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Introduction

In this paper we discuss the extension of the methods of Wiles [W] and Taylor-
Wiles [TW] from G L, to unitary groups of any rank.

The method of [TW] does not extend to GL,, as the basic numerical coin-
cidence on which the method depends (see corollary 2.43 and theorem 4.49 of
[DDT]) breaks down. For the Taylor-Wiles method to work when considering
a representation

r:Gal(F/F) — G(Q)

one needs

[F: Q|(dim G — dim B) = Y~ H"(Gal (F,,/F,),ad"F)

v]oo

where B denotes a Borel subgroup of a (not necessarilly connected) reductive
group G and ad” denotes the kernel of ad — adg. This is an ‘oddness’
condition, which can only hold if F is totally real (or ad” = (0)) and 7 satisfies
some sort of self-duality. For instance one can expect positive results if G =
GSpy, or G = GO(n), but not if G = GL,, for n > 2.

In this paper we work with a disconnected group G, which we define to be
the semidirect product of GL, x GL;j by the two element group {1, 7} with

2 (g, Wyt = (Wg " ).

The advantage of this group is its close connection to GL, and the fact that
Galois representations valued in the [-adic points of this group should be con-
nected to automorphic forms on unitary groups, which are already quite well
understood. This choice can give us information about Galois representations

r:Gal(F/F) — GL,(Q)

where F is a CM field and where there is a symmetric pairing ( , ) on Q;
satisfying

(ox,coc™ly) = x(0)(z,y)
for all o € Gal (F'/F) and with ¢ denoting complex conjugation. By a simple
twisting argument this also gives us information about Galois representations

r:Gal(F/FT) — GL,(Q)

where F'* is a totally real field and
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with y a totally odd character.

In this setting the Taylor-Wiles argument carries over well, and we are able
to prove R = T theorems in the ‘minimal’ case. Here, as usual, R denotes a
universal deformation ring for certain Galois representations and T denotes a
Hecke algebra for a definite unitary group. By ‘minimal’ case, we mean that
we consider deformation problems where the lifts on the inertia groups away
from [ are completely prescribed. (This is often achieved by making them as
unramified as possible, hence the word ‘minimal’.) That this is possible may
come as no surprise to experts. The key insights that allow this to work are
aleady in the literature:

1. The discovery by Diamond [Dia] and Fujiwara that Mazur’s ‘multiplicity
one principle’ (or better ‘freeness principle’ - it states that a certain
natural module for a Hecke algebra is free) was not needed for the Taylor-
Wiles argument. In fact they show how the Taylor-Wiles argument can
be improved to give a new proof of this principle.

2. The discovery by Skinner and Wiles [SW] of a beautiful trick using base
change to avoid the use of Ribet’s ‘lowering the level’ results.

3. The proof of the local Langlands conjecture for GL,, and its compatibility
with the instances of the global correspondence studied by Kottwitz and
Clozel. (See [HT].)

Indeed a preliminary version of this manuscript has been available for many
years. One of us (R.T.) apologises for the delay in producing the final version.

We have not, however, been able to resolve the non-minimal case. We will
explain that there is just one missing ingredient, the analogue of Thara’s lemma
for the unitary groups we consider. One purpose of this paper is to convince
the reader of the importance of attacking this problem.

To describe this conjecture we need some notation. Let F'™ be a totally real
field and let G/F* be a unitary group with G(F) compact. Then G' becomes
an inner form of GL,, over some totally imaginary quadratic extension F//F*.
Let v be a place of F* with G(F,)) = GL,(F,) and consider an open compact
subgroup U = [[, Uw C G(A}"). Let [ be a prime not divisible by v. Then
we will consider the space A(U,F,) of functions

G(F\G(AF) /U — F,.

It is naturally an admissible representation of GL, (F,") and of the commuta-
tive Hecke algebra

T = Im () Fi[U\G(F;) /U] — End (A(U. ),
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with the restricted tensor product taken over places for which U, = GL,,(Op+ ,,)
(compatibly with G(F.}') =2 GL,(F,)). Subject to some minor restrictions on

G we can define what it means for a maximal ideal m of T in the support

of A(U,TF;) to be Eisenstein - the associated modl Galois representation of

Gal (F/F) should be reducible. (See section 2.4 for details.) Then we conjec-

ture the following.

Conjecture A For any F*, G, U, v and | as above, and for any irreducible
G(F;")-submodule B
™ C .A(U, F[)

either 7 is generic or it has an Fisenstein prime of T in its support.

In fact a slightly weaker statement would suffice for our purposes. See
section 2.5 for details. For rank 2 unitray groups this conjecture follows from
the strong approximation theorem. There is another argument which uses
the geometry of quotients of the Drinfeld upper half plane. An analogous
statement for GLy/Q is equivalent to Thara’s lemma (lemma 3.2 of [I]). This
can be proved in two ways. lhara deduced it from the congruence subgroup
property for SLo(Z[1/v]). Diamond and Taylor [DT] found an arithmetic
algebraic geometry argument. The case of G Ly seems to be unusually easy as
non-generic irreducible representations of GLy(F.") are one dimensional. We
have some partial results when n = 3, to which we hope to return in a future
paper. We stress the word ‘submodule’ in the conjecture. The conjecture is
not true for ‘subquotients’. The corresponding conjecture is often known to be
true in characteristic 0, where one can use trace formula arguments to compare
with GL,. (See section 2.5 for more details.)

We will now state a sample of the sort of theorem we prove. (See corollary
4.54.)

Theorem B Let n € Z>, be even and let | > max{3,n} be a prime. Let

r: Gal (Q/Q) — GSp,(Z)
be a continuous irreducible representation with the following properties.
1. r ramifies at only finitely many primes.

2. TG @, 0 S crystalline.

3. dimg, gr*(r ®g, Bpr)® @/ = 0 unless i € {0,1,...,n — 1} in which
case it has dimension 1.



4. There is a prime q # | such that ¢¢ # 1 mod [ fori =1,...,n and r%@

) q

is unramified and r|§@q (Frob,) has eigenvalues {ag* : 1 =0,1,...,n—1}
for some «.

5. The image of r mod [ contains Sp,(F,).

6. r mod [ arises from a cuspidal automorphic representation mo of G L, (A)
for which my o has trivial infinitessimal character and my 4 is an unram-
ified twist of the Steinberg representation.

Assume further that conjecture A is true.

Then r arises from a cuspidal automorphic representation © of G L, (A) for
which To has trivial infinitessimal character and m, is an unramified twist of
the Steinberg representation.

We remark that to prove this theorem we need conjecture A not just for
unitary groups defined over QQ, but also over other totally real fields.

We also remark that we actually prove a more general theorem which
among other things allows one to work over any totally real field, and with
any weight which is small compared to [, and with 7 with quite general image.
(See theorems 4.3.4 and 4.5.3.) We go to considerable length to prove a similar
theorem where instead of assuming that 7 is automorphic one can assume that
it is induced from a character. (See theorems 4.4.4 and 4.5.5.) Along the way
to the proof of these latter theorems we prove an analogue of Ramakrishna’s
lifting theorem [Ra] for G,. (See theorem 1.4.6 and, for a simple special case
which may be easier to appreciate, corollary 1.4.7.)

As mentioned above we also obtain some unconditional theorems in the
‘minimal case’ (see for example theorem 3.1.1), but we have not emphasised
this, as we believe they will not be so useful. It should not be hard however
to extract such results from our paper, if they had an application.

One of the problems in writing this paper has been to decide exactly what
generality to work in. We could certainly have worked in greater generality,
but in the interests of clarity we have usually worked in the minimal generality
which we believe will be useful. In particular we have restricted ourselves to
the ‘crystalline’ case. It would be useful, and not very difficult, to include also
the ordinary case. It would also be useful to clarify the more general results
that are available in the case n = 2.

In the first section of this paper we discuss deformation theory and Galois
theory. We set up the Galois theoretic machinary needed for the Taylor-Wiles
method (see proposition 1.4.5) and also take the opportunity to give an ana-
logue (see theorem 1.4.6 and corollary 1.4.7) of Ramakrishna’s lifting theorem
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[Ra] for G,,. In the second section we discuss automorphic forms on definite
unitary groups, their associated Hecke algebras, their associated Galois rep-
resentations and results about congruences between such automorphic forms.
In the third section we put these results together to prove two R = T theo-
rems. Theorem 3.1.1 is for the ‘minimal’ case and is unconditional. Theorem
3.1.2 is for the general case, but is conditional on the truth of Thara’s lemma
(conjecture T or conjecture A). In the final section we combine these theorems
with base change arguments to obtain various modularity theorems (theorems
4.3.4 and 4.5.3), along the lines of theorem B above.

Some of the results (those in the non-minimal case) in this paper depend
on previously unpublished work of Marie-France Vignéras and of Russ Mann.
Marie-France has kindly written up her results in an appendix to this paper.
She has kindly written up these results in an appendix. Russ has left academia
and as it seems unlikely ever fully write up his results (see [M2]) we have
included an account of his work in another appendix.

Since this paper was written one of us (R.T.) has found a way to avoid
Thara’s lemma in dealing with non-minimal lifts (see [Tay]). This still depends
on much of the theory developed here, but not on I[hara’s lemma or on the
results of the appendices.



1 Galois deformation rings.

1.1 Some algebra

For n a positive integer let G,, denote the group scheme over Z which is the
semi-direct product of GL, x GL; by the group {1, } acting on GL, x GL4
by

g™ = (W'g™" 1)
There is a homomorphism v : G,, — G'L; which sends (g, 1) to p and j to —1.
Let G° denote the connected component of G,,. Let g,, demote Lie GL,, C LieG,
and ad the adjoint action of G,, on g,,. Over Z[1/2] we have

a = (0).

Let g% denote the trace zero subspace of g,.

Suppose that I' is a group, that A is a subgroup of index 2, and that
c € I' — A satisfies ¢ = 1. Whenever we endow I' with a topology we will
assume that A is closed.

Lemma 1.1.1 Suppose that R is a ring. Then there is a natural bijection
between the following two sets.

1. Homomorphisms r : ' — G,(R) that induce isomorphisms T'JA =
Gn /G-
2. Pairs (p,{ , )), where p: A — GL,(R) is a homomorphism and
(,):R"XR"— R

is a perfect R linear pairing such that for all x,y € R™ and all § € A we
have

o (z,y) = —p(c)(y,z) for some p(c) € R, and
o u(6){(6 e, y) = (x,cdey) for some u(d) € R.
Under this correspondence u(y) = (vor)(y) for ally € T'. IfT' and R have

topologies then under this correspondence continuous r’s correspond to contin-
uous p’s.

Proof: The proof is elementary. A homomorphism r corresponds to 7|a
with the pairing
(z,y) ="2A™"y

where r(c) = (A, —(vor)(c))y. O



Lemma 1.1.2 Suppose that k is a field of characteristic # 2 and thatr : I' —
Gn(k) such that A = r=*(GL,, x GL,)(k). Then

dimy, g<=° = n(n + (v or)(c))/2
fordo =1 or —1.
Proof: We have r(c) = (A, —(vor)(c),7) where A = —(vor)(c)A. Then
g, ={g € My(k) : gA—d(vor)(c)(gA) = 0}.

The lemma follows. O

Lemma 1.1.3 Suppose k is a field, that x : I' — k* is a homomorphism and
that
p:A— GL,(k)

is absolutely irreducible and satisfies xp¥ = p¢. Then there exists a homomor-
phism
r:I'— G,(k)

such that r|a = p, vor|a = x|a and r(c) € G,(k) — GL, (k).
If o € k™ define
To: ' — G, (k)

by rola =p and, if y €T — A and r(y) = (A, p, ), then

ra(7) = (@4, 1, ).

This sets up a bijection between G L, (k)-conjugacy classes of extensions of p
to T — G,(k) and k*/(k*)?.

Note that vor, = vor. Also note that, if k is algebraically closed then r
is unique up to GL,(k)-conjugacy.

If " and R have topologies and p is continuous then so is .

Proof: There exists a perfect pairing
(, ) kK"xE'—k

such that x(8)(67tx,y) = (x,cdcy) for all 6 € A and all z,y € k". The
absolute irreducibility of p implies that ( , ) is unique up to k*-multiples. If
we set

(z,9) = (y, x)
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then x(0)(6 7'z, y) = (z,cdcy)’ for all § € A and all z,y € k. Thus

for some € € k*. As
<7 >//:<’ >

we see that €2 = 1. The first assertion now follows from lemma 1.1.1. For
the second assertion note that conjugation by o € k* C GL,(k) leaves p
unchanged and replaces ( , ) by o?( , ). O

Suppose that k is a field and r : I' — G,,(k) is a homomorphism with A =
r~Y(GL,xGLy)(k). We will call r Schurif all irreducible A-subquotients of k"
are absolutely irreducible and if for all A-invariant subspaces k™ D W7 D Wy
with £"/W; and W irreducible, we have

Wy (vor) 2 (K" /Wh)°.

This is certainly satisfied if k™ is an absolutely irreducible A-module. Note
that if k'/k is a field extension then r : I' — G, (k) is Schur if and only if
r:I'— G, (k) is.

Lemma 1.1.4 Suppose that k is a field andr : T' — G, (k) is a homomorphism
with A = r=Y(GL,, x GLy)(k). If r is Schur then the following assertions hold.

1. r|a is semisimple.

2. If ' : T — G, (k) is another representation with A = (r')"'GL, (k) and
trr|a = trr’|a, then 1" is GL,(k*)-conjugate to r.

3. If k does not have characteristic 2 then gt = (0).

Proof: We may suppose that k is algebraically closed.
Suppose that r corresponds to (r|a,( , )) asin lemma 1.1.1, and let V' C

k™ be an irreducible A-submodule. Then (k"/V+)¢ = VV(vor) and so we can
not have V-.C V+4. Thus k" = V @ V+ as A-modules. Arguing recursively we
see that we have a decomposition

Ve eV,

and

<> >:<> >1J—--~J—<a >T’7



where each V; is an irreducible k[A]-module and each { , ); is a perfect pairing
on V;. The first part of the lemma follows. Note also that for i # j we have
V; 2V; as k[A]-modules and V¢ = V.Y(vor).

Note that if p and 7 are representations A — G L, (k) with p semi-simple
and multiplicity free and with tr p = tr7, then the semisimplification of 7 is
equivalent to p. Thus 7'|o has the same Jordan-Holder factors as r|a (with
multiplicity). Thus 7’ satisfies the same hypothesis as r and so by part one
r’'|a is also semisimple. Hence 7’'|n = 7|a, and we may suppose that in fact
"o = r|a. Then corresponding to our decomposition

Ve eV,

we see that r corresponds to

(T‘A7< ) >1J-"'J-< ) >1“)

while 7’ corresponds to

(rlaspa( s Lo L, D)

for some p; € k*. Conjugation by the element of G L, (k) which acts on V; by

Vi takes r to 1.
For the third part note that

g, = Endya)(V2) ® ... © End s (V) = ¥

Then ¢ sends (o, ..., ) to (—a3', ..., —a’") = (—ay, ..., —,.), where *; denotes

the adjoint with respect to ( , );. Thus g}, = (0). O

Lemma 1.1.5 Let R be a complete local noetherian ring with mazimal ideal
mpg and residue field k = R/mpg of characteristic | > 2. Let T' be a group and
letr:T — G,(R) be a homomorphism such that A = r=*(GL, x GL1)(R) has
index 2 in I'. Suppose moreover that r mod mg is Schur. Then the centraliser
of rin 1+ M, (mg) is {1}.

Proof: This lemma is easily reduced to the case that R is Artinian. In
this case we argue by induction on the length of R, the case of length 1 (i.e.
R = k) being immediate. In general we may choose an ideal I of R such that
I has length 1. By the inductive hypothesis any element of the centraliser in
1+ M, (mpg) of the image of r lies in 1 + M, (I). It follows from lemma 1.1.4
that this centraliser is {1}. O



Lemma 1.1.6 Suppose that I' is profinite and that
r: I — G,(Q)

is a continuous representation with A = r~'(GL, x GL;)(Q¢). Then there
exists a finite extension K/Q; and a continuous representation

T — G,.(Ok)
which is G L, (Q{¢)-conjugate to r.

Proof: Tt follows from the Baire category theorem that r(A) C GL,(K)
for some finite extension K/Q;. The existence of a bilinear form ( , ) as
in lemma 1.1.1 over Q¢ implies the existence of one over K. (It can be
thought of as an n x n-matrix with non-zero determinant satisfying certain
K-linear constraints on its coefficients.) Thus (") C G,(K). A standard
argument using the compactness of A shows that there is a A-invariant Og-
lattice A C K™. (Choose any lattice and add it to all its translates by elements
of A.) We may further suppose that the ( , )-dual lattice A* contains A. (If
not replace A by a suitable scalar multiple.) Choose a maximal A-invariant
Ok-lattice A* D M D A such that M* D M, and replace A by M. Then if
A* O N D A is any A-invariant Og-lattice with N/A simple, we must have
N*N N = A. We conclude that A*/A must be a direct sum of simple Ok [A]-
modules. Replacing K by a ramified quadratic extension and repeating this
procedure we get a A-invariant Og-lattice A with A* = A. The lemma now
follows from lemma 1.1.1. O

The next two lemmas are standard.

Lemma 1.1.7 Let R be a noetherian complete local ring. Let A be a profinite
group and p : A — GL,(R) a continuous representation. Suppose that p mod
mpg is absolutely irreducible. Then the centraliser in GL,(R) of the image of
pis R*.

Proof: 1t suffices to consider the case that R is Artinian. We can then
argue by induction on the length of R. The case R is a field is well known. So
suppose that I is a non-zero ideal of R with mgzl = (0). If z € Zgy, (r)(Im p)
then we see by the inductive hypothesis that z € R*(1 + M,([)). With
out loss of generality we can suppose z = 1 +y € 1+ M,(I). Thus y €
(ad (p mod mp))® @r/m,; I = I, and the lemma is proved. O
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Lemma 1.1.8 Let R D S be noetherian complete local rings with mgNS = mg
and common residue field. Let A be a profinite group and let p,p' : A —
GL,(S) be continuous representations with p mod mg absolutely irreducible.
Suppose that for all ideals I C J of R we have

Z1 4 My (mpy1y(Im (p mod 1)) — Z14 ug,, (mpy0)(Im (p mod J)).

If p and p' are conjugate in GL,(R) then they are conjugate in GL,(S).

Proof: 1t suffices to consider the case that R is Artinian (because S =
lim. S/INS as I runs over open ideals of R). Again we argue by induction
on the length of R. If R is a field there is nothing to do. So suppose that [ is
an ideal of R and mgl = (0). By the inuctive hypothesis we may suppose that
pmod INS = p mod INS. Thus p' = (1+ ¢)p where ¢ € Z'(A,ad (p mod
mg))®(INS). As pand p’ are conjugate in R, our assumption (on surjections of
centralisers) tells us that they are conjugate by an element of 14 M, (). Hence
[#] = 0in H'(A,ad (p mod mg))® 1. Thus [¢p] = 0in H'(A, ad (p mod mg)) ®
(I NS), so that p and p’ are conjugate by an element of 1 + M, (I N S). O

The next lemma is essentially due to Carayol [Ca], but he makes various
unnecessary hypotheses, so we reproduce some of the proof here.

Lemma 1.1.9 Let R D S be noetherian complete local rings with mrpNS = mg
and common residue field. Let A be a profinite group and p : A — GL,(R)
a continuous representation. Suppose that p mod mpg is absolutely irreducible
and that tr pA C S. If I is an ideal of R such that p mod I has image in
S/INS, then there is a 1, + M, (I)-conjugate p' of p such that the image of p'
is contained in GL,(S). In particular there is always a 1,,+ M, (mg)-conjugate
P’ of p such that the image of p' is contained in GL,(S).

Proof: A simple recursion alows one to reduce to the case that mg/ = (0)
and dimp/m, I = 1. Replacing R by the set of elements in R which are
congruent mod I to an element of S we may further assume that S/ NS =
R/I. 1f I C S then R = S and there is nothing to prove. Otherwise R = S® [
with multiplication

(s,4)(s,4) = (ss,8'i + s1').
In particular mg is an ideal of R and R/mg = (S/mg)[e]/(€?). If we know the
result for S/mg C R/mg then the result follows for S C R (because then we
can find A € M,,(I) such that

(1, — A)p(1l, + A) mod mg

11



is valued in GL,(S/mg) so that
(I — A)p(1ln + A)

is valued in S.)

Thus we are reduced to the case S = k is a field, R = k[e]/(¢?) and I = (e).
Replacing A by its image we may assume that A C GL,(R). If § € A we
will write & for its projection to GL, (k). If v € AN (1, + M,(I)) then for all
01,09 € A we have

tl'gl((”)/ - 1n)/6>52 =0.
As p is absolutely irreducible we deduce that

tr A((y —1n)/€) = 0

for all A € M, (k) and hence that v = 1,,. Thus we may consider A C GL,(k),
when we have

p(0) = (1n + c(6)€)od
for all 6 € A. We see that

° 6(5152) = C((Sl) + 510(52)51_1 for all 51, 0y € A,
e and tre¢(d)0 =0 for all § € A.

As p is absolutely irreducible, it follows from lemma 1 of [Ca] that there exists
A € M, (k) such that
c(0) =645 — A

for all § € A. (Although Carayol makes the running assumption at the start
of section 1 of [Cal that k is perfect, this assumption is not used in the proof
of lemma 1.) Then we see that

(1, — Ae)p(d)(1, + Ae) = ¢

for all 6 € A. The lemma follows. O

Lemma 1.1.10 Suppose that R D S are complete local noetherian rings with
mgr NS = mg and common residue field k of characteristic | > 2. Suppose
that T is a profinite group and that r : T' — G,(R) is a continuous represen-
tation with A = r~'(GL,, x GL)(R). Suppose moreover that r|x mod mp is
absolutely irreducible and that trr(A) C S. Then r is GL,(R)-conjugate to a
homomorphism r' : I' — G, (95).
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Proof: By lemma 1.1.9 we may suppose that r(A) C (GL, x GL1)(S).
Because r|4 and r|X(vor) are GL,(R)-conjugate, it follows from lemma 1.1.8
that they are G L, (S)-conjugate. Suppose that

r|X = Ar|X(vor)A™

with A € GL,(S). Then A=A commutes with the image of r|X. Hence by
lemma 1.1.7, ‘A = pA for some p € R with p> = 1, i.e. with g4 = 1. The
lemma now follows from lemmas 1.1.1 and 1.1.3. O

Finally in this section we consider induction in this setting. Suppose that
[ is a finite index subgroup of I" containing ¢ and set A’ = ANI". Suppose also
that x : I' — R* is a homomorphism. Let v’ : IV — G, (R) be a homomorphism
with v o7’ = x| and suppose 7’ corresponds to a pair (p/, ( , )’) as in lemma
1.1.1. We define
Ind 357 : T' = Guprry (R)

to be the homomorphism corresponding to the pair (p, ( , )) where p acts by
right translation on the R-module of functions f : A — R™ such that

f(8'8) = p(&") f(0)
for all &' € A’ and § € A. We set

(F )= D xO)THfO), f(coe™)).

SEA\A

We have v o (Ind IE}’AA?‘T’) = x. If I' and R carry topologies, if I is open in I
and if 7’ is continuous then we consider only continuous functions f. We will
sometimes write Ind E}X for Ind E}i’?‘ , although it depends essentially on A’ and
A as well as IV, " and .

1.2 Deformation theory

Next we will turn to deformation theory. We will follow the approach of
Dickinson [Dicl]. Let [ be an odd prime. Let k denote an algebraic extension
of the finite field with [ elements, let O denote the ring of integers of a finite
totally ramified extension K of the fraction field of the Witt vectors W (k),
let A denote the maximal ideal of O, let C(’; denote the category of Artinian
local O-algebras for which the structure map O — R induces an isomorphism
on residue fields, and let Cp denote the full subcategory of the category of
topological O-algebras whose objects are inverse limits of objects of C(’;. Also
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fix a profinite group I" together with a closed subgroup A C I' such that there is
an element ¢ € I' = A with ¢ = 1. Also fix a continuous Schur homomorphism

7:I'— G,(k)

and a homomorphism x : [' — O*, such that A = 7 Y(GL, x GLy)(k) and
vor = x. Let § D Sy be finite index sets. For ¢ € S let A, be a profinite
group provided with a continuous homomorphism A, — A. For ¢ € 5 fix a

decreasing filtration of k™ by A, -invariant subspaces WZ, such that ﬁ; is k"
for 7 sufficiently small and ﬁ; = (0) for 7 sufficiently large.

By a lifting of (T, {ﬁ;}qegmi) to an object R of Co we shall mean a pair
(r, {Fil} }¢eso), where r : T' — G, (R) is a continuous homomorphism with
rmodmg = 7 and v or = x, and where Fil| is a decreasing filtration of
R"™ by Ag-invariant subspaces such that the natural maps Fil, @p k — k"
give isomorphisms Fil| @z k = Wz. By a lifting of (T|a,, {W;}Z) (resp.
7|a,) to an object R of Co we shall mean a pair (r, {Fil;};) (resp. r), where
r: A, — GL,(R) is a continuous homomorphism with 7 mod mz = 7 and
vor = x, and where Fil| is a decreasing filtration of R" by A -invariant

subspaces such that the natural maps Filfl ®pr k — k™ give isomorphisms
Fﬂfl Qrk = ﬁ;. We will call two liftings equivalent if they are conjugate

by an element of 1 + M, (mgr) C GL,(R). By a deformation of (T, {ﬁ;}) we
shall mean an equivalence class of liftings.
For ¢ € Sy define a filtration Fil , on ad 7 by setting

Qi1 — 1 it
Fil{ad7 = {a € ad7: aFil] C Fil’™q Vj}.
To simplify notation set FilgadF = ad7 and Fil}]ad? = (0) if ¢ & Sp. We will

write Z1(A,, {W;}Z, adT) for the set of pairs (¢, A) with ¢ € Z'(A,,ad7) and
A € adT/Fil ad T satisfying

¢+ (adT —1)A =0 € Z'(A,, ad7/Fil JadT).
There is a natural map

adr —  ZY(A,, {F1,};, ad7)
A — ((1—-admAA).

This gives rise to an exact sequence
(0) — H(A,, FiljadT) — adT —
— ZY(Ay, {Fil,};,ad7) — HY(A,, Fil%ad7) — (0),
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where the penultimate map sends (¢, A) to [¢ + (ad7 — 1)A] for any lifting A
of A to adT. '

For ¢ € S there is a universal lifting (not deformation) of (7, {W;},) over
a an object R of Co. Note that Ri°® has a natural action of 1,, + M (mpioc).
There are natural isomorphisms

Hom (1 e / (e, A), k) 2 Hom o (R, k[e]/(¢2)) 2 Z4(A, {FIT, };, ad ).

The first is standard. Under the second a pair (¢, A) corresponds to the
homomorphism arising from the lifting

(1 + ¢e)Tla,. {(1 + €A)FIL, + €FL, };)

of (7|a,; {W;}Z) The action of Mg(mR}ZOC/(m?%}JOC,)\)) on RZOC/(mizzoc,)\) gives
an action on Z'(A,, {W;}Z, ad7) which can be described as follows. If ¢ €
Hom g (mpgioc /(MFnoe, A), k) corresponds to z € ZH(A,, {WZ},, adT), then B €
Mg(leqoc/(m%oc,q)\)) takes z to z plus the image of ¢(B) € ad7. In partic-
ular there is a bijection between Ma(mpgioc/ (m?ﬂfc, A)) invariant subspaces of
zZH A, {ﬁ;},, ad7) and subspaces of H'(A,, Fil jadT).

Let R be an object of Co and I be a closed ideal of R with mgl = (0).
Suppose that (r1, {Fil|}) and (ry, {Fil},}) are two liftings of (7|a,, {ﬁ;})
with the same reduction mod I. Choose A € M, (I) such that (1,+A)Fil; ; =
Fil| , for all 7. Then

v ra(y)r(y) Tt = 14 (adT(y) —1)A

defines an element of H'(A,, Fil gad 7) ®y I which is independent of the choice
of A and which we shall denote [(ry, {Fil| ,}) — (71, {Fil; ; })]. In fact this sets
up a bijection between H'(A,, Fil jad 7)®; I and (1+ M, (I))-conjugacy classes
of lifts which agree with (ry, {Fil; ;}) modulo I. Now suppose that (r, {Fil,})
is a lift of (7]a,, {ﬁ;}) to R/I. Choose a lifting {ﬁﬁ;} to R of {Fil}} and for
each v € A, choose a lifting 7"/(\7/) to GL,(R) of () such that rf(\”y/)ﬁﬁ; C Fﬁfl;
for all 2. Then e
(7,8) = r(70)r(0) r(7)

defines a class obsg (r, {Fil|}) € H*(A,, Fil’ad7) @ I which is independent
of the choices made and vanishes if and only if (r, {Fil}}) lifts to R.

15



Now suppose that (rq, {Fil}};) is a lifting of (T|Aq,{ﬁ;}i) to O corre-
sponding to a homomorphism « : R;"C — O. Write Z*(A,, {Fil;}i,ad Te ®
K/O) for the set of pairs (¢, A) with ¢ € Z'(A,adr, ® K/O) and A €
(adry/Filjadr,) ® K/O satisfying

¢+ (adry— 1)A=0€ Z' (A, (adr,/FilJad r,)).
As above, the map

adr, ® K/O — Z'(A,, {Fil}};,adr,® K/O)
A — ((1—adry)A A)

has kernel H(A,, Filjadr, ® K/O) and cokernel H'(A,, Filjadr, ® K/O)
(via the map
ZNA {Fil }i,adr, @ K/O) — HY(A,, Filjadr, @ K/O)
(¢, 4) — o+ (adry — 1)A],

where A is any lifting of A to adr, ® K/©). There is also a natural identifi-
cation

Hom o (ker o/ (ker ), K/O) = Z'(A,, {Filfl}i, adr, ® K/O).

This may be described as follows. Consider the topological O-algebra O @
K/Oe where €2 = 0. Although O® K/Ok is not and object of Cp, it still makes
sense to talk about liftings of (ry, {Fil|};) to O @ K/Oe. One can then check
that such liftings are parametrised by Z'(A,, {Fil}};,adr,® K/O). (Any such
lifting arises by extension of scalars from a lifting to some O & A~ /O¢.) On
the other hand such liftings correspond to homomorphisms R}fc — O0® K/Oe
lifting v and such liftings correspond to Hom ¢ (ker o/ (ker )%, K/O).

If ¢ € S then by a local deformation problem at ¢ we mean a collection D,
of liftings of (7|a,, {W;}) (or simply of 7|, if ¢ € S — Sp) to objects of Co
satisfying the following conditions.

1. (k,7|a,,{FI,}) € D,.

2. If (R,r,{Fil}}) € D, and if f : R — S is a morphism in Co then
(S, for {fFil}}) € D,.

3. Suppose that (Ry, 7, {Fil}}) and (Ra, 72, {Fil},}) € D,, that I (resp.
Iy) is a closed ideal of R, (resp. Ry) and that f : Ry /I; = Ry/I, is an iso-
morphism in Cp such that f((r, {Fil 271}) mod [) = ((re, {Fil 272}) mod
I). Let Rz denote the subring of Ry @ Ry consisting of pairs with the
same image in Ry /I1 = Ra/I>. Then (Rs,r ®r, {Fil|,, ®Fil},}) € D,.
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4. If (R;,r;j, {Fil f“}) is an inverse system of elements of D, then
(lim R;,lim_ rj, {lim_ Fil} ;}) € D,.

5. D, is closed under equivalence.

It is equivalent to give a 1,,+ M, (m R;oc) invariant ideal Z, of R}fc. The collection

D, is simply the collection of all liftings (r, {Fil | };) over rings R such that the
kernel of the induced map R’ — R contains Z,. We will write L, = L,(D,) for

the image in H'(A,, Filjad7) of the annihilator L} in Z'(A,, {Wz}z, adT) of
T/ (ZyN (M2, N)) C M gloc / (M%0c, A). Because Z, is 1, + Mp(mpioc) invariant
we see that the annihilator in Z'(A,, {Wz}z, adT) of Z,/(Z,N(m%,.., \)) equals
the preimage of Lj.

Lemma 1.2.1 Keep the above notation and assumptions. Suppose that R
is an object of Co and I is a closed ideal of R with mgl = (0). Suppose

also that (r1, {Fil} 1 }) and (r2,{Fil} ,}) are two liftings of (F|a,, {WZ}Z) with
the same reduction modl. Suppose finally that (ry,{Fil}}) is in D,. Then
(ro, {Fil} ,}) ds in Dy if and only if [(ro, {Fil5}) — (r1, {Fily 1 })] € Ly

Proof: Suppose that (rj,{Filé’j}i) corresponds to a; : R’ — R. Then
a9 = a1 + 3 where
B R;OC — I
satisfies
o Bz +y)=B(x) +8(y);
o Bzy) = Blx)ar(y) + ar(x)B(y) + 6(2)B(y);

e and ﬂ|o =0.

2
R}]oc I

Thus ( is determined by [

q
rise to and is determined by an O-linear map:

and (3 is trivial on (m%,,.,\). Hence 3 gives

Rloc

/8 . mR}Zoc/(m?%}loc, )\) — I
A straightforward calculation shows that
(72 {1 o)) — (4, {FiLE, 1)) € HY(A,, Fil Jad 7)
is the image of

B € Hom (mppe/ (e, N), 1) = Z' (A, {Fil, };,ad 7) @ 1.
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The homomorphism oy vanishes on Z,. Thus we must show that 3 vanishes
on Z, if and only if 8 maps to L, ®; I, i.e. if and only if

ﬁ € Hom (mR}Ioc/(mi—izoc, A7Iq), k) ®k 1.

This is tautological. O

Again let (r,, {Fil}}) be a lift of (T|Aq,{ﬁz}) to O corresponding to a
homomorphism « : R*® — O. Suppose that (rg, {Fﬂ;}z}) is in D,. We will
call a lift of (r4, {Fil;};) to O & K/Oe¢ of type D, if it arises by extension
of scalars from a lift to some O @& A" /Oe which is in D,. Such liftings
correspond to homomorphisms RY°/Z, — O & K/Oe which lift . Because
Zy is 1n + My (mpioc) invariant, the subspace of ZH A, {ﬁ;}i, adr, ® K/0O)
corresponding to

Hom o (ker o/ ((ker @), Z,), K/©O) C Hom ¢ (ker o/ (ker a)*, K/O)
is the inverse image of a sub-O-module
L(ry) C H'(A,, Filjadr, ® K/O).

Thus a lift of (r,, {Fil}};) to O ® K/Oc is of type D, if and only if its class in

zN A, {WZ}“ adr, ® K/O) maps to an element of L,(r,).
We will call D, liftable if the following condition is satisfied:

e for each object R of Co, for each ideal I of R with mgl = (0) and for
each lifting (r, {Fil;}) to R/I in D, there is a lifting of (r, {Fil}}) to R.

This is equivalent to Réoc /Z, being a power series ring over O. We will call L,
minimal if

dimy, L, = dimy H°(A,, Fil%ad 7).
This is equivalent to the preimage of L, in Z'(A,, {ﬁ;}i, ad7) having dimen-
sion n?.

Let S be a collection of deformation problems D, for each ¢ € S. We
call a lifting (R,r, {Fﬂ;}qESo,i) of (T, {ﬁ;}) of type S if for all ¢ € S the
restriction (R, r|a,,{Fil}};) € D, If (R,r,{Fil}}) is of type S, so is any
equivalent lifting. We say that a deformation [(R,r, {Fil}})] is of type S if
some (or equivalently, every) element (R,r,{Fil}}) of [(R,r,{Fil})] is of type
S. We let Defs denote the functor from Cp to sets which sends R to the set
of deformations [(R,r, {Fil|})] of type S.
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We need to introduce a variant of the cohomology group H “(T',adT). More

specifically we will denote by H*(T, {W;}, adT) the homology in degree i of
the complex

CU(D {FiL,}, ad7) = CU(T, ad7) @ @) C*H(A,, ad 7/Fil Jad ),
q€So
where the boundary map sends
C{(I {FiT,},ad7) — C7(D,{F,}, ad7)
(¢, (g)) +— (99, (d]a, — Oty)).

Note that we have long exact sequences with a morphism between them:

| |
H(T,{Fil,},adT) —  Bes, HI(A FiljadT)
! |
H(T,adT) — D, H'(Ag,adT)
! l
@B es, H' (A, adT/FiljadT) =  @,cq H (A adT/FiljadT)
| l.

Similarly if (r, {Fil}}) is a lifting of (7, {WZ}) to O then we will denote by
H(T, {Filfl},adr ® K/O) the homology in degree i of the complex
CYI', {Fil}},adr ® K/O) defined as

C'(T,adr @ K/O) & €P C''(Ay,adr/Fil jadr @ K/O),
q€So0
where the boundary map sends

C(I' {Fil},adr ® K/O) — C"(I,{Fil_},adr ® K/O)
(¢7 (¢Q)) — (8¢7 (¢’Aq - a¢q))

Note that we have a morphism:

H'(T,{Fil}},adr ® K/O) — @ H'(A,, Fil jadr @ K/O).

q<€So

We will also denote by Hs(I',adT) the cohomology of the complex

CE(T,adT) = CY(T,adT) & @ C (A, adF) /Ly,

qeS
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where L} = (0) for i > 1,
Ly = C°(A,, Fil%ad )

and L} denotes the preimage of L, in C*(A,,Fil’ad7). The boundary map
sends ' ,
Cy(lyad7) — C};rl (', ad 7)
(¢, (¥g)) +— (99, (9]a, — Oby)).

