Modulo p representations of $G L\left(2, Q_{p}\right)$ and (φ, Γ)-modules

Marie-France Vignéras

May 28, 2010

Lectures WAM Princeton May 2010

Two deep theories were independently developped this last 50 years in number theory, the p-adic theory of Fontaine and the theory of automorphic representations by Langlands. These two theories emerge together these last 10 years giving rise to the local p-adic and modulo p Langlands correspondence for $G L\left(2, Q_{p}\right)$.

We fix a finite field k of characteristic p with q elements.

Lectures

1. Etale (φ, Γ)-modules over $k((T))$ and the mirabolic monoid P^{+}of $G L\left(2, Q_{p}\right)$.
2. Irreducible k-representations of $G L\left(2, F_{p}\right)$ and of $G L\left(2, Q_{p}\right)$.
3. From smooth k-representations of the mirabolic P of $G L\left(2, Q_{p}\right)$ to etale (φ, Γ)-modules over $k((T))$.
4. Coefficient system on the tree and finite dimensional etale (φ, Γ)-modules over $k((T))$.

References

1. Laurent Berger On some modular representations of the modular subgroup of $G L_{2}\left(Q_{p}\right)$.
2. Pierre Colmez (φ, Γ)-modules et représentations du mirabolique de $G L_{2}\left(Q_{p}\right)$ Reprsentations de $G L_{2}\left(Q_{p}\right)$ et (φ, Γ)-modules
3. Yongquan Hu Diagrammes canoniques et représentations modulo p de $G L_{2}(F)$

We consider the groups $\operatorname{Gal}\left(Q_{p}^{a c} / Q_{p}\right)$, where $Q_{p}^{a c}$ is an algebraic closure of Q_{p} and $G L\left(n, Q_{p}\right)$. We put on these groups the topology such that the finite index subgroups of $\operatorname{Gal}\left(Q_{p}^{a c} / Q_{p}\right)$ and of $G L\left(n, Z_{p}\right)$ are all open.

This is the usual topology ${ }^{* * *}$.
Definition 0.1. Let G be a topological group. A k-representation of G is a group morphism $G \rightarrow G L_{k}(V)$ where V is a k-vector topogical space; the representation is continuous if the map

$$
G \times V \rightarrow V \rightarrow V \quad, \quad(g, v) \mapsto g . v
$$

is continuous. The k-dimension of V is the dimension of the representation, and can be infinite.

When the topology of V is discrete, the k-representation of G on V is continuous if and only if for any $v \in V$ the subgroup of $g \in G$ such that $v_{r}(g) v=v$ is open. One says that the representation is smooth.

When the k-dimension is finite we suppose that V is discrete. When $V=k$, the k representation is called a character.

Lemma 0.2. Any finite dimensional k-representation of $\operatorname{Gal}\left(Q_{p}^{a c} / Q_{p}\right)$ and of $G L\left(n, Z_{p}\right)$ is smooth.

Proof. Any finite index subgroup is open.

A profinite group is a projective limit of finite groups with the projective limit topology. A topological group is finitely generated when it contains finitely many elements generating a dense subgroup. Any finite dimensional k-representation of finitely generated profinite group is smooth because any finite index subgroup is open (Segal Nikolov, annals of math 165 (2007)).

The aim of the local Langlands correspondence over Q_{p} is to compare in a meaningful way the n-dimensional k-representations of $\operatorname{Gal}\left(Q_{p}^{a c} / Q_{p}\right)$ and the smooth k-representations of $G L\left(n, Q_{p}\right)$.

Fontaine showed that the category of n-dimensional k-representations of $\operatorname{Gal}\left(Q_{p}^{a c} / Q_{p}\right)$ is equivalent to the category of n-dimensional etale (φ, Γ)-modules over the field $k((T))=$ $\left\{\sum_{n \geq r} a_{n} T^{n} \quad, \quad a_{n} \in k, r \in Z\right\}$ of Laurent series in one indeterminate T with coefficients in k.

We denote $k[[T]]=\left\{\sum_{n \geq 0} a_{n} T^{n} \quad, \quad a_{n} \in k, r \in Z\right\}$ the ring of Taylor series in one indeterminate T with coefficients in k.

Definition 0.3. A n-dimensional etale (φ, Γ)-module D over $k((T))$ is :

1) a $k((T))$-vector space D.
2) Ak-linear endomorphism φ of D which is semi-linear in the sense that

$$
\varphi(P(T) x)=P\left(T^{p}\right) \varphi(x)
$$

for all $x \in D, P(T) \in k((T))$ and etale in the sense that the image of a $k((T))$-basis e_{1}, \ldots, e_{n} of D by φ is a $k((T))$-basis $\varphi\left(e_{1}\right), \ldots, \varphi\left(e_{n}\right)$ of D.
2) A continous representation of $\Gamma=\operatorname{Gal}\left(Q_{p}^{\text {cyc }} / Q_{p}\right)$ where $Q_{p}^{\text {cyc }}$ is the p-adic cyclotomic field, on the k-vector space D with the topology with neigbourhood basis of 0 equal to $\left(T^{n} L\right)_{n \in L}$, where L is the $k[[T]]$-module generated by a $k((T))$-basis of D, which is semi-linear in the sense that

$$
\gamma(P(T) x)=P\left((1+T)^{\chi(\gamma)}-1\right) \gamma(x)
$$

for all $x \in D, P(T) \in k((T))$, where $\chi: \Gamma \rightarrow Z_{p}^{*}$ is the isomorphism given by the cyclotomic character, and commutes with φ

$$
\gamma \circ \varphi=\varphi \circ \gamma
$$

As an exercise, show that φ is etale if and only if φ is injective and

$$
D=\oplus_{i=0}^{p-1}(1+T)^{i} \varphi(D)
$$

As an exercise, show that for $x=a_{0}+p a_{1}+\ldots+p^{n} a_{n}+\ldots$ with $a_{i} \in\{0, \ldots, p-1\}$, the sequence $(1+T)^{a_{0}+p a_{1}+\ldots+p^{n} a_{n}}$ converges in $k[[T]]$. By definition, the limit is $(1+T)^{x}$.

