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Two deep theories were independently developped this last 50 years in number theory, the
p-adic theory of Fontaine and the theory of automorphic representations by Langlands. These
two theories emerge together these last 10 years giving rise to the local p-adic and modulo p
Langlands correspondence for GL(2,Q)).

We fix a finite field k of characteristic p with ¢ elements.
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We consider the groups Gal(Q3°/Q)), where Q5 is an algebraic closure of Q) and GL(n, Qp).

We put on these groups the topology such that the finite index subgroups of Gal(Q3°/Q))
and of GL(n, Z,) are all open.

This is the usual topology ***.

Definition 0.1. Let G be a topological group. A k-representation of G is a group morphism
G — GLi(V) where V is a k-vector topogical space; the representation is continuous if the
map

GxV—-V-=>V . (g,v)—guv

is continuous. The k-dimension of V is the dimension of the representation, and can be
infinite.

When the topology of V is discrete, the k-representation of G on V is continuous if and
only if for any v € V' the subgroup of g € G such that v,(g)v = v is open. One says that the
representation is smooth.

When the k-dimension is finite we suppose that V is discrete. When V' = k, the k-
representation is called a character.

Lemma 0.2. Any finite dimensional k-representation of Gal(Qp°/Qp) and of GL(n, Zy) is
smooth.

Proof. Any finite index subgroup is open. O

A profinite group is a projective limit of finite groups with the projective limit topology.
A topological group is finitely generated when it contains finitely many elements generating a
dense subgroup. Any finite dimensional k-representation of finitely generated profinite group
is smooth because any finite index subgroup is open (Segal Nikolov, annals of math 165
(2007)).

The aim of the local Langlands correspondence over @), is to compare in a meaningful
way the n-dimensional k-representations of Gal(QgC/ @Q)p) and the smooth k-representations
of GL(n,Qp).

Fontaine showed that the category of n-dimensional k-representations of Gal(Qgc/ Qp)
is equivalent to the category of n-dimensional etale (¢, I')-modules over the field k((T)) =
DosranT™ , an, € k, r € Z} of Laurent series in one indeterminate 7" with coefficients
ink.

We denote K[[T]] = {>_,50anT" , an € k, v € Z} the ring of Taylor series in one
indeterminate 7" with coefficients in £.

Definition 0.3. A n-dimensional etale (p,I')-module D over k((T)) is :
1) a k((T'))-vector space D.
2) A k-linear endomorphism ¢ of D which is semi-linear in the sense that

p(P(T)z) = P(T")p(x)



forallz € D, P(T) € k((T')) and etale in the sense that the image of a k((T))-basis ey, ..., ep
of D by ¢ is a k((T))-basis p(e1),...,p(en) of D.

2) A continous representation of I' = Gal(Q,'/Q,) where Q)¢ is the p-adic cyclotomic
field, on the k-vector space D with the topology with neigbourhood basis of 0 equal to (T" L)ner,,
where L is the k[[T]]-module generated by a k((T))-basis of D, which is semi-linear in the sense
that

Y(P(T)z) = P((1+ T)X) — 1)y(x)
for all x € D, P(T) € k((T)), where x : I' — Z is the isomorphism given by the cyclotomic
character, and commutes with ¢
Yop=wor.

As an exercise, show that ¢ is etale if and only if ¢ is injective and

D =& (1+T)'(D)

As an exercise, show that for x = ag +pa; + ... +p"a, + ... with a; € {0,...,p— 1}, the
sequence (1 4 T)%0FpPart+p"an converges in k[[T]]. By definition, the limit is (1 + 7).

Definition 0.4. Let D, D’ be two finite dimensional etale (o,T")-modules over k((T)). A
morphism f : D — D' is a k-linear morphism f : D — D' which is ¢ and T'-equivariant:
feep=y¢pof , foywp=7pof.

As an exercise, show that the category of finite dimensional etale (¢,I')-modules over
E((T)) is abelian.

1 The casen=1

The characters GL(1,Qp) = @, — k* are easy to describe. We have Q) = pZZ; and k* is a
cyclic group of order prime to p and divisible by p — 1. A character of Z, factorizes by the
reduction map Z; — F. A character 1 : @, — k* is given by n(p) € k* and a k-character of
F;. There are (¢ — 1)(p — 1) character @ — k*.

Proposition 1.1. The isomorphism classes of etale 1-dimensional (o, T")-modules over k((T'))
are in bijection with the (¢ — 1)(p — 1) characters Q, — k*.

Proof. We associate to a character n : Q) — k* the etale (¢, I')-module D, = k((T))e of basis
e such that

We must check two things:
1) When 7 # 7’ then D, and D, are not isomorphic.
2) Any 1-dimensional etale (¢, I')-module over k((T")) is isomorphic to some Dj,.

*#* Let D be a 1-dimensional etale (p,I')-module over k((T")). We choose a non zero
element e € D. Then D = k((T))e. The semilinear endomorphism ¢ and the semilinear
action of I' on D commuting with ¢ are given by



for some a(7T") € k((T)) and a 1-dimensional continuous k((T))-representation v +— b, : I' —
E((T))*, satisfying
a((1+ T = )b (T) = by (T?)a(T) .

The endomorphism ¢ is etale if and only if a(7) # 0. ***

2 k-representations of Z,

The compact group Z, is the projective limit of the finite groups Z/p"Z = Z,/p" Z, with the
projective limit topology,
Zy = projlimZ[p"Z

The subgroup Z is dense in Z,,. The group Z, is topologically cyclic generated by 1.

We denote by k[G] the group k-algebra of a group G. We denote by [g] the element g € G
in k[G].

