1 → StR.
4) JR(q) ⊂ JR.
5) iGΓR,1/(i

GΓR,1)JR is a quotient of iGStR and is generated by its I-
invariant vectors.
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Proof of the lemma This is known in the banal case, hence we suppose
that we are in the limit case.

We prove the property 1). The semi-simplicity of Ind G
BX for all unramified

characters (theorem 1 7)) implies with (3) that JR is the Jacobson radical of the
unipotent bloc. This means that JR is the intersection of the annihilators in
the global Hecke algebraHR(G) of the irreducible unipotent R-representations
of G.

We prove the property 2). The induced representation Ind
GL(n,Fq)

B(Fq) 1R is
semi-simple, and StR is the unique subquotient which is isomorphic to a quo-
tient of the Gelfand-Graev representation ΓR. By the uniqueness theorem,

dimR Hom RG(ΓR, StR) = 1.

The unipotent part ΓR,1 of the Gelfand-Graev representation ΓR is projective
(because the characteristic of R is different from p) and is a direct sum of
indecompable projective representations of GL(n,Fq). In the quasi-banal case,
the two properties of uniqueness imply that ΓR,1 is projective cover of StR.

The property 3) results from 1) and 2) by general results [CRI 18.1].
The property 4) results from e) and (I).
We prove the property 5). By definition (iGΓR)JR = ΓR ⊗Ho

R
JR.

By 4) ΓR ⊗Ho
R
JR(q)HR(G) ⊂ ΓR ⊗Ho

R
JR.

We have [V1 I.5.2.c)] ΓR⊗Ho
R
JR(q)HR(G) = ΓRJR(q)⊗Ho

R
HR(G) = iGW

where W = ΓRJR(q). Clearly iGΓR/(i
GΓR)JR is a quotient of iGΓR/i

GW .
The functor iG is exact hence iGΓR/i

GW ≃ iG(ΓR/W ). By 3) ΓR/W ≃
StR. Hence iGΓR/(i

GΓR)JR is a quotient of iGStR. By c), StR is irreducible
and has a non zero vector invariant by B(Fq). By (J), iGStR is generated by
its I-invariant vectors. ⋄

The lemma 4 extends to the standard Levi subgroups Mλ(Fq) of GL(n,Fq),
quotients of the parahoric subgroup Pλ(OF ). These groups are parametrized
by the partitions λ of n. The group GL(n,Fq) corresponds to the partition
(n). One denotes by an index λ the objects relative to λ.

We recall:

(K) QR := ΓR/ΓRJR is a projective generator of ModHR(G)/JR where
ΓR := ⊕λiGλΓR,λ [V3, theorem 5.13].

Proof of the theorem 3 By lemma 4 for the group Mλ(Fq), the quotient
iGλΓR,λ/i

G
λΓR,λJR of iGλ StR,λ is generated by its I-invariant vectors. Hence the

progenerator QR of ModHR(G)/JR is generated by its I-invariant vectors. ⋄
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Université de Paris 7 Denis Diderot
Case 7012 - 2, place Jussieu
75251 Paris cedex 05

173