We have long exact sequences
(0) -

— HYT,ad7) — H°(I,ad7) — @qker(HO(Aq,adF/FiloadT)—>
— HY(A,, Fil%ad7)/L,)

l

— HYT,ad7) — HYT,ad7) — B, H' (A, adT)/L, —
— HiT,adT) — H?*(I,ad?) — P, H*(Ay,adT) —
— H3T,ad7) — H3I,ad?) —
and

, (0) -
— HY(T,ad7) — HOT {Fil } adr) — (0) —
— HY(T,ad7) — HYT,{Fil;},ad?) — @, H' (A, Fil%adr)/L, —
— HZ(,ad?) — H*I,{Fil },ad?) — @, H* (A, Fil%ad?) —
— H3(,ad?) — H3(,{Fil,},ad7) —

Lemma 1.2.2 Suppose that all the groups H'(T,adT) and H'(A,,adT) are
finite and that they all vanish for i sufficiently large. Set

X(T,ad7) = [[#H(T, ad 7)Y,

and ' _
X(A,,adT) = H#Hl(Aq,adF)(_l)z,
and , .
Xs(T,ad7) = [ [ #HE(T, adm) V.
Then

xs(Fad7) = x(I',ad7) [ [(x(Ag, ad7) ' #H (A, Fil *ad 7) /#L,).

q
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The next result is a variant of well known results for GL,, without filtra-
tions. Filtrations were introduced into the picture by Dickinson [Dic2]. Our
proof follows his.

Proposition 1.2.3 Keep the above notation and assumptions. Then Defg is

univ

represented by an object R¥Y of Co. We will let r¥V denote the universal

univ

deformation over R$™. There is a canonical isomorphism
Hom ¢qs(m gyniv / (mggmv, M), k)= HY(T, ad 7).

If HY(V,adT) is finite dimensional then R¥Y is a complete local noetherian
O-algebra.

Proof: First we consider representability. By properties 1, 2, 3 and 4 of D,

we see that the functor sending R to the set of all lifts of (F, {W;}) to R of
type S is representable. By property 5 we see that Defg is the quotient of this
functor by the smooth group valued functor R +— ker(GL,(R) — GL,(k))
acting by conjugation. Thus by [Dicl] it suffices to check that if ¢ : R — S in

Co, if (r,{Fil}}) is a lift of (T, {W;}) to R, and if g € 1+ M,,(mg) conjugates
o(r, {Fil;}) to itself, then there is a lift g of g in 14 M, (mp) which conjugates
(r,{Fil;}) to itself. This is clear from lemma 1.1.5.

Recall that

Hom s (1 gy / (v, A), k) 2 Hom (Rg™, kle] /(¢?)) = Defs(k[e] /(€7)).

For g € Sy define a filtration Fil ; on ad 7 by setting
Fil;adT = {a € adT: aFil) C Fil’"q Vj}.

Any lifting (r, {Fil!}) of (7, {Fi2}) to k[e]/(¢?) is of the form

o = (14 ¢e)T,

o Fil, = (1+ aqe)ﬁfl + eﬁfl,
where

o ¢ Z (T adT),

e a, € adT/Filjad T, and

o = (1-adF)a, in Z'(A,,ad7/FiljadT).
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This establishes a bijection between lifts of (7, {ﬁ;}) to k[e]/(¢*) and col-
lections of data (¢, {a,}) satisfying these conditions. Two collections of data
(¢,{a}) and (¢',{a;}) correspond to equivalent lifts if there is an A € ad7
such that

e ¢ =¢+ (1 —ad7)A and
° a;:aq—i—A.

It is straightforward to complete the proof of the proposition. O

Lemma 1.2.4 Suppose that R is an object of Co and that I is an ideal of R
with mpl = (0). Suppose that (r,{Fil}}) is a lifting of (F, {Wg}) to R/1 of
type S. Suppose moreover that for each q € S the restriction (r|a,, {Fil}})

has a lift to R in D,. Pick such a lifting (7, {F/ﬁ;}) and for each v € I' pick

a lifting 7"’(\7/) of r(7y) to Gu(R). Set

e~ —~— 1 ———1

¢(7,0) =r(y0)r(d) r(y) —1
and, for 6 € A,, set

$a(6) = T — 1.
Then (¢, (v,)) defines a class obss g(r,{Fil}}) € HET,adT) ® I which is
independent of the various choices and vanishes if and only if (r,{Fil_}) has

a lifting to R of type S.

Proof: We leave the proof to the reader. O

Corollary 1.2.5 Suppose that each D, is liftable and that H3(T',adT) = (0).
Then R 4s a power series ring in dim HL(T',ad7) variables over O.

Corollary 1.2.6 Suppose that for each q € S the ring R}ZOC 15 a complete in-

univ

tersection. Then RI™ is the quotient of a power series ring in dim Hi(T, ad )
variables by

dim H3(T,ad7) + > _(n® + 1+ dim L, — dim R{"/Z, — dim H°(A,, Fil jad 7))

qeS

relations. Thus R¥Y has Krull dimension at least
1+ dim Hi(T,ad7) — dim H3(T, ad 7)+
+ D es(dim R /T, — n? — 1 4 dim HO(A,, Fil jad7) — dim L,).
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Proof: R is topologically generated by dim L,+n?—dim H°(A,, Fil jad 7)
elements. O

Now suppose that o : R — O and let (r,{Fil}}) be a corresponding
lift of (7, {ﬁ;}) Let H{(T,adr ® K/O) denote the kernel of

H'(T,{Fil}},adr @ K/O) — @) H'(A,, Fil jadr @ K/O)/Ly(r,).

qeS
The next lemma is now immediate.

Lemma 1.2.7 Keep the notation and assumptions of the previous paragraph.
Then there is a natural isomorphism

Hom ¢ (ker o/ (ker a)?, K/O) = HY(T',adr @0 K/O).

1.3 Deformations of Galois representations

Fix an odd prime [. Also fix an imaginary quadratic field £ in which [ splits
and a totally real field F*. Set FF = FTFE. Fix an algebraic extension k of
[F, and a finite totally ramified extension K of the fraction field of W (k). Let
O denote the ring of integers of K and A the maximal ideal of (”)./\We will

suppose that K contains the image of each embedding of F into Q. Fix a
character x : Gp — O*. Let S, (resp. S, resp. I;) denote the places of
F* above oo (resp. places of F't above [, resp. embeddings F*™ — K). For
v € Sy, Write ¢, for the notrivial element of Gi,. There is a natural surjection
I; — S;. Choose a prime of E above [ and let Sl denote the set of primes of
F above this prime and [; the set of embeddings of F' into Q, above S;. Thus
S, and S, (resp. [; and Il) are in natural bijection. If v e s (resp. 7€ 1))
we write O (resp. 7) for its lifting to S; (resp. I,). Let e denote the l-adic
cyclotomic character. We will write M (a) for M ®gz, Z;(e®).

Fix a finite set of primes S of F'* which split in /" and such that S O 5.
Also choose a set S O S, consisting of the choice of one prime of F' above each
prime in S. Let Sy C S contain all ramified elements of S;. Set ;o = S; N So,
set §0 equal to the preimage of Sy in S and set :5:170 equal to the preimage of 5
in S. Let F(S)/F denote the maximal extension unramified outside S and set
Gr+ s = Gal (F(S9)/F") (resp. Gps = Gal (F(5)/F)). Let n < be a positive
integer and let 7 : Gp+ ¢ — G,(k) be a continuous Schur homomorphism such
that Gps =7 '(GL,(k)) and v o T = x mod \.

We suppose that for each v € 5170 there are n characters

—_— —_— . ><
Xi?,[)a "'7X5,n71 : GFT; — k )
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and a G'p-invariant decreasing filtration Fl% on k™ such that
. ﬁ%:(O) for i > n;
. Wf;:k” for i < 0;
o if i =0,...,n — 1 then dimgrik™ = 1 and G, acts on gr% by X
e if i > j+ 1 then X5, # Xz €

We need to impose one more assumption at primes v € §z,o, for which we
will require some preliminaries. Suppose that R is an object of Co and that
M is a free rank two R module M with a continuous action of G, and a
Gp,-invariant submodule Fil with M/Fil free of rank one over R. Suppose
moreover that, if G, acts on Fil (resp. M/Fil) by xo (resp. x1), then xiexp "
is unramified. Then we will define an invariant val (M, Fil) € R as follows.
Suppose first that R is Artinian. Choose a finite unramified extension F’/F;
such that xo = x1€ on Gp. Thus, as a Gg-module, (M, Fil) is an extension
of R(x1) by R(x1€) and so gives rise to a class in

HY(Gp, R(1)) = (F')*® R.

(By (F')* ® R we mean (F')*/((F')*)" ®z/az R for any sufficiently large a.)
The invariant val (M, Fil ) is just the image of this class in Z® R = R under the
valuation map. Note that this does not depend on the choice of F’. Also note
that if R — S in Co then val (M ®p S, Fil ®g S) is the image of val (M, Fil )
in S. We extend the definition to the case that R is any object of Cp by
using inverse limits. This preserves the invariance of val under pushforwards
by morphisms in Cp. Our additional assumption is that if X7 ,,,; = X3 ,€ then
val (Fil%/Fil 52 Fil 2 /Fil L) = 0.

Suppose that v € §z — §z,o~ Let MF o7 denote the category of finite
Orz ®z, O-modules M together with

e a decreasing filtration Fil‘M by Opy ®z, O-submodules which are Opy
direct summands with Fil’A = M and Fil'"'M = (0);

e and Fr ® I-linear maps @ : Fil'M — M with ®|g; 1), = 19" and
S GIFIIM = M.

Let MF} 5 denote the full subcategory of objects killed by A. Fontaine and
Lafaille (see [FL]) define an exact, fully faithful functor of O-linear categories
Gy from MF oz to the category of finite O-modules with a continuous action
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of Gp,. They show that the image of Gy is closed under taking sub-objects
and quotients and that [Op /v : Fy] times the length of G3(M) as an O-module
is the length of M as a O-module. (In fact in [FL] a slight variant Ug of G3
is defined. We define G3(M) = Ug(Hom (M, F;/Op#{l — 2})))(2 —[). Here
Hom (M, F;/Ops{l — 2})) € MFo is defined as follows.

e The underlying O-module is Hom o, . (M, F5/Op).
e Fil“Hom (M, F5/Opz{l — 2})) = Hom o, ,(M/Fil' "' "*M, F5/OF).
o If f € Homo, (M /Fil'™' "M, F;/Orz) and if m € ®*Fil°M set
() (m) = IR f(2°) 7 (m)).
To check that ®°f is well defined one uses the exact sequence

0) - @TFI'M — PIEFI'M — M — (0)
() = (Img — mga); ‘
(m;) — > d'my.

To check that

Hom o, (M, F5/Opgz) = > ®*Homo, ,(M/Fil'"' "M, F;/Opy)

it suffices to check that

Hom o, (M[l], F5/OFz) = Zcb Hom o, (M[l]/Fil' ™'~ *M[l], F;/Oy).

But M[l] = &, ®gr'M(l] and (ID“Hom@Fj(M[l]/Fﬂl*l*aM[l],Fg/OFﬁ) =
Hom @F’a(CI)l_Q_“grl_Q_“M[l], F;5/OF3).) For any objects M and N of MFo 3
(resp. MF35), the map

Ext by o (M, N) — Extbyg, (Gr(M), Go(N)

(resp.

Ext gz, ,(M,N) — Extjg, (Ga(M), G5(N))
>~ HY(Gp,, Hom x(G(M), G5(N))))

is an injection. Moreover

HOIDM]:O%(M, N) RN H0<GF§, Hom o(G’g(M), G’g(N)))
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For v € gl — §l70, we will assume that 7|g,. is in the image of G4 and that for

each 7 and each T € E above U we have
dimy (g1 'G5 (ley, ) ®op, 7 O < 1.

For 7 € fl above v € §l — gl,oa we will denote by mzg < ... < mz,_1 the
integers [ — 2 > m > 0 such that

dimy (gr mGgl(ﬂGFﬁ)) ®op. 7O =1.
For 7 € Sy — §l70 fix a Gp,-invariant filtration {W%} of k™ such that
. W; = (0) for ¢ >> 0, and
o Fil, = k" for i << 0.
We are going to define a deformation problem
(Gp+s D Grs, S D So,{GE, }ves, O, T, X, {ﬁ%}, D3}, {Ls})

as in the last section. It remains to describe the Dy and the Ls.

1.3.1 Ordinary deformations

The following discussion is a bit ad hoc. We do not feel that we have found
the right degree of generality here.

First of all we will discuss v € S;o. For ¢ =0,... ,n — 1 choose characters
Xz, Gr, — O lifting X ; with the following properties.

1. For each 7 € flvho above v there are integers mzo < ... < mz,_; such
that if we consider x3;|r, as a character of O (by class field theory)

then
xwale) = [[ (7o

7

2. If Xgi1 = Xp€ then xzi01 = Xzi€

We will take Dy to be the set of all lifts (r, {Fil%}) of (Tl » {Fil;}) to objects
R of Co such that Ip, acts on griR" by xz, and such that, if X5,,, = X ,€
then val (Fil5R"/Fil572R™) = 0. It is easy to see that Dy is a local deformation
problem.
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Set
= ker(H'(Gp,, Fil2F) — H'(Ir,, gr2ad7)).

Then there is a natural map

n—1

Ly — H'(Ir,, Fil 2ad ) /OH" (I, g1 9ad ) — @ H' (I, kxwims /x0))/ (),

=1

where ¢; is the class defined by the extension ﬁ;’l /ﬁ?l. Then it is not
hard to see that Ly = Lz(Dy) is the kernel of the composite

L/i — @Hl(IFTn k(XUJ 1/X”7J val @k
J

where j runs over indices such that X;_; = Xje.

Lemma 1.3.1 Forv & §z,o the set Dy is liftable.

Proof: Suppose that R is an object of Cp and [ is a closed ideal of R
with mgl = (0). Suppose also that (r, {Fil%}) is a deformation in Dy of
(Plep, » {Fil;}) to R/I. We will show by reverse induction on 4 that we can
find a lifting Fil* of Filkr to R so that for j > 4, I, acts on gr%Fﬂ" by xz;
and, if Xy ;11 = Xz €, then val (FilZFil*/FilZ"Fil*) = 0.

The case i = n — 1 is trivial. Suppose that Fil“™ is such a lifting. Also
choose a lifting gr’ of grir such that I acts by xz;. We will choose Fil’
to be an extension of gr’ by Fil"~' which lifts Filir. Such extensions are

parametrised by H'(Gr., Hom (gr?, Fil"t1)).
We have a commutative dlagram with its first two columns exact:

Hl(GFT],Hom (gr%?, IFil’iJrl)) — Hl(GFE,Hom (gr%?, Ing’l)) val (Hom (gr%?, Igri+1)(€71)1F6)GFT:
l l 1
Hl(GF{;,Hom(gri,FilH'l)) — Hl(Gpg,Holll(gri,gri+1)) val (Hom(gri,ng'l)(e*l)IFﬁ)GF17
1 1 l
HI(GFE,Hom (gr%r', Fil%+1r)) — HI(GFE,Hom (gr%r, gr%"’lr)) val (Hom (gr%r, gr %'Hr)(e’l)IFﬂ)GF'E
1 1

H2(GF,57H0111 (gT%Fa IFilitly) - Hz(GFa,Hom(gr%?, Igritly).

The last column is also exact, as either each term is zero or I, acts trivially
on each of the modules so that we can suppress the /g -coinvariants.
It suffices to check that the kernel of the map

H'(Gp,, Hom (grir, Fil 7'r)) — H*(Gp,, Hom (gry7, IFil ™))
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contains the kernel of the map

H* (Gp,,Hom (gr %r, Fil %Hr)) — (Hom (gr3 iy, gr 1“7“) (e” 1)IF~)GF6,

v

and that, in the case X3 ,,1 = X3¢, the map

HY (G, Hom (griF, IFil ")) — (Hom (gr i, Igr ™) (e ™), )97

Fy
is surjective.

For the first property we dualise. If M is a Z;|G g, ]-module we set M*
Hom (M, Q;/Z(¢)). We have the commutative diagram

i+1

HY(GF, /I, (Hom (grir, grir)* )IFs)

(

o |

H(Gp,,Hom (grir, Igr't)*) — HY(Gp.,Hom (grir, grir)®)
! !

H(G ., Hom (griF, IFil"T)") — HY (G, Hom (grir, Filttr)*)

and we need to check that the image of

HY(Gr, /I, (Hom (grir, gr 2r)*)7s) — H'(Gp,, Hom (gror, il 'r)*)
contains the image of

H°(Gp,,Hom (griF, IFil"™)*) — H' (G, Hom (grir, Fil5r)*).
The map in the last row equals
H°(Gp,,Hom (Fil5"'7, griv)(e)) @ I* « H°(GE,, Hom (gr 277, gri7)(e)) @ I*.
It is surjective because, by our assumptions,

H°(Gr,, Hom (gri7, gr i7)(e)) = (0)

for j > 7+ 1. Thus we need only show that the image of

HY(Gp, /I, (Hom (grir, gr 5r)*)'75) — HY (G, Hom (grir, gr2t'r)*)
contains the image of

H°(GF,,Hom (gri7, Igr™)*) — H'(GE,, Hom (gr ,0'r, gr 5 r)*),
i.e. that

H°(G ., Hom (griF, Igr*)*) — H'(Ip., Hom (grir, gr'r)*)
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is zero. If X711 # Xz,€ then the domain is trivial so there is nothing to prove.
Otherwise Ir. acts trivially Hom (gr’, gr*!)* and again we see this map is
7Z€ero.

For the second property we suppose that Xz ,,1 = Xz €. It suffices to check
that

HY (G, Hom (gri7, IFil"™)) — H'(Gp., Hom (grir, Igr*'))
is surjective, or even that
H?* (G, Hom (gr 7, IFil"*?)) = H*(G,, Hom (gr &7, Fil57°7)) @ I = (0).
Dually it suffices to check that
H°(Gp,, Hom (FilZ77, gri7)(€)) = (0),

which follows from our assumption that Xz, /X5 ; 7 € for j > i+ 1. O

Lemma 1.3.2
lgp L — lgo HY(G R, Fil2adT) =
n(n —1)[Fs: Q/2 +1go ker(H(Gr., (ad 7/Fil Jad 7)(€)) — gr2ad7),
where the last map is the composite of
H(Gp,, (ad7/Fil %ad 7) () - H' (G, (gr%adF)(e))

and
HY (G, (gr2ad7)(e)) = (grlad7) @ FX 2 grlad 7.

Proof: Looking at the diagram

(0)
|
H1<GF5/]Faugr%adF)
|
HY(Gp,Fil2ad7) —  HYGp,grlad7) — H?*(Gp,Fillad7)
|
H'(Ip., grladT)

with an exact row and column, we see that

lgo Ly = 1gp ker(H(Gr., Filad 7) — HY(G, gr%ad 7))+
lgo ker(HY(Gr, / Ik, gr2adT) — H*(Gp., FilfadT)).
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The long exact sequence corresponding to the short exact sequence
(0) — Filiad7 — Fil%ad7 — gr2ad7 — (0)
tells us that

lgo ker(HY (Gp, Fil Yad7) — HY(G, gr%ad 7)) =
lgo HY(Gp,, FiltadT) — lgn H(GE,, gr2ad 7)+
+1go H(Gp., Fil2adT) — lgn HY (G, Fil tad 7).

The local Euler characteristic formula in turn, tells us that this is
(5 : Qn(n—1)/2+1lgy HY(Gr., Fil Yad 7)—lg, gr Yad 7+lg, H?(Gr, Fil 1ad 7).
On the other hand local duality tells us that

lgo ker(HY(Gr. /Ir., grlad7) — H*(Gp,Fillad 7)) =
lg, coker (H(Gr, (ad7/Fil ad 7)(€)) — grlad7),

where the second map is the one described in the statement of the lemma.
Local duality also tells us that

lgp H*(G R, FiltadT) = lgy, HY(Gr,, (ad 7/Fil Jad 7)(e)).
Thus
lgo Ly —1go H(G R, Fil2adT) =

[F5: Qn(n —1)/2 — lgp grlad 7 + lgp H(GE,, (ad7/Fil 2ad 7)(e))+
lg, coker (HO(Gr, (ad 7/Fil 2ad 7)(€)) — grlad7),

and the lemma follows. O
Corollary 1.3.3

lgp L — lgo HY(G R, Fil 2ad 7) = n(n — 1)[Fy : Q] /2+
+lgo HO(Gr,, (gr5 adT)(e)).

Proof: The natural map
(gr>'ad7) ()9 — (ad7/Fil Jad 7)(e)“ "
is an isomorphism. The map
(gr>'ad7)(e)“rs @lod oy dadT
is zero, because for all j we have val (ﬁ%_l /W%H) = 0. Thus

(gr>'ad7)(€)9" — ker(H(GE,, (ad7/Fil2ad 7)(€)) — gr2ad 7).

30



Lemma 1.3.4 The composite
HY(Gp,, Filkad ) — H' (G, grfadT) ~ ((grlad7)(e ™), )47

18 surjective.

Proof: We must show that

ker(H' (G, grtadT) — H(Gp.,Fil2ad7)) % ((griad ) (e )1p, ).
Dually it suffices to show that

HY(Gr,/Ir,, (gr5 adT)(e)'")
injects into the cokernel of the map
H°(Gp,, (ad7/Fil;'ad7)(e)) — H'(GF,,gr; " ad7(e)).
Equivalently we must check that
H'(Gry /Iy, (815 ad7)(€)'5) — H' (G /Iy, (ad T/Fil Sad 7)(€)'50)
is injective. This follows because
((ad7/Filgad)(e) s / (gr 5 adT)(e) 7s) s = (0).
O
Corollary 1.3.5
lgp Ly —1gp HY(Gp., Fil2ad 7) = [F5 : Qn(n — 1)/2.
Proof: The lemma tells us that

Igo Ly — g Ly = 1go((gr 5ad 7) (7)1, )™ = Igo(gr 'ad 7)(e) 7.

v
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1.3.2 Crystalline deformations

Secondly we will second discuss the case v € gl — §170. In this case we will let
Dy consist of all lifts r : Gp, — GL,(R) of T|¢, such that, for each Artinian
quotient R’ of R, r ®g R’ is in the essential imvage of Gz. It is easy to verify
that this is a local deformation problem and that

Ly = Ly(Dy) = Bxt iz, (G;'(7),G;'(F)) — H'(Gp,,adT).
Lemma 1.3.6 Forv e §l — §l70 the set Dy is liftable.

Proof: Suppose that R is an Artinian object of Cp and [ is an ideal of
R with mgl = (0). Suppose also that r is a deformation in D of 7|, to
R/I. Write M = Ggl(r) and for 7 : Fy — K write Mz = M R0 02,0701 0.
Then Fil'M = @-Fil'Mz for all i. As M/mzgM = G;'(F) we see that we
can find a surjection (R/I)" — M5 such that (R/I)" — Fil"*" " M5 for all i
(where (R/I)" C (R/I)" consists of vectors whose last n — i entries are zero).
Counting orders we see that (R/I)® = Mz, and hence (R/I)" = Fil™" "Mz
for all 4. Define an object N = @ Nz of MFp 3 with an action of R as
follows. We take N = R"™ with an Opg-action via 7. We set F i1’N- = R!
where mz,—; > j > ms,-1-; (and where we set mz, = oo and ms_; =
—00). Then N/I = M as filtered Opy ®z, R-modules. Finally we define
O™7i o Fil™™ Nz — Niomob, Dy reverse recursion on ¢. For i = n — 1 we
take any lift of ®"7n-1 : Fil™7 "1 Mz — Mzopon,. In general we choose any
lift of ®™7i : Fil™™ Mz — Mszopop, Which restricts to ["7it17Mm7i®™7i+1 on
Fil ™71 N=. This is possible as Fil "7+ M= is a direct summand of Fil "7 M.
Nakayama’s lemma tells us that ) |, ®™7Fil ™% Nz = Nzpyob,, s0 that N is an
object of MF 5. As our lifting of r we take G(V). O

We will need to calculate lg, Lz. To this end we have the following lemma.

Lemma 1.3.7 Suppose that M and N are objects of MFyz. Then there is
an ezxact sequence

(0) — Hom ez, (M, N) — Fil"Hom o, e, o(M, N) —
— Hom OF,T;@ZZO7FI'®1(gr Mv N) — Ext }Vl]‘—k,g(M7 N) - (0)7

where Fil "Hom Opz02,0(M, N) denotes the subset of Hom o, e, o(M, N) con-

sisting of elements which take Fil?M to Fil"™ N for all j and where gr M =
@, gr'M. The central map sends 8 to (P4, — D4 3).
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Proof: Any extension
(0) — N — FE— M — (0)

in MF5 can be written E = N @ M such that Fil'E = Fil'N @ Fil'M
(and such that N — FE is the natural inclusion and E — M is the natural

projection). Then
0 @Y
with a; € Hom o, .0, 0 mre1(gr'M, N). Conversly, any
o= (a/l) € Hom OF3®z,0,Fr®1 (gr M, N)
gives rise to such an extension. Two such extensions corresponding to o and

o' are isomorphic if there is a 3 € Hom o, s, o(M, N) which preserves the
filtrations and such that for all ¢

1 g ol a \ [Py o 1 Blgeim
0 1 0o @4 ) 0 @i 0 1 '
The lemma now follows easilly. O

Corollary 1.3.8 Keep the above notation. We have
lgo Ly — lgo HY(Gp.,adT) = [F5 : Qn(n —1)/2.
Proof: It M is an object of MF 4 and if 7 : Fy — K set
Mz = M R0 5®z,0,701 0.
Thus Fil'M = @-Fil’M; and &' : Fil'M;z — M-

ToFr—

1. We have

Fil "Hom o,, s, 0(M, N) = @5 Fil "Hom o (Mz, N5)

and
Hom o, ;¢, 0,me1(gr M, N) @Homo gr Mz, Nzopy—1).

Note that dimy Fil "Hom (G ' (7)z, G5 ' (7 ) ) =n(n+1)/2 and that
dimy, Hom 1, (gr G5 ' (7)z, G5 1(F)ToFr 1) = n?. The corollary follows. O

v
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Corollary 1.3.9 Ifn =1 then
LT, = H1<GF5/IFT],adF).
Proof: One checks that Ly D H*(Gp, /Ir,,adT) and then uses the equality

of dimensions. O

The next lemma is clear.
Lemma 1.3.10 If?|GF5 = @,;5; then
HY(Gp,,ad7) = ®; ;H' (G, Hom (3;,5;))
and Ly = @, j(Ly);;, where (Lz);; denotes the image of

Ext vr, (G5 (51), G5 (5))) — H'(Gp,, Hom (5;,5))).

1.3.3 Unrestricted deformations

Suppose 7 € S — 5. We can take Dy to consist of all lifts of (Tl - {W%})
and Ly = L3(Dy) = H'(Gp,, FilZad 7). In this case

lgp Ly —1gp H(G R, Fil2ad 7) = lgn, H(Gr, (ad 7/Fil1)(1)).

If H(G ., (ad7/Fil1)(1)) = (0) then Lg is minimal and (using local duality,
we see that) Dy is liftable.

1.3.4 Minimal deformations

Suppose ¥ € S — S;. Suppose moreover that ng = (0) and that for i <
0, W%F/W%HF is the maximal submodule of F/W%HF on which Ip, acts
semisimply. (Thus if r|;, is semisimple then ¥ & Sy, while otherwise 7 € Sp.)
For every v fl, there is a ilnique such filtration on 7.

Before describing Dy we first give a description of all lifts of (7|, , {Fil5}:).
Let Pp. denote the kernel of any surjection Ip, — Z;. (Hence it is the kernel
of every such surjection.) Then P has (pro-)order prime to ! and I, is the
semidirect product of Pr, by Z;. Let o denote a topological generator of this
Zy. Moreover G, is the semidirect product of I, by 7. Let ¢ be a topological
generator of this 7 which lifts Frob~ ! Then ¢Z;¢~" is a Sylow pro-l-subgroup
of I, and so ¢Z;¢~" = 7Z;7~* for some 7 € Ir.. Replacing ¢ by 77'¢ we may
assume that pog~! = o#*®). Set T = Gp./Pr.. Thus we have written Gp.
as the semidirect product of Pg, by T, .

34



Suppose that 7 is an irreducible representation of Pp, over k. Then 7
admits a unique lift 7 to O. Let G, denote the set of 0 € G, with 77 ~ 7.
Write I for G, N Ip, and T, for G, NTE,. Then I is the semidirect product
of P by (¢"") for some a, € Zso. Write o, = ¢!"". Moreover we can find
¢r € Tk, such that T is the semidirect product of I. NIk, by the copy of Z
with topological generator ¢,. Note that [ fdim 7, as Pp._has pro-order prime
to .

The representation 7 has a unique (up to equivalence) extension to I..
(Suppose T(o,g0;') = Ar(9)A~! for all ¢ € Pr. Suppose also that alTb
centralises 7Pp,. Then we see that z = A" lies in the centraliser Z. of
the image of 7. As 7 is irreducible we see that Z. is the multiplicative
group of a finite extension of k£ and so is a torsion abelian group with or-
ders prime to [. Moreover Z/I’Z acts on Z, by letting 1 act by conjuga-
tion by A. As H*(Z/I’Z,Z,) = (0) we see that there is w € Z, with
21 = wAwA ) (A2wA2). (A" A) = (wA) A" We can extend
7 to I, by sending o, to wA. Now write A for wA. Any other extension
sends o, to uA for some u € Z, with u(AuA=)...(A"uA'"") equalling an
element of Z, of I-power order, i.e. equalling 1. As HY(Z/I’Z, Z.) = 1 we see
that u = v~ AvA™! for some v € Z,. Hence our second extension of 7[p,, is
v~l7v, i.e. our extension is unique up to equivalence.) Similarly the lifting 7
has a unique extension to I, with determinant of order prime to [. (Argue as
before but choose A with det A having order prime to [, which is possible as
for z € O we have det(zA) = 29™7 det(A). Then take Z, to be the set of
elements of the centraliser of 7(Pp, ) with order prime to [. The same argument
shows the existence of one extension with determinant of order prime to [ and
also its uniqueness.)

By the uniqueness of the extension, 7 and 797 are equivalent as represen-
tations of G; N Ip,. Hence T extends to a representation of G». Pick one such
extension and let 7 denote its reduction modulo .

Suppose that R is an object of C» and that M is a finite R-module with a
continuous action of Gp,. Then we can write

M= M,

where 7 runs over irreducible k[Pp ]-modules and where M, is the biggest
R|[Pr,]-submodule all whose irreducible subquotients are isomorphic to 7.
Then M; is in fact a R[G.]-module. Moreover M. = Hom o(p, (7, M) is
naturally an R[7;]-module and ’

M, =7 Q0 M.
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Moreover we see that

M =@ Idg" (7 ©0 M),
]

where [7] runs over Gp, -conjugacy classes of irreducible k[Pp. |-modules. In
fact the category of finite R-modules with continuous G, -action is naturally
equivalent to the direct sum over [7] of the categories of finite R-modules with
a continuous action of 7. This equivalence sends M to (M.);. We will say
that M lacks unipotent ramification if each M’ is unramified, i.e. the action
of T restricts trivially to (I, N G;)/Pr,. In this case

1\4|1F5 = @(Ind fﬂ?) ®o (M‘I/_)[GFEZIFEGT}.
(7]

Conversely if
M|, = @ (Ind ;"7) @0 M!
[7]
for some trivial /p-modules M then M lacks unipotent monodromy.
We now return to lifts of (r, {Fil%}) of (F|GF~,{W%}) over an object R
of Co. We will say that such a lift is mim’mallyv ramified if each grir lacks
unipotent ramification. Let Dj denote the set of minimally ramified lifts.

Using the above equivalence of categories it is easy to see that Dy is a local
deformation problem. Moreover

Ly = Ly(Dy) = ker(HY (G, Fil2ad 7) — H'(Ip,, gr2ad7)).

Note that iy L '
FilJ7 N7, = Fil 37, = ker(o, — 1)

- .
Tr

Lemma 1.3.11 L3 is minimal.
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Proof:
dimy, Ly — dimy, HO(G ., Fil Zad 7)

= dimy Im (HY(Gp,, Fil1ad7) — HY(Gp,, Fil2ad 7))+
+ dimy, ker(H (G, / Ik, (gr%ad 7)) — H?(G., FiltadT))—
— dimy, H(Gf,, Fil Yad 7)

= dimy, H(Gp,, Fil;ad7) — dimy H*(G R, gr 3ad 7)—
—dimy, H(Gp, Fil1ad7) — dimy H*(Gp, Fil ;ad 7)+
+ dlmk Hl (GF5/1F57 (gl" %ad?)l%)—i-
+ dimy, coker (HY(GE. / Ik, (gr 9ad 7)'75) — H?(GE., Fil;ad 7))
= dimy ker(H°(GE,, (ad7/Fil 2ad7)(1)) — H'(Ig,, (grad7)(1))).
Thus to prove the lemma it suffices to show that

H°(Gr., (ad7/Fil%d 7)(1)) — H'(Ip, (g1 %d7)(1))

is injective.
We have

ad7 = @ Hom,(Ind o7 (7 ©7%), Ind 7 (F & 7).
[7],[7]
Hence
» Gp ,~, _ ~
(ad7)Fs = D Ind gf” Hom y(p, )(Ind GTFf (T e7,),(T®T,))
T
= @ (Endp, (1) @ Ind 1/ "ad 7.

Thus we must show that for each [7] the map
HO(T,, (ad 7 /Fil 5ad 7,)(1)) — H'(L,/ Prs, (gr %ad7.)(1))
is injective. In fact it suffices to show that
H°(I./ P, (ad 7, /Fil2ad 7)) — H'(I,/Pr., (gr2d7.)) = gr2ad 7.

is injective. (Note that I,/Pp. acts trivially on each grZ7..) In concrete terms,

/

. =7 — =7+l
it suffices to show that if o € ad7, and 0,00, " — « sends Fil 7 to Fil %Jr T

for all j then a sends Fila7. to Fil37. for all 5.
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We prove this last assertion by reverse induction on j. It is vacuously true
for 5 > 0. Now consider j < 0. Our assumption tells us that

(o = Da—afo, — 1))F11]~7“/ C F11~+j_'

The inductive hypothesis and the fact that (o, — 1)F11 5 C F11~ 7 implies

that
(o, — 1)04F11~r C F11~+]_'

Hence oFil7. C Fil47,, as desired. O

Lemma 1.3.12 Dy is liftable.

Proof: Because of the equivalence of categories discussed above it suffices
to prove the corresponding result for representations of T;. More precisely

suppose that 77 is a representation of 17 over k. Define a filtration Fil’ on T
by setting Fil'7. = (0) for j > 0 and = ker(7(o,) — 1)~ for j < 0. Let D
denote the set of liftings (r, {Fil?}) of (7., {Fil’}) such that o, acts trivially

on gr’r for all j. We need to show that D is liftable.

Let R be an object of Co and let I be an ideal of R with mzl = (0). Let
(r, {Fil’}) be a lifting of (7., {Fil’}) to R/I. We will show by induction on i
that (r/Fil*, {Fil7/Fil'};) can be lifted to R in such a way that o, acts trivially
on each graded piece. For i sufficiently negative this is vacuous. Assume we

have done this for ¢ — 1 and we will show it for i. Choose bases compatible
with the filtration. Write

wo=(ow) o= (% )

Let m = (#k(©)) 97757 Then Vj is unipotent; Ay and Dy are invertible;
DO‘/O = VE)TDO and

AoXo+ BoVo = By + Xo(1+ Vo + ... + Vy" HD.

Moreover we are assuming that we are given lifts D of Dy and V of Vj to R
such that V is unipotent and DV = V" D. We wish to show we can find lifts
A of Ay, B of By and X of X such that

AX+BV =B+ X(1+V+.+V™HD.
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Choose any lifts A;, B; and X; and set A = A; + Ay, B = B; + By and
X = X, where Ay, and B, are matrices with entries in /. We need to find A,
and B, such that

AX+B(V-1)=B(1-V)+ XQA+V+..+V™HD - A X.

By assumption the right hand side is a matrix with entries in I. Thus it
suffices to show that after reduction modulo mp the rows of X and V —1

taken together span kdim?/ﬁ%l?, i.e. that o, — 1 acting on F/Wif has rank
dim(7/Fil7) . This follows because Fil''7/Fil 7 is the kernel of o, — 1
acting on 7/Fil 7. O
Lemma 1.3.13 H°(Gp,,ad7/Fil2ad7) — HY(Gp.,Fil%ad7)/Ls.
Proof: 1t suffices to show that
HO(Ip.,ad7/Fil2ad 7) — H'(Ir,, gr2ad7)
or equivalently that
H(Ir, grlad7) — H(Ir,ad7/Fil lad 7).
In fact we will show by induction on j that
HO(Ip. gr%ad (7/FiloF)) — HO(Ip., ad (7/FiloF) /Fil Lad (7/FiZF)).

To establish the claim for j + 1 consider the commutative diagram with exact
columns

(0) (0)
b L |
HY(Ipy, adgrym) = HO (I, Hom (gr 37, 7/FiT5 7))

!

HO(If. , grlad (7/FIILT'F)) — HO(Ip,ad (F/Fi5"'7)/Fil lad (7/FiIL' 7))
! !

HO(Ip,,er%ad (F/Filgr))  —>  H(Ip,ad (7/Fil47)/Fil fad (7/Fil 7))
l
(0).

(The top horizontal arrow is an isomorphism by the definition of FilZ, and

v

the bottom horizontal arrow is an isomorphism by the inductive hypothesis.)
O

For example if 7 is unramified at v then Dy consists of all unramified lifts.
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1.3.5 Discrete series deformations

Suppose that m|n, that there is a representation 75 : Gp, — GLy/(O) with
r3 ® k absolutely irreducible. Note that if R — S is a surjection in Cp then

2y My () (T5(G ) = 14+ mp — L+ ms = Ziym, ), (ms) (T5(GE,))-
Lemma 1.3.14 If R — S is a surjection in Co then

Zl+Mn/m(mR)(F57(IFT;)) - Zl+Mn/m(ms)(77'ﬁ<IFa))v
and both groups are abelian.

Proof: It suffices to prove that
2t (m)(T5(IRy)) = Z,,005) (T5(1Ry))-

As these modules are defined linearly and because W (k) is free over W (k) it
suffices to prove this after tensoring with W (k). Thus we may assume that k
is algebraicly closed.