Definition 2.1. The completed k-group algebra of Z,, is
K(Z,]) = projlimk{Z,/p" 2,
with the projective limit topology.
Clearly k[Z,] embeds as a dense subalgebra of k[[Z,]].

Theorem 2.2. The completed k-group algebra k[[Z]] is topologically isomorphic to k[[T]] by
the map sending u to 1 +T.

Proof. Alain Robert *** O

In particular a k[[T]]-module is a k-representation of Z,. Conversely, is a k-representation
V of Z,, always a k[[T]]-module ?

A topological k-vector space V which is a projective limite V' = projlim V,, of finite k-
vector spaces V,, with the profinite topology, is called profinite.

A finite k-vector space or a finitely generated k[[7']]-module with the topology induced by
E[[T]] is a profinite k-vector space.

Proposition 2.3. Let M be a profinite k-vector space. A continuous k-representation of Z,
on M 1is the same than a structure of topological k[[Zp]]-module on M.

Proof. **** Wilson Profinite groups (1998) 7.2.4 O

The monoid Z, — {0} = Zy acts continuously by multiplication on the group Z, (in the
additive notation) and acts continuously the k-algebra k[[Z,]]. In the multiplicative notation
r € Z7 sends [1] to [z]. By the theorem we get a continous action of ZJ on the k-algebra
k[[T]] such that z.(14T) := (14 T)" for z € Z). The group Z§ acts on the field k((T)). ****



3 Etale k-representations of P*

The produit semidirect Z), x Z7 where Z = Z), — {0} = pNZ;, is isomorphic to the mirabolic
submonoid Pt of GL(2,Q,) defined by

(0]
Pt .= <Z0p le> = PytN = PtV Py

(1 % — Z; Zp _(p O

Definition 3.1. Let D be a k-representation of PT. The action ¢ of t is called etale, if  is
injective and

where

1 (1 1
DZ@?:l (0 1>OSO(D)

When the action of t is etale, one says that the k-representation D of P is etale.

As an exercise, show that the action of any element of P is etale when the action of ¢ is
etale.

Show as an exercise, that D = @f:_llﬁi o (D) is equivalent to D = ©gce, 0 o ¢(D) for any
system ©; of representatives of No/tNot 1.

A finite dimensional (¢, T')-module D over k((T)) is a continuous k-representation of PT,

vhere <é i)x:(l—i-T)ix , to =) <8 (1)>:Xl(a)(x) ’

where z € D,a € Z;. We leave as an exercise to show that D is etale as a finite dimensional
(o, T)-module over k((T)) if and only if D is etale as a k-representation of PT.

As an exercise show that the category of etale k-representations of P is abelian.

The interpretation of a finite dimensional (¢, I')-module over k((7)) as an etale continuous
k-representation of the monoid P* is due to Colmez and is the first step towards the local
modulo p Langlands correspondence for GL(2,Q)).

Definition 3.2. Let D be an etale k-representation of PY. The injective endomorphism ¢
has a canonical left inverse ¥ with kernel

DY=0 = (N — tNot (D) = &!~] <(1) i) ¢(D)

Note that D = ¢(D) @ D¥=C. The k-endomorphism e := o 1) satisfies e 0 e = e because
Yoy = idp. Hence e is a projector from D onto ¢(D). The k-endomorphism e, := goporpog~t
for any g € PT is also a projector.

1

Proposition 3.3. The projectors e
(o

z) are orthogonal for 0 <i <p—1 of sum idp.
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Proof. Let ©1 be any system of representatives of No/tNot™ 1. © = pp(x) + > oco, 0¢ (7o)
with 29 € D. Left multiply by 6~! and use that §~1(©; — ) is a system of representatives of
(Nog — N1)/N;7. We leave the orthogonality as an exercise. O

As an exercise show that the projectors ey for 6 in a system Oy, of representatives of No/Ny
and N, = t* Not " are orthogonal of sum idp for any integer k > 1.

The k-endomorphism v does not respect the product but we have:

Lemma 3.4. Let a € k[[T]],x € D. We have

Plap(x)) =la)z , Y(pr)a) = zi(a)

Proof. We leave the proof as an exercise. The second formula is easier. O

4 Lattices

Let D be a finite dimensional etale continuous (¢, I')-module over k((T)).

We want to find a canonical k[[T]]-lattice D* which is P~-stable and on which the action
of 1) is surjective.

A lattice in D is a k[[T]]-submodule generated by a k((T"))-basis of D, or equivalently a
compact k[[T]]-submodule generating the k((7"))-vector space D. A k[[T]] module containing
a lattice and contained in a lattice is a lattice.

The image by I of a lattice L generates a I'-stable lattice because I" is compact.
Why does it exist a ¥-stable lattice in D ?

When D = k((T)), then k[[T]] is ¢ and t-stable and 1) is surjective is k[[T]]. Show as an
exercise that T 1k[[T]] is the maximal lattice of k((T)) where 1) is surjective and that k[[T7]
is the minimal lattice where 1) is surjective.