Definition 0.4. Let D, D^{\prime} be two finite dimensional etale (φ, Γ)-modules over $k((T))$. A morphism $f: D \rightarrow D^{\prime}$ is a k-linear morphism $f: D \rightarrow D^{\prime}$ which is φ and Γ-equivariant: $f \circ \varphi_{D}=\varphi_{D^{\prime}} \circ f \quad, \quad f \circ \gamma_{D}=\gamma_{D^{\prime}} \circ f$.

As an exercise, show that the category of finite dimensional etale (φ, Γ)-modules over $k((T))$ is abelian.

1 The case $n=1$

The characters $G L\left(1, Q_{p}\right)=Q_{p}^{*} \rightarrow k^{*}$ are easy to describe. We have $Q_{p}^{*}=p^{\mathbb{Z}} Z_{p}^{*}$ and k^{*} is a cyclic group of order prime to p and divisible by $p-1$. A character of Z_{p}^{*} factorizes by the reduction map $Z_{p}^{*} \rightarrow F_{p}^{*}$. A character $\eta: Q_{p}^{*} \rightarrow k^{*}$ is given by $\eta(p) \in k^{*}$ and a k-character of F_{p}^{*}. There are $(q-1)(p-1)$ character $Q_{p}^{*} \rightarrow k^{*}$.
Proposition 1.1. The isomorphism classes of etale 1-dimensional (φ, Γ)-modules over $k((T))$ are in bijection with the $(q-1)(p-1)$ characters $Q_{p}^{*} \rightarrow k^{*}$.

Proof. We associate to a character $\eta: Q_{p}^{*} \rightarrow k^{*}$ the etale (φ, Γ)-module $D_{\eta}=k((T)) e$ of basis e such that

$$
\varphi(e)=\eta(p)) e \quad, \quad \gamma \cdot e=\eta(\chi(\gamma)) e .
$$

We must check two things:

1) When $\eta \neq \eta^{\prime}$ then D_{η} and $D_{\eta^{\prime}}$ are not isomorphic.
2) Any 1-dimensional etale (φ, Γ)-module over $k((T))$ is isomorphic to some D_{η}.
*** Let D be a 1 -dimensional etale (φ, Γ)-module over $k((T))$. We choose a non zero element $e \in D$. Then $D=k((T)) e$. The semilinear endomorphism φ and the semilinear action of Γ on D commuting with φ are given by

$$
\varphi(e)=a(T) e \quad, \quad \gamma \cdot e=b_{\gamma}(T) e
$$

for some $a(T) \in k((T))$ and a 1-dimensional continuous $k((T))$-representation $\gamma \mapsto b_{\gamma}: \Gamma \rightarrow$ $k((T))^{*}$, satisfying

$$
a\left((1+T)^{\chi(\gamma)}-1\right) b_{\gamma}(T)=b_{\gamma}\left(T^{p}\right) a(T)
$$

The endomorphism φ is etale if and only if $a(T) \neq 0 .^{* * *}$

$2 k$-representations of Z_{p}

The compact group Z_{p} is the projective limit of the finite groups $Z / p^{n} Z=Z_{p} / p^{n} Z_{p}$ with the projective limit topology,

$$
Z_{p}=\operatorname{projlim} Z / p^{n} Z
$$

The subgroup Z is dense in Z_{p}. The group Z_{p} is topologically cyclic generated by 1 .
We denote by $k[G]$ the group k-algebra of a group G. We denote by $[g]$ the element $g \in G$ in $k[G]$.

Definition 2.1. The completed k-group algebra of Z_{p} is

$$
k\left[\left[Z_{p}\right]\right]=\operatorname{projlimk}\left[Z_{p} / p^{n} Z_{p}\right]
$$

with the projective limit topology.
Clearly $k\left[Z_{p}\right]$ embeds as a dense subalgebra of $k\left[\left[Z_{p}\right]\right]$.
Theorem 2.2. The completed k-group algebra $k\left[\left[Z_{p}\right]\right]$ is topologically isomorphic to $k[[T]]$ by the map sending u to $1+T$.

Proof. Alain Robert ***
In particular a $k[[T]]$-module is a k-representation of Z_{p}. Conversely, is a k-representation V of Z_{p} always a $k[[T]]$-module ?

A topological k-vector space V which is a projective limite $V=\operatorname{proj} \lim V_{n}$ of finite k vector spaces V_{n} with the profinite topology, is called profinite.

A finite k-vector space or a finitely generated $k[[T]]$-module with the topology induced by $k[[T]]$ is a profinite k-vector space.

Proposition 2.3. Let M be a profinite k-vector space. A continuous k-representation of Z_{p} on M is the same than a structure of topological $k\left[\left[Z_{p}\right]\right]$-module on M.

Proof. ${ }^{* * * *}$ Wilson Profinite groups (1998) 7.2.4

The monoid $Z_{p}-\{0\}=Z_{p}^{o}$ acts continuously by multiplication on the group Z_{p} (in the additive notation) and acts continuously the k-algebra $k\left[\left[Z_{p}\right]\right]$. In the multiplicative notation $x \in Z_{p}^{o}$ sends [1] to $[x]$. By the theorem we get a continous action of Z_{p}^{o} on the k-algebra $k[[T]]$ such that $x \cdot(1+T):=(1+T)^{x}$ for $x \in Z_{p}^{0}$. The group Z_{p}^{o} acts on the field $k((T))$. ${ }^{* * * *}$

3 Etale k-representations of P^{+}

The produit semidirect $Z_{p} \rtimes Z_{p}^{o}$ where $Z_{p}^{o}=Z_{p}-\{0\}=p^{\mathbb{N}} Z_{p}^{*}$, is isomorphic to the mirabolic submonoid P^{+}of $G L\left(2, Q_{p}\right)$ defined by

$$
P^{+}:=\left(\begin{array}{cc}
Z_{p}^{o} & Z_{p} \\
0 & 1
\end{array}\right)=P_{0} t^{N}=P_{0} t^{N} P_{0}
$$

where

$$
N_{0}:=\left(\begin{array}{cc}
1 & Z_{p} \\
0 & 1
\end{array}\right), P_{0}:=\left(\begin{array}{cc}
Z_{p}^{*} & Z_{p} \\
0 & 1
\end{array}\right), t:=\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right) .
$$

Definition 3.1. Let D be ak-representation of P^{+}. The action φ of t is called etale, if φ is injective and

$$
D=\oplus_{i=1}^{p-1}\left(\begin{array}{ll}
1 & i \\
0 & 1
\end{array}\right) \circ \varphi(D) .
$$

When the action of t is etale, one says that the k-representation D of P^{+}is etale.