Let 71 be an irreducible constituent of 73] 1. ® k and let 7, denote the
T1-isotypic component of 77| I ®k. Let H C Gp, "denote the group of o € Gp,

such that 7Y = 7;. Thus 7| is an H-module and IndH T — T3l ® k.
Because H /I, is pro-cyclic we can extend 71 to a representation of H and we
get

—/

™ =71 ®Homyp, (71,77)

as H-modules. Because 75 ® k is an irreducible Gp -module we see that
Hom 7, (71,7)) must be an irreducible H/Ip -module and hence one dimen-
sional. Twisting 7y by a character of H/Ip we may assume that

7@k = Ind T
where 71|, is irreducible. Thus
Toll, @k =T1® ... OTs

where each 7; is irreducible and where 7; 22 7; if 7 # j.

We claim that 'Fg|1F5 =71 @ .. Drs where r; is a lifting of 7;. We prove
this modulo A by induction on ¢, the case t = 1 being immediate. So suppose
this is true modulo A. As I has cohomological dimension 1 we see that we
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may lift 7; to a continuous representation r} : Ir. — GLgimr, (O/A1). Then
73|r.. mod A differs from 7} @ ... & ), by an element of

H'(Ip,,ad75 @ k) = @ H' (Ir,, Hom (7;,7;)).
]

For i # j we have Hom (7;,7;);,. = (0) so

H' (I, adT3 @ k) = @Hl(l_Fﬂ,adFi)-

Hence 75|z, mod '™ =7 @ ... & r,, as desired.
We deduce (from lemma 1.1.7) that

It () (T5(LE;)) = R

and the lemma follows. O

Note that (14 M,, /,,(mp))-conjugacy classes of lifts to R of 5@k correspond
to

214 M, () (T3 (L)) [ ~

where z ~ 2’ if and only if
2" = 75(Froby) 'wry(Frobg) 2w ™"
for some w € Zy1n, /m(mR)(?g(I 7 )). This correspondence sends z to the lift

g Ti(g)2"™,

where val; : G, /Ip, — Z; sends Froby to 1.
Suppose that there is a filtration W% of 7|¢,. and an isomorphism

ot (o @ )1y, = @i,
such that
groT = (Br7)(€')
fort=1,...,m — 1. Suppose moreover that for j =0, ..., m — 2 we have
Hom ¢ (FiT47, gT47) = k.
(This will be true if for instance

H°(Gp.,ad 75 ® k(¢')) = (0)
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fori =1—m,...,—1.) In this case an easy induction on j shows that ﬁ% is
determined uniquely by the isomorphism class of gror as a k[G g, |-module. .
Let Dy be the set of all liftings r of 7|g, such that r has a filtration Fil

by direct summands which lifts W% and satisfies

e ry lifts to an isomorphism
(?5 ® R>|IF5 — (gl" %T)|1F5

e and,
grir = (grgr)(c’)
fori=1,....m—1.
If such a filtration Fil% exists it is unique. (To see this one can reduce to
the case that R is Artinian and then argue by induction on the length of R.

Thus suppose that R is Artinian and [ is an ideal of R of length 1. Suppose
the filtration on r ® g R/I is unique. Any other such filtration is of the form

(1, + h)FilZ where h € M, (I) = ad T has image in ad F/Wgadf fixed by Gp,.
Thus h has an image in

m—1
HY (G, Filyad ) — H'(Gr,.gr%d7) = @D H' (G, ad grir.

1=0

Note that H(Gp,/IF,, (adgrlr)'7) = HY(GF,/IF,, klu/m). Thus we require
the image of h in H'(Gp,,griad7) to lie in H'(Gg,/Ik., k1,). Altering h by
an element of Fil2ad 7 does not change (1,, + 2)Fil’/. Thus possible filtrations
are parametrised by elements of

ker(H°(GF., ad?/ﬁgadf) — HY(Gp,griad?)/H (Gr, /Ir., k1,)).

As
H'(Gp. /Ir., k1,) — H'(Gp,,ad7/Fil yad )

we see that possible filtrations are actually parametrised by elements of
ker(H°(G ., adF/ﬁgadF) — HY(Gp.,griadr)).
We prove by reverse induction on ¢ that
ker (HO(GFE, Hom (7, Fil 7)/Fil ;Hom (7, Fil 7)) — € H'(Gr,,ad gr %F))
j=i
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is trivial. For this consider the commutative diagram with left column exact
at the centre:

HO(Gp,, Hom (v, Fi'7)/Fil;Hom (7, FI'7))  — @7, H'(Gr,,adgrir)

!
H(Gp,, Hom (7, FI'" '7)/FiljHom (R, FI' 7)) — @71, H'(Gr,,adgrir)
I !
H°(Gp,, Hom (Fil 7, gr'~'7)) — HY(GF,,ad grir).

The injectivity of the last horizontal arrow follows from our assumption that
Hom k[GFE](ﬁ%_lF, gro'T) = k.) It follows from this and from lemma 1.3.14
that Dy is a local deformation problem.

Note that

#H (Gp, /I, (adgror) ') = #H (G, ad gTor) = #k

and so
H1<GF5/IF5’ (adg_r%F)IFﬂ) = H1<GF5/]F5’ kln/m)'

Let ' '
a: g (@ 9)(e).
This map is unique up to scalars. We see that
m—1
(Z ad (O“)> ' (GFT;/‘[FH7 (ad g_r%F)IFT’) = H' (GFT;/IFT;? kln)‘
i=0

From this it is not hard to see that we may take Lz = L3(D5) to be the kernel
of the map

HY(Gp,,adT) — HY(Gp,,ad7/Filsad7)/H (G, /Tr., k1,,).
Lemma 1.3.15 Recall our assumption that
H(Gi,, Hom (Fily7, %7)) = k
for j=0,....,m —2. Then Ly is minimal and Dy is liftable.
Proof: We see that
dim Ly = 1 + dimker(H(Gp,, ad7) — H'(Gp,,ad7/Fil sad 7).

(Because HY(Gp./Ir.,kl,) is a subspace of H'(GE,,adT) of dimension 1.)
Hence

dim L — dim HO(Gp,,ad7) = 1 + dim H'(G ., Fil yad 7) —
— dim HY(G ., (ad7)/Fil yad 7) — dim HY(G ., Fil jad 7).
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Applying the local Euler characteristic formula this becomes

dlng — dim HO(GFT], adF) =
1+ dim H(G ., ((ad7)/(Filyad 7))(1)) — dim H(G ., (ad )/ (Fil yad 7).

From the exact sequence
(0) = ((ad7)/(Filyad7))(1) — (ad7)/(Fil jad 7) — Hom (7, gr%7) — (0)
we see that dim Lz — dim H(Gp,, ad 7) equals the dimension of the cokernel
H°(Gr,. (ad7)/(Filad 7)) — H°(Gr,, Hom (7, gr57)).
By assumption the latter group is k£ and is in the image of
H(Gp., k1,) C H(Gp,, (ad7)/(Filsad 7).

Thus the cokernel is trivial and Lz is minimal.

We finally turn to the liftability of Dy. Suppose that R is an object of
Co and that [ is a closed ideal of R with mgl = (0). Suppose also that r
is a lifting of 7|g,_ to R/I in Dy. Let {Fil’} be the corresponding filtration
of (R/I)". Choose a lifting gr® of gr to R such that the isomorphism of
R/I[Ip ]-modules

75 ® R/I — gr’r

lifts to an isomorphism of R[If |-modules
3R> gr 0,

We will show by reverse induction on i that Fil 'r is liftable to a free R module
Fil* with a filtration and G p,-action such that for j = 4,...,m — 1 there is
an isomorphism gr(e/) = gr’/Fil’. This is certainly possible for i = m — 1.
Suppose it is true for ¢ + 1. It suffices to show that

H' (G, Hom (e ("), Fil 1)) — H'(Gr,, Hom n((gxr) (¢, Fil *17),
or equivalently that
H?*(GF,, I[Hom p(gr®(é"), Fil'™)) — H?*(Gp,, Hom g(gr°(¢'), Fil""1)).
Dualising, this is equivalent to the surjectivity of the map

H°(GF,,Hom g(Fil"*", gr®(é"1)) @ RY) — H(Gp,, Hom g(Fil" !, gr%(¢""1)) @p 1Y),
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where M"Y denotes Hom (M, Q,;/Z;). However

H°(Gp,,Hom R(Fﬂ‘”ll, grf(é™)) @gr 1Y)
= H°(Gp,,Hom k(ﬁ? 7, gror(eth))) @ IV
H(Gp,, Hom j(gr 277, gr 27'7)) @4 1V
= I,

As the composite

RY = H°(Gp,,Hom (gr'™', gr'™") @z RY
—  H°(Gp,, Hom g(Fil """, gr (™)) @g RY)
—  HGp,Hom p(Fil"*! grO(e*!)) @p 1Y)
= JV

is surjective, it follows that the map

H°(GF,,Hom g(Fil"*", gr®(e"1)) @ RY) — H®(Gp,, Hom g(Fil "', gr (1)) @p 1Y),

is surjective and hence Dj is liftable. O

1.3.6 Taylor-Wiles deformations

Suppose that Nv = 1 mod [, that 7 is unramified at v and that 7|g, = VDS
where dim; 1 = 1 and 5 does not contain 7/ as a sub-quotient. Take Dy to
consist of all lifts of 7|g, which are (1 + M,(mg))-conjugate to one of the

form v @ s where 9 lifts ¢, and where s lifts 3 and is unramified. Then Dy is
a local deformation problem and

Ly = Ly(Dz) = HY(Gp, /Ir,,ad5) @ H (Gp,,ad ).
Note that in this case
lgo Ly — g0 HY(Gp.,adT) = lgp H' (Ir,, ad )" = 1.

We will write Aj for the maximal [-power quotient of the inertia subgroup
of G%t;. It is cyclic of order the maximal power of [ dividing Nv — 1. If r is
any deformation of 7|g,. in Dy over a ring R then detr : Ay — R* and so
R becomes an O[Agz]-module. If ag denotes the augmentation ideal of O[Ag]
then R/azR is the maximal quotient of R over which r becomes unramified at

V.
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1.3.7 Ramakrishna deformations

Suppose that (N©) # 1 mod [ and that 7|g, = te® ¥ @3, where 1 and 5
are unramified and 3 contains neither ¢) nor ¥e as a sub-quotient. Take Dy to
consist of the set of lifts of 7|, which are (1 + M, (mg))-conjugate to a lift
of the form

ve x 0
0 ¢ 0
0 0 s

with 1 an unramified lift of ¢ and s an unramified lift of 5. Then Dj is a local
deformation problem and Ly = Lz(Dy) is

HI(GFE/Ika < 102 8 )) b HI(GFWHOm @7%)) @HI(GFE/IFa’adE)'

Then dimy Ly = 2 + dimy H'(Gp, /Ip,,ads) = 2 + dimy, H(GE,,ads) =
dimy, H°(Gp,,adT). Thus Lz is minimal. Moreover Dy is liftable. (Because if
R is an object of Cp and if I is a closed ideal of R then

HY(Gr,, R(e)) — H'(Gr,, (R/1)(e)).)

1.3.8 One more deformation

Suppose again that (N©) # 1 mod [ and that 7|g, = e® ¥ @3, where ¥ and
5 are unramified and 3 contains neither 1) nor e as a sub-quotient. Take Dy
to consist of the set of lifts of 7|, which are (1+ M, (mg))-conjugate to a lift
of the form

¢1 k 0
0 ¥y 0
0 0 s

with 1)1 (resp. 12) an unramified lift of e (resp. ) and s an unramified lift
of 5. Note that Dy includes all unramified lifts and all Ramakrishna lifts (see
section 1.3.7). It is a local deformation problem and Ly = Lz(Dy) is

H(Glr, /I, Hom (e, $e) & Hom (i, 9)) @ H (G, Hom (i, Ge))
OHY(Gp, /Ip.,ad5s).

Then dlmk Lg =3+ dlmk Hl(G’FE/[Fa,adE) =3+ dlmk HO(GFT],adE) =1+
dlmk HO(G’FE,adF).

The next lemma is immediate.
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Lemma 1.3.16 Suppose that
S = (GF+,S D) GF,Sv SD SO; {GFg}’UES7 O7F7 X {W%}7 {Dﬁ}a {Lﬂ})

is a deformation problem as above. Suppose that S" D S is a finite set of
primes of F* which split in F and choose a set S' D S consisting of one prime
of F above each prime of S’. Define a deformation problem

S = (GF+,S’ ) GF,S’> S'D So, {GFg}veSU 0,7, x, {W'Zﬁ}a {,Dﬁ}a {Lﬂ})v

where, for v € S the {W;}, D; and Ly are as in S, and for v & S the set
Dy consists of all unramified deformations and Ly = H' (G, /Ir,,adT). Then
Defs is naturally isomorphic to Defs and in particular R¥Y = R,

Lemma 1.3.17 Suppose that

S=(Gprs D Grs, SO So, {Gr bes, O.F, v, [FIL}, (D5}, {Ls})

is a deformation problem as above. Suppose that R C S—(SoUS)) only contains
primes v for which T is unramified at v and Dy consists of all unramified lifts
of Tlgy. . Define a new deformation problem

§' = (Grvis O Grs: S O S0, {Grhoes: O, x AP} (D {L5)),
where
o forve S— R, D. =Dy and L. = Ly, and
o forv e R, D consists of all deformations of F|GF5 and
L. = H(Gp,,adT).

Suppose that ¢ : R — O and let ¢r denote the composite of ¢ with the
natural map REY — RV, Also let ry denote ¢(ri™™). Then

lgo ker g/ (ker ¢p)* < lgp ker ¢/(ker ¢)* + Y "lgo H(Gp,, (adry)(e7")).

vER

Proof: As described at the end of section 1.2 a class [¢)] € HS, (Gp+.g,ad ry®
AN/O) corresponds to a deformation (1 + e)ry of 7y mod AY. This defor-
mation corresponds to an element of H{(Gp+ g,adry @ A /0O) if and only if
(1 4 wpe)ry is unramified at all v € R if and only if (If,) = 0 for all v € R.
Note that, for v € R, we have

HY(Ir,adry @0 A"V /O) = Hom (Ir,adry @0 AV/0)
= (adry) ®o A™V/O(e7).
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Thus we have an exact sequence

(O) — Hé(GF+75, adm, X )\_N/O) — Hé,(GF+7S, adm, X )\_N/O) —
— @D, H(Gr,, (adry) @0 A7V /O(e71)).

Taking a direct limit and applying lemma 1.2.7 we then get an exact sequence

(0) — Hom (ker ¢/ (ker ¢)?, K/O) — Hom (ker ¢/ (ker ¢r)*, K/O) —
— Duer H'(Gry, (adry) @0 K/O(e7))

and the lemma follows. O

1.4 Galois theory.

We will keep the notation and assumptions of the last section.
We will start with a lemma from algebraic number theory, which may be
standard but for which we do not know a reference.

Lemma 1.4.1 Let E/F be a Galois extension of number fields. Let S be a
finite set of finite places of F' and let E(S)/E be the mazimal extension unram-
ified outside S. Thus E(S)/F is Galois. Let M be a continuous Gal (E(S)/F)-
module of finite cardinality coprime to [E : F|. Suppose that S contains all
finite places v such that v|#M. Then

#H' (Gal (B(S)/F), M)
#HO(Gal (E(S)/F), M)# H?*(Gal (E(S)/F),

oy L[ #H(Gal (Fuo/ F), M)

v]oo
equals (F#M)FQ,

Proof: This is proved in exactly the same way as the usual global Euler
characteristic formula.
Firstly one shows that if there is a short exact sequence

(O>—>M1—>M2—>M3—><O>

and the theorem is true for two of the terms, then it is also true for the third.
To do this one considers the long exact sequences with H*(Gal (E(S)/F), )
and H'(Gal (F,/F,), ). The key point is that

coker (H?(Gal (E(S)/F), My) — H*(Gal (E(S)/F), Ms;))
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is isomorphic to

coker ((P) H°(Gal (F,/F,), My) — €P) H"(Gal (F,/F,), Ms)).

v]oo v]oo
This follows from the equalities

H3*(Gal (E(S)/F), M;) H3(Cal (B(S)/E), M;)G (/)

(@w‘oo Hl(Gal( w/E ) ))Gal(E/F)
@Ubo H1<Ga,l (F’U/FU)7 z)‘

Thus we are reduced to the case that M is an F;-module for some prime
LJE : F).

Next choose a subfield L of E(S) which contains E((;), which is totally
imaginary and which is finite, Galois over F. Suppose that M is a Gal (L/F)-
module. Let L D K D F and let Ry, (Gal(L/K)) denote the representation
ring for Gal (L/K) acting on finite dimensional [F;-vector spaces. Define a
homomorphism

e 1l

xr : Br(Gal (L/K)) ®zQ — Q

x[M] = dim H(Gal(E(S)/K), M) — dim H°(Gal (E(S)/K), M)
—dim H*(Gal (E(S)/K), M) + 3, H(Gal (K,,/K,), M).

This is well defined by the observation of the previous paragraph. We need to
show that

xr=[F:Q]dim.
It is easy to check that
xr o Ind g:i Z?) XK -
As Ry, (Gal (L/F)) ® Q is spanned by Ind SZ} Zf( Rp,(Gal (L/K)) as K runs
over intermediate fields with L/K cyclic of degree prime to [, it suffices to
prove that yx = [K : Q] dim when K is an intermediate field with L/K cyclic

of degree prime to .
Now assume that L D K D F with L/K cyclic of degree prime to [. Define

Xk : Rp,(Gal (L/K)) — Ry, (Gal (L/K))

XxlM] = Y, [M @ Ind 2770 JFi) + [HY(Gal (E(S)/L), M)]
—[H"(Gal (E(S)/L), M)] — [H*(Gal (E(S)/L), M)],
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where w denotes a place of L above v. This is well defined because L to-
tally imaginary implies H3(Gal (E(S)/L), M) = (0). Note that Yx([M]) =
[M(—1)] ® Xk ([t])- Moreover as I f[L : K| we see that

xx = H°(Gal (L/K), )o Xk,
so that
xi([M]) = H%(Gal (L/K), [M(-1)] @ X« ([]))-
Thus it suffices to prove that

Xec([m]) = [K : Q)[Ind {3 /R,

As E(S) is the maximal extension of L unramified outside S one has the
standard formulae

[H®(Gal (E(S)/L), )] = [w]
and
[H(Gal (E(S)/L), )] = [OL[1/S]* @ Fi] + [Cls(L)[1])
and

[H*(Gal (E(S)/L), )] = [Cls(L) ® Fi] — [F[] + Y [P Br (L)1,

veS wlv

where Lg(L) denotes the S-class group of L (i.e. the quotient of the class
group by classes of ideals supported over S) and Br (L,,) denotes the Brauer
group of L,,. Using these formulae the proof is easily completed, just as in the
case of the usual global Euler characteristic formula. O

We will write L for the annihilator in H'(GE,,ad7(1)) of the image of Lz
in H'(Gp,,ad7). We will also write H}, (Gp+s,ad7(1)) for the kernel of the
map

H'(Gp+s,ad (1)) — €D H'(Gp,,ad7(1))/Ly.

veS
Lemma 1.4.2 1. H(Gp+g,adT) = (0) unlessi=1,2 or 3.
2. dlmk Hg(GF+73, ad F) = dlmk HO(GF+75, ad 7(1))
3. dlmk Hg(GF+’5, ad T) = dlmk Héi (GF+,S; ad?(l))
/.

dlmk Hé(GF+7S,adF)
= dlmk HEJ_ (GF+,57 ad T(l)) — dlmk HO(GFJr,S, ad?(l))
Y e (X(ew) +1)/24 3 55 5 (dimyg Ly — dimy, H°(GE,,adT)).
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Proof: For the first part we use the long exact sequences before lemma 1.2.2
and the vanishing of H(Gp+ g,ad7) = H (Grs,ad 7)™ F/FD) for i £ 1 or 2.
For the second and third parts one compares the exact sequences

Hl(GF+,S,adF) — 5€§H1(Gpg,ad7)/lfg

-5 H*(Gp,,adT) — H*(Gp+g,adT) — H‘%(Gpis,ad?)
Hg(GFf,& ad7)  — (0)
and
HY(Gp+ g,adT) — -5 H'(Gp,,adT)/ Ly
w5 H*(Gp,,adT) — H*(Gp+g,adT) Hb(GFhlq,adF(l))V
HO(GFhSl,adF(l))v - (0).

(The latter exact sequence is a consequence of Poitou-Tate global duality and
the identifications H'(Gp+g,ad7) = H(Gpg,ad7)5 F/F) for i = 1,2 and
HY(Gp+ g, (adT)(1)) = H(GFpgs, (ad?)(l))Gal(F/F+) fori=0,1.)

For the fourth part we have the Euler characteristic formula

dlmk HI(GFJQS, ad?) — dlmk HO(GF+75, ad?) — dlmk HQ(GF+75, ad?)
= n2[F* Q= 3, dimy HO(G s, ad 7).

(See lemma 1.4.1.) This, lemma 1.2.2, and the local Euler characteristic for-
mulae tell us that

dlmk Hé(GF-&-, adF) - dlmk H‘%(GF-&-, adF) + dlmk HE(GF"'? ad?) =
D ujo (0P = dimy, HY(G o+, ad T)) = > 55 0P [ Fy Q)
D seg n(n — D[F: Q] /2 + 3555, (dimy, Ly — dimy, HO(Gr,, adT)).

Lemma 1.1.2 tells us that for v|oo
HO(GFj,adF) =nn+ (vo7)(e))/2=n(n—1)/2+n(1+ x(c,))/2.

The fourth part of the lemma follows. O

Corollary 1.4.3 Suppose that for v € S; the deformation problem Dy is as in
section 1.3.1 or 1.3.2. Suppose that for all v € S — S; the set Dy is liftable.
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Suppose also that H} (Gp+s,adT(1)) = (0). Then RE™ is a power series
ring over O in

seg_g, (dimy, Ly — dimy, HY(G,, adT))
— dimy, HO(GF“F’S, ad7(1)) — n Z'U|oo<X(CU) +1)/2

variables.

Corollary 1.4.4 Suppose that for v € S; the deformation problem Dy is as in
section 1.53.1 or 1.3.2. Suppose that there is a subset Q C S — S; such that

o forveS—(S,UQ), Ly is minimal, and
o for v € Q) the pair (Dy, Ly) is as in example 1.5.6.
Then

dlmk Hé(GF+75, ad F) =
#Q +dim; H} (Gp+ 5,ad7(1)) — dimy H*(Gp+ g, ad 7(1))

We will call a subgroup H C G, (k) big if the following conditions are
satisfied.

o H(H,g,(k)) = (0).
o H'(H,g,(k)) = (0).

e For all irreducible k[H]-submodules W of g,,(k) we can find h € HNGY(k)
and o € k with the following properties. The o generalised eigenspace
Viho of h in k™ is one dimensional. Let 7, @ K™ — V) o (resp. ipq)
denote the h-equivariant projection of k™ to Vj, (resp. h-equivariant
injection of V},, into k™). Then 7, 4 0 W 0y 4 # (0).

We note that the third property will also hold for any non-zero F;|H|-subspace
W of g, (k). (Because it holds for W if and only if it holds for its k-linear span.)
Also note that the first two properties are implied by

o HY(HNG2(k),g2(k)) = (0), and
o H'(HNG)(k),g,(k)) = (0).

The next proposition assures the existence of global ‘Taylor-Wiles” type
deformations.
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Proposition 1.4.5 Suppose that for v € S; the deformation problem Dy is
as in section 1.83.1 or 1.3.2. Suppose that for all v € S — S; the space Ly is
minimal. Suppose also that for allm € Z>y the group T(Gp+(cm)) 5 big. Then
we can find an integer r with the following properties. If N € Z, then we can
find a set Q of primes of F™ which don’t lic in S and which split in F, with
the following properties.

« #Q=r.

e IfveQ the Nv=1modI"V.

e [For each prime v € Q we can choose a prime v of F above v and a set
of deformations Dy of T|GF as in example 1.5.6 such that, if S’ denotes

the extended deformation pfr’oblem obtained by adding () and these Dy to
S, then

dim Hg (Gp+ sug,adT) =1 — nz (co) +1)/2.

v]oo

Proof: Suppose that () is any finite set of primes of F'* which don’t lie in
S, which split in F'; and suppose that for v € @ there is a prime v of I’ above
v and a pair (Dy, Lz) as in example 1.3.6. Write @ for the set of v for v € S.
Also write S” for the deformation problem obtained from S by adjoining @
and the Dy for v € Q. If ¥ € Q write T = ¥; @ 33 as in example 1.3.6. Note
that
(0) — HY(Grr s, (adT)(6) — HY (Gt suq: (adT)(0) —
- @56@ o' ([FTH (ad F) 6))GF5

is left exact. As #H'(Ir,Hom (¢y,33) (€))% = #Hom (@5,55)0% = 1 and
#H' (I, Hom (53, ¢5)(€))" = #Hom (35,%;)c, = 1 we have a left exact
sequence

(0) — HY(Grp+ s, (adT)(€)) — H'(Gr+s0q, (adT)(e)) —
— Dieg(H' (Ir,, (ad55)(e)) 9= & H' (I, (ad ) (€))“7),

and hence a left exact sequence
0) — H(IE/)L(GF+,SUQ7 (ad_?)(e)) - HEL(GFtS: (adT)(€)) —
- @Ee@ H* (GFH/‘[F§7 (ad 77Z)5)(€)) = @5665 k.

The latter map sends the class of a cocycle ¢ € Z'(Gr+ g, (adT)(€)) to

(TFroby, 5 (Froby) © @(FTOb%) 0 ikroby s (Frobs) J5ed-
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We take r = dimy H}., (Gp+s, (adT)(e)). By corollary 1.4.4 it suffices to
find a set Q of primes of F'* disjoint from S such that

e if v € ) then v splits completely in F'((n);

e if v € Q then 7(Frob,) has an eigenvalue 1;(Frobs) whose generalised
eigenspace has dimension 1;

o Hp (Gre s, (adT)(€)) = @yeg H' (Gry /Iy, (adv5)(e)).
(If necessary we can then shrink @ to a set of cardinality r with the same
properties.) By the Cebotarev density it suffices to show that if ¢ is an element
of ZYGp+s,(adT)(€)) with non-zero image in H*(Gp+ g, (adT)(€)), then we
can find 0 € Gp(c ) such that

e 7(0) has an eigenvalue o whose generalised eigenspace has dimension 1;

® Ty00¢(0)0isq #0.

Let L/F((;v) be the extension cut out by ad 7. If o’ € G then7(0'0) € k*7(0)
and ¢(0'c) = ¢(0') + ¢(o). Thus it suffices to find o € Gp(,y) such that

e 7(0) has an eigenvalue o whose generalised eigenspace has dimension 1;

b ﬂ-a,a o (¢<GL) + ¢(J)) © iU,Oé 7& O
It even suffices to find ¢ € Gal (L/F((;~)) such that

e 7(0) has an eigenvalue ov whose generalised eigenspace has dimension 1;

® o © ¢<GL) © Z.a,a 7é 0.
As HY(Gal (L/F((v)),adT) = (0) we see that [¢] # 0 implies that ¢(Gr) #
(0). Then the existence of such a ¢ follows from our assumptions. O

Next we will prove a generalisation of Ramakrishna’s lifting theorem [Ra].
The statement is rather complicated as we want to be able to apply it to
certain representations 7 with small image, in particular 7 which are induced
from a character.

Suppose that ad 7 is a semisimple k[G g+ ]-module. If W C ad T is a k[Gp+]-
submodule we will define

H}(Gpr5,W) = ker(H (Gp+ g, W) — @ HY(Gp ,W)/(Ls N H (GE,,W)))
ves
and H}., (Gp+.g,W(1)) to be the kernel of
H' (G5, W(1)) — @ H (G, W)/ (Ly 0 HY (G, W(L))).

Tes
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Theorem 1.4.6 Keep the notation and assumptions of section 1.3. In addi-
tion make the following assumptions.

For allv € §l the local deformation problem Dy is as in section 1.3.1 or
1.3.2.

For allv € S — gl the space Ly is minimal and the set Dy is liftable.
(This is true if Dy is as in section 1.8.4 or section 1.5.5.)

Forv e §0
H(Gp,,ad7/FilYad7) — H' (G, Fil 2ad7)/ L.

(This is true if Dy is as in section 1.3.4; or as in section 1.3.1 with
Xi # X; fori#j.)
For each infinite place v of F* we have x(c,) = —1.

ad7 and (ad7)(1) are semisimple k|G p+]-modules and have no irre-
ducible constituent in common.

H'((adT)(GF+c)), 8n(k)) = (0) fori =0 and 1.

Wo (resp. W1) is a Gp+-submodule of adT with HE(Gp+ s, Wo) = (0)
(resp. H.. (Gp+s,Wi(1)) = (0)).

Suppose moreover that for all irreducible k|G p+ gl -submodules W and W' of
(k) with W' ¢ Wy and W ¢ Wy we can find o € Gal (F/F) and o € k with
the following properties:

€(o) #Z 1 mod I.

The o generalised eigenspace V, , and the ae(o) generalised eigenspace
Vi ae(o) of (o) are one dimensional. Let igq (T€Sp. ig.ae(s)) denote the
inclusions Vo — k™ (resp. Vi aeo) — k™). Let mpq @ k™ — Vi o (Tesp.
Toae(o) - K" — Vi ae(o)) denote the o-equivariant projections.

ia,ae(a)ﬂ'aa ¢ WO'
(Z.O',QE(O')WO',O[E(O') - Z.U,Ocﬂ-a,a) ¢ Wl-
To,o © Wo ia,ae(a) 7é (0) .

Toa OW Oty 7 Mo ae(s) © W Ol ae(o) for some w' € W'.
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(We note that this property will also hold for any non-zero Fi|G g+ s]-subspaces
W oand W' of gn(k) with W' ¢ Wy and W ¢ Wy. Because it holds for W and
W' if and only if it holds for their k-linear spans.)

Then we can find a finite set QQ of primes of F* which don’t lie in S and
which split in F' with the following properties. Choose a set () consisting of
one prime of F above each element of Q.

o [fve @ then Nv # 1 mod (.

o If0 € Q then Tlg, = Iy ® 55 where ty = 1y ® Uye and neither ¥ nor
€ is a subquotient of 35. Let DL and L% be chosen as in example 1.5.7.

o If S’ denotes the problem obtained from S adding Q to S with the con-
dition Dy for v € Q) then .
R =0.

In particular there is a lifting (r, {Fil%}) of (7, {W%}) where v+ Gp+ sug —
Gn(O), where vor = x, and where for allv € S the restriction (T|GF1~]7 {Fll%})
lies in Dy.

Proof:1f H}, (Gp+s,adT(1)) = (0) then the proposition follows at once
from lemma 1.4.2 and corollary 1.4.3 (with @ = @). In the general case we
need only show that we can find a prime v € S of F'" which splits as v°v in F’
such that

e Nv # 1 mod .

o 7lg, =1z ®5y where Tz = 15 @ 15e and neither 15 nor 1€ is a subquo-
tient of 55. Let D% and L% be chosen as in example 1.3.7.

e If S’ denotes the problem obtained from S adding v to S with the con-
dition D% then

dim H 1 (Gre supey, (adT)(1)) < dim Hz (G e s, (adT)(1)).
o H}(Gp+ sufet, Wo) = (0) and H(lo)L(GFﬂSU{v}’ Wi(1)) = (0).
(Then one can add primes v as above to S recursively until
Hizy o (Gre sug, (adT)(1)) = (0).)

So let v € S be a prime of F'* which splits as v°v in F such that
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e Nv # 1 mod (.

o Tlg, =ty ® 5y where ty = 15 @ ;¢ and neither ¥ nor 15¢ is a subquo-
tient of 5.

o Let my_ (resp. z@a, Tesp. Ty o, Tesp. z'%e) denote the G Fﬂ—equivarEmt
projection T — ¢y (resp. inclusion 5 < T, resp. projection T —» 1€,
resp. inclusion ¢ze < 7). Then iy my & Wo and iy_mp —iy 75 & Wh.

Set 8" = SU{v} and consider three pairs (Dy, Ly), (D%, LL), (DZ, L) defining
three extensions S, S, and S) of S:

e Dj consists of all unramified lifts of 7|, and Ly = H'(GF,/Ir,;,adT) =
Hl(GFT;/IFw adf) D H1<GF5/IF57 adg);

e D and L are as in example 1.3.7; and
e DZ and LZ are as in example 1.3.8.

Note that
Hé‘v(GFJF,S’; ad?) = Hé(GF+7S, ad?)

and
H}%<GF+7S/, (ad?)(l)) = H}:L (GF+75, (ad?)(l))

Also note that there are left exact sequences
(0) — Hév (GF+,S/7 adF) — Hé{)/(GF+7S/, adF) — H1<IF§, ad?)
and (by our second assumption)
(O) — Hé{) (GF+,S’7 adF) — Hé{)/(GFJr’S/, adF) — Hl (GFE/Ing k(ia5€ﬂ'$5€ — lagﬂ'@ﬂ))
and
(0) — H(l%,)L(GFJr,S/, (ad7)(1)) — H(lﬁv)L(Ger,S/, (ad7)(1)) —
— HYGF,/Ir,, ((adt)/k(ig_m5.))(1)).

It follows from lemma 1.4.2 (and the discussions of sections 1.3.7 and 1.3.8)
that

dim H ) (Gpe s, (adT)(1)) — dim H ) (G s, (adT)(1))
= dim Hg (Gp+ 5, adT) — dim Hg (Gp+ o, ad T) + dim L — dim L
= dim Hg (Gp+ 5, adT) — dim Hg, (Gp+ g, 2dT) + 1.
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Moreover because iy 5 ¢ Wo we see that H YGE,,Wo) N L% is contained
in Hl(Gpg/[Fg,Wo) and so HE/W(GFJF,SHWO) C HE(GFJ'"S,WO) = (0) Simi-
larly because (iy_ 1y — iy 7y ) € Wi we see that H' (G, Wi(1)) N (L5t C
HY(Gr,/Ir, Wi(1)) and so H iy (Gre s, Wi(1)) C Hpo(Gpes, Wi(1)) =
(0).

Thus the prime v will have the desired properties if
Hyi (Gpe s, (adT)(1)) — H' (G, /Iry, ((ad ) /k(ig m5.))(1))
and
Hi(Gp+ g,adT) — Hég(GF+75/, ad7) — HY(Gp. /IF., k(i%ew%e — i%ﬂ%))

are both non-trivial.
Suppose that H}., (Gp+s, (adT)(1)) # (0). It follows from lemma 1.4.2
that
dim Hg(Gp+g,ad7) = dim H}, (Gp+ g, (ad7)(1)) > 0.

Choose a non-zero classes [¢] € H}., (Gp+g,(adT)(1)) and a non-zero class
[¢"] € H5(Gp+s,adT). By the Cebotarev density theorem it suffices to show
that we can choose 0 € G and a € k with the following properties.

[ ] O'|F(Cl) 7£ ]_

e 7(0) has eigenvalues « and ae(o) and the corresponding generalised
eigenspaces U and U’ have dimension 1. Let i (resp. ') denote the
inclusion of U (resp. U’) into k" and let 7 (resp. 7’) denote the o-
equivariant projection of k™ onto U (resp. U’).

o iI'mg W,.

o i't' —im & WA,

o Top(o)oi #0.

e Toy'(og)oi#n op(c)od.

Let L denote the extension of F((;) cut out by ad7. Replacing o by o’c
with ¢/ € G, we need only show that we can find 0 € G and « € k with the
following properties.

[ ] O'|F(Cl) 7£ ]_
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e 7(0) has eigenvalues o and ae(o) and the corresponding generalised
eigenspaces U and U’ have dimension 1. Let i (resp. ') denote the
inclusion of U (resp. U’) into k™ and let m (resp. 7’) denote the o-
equivariant projection of k™ onto U (resp. U’).

o iI'mg W,.

o i't' —im & Wh.

o Top(GL)oi #0.

e o' —moy(c')oi—1"oy"(0') 0i is not identically zero on Gp.

Note that ¢(GL) ¢ Wy and ¢"(GL) ¢ Wi (because Hp(Gr+g, Wo) = (0)
and H}., (Gp+s,W1(1)) = (0)). Hence the existence of ¢ follows from the
assumptions of the lemma. O

Because the hypotheses of this theorem are so complicated we give a con-
crete instance of the theorem. We will write CI(F') for the class group of a
number field F'.

Corollary 1.4.7 Suppose that n > 1 is an integer, that F* is a totally real
field and that E is an imaginary quadratic field. Let CI(EF™) denote the class
group of EF*. Suppose that | > n is a prime which is split in E, which is
unramified in Ft and which does not divide the order of the Gal (EF*/F*)-
coinvariants CLUEF™)qa (gr+ /r+). Suppose moreover that

7: G+ — Gu(F))
18 a continuous, surjective homomorphism such that
o 7 'GL,(F)) = Ggp+;
° F|GEF+ only ramifies at primes which are split over F'*;

e voT(c) = —1 for any complex conjugation c;

e for any place w of EFT above | thenT|g
for each i =10, ..., — 2 we have

(Bt U5 the image of G,, and

. b~ —1—
dlmk(w) gI‘ZGw T’G<EF+>U) <
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Then there is a finite extension k/F; such that T lifts to a continuous ho-
momorphism

r:Gp+r — G, (W(k))

which ramifies at only finitely many primes and which is crystalline at all
primes of EF™ above [.