In general one cannot find a lattice in D which is stable by ¢ and by ¢.
Lemma 4.1. There are two lattices Ly and Ly in D such that
©(Lo) C T™'Lo € Ly C K[[T)]o(L1)

Proof. Start with any k((T"))-basis e, ..., eq of D. Because D is etale, p(e1),. .., p(eq) is also
a k((T))-basis of D. There are a;; € k((T)) and b; € k((T')) such that

w(ej) = Za;jei , ey = Zb;'j@(ei)

Choose T™ such that T"aj; € k[[T]] and T"b}; € k[[T]]. Take for Lo the lattice of k[[T7]-basis
(T"e;) and for L the lattice of k[[T]]-basis (T'""e;). They satisfy the lemma because

p(T7e;) = T p(e;) = T"PD 3" ay; T,

1



and

T "e; =T" wa e)=T" Zb’ T™o(T "e;) = TPy " bijp(T™"

Lemma 4.2. The lattice Lo is @-stable. The lattice L1 of D is 1-stable.
Proof. QO(L()) - T_lL() C Ly and 1/J(L1) C "Lﬂ(k“T“)Ll = L. O

For n € N let M,, = ¢"(Np). Then M, is a lattice contained in L; and the sequence
M,, is increasing. As k[[T]] is noetherian, it has a limit M., which is a lattice such that

Y(My) = My. The sequence "™ (T~ My) is a decreasing sequence of lattices containing
M. It has a limit D* such that 1 (D*) = D¥.

Proposition 4.3. D contains a mazimal lattice D¥ satisfying (D) = DF,
D contains a minimal lattice D' satisfying 1 (D?) = D?.
D contains a mazimal lattice DV stable by .
These three lattices are T-stable and DT C D  DF.

5 k-representations of the mirabolic group P

The subgroup P of GL(2,Q,) generated by P is the mirabolic subgroup
P = <C(2)p Qp> Qp X Qp

(1 @
WedenoteN-(O 1).

The second step is to associate to an etale k-representation D of the mirabolic monoid
P* a k-representation of the mirabolic group P.

There is a classical method, called induction and denoted by z'ndg which associates a
k-representation of a group G to a k-representation of a submonoid H.

Definition 5.1. Let H be a submonoid of a group G. Let V be k-representation of H. The
group G acts on the space

ind4D:={f:G—-V , f(hg)=hf(g) forge GP,he H }
by right translations.
The induction from H to G is the right adjoint of the restriction from G to H, and is a

left exact functor. The induction from H to G behaves better when the elements of H acts
surjectively on V.

Let
P :={¢gl|gePt}=t"pR



be the inverse monoid. An etale k-representation D of P has a canonical structure of k-
representation of P~, which coincide on Py with the original action and such that the action
of t~1 is the canonical left inverse v of ¢ defined as follows. The canonical lattices D C D¥
of D are P~-stable and the action of P~ is surjective on these lattices. We consider the
k-representations of P

ind5_ D" C ind5_ D?

Proposition 5.2. (i) If D is irreducible, dimy,ryD > 2, then Db = Dt

(i) the functor D — indt_D*? is exact (this is not true for DY),

(iii) If D, D" are two finite dimensional etale (¢, T')-modules over k((T)) such that indb_ Dt ~
indb_D* then D ~ D'.

We do not prove the proposition but we prove the following corollary of (i).

Corollary 5.3. If D s irreducible, dimyy)D > 2, then the representation of P on w_oo(Dﬁ)
is topologically irreducible (a closed P-stable subspace of is trivial).

Proof. If M is a non zero P-stable subspace of 1)~>°(DF) the n-th projection of M is a -
stable non zero k[[T]]-submodule of D¥ hence is equal to Df by (i) in the last proposition.
This implies that M is dense in ¢~ (D¥). O

#kkxk Not done in the lecture, until the end of this section. The representation indL_ D
has two other useful models.

Lemma 5.4. P = U,cnyP~t" (disjoint union).

* —n Mm—mn 77% -n
Proof. We have t " Pyt" = (Zop p 1Zp> and t " Pyt™ = <p 0 Zp P IZp) Let p =

01
For n > r’ we have p_T/Zp C p~"Zp. Choose n such that n < r and take m = r — n. ]

<a b> € P. Write a = p"a’ with o’ € Z; and r € Z. Choose 1" € N such that b € p " Z,.

Proposition 5.5. Let D be an etale k-representation of PT. The map f+— (f(t"))nen is a
bijection from ind5_D to the space

(D) := {(zn)nen | Tn =1p(zn41) for all n € N}
and the restriction to N is a N -equivariant bijection from indL_D to ind%OD

Proof. The disjoint union
P=U,enPt"

show that f is determined by its restriction to ™. We have ¢ f(¢" 1) = ¢t=1f(t"+1) = f(¢")
for n € N. and conversely f(p) = p~(x,) if p = p~t" for p € P equal to p~t" with p~ €
P~ neN.

The second assertion is deduced from the first assertion and the formula

= > 0ke! = > 0t Re! = > 0F(rEre )

HEND/Nk 9€N0/Nk QENo/Nk



FEroth) = R~ (£(7)
for any k € N. Note that the group N = Upcnt *Notk. We leave the rest of the proof as an
exercise. ]

As an exercise, give the action of P in the two models ¢~>°(D) and ind%ﬂD of the
representation of P on indf5_D, obtained by restriction to the submonoid ¢V and to the

_ (1 @
subgroup N := (0 1 )

In the model )~°°(D), it is convenient to identity (z,)nen 0 (Tn)nez Where x,, = =" (x0)
when n < —1.
For a € Z3,b € Q)

e = nitduew + () oo = @aaey + (5 1) @dner = Gdoen

1 b . n —. —-n 1
where y,, = <O pl > zp, if p"b € Z, and y,, = ¢~ ®) (Y—u,v)) I 1 < —vp(b).
We see easily that 1)~°°(D) = D when ¢ is invertible.