As an exercise, show that the action of any element of P^{+}is etale when the action of t is etale.

Show as an exercise, that $D=\oplus_{i=1}^{p-1} \theta_{i} \circ \varphi(D)$ is equivalent to $D=\oplus_{\theta \in \Theta_{1}} \theta \circ \varphi(D)$ for any system Θ_{1} of representatives of $N_{0} / t N_{0} t^{-1}$.

A finite dimensional (φ, Γ)-module D over $k((T))$ is a continuous k-representation of P^{+}, where

$$
\left(\begin{array}{ll}
1 & i \\
0 & 1
\end{array}\right) x=(1+T)^{i} x \quad, \quad t x=\varphi(x) \quad, \quad\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)=\chi^{-1}(a)(x)
$$

where $x \in D, a \in Z_{p}^{*}$. We leave as an exercise to show that D is etale as a finite dimensional (φ, Γ)-module over $k((T))$ if and only if D is etale as a k-representation of P^{+}.

As an exercise show that the category of etale k-representations of P^{+}is abelian.
The interpretation of a finite dimensional (φ, Γ)-module over $k((T))$ as an etale continuous k-representation of the monoid P^{+}is due to Colmez and is the first step towards the local modulo p Langlands correspondence for $G L\left(2, Q_{p}\right)$.

Definition 3.2. Let D be an etale k-representation of P^{+}. The injective endomorphism φ has a canonical left inverse ψ with kernel

$$
D^{\psi=0}=\left(N_{0}-t N_{0} t^{-1}\right) \varphi(D)=\oplus_{i=1}^{p-1}\left(\begin{array}{ll}
1 & i \\
0 & 1
\end{array}\right) \varphi(D) .
$$

Note that $D=\varphi(D) \oplus D^{\psi=0}$. The k-endomorphism $e:=\varphi \circ \psi$ satisfies $e \circ e=e$ because $\psi \circ \varphi=i d_{D}$. Hence e is a projector from D onto $\varphi(D)$. The k-endomorphism $e_{g}:=g \circ \varphi \circ \psi \circ g^{-1}$ for any $g \in P^{+}$is also a projector.

Proposition 3.3. The projectors e $\left(\begin{array}{ll}1 & i \\ 0 & 1\end{array}\right)$ are orthogonal for $0 \leq i \leq p-1$ of sum $i d_{D}$.

Proof. Let Θ_{1} be any system of representatives of $N_{0} / t N_{0} t^{-1} . x=\varphi \varphi(x)+\sum_{\theta \in \Theta_{1}} \theta \varphi\left(x_{\theta}\right)$ with $x_{\theta} \in D$. Left multiply by θ^{-1} and use that $\theta^{-1}\left(\Theta_{1}-\theta\right)$ is a system of representatives of $\left(N_{0}-N_{1}\right) / N_{1}$. We leave the orthogonality as an exercise.

As an exercise show that the projectors e_{θ} for θ in a system Θ_{k} of representatives of N_{0} / N_{k} and $N_{k}=t^{k} N_{0} t^{-k}$ are orthogonal of sum $i d_{D}$ for any integer $k \geq 1$.

The k-endomorphism ψ does not respect the product but we have:
Lemma 3.4. Let $a \in k[[T]], x \in D$. We have

$$
\psi(a \varphi(x))=\psi(a) x \quad, \quad \psi(\varphi(x) a)=x \psi(a)
$$

Proof. We leave the proof as an exercise. The second formula is easier.

4 Lattices

Let D be a finite dimensional etale continuous (φ, Γ)-module over $k((T))$.
We want to find a canonical $k[[T]]$-lattice D^{\sharp} which is P^{-}-stable and on which the action of ψ is surjective.

A lattice in D is a $k[[T]]$-submodule generated by a $k((T))$-basis of D, or equivalently a compact $k[[T]]$-submodule generating the $k((T))$-vector space D. A $k[[T]]$ module containing a lattice and contained in a lattice is a lattice.

The image by Γ of a lattice L generates a Γ-stable lattice because Γ is compact.
Why does it exist a ψ-stable lattice in D ?
When $D=k((T))$, then $k[[T]]$ is φ and ψ-stable and ψ is surjective is $k[[T]]$. Show as an exercise that $T^{-1} k[[T]]$ is the maximal lattice of $k((T))$ where ψ is surjective and that $k[[T]]$ is the minimal lattice where ψ is surjective.

In general one cannot find a lattice in D which is stable by φ and by φ.
Lemma 4.1. There are two lattices L_{0} and L_{1} in D such that

$$
\varphi\left(L_{0}\right) \subset T^{-1} L_{0} \subset L_{1} \subset k[[T]] \varphi\left(L_{1}\right)
$$

Proof. Start with any $k((T))$-basis e_{1}, \ldots, e_{d} of D. Because D is etale, $\varphi\left(e_{1}\right), \ldots, \varphi\left(e_{d}\right)$ is also a $k((T))$-basis of D. There are $a_{i j}^{\prime} \in k((T))$ and $b_{i j}^{\prime} \in k((T))$ such that

$$
\varphi\left(e_{j}\right)=\sum_{i} a_{i j}^{\prime} e_{i} \quad, \quad e_{j}=\sum_{i} b_{i j}^{\prime} \varphi\left(e_{i}\right) .
$$

Choose T^{n} such that $T^{n} a_{i j}^{\prime} \in k[[T]]$ and $T^{n} b_{i j}^{\prime} \in k[[T]]$. Take for L_{0} the lattice of $k[[T]]$-basis ($T^{n} e_{i}$) and for L_{1} the lattice of $k[[T]]$-basis $\left(T^{-n} e_{i}\right)$. They satisfy the lemma because

$$
\varphi\left(T^{n} e_{i}\right)=T^{n p} \varphi\left(e_{i}\right)=T^{n(p-1)} \sum_{i} a_{i j} T^{n} e_{i}
$$

and

$$
T^{-n} e_{j}=T^{-n} \sum_{i} b_{i j}^{\prime} \varphi\left(e_{i}\right)=T^{-n} \sum_{i} b_{i j}^{\prime} T^{n p} \varphi\left(T^{-n} e_{i}\right)=T^{n(p-2)} \sum_{i} b_{i j} \varphi\left(T^{-n} e_{i}\right)
$$