Proof: We apply the theorem. We take O = W (k) for a suitably large
finite extension k/F;. We take S to be the set of places above [ or below a
prime of F' = EF™* at which T|GF is ramified. For 7 € S; we take Dy as
in section 1.3.2. For o € S — Sl we take Dy as in section 1.3.4. Asl > n
we have ad7 = k1,, ® ad °F7 and both summands are irreducible Gr-modules.
As FT((;) is linearly disjoint from F*FE over F'™ (look at ramification above
[) we have that H(adT7Gp+ ), k1,) = (0) and H'(adTG p+ (¢, k1,) = (0).
Clearly H°(adT7Gp+(,),9%(k)) = (0). By [CPS] (see table (4.5)) we have
H'(SL,(F;), M, (F,)"=%) = (0), and so H'(ad TG p+(¢,), 8%(k)) = (0). We take
Wy = k1, and Wp = (k1,)(1). Then

H(Gpr 5, Wo) = ker(HY(Gp+,kl,) — D5 HI(IE k1,))
ker(HY(Gp+, kl,) — D, H' (Ip+, k1))
ker(HY(Gp, k1,) — @5 H'(Ir, k1,,)) G F/F)
— Hom (CI(F)/(c — 1)CI(F), k) = (0).

(Note that if ¥ is a prime of F ramified over F't then H'(I,+ k1,) —
HY(Ip,, k1,).) Also

H} (Gpes, W) = ker(H (Gpe+, (k1,) (1)) — @D H' (I, (k1,)(1))).

(Note that if ¥ is a prime of F ramified over F'* then H'(I,+, (k1,)(1)) —
H'(Ir,, (k1,)(1)).) By, for instance, theorem 2.19 of [DDT] we see that
Héi (GF+75, Wl) - (O)

The rest of the hypotheses of the theorem are easy to verify and the corollary
follows. O
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2 Hecke algebras.

2.1 GL, over a local field: characteristic zero theory.

In this section let p be a rational prime and let F,, be a finite extension of
Qp. Let Op, denote the maxinal order in F},, let p,, denote the maximal ideal
in Op,, let k(w) = Op, /9w and let g, = #k(w). We will use w,, to denote
a generator of p,, in situations where the particular choice of generator does
not matter. Also let K denote an algebraic closure of Q;. Also fix a positive
integer n. We will write B,, for the Borel subgroup of GL,, consisting of upper
triangular matrices.

We will use some, mostly standard, notation from [HT] without comment.
For instance n-Ind, B, Sp,,, JL, rec and R;. On the other hand, if © is an
irreducible smooth representation of GL,(F,,) over K we will use the notation
ri(m) for the l-adic representation associated (as in [Tat]) to the Weil-Deligne

representation
rec;(mV @ | |17/2),

when it exists (i.e. when the eigenvalues of rec(7¥ ® | |17/2)(¢,) are l-adic
units for some lift ¢,, of Frob,,). In [HT] we used r;(7) for the semisimplification
of this representation.

For any integer m > 0 we will let Up(w™) (resp. Ui(w™)) denote the sub-
group of GL,,(OF, ) consisting of matices with last row congruent to (0, ..., 0, )
(resp. (0,...,0,1)) modulo @!. Thus U;(w™) is a normal subgroup of Uy(w™)
and we have a natural identification

Uo(w™)/Ur(w™) = (Or, /9y)"

by projection to the lower right entry of a matrix. We will also denote by Iw(w)
the subgroup of GL,(OF,) consisting of matrices which are upper triangular
modulo g, and by Iw;(w) the subgroup of Iw(w) consisting of matrices whose
diagonal entries are all congruent to one modulo g,,. Thus Iwy(w) is a normal
subgroup of Iw(w) and we have a natural identification

Tw(w)/Twy (w) = (k(w)™)".

We will let ay, ; denote the matrix

wwlj 0
0 Loy )

For j =1,...,n let T denote the Hecke operator
[GLw(OF, )t ;GLy(OF, )]
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For j =1,....,n—1 and for m > 0 let U denote the Hecke operator
[Uo(w™)atu,; Uo(w™)]

or
[Ur(w™) v ;Ur (w™)].

If W is a smooth representation of GL,(F,) and if m; > ms > 0 then the

action of Ug ) is compatible with the inclusions

Wtow™) c ™) c ptlw™)

(This follows easilly from the coset decompositions given in [M1] for
Ur(w™)on,; Ur (w™) /U (w™).)
If o € F; has non-negative valuation we will write V,, for the Hecke oper-

ators
0

(67

o) (5 0 ) tatw)

and
1,-1 O

) (0 ) vt

If W is a smooth representation of GL, (F,,) then the action of V, is compatible

with the inclusion
Wholw) c i),

(This follows from the easily verified equalities

i) (a0 (15t 0 Yot (5t ) = o)
T (e ()
_ Ul(w)ﬂ<1"0_1 2)U1<w)<1’6-1 Y >.)

It is well known that there is an isomorphism
ZIGL,(Op, )\GL,(Fy)/GL,(Op)] &£ Z[T\, T, ..., Ty, T '],

under which T} corresponds to T, (The latter ring is the polynomial algebra
in the given variables.) Alternatively we have the Satake isomorphism

Z[1/qu)|GLu(Op,)\GLa(Fy)/GLa(Or,)] = Z[1/qu[X7, ... X3,
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under which 7. corresponds to qw( —9/2 si(X1,..., X,,), where s; is the j
elementary symmetric function (i.e. the sum of all square free monomials of
degree j). This is not the standard normalisation of the Satake isomorphism.

Lemma 2.1.1 Suppose that x1, ..., Xn are unramified chamcte?“s of F;. Then
(n-Ind GL"(FEU)(XI,. X)) GEn©R) s ome dimensional and TS acts on it by
qw(" J)/ZSJ (xX1(@w), -y Xn(Tw)), where s; is the j elementary symmetric func-
tion (i.e. the sum of all square free monomials of degree j). If

T € ZIGL,(Op, )\GL,(F,)/GL,(OF,)]
has Satake transform P(Xy, ..., X,) then the eigevalue of T on

(n-Tnd G11 (x, oy X)) O O

is P(g " x 1 (@), s g X ().

Proof: The fixed space (n-Ind gf(’}gf’f)(xl, oy X)) EEn(OF0) is spanned by the
function ¢y where

= H Xi(bi) by | D2
i=1

for b € B, (F,) and u € GL,(Op,). Then (Tl(uj)gpo)(l) equals the eigenvalue of
T on (n-Ind GL("F(FS")(XI, o Xn))GEOF0) - Let X denote a set of representa-
tives for k(w) in Of,. Then

(TP o)1) = > olb)
I b

where I runs over j element subsets of {1,...,n} and b runs over elements of
B, (F,) with

e b, =w, if i € I and b;; = 1 otherise;

e if j >4, 1€l and j &I then b; € X;

e if j > i and either i ¢ I or j € I then b;; = 0.
Thus

; I (n—jtk—i i—(n 2
(TP o)(1) = Z(Iqw);“ PR L xai(@w) g
1(n—17)/2
G’ ZIHieIXi<ww)7

where I = {i; < ... <1;} runs over j element subsets of {1,...,n}. The lemma
follows. O
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Corollary 2.1.2 Suppose that 7 is an unmmzﬁed 1rreducible admissible rep-
resentation of GL,(F,) over K. Let 9 denote the eigenvalue of 7Y on
G ©Oru) - Then r(7)Y(1 — n)(Frob,) has characteristic polynomial

X7 DXL (1Y Xy (—1yngn(nD/2¢n)
Proof: Suppose that m = y; H ... H x,,. Then
R (1= n) = @0l 1772) 0 Art !
so that r;(m)¥(1 — n)(Frob,) has characteristic polynomial

(X = X1(@w) g 2) (X = Xulww)g 7).

O

Lemma 2.1.3 Suppose that 7w is an unmmzﬁed irreducible admzsszble rep-
resentation of GL,(F,) over K. Let 9 denote the eigenvalue of 79 on
GL"(OFw). Then 7o) = 71() gnd the characteristic polynomial of Vo, on
7o) divides

X — Xl (—1) gD X g (=1 D24 ),

Proof: The first assertion is immediate because the central character of 7 is
unramified. Choose unramified characters y; : F} — K™ fori= 1,..,n such
that the q&"fl)/zxi(ww) are the roots of

X —tWxn=t 4 (—1)@U DD X 4 (—1)ngnnm D 24

with multiplicities. From the last lemma we see that 7 is a subquotient of
n-Ind GLn( FW)(XI, ey Xn)- Thus it suffices to show that the eigenvalues of V,

Bn(Fuw)

on n-Ind B (Fu) (X1s s Xn)0(®) are {q
roots of the characteristic polynomial).

Let w,, denote the m x m-matrix with (w,,);; = 1 if i+ j = n + 1 and
(w,)i; = 0 otherwise. Let w,,; denote the matrix

1,4 0
0 wpy1- )
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The space n-Ind gLFFFS“)(Xl, s Xn)Y0™) has a basis of functions ¢; for i =

1, ...,n where the support of ; is contained in B,,(F,,)w, ;Us(w) and ¢;(w,, ;) =
1. We have
Vo, pi = Z(wa%)(wn,j)@j'
J

Let X denote a set of representatives for k(w) in Op, containing 0. Then

(Vo) (Wny) = X pexn—1 @i (w”’j( i ))

Wyl Ty
L, 0 0
= ZZ‘EXj_l ZyeX’”—j Pi Wyl WY Wy
0 Wp,— 0
L, 0 0
n—1)/2
= (@) Saexinwi | 2 01
0 Wn—j 0

A matrix g € GL,(Op,) lies in B,,(Op, )w, ;Uy(w) if and only if 7 is the largest
integer such that (0, ...,0,1) lies in the k(w) span of the reduction modulo g,
of the last n + 1 — i rows of g. Thus

(Ve 1) (wn,5)
is
o 0ifi>j,
o q&"_l)mxj(ww) if i = 7, and

i— n—1)/2
j 1q§,j )/

o (qu—1)gi Xj(wy) if i < j.

Thus the matrix of V., with respect to the basis {p;} of the space
n-Ind GLF(F;’)(XD ooy X)) is triangular with diagonal entries g 1)/2Xj ().

The lemma follows. O

Lemma 2.1.4 Suppose that we have a partition n = nq + no and that m
(resp. ma) is a smooth representation of GL,, (F,) (resp. GLy,(Fy,)). Let
P D B, denote the parabolic corresponding to the partition n = ny + ng. Set

7 =n-Ind ; GL" ‘)E“)(m ® my). Then

2U1(w) ~ (ﬂ.lGLnl(OFw) ® ng(w)) @ (rt Di(w) o, Gan(OFw))
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Moreover qu,j) acts as
A 0
* B

Z q(n1jz+n2]1 /2—j1j2 (Té,jl) ® U(jz))
Ji+j2=j

where

and
Z Qv (n1j2+n2j1)/2— ]1]2(U(j1) ® T(Jé))

J=j1+j2

and if o € F)\ has positive valuation then V,, acts as

Garsa oy

0 o 2 (Vy @ 1)
Proof: Let
I, 0 0
w = 0 0 1
0 1, O
Then
GL,(F,) = (w) [ P(Fu)wls (w
so that

(n I dgL}? ;;‘w)ﬂ—l ® 7.‘_2)U1(’w)
(71'1 X 71'2) P(Fy,)NU (w) P (71-1 ® 7T2) P(Fy)NwUi (w)w
= g CImOR) g Uiw) g Ui(w) g Clns (Or),

GLn, (Ory)

—1

Specifically x € m, ® 7T21(w) corresponds to a function ¢, supported
on P(F,)U;(w) with ¢,(1) =z, and y € Wfl( @ GL"Z(OF“’) corresponds to a
function ¢ supported on P(F,)wU;(w) with ¢/ (w ) Y.
Choose a set X of representatives for k(w) in Op,, which contains 0. If
€ (n-Ind /, L”(F“’ 71 @ m3)V1 () then

1 b

where I runs over j element subsets of {1,...,n — 1} and where b runs over
elements of B, _(F,) with

e b;; =w, if i € I and = 1 otherwise,

e bjeXifj>i and=0unlessi €/ and j & 1.
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Thus

. e =Y (5 1)

where I; runs over subsets of {1, ...,n1}, I runs over subsets of {1,...,ny — 1},
a € By, (Fy), b € M, xn,(Fy) and ¢ € B,,(F,) such that

o #I +#I =],

e a;; = w, if i € I and = 1 otherwise,

e ¢; = w, if i € I and = 1 otherwise,

e if j > i then a;; € X and = 0 unless 7 € I and j & I,
e if j > i then ¢;; € X and =0 unless i € I, and j ¢ I,

e b€ X and =0 unless¢ € [; and j & .

Equivalently
(Uz(uj)(px Z qn1]2+n231 )/2— ]1]2(T1gj1)®U15}j2))$.
Ji+j2=j
Similarly
a ¢ b
=3 ¥ e 010w
I,Is ab,e,de 0 e d

where I C {1,...,n1—1}, I, C{1,...,n9},a € Bp,—1(Fl), b € M, —1)xn, (Fu),
ce Fm~1 de B,,(F,) and e € F™ with

o #I +#I, = j,
e q;; = w, if 1 € I and = 1 otherwise,

e d;; = w, if i € I, and = 1 otherwise,

if 7 > ¢ then a;; € X and =0 unless i € [; and j & I,

if 7 > i then d;; € X and =0 unless i € I, and j & I,

67



e b; € X and =0 unless 7 € [; and j & I,
e ¢; € X and = 0 unless ¢ € [y,
e ¢; € X and =0 unless 1 € I5.

The matrix

a c b
0 1 0 |weP(F,)wlU;(w)
0 e d
if and only if
a c b
0 1 0 € P(Fy)wU;(w)w™
0 dle 1,,

if and only if e = 0. Thus
(UL(UJ)SO;)(M) _ Z q&n1j2+n2j1)/2—j1j2(Ul(Uj1) ® Té}j2))y'
Jj=Jj1+j2
Now suppose a € F.* has non-negative valuation. If ¢ € (n-Ind IGD(L&E?")

m9)V1(®) then

V= Y )Mwa( Al

be(OFR, /()
Thus
In, 0 0
(Vagpx)(l): Z Z Pz 0 Lp,—1 O
bE(OF,, /(@)™ c€(OF, /()2 wwb @y @
However

l,, 0 0
0 Iy O | € P(F,)UL(w)

weyb Ty o

if and only if
1, 0 0
0 1n2—1 0 € P(Fw)Ul(w)
alw,b 0 1
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if and only if b = 0. Hence

(Vaspac)(l) = Zce(on/(a))m—l Pz 0 1n2—1 0
= |a|™2(1® V,)r.

On the other hand

1n1—1 0 0
(Vo) (w) = Z Z o wyb o wye |w] =0.
be(OF, /()17 c€(Op,, /()2 0 0 1,
Similarly
1n171 0 0
(Va%)(w = Zbe((’)pw/(a))"l_l Zce((’)pw/(a))"2 Pz w(q)ﬂb g ’{Twc w
n2

=la|™2(Va® 1)y.

The lemma follows. O

Lemma 2.1.5 Suppose that 7 is an irreducible admissible representation of
GL,(F,) over K with a Uy(w) fized vector but no GL,(Op,)-fixed vector.

Then dim 71 = 1 and there is a character with open kernel, Vy : FX — K"
such that Vi(a) is the eigenvalue of V,, on wV1™) for all a € F with non-

negative valuation. For 7 =1,...,n —1, let uﬁf) denote the eigenvalue of Ug)
on (W) Then there is an exact sequence

(0) = s = n(m)"(1—n) = Vo Art ' — (0)
where s is unramified and s(Frob,,) has characteristic polynomial
anl _ugrl)Xn72 4o+ (_1)jq1]1'](j71)/2u£rj)anlfj 4o+ (_1)nq1(vn71)(n72)/2u7(rn71)'
If 7%W) £ (0) then q'Vi(wy) is a root of
anl _ugrl)Xn72 4o+ (_1)jq1]1'](j71)/2u£rj)anlfj 4o+ (_1)nq1(vn71)(n72)/2u7(rn71)'

If 7% ) = (0) then ry(m)¥(1 — n)(Gal (Fy/F,)) is abelian.
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Proof: If 7 is an irreducible, cuspidal, smooth representation of GL,,(F,)
then the conductor of rec(r) > m unless m = 1 and 7 is unramified. If 7
is an irreducible, square integrable, smooth representation of GL,,(F,,) then
the conductor of rec(mw) > m unless 7 = Sp,,(x) for some unramified char-
acter y, in which case the conductor is m — 1. As any irreducible, square
integrable, smooth representation m of G L,,(F,) is generic we see from [JPSS]
that 7U1(®) = (0) if and only if either m = 1 and 7 has conductor < 1, or
m =2 and ™ = Sp,(x) for some unramified character x of F.

Now suppose that n = n; + ... + n, is a partition of n and let P D B,
denote the corresponding parabolic. Let m; be an irreducible, square integrable,
smooth representation of GL,,(F,). If

(n-Ind " m @ @ m) ") £ (0)
then by the last lemma there must exist an index ig such that:

e For i # ig we have n; = 1 and m; unramified.

e Either n;,, = 1 and m;, has conductor < 1 or n;, = 2 and m;, = Sp,(x)
for some unramified character x of F);.

Thus if 7 is an irreducible smooth representation of GL,,(F,,) with a Uy (w)
fixed vector but no GL,(Op,) fixed vector then

1. either 7 = x; B ... B x,, with x; an unramified character of F for
t=1,...,n—1 and with x,, a character of F; with conductor 1,

2. orm=x1 B .. .8xn2BSpy(xn_1) with x; an unramified character of
Exfori=1,...,n—1.

Consider first the first of these two cases. Let 7’ = y1H...Hx,_1, an unram-
ified representation of GL,_1(F,). Also let P D B, denote the parabolic cor-

responding to the partition n = (n—1) +1. As (n-Ind GLn F’)“ (X15 e X)) V1)

and (n-Ind ]G;(Lﬁuffw)w' ® xn)Y1 ™) are one dimensional we must have

w GLy(Fuw w
7-‘-Ul( ) = (n IndB (F ))(X17"'7Xn)>U1( )
— (e P @y, i

(w)oL1Em) @y,

From the last lemma we see that V; = y,| |*/2 and that UY acts as
> TS ® 1. In particular 7 has no Up(w) fixed vector. Because

r(7 B xn)Y (1 —n) =r(7")" (2 —n)|Art §i|_1/2 ® (Vi o Art }i)
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the lemma follows.

Consider now the second of our two cases. Let 7’ = x1 B ... H x,,_2, an
unramified representation of GL,_o(F,). Also let P D B, (resp. P’ D B,)
denote the parabolic corresponding to the partition n = (n — 2) + 2 (resp.

n = 1+...4+1+2). Because dim(n-Ind P/L}(I;“’)X1®...®Xn_2®8pQ(Xn))Ul(w) =1
and dim(n-Ind IGD(L}‘ f’”) " ® Spo(xn)) 1™ =1 we must have
ailw) = (n-Ind ch’L(ILV(F)w)Xl ® ... @ Xn—2 ® Sp 2<Xn))U1(w)

G n w w
= (n-Ind 507 @ Sp o () ()
()G n=2(08) @ Sp, (x) V1),

Moreover V, acts as |a|@/2(1® V) and U acts as

(T @ 1)+, (TFV o ULY).
The representation n-Ind GL(Q(E)") (Xns Xn| |) has two irreducible constituents

(xn| %) odet and Sp4(xs). On Sp,(xn)Y* ™ we have

v (el
° 0 ol xa0)

1/2
Qw Xn ww 0
Ug>_< CON )

* quw " “Xn(@w)

and

On (Xn| |'/?) o det we have

= |a]/*xa()
and
U = 4 *xn(@)-
Thus on Sp 5(x»)"*®) we have
= |a|"*xu(a)

and
Ué}l) = qw;l/QXn (@w)-

Ui (w)

Hence on 7 we have

Vo = |O‘| (l_n)/QXN(O‘)
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and
UD =g (TY @ 1) + ¢TI @ yu(wa)).

On the other hand

(0) = (n(7)"(3 — n)|Art | 7' & (an I‘S*”)/Q) o Artp,) —
— (7 BSp,y(xa))” (1 —n) = (Xal [1777%) 0 Art ) — (0).

This is a short exact sequence of the desired form and s(Frob,,) has charac-

teristic polynomial (X — ¢4 "%y, (w,)) times

X2 gt X8 4 4 (<) D) X2 |y (L 1yrgr D) (n8)yn2),

where t0) is the eigenvalue of 7§ on (7')GLn=2(OFu)  The lemma follows. O

Lemma 2.1.6 Let 7 be an irreducible smooth representation of GL,(F,,) over
K.

1. If 71 5£(0) then ry(7)V(1 — n)* is a direct sum of one dimensional
representations.

2. Suppose
n =X
X = (Xh 7Xn) : (k(w)x) — K
and x; # x; whenever i # j. If m¥oW)X =£ (0) Then

r(m)¥(1 - )|, = (X1 OAFtF ) ... ® (Xn OArtF ).
(Here we think of x; as a character of Op — k(w)*.)

Proof: The key point is that 7™1(*) £ (0) if and only if 7 is a subquotient of

a principal series representation n-Ind GLn( FSU)(Xp ey Xh) with each y/} tamely

ramified. More precisely w™o():x £ (0 ) 1f and only if 7 is a subquotient of a

principal series representation n-Ind GL’}(f;“)(X;, ey X)) With each Xﬂo; = ;.

(See theorem 7.7 of [Ro]. In section 4 of that article some restrictions were
placed on the characteristic of Og,/p,. However it is explained in remark
4.14 how these restrictions can be avoided in the case of GL,. More precisely
it is explained how to avoid these restrictions in the proof of theorem 6.3.
The proof of theorem 7.7 relies only on lemma 3.6 and, via lemma 7.6, on
lemma 6.2 and theorem 6.3. Lemmas 3.6 and 6.2 have no restrictions on the
characteristic.) O
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2.2 (L, over a local field: finite characteristic theory.

We will keep the notation and assumptions of the last section. Let [ fq,, be a
rational prime, K a finite extension of the field of fractions of the Witt vectors
of an algebraic extension of F;, O the ring of integers of K, A the maximal
ideal of O and k = O/\. We will call | quasi-banal for GL,(F,) if either
L f#GL,(k(w)) (the banal case), or I > n and ¢, = 1 mod [ (the limit case).

Lemma 2.2.1 Suppose that | > n and (g, — 1). Suppose also that 7 is
an unramified irreducible smooth representation of GL (Fy) over F,. Then

dim 7GLn©r0) = 1. Let t9) denote the ergenvalue ofT on w¢n(Ory)  Set
P.(X)=X"— W xn=t (_1)jqj(j—1)/2t(j)Xn—j 4.+ (_1)nqN(n—1)/2t(N).
Suppose that P,(X) = (X —a)™Q(X) with m > 0 and Q(a) # 0. Then

Q(Va,, )t ntOr) £ (0).

(Considered in w0))

Proof: According to assertion V1.3 of [V2] we can find a partition n = ny +
Ny Corresponding to a parabolic P O B,, and distinct, unramified characters

X1s s Xor & o — ]Fz such that 7 = n-Ind ; GL" Fw)( X1 o det, ..., x, o det). Then

r

Pr(X) = H(X — Xi(@w))™

1=1

Suppose without loss of generality that a = y1(wy,).

For i =1,...,7 set W, = Wy, 4. +n;—1. Then n-Ind GL"(fw)(Xl odet, ..., x, 0
det)V0(®) has a ba81s consisting of functions ¢; for ¢ = 1, ..., r, where the support
of p; is P(F,)w;Up(w) and ¢;(w;) = 1. Note that n-Ind GL" Fw '(x10det, ..., yro0
det)“Ln(Or) is spanned by @) + ... + @,

We have

Voo @i = > (Ve @) (w))p;.
j

But, as in the proof of lemma 2.1.3, we also have

) 1n1+---+nj—1 0 0
Ve W) = x5(@w) >, @i x 0 1],
gex™M A=l 0 W q+..c4ny
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where X is a set of representatives for k(w) in Op,. A matrix g € GL,(Op,)
lies in P(Op, )w;Us(w) if and only if 7 is the largest integer such that (0, ..., 0, 1)
lies in the k(w) span of the reduction modulo g,, of the last n; + ... + n, rows
of g. Thus

(Vo 00) ()
1S
o 0ifi>j,
o ¢y (wy) = xj(ww) if i = 7, and
o (¢ —Vgu T T () = 0if i <

Thus, for i = 1,...,r, we have

Vi = Xi(@w) @i

and
Q(Ve,) (1 + ... + 1) = Q(x1(mw)) 1

and the lemma follows. O

Lemma 2.2.2 Suppose that | > n and l|(q, — 1). Let R be a complete local
O-algebra. Let M be an R-module with a smooth action of GL,(F,) such that
for all open compact subgroups U C GL,(F,) the module of invariants MY
is finite and free over O. Suppose also that for j = 1,..,n there are elements
t; € R with 7Y = tj on MGEn(Ory) - Get

= X"+ Z -0/, X" e RX].

Suppose that in R[X] we have a factorisation P(X) = (X — a)Q(X) with
Q(a) € R*. Suppose finally that M ®@¢ K is semi-simple over R[GL,(F, w)]
and that, if T is an R-invariant irreducible G L, (F,)-constituent of M ®o K
with a Uy(w)-fized vector, then either w is unramified or

P(X):<X—wa)<Xn 1 Uw X 2+ _|_< 1)] J(i— 1/2U(J X 1— j+

on 70 Then Q(Vy) gives an isomorphism

Q(Vw ) : MGLn(OFw) -~ MUO(w),waza'
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Proof: Lemma 2.1.3 tells us that
Q(Vw ) : MGLn(OFw) SN MUo(w)J/ww:a‘

Let 7 be an R-invariant irreducible GL, (F,)-constituent of M ®» K with
qUow)Vew=a —£ (0), If 7 is ramified then lemma 2.1.5 tells us that

(gu'@)" ™ = U (g5 a) 2 4+ (=1’ 20U (g0 a) 7 ¢
4o+ (_1)nql(un—1)(n—2)/2Ul(Un—1) -0

on 7% Thus Q(a) € mp, which contradicts our hypothesis. Thus 7 is

unramified. Lemma 2.1.3 and the assumption that a is a simple root of P(X),
we see that dim 7lo(@)Vew=0 < 1 = dim 7Ln(OFrw) Thus

dim(M ¢ K)PMV=e=t < dim(M @0 K)“ ),

Hence it suffices to show that Q(_V%) ®k is injective. Suppose not. Choose
a non-zero vector = € ker(Q(V,,,) ®k) such that mgx = (0). Let N’ denote the

k[GL,(F,)]-submodule of M ®xk generated by x. Let N denote an irreducible
quotient of N’. Then by lemma 2.2.1

Q (Ve JNGEn©ru) o£ (0),

a contradiction and the lemma is proved. O

Suppose that U is an open subgroup of GL,(OF,) and that

¢ k[GL,(Op, )\GL,(F,)/GL,(0Or,)] — k

is a k-algebra homomorphism. Set

E[GLy(F,)/GLn(OR,)]s —
K[GLn(Fu)/GLn(OF, )] @KaL, (05 \GLn(Fu)/GLn(Or )] F

and

FU\GL(F)/GL,(Or, ) ]
KUNG L (Fu)/GLn(OF,)] @FaL, (05, NOLn (Fu) /GLa (05 )1 F

If V is any smooth k[GL,(F,)]-module and if v € VGLnOr) gatisfies Tv =
¢(T)v for all T' € k[GL,(Op,)\GLn(Fy)/GLn(OF,)], then there is a unique
map of k|G L, (F,)]-modules

k[GLn(Fw)/GLn(OFw)]qﬁ —V
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sending [GL,(OF,)] to v, and a unique map of kK[U\GL,(F,)/U]-modules
RIU\NGL(Fy)/GLa(OF, )]s — V¥

sending [G L, (OF, )] to v. (These observations were previously used in a similar
context by Lazarus [Lal.)

Fix an additive character ¢ : F,, — k with kernel Op,. Let B, denote
the Borel subgroup of GL,, consisting of upper triangular matrices and let N,
denote its unipotent radical. Let P, denote the subgroup of GL,, consisting of
matrices of the form

a b
(5 7)

with a € GL,_1. We will think of ¢ as a character of N,,(F,) by

I az a1z ... aip1 Qi
0 1 a23 ... QA2p—1 A2p,
0 0 1 .. Q3p—1 asny,
'lb . . : . Hw(alg—l-agg—l-...—'—an_ln).
0o 0 0 .. 1 n—1n
0o 0 0 .. 0 1

We will gen,, the compact induction c-Ind Z’;((I;’:))w and by W, the induction

Ind ﬁf;;fy)w We will use the theory of derivatives over k as it is developed in

section IIL.1 of [V1]. Note that if 7 is a smooth k[GL,(F,)]-module then
Hom ¢, () (7, Wy) = ﬂ-xn(Fw)ﬂﬂ >~ Hom p, (r,)(gen,, )",
where V denote linear dual and 7y, (5, )» denotes the maximal quotient of 7
on which N, (F,) acts by ¢. If 7 is irreducible we will call it generic if these
spaces are non-trivial.
The next lemma is proved exactly as in characteristic zero (see [Sh]).

Lemma 2.2.3 Suppose that ¢ : k|G L,(Op,)\GLn(Fy)/GL,(Or,)] — k is a

(Ory)

) . . GL, : . .
homomorphism. Then the ¢ eigenspace in Wy, " 15 one dimensional and

spanned by a function W with WJ(1) = 1.

The next lemma is due to Vignéras, see parts 1 and 3 of theorem 1 of her
appendix to this article.
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Lemma 2.2.4 (Vignéras) Suppose that [ is quasi-banal for GL,(F,). Then
the functor V +— VW) s an equivalence of categories from the category of
smooth k|G L,(F,)]-modules generated by their Iw(w)-fized vectors to the cat-
egory of k[Iw(w)\GL,(F,)/Iw(w)]-modules. Moreover the category of smooth
k[GL,(F,)]-modules generated by their Iw(w)-fived vectors is closed under pas-
sage to subquotients (in the category of smooth k|G L, (F,)]-modules).

Lemma 2.2.5 Suppose that | is quasi-banal for GL,(F,) and that
¢ k|[GL,(Op, )\GL,(F,)/GL,(0Or,)] — k

is a k-algebra homomorphism. Then k[GL,(F,,)/GL,(OF,)]s has finite length
(as a smooth k[GL,(F,)]-module) and its Jordan-Holder constituents are the
same as those of any unramified principal series representation mw for which
k[GL,(Op, )\GL,(F,)/GL,(OF,)] acts on 7 ©Oru) by ¢. In particular the
smooth representation k[GL,(F,)/GL,(OF,)]s has ezactly one generic irre-
ducible subquotient.

Proof: In the banal case this is due to Lazarus [La].

By lemma 2.2.4 the Iw(w)-invariants functor is exact on the category of
subquotients of smooth k|G L, (F,)]-modules generated by their Iw(w)-fixed
vectors.

Let Ty, ..., Tpy1 generate k[G L, (Op, )\GL,(F,)/GL,(Og,)] as a k-algebra.
Then we have an exact sequence

(0)__> > E[GLn(Fw)/GLn(OFw)KTi —o(T})) — E[GLH(Fw)/GLn(OFwH -
— k[GLn(F,)/GLu(OF,)]s — (0).

Thus

(0) = (32, G Ln(Fu) /G Ly (Op,)I(T; — (T1))) ™) —
— k[Iw(w)\GLn(Fu)/GLn(OF,)] = (K[GLu(Fu)/GLn(OF,)]s)™® — (0)

is exact. On the other hand if A and B are two k[GL,(F,)]-submodules of
klGL,(F,)/GL,(OF,)] then the exact sequence

(0) - A— A+B— B/(ANnB) — (0)
gives an exact sequence
(0) N AIW(’U}) _ (A + B)Iw(w) _ BIW(w)/(AIw(w) N BIW(’U})) _ (O)

Thus
(A + B)Iw(w) _ AIw(w) + Blw(w)
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and we get an exact sequence

(0) = 32i(k[GL(Fou) /GLa(OF,)(Ti — 6(T3)) ™)
— k[Iw(w\G L (Fy)/GLn(OF,)] = (k[G (Fw)/GL (OF,)ls)™™) — (0).

As

(T, — (1)) FIGLu(Fa) [GLo(O,)] — FIGLu(F) [GL(Or)I(T; — 6(T)
we see that (T; — ¢(T;)) maps

E[Iw(w)\GLn(Fy)/GLn(Or,)] = (k|GLn(Fy)/GLy(Op)(T; — ¢(T5))) ).

Finally we get an exact sequence

(0) = 32 kllw(w)\GLn(F,)/GLn (O Fw_)](T - ¢(T3)) —
= k[Iw(w)\GLn(Fy)/GLn(Op,)] — (K[GLn(Fu)/GLa(OF,)ls)™™ — (0)

and we see that
(E[GLH(FW>/GLH(OFw)]¢)IW(w) = E[Iw(w)\GLn(Fw)/GLN(OFw)]¢‘

Following Kato and Lazarus [La] we see that the Satake isomorphism ex-
tends to an isomorphism

k[Iw(w)\GL,(F,)/GL,(OF,)] = k[X{, ..., X

as k[GL,(Op, )\GL,(F,)/GL,(0g,)] = k[X{, ..., X ]%-modules. We de-
duce immediately that

dimg. K[Iw (w)\G Ly (F) /G L (Op,)]s = n!

and hence (from lemma 2.2.4) that k[GL,(F,)/GL,(OF,)]s has finite length.
Moreover the argument of section 3.3 of [La] then shows that the Jordan-
Holder constituents of k[GL,(F,)/GL.(Or,)]s are the same as the Jordan-
Holder constituents of any unramified principal series representation = for
which k[GL,(Op, )\GL,(F,)/GL,(Og,)] acts on 7¢(©ru) by ¢. The final
assertion of the lemma then follows from the results of section III.1 of [V1]. O

We will now recall some results of Russ Mann [M1] and [M2]. See also
appendix A of this article.
The first result follows at once from proposition 4.4 of [M1].
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Lemma 2.2.6 (Mann) Suppose that xi,...,Xn are unramified characters
Ff— K" and setj = n-Ind gf&g”)“)(xl, iy Xn)- The simultaneous eigenspaces
of the operators UY) (for j =1,...,n — 1) on w¥1 @™

(4)

sets A C {1,...,n} of cardinality less than n. Let uy’ denote the eigenvalue of

are parametrised by sub-

U on the eigenspace corresponding to A. Then
ot (21 PUTEX = XA (X - ().
Moreover the generalised eigenspace corresponding to a subset A has dimension
n—1
()
The next two results are proved in [M2]. As this is not currently available,
proofs repeated in appendix A.

Lemma 2.2.7 (Mann) Suppose that

¢ k|[GL,(Op, )\GL,(F,)/GL,(0Or,)] — k
18 a homomorphism. Then the map

E[Ul(w")\GLn(Fw)/GLn(OFw)]¢ — W,
T — TW(;)

18 an injection.
Let n,, denote the diagonal matrix diag(1,...,1, ). Then there is a bijec-
tion :
Z[1/qul[Ur(w"\GLn(Fu)/GLn(OF,)] —  Z[1/qu][GLn(Op, \GLn(Fy)/Ur(w")]
[U1(w™)gGLn(OF,)] + [GLu(OF,) g0y Ur(w")].

(This is because Uy (w™) = n,,'U; (w™)n ")
Proposition 2.2.8 (Mann) There exists an element
Onw € Zi[Ur (W' \GLn(Fu) /G Ln(OFw)]
with the following properties.
1. Fort=1,...n—1 we have Ul(f)Gmw = 0.

2. For any homomorphism ¢ : k[GL,(Op, )\GL,(F,)/GL,(OF,)] — k we
have Qmeg #£0 i W,.

79



3. If x1, ..., Xn are unramified characters F\ — K> such that the induced

representation m = n-Ind GL";Ff)(Xl, ey Xn) 18 @rreducible, and if 0 # v €

‘ ny ) _pr(n=1)_
7GLnOry) then O v 1s nonzero and so a basis of g™ U= =Uu" =0

4. The composite
Ol € Zi[GLn(Op, )\GL,(F)/GLA(O,)]
has Satake transform
g D2 (X X)) T T [ [ X — X5)

=1 j=1

Corollary 2.2.9 Suppose that 7 is an irreducible unramified representation

of GL,(F,) over K such that r;(7)V(1 —n) is defined over K. ]f@mwemw acts
on 1¢nOrw) by o then o € O and

lgo O/a > lgo H(Gal (Fu/Fy), (adri(m)" (1 — n)) ®o (K/O)(~1)).

Let M be an admissible k[GL,(F,)]-module. We will say that M has
the IThara property it for every v € M GLn(Or,) which is an eigenvector of
k[GL,(Op,)\GL,(F,)/GL,(OF,)], every irreducible submodule of the

k[GL,(F,)]-module generated by v is generic.

Lemma 2.2.10 Suppose that [ is quasi-banal for GL,(F,). Suppose also that
M is an admissible k|G L, (F,,)]-module with the Ihara property and that

ker (0, 1 MCGEn©Oru) M)
is a k[G Ly (Op, )\GL,(F,)/GL,(OF,)]-module. Then
0. - MGLn(Or,) MU1(w"),US):...:Ug”‘”:o
18 injective.

_ Proof: Suppose 0,,,, were not injective on M GLn(Orw)  We could choose a
k|GL,(Op,)\GL(Fy)/GLn(OF,)]-eigenvector 0 # v € ker 6, ,,, say

Tv=¢(T)v

where

¢ : k[GL,(Or,)\GL,(F,)/GLy(OF,)] — k
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is a k-algebra homomorphism.
Let A denote the kernel of the map

klGLn(Fy)/GLn(OF,)lg — Wy
T +— TWd?.

Thus A has no generic subquotient and k[GL,(F,)/GL.(OF,)]s/A has a
unique irreducible submodule B/A. The module B/A is generic, but no sub-
quotient of k[GL,(F,)/GL,(OF,)]s/B is generic.

Now consider the map

k[GL,(F,)/GLW(OR,)ls — M
T +— To.