Proposition 5.6. If 0 — Dy — D — Dy — 0 is an exact sequence of of representations of
P~ such that the action 1 of t—1 on Dy is surjective. Then 0 — ¢%=°°(Dy1) — ¢~°(D) —
Y~°(Dy) — 0 is an exact sequence of representations of P.

Proof. To prove the surjectivity of the map ¢~>°(D) — ¥ ~°°(D) we have to show that for
x € Dy and y € D of image in Dy equal to 9 (x) there exists z € D of image x € Do with
1(z) = y. Choose 2/ € D with image x and set y' := ¢(2’). Consider D; embedded in D.
Then y' —y € D;. As 1) is surjective on Dy choose t € Dy with ¥(t) =y’ —y. Take z := 2’ +1.

O

Definition 5.7. Let Resy, the k-endomorphism ofind%oD sending f € ind%OD, the function
Resn,(f) € ind%OD vanishes outside Ny and equal to f on Ny.

Clearly Respy, is a projector of ind%OD.
In the ~°°(D)-model the projector Resy, admits the following description. The map
v:D—=y7(D) = (@"(@))nen

corresponds to the map D — ind%OD sending x € D to the function vanishing outside Ny
and value x at 1. It is injective and PT-equivariant. The map

7" (D) —=D , (¥)penr— 0

corresponds to the map ind%oD — D sending f to f(1). It is surjective and P~ -equivariant.
We have mo ¢ = idp.

Lemma 5.8. The projector v o m in the ~°°(D)-model correspponds to the projector Resn;,
in the ind%OD model.



We write an element ¢ € P as g = nta with n € N,k € Z and a € Z,. We have
hNUh_l = Ny.

Lemma 5.9. For g € P as above, the projector govomo g~ ! depends only on the set nNy,
i N.

Proof. Tt is true to prove gotromog ! = hotomoh™! for h = n/t¥ with n’ € N such
that /Ny = nNj. We have g7 'h = a~ " n=1n/tF and n='n/ € t* Not . Hence ¢~ 'h € P.
Clearly Resy, = ¢ om commutes with Fp. O

We denote Res,y, :=gotomo g~ ! when g = nt*a as above. A open compact subset U
of N is a finite disjoint union of U,,cn/n, 7Nk (the group N is commutative) for some k € Z.
We define Resy = ZneN/Nk Resyn, -

As an exercise, show that Resy does not depend of the choice of k € Z and for g € P we
have g o Resyy = Resy o g for all g € P.

As an exercise, show that the projector 1 —¢@o1) : D — D¥=0 corresponds to the restriction
to D embedded canonically in indZ_D of the projector Res Ng-

Proposition 5.10. ?7? The map
Res : C°(N; k) — Endyinds_D
defined by
1y — Resy
fro all open compact subsets U of N characteristic function 1y, is well defined k-linear.

The group P acts naturally on Endyindo_D. For f : D — D and p € P we have
(p-f)(x) = p.f(p~ ")

Proposition 5.11. ?22¢ The map
Res : C°(N; k) — Endyindb_D

is P-equivariant .

6 Irreducible smooth k-representations of the mirabolic P

Proposition 6.1. Let V be a topological k-vector space. If V is discrete (resp. profinite)
then V* = Homeont(V, k) is profinite (resp. discrete) and V** = V. If V is a smooth k-
representation of Z,, then V% is finite if and only if V* is a fnitely generated k[[Z,]]-module.

Proof. 1) Topological Nakayama lemma (Howson).

Claim: If M is a profinite k-vector space which is a topological k[[T]]-module such that
M =TM then M = 0.

Proof. Assume that M # 0 and let U be an open neighborhood of 0 in M with U # M.
Let m € M. There exists a neighborhood U,, of m in M such that T"M C U for n € N large
enough. We cover the compact space M by finitely many U,,. For n large enough we have
T"M C U. But T"M = M. Hence we get a contradiction.

10



Claim: If M/TM is a finite dimensional k-vector space then M is a finitely generated
E[[T]]-module.

Proof of claim. Let N = k[[T]e; + ...+ k[[T]]e, such that M = N + TM. The quotient
M/N is compact and Hausdorff. We have T'(M/N) = (T'M + N)/N = 0. Hence M/N =0
and M = N.

O]

The dual Q(D?) of c-ind5_ (D) is a quotient of the dual Q(D¥) of c-ind5_ (D¥). They are
smooth k-representations of P for the contragredient action

<" bv >=<v" v >

By duality we obtain :

Corollary 6.2. (i) If D is irreducible, dimy )y D > 2. Then Q(D) is an irreducible smooth
k-representation of P.
(ii) the functor D — indL_D* is exact and contravariant.

(11i) If D, D' are two finite dimensional etale continuous (p,T")-modules over k((T')) such
that Q(D) = Q(D’) then D ~ D',

We consider the upper triangular subgroup

_ (@ @\ _
B._(Op Q£>_P><Z o

where
d 0 *
Z = {<0 d> ) de Qp}
is the center of GL(2,Q)p).

Proposition 6.3. We have the Bruhat decomposition GL(2,Q,) = B U BsB where s :=
a b

(1) i
BsB = BsN = {(C d) €GL(2,Q,) , c#0}

is open in GL(2,Q)).
Proof. O

To extend a representation of P to a k-representation of GL(2,@Q),), the action of Z is
given by a character Z ~ (), — k*, and we look for a compatible action of s .

Theorem 6.4. When D is irreducible and dimy 1)) D = 2, the representation Q(D) of P
extends to a smooth irreducible k-representation of GL(2,Q)).