Lemma 4.2. The lattice L_{0} is φ-stable. The lattice L_{1} of D is ψ-stable.
Proof. $\varphi\left(L_{0}\right) \subset T^{-1} L_{0} \subset L_{0}$ and $\psi\left(L_{1}\right) \subset \psi(k[[T]]) L_{1}=L_{1}$.
For $n \in N$ let $M_{n}=\psi^{n}\left(N_{0}\right)$. Then M_{n} is a lattice contained in L_{1} and the sequence M_{n} is increasing. As $k[[T]]$ is noetherian, it has a limit M_{∞} which is a lattice such that $\psi\left(M_{\infty}\right)=M_{\infty}$. The sequence $\psi^{n}\left(T^{-1} M_{\infty}\right)$ is a decreasing sequence of lattices containing M_{∞}. It has a limit D^{\sharp} such that $\psi\left(D^{\sharp}\right)=D^{\sharp}$.

Proposition 4.3. D contains a maximal lattice D^{\sharp} satisfying $\psi\left(D^{\sharp}\right)=D^{\sharp}$.
D contains a minimal lattice D^{\natural} satisfying $\psi\left(D^{\natural}\right)=D^{\natural}$.
D contains a maximal lattice D^{+}stable by φ.
These three lattices are Γ-stable and $D^{+} \subset D^{\natural} \subset D^{\sharp}$.

$5 \quad k$-representations of the mirabolic group P

The subgroup P of $G L\left(2, Q_{p}\right)$ generated by P^{+}is the mirabolic subgroup

$$
P=\left(\begin{array}{cc}
Q_{p}^{*} & Q_{p} \\
0 & 1
\end{array}\right) \simeq Q_{p} \rtimes Q_{p}^{*}
$$

We denote $N=\left(\begin{array}{cc}1 & Q_{p} \\ 0 & 1\end{array}\right)$.
The second step is to associate to an etale k-representation D of the mirabolic monoid P^{+}a k-representation of the mirabolic group P.

There is a classical method, called induction and denoted by $i n d_{H}^{G}$ which associates a k-representation of a group G to a k-representation of a submonoid H.

Definition 5.1. Let H be a submonoid of a group G. Let V be k-representation of H. The group G acts on the space

$$
i n d_{H}^{G} D:=\{f: G \rightarrow V \quad, \quad f(h g)=h f(g) \quad \text { for } g \in G P, h \in H \quad\}
$$

by right translations.

The induction from H to G is the right adjoint of the restriction from G to H, and is a left exact functor. The induction from H to G behaves better when the elements of H acts surjectively on V.

Let

$$
P^{-}:=\left\{g^{-1} \mid g \in P^{+}\right\}=t^{-N} P_{0}
$$

be the inverse monoid. An etale k-representation D of P^{+}has a canonical structure of k representation of P^{-}, which coincide on P_{0} with the original action and such that the action of t^{-1} is the canonical left inverse ψ of φ defined as follows. The canonical lattices $D^{\natural} \subset D^{\sharp}$ of D are P^{-}-stable and the action of P^{-}is surjective on these lattices. We consider the k-representations of P

$$
i n d_{P^{-}}^{P} D^{\natural} \subset i n d_{P^{-}}^{P} D^{\sharp}
$$

Proposition 5.2. (i) If D is irreducible, $\operatorname{dim}_{k((T))} D \geq 2$, then $D^{\natural}=D^{\sharp}$.
(ii) the functor $D \rightarrow \operatorname{ind} d_{P_{-}}^{P} D^{\sharp}$ is exact (this is not true for D^{\natural}),
(iii) If D, D^{\prime} are two finite dimensional etale (φ, Γ)-modules over $k((T))$ such that ind $P_{P-}^{P} D^{\sharp} \simeq$ $\operatorname{ind}_{P-}^{P} D^{\sharp}$ then $D \simeq D^{\prime}$.

We do not prove the proposition but we prove the following corollary of (i).
Corollary 5.3. If D is irreducible, $\operatorname{dim}_{k((T))} D \geq 2$, then the representation of P on $\psi^{-\infty}\left(D^{\sharp}\right)$ is topologically irreducible (a closed P-stable subspace of is trivial).

Proof. If M is a non zero P-stable subspace of $\psi^{-\infty}\left(D^{\sharp}\right)$ the n-th projection of M is a ψ stable non zero $k[[T]]$-submodule of D^{\sharp} hence is equal to D^{\sharp} by (i) in the last proposition. This implies that M is dense in $\psi^{-\infty}\left(D^{\sharp}\right)$.
${ }^{* * * * *}$ Not done in the lecture, until the end of this section. The representation $i n d_{P-}^{P} D$ has two other useful models.

Lemma 5.4. $P=\cup_{n \in N} P^{-} t^{n}$ (disjoint union).
Proof. We have $t^{-n} P_{0} t^{n}=\left(\begin{array}{cc}Z_{p}^{*} & p^{-n} Z_{p} \\ 0 & 1\end{array}\right)$ and $t^{-n} P_{0} t^{m}=\left(\begin{array}{cc}p^{m-n} Z_{p}^{*} & p^{-n} Z_{p} \\ 0 & 1\end{array}\right)$. Let $p=$ $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \in P$. Write $a=p^{r} a^{\prime}$ with $a^{\prime} \in Z_{p}^{*}$ and $r \in Z$. Choose $r^{\prime} \in N$ such that $b \in p^{-r^{\prime}} Z_{p}$. For $n \geq r^{\prime}$ we have $p^{-r^{\prime}} Z_{p} \subset p^{-n} Z_{p}$. Choose n such that $n \leq r$ and take $m=r-n$.
Proposition 5.5. Let D be an etale k-representation of P^{+}. The map $f \mapsto\left(f\left(t^{n}\right)\right)_{n \in N}$ is a bijection from ind $P_{P_{-}}^{P} D$ to the space

$$
\psi^{-\infty}(D):=\left\{\left(x_{n}\right)_{n \in N} \mid x_{n}=\psi\left(x_{n+1}\right) \text { for all } n \in N\right\}
$$

and the restriction to N is a N-equivariant bijection from ind $d_{P_{-}}^{P} D$ to ind $d_{N_{0}}^{N} D$.
Proof. The disjoint union

$$
P=\cup_{n \in N} P^{-} t^{n}
$$

show that f is determined by its restriction to t^{N}. We have $\psi f\left(t^{n+1}\right)=t^{-1} f\left(t^{n+1}\right)=f\left(t^{n}\right)$ for $n \in N$. and conversely $f(p)=p^{-}\left(x_{n}\right)$ if $p=p^{-} t^{n}$ for $p \in P$ equal to $p^{-} t^{n}$ with $p^{-} \in$ $P^{-}, n \in N$.