As M has the Thara property, any irrreducible submodule of the image is
generic. Thus A is contained in the kernel and moreover the induced map

k[GLy(Fy)/GLy(OF,)]s/A — M
must be injective. Thus we have an injection
(GLn(Fw)W£> — M
Wy — w.
Proposition 2.2.8 then tells us that 0, ,v # 0, a contradiction. O

We would conjecture that the previous lemma remains true without the
quasi-banal hypothesis. In fact, it is tempting to conjecture that the natural
map

[GL(OF,)] +— W

is in general injective.

2.3 Automorphic forms on unitray groups.

Fix a positive integer n > 2 and a prime [ > n.

Fix an imaginary quadratic field E in which [ splits and a totally real
field F*. Fix a finite non-empty set of places S(B) of places of F'™ with the
following properties:

e Every element of S(B) splits in F.

e S(B) contains no place above I.
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e If n is even then

n[FT:Q]/2 + #S(B) = 0 mod 2.

Choose a division algebra B with centre F' with the following properties:
o dimp B = n?.
e BP=BRgp. L.
e B splits outside S(B).

e If ¥ is a prime of F' above an element of S(B), then By is a division
algebra.

If { is an involution on B with f|r = ¢ then we can define a reductive algebraic
group Gy/F™* by setting

Ci(R) = {9 € Bop R: ¢¥'g =1}
for any F'*-algebra R. Fix an involution { on B such that
o Ilr=c,
e for a place v|joo of F™ we have Gy(F, ) = U(n), and
e for a finite place v & S(B) of F the group G¢(F,") is quasi-split.

This is always possible, by an argument exactly analogous to the proof of
lemma 1.7.1 of [HT]. From now on we will write G for Gj.
We will also define an algebraic group G'/F™ by setting

G'(R)={g€B®®p+ R: g*®g=1}
for any F'T-algebra R. Note that there is an isomorphism

I:G = @&

g — g .

We can choose an order O in B such that O% = O and O B,w 1S maximal
for all primes w of F which are split over F'*'. (Start with any order. Replacing
it by its intersection with its image under I gives an order O with (O%)* =
O’. For all but finitely many primes v of F'* the completion O% , will be a
maximal order in B,. Let R denote the finite set of primes which split in F
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and for which Op , is not maximal. For v € R choose a maximal order Op,
of B, with (0% )} = 0%, (e.g. Opu & O%,w where w is a prime of F' above
v and Op, is a maximal order in B,). Let Op be the unique order with
Op, = Op, if v € R and Op, = O, otherwise.) This choice gives models
of G and G’ over Op+. (These models may be very bad at primes v which do
not split in £, but this will not concern us.)

Let v be a place of F'* which splits in F'. If v € S(B) choose an isomorphism
iy : Oy — M,(OF,) such that i,(2%) = %,(z)°. The choice of a prime w of F
above v then gives us an identification

i GFF) 5 GL(F,)

itz a7 —

with i,G(Op+ ) = GL,(OFy) and iye = *(c04,)~*. Using 4, in place of i,
we also get

it G'(FS) = GL,(F,)
with ¢/, G'(Op+ ) = GL,(Opy) and it o I = (i) ™" = coiye. If v € S(B) and
w is a prime of F' above v we get an isomorphism

iw: G(E}) — B
with i,G(Op+ ) = OF,, and iye = i,,". We also get
wi G (E]) — (BY)"

with 7,G'(Op+ ) = Ogopw.

Let S; denote the primes of F* above [ and let T D S; U S(B) denote a
finite set of primes of F'* which split in F. Fix a set T of primes of I such
that T[T is the set of all primes of F' above T. If § C T write S for the
preimage of S in T. If v € T we will write ¥ for the element of T' above v.
Write S, for the set of infinite places of F't.

Let k£ be an algebraic extension of IF; and K a finite, totally ramified ex-
tension of the fraction field of the Witt vectors of k such that K contains
the image of every embedding F' < K. Let O denote the ring of integers of
K and let A denote its maximal ideal. Let [; denote the set of embeddings
F™ — K, so that there is a natural surjection I; —» Si. _Let [; denote the
set of embeddings F' — K which give rise to a prime of S;. Thus there is a
natural bijection I; = I;.

For an n-tuple of integers a = (ay,...,a,) with a; > ... > a, there is an
irreducible representation defined over Q:

&0« GL, — GL(W,)
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with highest weight
diag(ty, ..., t,) — Ht‘”

(N.B. This is not the same convention used in [HT].) There is also a (unique
up to scalar multiples) perfect pairing

< ) >a:WaXWa—>Q
such that

<€a(g)w7 wl>a = <w7 ga(tg)wl>0«
for all w,w’ € W, and g € GL,(Q). We can choose a model

& : GL, — GL(M,)

of &, over Z. (So M, is a Z-lattice in W,.) Let M. denote the ( , ), dual of
M, and
¢ GL, — GL(M)

the corresponding model over Z of &,. B
Let Wt,, denote the subset of (Z")Hom (") consisting of elements a which
satisfy

® Qi = —Qrpy1—; and
® (12> ... 2 Urp.
If a € Wt,, then we get a K-vector space W, and irreducible representations
& GET) — GL(W,)
9 — ®c58a, (Tirg)

and

&G — GL(W,)
g — HTGT[ fa‘r (T/I/f'g)‘
The representation §, contains a G(Op+ ;)-invariant O-lattice M, and the rep-
resentation £, contains a G'(Op+ )-invariant O-lattice M/ such that there is
a perfect pairing

(), Ya:Myx M, — O
with

(€a(9)2, &, (1(9)Y)a = (T, Y)a-
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For v € S(B), let p, : G(F) — GL(M,,) denote a representation of
G(F;) on a finite free O-module such that p, has open kernel and M, ®o K
is irreducible. Let M) = Hom (M,,, O) and define p), : G(F,") — GL(M), )

by

Pu(9)(@)(y) = z(pu(I7 (9))'y).
If we identify G(F;f) = BY and G'(F)}) = (B®)* and if g € B and ¢ €
(BoP)* have the same characteristic polynomials then tr p,(g) = tr pv( "). Let
e(py) denote the number of irreducible constituents of p,|co,, ) ®x K.

If JL (py 0 i) = Sp,,, (mw) then set

T = 71(T0| |(n/m72)(1fm)/2).

Note that we also have JL (p} o i ') = Sp,, (7). We will suppose that
w i Gal (Fy/Fy) — GLym(0)

(as opposed to GL,m(K)) and that the reduction of 7, is absolutely irre-
ducible. Thus 7, is well defined over O.

We will call an open compact subgroup U C G(A¥,) sufficiently small if
for some place v its projection to G(F.,") contains only one element of finite
order, namely 1.

Suppose that U is an open compact subgroup of G(A%¥,), that a € Wt,,
and that for v € S(B), p, is as in the last paragraph. Set

Ma o,y = Mo ® ® M,,
veS(B)

and
Mﬂ,{ﬁv MI ® ® M/
veS(B)

Suppose that either R is a K-algebra or that the projection of U to G(F;") is
contained in G(Op+ ;). Then we define a space of automorphic forms

Sa o} (U, R)
to be the space of functions
[ G(F+>\G( %O+> — R®o Ma,{pv}

such that
f(gu) = ug(lB),lf(g)
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for all w € U and g € G(AY,). Here ug(p),; denotes the projection of u to
G(F') x [Toess) G(F,). IV is any compact subgroup of G(AF, ) we define
Sa,1p,3 (Vs R) to be the union of the S, (,,1(U, R) as U runs over open compact
subgroups containing V. Similarly, if U’ is an open compact subgroup of
G'(A%,) and either R is a K-algebra or the projection of U’ to G'(F}") is
contained in G'(Op+ ;) we define

wipt (U R)
to be the space of functions
[ GEFING(AF) — R®o My,
such that
Flgu) = w5l £ (9)

for all w € U’ and g € G'(A¥;). We make a corresponding definition of
oy (Vs RR) for V! any compact subgroup of G'(A%. ).
If g € G(AY,) (and either R is a K-algebra or g, € G(Op+,;)) and if
V C gUg™! then there is a natural map
g: Sa7{Pv}(U’ R) — Sa,{pu}(vv R)
defined by
(9f)(h) = gis(m) f(hg).-
We see that if V' is a normal subgroup of U then

Sav{Pv}<U7 R) = Sa,{pv}(V, R)U

If U is open then the R-module S, ¢,,1(U, R) is finitely generated. If U is open

and sufficiently small then it is free of rank #G(F*)\G(AY,)/U. If R is flat
over O or if U is sufficiently small then

Sadp}(U, R) = Sa,0p,}(U, O) ®0 R.

Suppose that U; and U, are compact subgroups and g € G(A%,). If R is
not a K-algebra suppose that g, € G(Op+,) and that v, € G(Op+ ) for all
u € U; UUs,. Suppose also that #U;gUs/Us < 00. (This will be automatic if
U; and U, are open.) Then we define a linear map

[U19U2] : Sagp,}(Uz, R) — Sagp,1(Ur, R)
by
([UIQUQ]f>(h> = Z(gi>l,S(B)f(hgi)

7

if U1gUs = [1; g:Us. Exactly similar statements hold for G'.
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Lemma 2.3.1 Let U C G(AY,) be a sufficiently small open compact subgroup
and let V. C U be a normal open subgroup. Let R be an O-algebra. Suppose
that either R is a K-algebra or the projection of U to G(F,") is contained in
G(Op+y). Then Sq 1 (V, R) is a finite free R[U/V]-module and tr v gives
an isomorphism from the coinvariants Sq (,,}(V, R)usv to Sa (1 (U, R).

Proof: Suppose that
G(Az) = [[G(F)gU.
jed
Then
Gz =11 II ¢FHguv.

Jj€Juel/VvV

Moreover for all j € J we have gj_lG(F*)gj NU = {1}. (Because this inter-
section is finite and U is sufficiently small.) Thus

Sa,{pv}(Ua R) — @jeJ Map,) @0 R
fo— (f(g;));
and N
Sa,{pv}a/v R) — @jeJ ®u6U/V Mo p,y @0 R
fo— (flgw)ju

Alternatively we get an isomorphism of R[U/V]-modules
Sa,{pv}a/u R) — @jej Ma,{pu} ®o R[U/V]
fo— ey usmaf(giu) @ u™);.

Then N
Satot(ViRuyy  — @Bjes Magp,) ®o R
fo— (Cueoyv usmaf(gin);-

In fact we have a commutative diagram

tr
Sa,{pu}(va R)U/V L/\; Sa,{pv}(Ua R)
! !
@jGJ Magpy ®o R = ®jeJ Matp,y ®0 R

where the vertical maps are the above isomorphisms. The lemma follows. O

Suppose that U is an open compact subgroup of G(A%,) and that n €
G'(A%,). If R is not a K-algebra further assume that g € G'(Op+ ;) and that
for all u € U we also have u; € G(Op+,). Set U' = n~'I(U)n. Define a pairing

< ) >U777 : S&{Pv}(U? R) X Stlz,{pv}(Ula R) — R
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by

(f, fun = Z (f(9), nl,S(B)f/<](g)77)>a,{pv}'

geG(FI\G(AR)/U

If U is sufficiently small, or if R is a K-algebra, this is a perfect pairing. If
we have two such pairs (U, ;) and (Us, 1) with each U; sufficiently small,
if U = 0" I(U)n; and if g € G(AY,) (with g € G(Op+,) if R is not a
K-algebra) then

(UgUsf, Yoy = (5 [Usnz () "' US) f Y v e -

Proposition 2.3.2 Fixt: K — C.

1. Sapsy({1},C) is a semi-simple admissible G(A%,)-module.

2. If S(B) # 0 and m = ®,m, is an irreducible constituent of S, 1,,3({1},C)
then there is an automorphic representation BC ,(7) of (B ® A)* with
the following properties.

BC,(7) o (—1) = BC, (7).

If a prime v of 'V splits as ww® in F then BC, (), = T, 0,
If v is an infinite place of F* and 7 : F — C lies above v then
BC (7), is cohomological for (§a,_, oT)® (§a,_, o TC).

If v is a prime of F* which is unramified, inert in F and if w, has a
fized vector for a hyperspecial mazimal compact subgroup of G(F,)
then BC (), has a GL,(Op,)-fized vector.

Ifve S(B) and 7, has a G(Op,) fived vector and w is a prime of

F above v then BC (), is an unramified twist of (tp)) o it

3. If S(B) # 0 and m = @y, is an irreducible constituent of Sy 1,1 ({1}, C)
such that for v € S(B) the representation m, has a G(Op+ ,)-fived vec-
tor, then one of the following two possibilities obtains. Fither there is
a cuspidal automorphic representation I1 of GL,(Ar) with the following

properties.
o [Toc=1I".
o If a primev & S(B) of F™ splits as ww® in F then I, = m, oi,".

If v is an infinite place of F* and 7 : F' — C lies above v then 11,
is cohomological for (€, , oT)® (&, , o TC).
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e [fv is a prime of F* which is unramified, inert in F' and if 7, has a
fized vector for a hyperspecial mazximal compact subgroup of G(F,)
then 11, has a GL,(Op,)-fized vector.

o [fve S(B) andw is a prime of F above v then Il is an unramified
twist of JL ((tp)) oirt).

Or there is an integer m|n and a cuspidal automorphic representation I1
of GLy/m(Ar) with the following properties.
o [MVoc=1I| ™!

o If a prime v & S(B) of 't splits as ww® in F then 11, B1L,| | B

L BIL] Pea, 00t

e If v is an infinite place of F* and 7 : F — C lies above v then
IL,| ["m=1/Cm) s cohomological for (&, o7)® (&..o7Tc) and bri=
Urm@i-1)4j + (m —1)(0 — 1) for every j =1,...,m.

e Ifvis a prime of F which is unramified, inert in F and if w, has a
fized vector for a hyperspecial mazimal compact subgroup of G(F,)
then I1, has a G Ly (Op,y)-fized vector.

o [fve S(B) and w is a prime of F' above v then 11, is cuspidal and
JL (tpy 0it)Y is an unramified twist of Sp,,(IL,).

If for one place vg & S(B) of F*, which splits in F, the representation
Twy 18 generic, then for all places v € S(B) of F™, which split in F, the
representation m, 1S generic.

. Suppose that 11 is a cuspidal automorphic representation of GL,(AF)
with the following properties.

o [[Voc=T1I.

e Ifv is an infinite place of F* and 7 : F — C lies above v then II,
is cohomological for (&, _, oT)® (&, _, o Tc).

e [fv e S(B) andw is a prime of F' above v then I1,, is an unramified
twist of JL ((tp)) oiyt).

Then there is an irreducible constituent © of Sq (,,1 ({1}, C) with the fol-
lowing properties.

e Forv e S(B) the representation m, has a G(Op+ ,)-fized vector.
o Ifaprimev & S(B) of F™ splits as ww® in F then m, = I1, 0 iy,
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e Ifv is a prime of F* which is inert and unramified in F' and if 11,
18 unramified then m, has a fixed vector for a hyperspecial mazimal
compact subgroup of G(F,).

FEzxactly similar results hold for G' (with i, replacing i,, ).

Proof:1f 7 € fl then 7 : F' — C and hence F,, — C. Then W, ®g, C is
naturally a G(R)-module:

gr— ®refl€af (t1g).

Denote this action by &,,. Let A denote the space of automorphic forms on
G(F")\G(Ap+). We have an isomorphism

i Sa,{pu}(Uv C) — HomUxG(Fo‘;)«Ma,{pu} X0, (j)\/? A)

given by
i(f)(@)(9) = al€au(9oo) ™ (&algr) F(97)))-

The first part now becomes a standard fact. The second part follows
from theorem A.5.2 of [CL], except that theorem A.5.2 of [CL] only identi-
fies BC,(m), for all but finitely many v. We can easilly adapt the argument
to identify BC ,(7), at all split places, as we described in the proof of theorem
VI.2.1 of [HT] (page 202). It is equally easy to control BC,(7), at places where
7, has a fixed vector for a hyperspecial maximal compact subgroup. One just
chooses the set S in the proof of theorem A.5.2 of [CL] not containing v. The
third part follows from the second, theorem VI.1.1 of [HT] and the main re-
sult of [MW]. As for the fourth part, the existence of some descent (controlled
at all but finitely many places) follows from theorem VI.1.1 of [HT] and the
argument for proposition 2.3 of [Cl] as completed by theorem A.3.1 of [CL].
That this descent has all the stated properties follows from the earlier parts
of this proposition. O

Corollary 2.3.3 S, (1 ({1}, K) (resp. S, ({1}, K)) is a semi-simple ad-
missible G(AY, )-module (resp. G'(A¥,)-module).

Combining the above proposition with theorem VII.1.9 of [HT] we obtain
the following result.

Proposition 2.3.4 Let K denote the algebraic closure of Q; in K. Suppose
that m = ®,m, is an irreducible constituent of S, 1,3 ({1}, K) then there is a
continuous semi-simple representation

re: Gal(F/F) — GL,(K")
with the following properties.
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1. If v € S(B)US; is a prime of F™ which splits v = ww® in F, then

PalGp, = (ri(mw 04,")Y (1= n))™.

I

2. r

VvV, 1-n
o .

r_€

3. If v e S(B) splits v =ww® in F then
TelGp, = (ri(JL (my 010, 1)) (1 = n))™.

4. Ifv is a prime of F* which is inert and unramified in F and if 7, has a
fized vector for a hyperspecial maximal compact subgroup of G(F.\) then
Trlwy, 18 unramified.

5. If w is a prime of F' above | then r, is potentially semi-stable at w. If
moreover Ty, 1S unramified then - is crystalline at w.

6. If T: F — K gives rise to a prime w of F' then

dimfo gri(TTr ®7—7Fw BDR)Gal (Fw/Fuw) -0

unless i = a,; +n — j for some j =1,...,n in which case

7. If for some place v & S(B) of F* which splits in F the representation
T, 18 not generic then r, is reducible.

Ezactly similar results hold for G' (with i, replacing i, ).

Proof: If the first possibility of part 3 of proposition 2.3.2 obtains then by
theorem VII.1.9 of [HT] r, = R(IT)¥(1—n) will suffice. So suppose the second
possibility obtains. Let S’ D S; be any finite set of finite places of F'™ which
are unramified in /. Choose a character ¢ : Ay — C* such that

o Yl =19

e 7 is unramified above S’; and

e if 7: F'— C gives rise to an infinite place v of F' then
Yy 12— (rz/|r2])

where |2]? = 2z° and §, = 0 if either m or n/m is odd and §, = +1
otherwise.
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The existence of such a character is proved as in the proof of lemma VII.2.8
of [HT]. Then

r, :RZ<H®7M ’(mil)/z)\/(l—n)@Rl(?ﬂil’ ’(n/mfl)(mfl)/Q)V@)(1@67169“'@617m>

is independent of the choice of S” and v and satisfies the requirements of the
proposition. (We use the freedom to vary S’ to verify property 4.) O

2.4 Unitary group Hecke algebras.

Keep the notation and assumptions of the last section. Further suppose that
U=]Jv. cGax)

is a sufficiently small open compact subgroup and that, if v € T splits in F,
then U, = G(Op+,). We will denote by

’]TaT,{pu} (U)

the O-subalgebra of End (Sq,(,,} (U, O)) generated by the Hecke operators T 9
(or strictly speaking i3 (T)) x U?) and (T§")~! for j = 1,...,n and for w
a place of F' which is split over a place v ¢ T of F*. (Note that qufc) =

(T, QE,"))_ITLS}WJ' ) 50 we need only consider one place w above a given place v of

Fr)If Xisa ']T:i{pv}(U)—stable subspace of S, (,,1(U, K) then we will write

T"(X)
for the image of ']l“i{pv}(U) in End g (X).
Similarly suppose that
U =1Ju, c ¢y

is a sufficiently small open compact subgroup and that, if v € T splits in F,
then U] = G(Op+,). We will denote by

TT{pv} (U/)/

a,

the O-subalgebra of End (5], (U, O)) generated by the Hecke operators
T (or strictly speaking (it,)"1(T$)) x (U")*) and (TY")~! for j = 1,...,n

and for w a place of F' which is split over a place v & T of F*. (Again
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T9 = (TS 1T, so we need only consider one place w above a given

pl'ace v'of Fr) If X'isa Ti{pv}(U’)’—s‘cable subspace of S; , ,(U’, K) then we
will write
TT(X/)/
for the image of T, ., ,(U")" in End g (X).
Note that T7(X) and T?(X’)" are finite and free as O-modules. Also by
corollary 2.3.3 we see that they are reduced.

Proposition 2.4.1 Suppose that m is a maximal ideal of TQT{M}(U). Then
there is a unique continuous semisimple representation

Tm : Gal (F/F) — GLn(T¢ (,,(U)/m)

av{pv
with the following properties. The first two of these properties already charac-
terise T uniquely.

1. Tw s unramified at all but finitely many places.
2. If a place v & T of Ft splits as ww® in F then Ty, is unramified at w
and Tw(Frob,,) has characteristic polynomial
X — THX1 4 (=1)F (Nw)i0-D/270) xn=iq
Foo + (1) (Nuw)rn=D/2

3. If a place v of F* such that V is inert and unramified in F and such
that U, is a hyperspecial maximal compact, then Ty, is unramified above
.

4. To=Tr @
5. Supposev € S(B), U, = G(Op+,) and w is a prime of F' above v. Then
T has a Gal (Fy,/F,)-invariant filtration Fil,, with
g—r[l)UFm‘IFw = ?w’IFw ®o k
and ' '

S Tl Gal (Fu/ F) = (8T o mlGal (Fo/Fu) (€)
fori=0,...,m, —1 (and = (0) otherwise). If (for instance) we further
have .

?w ®(9 ]{?(6]) ?—é ?w ®(9 k‘

for j =1,...,m,, then this filtration is unique and
Hom ¢,y 7, /Fw)(ﬁffm, gty ) = k

for7=0,...,m, — 1.
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6. Suppose that w € S, is unramified over I, that Uy, = G(Op+ ) and

that for each T € I, above w we have
l-1-n>a.;3>..>ar,>0.

Then

Tl ol (Fu /) = Cuw(Mmw)
for some object M ., of MFTT{ () /mw- Moreover for all T € fl over
a1 Pv ’

w we have

a,{pv

}(U)/m(gr iMm,w) Rre1 O =1
ifi =a;; +n—7j for some j=1,...n and = 0 otherwise.

Exactly similar statements are true for mazimal ideals m' of Tz{pv}(U’)’.

Proof: Choose a minimal prime ideal p C m and an irreducible constituent
7 of S, (p,3({1}, K) such that 7% # (0) and ']l“i{pv}(U) acts on 7V via the quo-

tient Ti (p}(U)/p. Choosing an invariant lattice in ., reducing and semisim-
plifying gives us the desired representation 7, except that it is defined over
the algebraic closure of T} (po)(U)/m. However, as the characteristic polyno-

mial of every element of the image of T, is rational over T (po)(U)/m and as
T, (po}(U)/m is a finite field we see that (after conjugation) we may assume

that
T : Gal (F/F) — GLn(T (,,(U)/m).

We will call m (resp. m’) Eisenstein if 7, (resp. Ty ) is absolutely reducible.

Proposition 2.4.2 Suppose that m is a non-FEisenstein maximal ideal of the
Hecke algebra Ti{pv}(U) with residue field k. Then Ty, has an extension to a
continuous homomorphism

Tm: Gal (F/F1) — G, (k).
Pick such an extension. There is a unique continuous lifting
o Gal (F/F*) — Go(Ts 1,3 (U)m)
of T with the following properties. The first two of these properties already

characterise the lifting v uniquely.
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. Tm 18 unramified at all but finitely many places.

. If a place v € T of F* splits as ww® in F then ry is unramified at w
and ru(Froby,,) has characteristic polynomial

Xm—TWX" 4 4 (1) (Nw)U=D270) X7 4 (=1)"(Nw)"(n=D/27rn),

. If a place v of F* such that v is inert and unramified in F and if U, is
a hyperspecial mazimal compact then ry is unramified at v.

. VOTy = el‘”5;7F+, where dpp+ is the nontrivial character of Gal (F//F*)

and where jin € L]27.

. Suppose that w € S, is unramified over , that Uy, = G(Op+,) and

that for each T € .71 above w we have
l—-1-n>a.1>..>a;,>0.

~ T
Then for each open ideal I C Ta,{pv}(U)m

(rm @27 W) Tatpt O/ Dlaa @,/ = Gu(Mon10)
for some object My 1.4 of MF 0.

. Suppose v € S(B), U, = G(Op+,), that w is a prime of F' above v and
that for 7 =1,...,m,

Tw @0 k & Ty Qo k().
Then ro has a Gal (F,,/F,)-invariant filtration Fil’, such that
8 o Tml1m, = Fulre, ®0 Th 1y (U)m
lifting any fized isomorphism 8T o w1, = Twlr, Qo k, and
81 m = (81 yrm)(€")
ifi=0,..,my, —1 (and = (0) otherwise).

. Suppose that a place v € T — (S, U S(B)) splits as ww® in F and that
U, = i,Ui(w). Let ¢y, be a lift of Frob, to Gal(F,/F,) and let @,
be an element of F)* such that Art g, @, = ¢, on the mazximal abelien
extension of F,,. Suppose that a € k is a simple root of the characteristic
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polynomial of Toy(bw). Then there is a unique root A € T:}F,{pv}(U)m of
the characteristic polynomial of r(py) which lifts a.

Suppose further that Y is a Ti{pv}(U)[wa]—invariant subspace of
Sa1po} (U, K)m such that Vo, —a is topologically nilpotent on'Y . Then for
each o € F with non-negative valuation the element V,, (in End (Y))
lies in TT(Y). Moreover o + V, extends to a continuous character
Vi X — TH(Y)*. Further (X — V) divides the characteristic poly-
nomial of rm(¢y) over TE(Y).

If Nw = 1 mod [ then
Tm’Gal(fw/Fw) =s® (VoArt Ei)a
where s is unramified.

Exactly similar statements are true for non-FEisenstein maximal ideals m' of

To o (U

Proof: By lemma 1.1.3 we can extend 7, to a homomorphism
Tm: Gal (F/F') — G, (k)

with v o 7y = e"‘15;7F+ and T(c,) € GL,(k) for any infinite place v of
F*. Moreover, up to GL,(k)-conjugation, the choices of such extensions are
parametrised by k> /(k*)2.

Similarly, for any minimal primes ¢ C m we have a continuous homomor-
phism r,, from Gal (F//F*) to the the points of G, over the algebraic closure
of Q in the algebraic closure of the field of fractions of T, (oo} (U)/p such that

e 1, is unramified almost everywhere;
e r'GL, = Gal (F/F); and

e for all places v € T of F* which split v = ww® in F the characteristic
polynomial of r(Frob,,) is

X" —TWX 4 4 (=1) (Nw)?U=D200) xm=i 4 (=1)"(Nw)™ ("= D/2p(m)

According to lemma 1.1.6 we may assume that r, is actually valued in G,(O,,)
where O, is the ring of integers of some finite extension of the field of fractions
of Tz () (U)/g. Then by lemma 1.1.3 again we may assume that the reduction
of 7, modulo the maximal ideal of O, equals 7. (Not simply conjugate to
Tm.) Let R denote the subring of k& @, O, consisting of elements (am, ay,)
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such that for all p the reduction of a, modulo the maximal ideal of O, is .
Then B
Bory : Gal (F/FT) — G, (R).

Moreover the natural map
Tg,{pv}(U)m — R

is an injection. (Because Tf{pv}(U)m is reduced.) Thus by lemma 1.1.10 we
see that @,r,, is GL,(R) conjugate to a representation

"o : Gal (F/FT) — gn(TaT,{pu}<U)m>

such that:

e If a place v € T of F'* splits as ww® in F then 7y, is unramified at w and
rm(Frob,,) has characteristic polynomial

Xt —TWX" 4 4 (1) (Nw)?U=D270) X7 4 (=1)"(Nw)"(r=D/27n),

e If a place v of F'* is inert in F' then ry, is unramified at v.

It is easy to verify that r, also satisfies properties 4 and 5 of the proposition.

We next turn to assertion 6. After base changing to an algebraicly closed
field each ry|q. 7, r,) has a unique filtration such that grr|. = Fulr,
and

&r iT@‘Gal (Fu/Fu) = (gr OTP‘Gal (Fu/Fu) )(€)

for i = 0,...,m, — 1 (and = (0) otherwise). Enlarging O,, if need be we may
assume that this filtration is defined over the field of fractions of O,,. As7,®0k
is irreducible, such a filtration also exists over O,. Because of the uniqueness

of the filtration W; on Ty, we see that these filtrations piece together to give
a filtration of @, r, over R. As the isomorphisms gri 7m = (8r97m)(¢) are
unique up to scalar multiples we get a isomorphisms

grfﬂ(@p%) = (gr 10u<@K7T@>> (EZ)

over R[Gal (F,,/F,)] which are compatible with the chosen isomorphism be-
tween gr', T, and (gT07m)(€"). As

ZGL0 ey 00) (81 T (IR,)) = ZaL, ) (0 /mo,) (81 To(IR,))

(see lemma 1.3.14), we see that we get an isomorphism
gr o (®pry) =Ty @0 R
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over R[I,] compatible with the chosen isomorphism gro7y, & 7, ®o k. Then
using lemmas 1.1.8 and 1.3.14 we see that these isomorphism persist over
T 13 (U)m

Finally we turn to part 7 of the proposition. The existence of A fol-
lows at once from Hensel’s lemma. Let P(X) € TL 150} (U)m[X] denote the
characteristic polynomial of ry(¢,). Thus P(X) = (X — A)Q(X) where
Q(A) € Tg 1,y (U

Write Y @ K = @((Y ® K) N7r) as 7 runs over irreducible smooth
representations of G(A%,). From lemmas 2.1.3 and 2.1.5 and the fact that
V., — @ is topologically nilpotent we see that dim((Y ® K) N 7r) <1forall w
Let ¢!, be any lift of Frob,, to Gal (F,/F,) and let Art p, @/ = ¢!,. Let P’
denote the characteristic polynomial of r,(¢.,) and let A’ be 1ts unique root in
TT(Y) over a. As Vy,, and V., commute, each (Y ® K) N is invariant under
Ve . By lemma 2.1.5 Vo, V! is topologically unipotent on (Y ® K) N .
Lemmas 2.1.3 and 2.1.5 imply that P'(V,, ) = 0 on (Y ® K) Nw. Thus
Ver = A’ on (Y ® K) Nwr. Hence Voy = A’ € TT(Y) C End x(Y). It follows
that V,, € TT(X) for all & € F* with non-negative valuation and that a +— V,
extends to a continuous character V : FX — TT(Y)*.

Now suppose that Nw = 1mod![. From lemma 2.1.5 we see that if
(Y ® K) N7 # (0) then either 7 is unramified or 7% = (0). Thus
(rm ® TT(Y))(Gal (F,,/F,)) is abelian. We have a decomposition

T(Y)" = Q(¢u)T (V)" & (¢ — AT (V)"

As (rm @ TT(Y))(Gal (Fy/F,)) is abelian we see that this decomposition is
preserved by Gal (F,/F,). By lemma 2.1.5 we see that after projection to
any 7N (Y ® K), Gal (F,/F,) acts on Q(¢,)TT(Y)" by Vy o Art ;' and its
action on (¢, — A)TT(Y)" is unramified. We conclude that Gal (F,,/F,) acts
on Q(¢,)TT(Y)™ by V and that its action on (¢, — A)TT(Y)" is unramified.
This completes the proof of part 7 of the proposition. O

Corollary 2.4.3 Suppose that m is a non-FEistenstein mazimal ideal of the
Hecke algebra TT oo }(U). Suppose also that v € T — (S(B) U S)) and that
Uy = G(Op+,). If w is a prime of F above v then for j =1,...,n we have

T € Ta Ao }<U)m C End (Sav{pv}(U, K)m)

An exactly similar statement is true for a non-FEistenstein mazimal ideal m’ of
TZ (U .

a{pv}
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Proof: One need only remark that
TY) = (Nw)?U=92tr AT 1 (Froby,).

O

Lemma 2.4.4 Let R C T — (S(B) U S)) and let R[] R® be a partition of
the primes of F' above R. For v € R let v denote the prime of R above
v. Suppose that for v € R the group U, is i'Tw (V). Suppose also that
V = U x [[,cris ' Tw(0) is sufficiently small. Then V/U = [[;c5(k([©®)*)"
acts on Sqp,3(U, K). Suppose that x and x' are two characters V/U — O
with x mod A = x’ mod \. Let m be a mazximal ideal of Ti{pv}(U). Then

Sav{ﬂv}(U7 K)ﬁ" 7é (0)

if and only if
Sa,{pv}(Uv K)f% 7é (0)

Proof:1f R is an O-algebra and 1 : V/U — O* let S, {,,1,4(V, R) denote
the set of functions

[ GIETING(ATY) = Mo,y @0 R

such that
fgu) = b(ur) ™ uy g5 f(9)

for all w € V and g € G(AY,). As V is sufficiently small we see that
Sagputw(V, O) is finite and free over O and that

SCL?{pU}7w(V7 R) = Sﬂa{ﬂv}yw(v7 O) ®O R
The spaces Sq(p,},4(V, R) have a natural action of TQT,{,,U}(U)- We have
Satot (U, K)X = Saport (U, K)m

and
St (U, K)S = Saipuy,i0)-2 (U K ).

)
Moreover S (.11 (U, K)m = (0) (resp. S {oo),0) (U, K)m = (0)) if and
only if S, 15,14-1(U,O)m = (0) (resp Sa {pv ()~ 1( O)m = (0)) if and only if
Satptx-1 (U k)m = (0) (resp. Sy p,},)-1 (U, k)m = (0)

)-
Sav{Pu},x’l(U7 k) =5, Apo}, (U7 k)m

However

and the lemma follows. O
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2.5 Thara’s lemma and raising the level.

In this section we will discuss congruences between modular forms of different
levels. Unfortunately we can not prove anything. Rather we will explain how
the congruence results we expect would follow from an analogue of Thara’s
lemma for elliptic modular forms (see [I], [Ri]). Let us first describe this
conjecture more precisely.

Conjecture I Let G, I, T and U be as in the last section with U sufficiently
small. Suppose that v € T — (S(B) U S;) with U, = G(Op+,) and that m is
a non-Eisenstein maximal ideal of Ta{l}(U). If f € So. (U, k)[m] and if 7 is
an irreducible G(F,")-submodule of

(G(ES)f) € So,up (U, k)
then 7 1s generic.

In fact we suspect something stronger is true. Although we will not
need this stronger form we state it here. We will call an irreducible G(Ff)-
submodule 7 of S, (,,3({1},k) Eisenstein if for some (and hence all) open
compact subgroups U = [[, U, with 7% # (0) there is a finite set 7" (con-
taining v) of split primes and an Eisenstein maximal ideal m of T}, oy ({11 k)

with 7y # (0).

Conjecture II Let G andl be as in the last section. Suppose that v ¢ S(B)U
Sy is a prime of F* which splits in F'. Let w be a non-Eisenstein irreducible
G(F;")-submodule of Sy 13({1}, k). Then m is generic.

We should point out that these conjectures are certainly false if we re-
place ‘submodule’ by ‘subquotient’. If we replace k by K and ']I‘a {1}(U ) by
']I‘a {1}(U ) ®o K, then the conjectures would be true by part 7 of proposition
2.3.4. In the case n = 2 the conjecture is an easy consequence of the strong
approximation theorem for G. We believe that we can prove many cases of
conjecture I in the case n = 3. We hope to return to this in another paper.

Lemma 2.5.1 Let G be as in the last section. Suppose conjecture I holds for
all T and U with U sufficiently small. Let T, U, a and {p,} be as in the
last section. Let v € T — (S(B) U S;) with U, = G(Op+,) and let m be a
non-Fisenstein mazimal ideal of TGT’{M}(U). If [ € Suipy (U, k)[m] and if 7 is
an irreducible G(F,")-submodule of

(G(EN)f) C Sagpy (U, k)

then 7 1s generic.
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Proof: We need only prove the lemma for U small, because its truth for
some U implies its truth for all U’ D U. But for U small enough we have

Sa,{pv} (U> E) = SO,{l} (U7 E)r

for some r. O

Lemma 2.5.2 Conjecture II (and hence conjecture I) is true if n = 2.

Proof: Let G; denote the derived subgroup of G. Then we have exact

sequences
det

(0) — Gy(F+) — G(F*) 2 pNryre=!

and N
(0) — G1(AZ) — G(AR,) 25 A, 777

Suppose 7 is as in the statement of conjecture II, but 7 is not generic.
Then 7 is one dimensional and trivial on G1(F,"). Let 0 # f € m be invarinat
by an open compact U. Then for all g € G(AY,), the function f is constant
on

G(FT)gUGL(F) = G(FT)Gi(AF:)gU
(by the strong approximation theorem). Thus f factors through

det : G(FH\G(AZ) /U — det G(FH)\(AZ)N=1/ det U.
Thus we can find a character
X : det G(FJF)\(A%O)N:l/det U—k

such that

> x(9) ™" f(g) # 0.

g€(det G(F))\(det G(A;"Jr))/(det U)

It follows that, for all but finitely many places w of F which are split over F'™,
Tm(Frob,,) has characteristic polynomial

(X = x(@wu /@)X — qux(@o/@))-(X = @ x(@w/@)).

We deduce that

n—

1
(adFm>ss _ @ (Ei)EB(n—|i|)'
i=1

—n

Thus 7, is reducible and m is Eisenstein. O
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We now turn to ‘raising the level’ congruences. For the rest of this section
we keep the notation and assumptions of the last two sections.

Let R C T — (S(B)UYS;) and assume that U, = G(Op+,) for all v € R.
For v € R choose a prime v of F' above v. Let m be a non-Eisenstein maximal
ideal of TT a.(poy(U) and let

o : ']I‘a{pv (U)m — O.

US H 1U1

veS

If SC R set

Also set
Xg = Sa,{pu}(U<S)7 O)m,n

where n denotes the maximal ideal
(A, UE(I), ...,UTE”_U cveES)
of O, .., UV . v € S]. Further set
Ts = T"(Xs),

so that Ty = T% oo}
If SCRlet

(U)mn

0s =[] i7" 0ns

vER
If S; C Sy C R then we get an injection

952_51 . Xgl — ng.