Proof. (Berger) The proof uses the classification of the smooth irreducible k-representations
of GL(2,(Q)p) with a central character and results in characteristic 0. It would be nice to have
a direct proof. O

11



This is no more the case when D is irreducible and dimyr))D > 3 The representation
Q(D) is not seen by GL(2,Q)). Is it seen by GL(d,Q,) 7 In which way ?

When D = D, is the 1-dimensional (p,')-module associated to a character 1 : Q;, — k,
we take D% = E[[T]]e for the e € D non zero with ¢(e) = n(p),v(e) = n(x~'(7)) and not
D¥ = T~1E[[T]]e to define Q(D).

7 The special representation

Let Z be the center of GL(2,Q,). The group B = PZ is the subgroup of upper trian-
gular matrices in GL(2,(Q)). Let s :=. By the Bruhat decomposition G = B N BsN and
B\BsN ~ N by Bsn +— n. The space C*°(B\GL(2,Qp; k) of locally constant k-valued func-
tions f : B\GL(2,Q, — k is a smooth representation of GL(2,Q,) such that g.f(z) = f(zg)
for g € GL(2,Qp). The center Z acts trivially. The representation is not irreducible because the
subspace of constant functions is stable by GL(2, Q). The quottient of C*°(B\GL(2, Qp; k)
by the constant functions is a smooth representation of GL(2,(Q),) called the special k-
representation Sp of GL(2,Q)).

The restriction of C.(B\G;k) to P contains the functions with support in BsN which
form a P-stable subspace isomorphic to sp.

R PR
GG o) =60 (G )

We have ZPsP = ZPsN and the map s é alc
ZP\ZPsN. The space C°(ZP\ZPsP;k) has a natural action of B trivial on Z and isomor-
phic to C°(Qp; k) by the map f — r(z) = f(s <(1) :16)) The induced action of B trivial on

Z on C(Qp; k) is

(5 -5 (S =n( ) 8-

We give now a very useful proposition.

S

is a representative system of the cosets

Proposition 7.1. 1) Let H be a finite p-group acting on a non zero k-vector space V.. Then
VH £,

2) Let G be a finite group containing H acting on a k-vector space V. When dim, VH =1
and V is the k-space generated by the G-orbits of VH, the k-representation of G on V is
irreducible.

3) 1) and 2) remain true when H is a pro-p-subgroup of a profinite group acting smoothly
onV

Proof. 1) Let v € V non zero and let W be the non zero k-vector space generated by the
H-orbit of v. The number of elements of W is finite and is a power of p. For w € W the order

12



of the H-orbit of w is a power of p, equal to 1 if and only if w € WH. Hence W# which is
not empty because it contains 0 is divisible by p.
2) Let V’ be a non zero subspace of V which is stable by G. Then (V')¥ is a non zero
k-subspace of V. As dim; V =1 we have (V/)# = V#. Hence V.C V' C V.
3) The orbits of G in V are finite in the profinite case, and this is all what the proof is
using.
O

Proposition 7.2. The k-vector space C°(Qp; k) of locally constant compactly supported k-
valued functions r: Qp = N with the action of (a,b) € Q) x Q, = P given by

r—0b
a

(a,b).r(z) =r(

is an irreducible k-representation of P.
It is isomorphic to the restriction to P of the special representation

)

Sp := C.(B\G; k)/constant functions
of G.

Proof. Proof of the irreducibility. Let f € C2°(Qp; k) non zero generating a subrepresen-
tation W. There exists n € N such that the support of f is contained in p~"Z,. Hence
feCX(p"Zy; k). A function in C°(p~"Zy; k) fixed by p~"Z, is constant. The subrepresen-
tation W, of p™"Z, generated by f is contained in C2°(p~"Z,; k) and has a vector fixed by
p~"Zp, hence W,, contains the characteristic function of p~"Z,. We deduce that W contains
the characteristic functions of b+ p~™Z, for any b € Q,,m € N. Hence W = C°(Qp; k).

O

Proposition 7.3. sp® (n~! o det) = Q(D,)).
Proof. *** O
Proposition 7.4. The special k-representation Sp of GL(2,Q)) is irreducible.

Proof. The restriction to the mirabolic group P of Sp is isomorphic to the special represen-
tation of P which is irreducible. O

8 Bruhat-Cartan-Iwasawa decompositions
Let B := (Qp Qﬁ) be the upper triangular group. We have B = PZ. Let

0 Q;
(01 (p O (0 1
=) @) =)

Theorem 8.1. Bruhat decomposition G = B U BsB disjoint union and BsB is open in G
Cartan decomposition G = UpcyK Zt"N K
Twasawa decomposition G = BK

Proof. With the tree *** (Rachel) O
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9 Irreducible k-representations of GL(2, F),)

For r € {0,...,p— 1}, let k[X, Y], be the space homogenous of polynomials of degree r with
two indeterminates X, Y and coeffcients in k. This is a k-vector space of dimension r + 1 of
basis XY7 for i,j € N such that i + j = r. The group GL(2, F},) acts on k[X,Y], by

g:@iDWW:MXﬂﬂ%XﬂWV
This representation is denoted Sym” and is of dimension r+1. When r = 0 we have k[ X, Y]y =
k and GL(2, F,) acts trivially. When r = p — 1 the representation Sym?~! of dimension p is
isomorphic to the special k-representation of GL(2, F),) (exercise).

Lemma 9.1. kX" is the subspace of elements of k[ X,Y], fized by <(1] Ff)).

F, 1

The k-subspace generated by the GL(2, F,)-orbit of X" (or Y") is equal to k[X,Y],.

kY™ is the subspace of elements of k[X,Y], fized by < 1 0>)

Proof. Exercise. O

Theorem 9.2. The irreducible k-representations of GL(2, F,) are Sym” ® (n ® det) for 0 <
r <p—1 and a morphism n: Fjy — k*.