The second assertion is deduced from the first assertion and the formula

$$
f\left(t^{k}\right)=\sum_{\theta \in N_{0} / N_{k}} \theta \varphi^{k} \psi^{k} \theta^{-1}\left(f\left(t^{k}\right)\right)=\sum_{\theta \in N_{0} / N_{k}} \theta \varphi^{k} t^{-k} \theta^{-1}\left(f\left(t^{k}\right)\right)=\sum_{\theta \in N_{0} / N_{k}} \theta \varphi^{k}\left(f\left(t^{-k} \theta^{-1} t^{k}\right)\right)
$$

$$
f\left(t^{-k} \theta t^{k}\right)=\psi^{k} \theta^{-1}\left(f\left(t^{k}\right)\right) .
$$

for any $k \in N$. Note that the group $N=\cup_{k \in N} t^{-k} N_{0} t^{k}$. We leave the rest of the proof as an exercise.

As an exercise, give the action of P in the two models $\psi^{-\infty}(D)$ and $\operatorname{ind}_{N_{0}}^{N} D$ of the representation of P on $\operatorname{ind} P_{P_{-}}^{P} D$, obtained by restriction to the submonoid t^{N} and to the subgroup $N:=\left(\begin{array}{cc}1 & Q_{p} \\ 0 & 1\end{array}\right)$.

In the model $\psi^{-\infty}(D)$, it is convenient to identity $\left(x_{n}\right)_{n \in N}$ o $\left(x_{n}\right)_{n \in Z}$ where $x_{n}=\psi^{-n}\left(x_{0}\right)$ when $n \leq-1$.

For $a \in Z_{p}^{*}, b \in Q_{p}$

$$
t\left(x_{n}\right)_{n \in N}=\left(x_{n+1}\right)_{n \in N} \quad, \quad\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)\left(x_{n}\right)_{n \in N}=\left(a x_{n}\right)_{n \in N} \quad, \quad\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(x_{n}\right)_{n \in N}=\left(y_{n}\right)_{n \in N}
$$

where $y_{n}=\left(\begin{array}{cc}1 & p^{n} b \\ 0 & 1\end{array}\right) x_{n}$ if $p^{n} b \in Z_{p}$ and $y_{n}=\psi^{-v_{p}(b)-n}\left(y_{-v_{p}(b)}\right)$ if $n \leq-v_{p}(b)$.
We see easily that $\psi^{-\infty}(D)=D$ when φ is invertible.
Proposition 5.6. If $0 \rightarrow D_{1} \rightarrow D \rightarrow D_{2} \rightarrow 0$ is an exact sequence of of representations of P^{-}such that the action ψ of t^{-1} on D_{1} is surjective. Then $0 \rightarrow \psi^{-\infty}\left(D_{1}\right) \rightarrow \psi^{-\infty}(D) \rightarrow$ $\psi^{-\infty}\left(D_{2}\right) \rightarrow 0$ is an exact sequence of representations of P.

Proof. To prove the surjectivity of the map $\psi^{-\infty}(D) \rightarrow \psi^{-\infty}(D)$ we have to show that for $x \in D_{2}$ and $y \in D$ of image in D_{2} equal to $\psi(x)$ there exists $z \in D$ of image $x \in D_{2}$ with $\psi(z)=y$. Choose $z^{\prime} \in D$ with image x and set $y^{\prime}:=\psi\left(z^{\prime}\right)$. Consider D_{1} embedded in D. Then $y^{\prime}-y \in D_{1}$. As ψ is surjective on D_{1} choose $t \in D_{1}$ with $\psi(t)=y^{\prime}-y$. Take $z:=z^{\prime}+t$.

Definition 5.7. Let $\operatorname{Res}_{N_{0}}$ the k-endomorphism of ind $d_{N_{0}}^{N} D$ sending $f \in \operatorname{ind}_{N_{0}}^{N} D$, the function $\operatorname{Res}_{N_{0}}(f) \in \operatorname{ind}_{N_{0}}^{N} D$ vanishes outside N_{0} and equal to f on N_{0}.

Clearly $\operatorname{Res}_{N_{0}}$ is a projector of $i n d_{N_{0}}^{N} D$.
In the $\psi^{-\infty}(D)$-model the projector $\operatorname{Res}_{N_{0}}$ admits the following description. The map

$$
\iota: D \rightarrow \psi^{-\infty}(D) \quad, \quad x \mapsto\left(\varphi^{n}(x)\right)_{n \in N},
$$

corresponds to the map $D \rightarrow \operatorname{ind}_{N_{0}}^{N} D$ sending $x \in D$ to the function vanishing outside N_{0} and value x at 1 . It is injective and P^{+}-equivariant. The map

$$
\pi: \psi^{-\infty}(D) \rightarrow D \quad, \quad(x)_{n \in N} \mapsto x_{0} \quad,
$$

corresponds to the map $\operatorname{ind} d_{N_{0}}^{N} D \rightarrow D$ sending f to $f(1)$. It is surjective and P^{-}-equivariant. We have $\pi \circ \iota=i d_{D}$.

Lemma 5.8. The projector $\iota \circ \pi$ in the $\psi^{-\infty}(D)$-model correspponds to the projector Res $N_{N_{0}}$ in the ind $N_{N_{0}}^{N} D$ model.

We write an element $g \in P$ as $g=n t^{k} a$ with $n \in N, k \in Z$ and $a \in Z_{p}^{*}$. We have $h N_{0} h^{-1}=N_{k}$.

Lemma 5.9. For $g \in P$ as above, the projector $g \circ \iota \circ \pi \circ g^{-1}$ depends only on the set $n N_{k}$ in N.