(To see that this map is an injection we may suppose that Sy = S; U {v}. Let
7 be an irreducible constituent of S, (,,1 ({1}, K) with 7N Xg, # (0). Because
m is not Eisenstein we see that 7, is generic (see part 7 of proposition 2.3.4).
Thus by proposition 2.2.8

i%len,g N Xg, — 7N XSQ.)
Thus we also have a surjection
Ts

2—»T51

which takes T to T for all w (a prime of F' which is split over a prime of
FtnotinT)and j (=1,...,n). Let ¢5 denote the composite

QSSITs—»T@LO.
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We will be interested in congruences between ¢ and other homomorphisms
Ts — K. In particular we will be interested in how these congruences vary

with S. A useful measure of these congruences is provided by the ideal ¢g(¢),
defined by

b5 : Ts/(ker ¢g + Ann g, ker ¢pg) — O/cs(9).

If S C R let Xg[¢] denote the subspace of Xg where Tg acts via ¢g. Let
is : Xg[¢] — Xg denote the canonical inclusion and let mg : Xg — Xg[¢)]
denote the Tg-equivariant projection. (This exists because Tg is reduced.)
The next lemma is now clear.

Lemma 2.5.3 Keep the above notation. The module Xg[¢]/msisXg[d] is an
O/cs(p)-module. If Xg is free over Tg then Xg|p|/msisXs|p] is free over
O/ces().

Lemma 2.5.4 Keep the above notation. Then
Os : Xo[g] ®0 K = Xs[¢] ®0 K.

Proof: 1t suffices to prove that if 7 is an irreducible constituent of the space
Safp.y ({1}, K) then

Os : (Xpld] ®o K) N1 = (Xs[p] ®0 K) N .

As ¢ry is unramified at v € S, proposition 2.3.4 tells us that if (Xs[o] ®o
K)Nnm # (0) then m, is unramified. In particular (Xo[¢] ®o K) N7 # (0).
If (Xpl¢] ®o K)Nm # (0) then for v € S the representation m, is unramified
and, by part 7 of proposition 2.3.4, generic. Write
— GLn(F5
T, O 151 = n-Ind Bn(}a) (Xv1y s Xom)

with each y,,; unramified. Again by proposition 2.3.4 we see that for v € .S,
each x,i(ws) € O%. From lemma 2.2.6 we deduce that

U(s)

T

is the subspace of 7V(%) on which iz 1U»1§j) = ( for each v € S and each j =
1,...,n — 1. Proposition 2.2.8 then tells us that

U(s)

s : VO = 7l

as desired. O
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Proposition 2.5.5 Keep the above notation and assumptions. In particular
assume that U is sufficiently small. Suppose that conjecture I is true for the
groups G and G', for l, for T, for v € R and for the various open compact
subgroups Us (with S C R). Also suppose that Xy is free over Ty. Finally
suppose that for each v € R, 1 is quasi-banal for G(E}). Then

lgo O/cr(¢) = 180 O/co($)+) _ lgo HO(Gal (Fy/Fy), (ad r) 1,6 K/ O(e 7))

vER

Proof: Let ny € G'(A%¥,) equal 1 away from T'— (RUS(B)US;). f S C R

set
_ 1\—1 ]-n—l 0
Ns =My H(Zﬂ) ( 0 wg

vES

and

U(S) = n5'U(S)ms = (U 0))° x [ [~ ta@).

veES

Let m’ denote the ideal of T} (po}(U(S)')" generated by A and T — o whenever

a € O, w is a prime of F split above a prime of F* not in T" and 79 —a €m.
Then m' is either maximal or the whole Hecke algebra. Set

Xé‘ = }(U(S)/> O)m’,n

!/
a,{pv

where n denotes the maximal ideal
U oy

of (’)[Ufél), . Ug(n_l)], and

Ty = T (Xs)".
Also set
efg = H(itﬂ)_lenﬂ?
veER
and

b = [ 15" 0).
vES
If S; C Sy C R then we get an injection

Os,_g, : Xg, — Xg,
and exactly as in the proof of lemma 2.5.4 we see that

9%2751 . X{gl ®o K ; Xég ®(9 K
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Also by corollary 2.4.3
0505 = [ [ i5" (0nins)
veS

acts on Xy by an element of Ty.
Under the perfect pairing

< y >U(S),n5 : Sa,{pv}(U(S)a O) X S(/z,{pv}(U(S)/’ O) — 0
we have that:
e for v € S the adjoint of iglUi(j) is (i%)*lUéj), and

e for Ié)‘)a prime of F split over a prime of F'™ not in 7', the adjoint of T, @
is T .

Thus Tg = T (with 7Y matching 7Y for w a prime of F' split over a prime
of F* not in T'), and ( , )u(s)s induces a perfect pairing
< s >52X5XXZ9—>O
under which the actions of Tg = T are self-adjoint. If S; C Sy C R, then
ol

So—Sq - XSQ XSl

is the adjoint of 0, .
It follows from conjecture I and lemma 2.2.10 that

010y 1 Xs — Xsuqu)
has torsion free cokernel, and that
@\/{v} t Xsufey — X

is surjective. Thus
QR . X@ — XR

has torsion free cokernel, and
/9} : Xgp — X
is surjective. In particular

Or : Xol¢] — Xl
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and we may take
ir =0roipo QR|)_((IB[¢]
and R
Tr = Or|x,[6) © T0 © Op.

Thus

Xrl6]/mrinXpld] = Xo[¢]/$(0p0r)maio Xo[o]

Xo[)/ (Iyer @5 ' (On50n5)) maio Xo[o).

The proposition follows from corollary 2.2.9. O

e 11
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3 R =T theorems.

Fix a positive integer n > 2 and a prime [ > n.
Fix an imaginary quadratic field £ in which [ splits and a totally real field
F* such that

e F'= FtE/F7" is unramified at all finite primes, and
e F'T/Q is unramified at .

Fix a finite non-empty set of places S(B) of places of F'™ with the following
properties:

e Every element of S(B) splits in F.
e S(B) contains no place above .

e If n is even then

n[F*:Q]/2+ #S(B) = 0 mod 2.

Choose a division algebra B with centre F' with the following properties:
o dimp B = n?.
e BP"=BRg,. L.
e B splits outside S(B).

If ¥ is a prime of F' above an element of S(B), then By is a division
algebra.

Fix an involution { on B such that
e f[r=c,
e for a place v|oo of 't we have Gy(F,)) = U(n), and
e for a finite place v & S(B) of F the group G¢(F,") is quasi-split.
Also define an algebraic group G'/F* by setting
G'(R)={ge B®@p+ R: g*¥'g=1}

for any F'*-algebra R.
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Choose an order Op in B such that (9% = Op and Op,, is maximal for
all primes w of F which are split over F*. This gives a model of G over
Op+. If v ¢ S(B) is a prime of F'* which splits in F' choose an isomorphism
iy : Opy — M,(OF,) such that i,(z¥) = i, (x)°. If w is a prime of F above v
this gives rise to an isomorphism 4,, : G(F,") = GL,(F,) as in section 2.3. If
v € S(B) and w is a prime of I above v choose isomorphisms i, : G(F,") = B
such that i, =i} and i, G(Op+ ) = (’)gﬂu.

Let S; denote the set of primes of '™ above [. Let S; denote a non-empty
set, disjoint from S; U S(B), of primes of F'* such that

o if v € 5 then v splits in F', and
e if v € 5 lies above a rational prime p then [F/((,) : | > n.
Let R denote a set, disjoint from S; U S(B) U Sy, of primes of F'™ such that
e if v € R then v splits in F', and
e if v € R then either Nv = 1 mod [ or [ J#GL,(k(v)).

Let T = RUS(B)U S US;. Let T denote a set of primes of F' above T such
that T[] 7€ is the set of all primes of F' above T. If v € T we will let © denote

the prime of T above v. If § C T we will let S denote the set of ¥ for v € S.
If S C Rlet UWS) = [][,U(S), denote an open compact subgroup of
G(A%,) such that

e if v is not split in F' then U, is a hyperspecial maximal compact subgroup
of G(FY),

o if v &S US splits in F then U, = G(Op+,),
e if v € S then U, = iU, (?"), and

e if v € S; then U, = i ker(GL,(Orz) — GL,(Orz/(w2"))) for some
m, > 1.

Then U(S) is sufficiently small. If S = () we will drop it from the notation,
i.e. we will write U =[], U, for U(0).

Let K/Q, be a finite extension which contains the image of every embedding
F* — K. Let O denote its ring of integers, A the maximal ideal of O and k
the residue field O/\.

For each 7 : F' — K choose integers a, i, ..., a,, such that

® Grci = —Arn+l1—i and
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e if 7 gives rise to a place in S, then

l-1-n>a.;3>..>ar,>0.

For each v € S(B) let p, : G(F,") — GL(M,,) denote a representation of
G(F;}) on a finite free O-module such that p, has open kernel and M, ®o K
is irreducible. For v € S(B), define m,, 7y and 75 by

JL (py0iz') = Sp , (75)

and
Fo = ry(mg| /M (=me) 2y,

We will suppose that

751 Gal (Fo/Fy) — GLuym, (O)

(as opposed to GLy,/m, (K)), that the reduction of 7z mod A is absolutely irre-
ducible and that for « =1, ..., m, we have

?5 Ko k % ,77'5 Ko k(el)

Let m be a non-Eisenstein maximal ideal of ']I‘QT, { pv}(U ) with residue field k
and let B
Tm: Gal (F/F") — G, (k)

be a continuous homomorphism associated to m as in propositions 2.4.1 and

2.4.2. Note that
VOTy= 61_"5;‘}‘F+

where dp/p+ is the non-trivial character of Gal (F//F*) and where i, € Z/27.
We will assume that 7, has the following properties.

o Tu(Gal (F/F*(())) is big in the sense of section 1.4.

e If v € S; then 7, is unramified at v and

H(Gal (F5/Fy), (adTw)(1)) = (0).

We will also assume that T} \(U) admits a section Ty \(U) — O.
Recall that ifv € S (B) then by proposition 2.4.1 there is a unique filtration
Fil; of 7, invariant by Gal (F5/F;) and such that

—0— ~
S m|1e. = 75|, Qo k
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and ' '
5T mlcal 7y /) = (8T 07 mlca Ty /) (€)
fori=1,...,m, — 1 and = (0) otherwise. Moreover
Hom ¢, (E/Fg)(ﬁ%?m»g_f%fm) =k

forie=0,...,m, — 1.
For § C R write Xy, ¢ for the space

Sa{m}(U(S)a O)m,n

where n is the maximal ideal

(A, Uél), L UMY e S)

v

of (’)[Ufél), UMY e S]. Also write Ty, g for the algebra T7 (X, 5). Thus

v

Tym.s is a quotient of ']I‘aT,{pv}(U(S))m, and these two algebras are equal if S = ().

The algebra Ty, s is local and reduced. It is finite and free as a O-module. Let
Tms @ Gal (F/FT) — Gu(Thws)

denote the continuous lifting of 7, provided by proposition 2.4.2. Then Ty, g
is generated as a O-algebra by the coefficients of the characteristic polynimials
of rms(c) for o € Gal (F/F).

For S C R, consider the deformation problem Sg given by

(GF+,T > GF,T7 T> S(B)7 {Gal (F'ﬁ/FE)}UGTa O: Tm, El_n&g“;]:%? {W%}'EES(B%
{Dﬂ}veTa {LE}UET)

where:

e For v € Sy, Dy will consist of all lifts of Tw|ga (7, /) and
Ly = H'(Gal (F5/F5),ad Tw) = H'(Gal (F5/F5)/Ip,, ad T,).

e For v € S5;, D; and L; are as described in section 1.3.1 or 1.3.2.
e For v € S(B), Dy and Ly are as described in section 1.3.5.

e For v € R— S, Dy will consist of all unramified lifts of 7|, (F,/Fy) and

Ly = H'(Gal (F3/F5)/Ip.,ad Ty,).

110



e For v € S, Dy will consist of all lifts of 7i|q, (F/Fy) and
Ly = H (Gal (F3/F;),ad Ty).

Also let _ B .
rms  Gal (F/F") — G,(RyY)

denote the universal deformation of 7, of type Sg. By proposition 2.4.2 there

is a natural surjection
REHIV % V]I‘m7s

such that riY pushes forward to ry,.
We can now state and prove our main results.

Theorem 3.1.1 Keep the notation and assumptions of the start of this sec-
tion. Then

univ. "~
m,@ Tm70
is an isomorphism of complete intersections and Xy g s free over Ty . More-

over iy, = n mod 2.

Proof: To prove this we will appeal to Diamond’s and Fujiwara’s improve-
ment to Faltings’ understanding of the method of [TW]. More precisely we will
appeal to theorem 2.1 of [Dia]. We remark that one may easilly weaken the
hypotheses of this theorem in the following minor ways. The theorem with the
weaker hypotheses is easilly deduced from the theorem as it is stated in [Dial.
In the notation of [Dia] one can take B = k[[X1, ..., X;v]] with 7" < r. Also in
place of his assumption (c) one need only assume that H, is free over A/n,,
where n, is an open ideal contained in n with the property that (), n, = (0).
We also remark with these weakened hypotheses one may also deduce from
the proof of theorem 2.1 of [Dia] that in fact r =1’

Choose an integer r as in proposition 1.4.5. Set

' =r—n[F" Q)1+ (—1)""ttrm)/2.

For each N € Zs; choose a set of primes @y of F* as in proposition 1.4.5,
and, for each v € @y, choose a prime v of I’ above v and an eigenvalue az
of 7m(Froby) as in example 1.3.6. (In the notation of example 1.3.6, ay =
X(Froby).) Let Sy g, denote the deformation problem

(Grerugy 2 Grrugy, TUQN D S(B),{Gal (Fz/Fs}verugy, O Tm,
617”5;‘7}7%7 {Fll '17}565(B)7 {Dﬁ}vGTUQNa {LG}UGTUQN)a
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where for v € T, Dy and Ly are as in Sp, and for v € QQn they are as in

section 1.3.6. (Thus in the notation of theorem 1.4.5 Sy g, = S&'.) Let Ry,

. By proposition 1.4.5 there is a

univ

denote the universal deformation ring Rg™>
QN

surjection .
o[ Xy, ..., Xi]] = 0O

Let ¥y denote the composite
Uy O[[Xy, oo, X)) — REW, . — R

For v € Qu let Ay denote the maximal [-power quotient of (9;’»5. Let

univ

Aqy = Iliegy Av- As explained in example 1.3.6, R\, is naturally a
O[AgyJ-module and (R’ )a,, = Rug'. There is a surjection

O[[Sl, ceny ST]] — O[AQN]
such that, if ny denotes the kernel, then () nxy = (0). We can lift the map
O[[Sh 5y ST]] - O[AQN] - umI,l(}J\,,QN

to a map
on O[S, .., S]] — O[[ Xy, .., Xo]].
Then the composite
O[[S1, ... S]] X5 Ry /\

has kernel (), Sy, ..., S,).

Note that Xy is a ‘éfé)v—module via Rlnllrjé)" — T

Define open compact subgroups Ui (Qn) = [[, U1(Qn), and Up(Qn) =
[T, Uo(@n)o of G(AF.) by

o Ui(Qn)o = Up(Qn)o = Uy if v & Qn,
o U1(Qn)y = iglUl('ﬁ) if veQp, and
o Up(Qn)y =15 'Up(v) if v € Q.

By corollary 2.4.3 we see that we have

Ty (V@) = T3 (Uo( @) = T2y (U = T (U

For v € Qn choose ¢5 € Gal (F3/F5) lifting Frob; and wy € FY with
¢5 = Art p_oy on the maximal abelian extension of Fj. Let

Py € T, (23 (U1(Qn))mlX]
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denote the characteristic polynomial of r,(¢3). By Hensel’s lemma we have a
unique factorisation

Py(X) = (X — A5)Q%(X)

over TZ:L{Jgf;(Ul(QN))ma where Ay lifts ay and Qz(A5) € Tf?ﬁg(Ul(QN))é By

lemmas 2.1.3 and 2.1.5 we see that P;(V,) =0 on Sg 5,3} (U1(@n), O)m. Set

Hy gy = ([] @5(Ve))Saip} (U1(Qn), O)m

veEQN
and
Hoon = ( [] Qo(Ve))Saton} (Uo(Qn), O
veEQN
e see that Hy isa 1(@n))-direct summand of S, 1(@n), D),
W hat H, o, Tﬁ% U (Qn))-d d of S, 1,3 (U1(Qn), O

and hence by lemma 2.3.1

tr Uo(@n)/0 @) © (H1,08 ) U0(@n)/01(@n) — Hoon-

Moreover for all v € Qn, Vo, = Ay on H; g,. By part 7 of proposition 2.4.2
we see that for each v € @y there is a character

Vi Y — TTYON (H )%
such that
o if € FX' N Opy then Vi(a) =V, on Hy g,, and
° rm\WF% =s® (V0Art }}) where s is unramified.
Thus ry, gives rise to a surjection
umr,lé)TQN - TTUQN(HQN)'
The composite

1 055 = Aay — (REG0)* — T (Hg, )
veEQN

is just [[,Vs. As Higq, is a direct summand of S, ,,1(U1(Qn),O) over
Tﬁgg((ﬁ(@m% lemma 2.3.1 now tells us that H, ¢, is a free O[Ag, ]-module
and that

(HLQN)AQN — Ho,Qy-
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Also lemma 2.2.2, combined with lemma 2.1.5, tells us that

(J] @(Vaw)) : Xmp — Hogy-

vEQN

Now we apply theorem 2.1 of [Dia] (as reformulated in the first paragraph
of this proof) to A = k[[Si,...,S.]], B = k[[X4,..., X,v]], R = R™V/\, H =

m,0

Xmp/A and Hy = Hi g, /A. We deduce that r =1/, that X9/ is free over
Ry’ /A via R /X — T/ and that R/ is a complete intersection. As
Xy is free over O we see that Xpg is also free over Ruy” via Ry — T

Thus R;“év = T is free over O and hence a complete intersection. The
equality r = 7’ tells us that pu, =n mod 2. O

Theorem 3.1.2 Keep the notation and assumptions of the start of this sec-
tion. Assume also that conjecture I is true for G and G'. Then

univ

m,R Tm,R
s an isomorphism of complete intersections.

Proof: As in section 2.5 we see that we have a commutative diagram

univ

mR Tm,R

! !
univ
m,(

2 Tay - O,

Let ¢r denote the composite Typ — Tmgp %, 0. Let cp(®) (resp. cgr(9))
be the ideals ¢(Annr,  ker¢) (resp. ¢r(Annt, , ker¢r)). Also let gy (resp.
r) denote the kernel of the composite Ryy” — Ty 25 O (resp. Rty —

Tor —2 O).
Because ;“é" = T is an isomorphism of complete intersections we see
from the main theorem of [Le] that

180 90/9 = 180 O/co(9)-
Hence by lemma 1.3.17 and proposition 2.5.5 we see that

120 R/ 9k B
< lgo 0/95 + 2 ver 180 HO(Gal (Fi5/ Fy), (ad 1) QT 0.6 K/O(e™))
< lgp O/cr(9).
Another application of the main theorem of [Le] tells us that Ry — Ty g is
an isomorphism of complete intersections. O
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4 Applications.

4.1 Some algebraic number theory.

We start with some elementary algebraic number theory. The first three lem-
mas are well known.

Lemma 4.1.1 Suppose that F' is a number field and that S is a finite set of
places of F'. Suppose also that

xs: [[Fr— Q"

vES

s a continuous character of finite order. Then there is a continuous character
X F\ALR — Q"
such that X]HUESEIX = Xs-

Proof: One may suppose that S contains all infinite places. Then we choose
an open subgroup U C (A%)* such that yg is trivial on U N F*. Then we can
extend xg to U], cq F) /(U N F*) by setting it to one on U. Finally we can
extend this character to Ay /F* (which contains U [[,.q F/(U N F*) as an
open subgroup). O

Lemma 4.1.2 Suppose that F is a number field, D/F is a finite Galois ex-
tension and S is a finite set of places of F. For v € S let E!/F, be a finite
Galois extension. Then we can find a finite, soluble Galois extension E/F
linearly disjoint from D such that for each v € S and each prime w of E above
v, the extension E,/F, is isomorphic to E! | F,.

Proof: For each D D D; D F with D;/F Galois with a simple Galois group,
choose a prime v; € S of F' which does not split completely in F. Add the
v; to S along with £, = F,,. Then we can drop the condition that E/F is
disjoint from D/F - it will be automatically satisfied.

Using induction on the maximum of the degrees [E! : F,] we may reduce
to the case that each E!/F, is cyclic. Then we can choose a continuous finite
order character

xs: [[F— Q"

vES
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such that ker ys|px corresponds (under local class field theory) to E,/F, for
all v € S. According to the previous lemma we can extend x to a continuous
character

X FP\AL — Q.

Let E/F correspond, under global class field theory, to ker y. O
Let F' be a number field. A character

X:AR/F* — C~
is called algebraic if for 7 € Hom (F, C) there exist m, € Z such that

Xl () = H T(z)™".

T€Hom (F,C)

A set of integers {m,} arises from some algebraic character if and only if there
is an integer d and a CM subfield £ C F' such that if 71|g = (72|g) o ¢ then
d = m,, + m,,. For this and the proof of the next lemma see [Se].

We will call a continuous character

x:Gal(F/F) — @lx
algebraic if it is de Rham at all places above .
Lemma 4.1.3 Let1:Q, = C. Let F be a number field. Let
X AR/F* —
be an algebraic character and for 7 € Hom (F,C) let m, € Z satisfy

Xl (rxy0 (@) = H T(z)""

7€Hom (F,C)
Then there is a continuous character
r1,(x) : Gal (F/F) — Q
with the following properties.

1. For every prime v Jl of F' we have

1,00 Gal (Fy/F,) — Xv© Art ;:Jl-
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2. Ifv|l is a prime of F' then r1,(X)|ga (7, /r,) 8 potentially semistable, and
if Xo 18 unramified then it is crystalline.

3. Ifv|l is a prime of F and if 7 : F — Q, lies above v then
dimg, gr’(r..(X) ®r.r, Bpr)“™ (Fo/Fu) —
unless i = m,, in which case
dimg, g (r1,(x) ®r.p, Bpr) /1) = 1.
Any continuous algebraic character ¢ : Gal (F/F) — Q, arises in this
way.

The character r,,(x) is explicitly x() o Art =" where x() : AR/F*(FX)? —
@lx is given by

Xw(x) = I[I ')y I[I 7™ | x@)
T€Hom (F,C) T€Hom (F,C)

Lemma 4.1.4 Let F' be an imaginary CM field with mazimal totally real sub-
field F*. Let S be a finite set of primes of F* which split in F. Let I be a set
of embeddings F — C such that I [] Ic is the set of all embeddings F — C.
For m € I let m, be an integer. Suppose that

X - A;ﬂr/(F—F)X — C*

is algebraic, unramified at S and such that x,(—1) is independent of v|oo.
Then there is an algebraic character

Yo AG/FX — T
which is unramified above S and satisfies

o NF/F+ =X©o° NF/F+
and

Ulpg = [ (erym

Tel

for some w.
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Proof: From the discussion before lemma 4.1.3 we have that

Xlrgyop = [T 7"

Tel

for some integer w. Choose an algebraic character
¢: AR /F* — C~
which is unramified above S and such that

A =[] 7 (erye .

Tel

Replacing x by x¢|;; we may suppose that x has finite order and that m, =0
F

for all T € I.

Let Us = [[,e5 Op, and Ug = [ cq Og. ,- 1t suffices to prove that

X|(NF/F+A;)0USFXF; =L

If v, € F* and z; € F and ~;x; tends to an element of A7, Ug, then ~f /v, €
FNrev=1 s o unit at all primes above S and tends to 1 in (A3™)*. As

Ny oy =1
0" T s the group of roots of unity in F' and hence is finite, we conclude

that for ¢ sufficiently large v¢/v; = 1, i.e. 7; € F*. Thus
(Np/ptAp) NUsFXFX = (Np/prAp) N Ud(FH)<(Fx)*.

We know that x is trivial on (Np/p+AjR) NUS(F+)*((F4)*)°.

Note that A}, /(Ng/pt Ap)(F+)*(F)* corresponds to the maximal quo-
tient of Gal(F/F7T) in which all complex conjugations are trivial. Hence
A%, = (Np/p+ AL)(FT)*(FL)” and we have an exact sequence

(0) = (Npype AR) VUG (EH) < (FL) ) [(Npype Ag) QUL (FH)*(F)*)°)
= (F) (Npype AR) JUG (FF)<((F) )" — ALy JUS(FF)(FL)*) — (0).

If M/F* denotes the maximal abelian extension unramified in S and if L/F*
denotes the maximal totally real abelian extension unramified in S, then by
class field theory this exact sequence corresponds to the exact sequence

(0) — Gal (M/LF) — Gal (M/F) — Gal(L/F*) — (0).

If v|oo write ¢, for a complex conjugation at v. As Gal (M/LF) is generated
by elements c,,c,, where v; and v, are infinite places we see that the im-
age of (Np/p+AL) N Ug (FF)(FE)*)/(Npyp+AR) N UG (F+)*((FE))°) in

118



(F) (NpyprAR) JUS(FH)*((FS)*)0 is generated by elements (—1),, (—1),,,
where vy and v, are two infinite places. Thus y will be trivial on (Np/p+ Af) N
Ud(F+)<(F£)* if and only if x,, (—1)X4,(—1) = 1 for all infinite places v; and
vy. The lemma follows. O

Lemma 4.1.5 Let F' be an imaginary CM field with mazimal totally real sub-
field F+. Let I be a set of embeddings F — Q, such that IT]I¢ is the set of
all such embeddings. Choose an integer m. for all T € I. Choose a finite set
S of primes of F* which split in F' and do not lie above l. Suppose that

x:Gal(F/F*) — Q/

s a continuous algebraic character which is unramified above S, crystalline at
all primes above | and for which x(c,) is independent of the infinite place v of
F*. (Here ¢, denotes complex conjugation at v.) Then there is a continuous
algebraic character

¢ :Gal(F/F) — Q,

which s unramified above S and crystalline above [, such that

VY = X|gal (F/F)»

and

gr ™ (Q, () ®rFyir) BDR)Gal (Fo(r)/Fo(r)) £ (0)
for all T € I. (Here v(T) is the place above | induced by T.)
Proof: This is the Galois theoretic analogue of the previous lemma. It
follows from lemmas 4.1.3 and 4.1.4. O

A slight variant on these lemmas is the following.

Lemma 4.1.6 Suppose that | > 2 is a rational prime. Let F' be an imaginary
CM field with mazimal totally real subfield F*. Let S be a finite set of finite
places of F' containing all primes above | and satisfying S¢ = S. Let

x:Gal(F/FT) — (96[
and B _ _
0:Gal(F/F) —TF,

be continuous characters with 00  equal to the reduction of Xlcal 7). For
veS, let

Y, : Gal (F,/F,) — (’)61
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be a continuous character lifting 0|q,, (Fo/Fy) Such that
(Vothpe) 1, = Xlip, -
Suppose also that if T: F — @l lies above v € S then
dlm@l gr " <¢v ®7’,Fu BDR)Gal (Fo/E) = 17

and that m; + Mo s independent of T.
Then there is a continuous character

0:Gal(F/F) — (’)6[

lifting @ and such that
00° = X|qal (F/F)
and, for allv € S,
Olrs, = ¥l1g,-

In particular 6 s algebraic.

_ Proof: Choose an algebraic character ¢ of Gal (F//F) such that if 7 : F —
Q, lies above v € S then

dlm@l gr mr (¢ ®T7F,u BDR)Gal (F’U/F’U) — 1

Replace v, by 1/JU¢]G ol (Fo /o) . 0 by 0¢~; and x by x@p ', where ¢y denotes ¢

composed with the transfer Gal (F/F*)*® — Gal (F/F)*. Then we see that
we may suppose that y has finite image and each ¢, |7, has finite image.

Using class field theory, think of x as a character of Ay, /(F*+)*((F%)*)%;
0 as a character of A}/FXF; and v, as a character of OF,. Let Us =

[LesOrns Ud = TlbesOpi,, and ¢ = Hves_@bv : Us — Q,. Note that
1/1\U§ = X|U;, that the reduction of x equals # on Np/p+Aj and that the

reduction of ¢ equals 6 on Usg.
We get a character

X' =X UsNiypi A/ (Us Nyee Ap) 0 (FF)*((F))%) — O

The reduction of ¥’ equals 6. As in the proof of lemma 4.1.4 we see that
US(NF/F+A;) NFXFYX = U;(NF/F+A;) N (FH)*(Fi)*.
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However

(U (NpypeAR) N (FF)(FE)) [ (UgNpype Af) 0 (FF)*((F5)<)°)
is a 2-group on which 6 vanishes. As [ > 2 we see that x’ also vanishes on this
group.
Extend X’ to a continuous character
X D AR/FAFE — Q)
and let ' denote its reduction. Then A(%')~" is a continuous character
A/ (Us(Npype AR)FXFE — T .
Lift it to a continuous character
X" A/ (Us(Npypr AR FFFY — Q.

Then 6 = x'x” will suffice. O

4.2 Some determinants.

Lemma 4.2.1 We have the following evaluations of determinants.

1. For an n X n determinant:

1500 0 0
1 0O ... 00
1 ¢ ¢ b 0 0
det , . | =(c—-bn"
1 c
1 ¢ ¢ ¢ c

b b b b b
b b ... b b
c c ab b b
det , ‘ | =(cla=b)"=bla—c)")/(c—Db).
a b
c a
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3. For an (n+1) x (n+ 1) determinant:

0 1 2 3 n—2 n-—1 2n —1
n 0 1 2 ... n—3 n-—2 2n—1
n+1 n 0 1 n—4 n-—3 2n—1

det : - :
2n—3 2n—4 2n—5 2n—=6 0 1 2n—1
2n—2 2n—3 2n—4 2n—-5 ... n 0 2n—1
2n—1 2n—-1 2n—-1 2n-—1 2n—1 2n—-1 2(2n-—1)

=(=D"Cn—-1)((n+ )"+ (n-1)")/2.

Proof: For the first part subtract the penultimate row from the last row,
then the three from last row from the penultimate row and so on finally sub-
tracting the first row from the second. One ends up with an upper triangular
matrix.

For the second matrix let A, denote the determinant. Subtract the first
row from each of the others and expand down the last column. Using the first
part, we obtain

a b b b b

c—a a—2>b 0 0 0

A= bla—c)" '+ (a—b)det | c—a c=b a—=b 0 0
c—a ¢c—b ¢c—b ¢c—b ... a—2b>

= bla—c)" '+ (a—b)A,-1.

The second assertion follows easilly by induction.

For the third matrix subtract the second row from the first, the third from
the second and so on, finally subtracting the penultimate row from the two
from last row. One obtains

—n 1 1 1 1 1 0
-1 -n 1 1 1 1 0
-1 -1 -n 1 1 1 0
det : - :
-1 —1 -1 -1 —n 1 0
2n—2 2n—-3 2n—4 2n-5 ... n 0 2n —1
2n—1 2n—1 2n—1 2n-—1 2n—1 2n—1 2(2n-—1)

Then add half the sum of the first n — 1 rows to the penultimate row making
it
n—1n—-1n-1n-1 ... n—1 (n—1)/2 2n—1.
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Now subtract 1/2 of the last column from each of the first n columns. This
leaves the first n — 1 rows unchanged and the last two rows become

~1/2 —1/2 —1/2 —1/2 ... =1/2 —n/2 2n—2
0 0 0 0 ... 0 0 202n-—1).

Thus the determinant becomes

-n 1 1 1 1 1
-1 —, 1 1 ... 1 1
-1 -1 —n 1 1 1
(2n — 1) det ) ,
-1 -1 -1 -1 -n 1
-1 -1 -1 -1 ... =1 —n

The result follows on applying the second part. O

4.3 CM fields 1.

Let F be a CM field. By a RACSDC (regular, algebraic, conjugate self dual,
cuspidal) automorphic representation 7 of GL,(Ar) we mean a cuspidal au-
tomorphic representation such that

Vo~

o ¢, and

e 7., has the same infinitessimal character as some irreducible algebraic
representation of the restriction of scalars from F' to Q of GL,,.

Let a € (Z7)Hom (O satisfy

® a1 > ..> ary,, and

® Urei = —Qrntl—i-

Let =, denote the irreducible algebraic representation of GLI™ O which
is the tensor product over 7 of the irreducible representations of GL, with
highest weights a,.. We will say that a RACSDC automorphic representation
7 of GL,(AF) has weight a if 7, has the same infinitessimal character as E.

Let S be a finite set of finite places of F'. For v € S let p, be an irreducible
square integrable representation of GL,(F,). We will say that a RACSDC
automorphic representation 7 of GL,,(Ar) has type {p,}ies if for each v € S,
T, is an unramified twist of p.’.

The following is a restatement of theorem VII.1.9 of [HT].
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Proposition 4.3.1 Let 1 : Q, = C. Let F be an imaginary CM field, S a
finite non-empty set of finite places of F' and, forv € S, p, a square integrable
representation of GL,(F,). Let a € (Z")1°™(FC) be as above. Suppose that ©
is a RACSDC automorphic representation of GL,(Ar) of weight a and type
{pv}ves. Then there is a continuous semisimple representation

r,(m) : Gal (F/F) — GL,(Q,)
with the following properties.

1. For every prime v Jl of F' we have
Ss _ —1 \Y Ss
TZJ(WNGal(E/Fv) =r(m) (1 —n)™.

2. 1 (m)e =y, (m)Vel T

8. Ifv|l is a prime of F' then ry,(7)|ga 7, /5, 8 potentially semistable, and
if ™, is unramified then it is crystalline.

4. If v|l is a prime of F and if 7 : F — Q, lies above v then

dimg, gr ' (r1,(7) ®nr.p, Bpg) %! (Fo/Fo) _

unless i = a,rj +n — j for some j =1,...,n in which case
dimg;, g1 (ry,(7) @r.p, Bpg) M Fv/F) = 1.

Proof: We can take r,,(7) = Ry/(7")(1 — n) in the notation of [HT]. Note
that the definition of highest weight we use here differs from that in [HT].
O

The representation r;,(m) can be taken to be valued in GL,,(O) where O
is the ring of integers of some finite extension of ;. Thus we can reduce
it modulo the maximal ideal of O and semisimplify to obtain a continuous
semisimple representation

T1.(m) : Gal (F/F) — GL,(TF))

which is independent of the choices made. Note that if r;,(7) (resp. 7,(7)) is
irreducible it extends to a continuous homomorphism

r(m) : Gal (F/F) — G.(Q)
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(resp. _ _
T.(m) : Gal (F/F') — G, (F))).

We will call a continuous semisimple representation
r:Gal(F/F) — GL,(Q)

(resp. _ —
7:Gal(F/F) — GL,(IF))

automorphic of weight a and type {py}ves if it equals r;, () (resp. 7;,(m)) for
some 2 : Q; = C and some RACSDC automorphic form 7 of weight a and type
{pv}tves (resp. and with m; unramified). We will say that r is automorphic
of weight a and type {p,}ves and level prime to [ if it equals r;,(7) for some
1 : Q = C and some RACSDC automorphic form 7 of weight a and type
{pv}ves with m unramified.

The following lemma is well known.

Lemma 4.3.2 Suppose that E/F is a soluble Galois extension of CM fields.
Suppose that - B
r:Gal(F/F) — GL,(Q)

is a continuous semisimple representation and that |, # ) is irreducible and
automorphic of weight a and type {p,}ves. Let Sg denote the set of places of
F under an element of S. Then we have the following.

1. a; = ap if T|p = 7'|p so we can define ap by ap, = az for any extension
oofotoFE.

2. r is automorphic over F' of weight ar and type {p) }ves, for some square
integrable representations pl,.

Proof: Inductively we may reduce to the case that E/F is cyclic of prime
order. Suppose that Gal (E/F) = (o) and that r = r,(7), for 7 a RACSDC
automorphic representation of GL,(Ag) of weight a and level {p,},cs. Then
"o F/m) = 7|Gal (F/E) SO that 7 = m. By theorem 4.2 of [AC] 7 descends
to a RACSDC automorphic representation 7p of GL,(Ar). As r and r,,(7F)
are irreducible and have the same restriction to Gal (F/E) we see that r =
T (7F) @ x = 11, (mF ® (x 0 Art g)) for some character x of Gal (E/F). The
lemma follows. O
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Lemma 4.3.3 Let F'* be a totally real field of even degree and E an imaginary
quadratic field such that F = FTE/F* is unramified at all finite primes. Let
n € Zsy and let | > n be a prime which splits in E. Let 1 : Q, = C and let
Sy denote the set of primes of F above l. Let w be a RACSDC automorphic
representation of GL,(Ar) of weight a and type {p,}res where S is a finite
non-empty set of primes split over F*. Assume that 4|#(S U S¢). Suppose
that m, is unramified if v is not split over F* or if v|l. Let R be a finite set of
primes of F' such that if v € R then

e v g SUSUS,

v 4s split over F'T,
e Nv =1mod/,

() #(0).

Let Sy be a non-empty finite set of primes of F' such that S; = S{ and S; N
(RUSUS) =0.

Then there is a RACSDC automorphic representation @' of GL,(Ap) of
weight a and type {p, tves with the following properties:

L4 Fl,z(ﬂ-) = Fl,2<ﬂ-/);
o if v &Sy and m, is unramified then 7. unramified;
e ifvin R then ri(w))V(1 —n)(Ig,) is finite.