Proof. These k-representations are irreducible and they are not isomorphic (exercise). Their
number is p(p — 1). This is true for any k C Fj¢. Hence they remain irreducible and not
isomorphic when one extends the scalar to F¢

By the theory of Brauer, the number of isomorphism classes of irreducible Fjj“-representations
of GL(2, F},) is equal to the number of conjugacy classes of elements pf order prime to p (Serre
Linear representations of finite groups). The number of conjugacy classes of elements of order
prime to p is p(p — 1) (Exercise). O

Let K := GL(2, Z,). The reduction is a surjective morphism K — GL(2, F},). We inflate

Sym” to a k-representation of K.

Let Z := (g 2) , a € Qp the center of GL(2, F). We inflate Sym” to a representation

of KZ where p acts trivially.

Theorem 9.3. Modulo isomorphism, the irreducible smooth k-representations of KZ are
Sym” @ (n®det) for 0 <r <p—1 and a continous morphism 1 : Z; — k*. Their number is

p(p—1).

Proof. It remains only to prove that (2(;

representation of KZ. *** O

0) acts by a scalar in an irreducible smooth k-

Let c-ind%, Sym” be the space of functions f : G := GL(2,Q,) — k[X, Y], with compact
support modulo Z such that f(kg) = Sym'"(k)f(g) for k € KZ,g € GL(2,Q;). The group
G = GL(2,Qp) acts by right translation. We have gf(z) = f(xg). This representation is
called the compact induction of Sym” to G.

14



Fix v, € c-ind%, Sym” for the function with support KZ and v,(1) = X”. Then v, gen-
erates c—ind]G( 7 Sym”, i.e. the k-vector space generated by the G-orbit of v, is c—indIG( 7 Sym”.

It is known that Endyg c-ind%, Sym” ~ k[T] for some T . To define 7T is suffices to defined
Tv,. Let (Paskunas, restriction to the Borel)

When r =0
10 " p i
TUT:<I> 0) vr+2i_0 <0 1) o

P .
Tv, :Z <g i) vy

1=0

Whenr=1,...,p—1

For any A € k, the image 7 — A € Endig c—ind%z Sym” is a subrepresentation k-
representation of G. Let 7 : @), — k* be a smooth character and let

c-ind% , Sym”
(T — \) c-ind% , Sym~

7-‘-(7"7>\717) = X (UOdet)

The representation 7 (r, A\,7n) is not irreducible if and only if A = +1 and r € {0,p — 1}
(theorem of Barthel-Livne-Breuil). When r = 0, (0,41, 7) has a unique irreducible subrep-
resentation Sp® (nur1odet) and the quotient is nuyodet. When r = p—1, m(p—1,£1,7n) has
a unique irreducible subrepresentation 741 o det and the quotient is Sp ® (nuy1 odet), where
px is the character of @), trivial on Z7 sending p on A and Sp is the special representation
of G, equal to the quotient of the space C*°(PZ\G;k) of locally constant functions by the
constant functions, with the natural action of G by translation. I will prove later that it is
irreducible.

The representations with A = 0 are all irreducible; they called supersingular by the number
theorists and supercuspidal by the group theorists. Their number when the action of p is fixed
is (p*—p)/2. It is also the number of irreducible k-representations of Gal(Q%¢/Q,) of dimension
2 where the determinant of a Frobenius is fixed.

The number of irreducible k-representations of Gal(Q3°/Qp) of dimension n where the
determinant of a Frobenius is fixed, is the number of unitary irreducible polynomials in F},[X]

of degree n
n~ ' pn/d)g
din

Theorem 9.4. The smooth irreducible k-representations of GL(2,Qp) with p acting by a
scalar are
(1) the characters n o det where n: Q, — k™ is a smooth character
(2) the special representations Sp @ (n o det) where Sp is the “special” representation.
(8) the supercuspidal (=supersingular) representations w(r,0,n)
(4) the irreducible representations w(r, \,n) with X # 0.
The only isomorphisms occur when A =0 and are

7T(7"7 07 77) = 7r(7ﬂ7 07 77#—1) = ﬂ—(p -1- Ty 07 UWT) = ﬂ—(p -1- Ty 07 nwrﬂ—ﬁ
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where p_1 is the unramified quadratic character of Qy, trivial on Z; sending p to —1 and w
is the character of Qy trivial on p? given by the reduction Zy, — Iy,

Corollary 9.5. An irreducible smooth k-representation of G = GL(2,(Q),) where p acts by a
scalar is a quotient T : c—ind?(Z Vo — V where Vjy is an irreducible k-representation of KZ
and the kernel R of m is a finitely generated smooth k-representation of G.

Proof. The kernel is W + (T — \) c-ind%, Vo where W = 0 or 5o det or Sp ® (1 o det). The
k-vector spaces c-ind%, Vo and (T — \) c-ind% , Vj are generated by a single G-orbit, the same
is true for any irreducible k-representation. O

The irreducible k-representations m(r, A\,n) of GL(2, F') are called principal series. They
are the irreducible k-representations c-indg m ® 12 induced from a k-character 11 ® 1y of B

(6 2) ~m@omo

The principal series are c—indg m ® n2 with 71 # 12 and there are no isomorphic.
The Bruhat decomposition G = B U BsB implies that the restriction to P of a principal
series c-ind% 11 @ 1y contains sp @ (mam1) o det and that the quotient is (7y72) o det.