Proof. It is true to prove $g \circ \iota \circ \pi \circ g^{-1}=h \circ \iota \circ \pi \circ h^{-1}$ for $h=n^{\prime} t^{k}$ with $n^{\prime} \in N$ such that $n^{\prime} N_{k}=n N_{k}$. We have $g^{-1} h=a^{-1} t^{-k} n^{-1} n^{\prime} t^{k}$ and $n^{-1} n^{\prime} \in t^{k} N_{0} t^{-k}$. Hence $g^{-1} h \in P_{0}$. Clearly $\operatorname{Res}_{N_{0}}=\iota \circ \pi$ commutes with P_{0}.

We denote $\operatorname{Res}_{n N_{k}}:=g \circ \iota \circ \pi \circ g^{-1}$ when $g=n t^{k} a$ as above. A open compact subset U of N is a finite disjoint union of $\cup_{n \in N / N_{k}} n N_{k}$ (the group N is commutative) for some $k \in Z$. We define $\operatorname{Res}_{U}=\sum_{n \in N / N_{k}} \operatorname{Res}_{n N_{k}}$.

As an exercise, show that Res_{U} does not depend of the choice of $k \in Z$ and for $g \in P$ we have $g \circ \operatorname{Res}_{g U}=\operatorname{Res}_{U} \circ g$ for all $g \in P$.

As an exercise, show that the projector $1-\varphi \circ \psi: D \rightarrow D^{\psi=0}$ corresponds to the restriction to D embedded canonically in $i n d_{P-}^{P} D$ of the projector $\operatorname{Res}_{N_{0}^{*}}$.

Proposition 5.10. ??? The map

$$
\text { Res }: C_{c}^{\infty}(N ; k) \rightarrow \text { End }_{k} i n d_{P^{-}}^{P} D
$$

defined by

$$
1_{U} \mapsto \operatorname{Res}_{U}
$$

fro all open compact subsets U of N characteristic function 1_{U}, is well defined k-linear.
The group P acts naturally on $\operatorname{End}_{k} \operatorname{ind} d_{P-}^{P} D$. For $f: D \rightarrow D$ and $p \in P$ we have $(p . f)(x)=p . f\left(p^{-1} . x\right)$.

Proposition 5.11. ??? The map

$$
\text { Res }: C_{c}^{\infty}(N ; k) \rightarrow \operatorname{End}_{k} i n d_{P^{-}}^{P} D
$$

is P-equivariant .

6 Irreducible smooth k-representations of the mirabolic P

Proposition 6.1. Let V be a topological k-vector space. If V is discrete (resp. profinite) then $V^{*}=\operatorname{Hom}_{\text {cont }}(V, k)$ is profinite (resp. discrete) and $V^{* *}=V$. If V is a smooth k representation of Z_{p}, then $V^{Z_{p}}$ is finite if and only if V^{*} is a fnitely generated $k\left[\left[Z_{p}\right]\right]$-module.
Proof. 1) Topological Nakayama lemma (Howson).
Claim: If M is a profinite k-vector space which is a topological $k[[T]]$-module such that $M=T M$ then $M=0$.

Proof. Assume that $M \neq 0$ and let U be an open neighborhood of 0 in M with $U \neq M$. Let $m \in M$. There exists a neighborhood U_{m} of m in M such that $T^{n} M \subset U$ for $n \in N$ large enough. We cover the compact space M by finitely many U_{m}. For n large enough we have $T^{n} M \subset U$. But $T^{n} M=M$. Hence we get a contradiction.

Claim: If $M / T M$ is a finite dimensional k-vector space then M is a finitely generated $k[[T]]$-module.

Proof of claim. Let $N=k[[T]] e_{1}+\ldots+k[[T]] e_{n}$ such that $M=N+T M$. The quotient M / N is compact and Hausdorff. We have $T(M / N)=(T M+N) / N=0$. Hence $M / N=0$ and $M=N$.

The dual $\Omega\left(D^{\natural}\right)$ of $c-\operatorname{ind}_{P-}^{P}\left(D^{\natural}\right)$ is a quotient of the dual $\Omega\left(D^{\sharp}\right)$ of $c-\operatorname{ind}_{P-}^{P}\left(D^{\sharp}\right)$. They are smooth k-representations of P for the contragredient action

$$
<b v^{*}, b v>=<v^{*}, v>
$$

By duality we obtain :
Corollary 6.2. (i) If D is irreducible, $\operatorname{dim}_{k((T))} D \geq 2$. Then $\Omega(D)$ is an irreducible smooth k-representation of P.
(ii) the functor $D \rightarrow \operatorname{ind}_{P-}^{P} D^{\sharp}$ is exact and contravariant.
(iii) If D, D^{\prime} are two finite dimensional etale continuous (φ, Γ)-modules over $k((T))$ such that $\Omega(D)=\Omega\left(D^{\prime}\right)$ then $D \simeq D^{\prime}$.

We consider the upper triangular subgroup

$$
B:=\left(\begin{array}{cc}
Q_{p}^{*} & Q_{p} \\
0 & Q_{p}^{*}
\end{array}\right)=P \times Z,
$$

where

$$
Z:=\left\{\left(\begin{array}{ll}
d & 0 \\
0 & d
\end{array}\right) \quad, \quad d \in Q_{p}^{*}\right\}
$$

is the center of $G L\left(2, Q_{p}\right)$.
Proposition 6.3. We have the Bruhat decomposition $G L\left(2, Q_{p}\right)=B \cup B s B$ where $s:=$ $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and

$$
B s B=B s N=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L\left(2, Q_{p}\right) \quad, \quad c \neq 0\right\}
$$

is open in $G L\left(2, Q_{p}\right)$.
Proof.
To extend a representation of P to a k-representation of $G L\left(2, Q_{p}\right)$, the action of Z is given by a character $Z \simeq Q_{p}^{*} \rightarrow k^{*}$, and we look for a compatible action of s.

Theorem 6.4. When D is irreducible and $\operatorname{dim}_{k((T))} D=2$, the representation $\Omega(D)$ of P extends to a smooth irreducible k-representation of $G L\left(2, Q_{p}\right)$.

Proof. (Berger) The proof uses the classification of the smooth irreducible k-representations of $G L\left(2, Q_{p}\right)$ with a central character and results in characteristic 0 . It would be nice to have a direct proof.

This is no more the case when D is irreducible and $\operatorname{dim}_{k((T))} D \geq 3$ The representation $\Omega(D)$ is not seen by $G L\left(2, Q_{p}\right)$. Is it seen by $G L\left(d, Q_{p}\right)$? In which way?