Proof: Let S(B) denote the set of primes of F* below an element of S.
Choose B and I as at the start of section 2.3. These define an algebraic group
G. Consider open campact subgroups U = [[, U, of G(A%,) where

e if v is inert in F, then U, is a hyperspecial maximal compact subgroup
of G(F,);

e if v is split in F' and v lies below S then U, = G(Op+ ,);

e if v does not lie below R U Sy, if v is split in F' and if 7, is unramified
then U, = G(Op+,);

e if v lies below R and if w is a prime of I above v then U, = i 'Tw(w);

e if v lies below S; then U, conatins only one element of finite order,
namely 1.
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The lemma now follows from lemma 2.1.6, proposition 2.3.2 and lemma 2.4.4.
O

Theorem 4.3.4 Let F' be an imaginary CM field and let F™ denote its maz-
imal totally real subfield. Let n € Zsy and let | > n be a prime which s
unramified in F. Let

r:Gal(F/F) — GL,(Q)

be a continuous irreducible representation with the following properties. Let
T denote the semisimplification of the reduction of v and let r' denote the
extension of r to a continuous homomorphism Gal (F/FT) — G,(Q,).

1. re Vel
2. r is unramified at all but finitely many primes.
8. For all places v|l of F, 7| F,/r,) i crystalline.
4. There is an element a € (Z")HomEQ) sych that
e for all T € Hom (F,Q;) we have
l-1-n>a1>..>0a;,>0

or
l_l_nzaTc,l 2 Zaan 207

e for allT € Hom (F,Q)) and alli=1,...,n
Qrei = —Qrnt1—i;
e for all T € Hom (F,Q,) above a prime v|l of F,
dimg, gr'(r ®,,p, Bpr)®™ (Fo/Fo) =

unless t = a,j +n —j for some j =1,...,n in which case

dimg, gr(r @, Bpr) " "/ = 1.
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5. There is a non-empty finite set S of places of F' not dividing I and for
each v € S a square integrable representation p, of GL,(F,) over Q
such that

T|S(§al (Fu/Fy) = Tl(pv)v(l — n)SS.
If py = Sp,,, (pl,) then set

Fo = ()] im0,
Note that r|g. F,/r,) has a unique filtration Fil? such that

gf{ﬂ"’cal (Fu/Fy) = 7€
or 7 =0,...,m, — 1 and equals (0) otherwise. We assume that 7, has
J .
irreducible reduction T, Then 7|y 7, /r,) inherits a filtration Fil? with
T ot (7 ) == T
for j=0,...,m, — 1. Finally we suppose that for j =1, ..., m, we have
Ty Z Ty

—keradT

6. Assume that F does not contain F(().
7. Assume that ad7Gal (F/F*(()) is big in the sense of section 1.4.

8. Assume that the representationT 1s irreducible and automorphic of weight
a and type {py foes with S # 0.

Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)
Then r is automorphic of weight a and type {p, }ves and level prime to 1.

Proof: Suppose that 7 = 7, (), where 7 is a RACSDC automorphic repre-
sentation of GL,(Ar) of weight a and type {p,}ves. Let S; denote the primes
of ' above [. Let R denote the primes of F' outside S°U .S U.S; at which r or

: : —kerad T . .
7 is ramified. Because ' does not contain F({;), we can choose a prime
vy of F' with the following properties

e v g RUSUSUS®,

e v, is unramified over a rational prime p for which [F((,) : F] > n,
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vy does not split completely in F((;),
ad 7(Frob,,) = 1.

Choose a CM field L/F with the following properties

L = L*E with E an imaginary quadratic field and L™ totally real.
[LT: F] is even.

L/F is Galois and soluble.

L is linearly disjoint from erﬁ(cl) over F.

L/L* is everywhere unramified.

[ splits in F and is unramified in L.

vy splits completely in L/F and in L/L*.

All primes in S split completely in L/F and in L/L".

Let 7, denote the base change of w to L. If v is a prime of L not lying
above S U S¢ then 7" ") £ (0).

If v is a place of L above R then Nv = 1 mod I.

Let S(L) (resp. S;(L)) denote the set of places of L above S (resp. [). Let
ay, € (Z")Hom (L) be defined by az . = a,|,. By theorem 4.2 of [AC] we know
that 7|q, 7,1 is automorphic of weight ar and type {p,|, bves(z). (The base
change must be cuspidal as it is square integrable at finite places in S.) By
lemma 4.3.3 there is a RACSDC automorphic representation 7’ of GL, (Ay)
of weight ar, and type {pu|, fves(r) such that

Tlga 7/ = T12(7"), and

r1,(7") is finitely ramified at all primes outside S(L) U S(L)* U Si(L).

Choose a CM field M/L with the following properties.

M/ L is Galois and soluble.

M is linearly disjoint from Fk‘”(g) over L.

{ is unramified in M.
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e v; splits completely in M/F.
e All primes in S split completely in M /L.

e Let 7, denote the base change of 7’ to M. If v is a prime of M not
lying above S U S¢ then 7, is unramified.

Let S(M) denote the set of places of M above S. Let ay; € (Z7)Hem(MQ) he
defined by ap- = a-,. Let S(M™) denote the set of places of M* below an
element of S(M). Then #S(M™) is even and every element of S(M ™) splits in
M. Choose a division algebra B/M and an involution I of B as at the start of
section 2.3, with S(B) = S(M™). Let R(M™) denote the set of primes of M
above the restriction to F* of a prime of R. Let S;(M*) denote the primes
of M* above [ and let S;(M™) denote the primes of M™ above vy|p+. Let
T(MT)=SMTYUS(MT)URMT)US (MT). It follows from proposition
2.3.2 and theorem 3.1.2 that |, /) is automorphic of weight ayr and type
{pviF}vesn. The theorem now follows from lemma 4.3.2. O

4.4 CM Fields II

In this section we will consider the following situation.

e M/Q is a Galois imaginary CM field of degree n with Gal (M/Q) cyclic
generated by an element 7.

[>1+(n=1)((n+2)"2—(n—2)"?)/2"" (e.g. I > 8((n+2)/4)"/?)
is a prime which splits completely in M and is = 1 mod n.

e p is a rational prime which is inert and unramified in M.

@ 1 is a finite set of rational primes, such that if ¢ € @ then ¢ splits
completely in M and ¢¢ # 1 mod [ fori=1,....n — 1.

0: Gal (Q/M) — T, is a continuous character such that

o eec _ El—n;

— there exists a prime w|l of M such that for i = 0,....,n/2 — 1 we
have 6

— if vy, ..., v, are the primes of M above ¢ € @ then {#(Frob,,)} =
{agq7: j=0,..,n—1} for some o, € F, ;

—1.

I, =€ 7

— _Tj .
= Oleaqr,m,) 79 lcaar, ) forj=1,...,n—1.
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Let S(6) denote the set of rational primes above which M or @ is ramified.

e £/Q is an imaginary quadratic field linearly disjoint from the Galois

closure of Mkere((‘l) /Q in which every element of S(6) UQ U {l,p} splits;

and whose class number is not divisible by (.

Set L/Q equal to the composite of E with the Galois closure of Mker(’(g) /Q.
Also let (EM)* denote the maximal totally real subfield of ZM. Then 6
extends to a homomorphism, which we will also denote 6,

0:Gal(L/(EM)') — Gi(F))

such that 6(c) = (1,1,7) and v o = ™. Let 7 : Gal(L/Q) — G,(F))
denote the induction with multiplier €'~ from (Gal (L/(EM)*), Gal (L/EM))
to (Gal (L/Q),Gal (L/E)) of 6.
We have an embedding
Gal (L/EM) — (F,)"? x Fy
a — (0(a),0 (a),..0  (a)ie(a)).
fix a primitive n'* root of unity ¢, € F;. Suppose o = (g, .oy Oja—1) €

(FlX)n/Q? 52 = Op...0p/21. If n/2 <i1<n—1set o = CY;_ln/T Let Faﬁ =

I' denote the group generated by (F, )™/2 x F/ and two elements C' and T'
satisfying

e (?=1land T" =1,

® CYjﬂlcvjj_1 = (CK[), vy Q213 1),

° T(CLo, ...,an/g,l;b)T_l = (al, ...,an/g,l,bl_"aal;b);

e and C(ag, ..., an/2-1;0)C = (b'"ag?, ...,blfnag/lz_l; b).

Define characters = : I' — F; by
(T> = Cny
(C> = _17

[1]

[1]

[ ]
e and =(ag, ..., an/2-1;b) = b;

and O : ((F, x FX,CT"?) — T, such that
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L] @(ao, ceuy an/g_l; b) = Qo,
e and O(CT™?) = 3.
Note that

e O(CTCT™) =

ag...;_1 (because (CTCT HT(CT'CT-H)T™' =
CTHCT-HD) and

o O(T'CT™?*T7%) = Blag...a;_1)" " (because (CT'CT )T (CTY*)T~" =
cTm/?).

Let Ty = ', 50 denote the subgroup generated by ((F;)*)®"/2+! and by C
and T, where k,, = (n — 1)((n + 2)"/2 + (n — 2)"/2) /2" +1,

Lemma 4.4.1 There exist a and 3 such that the embedding
Gal (L/EM) — (F,)"? x F}

extends to an embedding
j:Gal(L/Q) — T

satisfying
e Zo0j=c¢;
e Ooj=0;
e the image of j contains I'y;
e some complex conjugation maps to C;

o and some lifting T € Gal (L/E) of the generator T of Gal (EM/E) =
Gal (M/Q) maps to T

If such an embedding exists for some « it also exists for any element of
ol (Fy 2em)enr2.

Proof: Note that EM and Q((;) are linearly disjoint over Q. Thus we
may choose a lifting 7 € Gal (L/E) of the generator 7 of Gal (EM/E) =
Gal (M/Q) with €(7) = ¢,. Also choose a complex conjugation ¢ € Gal (Q/Q).
Then e(c7/?) = 1 and so

(") = g(cgc?”/2)c(c?”/2))

I
o
>
>
S~—
—

Q
N
S
~
[N}
SN—
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Also note that e(cFer~!) = 1. Setting a; = 8 (cFe~!) we get a homomor-
phism
j:Gal(L/Q) —T

extending the embedding Gal (L/EM) — (F,)"/% x F ; and which sends T to
T and c to C'. We have = o j = ¢. Note that

- - - =T, ~ ~ —n/2=1
9(0?"/2)2 = 9(0?”/20?_”/2) = 0(cter N0 (cter™h)..0 (cter™ 1),

and so for some choice of 3 we have © o j = 6.

Choose a place u of E above [. Let A denote the subgroup of the image

of Ind &2 E/E)
Gal (E/EM
place of EM above u. For any integer ¢ define (3; to be

)5 generated by the decomposition groups above u. Let w be a

e —ipifi=iymodn and 0 <ig <n/2-—1, and
e ig+1—3n/2if i =iy modn and n/2 <iz <n—1.

Note that 3; + Biyn/2 = 1 —n. We have

n—1 n—1
[T, — TIF —a— @)
i=0 i=0
The composite map sends
n—1 n—1 n—1 5 n—1
(a)i— ([ [T ILa " (] e)™™).
i=0 i=0 i=0 i=0

Moreover by lemma 4.2.1 we see that the image has index dividing ,. Thus
the image of j contains I'y.
Finally note that

((ags s Gpyo—1; 1)T)" =1
and
Clag, ..., anjo-1; 1)TC((ao, ..., Gnja—1; Nt = (aoaaz, s an/g,la;/z%l; 1).
O

There is a homomorphism

8 : (F)"* x F,C) — Gi(F))
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extending @|(EX)"/2><FZX and with vo© = Z1-". It takes C to (1,1,7). Consider

I, the induction of © from (((F,)™/2 x F*,C), (F, )"/? x F}) to (I, ((F, )"/? x
F;, T)) with multiplier Z'=". Then I has a basis consisting of functions e; for
i =0,..,n—1 with ¢(77) = §;; for j = 0,....,n — 1. Let fo,..., fu_1 be the
dual basis of IV. TIf (ag, ..., an/2-1;b) € (F; )2 x F) set a; = bl_”ai__ln/2 for
i=n/2,...,n— 1. Then we have

o Te,=e; 1 (withe_; =e,1);

o (ag,...,an/2-1;b)e; = ae; for i = 0,...,n — 1;

o T'fi= fi;

e and (ag, ..., anja-1;0)fi = a; ' f; for i = 0,...,n — 1.

Moreover
<6i7 €j> = C;Lao---ai—l(;ij-

We have 7 =1 o j.
Then I' acts on ad I via

o T'e; ® fj =ei1® fi—1;

o (ag,....,an/o-1;0)e; @ f; = aifae; @ fj;

o Ue;® f; = —Cf;*jozj...ai_lej R f;if0<j<i<n—1;

e and Ce; @ fj = —C 9 (yoej1) e, @ f;if0<i < j<n-—1.
Hence if 0 <i < j <n/2—1 then

o CT"?%e; ® fi= _sz_jai...aj_leﬂn/z ® fitn/2;

° CTn/2€j+n/2 ® fisnjz = —C 16 @ fj;

o CT"/2€j Q fi = —Cg_ia;l...a;_llei—i—n/Q ® f+n/2;

° CT"/2€i+n/2 ® fitns2 = _Cvi_jafl"'a;—llej ® fi

o CT"?¢;® fiinsn = Clag" i 002165 @ fimya;
o CT"?¢; ® firnsz = () 'ag 0102160 @ finyo;
o CT" ety ® fj = Cffjao---Oéi—laj_lma;/lQ—ﬁjJrN/? ® fi;
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e and CTn/2€j+n/2 &® fz = C%_iOéo...ai_lagl...a;/l2_1€i+n/2 X fj'

For j=1,...n/2 — 1 let V[/jlL denote the span of the vectors

e @ fiy; F CEjen/2+z’+j ® frjoti

fori =0,...,n—1 (and where we consider the subscripts modulo n). Then V[/jlL
is a ['-invariant subspace of ad I. The space VV]-Jr is isomorphic to the induction

from (T, )2 x FX,CT"?) to T of ©/6T". The space W, is isomorphic to
the induction from ((F, )2 x FX,CT™?) to T of ©/0" times the order two
character with kernel (F, )"/2 x F.

If y is a character of T'/((F,)™2 x F}) with x(C) = —1 let W, denote the
span of

0@ fo+ x(T)er ® fr+ .. + X(T)" en 1 ® fri.

Then W, is an I' invariant subspace of ad I on which I' acts via .
Let W, /2 denote the span of the vectors e; ® fin o for i =0,...,n—1 (with
the subscripts taken modulo n). Then W, /2 is a I'-invariant subspace of ad I

isomorphic to the induction from ((F, )"/2 x FX, CT™?) to T of ©/6T"". We

have
n/2—1 n/2—1

adl =W,pe (W) e (P whHe (P w,).

X
Lemma 4.4.2 The restrictions to ['5=! of the 2n — 1 representations W2,
I/VjjE (forj=1,...,n/2—1) and W, are all irreducible, non-trivial and pairwise
non-isomorphic.
Proof: 1t suffices to show the following:
o If 1 < j <n/2then © #£ 6T on ((F,)r)®"/2 x {1}.
e If1<jj/<n/2and 0 <k <n—1then
o/0T + e /T
on ((F,)")®™/2 x {1} unless j = j/ and k = 0.

These facts are easily checked because (I —1)/k, > 4. O
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Lemma 4.4.3 Keep the notation and assumptions listed at the start of this
section. There is a continuous homomorphism

r:Go — G.(0g,)
such that
o 1 liftsT;

n.
)

e vor=¢"
e 1 is ramified at only finitely many primes, all of which split in E;
o for all places v|l of E, r|ga &, /5, i crystalline;
e for all T € Hom (E,Q,) above a prime v|l of E;
dimg, gt (r ®,.5, Bpr)®™ (Bo/Bv) — 1
fori=20,....n—1 and = 0 otherwise;

e for any place v of E above a rational prime q € @, the restriction

e B 5 unramified and r[3; | (EU/EU)(FrOb”) has eigenvalues {aq™ :

j=0,....n—1} for some o € Q.

Proof: Consider the following deformation problem &; for 7. We take S; o =
Qand S, =QUSO)U {l}. Let S denote a choice of one prime of E above
each prime of S;. For v € S; we define D, and L, as follows.

e If v|l the choice of D, and L, is described in subsection 1.3.2.
e If v|g € Q then (D,, L,) is as in example 1.3.5 with m =n and 75 = 1.
e If v|r € S(0) then (D,, L,) is as in example 1.3.4.
Also set Wo = @, Wy, C adT and dg/q : Gg — Gal(E/Q) = {+1}.
Then H}. (Gg,s,, W) is the kernel of

H'(Go, Wo) — @D H'(Ig,, Wo) oD (H' (Ig,, Wa,,0 )& @) H'(Gg,, Wy)).
vgQ veEQR X#0E/Q
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(See the definition of L, for v|qg € @ given in sectiuon 1.3.5 at the start of the
second paragraph after lemma 1.3.14.) Because [ does not divide the order of
the class group of E we see that

ker <H1(GQ,W5E/Q) — @HI(IQU,W@/Q)> = (0).

On the other hand if x # g/ then

ker (Hl GQ7 —>®H1 [vi X)@@H1<GQWWX>>

vEQ VEQR

is contained in Hom (Clg(EM), k), where Clg(EM ) denotes the quotient of the
class group of EM by the subgroup generated by the classes of primes above
elements of (. Because the maximal elementary [ extension of £M unramified
everywhere is linearly disjoint from L over M, the Cebotarev density theorem
implies that we can enlarge ) so that Hom (Clg(EM), k) = (0). Make such
an enlargement. Then Hj (Gg.s,, Wy) = (0).

Moreover H}:%(GQ, Wi, (1)) is the kernel of

H' (G, Wi, o (1)) = H' (Gg,, Wiy, o (1)/H (Gg, /Ty, W, )= & @D H' (Ig,, Wo).
v#£l

From theorem 2.19 of [DDT] we deduce that
#H[I:f- (GQSU W5E/Q(1)) = #Hllll (G@,SN W5E/Q> =1,

i.e. HZIL (GQ,SU W(;E/Q(l)) = (O)

Now consider a second deformation problem S, for 7. We take Sy = @
and S = QU S ( ) U {l} U Q', where Q' will be a set of primes disjoint from
Sy such that if ¢ € @' then

j(Froby) = T(ao(q'), .., ans2-1(q'); b(q"))

with b(¢')" =1 and ¢,b(q’) # 1. Thus the eigenvalues of 7(Frob,) are the n'"
roots of b(¢')? each with multiplicity 1, and €(Frob,) # 1. Set aiyn/2(q') =
b(¢) "a;(¢))" for i = 0,...,n/2 — 1. Let Sy O S; denote a choice of one
prime of E above each prime of S;. For v € §1 we define D, and L, as
before. For v € Sy above @' choose an unramified character , of Gg, with
X, (Frob,)” = b(¢')"/?, and let D, and L, be as in example 1.3.7 with ¥ = X,,.
Let m, (resp. i,, resp. m,, resp. i,) denote the projection onto the ¥, (Frob,)
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(resp. inclusion of the Y, (Frob,), resp. projection onto the b(q')(, X, (Frob,),
resp. inclusion of the b(¢")(,x, (Frob,)) eigenspace of Frob, in 7. Then i/ m, is
in the k-span of

n—1

> 0@ X (Frob,) T (a(q)...ai(d)) " ar(d)-a;(d )ei .

1,j=0

Thus i,m, € Wy and so H} (Gq,s,, Wo) C H} (Gg,s,, Wo) = (0).
On the other hand i 7] — i,m, is in the k-linear span of

n—1
D (((@)6n) ™ = DX (Froby) 7 (ax(q))...ai(q) " ar(q)...a;(q )e; & f;
i,j=0
and so i\ w! — i,m, & Wy (because b(¢')(, # 1). Thus
H}:QL(GQSQ,WO(U) = ker (H}:%(G@ﬁl,wou)) — @ Hl(GQq,/JQq,,k)) :

q/ GQI

where the map onto the factor H 1(GQq, /Iy, k) is induced by A — m,Ai;, for
v € Sy with v|q, i.e. by

n—1 n—1
Z rie; @ fi — Z xi(b(q/)Cn)i-
i=0 i=0

If [¢] € H}, (Gg,s,, Wo(1)) then the extension Py of EM cut out by ¢
1

is nontrivial and [-power order and hence linearly disjoint from L over EM.
Because HE%(G@,SU Wig,o(1)) = (0) we see that ¢(Gal (Py/EM)) & Wi, (1).

Thus we can choose b # (! so that

n—1 n—1
Z Tie; @ fi Z 2i(bG)’
=0 =0

is not identically zero on ¢(Gal(P,/EM)). Then choose ag,...,an/2-1 € F,
and o € Gal (LP,/Q) such that j(o) = T(aq, ..., Gy/2—1; b) and, if

n—1

¢(o) = Z¢i(0)ei ® fi

=0



then

[y

n—

(bn)' () # 0.

)

Il
o

Let ¢ ¢ S; be a rational prime unramified in LP, with Frob, = o
Gal (LP,/Q). Then if ¢ € Q' and b(¢) = b then [¢] & H}.,(Gq,s,, Wo(1)).
Thus we can choose @' and the b(¢’) for ¢ € Q' such that

H}, (Ga.s,, Wo(1)) = (0).

Make such a choice.

Finally we will apply theorem 1.4.6 with W; = W}, to complete the proof
of the lemma. In the notation of theorem 1.4.6, given W and W', each equal
to W, /2 or some Wji, we will show that the conditions of theorem 1.4.6 can be
verified with o a lift of T'(ao, ..., an/2—1; b) € Ty for a suitable aq, ey Gy ya—1, b.
We shall suppose that b™ = 1 but that b # ¢!, so that €(c)" = 1 but (o) # 1.
Fori=0,...,n/2 — 1 write G;4,/2 = b'="a;!. There is a decomposition

= P V.
Hn:bn/Q

into o-eigenspaces, where o acts on V), as u and where V,, is the span of

1 1

-1 n—1_— -
ey + pa; e+ ...+ p ay..a,” 1601,

Let i, denote the inclusion V,, < 7 and let 7, denote the o-equivariant pro-
jection 7 — V), so that m,i, = Idy,. Note that

n—1

® ()T = Dy @1-aj(ar..a;) T T e(o) e, ® f; & Wy

o and Gye(o)Tpe(o) — 1Ty = ZZLJ_:IO ay...aj(ay...a;) I (e(o) T = 1) & W,
Moreover

L Wﬂ(ei b2y fi+n/2)iue(0) = G(U)i—i_n/zﬂn/z(ai—kl---ai+n/2>_1;

o Tu(€i ® firj F Clenarini @ fujori)ineto) = (Qisr.aivy) " le(0)™ (1 =
0% (1))

b 7T/Js((f)(ei ® fi+n/2)iue(0) - ﬂ-#(ei ® fi—l—n/?)iu = (6(‘7>n/2 - 1)/~Ln/2
(Qig1--Qigny2) ™"

e and Me(o) (€@ fir i FC 7 enj2tini® fuj2+i)ine(o) —Tu(€i® fir s F (i €njotin;®
fojori)ip = (1% (Gup) ™) (e(0) — 1) (azgr-.aipg) "
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Let (3 (resp. ) denote a primitive (n/2)" (resp. (2n)") root of 1. Then we

have:

e In the cases W, W' € {W, o, W ,... W

2 () taking b = p = 1 will

satisfy the conditions of theorem 1.4.6.

o In the cases W, W' € {W, o, W/, .. W;/Q |} taking b =1 and pu = ¢!

will satisfy the conditions of theorem 1.4.6.

o If W, W' e {WF, ... n/2 L} taking b = (6 and p = ¢, 'y will satisfy

O

the conditions of theorem 1.4.6.

Theorem 4.4.4 Keep the notation and assumptions listed at the start of this
section. Let F'/Fy be a Galois extension of imaginary CM fields with F lin-

early disjoint from the normal closure of Mkerg((l) over Q. Assume that [ is
unramified in F' and that there is a prime v,o of Fy split above p. Let

r:Gal(F/F) — GL,(Q)

be a continuous irreducible representation with the following properties. Let 7
denote the semisimplification of the reduction of r.

1.

~ Gal (F/F)
= Ind Gal (F/FM)9|Ga1 (F/FM)*

=3

cn~ .V, 1-n

re

<

r ramifies at only finitely many primes.

For all places v|l of F, 7|ga F,/r,) @ crystalline.

For all 7 € Hom (F,Q,) above a prime v|l of F,
dimg, gr “(r ®r.p, Bpr)®™ (Fuo/Fs) — 1

fori=0,...,n—1 and = 0 otherwise.

There is a place v, of F above a rational prime q € @ such that

(#k(vg))) # 1 mod 1 for j =1,...n, and such that r[%_ A (Fay o) 05 0T

ramified, and such that 7“|S§a1@ /F )(Frobvq) has eigenvalues
vq/ " Vg

{a(#k(v) : j=0,..,n—1} for some a € Q; .
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Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then r is automorphic over F' of weight 0 and type {Sp (1)} v,y and level
prime to [.

Proof: Replacing F' by EF if necessary we may suppose that F' D E (see
lemma 4.3.2).
Choose a continuous character

0:Gal(M/M) — oz,
such that
o 0 lifts 0;
o 071 = enlge,
o fori=0,..,n/2 -1 we have 0], = e~ % and

o [ [#0(1,) for all places v|p of M.

(See lemma 4.1.6.) We can extend 0|, 5, par) to a continuous homomorphism
0 :Gal(E/(EM)") — G1(Og,)

with v 06 = el=". We will let 8 also denote the reduction
0:Gal(E/(EM)Y) — G (TF))

of §. Consider the pairs Gal (E/(EM)*) D Gal (E/(EM)) and Gal (E/Q) D
Gal (E/E). Set

o =TInd (A ZI0 0 Gal (B/Q) — Ga(Og,).

Gal(E/(EM)+

Note also that

Gal(B/Q) o

7“0|Ga1(E/E) = ((IHdG 1(B/M) )|Ga1 (E/E)> € 1_n)-

By lemma 4.4.3 there is a continuous homomorphism
r: Gal(E/Q) — G.(0g,)

with the following properties.

141



Gal (E/Q),e! ™ 7
o 1y lifts IndG | E/(EM)+)6

e vor; =el™,

e For all places w|l of E, r1|q. &, /5, 15 crystalline.

e For all 7 € Hom (E, Q) corresponding to prime w|l,

dlm@l gI‘i<T1 ®7—7E'w .BDR)GaL1 (Ew/Ew) =1

for i =0,...,n — 1 and = 0 otherwise.

is unramified and r|*

Gal (o, | qu)(Frobvﬂ ) has eigenvalues

"Gl By )
{ag™: j=0,...,n— 1} for some a € @lx

Gal (Q,/Qp)

® 71|ca (B, /Byy) 15 A1 unramified twist of Ind , | @ Mp)OlGal @,/M,):

Let v, be a prime of F' above v, and let i C F' denote the fixed field of
the decomposition group of v, in Gal (F/Fp). Thus v,|p is split over p and
F/F is soluble.

The restriction 7o|g, 7,/r,) 18 automorphic of weight 0 and type {p,} (v, /x )
and level prime to [, for a suitable cuspidal representation p, (by theorem 4.2 of
[AC]). We will apply theorem 4.3.4 to deduce that 71|q, F,/r,) is automorphic
of weight 0 and type {pp}{u,| # } and level prime to [. We need only check that
T1(Gp+(q)) is big (see section 1.4). This follows from lemmas 4.4.1 and 4.4.2,
the fact that [ f#7(Gg) and the following calculations.

o Take ap € (F))™ with a3 # 1 and take o0 € Gp(,) with j(o) =
(agp,1,...,1;1) € Ag. Then

T a0 Wilo,ae 7 (0).

o Take (ag,...,an2-1) € (F)®2 and o € Gpy) with jlo) =
T(ag, ..., anj2-1;¢, ). Also take p to be the product of ¢, with a prim-
itive (2n)™ root of 1. Set @;yn/2 = ¢, 'a; for i =0,...,n/2 — 1. Then

Tou€i @ fitnj2lon = Mn/2(ai+1---ai+n/2)_1
and
Tou(€i @ fiv; F gjen/2+z‘+j ® frjoti)iop = (1F (MCn)_Qj)Mj(aiH---az‘+j)_1
Thus 75, W /206, 7# (0) and WU,MI/VJ#EZ'J,N # (0).
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It follows from corollary VIL1.11 of [HT] that 71|, F#/r,) 18 also automor-
phic of weight 0 and type {Sp,,(1)}{s,r} and level prime to . (The only
tempered representations 7 of G Ly, (F1 |, ) for which r;(7)Y(1 —n)® unram-
ified and r,(7)"(1 — n)*(Frob,,,, ) has eigenvalues of the form {aq™ : j =
0,...,m — 1} are unramified twists of Sp,,(1).) From theorem 4.2 of [AC] we
deduce that ri[q, F,r) is automorphic of weight 0 and type {Sp,,(1)},) and
level prime to [. (The base change must be cuspidal as it is square integrable
at one place.)

Finally we again apply theorem 4.3.4 to deduce that r is automorphic of
weight 0 and type {pp} 1,3 and level prime to [. The verification that 7(Gp+ ()
is big is exactly as above. O

4.5 Totally real fields.

Let '™ be a totally real field. By a RAESDC (regular, algebraic, essentially
self dual, cuspidal) automorphic representation 7 of GL,(Ap+) we mean a
cuspidal automorphic representation such that

o 1/ = x7 for some character x : (F7)*\A%, — C* with x,(—1) inde-
pendent of v|oco, and

e T, has the same infinitessimal character as some irreducible algebraic
representation of the restriction of scalars from F* to Q of GL,,.

One can ask whether if these conditions are met for some x : (F*)*\A;, —
C*, they will automatically be met for some such x’ with x/ (—1) independent
of vjoo. This is certainly true if n is odd. (As then x™ is a square, so that
Xo(—1) =1 for all v|oco.) It is also true if n = 2 (As in this case we can take
x to be the inverse of the central character of m and the parity condition is
equivalent to the fact that if a holomorphic Hilbert modular form has weight
(k7 )retiom (p+ ) then k; mod 2 is independent of 7.)
Let a € (Z")Hom(F.0) gatisfy

ar1 2 2 Qrn

Let =, denote the irreducible algebraic representation of GL;, ™ "0 Which
is the tensor product over 7 of the irreducible representations of G L, with
highest weights a,. We will say that a RAESDC automorphic representation
7 of GL,(Ar) has weight a if 7., has the same infinitessimal character as =.
In that case there is an integer w, such that

Qr + Arn41—i = Wq
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for all 7 € Hom (F7,C) and all i =1, ..., n.

Let S be a finite set of finite places of F'". For v € S let p, be an irreducible
square integrable representation of GL,(F,"). We will say that a RAESDC
automorphic representation 7 of GL,,(Ap+) has type {p,},es if for each v € S,
Ty 1S an unramified twist of py/.

Proposition 4.5.1 Letv: Q, = C. Let F* be a totally real field, S a finite
non-empty set of finite places of F* and, for v € S, p, a square integrable
representation of GL,(FF). Let a € (Z")1™(F"C) be as above. Suppose that
7w is a RAESDC automorphic representation of GL,(Ap+) of weight a and
type {pvtves. Specifically suppose that T = mx where x : AL, /(F1)* — C*.
Then there is a continuous semisimple representation

ria(m) : Gal (F/F*) — GL,(Q)
with the following properties.

1. For every prime v [l of F™ we have

()%, Ft ) = (2t V(1 — n)*.

2. 7,“<7.[.)\/ = rl,z<7r)€n_lrl,z<X)'

3. If v|l is a prime of F* then Tlﬂ<7r)|ca1(F+/F+) is potentially semistable,
and if m, is unramified then it is crystalline.

4. If v|l is a prime of F* and if 7 : F* «— Q, lies above v then

. i . . .
dlm@l gr (rl,l(ﬂ-) ®T,FJL BDR)G I(Fv /Fv ) — O

unless i = a,.j +n — j for some j =1,...,n in which case

. ; -
dimg, gr*(r1,(7T) ®, gt B )G Fu/ED — q.

Proof: Let F' be an imaginary CM field with maximal totally real subfield
F*, such that all primes above [ and all primes in S split in #//F*. Choose an
algebraic character 1 : A /F* — C* such that x o Np/p+ =1 o Np/p+. (See
lemma 4.1.4.) Let mp denote the base change of 7 to F'. Applying proposition
4.3.1 to mp1), we obtain a continuous semi-simple representation

rp : Gal (F+/F) — GL,(Q)
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such that for every prime v fl of F' we have

ss -1 ss
TF|Ga1(Fj/FU) =ri(17 ) (1= ”)|Ga1(ﬂ/Fv)'

Letting the field F' vary we can piece together the representations rp to obtain

r. (See the argument of the second half of the proof of theorem VII.1.9 of

HT].) D

The representation 7;,(m) can be taken to be valued in GL,(O) where O
is the ring of integers of some finite extension of @Q;. Thus we can reduce
it modulo the maximal ideal of O and semisimplify to obtain a continuous
semisimple representation

Tro(m) : Gal(F' JF*) — GL,(F))

which is independent of the choices made.
We will call a continuous semisimple representation

r: Gal (F+/F+) — GL,(Q)

(resp.
7: Gal (F'JF) — GL,(F))

automorphic of weight a and level {p,}ves if it equals r;,(7) (resp. 7,(m)) for
some 7 : Q; = C and some RAESDC automorphic form 7 of weight a and type
{pv}ves (resp. and with m; unramified). We will say that r is automorphic
of weight a and type {p,}ves and level prime to [ if it equals r,(7) for some
1 : Q = C and some RAESDC automorphic form 7 of weight a and type
{pv}ves with m; unramified.

The following lemma is proved just as lemma 4.3.2.

Lemma 4.5.2 Suppose that ET/F* is a soluble Galois extension of CM fields.
Suppose that
r:Gal (F'/F*) — GL,(Q)

18 a continuous semisimple representation and that T|Gal( 18 1rreducible

F'/B%)
and automorphic of weight a and type {py}ties. Let Sp+ denote the set of

places of F™ under an element of S. Then we have the following.

1. a; = ap if T|p+ = T'|p+ so we can define ap+ by ap+, = az for any
extension o of o to ET.

2. 1 is automorphic over F* of weight ap+ and type {p}ves,, for some
square integrable representations p..
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Theorem 4.5.3 Let F'™ be a totally real field. Let n € Z>y and let | > n be a
prime which is unramified in F. Let

r:Gal(F'JF') — GL,(Q)

be a continuous irreducible representation with the following properties. Let 7
denote the semisimplification of the reduction of r.

1. vV = re" Iy for some character x : Gal (FJF/F*) — Q" with x(c)
independent of v|oo. (Here ¢, denotes a complex conjugation at v.)

2. r ramifies at only finitely many primes.

3. For all places v|l of F'T, is crystalline.

Mlaa s r)
4. There is an element a € (Z™)Hom (FYQ) such that

e for all T € Hom (F*,Q,) we have

[—1 _n_'_@T,n 2 Gr1 2 2 Q7 n;

e for all T € Hom (F*,Q,) above a prime v|l of F*,

: i al(F JF}
dlm@l gr (7” ®7—,Fj' BDR)G LF [R) — 0

unless i = a,j +n — j for some j =1,...,n in which case

. i =t +
dlm@l ot (7, ®T,Fj BDR)Gal(Fv /) 1.

5. There is a finite non-empty set S of places of F™ not dividing | and for
each v € S a square integrable representation p, of GL,(F.) over Q
such that

MGt ppy = M1p0) (1= 1)
If py = Sp,,, (pl,) then set

F= (gl [0 ),

Note that T|Gal( ) has a unique filtration Fil? such that

Fl/Ff

J B ~ o~ ]
8T a7t /) = T
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for 7 =0,...,m, — 1 and equals (0) otherwise. We assume that 7, has
irreducible reduction 7, such that

Ty 2 Tye

orj=1,....,m,. ThenT inherits a unique filtration Fil’ with
forj=1,.., Gal q v

(Fy/F)
BT |G (72 ) = T
for7=0,...,m, — 1.

6. (F)krad™ does not contain F*().

7. Hi(ad7Gal (F' /F*(Q)),ad °F) = (0) fori =0 and 1.

8. For all irreducible k[ad TGal (F+/F+(Q))]-submodules W of adT we can

find h € ad7Gal (F+/F+(Cl)) and o € k with the following properties.
The « generalised eigenspace Vi, o of h in T is one dimensional. Let
Tha T — Via (T€Sp. ina) denote the h-equivariant projection of T to
Vi (resp. h-equivariant injection of Vi, o into 7). Then mp o0 W oip o #

(0).
9. T is irreducible and automorphic of weight a and type {py tves with S # ().

Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)
Then r is automorphic of weight a and type {p, tves and level prime to .

Proof: Choose an imaginary CM field F' with maximal totally real subfield
F* such that

e all primes above [ split in F/F™,
e all primes in S split in F/F*, and
e F is linearly disjoint from (F )5 7(¢;) over F'*.
Choose an algebraic character
v Gal(F7/F) — Q
such that

® X‘Gal(f+/F) =Py,
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e ¢ is unramified above S,
e 1 is crystalline above [, and

e for each 7 : F* < Q, there exists an extension 7 : F' < Q; such that

gr ~amn (@lw) ®% 7,z BDR)Gal (Fo/Fo) +(0),
where v(7) is the place of F' above [ determined by 7.

(This is possible by lemma 4.1.5.) Now apply theorem 4.3.4 to 7|, (F*/F)¢
and this theorem follows easilly by the argument for lemma 4.3.2. O

As the conditions of this theorem are a bit complicated we give a special
case as a corollary.

Corollary 4.5.4 Let n € Z>y be even and let | > max{3,n} be a prime. Let

r: Gal(Q/Q) — GSpn(Z)
be a continuous irreducible representation with the following properties.
1. r ramifies at only finitely many primes.

2. Tlga @, /0 S crystalline.

3. dimg, gr'(r ®g, Bpr)® @/ = 0 unless i € {0,1,...,n — 1} in which
case it has dimension 1.

4. There is a prime q # | such that ¢ # 1 mod [ fori =1,...,n and r|§§@
) q
is unramified and r|g, (Froby) has eigenvalues {aq' : i =0,1,...,n —1}
q
for some «.