Theorem 9.6. The restrictions to P of the irreducible smooth k-representations of GL(2,Qp)
where p acts by a scalar, which are NOT principal series, are irreducible and not isomorphic.

This is quite surprising if one thinks of the modulo £ irreducible representations of GL(2, Qp)

where the restrictions to P of generic representations all isomorphic.

10 A functor from the smooth k-representations of P to (¢, [')-
modules

Let V be a smooth k-representation of P. When V is finitely presented, one associates canon-
ically to V an etale (¢,I')-module over k((T)).

A finitely generated smooth k-representation V' of P is k[P]-generated by finitely many

Zy Zp\ . . .
vectors vy, ..., v,. The group Py = Op 1p > is open and compact in P. As the representation

of P on V is smooth, the k[Py]-submodule Vj of V' generated by vy, ..., v, is finite.

Let c—indgo (Vo) be the compact induced representation. This is the space of functions f :
P — V, with compact support such that f(xg) = zf(g) for x € P°, g € G by right translation
(9-f)(x) = f(zg) for z,g € P. The group P acts by right translations: g.f(z) = f(zg) for
x,g9 € P. We denote by [1,vg] the function with value vy € Vj at 1 and vanishing outside Pp.

Show as an exercise, that the compact induced representation ind?o(vo) is a smooth k-
representation of P, that the functions g[1, vg] for vy in a k-basis of Vj and g € P/P, form a
k-basis of indb, (Vo).

The k-linear map
mindp (Vo) =V, w(g[l,v0]) = g-vo
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is P-equivariant and surjective. The kernel R of 7 is a subrepresentation of ind?o (Vo).

When the kernel of 7 is a finitely generated representation of P, one says that = is a finite
presentation of V. A smooth k-representation V' of P is finitely presented if it admits a finite
presentation.

Let V be a finitely presented smooth k-representation of P, and let
T indllio (Vo) =V

be a finite presentation of kernel R.
Let P™Vj be the k-vector space generated by g.v for g € P*,v € V0. The dual (PTVp)*
is a profinite k-vector space with an action of P~; in particular it is a k[[Zp]]-module, i.e. a
E[[T]]-module. Let
D :=k((T)) @ujry (PTVo)*

Proposition 10.1. The k((T'))-vector space D does not depend on the choice of V.

Proof. Claim. Let V be a Py-stable finite k-subspace of V generating V. Then P1V] is
contained in PV, + X for some Ny-stable finite k-vector subspace X of V.

The claim implies the proposition. By duality (PTV{)* is a quotient of (PTVp)* as a k[[T])-
module. The kernel W is a finite k[[T]]-module. It is killed by a power of T, hence vanishes
when one inverts 7. We have k((T')) ®ryy W = 0. This proves the proposition.

Proof of the claim. If py, ..., p, € P, there exists an integer n > 0 such that t"p,...,t"p, €
P7*. This implies that there is an integer n > 0 such that ¢"V, C PTV] for some n € N hence
PTt"Vy C PTV.

Pt = PTt"Py + NyY P, for a finite subset Y of PT. Hence PTVy = PTt"Vy + X for
some Ny-stable finite k-vector subspace X of V', because the action is smooth and Ny, Py are
compact. ]

The group P~ acts smoothly on D and not P*.

When the kernel of the presentation m : indﬁO(Vo) — V is finitely generated, we show
that the representation of P~ on D comes from an etale representation of P on D, i.e. a
structure of etale (¢, I')-module over k((T")).

Lemma 10.2. The set P — PT is stable by multiplication by P~.

Proof. Let p € P. We write uniquely p = uat” with v € N,a € Z;,r € Z. We have t~lp =
t~lutat™ 1. If u & No then t~tut & No. If r < 0 then r — 1 < 0.
The element p does not belong to P if and only if u € Ny or u € Np,r < 0. Hence
p € P— P implies t'p € P — P*. The monoid P~ is generated by ¢! and Ny. For u € Ny
it is clear that p € P — PT if and only if up € P — P™
O

The lemma implies that the group P~ acts naturally on

ind, (V)
R+ (P — P*)[1, Vo]

where (P — PT)[1, Vo] be the k-vector space generated by g¢.[1,vg] for g € P — P+, vy € V0.
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Lemma 10.3.

indp, (Vo) PtV
R+(P-PHLV] A

where A =PTVyn (P - P

Proof. We leave the proof as an exercise. O

Lemma 10.4. When the kernel of w: m : indgo (Vo) — V is finite, A is finite.
The dual ( %)* is a k-representation of P* and

PV,

(50 C (P

We deduce from the lemma that

P+V0)*
A

k((T)) @y (PTV0)" =~ k((T)) @y (

Let D‘J}O C DE,O be the natural images of (%)* C (P*Vy)* in D. Then D;}O is a p-stable
lattice and DE/O is a 1-stable lattice. Compare with Schneider Vigneras to find P*Vj minimal.

Check if the minimal case corresponds to a finite presentation and that the lattices which are
canonical correspond to Dt and D?.

Theorem 10.5. V +— D(V) is a contravariant exact functor from the category of smooth
k-representations of P to the category of etale (¢,T') k((T))-modules.

What are the finitely presented smooth k-representations V' of P such that the associated
etale (¢, I')-module D over k((7")) is finite dimensional ?

Proposition 10.6. If c—indﬁ0 Vo — V is a finite presentation of V such that (PTVp)No is
finite, then the k((T'))-vector space D is finite dimensional.