When $D=D_{\eta}$ is the 1-dimensional (φ, Γ)-module associated to a character $\eta: Q_{p}^{*} \rightarrow k$, we take $D^{\natural}=k[[T]] e$ for the $e \in D$ non zero with $\varphi(e)=\eta(p), \gamma(e)=\eta\left(\chi^{-1}(\gamma)\right)$ and not $D^{\sharp}=T^{-1} k[[T]] e$ to define $\Omega(D)$.

7 The special representation

Let Z be the center of $G L\left(2, Q_{p}\right)$. The group $B=P Z$ is the subgroup of upper triangular matrices in $G L\left(2, Q_{p}\right)$. Let $s:=$. By the Bruhat decomposition $G=B \cap B s N$ and $B \backslash B s N \simeq N$ by $B s n \mapsto n$. The space $C^{\infty}\left(B \backslash G L\left(2, Q_{p} ; k\right)\right.$ of locally constant k-valued functions $f: B \backslash G L\left(2, Q_{p} \rightarrow k\right.$ is a smooth representation of $G L\left(2, Q_{p}\right)$ such that $g \cdot f(x)=f(x g)$ for $g \in G L\left(2, Q_{p}\right)$. The center Z acts trivially. The representation is not irreducible because the subspace of constant functions is stable by $G L\left(2, Q_{p}\right)$. The quottient of $C^{\infty}\left(B \backslash G L\left(2, Q_{p} ; k\right)\right.$ by the constant functions is a smooth representation of $G L\left(2, Q_{p}\right)$ called the special k representation $S p$ of $G L\left(2, Q_{p}\right)$.

The restriction of $C_{c}(B \backslash G ; k)$ to P contains the functions with support in $B s N$ which form a P-stable subspace isomorphic to $s p$.

Formula

$$
\begin{aligned}
s\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) & =\left(\begin{array}{cc}
0 & 1 \\
-1 & x
\end{array}\right), \\
\left(\begin{array}{cc}
0 & 1 \\
-1 & x
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) & =\left(\begin{array}{ll}
d & 0 \\
0 & a
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & \frac{d x-b}{a}
\end{array}\right)
\end{aligned}
$$

We have $Z P s P=Z P s N$ and the map $s\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ is a representative system of the cosets $Z P \backslash Z P s N$. The space $C_{c}^{\infty}(Z P \backslash Z P s P ; k)$ has a natural action of B trivial on Z and isomorphic to $C_{c}^{\infty}\left(Q_{p} ; k\right)$ by the map $f \rightarrow r(x)=f\left(s\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)\right.$). The induced action of B trivial on Z on $C_{c}^{\infty}\left(Q_{p} ; k\right)$ is

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \cdot r(x)=\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \cdot f\right)\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & x
\end{array}\right)\right)=f\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & x
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=r\left(\frac{d x-b}{a}\right)\right.
$$

We give now a very useful proposition.
Proposition 7.1. 1) Let H be a finite p-group acting on a non zero k-vector space V. Then $V^{H} \neq 0$.
2) Let G be a finite group containing H acting on a k-vector space V. When $\operatorname{dim}_{k} V^{H}=1$ and V is the k-space generated by the G-orbits of V^{H}, the k-representation of G on V is irreducible.
3) 1) and 2) remain true when H is a pro-p-subgroup of a profinite group acting smoothly on V

Proof. 1) Let $v \in V$ non zero and let W be the non zero k-vector space generated by the H-orbit of v. The number of elements of W is finite and is a power of p. For $w \in W$ the order
of the H-orbit of w is a power of p, equal to 1 if and only if $w \in W^{H}$. Hence W^{H} which is not empty because it contains 0 is divisible by p.
2) Let V^{\prime} be a non zero subspace of V which is stable by G. Then $\left(V^{\prime}\right)^{H}$ is a non zero k-subspace of V^{H}. As $\operatorname{dim}_{k} V^{H}=1$ we have $\left(V^{\prime}\right)^{H}=V^{H}$. Hence $V \subset V^{\prime} \subset V$.
3) The orbits of G in V are finite in the profinite case, and this is all what the proof is using.

Proposition 7.2. The k-vector space $C_{c}^{\infty}\left(Q_{p} ; k\right)$ of locally constant compactly supported k valued functions $r: Q_{p} \simeq N$ with the action of $(a, b) \in Q_{p}^{*} \rtimes Q_{p} \simeq P$ given by

$$
(a, b) \cdot r(x)=r\left(\frac{x-b}{a}\right)
$$

is an irreducible k-representation of P.
It is isomorphic to the restriction to P of the special representation

$$
S p:=C_{c}(B \backslash G ; k) / \text { constant functions }
$$

of G.
Proof. Proof of the irreducibility. Let $f \in C_{c}^{\infty}\left(Q_{p} ; k\right)$ non zero generating a subrepresentation W. There exists $n \in N$ such that the support of f is contained in $p^{-n} Z_{p}$. Hence $f \in C_{c}^{\infty}\left(p^{-n} Z_{p} ; k\right)$. A function in $C_{c}^{\infty}\left(p^{-n} Z_{p} ; k\right)$ fixed by $p^{-n} Z_{p}$ is constant. The subrepresentation W_{n} of $p^{-n} Z_{p}$ generated by f is contained in $C_{c}^{\infty}\left(p^{-n} Z_{p} ; k\right)$ and has a vector fixed by $p^{-n} Z_{p}$, hence W_{n} contains the characteristic function of $p^{-n} Z_{p}$. We deduce that W contains the characteristic functions of $b+p^{-m} Z_{p}$ for any $b \in Q_{p}, m \in N$. Hence $W=C_{c}^{\infty}\left(Q_{p} ; k\right)$.

Proposition 7.3. $s p \otimes\left(\eta^{-1} \circ \operatorname{det}\right)=\Omega\left(D_{\eta}\right)$.
Proof. ***
Proposition 7.4. The special k-representation $S p$ of $G L\left(2, Q_{p}\right)$ is irreducible.
Proof. The restriction to the mirabolic group P of $S p$ is isomorphic to the special representation of P which is irreducible.