5. The image of r mod [ contains Sp,(F;).
6. r mod [ is automorphic of weight 0 and type {Sp ,(1)}1q}-

Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then r is automorphic of weight 0 and type {Sp ,(1)}¢qy and level prime
to l.
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Proof: Let T = r mod [. As PSp,(IF;) is simple, the maximal abelian quo-
tient of ad7(Gg) is

7(Gq)/(F(Ga) NF;)Spa(Fr) C PGSpu(F1)/PSpa(Fr) — (F))/(Fy)*.

Thus @ker *I7 does not contain Q).
Suppose that Sp, = {g € GL, : gJ'qg = J} where

_( 0 lap
J_(—ln/Q 0 )

Define submodules Ry, R; and Ry of ad7 as follows. Ry consists of scalar
matrices. R; consists of matrices A such that AJ + J'A = 0. Finally R,
consists of matrices A such that tr A = 0 and AJ — J'A = 0. Each is preserved
by GSp,(F;). As [ > n we see that

adF:Ro@Rl@Rg

and each R; is an irreducible Sp, (F;)-module. (The latter fact is because each
R; is a Weyl module with [-restricted highest weight.) Thus H*(Gg,),ad ’F) =
(0). Moreover condition 8 of the theorem is verified by choosing o € F; with
a? # 1 and taking h to be the diagonal matrix

diag(a, 1,..., 1,07, 1,...,1)

n Spn (]F l)'
Finally let B,, denote the Borel subgroup of elements of Sp,, of the form

a b
0 ta !

with @ upper triangular. Then (ad7)%®) = R,. Also let 7T}, denote the

subgroup of Sp,, consisting of diagonal elements. Associate the character group
X*(T,,) with Z"/? by

(al, . an/g)diag(tl, ceey tn/27 tl_l, ceey t;/l2) = ttlll...tf;;f.

Corollary 2.9 of [CPS] tells us that H'(Sp,(F;),adF) = (0). (According to
footnote (23) on page 182 of [CPS]|, because | > 3, we may take 1 of corollary
2.9 of [CPS] to consist of (1,-1,0,...,0), (0,1,—1,...,0), ..., (0,0,...,1,—1),
and (0,0, ...,0,2). Then that corollary tells us that

dim H*(Sp,(F;),ad’7) =2(n/2 —1) +1— (n —1) = 0.)

It follows that H'(Gg),ad ’F) = (0).
The corollary now follows from the theorem. O
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Theorem 4.5.5 Letn > 1 be an even integer. Let M /Q be an imaginary CM
field which is cyclic Galois of degree n. Let T generate Gal (M/Q). Let | be
a rational prime such that | > 8((n + 2)/4)"/**', | = 1 mod n, and | splits
completely in M. Let p be a prime which is inert and unramified in M. Let
q # 1 be a prime which splits completely in M and satisfies ¢¢ # 1 mod [ for
i=1,...n
Let
0:Gal(Q/M) —TF,
be a continuous character such that

° @C — El—n;

e there exists a prime w|l of M such that for i = 0,...,n/2 — 1 we have

§|1M = e_i;

Ttw

e 0 is unramified above q;

. - i
e and for j=1,...n —1 we have O|¢. a7, /01,) # O |car 37, /0,)-
Suppose that there exists an imaginary quadratic field E/Q linearly disjoint

from Mkere(g) in which 1, p, ¢ and all primes above which 8 or M is ramified
split, and such that | does not divide the class number of E.
Let F*/F) be a Galois extension of totally real fields with F* linearly

disjoint from the Galois closure of E(Q)Mkera over Q. Suppose that that | is

unramified in F* and that there is a prime v, of Fy~ split over p. Let
r:Gal(FT/Ft) — GL,(Q)

be a continuous representation such that

. Gal (@/Q)
¢ r= (I dG 1 Q;M )‘Gal(Q/F+)

V n—1

re 5

1%

<

e 1 is unramified at all but finitely many primes;

For all places v|l of F*, 7|, (7 m) 18 crystalline.

For all 7 € Hom (F*,Q,) above a prime v|l of F*,

; =+
diIH@l ng(T ®T,Fv+ BDR)Gal(FU /FF) 1

fori=20,....,n—1 and = 0 otherwise.
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e There is a place vylq of F' such that #k(v,)’ # 1modl for

j=1,...,n—1, and such that r|*® _. _ isunramified and finally such
Gal (F}, /Fih) |
that r|* (Frob,,) has eigenvalues {o(#k(vg))’ : j=0,...,n—1}

Gal (F,_/F;)
for some o € @ZX
Assume further that congjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then r is automorphic over F* of weight 0 and type {Sp,,(1)}v,} and level
prime to [.

Proof: Apply theorem 4.4.4 to F = F™FE and use the argument of lemma
4.3.2. 0
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APPENDIX A.: The level raising operator
after Russ Mann.

In this appendix we will explain Russ Mann’s proof of lemma 2.2.7 and propo-
sition 2.2.8. A preliminary write-up of most of the arguments can be found in
[M2], but as Russ has left academia it seems increasingly unlikely that he will
finish [M2]. Hence this appendix. Russ actually found more general results
concerning level raising for forms of level greater than 1, which we do not re-
port on here. We stress that the arguments of this appendix are entirely due
to Russ Mann, though we of course take responsibility for any errors in their
presentation.

Write B, for the Borel subgroup of GL, consisting of upper triangular
matrices and write [V, for its unipotent radical. Also write T}, for the maximal
torus in G'L,, consisting of diagonal matrices and write P, for the subgroup of
GL,, consisting of matrices with last row (0,...,0,1).

Let F, be a finite extension of QQ, with ring of integers Op,. Let w :
F — Z denote the valuation, let w, denote a uniformiser of Op, and let
Gw = #Op, /(w,). Also let O denote the subring of C generated by ¢,'/> and
all p-power roots of 1. Let S,, denote the symmetric group on n letters and set

RS =0[Xy,..,X,]°" C R, = O[X;™, ..., X1,

where S,, permutes the variables X;. Sometimes we will want to consider
R,, and R,_; at the same time. To make the notation clearer we will write
Ry = O[YF, . YELS and RY_| = O[Y4, ..., Y,_4]%1. We will also set

Rﬁ—l = O[Dflv '“7Yn—1]]5n71

and RETI to equal to the O-submodule of R} ;| consisting of polynomials of
degree < m in each variable separately.
Let oj = w,1; @ 1,—; and let T denote the double coset

Let GL,(OF,)" denote the sub-semigroup of GL,(F,) consisting of matrices
with entries in Op,. Then

O[GL,(Op, )\GL,(F,)" /GL,(Op,)] = OTW, 7@ 7M]
and

O[GL,(Or, \GL,(F,)/GL,(Op,)] = O[TW, 7® . . T™ (TM)].
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Define ~ from O[GL,(OF,)\GL,(F,)/GL,(OF,)] to itself by

Then (TW)~ = (T~
There is an isomorphism (a certain normalisation of the the Satake isomor-
phism)
S : O|GL,(0Op,)\GL,(F,)/GL,(OF,)] = R,

which sends TU) to qfl',(l_j 2 times the jt" elementary symmetric function in
the X;’s (i.e. to the sum of all products of j distinct X;’s). We have

S(O[GL(Op \GLn(Fu)" /GLn(OF,)]) = Ry

n

and
ST (X, X)) = SO (g X7 H g X,

If we write

OlG Ly 1(Op, )\GLy 1(Fy)"/GLn1(OF,)]<m

for the submodule of O[GL,_1(Op,)\GLyn_1(Fy)"/GL,-1(OF,)] spanned by
the double cosets

GLnfl(OFw)diag(tlv s tn71>GLn71<OFw)7
where m > w(ty) > ... > w(t,—1) > 0, then
S(OIGLy-1(0p, \GLn-1(Fu)"/GLn1(Or,)]<m) = (O[Y3, ..., Yu_q]5 )=

Let Uy (w™) denote the subgroup of GL,,(OF,) consisting of elements which
reduce modulo @] to an element of P, (O, /(w})). For j =1,...,n —1 let

UY) = P,(Op,)a;P.(OF,).

Note that U /P,(Op,) has finite cardinality. If 7 is a smooth representation
of GL,(F,) and if m € Z>, then

e the operators UY) on 7/»(9rw) commute, and

e the action of UU) preserves 7V1(®™) and in fact acts the same way as
Ur(w™)a; Uy (w™)

on this space.
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(This is proved by writing down explicit coset decompositions, see for instance
proposition 4.1 of [M1] .)
Let A be an O-module and suppose that

T =Y a,GLy1(0p,)9iGLn-1(OF,)
is in A[GLn_l(Opw)\GLn_l(Fw)Jr/GLn_l(OFw)] Define
gt 0
= Saldetal2n0n) (% 1) GLaOn)

Note that if h € GL,_1(F,)" and

GLy-1(OF,)h ™' GL,1(OF,) = [ [ hGLn-1(OF,)
J

then

Po(Op,) ( hol )GL (Or,) ]_[( (1) )GLn(on),

J

Similarly if m € Z>; and if

T =Y a,GLy,1(0p,)9:GLn-1(OF,)
is in A[GLy—1(Op,)\GLp-1(Fy)"/GL,—1(OF,)]<m define
-1
Vi (T) = a| et g;|" /Uy (w™) ( 96 (1) ) GL,(Op,).

Note that if h € GL,,_1(F,)" is such that GL,_1(Og, )hGL,_1(OF,) lies in
A[GLn,1(OFw)\GLnfl(Fw)JF/GLn,l(OFw)]Sm, and if

GLy-1(OF,)h ' GL\1(OF,) = [ [ hGLn-1(OF,)

J

o) () )enon) =I1( 7 ) 6Laon)

J

then

We deduce that if 7w is any smooth representation of GL,(F,) and if T €
Al[GL,1(Op, )\GL,—1(F,)*/GL,-1(OF,)|<m then V(T preserves the space
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7U1™) and acts on it via V;,(T). In the case A = R,, the map V}, induces a
map, which we will also denote V,,:

R, [GLnfl(OFw)\GLnfl(Fw)—i_/GLnfl(OFw)]Sm — O[U1(w™)\G Ly (Fy)/GLn(OF,)]

by the formula

Vm(zz Q; [GLn—l (OFw)giGLnill(OFw )])

Proposition 5.2 of [M1] says that the set of

Vm(GLn_l(OFw)dlag<t1, ey tn—l)GLn—1<OFw))7

where t € T, 1(Fy)/Tn—1(OF,) with m > w(t;) > ... > w(t,—1) > 0 is a basis
of O[U; (w™)\GL,(F,)/GL,(OF,)] as a right R,-module. Hence

Vin t Ro|GLy—1(Op, )\GLp_1(Fy)T/GLy_1(OF,)]<m — OU1(w™)\GL,(Fy)/GLu(OF,)]

is an isomorphism of free R,-modules.
Let
v F, — O

be a continuous character with kernel Op,. We will also think of ¢ as a
character of N, (F,) by setting

Y(u) = Y(urg + usg + ... + Up—1).
If Ais a O-algebra we will write W,,(A, 1) for the set of functions
W :GL,(F,) — A
such that
o W(ug) = (u)W(g) for all g € GL,(F,) and u € N,(F,),

e and W is invariant under right translation by some open subgroup of
GL,(Fy).

Thus W, (A, ) is a smooth representation of GL,(F,,) (acting by right trans-
lation).
There is a unique element W2(¢)) € W, (R, ) (OF) such that

o Wow)(1,) =1 and
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o TWO) = S(TYWO () for all T € O[GLy(Op, \GLn(Fy)/GLn(Op)].

Moreover if the last row of g is integral then W2 (1)(g) € R;. (These facts are
proved exactly as in [Sh].)

Suppose again that A is a O-algebra. If W € W, (A, ) (©F0) we heuris-
tically define ®(W) € A®p R} | = A[[Y3, ..., Y, 1]]°" by

(V) = g0 ) WO (67 (g)] det g+ 2dg

 (
No— 1 (Fu)\GLn 1 (Fu) 0 1

where the implies Haar measures give GL,,_1(Op,) and N,,_1(Op,) volume 1.
Rigorously one can for instance set

s=0

t 0 — s—n —n N n—
<I><W>=ZW(0 1)W3_1<w D(E)] det ¢V 1y
t

where t = diag(ty, ..., t,—1) runs over elements of T,,_1(F,)/T,,—1(OF,) with
w(ty) > w(ty) > ... > w(t,—1) > 0.

For such ¢ the value W?_,(¢"!)(t) is a homogeneous polynomial in the Y;’s
of degree w(dett) and these polynomials are linearly independent over A for
t €T 1(Fu)/Th-1(0F,) with w(t;) > w(t2) > ... > w(t,—1) > 0. (Asin [Sh].)
In particular if W € W, (A, ¢)P(©r) then ®(W) determines W|p, (r,). As in
section (1.4) of [JS2] we see that

W) = [J(r - xv;)~"

ihj

Fix an embedding 2 : R, <— C. There is a unique irreducible smooth rep-
resentation 7 of GL,(F,) such that O|GL,(Op,)\GL(Fy)/GL,(OF,)] acts
on 750 (Oru) via 10 S. Moreover there is an embedding m < W, (C, ) which
is unique up to C*-multiples. It follows from [Sh] that +W?(z)) is in the image
of m. It follows from sections (3.5) and (4.2) of [JPSS] that

2 (Ro[GLy(F)IWR ()™ Or) = TT(1 = XiY) T RalYi, ooy Yo%

0,

From corollary 3.5 of [M1] we see also see that

dime (R [GLA(E)IWS() ™) @, , € < dime 74"

m+n—1
n—1 ’
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If W € (Ru[GLy(F)]W2())(©Fu) and ®(W) = 1 then we see that
Wlp.( Fw) is supported on N, (F,)P,(Op,) and that W(1,) = 1. Thus we
have (UYW)|p,(r,) = 0. (Recall that we only have to check this at ele-
ments diag(tq,...,t,—1,1) and that any element of W, (R,,,%) will vanish at
diag(ty, ..., t,—1,1) unless w(t;) > 0 for all i. To check at the remaining diag-
onal matrices one uses the explicit single coset decomposition in proposition
4.1 of [M1].) Hence ®(UYWW) =0 and so UDW = 0.

Recall that if h € GL,,_1(F,)" and

GLn-1(Op,)h™'GLy1(OF,) = [ [ 7GLn-1(OF,)
J
then
h! o
P(Or,) (7 GL.(0r,) =] GL,(Or,).
J

From this and a simple change of variable in the integral defining ® we see that
if T € A[GLy1(Op,)\GLu1(Fu)*/GLu1(O,)] and f € W(A, )5 ©r)
then

Thus we have

RalGLy 1(Op, NG Ly 1(Fu)* /G Ly 1(Or,)]<m T
! l
(RulGLa(F)]JW3 (1)) V(W () W
! !
[1,,(1 = XY) T Ry[Yi, o, Yy 5 O(W).

The composite sends

T— S(T) ]2 - Xy

The composite is an isomorphism to its image:

[T = X)) (Rali o Yo )=,

1,7
which is a direct summand of [, .(1 — X;Y;) ™' R,[Y1, <o Yy 1]%»1 and which

is free over R,, of rank
m+n-—1
n—1 '
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As
dime(Ra[GLo(F)IW() ™) @4, € < ( P ) ’

n—1
we deduce that

Ru[GLy 1(Op, \GLy 1(Fy)" /G Ly 1(OF,)]<m
— O[U(w™)\GLyn(Fy)/GLn(OF,)]

~

T (RalGLA(E)IWE ()7
o Ly (1= X)) (R [Y7, o, Yoy Sy,

Lemma 2.2.7 follows immediately from this.
Let 6 denote the element of

O[U (w™\G L (F)/GLn(OR,)]
which is V,,(IT; ;(1 — X;Yj)). Then
O(OW,)(v)) = 1.

Moreover UDOW0 (1)) = 0 and so U = 0 for j = 1,...,n—1. Thus 0 satisfies
the first three parts of proposition 2.2.8.
We now turn to the proof the final part of proposition 2.2.8. Write

0 => [Uy(w")diag(w,", .., @, ", 1)GL,(OF, )| T,

a

where T, € O[GL,(Of,)\GL,(F,)/GL,(OF,)] and where a = (a1, ...,a,_1)

runs over elements of Z" ! with
n>a > ...>a,-1 > 0.
As

> S(T)S(GLy-1(Op, )diag(@l, .., @er ) GL,u-1(OF,)) = [ [(1 - X;Y))

2%
we see that
ie. Tin,.p) = qI;(HV/Q(T("))“—l. Let n = 1,1 ® w! and define 0 as we did
just before proposition 2.2.8. Thus we have

0= (T")™"T,[GL,(Op,)diag(w@ly ™, ..., @y 1)Uy (w")].

a
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Again 7 denote the GL,(F,,)-subrepresentation of W, (C, ) generated by
2W0(¢) Define 7: R, — C to be the O-linear map sending X; to ¢ 1o(X;) ™.
Let 7 denote the GL,(F,)-subrepresenetation of W, (C,¢~1) generated by

A(W0Y(p1)). Then 7 is the contragredient of 7. Write gen,, for the compact
induction c-Ind P"(F“’))C(w). It follows from proposition 3.2 and lemma 4.5 of

[BZ] that gen embeds in 7|p,(p,) and in 7|p,(p,). Moreover it follows from
proposition 3.8 and lemma 4.5 of [BZ] that any P, (F,) bilinear form

(, >:7T><7Af—>(c

restricts non-trivially to gen, X gen,. Hence there is a unique such bilinear
form up to scalar multiples and so any P, (F,)-bilinear pairing 7 x 7 — C is
also GL,(F,)-bilinear. Such a pairing is given by

(W, ¥ = / W (g)WW(9)| det gl°dg
N (Fu)\Prn(Fuw)

s=0

Here we use a Haar measure on N, (F,) giving N,,(Op,) volume 1 and a right
Haar measure on P, (F,) giving P,(Opf,) volume 1. The integral may not
converge for s = 0, but in its domain of convergence it is a rational function
of ¢}, and so has meromorphic continuation to the whole complex plane.

We will complete the proof of proposition 2.2.8 by evaluating

(BOW; (4), W, ("))
in two ways. Firstly moving the f to the other side of the pairing we obtain

(GLa(Or,) : Un(w™)] 32,70 S(T(TM)")
@O (), UL (w")diag (gl ", ..., @i ", 1) G Lo (O, WL (7).

But (W2 (¢ ))|pn F,) is supported on N, (F,,) P,(Op, ) and equals 1 on P,(Op, ).
Thus (:0W0 (1)), W) simply equals W (1,). We deduce that

OO (), W) = (g — Dgu" "V 32, 7o S(T(T™)")
(U (w)diag(w ™, .., w1~ )G Ly (Op, )W) (L)

The terms of this sum are zero except for the term a; = ... = a,,_1 = n which
gives

(gs = D"~ ViS (g2 T™),
ie.

(qn . 1)(]1(1)”—1—2)”(”_1)/2@()(1---Xn)_l

w
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On the other hand R
(BOW2 (), W (1))

equals R
US(0)0) W (), TW, (7).

We consider the integral

/ W (o)T7(g)| det g*dg
Ny (Fy)\Pn(Fuw)

with the Haar measures described above. It equals

D U )T (™) Ottt |,

t

where the sum runs over ¢t = diag(ty, ..., t,) € Th(Fy)/T,(OFp,) with
w(ty) > w(te) > ... > w(t,) =0.

Because «(W2(¢)(t))a(W2(¢p~1)(t)) is invariant under the multiplication of ¢
by an element of F this in turn equals
(1= q," D) YW (@) @)JUW () () [Pl ot
t
where now the sum runs over t = diag(ty, ..., t,) € T,(Fy)/T,(OF,) with
w(ty) > w(ty) > ... > w(t,) > 0.

n(s—i—l))

This in turn equals (1 — guw times

/N - )z(Wﬁ(iﬂ)(g)ﬁ(WS(w*l)(g))w((O, .,0,1)g)| det g|+*dg,

where ¢ is the characteristic function of Of and where we use the Haar
measures on N, (F,) (resp. GL,(F,)) which give N,,(Og,) (resp. GL,(OF,))
volume 1. As in proposition 2 of [JS1] this becomes

. —n(s+1) ﬁﬁ 1 —Z X/X 1+s))

i=1 j=1

Thus

(BOW;) (4). W (1) = USO8 (1 = q,") [TTTC — i/ X0,

=1 j=1
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Thus we conclude that

S(00) = g "X X) T T [ [0 — X))

=1 j=1

and we have completed the proof of proposition 2.2.8.
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APPENDIX B: Unipotent representations of
GL(n, F) in the quasi-banal case.

By M.-F.Vigneras

Let F' be a local non archimedean field of residual characteristic p and let R
be an algebraically closed field of characteristic 0 or ¢ > 0 different from p.
Let G = GL(n, F). The category ModgrG of (smooth) R-representations of
G is equivalent to the category of right modules Hz(G) for the global Hecke
algebra (the convolution algebra of locally constant functions f : G — R with
compact support, isomorphic to the opposite algebra by f(g) — f(g7').)

ModgG ~ ModHg(G).

Definitions. We are in the quasi-banal case when the order of the maximal
compact subgroup of G is invertible in R (the banal case), or when ¢ = 1 in
R and the characteristic of R is £ > n (the limit case).

A block of ModgrG is an abelian subcategory of ModgG which is a direct
factor of ModgrG and is minimal for this property. One proves that ModgG
is a product of blocks [V2, III.6]. The unipotent block Br1(G) is the block
containing the trivial representation. An R-representation of GG is unipotent if
it belongs to the unipotent block.

Notations. Let I, B = TU be a standard Iwahori, Borel, diagonal, stritly
upper triangular subgroup of G, T, the maximal compact subgroup of 1", I,, the
pro-p-radical of I. The functor Indg : ModrB — ModRrG is the normalized
induction. The group I has a normal subgroup I¢ of pro-order prime to ¢ and
a finite ¢ subgroup I, such that I = I‘I,. To get a uniform notation, we set
I* = I,1, = {1} when the characteristic of R is 0. We have I = I*, I, = {1}
in the banal case and I # I I, # {1} in the limit case. Let ModHg(G,I) be
the category of right modules for the Iwahori Hecke algebra (isomorphic to its
opposite)

Let Modg(G, I) be the category of R-representations of G generated by their
I-invariant vectors.
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1 Theorem In the quasi-banal case,

1) The category Modg(G, I) is stable by subquotients.

2) For any V' € Modg(G,I), one has VI* = V! in particular R[I\G] is
projective in Modg(G, I).

3) The I-invariant functor

V — V! Modg(G,I) — ModHg(G,I)

is an equivalence of categories.
4) The I‘-invariant functor on the unipotent block Bg 1 (G)

V — V! Bri(G) — ModHg(G, IY)

is an equivalence of categories.

5) In the banal case, Modg (G, I) is the unipotent block.

6) In the limit case, Modg(G, I) is not the unipotent block.

7) The parabolically induced representation Indgl is semi-simple (hence
also Ind$1 for all parabolic subgroups P of G). In the limit case, Ind §X is
semi-simple for any unramified R-character X : T/T, — R* of T

8) In the limit case, Hg(G, ') ~ Hr(G,I) ®p R[I*].

The proof of the theorem uses some general results (A), ..., (H), valid in
the non quasi-banal case (except (E) and (G)) and for most of them when G
is a general reductive connected p-adic group. We recall them first.

(A) The algebra R[T/T,| is identified to its image in Hgr(G,I) by the
Bernstein embedding

(1) tg : R[T/T,) — Hgr(G,I)
such that the U-coinvariants induces a R[T'/T,]-isomorphism
(2) Ve (V)T
for any V € ModrG [V2, 11.10.2].
(B) By [Dat], we have a (G, R[T'/T,])-isomorphism
(3) R[I\G] =~ Ind 3R[T/T,]

when R[T/T,] is embedded in Hg(G,I) by the Bernstein embedding ¢z :
R[T/T,] — Hg(G,I), defined by the opposite (lower triangular) B of B as
in (A), where R[T/T,] is the universal representation of 7" inflated to B.
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Hence for any character X : T'/T, — R* i.e. an algebra homomorphism
R[T/T,) — R

(4) R X, R[T/T,) b R[I\G] ~ Ind gX
(5) R ®X,R[T/To],t§ HR(G, I) ~ (Ind gX)I

(C) The compact induction from an open compact subgroup K of G to
G has a right adjoint the restriction from G to K [V1, 1.5.7]. In particular,
a representation generated by its [-invariant vectors is a quotient of a direct
sum of R[I\G] (denoted ®R[I\G]).

(D) The double cosets of G modulo (1, I) are in bijection with the double
cosets of G modulo (I,I). This is clear by the Bruhat decomposition. In
particular, the I-invariants of R[I\G] is equal to the [-invariants.

(E) In the quasi-banal case, every cuspidal irreducible representation of
every Levi subgroup of G is supercuspidal [V1, I11.5.14].

(F) The irreducible unipotent representations are the irreducible subquo-
tients of R[I\G] by [V2, IV.6.2].

(G) When ¢ = 1 in R, the Iwahori-Hecke algebra is the group algebra of
the affine symmetric group

N/T, ~ W.T/T,) ~ S, Z"

(semi-direct product) where N is the normalizer of T in G and W := N/T with
its natural action on T'/T,. Naturally T'/T, ~ Z" by choice of a uniformizing
parameter pr of F' and W =~ S, the symmetric group on n letters with its
natural action on Z". The natural embedding

(6) R[T/To] — Hg(G, 1) =~ RWT/T,)]

is equal to tp = tg. These properties are deduced without difficulty from [V1,
1.3.14], [V2, 11.8].

(H) When ¢ = 1 in R, let m; be an irreducible R-representation of the

group GL(n;d;, F') wich cuspidal support ®™a;, for an irreducible cuspidal
R-representation o; of GL(d;, F') for all 1 < i < k. Suppose that o; is not
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equivalent to o; if @ # j. Then the representation of GL(), n;d;, F') parabol-
ically induced from m; ® ... ® m is irreducible by [V2, V.3].

Proof of the theorem 1 We suppose that we are in the quasi-banal case.

a) We prove that any irreducible subquotient V' of R[I\G] has a non zero
I-invariant vector. The U-coinvariants V;; of any irreducible subquotient V' of
the representation (3) have a non zero vector invariant by 7y, by (E). By (2),
Vir has a non zero I-invariant vector.

b) We prove that if W C V are subrepresentations of @R[/\G], then
W! =V1implies W =V, and V! = VI». The geometric property (D) implies
that the I,-invariants of any subrepresentation of @R[I\G] is equal to its I-
invariants. Hence W' = W V! = VI»_ The functor of [,-invariants is exact
and any irreducible subquotient of R[I\G] has a non zero [,-invariant vector
by a). Hence W = V» implies W = V.

c) We prove the property 1) of the theorem. The property is trivial with
quotient instead of subquotient. Let Y C X and p : ®R[I\G] — X a surjective
G-homomorphism. Let us denote by V' the inverse image of Y by p, and
by W the subrepresentation of V generated by VI. We have W/ = VI by
construction, hence W = V by b). Hence V is generated by its I-invariant
vectors. The same is true for its quotient Y.

d) We prove the property 2) of the theorem. In ¢) V' is a subrepresentation
of ®R[I\G] hence we have V! = V'r by b). The functor of I,-invariants is exact
hence p(VI*) = Ve, AsY! C Y and p(V!) C Y we have Y = Yr = p(V1).
This is valid for any Y hence for any representation of Modg(G, I).

e) We prove the property 3) of the theorem. All the conditions of the
theorem of Arabia [A, th.4 2) (b-2)] are satisfied.

f) We prove the property 4) of the theorem. Let V' be a unipotent repre-
sentation. Then V is generated by V! ‘ by (F). The irreducible subquotients of
the action of 7 on V!* are trivial, because I /1% is an (-group. Conversely let V
be a representation generated by V', Then the irreducible subquotients of V'
are unipotent, and a representation such that all its irreducible subquotients
are unipotent is unipotent. As the pro-order of I is invertible in R, and the
unipotent block is generated by Ind %1z = R[I'\G], the I‘-invariant functor
is an equivalence of category with the Hecke algebra Hg(G, I°).

g) We prove the property 5) of the theorem. In the banal case I = I and
compare the properties 3) and 4) of the theorem.

h) We prove the property 6) of the theorem. In the limit case, I # I°.
The I-invariants of Ind?gl can be computed using the decomposition of the
parahoric restriction-induction functor [V3, C.1.4] and the simple property

dim(Ind %, 1)! = 1.
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One finds that the [-invariants of Ind?}l are the I-invariants of its proper sub-
representation Ind ¥1 = R[I\G]. Hence the unipotent representation Ind %1
is not generated by its [-invariant vectors.

i) We prove the property 7) of the theorem. In the banal case Indgl
is irreducible. We suppose that we are in the limit case. By (4), Ind %1 is
generated by its I-invariant vectors. Hence by the property 3) of the theorem,
Ind §1 is semi-simple if (Ind 1)’ is a semi-simple right Hg(G, I)-module. By
(5) for the trivial character of T', we have

(Indgl)l ~ R ®1 riry1,),05 Hr(G, D).

By (6), the action of Hg(G,I) ~ R[W.(T/T,)] on (Ind41)! restricted to
R[T/T,) is trivial. As R[W] is semi-simple, (Ind41)’ is a semi-simple right
Hgr(G, I)-module.

Every parabolic subgroup of GG is conjugate to a parabolic group P which
contains B, and the isomorphism class of Ind %1 does not change when P
is replaced by a conjugate in G. We have an inclusion Ind,Ggl - Indgl in
ModgG. As Ind %1 is semi-simple, the same is true for Ind 1.

Let X be an unramified R-character of 7. Modulo conjugaison X = ®,X;
is the external product of characters X; := x;1 of the diagonal subgroups 7T;
of G; := GL(n;, F), which are different multiples of the identity character,
x; #x; € R*if i # j and ), n; = n. The parabolic induction Modg [[, G; —
ModgG sends any irreducible subquotient of ®,;Ind gixil to an irreducible
representation of G by (H). This implies the semi-simplicity of Ind gX.

j) The property 8) of the theorem results from the (known) formula (8)
and (10) below, applied to V = R[I/I"].

Let R be any commutative ring. An R-representation o : I /I, — GLRV
of I/I, identifies to an R-representation of I trivial on I,. We have I = T,1,.
The Weyl group W ~ S, acts on T,/T, N I, ~ I/I, by conjugation, and by
inflation the affine group W.(T'/T,) acts on I/I,. One denotes by Intw.V the
representation of I/I, deduced from V' by conjugation by w € W.(T'/T,). The
endomorphism algebra End zgInd ¢V is isomorphic as an R-module to ([V2,
I1.2 page 562] and [V3,C.1.5)):

(8) End reInd ¥V =~ @yew.(r/r,) Hom gr(V, Intw.V),

where Hom g;(V, Intw.V) is the space of A € End gV such that Ao o(k) =
o(wkw ') o A, Yk € I/I,. A function in Ind ¥V with support Ig and value v
at g is denoted by [Ig,v] for all g € G,v € V. The representation Ind IGV is
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generated by [I,v] for all v € V. The endomorphism 7}, 4 in End zgInd ¢V
corresponding to (w, A) by (8) sends [I,v] to [V2, I1.2 page 562]:

(9) 1, 0] Tyn =Y [Tz, Ay(v)]

x

where [wl = U,lz is a disjoint decomposition and A, = Ao o(w'z). Let
w,w" € WT/T,) and A € Hom g;(V,Intw'.V), B € Hom g;(V, Intw'.V'). We
use that the image of [I,v] by g7' is g7, v] = [Ig,v] for g € G,v € V, (9)
and the G-equivariance of T, g, to see that the product To, 4T,y 5 sends [I, v]
to

(10) (10| Ty aTw s = Y [Tz, Ap(0)|Tw s = Y _[Tyz, (B, 0 A,)(v)],

z z,Y

where fwl = U,lz, Tw'l = U,Iy. One can choose z,y € I’ because I, C T, C
INwlw™ for any w € W.(T/T,).

We prove the property 8. The Iwahori-Hecke algebra Hg(G, ) is the al-
gebra of RG endomorphisms of IndIGl r- The canonical basis (T)wew.(r/1,)
corresponds to A = Id for all w. When V = R[I/I*], Hom g;(V, Intw.V) =
End g,V ~ RI[I;]. The group I, is commutative, and A, = A commute with
B, = B for any z,y in (10). ©

We suppose again that R is an algebraically closed field of characteristic
0 or £ > 0 different from p. Let Jr be the annihilator of R[G/I]. The Schur
R-algebra of G is Morita equivalent to Hg(G)/Jr [V3, 2. It is clear that the
abelian category Modg(G, I) is annihilated by Jx.

2 Theorem In the quasi-banal case, the category Modg(G,I) is the
category of representations of G which are annihilated by Jg. In other terms,
the Schur R-algebra of G is Morita equivalent to the Iwahori-Hecke R-algebra
of G.

This is already known in the banal case. The proof of the theorem results
from properties of the Gelfand-Graev representation I'p and of the Steinberg
representation St of GL(n,F,).

We need more notation.

a) The subcategory Modg1GL(n,F,) of ModgGL(n,F,) generated by (the
irreducible subquotients of) R[GL(n,F,)/B(F,)] is a sum of blocks by a theo-
rem of Broué-Malle. Representations in Modg1GL(n,F,) are called unipotent.
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The annihilator Jr(q) of R[GL(n,F,)/B(F,)] in R[GL(n,F,)] is the Jacobson
radical of the unipotent part of the group algebra R[GL(n,F,)], because the
representation R[GL(n,F,)/B(F,)] is semi-simple.

b) Let ¢ : F, — R* be a non trivial character. We extend 1 to a char-
acter (u;;) — (> wi;4+1) of the strictly upper triangular subgroup U(F,) of
GL(n,F,), still denoted by . The representation of GL(n,F,) induced by the
character ¢ of U(F,) is the Gelfand-Graev representation I'p. Its isomorphism
class does not depend on 1. We denote by I'g; the unipotent part of I'p.

c¢) The Steinberg representation Sty of GL(n,F,) is the unique irreducible
R-representation such that its B(F,)-invariants is isomorphic to the sign rep-
resentation as a right module for the Hecke algebra Hr(GL(n,F,), B(F,)).

d) The inflation followed by the compact induction is an exact functor

i% : ModgGL(n,F,) — ModgGL(n, Or) — ModrG
e) The global Hecke algebra Hyz(G) contains the Hecke algebra
H?% = HR(GL(H, OF), 1+ ppM(n, OF))

isomorphic via inflation to the group algebra R[GL(n,F,)]. The Jacobson
radical Jg(q) of the unipotent part of the group algebra R[GL(n,F,)] identifies
with a two-sided ideal of H%.

We recall [V3, theorem 4.1.4]:

(I) The representation of GL(n,F,) on the 1 + ppM (n, Op)-invariants of
R[G/I] is isomorphic to a direct sum @R[GL(n,F,)/B(F,)].

(J) i€V is generated by its I-invariant vectors if V' € ModgGL(n,F,) is
generated by its B(F,)-invariant vectors.

4 Lemma Suppose that we are in the quasi-banal case. Then

1) Jg is the Jacobson radical of the unipotent bloc of ModrG (same for
Jr(q) and GL(n,F,)).

2) The unipotent part I'p; of the Gelfand-Graev R-representation of the
group GL(n,F,) is the projective cover of the Steinberg R-representation Stg
of GL(n,F,).

3) I'r1Jr(q) is the kernel of the map I'p1 — Stg.

4) Jr(q) C Tr-

5) i%Tr1/(i°Tr1)Jr is a quotient of i°Stg and is generated by its I-
invariant vectors.
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Proof of the lemma This is known in the banal case, hence we suppose
that we are in the limit case.

We prove the property 1). The semi-simplicity of Ind gX for all unramified
characters (theorem 1 7)) implies with (3) that Jg is the Jacobson radical of the
unipotent bloc. This means that Jg is the intersection of the annihilators in
the global Hecke algebra Hz(G) of the irreducible unipotent R-representations
of G.

We prove the property 2). The induced representation Ind g(LF(:)’FQ)l R is
semi-simple, and Sty is the unique subquotient which is isomorphic to a quo-
tient of the Gelfand-Graev representation I'r. By the uniqueness theorem,

dimR HOng(FR, StR) =1.

The unipotent part I'p ; of the Gelfand-Graev representation I'g is projective
(because the characteristic of R is different from p) and is a direct sum of
indecompable projective representations of GL(n,F,). In the quasi-banal case,
the two properties of uniqueness imply that I'r ; is projective cover of Stp.

The property 3) results from 1) and 2) by general results [CRI 18.1].

The property 4) results from e) and (I).

We prove the property 5). By definition (1T z)Jr = I'r @, Tk

By 4) T'r ®3s, Tr(Q)HR(G) C T'r @1e Tr.

We have [Vl 1.5.2.0)] I'r Qo jR(q)HR(G) = FRJR(Q) ®7-[<}72 HR(G) = i“W
where W = T'pJr(q). Clearly i“T'r/(i°Tg)Jr is a quotient of i“T'/i“W.

The functor i is exact hence i“T'y/i“W ~ i%(Tg/W). By 3) I'r/W ~
Str. Hence i°T'r/(i°Tr)Jg is a quotient of i“Stgr. By c), Stg is irreducible
and has a non zero vector invariant by B(F,). By (J), i“Stg is generated by
its [-invariant vectors. ¢

The lemma 4 extends to the standard Levi subgroups M) (F,) of GL(n,F,),
quotients of the parahoric subgroup P\(Op). These groups are parametrized
by the partitions A of n. The group GL(n,F,) corresponds to the partition
(n). One denotes by an index A the objects relative to A.

We recall:

(K) Qr := I'rn/T'rJRr is a projective generator of ModHg(G)/Jr where
I'r := ®i{Tr [V3, theorem 5.13].

Proof of the theorem 3 By lemma 4 for the group M,(F,), the quotient

ifFRy,\/ifFRVAJR of ifStRVA is generated by its [-invariant vectors. Hence the
progenerator Qr of ModHg(G)/Jr is generated by its I-invariant vectors. <
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