Proof. See the proposition on duality. O

By the topological Nakayama lemma, dimy(P7 V()™ is the minimal number of generators
of the k[[T]]-module PTV;. The ring k[[T]] is principal. By the classification of the finitely
generated k[[T]]-modules, the k((7"))-dimension of D is the rank of the k[[T]]-free module
PV divided by its torsion submodule. Hence the k((T'))-dimension of D of bounded by the
k-dimension of PTV{, with equality if the k[[T]]-module PTV{ is free.

Theorem 10.7. Let V' be an irrreducible smooth k-representation of GL(2,Q,) where p acts
by a scalar. Then V|p is finitely presented and the associated etale (p,T") k((T'))-module is a
kE((T))-vector space of dimension

0 if V is a character,

1 4f V is special or a principal series,

2 if V is supercuspidal.

Before explaining the proof of the theorem, we give a corollary based on the following
result on extensions

Proposition 10.8. If Vi — V — Vo — 0 is an exact sequence of smooth k-representations
of P, and if V1 and Va are finitely presented, then V is finitely presented.
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Proof. To be written. O

Corollary 10.9. V' — D(V) is a well defined functor from the category of finite length smooth
k-representations of GL(2,Qp) where p acts by a scalar on any irreducible subquotient. It is an
exact contravariant functor to the category of finite dimensional etale (p,I") k((T))-modules

over k((T)).

This functor is the Colmez functor, and is not faithful because it vanishes on the smooth
k-characters of GL(2,Q)).

We give now the proof of the theorem.
Proposition 10.10. [wasawa decomposition. We have G = PKZ with Py = PN KZ.

Proof. Rachel’s course on the tree. O

Proposition 10.11. When V is the restriction to P of an irreducible smooth k-representation
of GL(2,Q)p) then V is finitely presented.

Proof. By Iwasawa decomposition, for any smooth k-representation Vj of K Z, the restriction
to P of c-ind%, Vj is c—indﬁo Vo and the restriction to P of a a finitely generated smooth
k-representation of G is a finitely generated smooth k-representation of P. We know that V'
is the unique quotient of some V'(r, A\, ). The presentation of V'|p associated to the image V)
of Sym” ® (n ® det) is finite.

O

When dimyV is finite, D = 0 because k((T')) ®ry (PTV0)* = 0 when (P*Vp)* is finite.

The special representation sp of P is the restriction of the special representation Sp of
GL(2,Qp). The subspace C*(Z,; k) (functions with support in Z,) in the model Cg°(Qp; k)
is PT-stable and generated by the characteristic function of Z, as a representation of PT.
This implies that

D(Sp) = k((T)) @x((ry) (CF(Zp; k)
because two finitely generated Pt-stable submodules generating a smooth k-representation

of P are equal modulo a finite No-stable set. The dual of C2°(Z,; k) = lim C°(Z,; k)P"Zr is
k[[Zp]] = proj im(C2°(Zy; k)P"%r)* ~ k[[T]]. We deduce that D(Sp) ~ k((T)).

D(Sp ® n®) ~ D,y for two characters n,n’ — k*. Do we have n/ =n ? or y/ =9~ ?

A smooth k-representation V' of GL(2,(Q)) is called admissible when V¢ is finite for any
open compact subgroup C' of GL(2,Q,). Let I; be the pro-p-Iwahori subgroup inverse image
of N(Fp) in K.

Proposition 10.12. A smooth k-representation V' of GL(2,Q)) is admissible if and only Ve
is finite for some open compact subgroup C' of GL(2,Q)p).

The dimension of the k-vector space V' is 1 when V is a character or a special represen-
tation and is 2 for the other irreducible smooth k-representations of GL(2,Q,) with p acting
by a scalar.

We consider now a supersingular irreducible smooth k-representation V (r,n) of GL(2,Q))
where p acts by a scalar. Let V) be the image of Sym”®(nodet) embedding in V' by the quotient
map c-ind% , Sym” @ (nodet) of kernel T c-ind% , Sym” ® (nodet). Let A = PTVon(P—P1)Vj.
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Proposition 10.13. A contains (P*Vp)No

As A is finite, we deduce that (P*V;)No is finite hence the k((T'))-vector space D(V) is
finite dimensional. This is enough for the corollary of the theorem.

Proof. The following proof is due to Y. Hu.

a) If v € (PTV})™ then v is fixed by some <p 1 0

n ) The subgroup C, of GL(2,Q,)
7z, 1

generated by Ny and (p 1 0> is open and compact, The representation V' of GL(2,0Q))

"z, 1
is admissible. Hence Vv is.ﬁnite.

b) Let 71 = Zf:_ol (g i) seen as an operator of V. Set T,, =T} o...0 T n-times. Then

one can show *** that T),v € VS when n > n,,.

c) Let Ag = A and by induction on n let A, = PTVy N KstA,_1 where st = <2 i)
Then one can show that the sequence of k-vector spaces (Ay)nen is increasing of union
P*™Vpy. For v € PTV; let £(v) be the minimal integer n € N such that v € A,. Then one
shows that ¢(Thv) = 4(v) + 1 if v € A.

d) By a) and b), the elements T,v for n > n, are linearly dependent. This implies that v
belongs to A because ¢(T,v) = £(v) + n if v & A.

*oksk

O
In fact, Hu proved more:
Proposition 10.14. A = VI
Proof. *** O

An element of A invariant by I; belongs to P™V, which contains A and is invariant by
Ny which is contained in I7. Hence we obtain

Corollary 10.15. (PT1p)No =y i

We deduce that the dimension of D(V) over k((T)) is < 2 with equality if (PTVp)* is a
free k((T'))-module.

To finish ***

The canonical diagram A C KA To finish ***
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