8 Bruhat-Cartan-Iwasawa decompositions

Let $B:=\left(\begin{array}{cc}Q_{p}^{*} & Q_{p} \\ 0 & Q_{p}^{*}\end{array}\right)$ be the upper triangular group. We have $B=P Z$. Let

$$
s=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad t=\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right) \quad, \quad s t=\left(\begin{array}{cc}
0 & 1 \\
p_{F} & 0
\end{array}\right)
$$

Theorem 8.1. Bruhat decomposition $G=B \cup B s B$ disjoint union and $B s B$ is open in G Cartan decomposition $G=\cup_{n \in N} K Z t^{n N} K$
Iwasawa decomposition $G=B K$
Proof. With the tree ${ }^{* * *}$ (Rachel)

$9 \quad$ Irreducible k-representations of $G L\left(2, F_{p}\right)$

For $r \in\{0, \ldots, p-1\}$, let $k[X, Y]_{r}$ be the space homogenous of polynomials of degree r with two indeterminates X, Y and coeffcients in k. This is a k-vector space of dimension $r+1$ of basis $X^{i} Y^{j}$ for $i, j \in N$ such that $i+j=r$. The group $G L\left(2, F_{p}\right)$ acts on $k[X, Y]_{r}$ by

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) X^{i} Y^{j}=(a X+c Y)^{i}(b X+d Y)^{j} .
$$

This representation is denoted $S y m^{r}$ and is of dimension $r+1$. When $r=0$ we have $k[X, Y]_{0}=$ k and $G L\left(2, F_{p}\right)$ acts trivially. When $r=p-1$ the representation $S y m^{p-1}$ of dimension p is isomorphic to the special k-representation of $G L\left(2, F_{p}\right)$ (exercise).

Lemma 9.1. $k X^{r}$ is the subspace of elements of $k[X, Y]_{r}$ fixed by $\left(\begin{array}{cc}1 & F_{p} \\ 0 & 1\end{array}\right)$).
$k Y^{r}$ is the subspace of elements of $k[X, Y]_{r}$ fixed by $\left(\begin{array}{cc}1 & 0 \\ F_{p} & 1\end{array}\right)$).
The k-subspace generated by the $G L\left(2, F_{p}\right)$-orbit of $X^{r}\left(\right.$ or $\left.Y^{r}\right)$ is equal to $k[X, Y]_{r}$.
Proof. Exercise.
Theorem 9.2. The irreducible k-representations of $G L\left(2, F_{p}\right)$ are $S y m^{r} \otimes(\eta \otimes \operatorname{det})$ for $0 \leq$ $r \leq p-1$ and a morphism $\eta: F_{p}^{*} \rightarrow k^{*}$.

Proof. These k-representations are irreducible and they are not isomorphic (exercise). Their number is $p(p-1)$. This is true for any $k \subset F_{p}^{a c}$. Hence they remain irreducible and not isomorphic when one extends the scalar to $F_{p}^{a c}$

By the theory of Brauer, the number of isomorphism classes of irreducible $F_{p}^{a c}$-representations of $G L\left(2, F_{p}\right)$ is equal to the number of conjugacy classes of elements pf order prime to p (Serre Linear representations of finite groups). The number of conjugacy classes of elements of order prime to p is $p(p-1)$ (Exercise).

Let $K:=G L\left(2, Z_{p}\right)$. The reduction is a surjective morphism $K \rightarrow G L\left(2, F_{p}\right)$. We inflate $S y m^{r}$ to a k-representation of K.

Let $Z:=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right), a \in Q_{p}^{*}$ the center of $G L\left(2, F_{p}\right)$. We inflate $S y m^{r}$ to a representation of $K Z$ where p acts trivially.

Theorem 9.3. Modulo isomorphism, the irreducible smooth k-representations of $K Z$ are Sym $^{r} \otimes(\eta \otimes$ det $)$ for $0 \leq r \leq p-1$ and a continous morphism $\eta: Z_{p}^{*} \rightarrow k^{*}$. Their number is $p(p-1)$.

Proof. It remains only to prove that $\left(\begin{array}{ll}p & 0 \\ 0 & p\end{array}\right)$ acts by a scalar in an irreducible smooth k representation of $K Z .{ }^{* * *}$

Let c-ind ${ }_{K Z}^{G} S y m^{r}$ be the space of functions $f: G:=G L\left(2, Q_{p}\right) \rightarrow k[X, Y]_{r}$ with compact support modulo Z such that $f(k g)=\operatorname{Sym}^{r}(k) f(g)$ for $k \in K Z, g \in G L\left(2, Q_{p}\right)$. The group $G=G L\left(2, Q_{p}\right)$ acts by right translation. We have $g f(x)=f(x g)$. This representation is called the compact induction of $S y m^{r}$ to G.
 erates $\mathrm{c}-\operatorname{ind}_{K Z}^{G} S y m^{r}$, i.e. the k-vector space generated by the G-orbit of v_{r} is $\mathrm{c}_{-\operatorname{ind}_{K Z}^{G} S y m^{r}}$.

It is known that $\operatorname{End}_{k G} \mathrm{c}_{\mathrm{c}} \operatorname{ind}_{K Z}^{G} S y m^{r} \simeq k[\mathcal{T}]$ for some \mathcal{T}. To define \mathcal{T} is suffices to defined $T v_{r}$. Let (Paskunas, restriction to the Borel)

When $r=0$

$$
\mathcal{T} v_{r}=\left(\begin{array}{ll}
1 & 0 \\
p & 0
\end{array}\right) v_{r}+\sum_{i=0}^{p}\left(\begin{array}{ll}
p & i \\
0 & 1
\end{array}\right) v_{r}
$$

When $r=1, \ldots, p-1$

$$
\mathcal{T} v_{r}=\sum_{i=0}^{p}\left(\begin{array}{ll}
p & i \\
0 & 1
\end{array}\right) v_{r}
$$

For any $\lambda \in k$, the image $\mathcal{T}-\lambda \in \operatorname{End}_{k G} \mathrm{c}-\operatorname{ind}_{K Z}^{G} S y m^{r}$ is a subrepresentation k representation of G. Let $\eta: Q_{p}^{*} \rightarrow k^{*}$ be a smooth character and let

$$
\pi(r, \lambda, \eta):=\frac{\mathrm{c}_{\mathrm{c}-\operatorname{ind}_{K Z}^{G} S y m^{r}}^{(\mathcal{T}-\lambda) \mathrm{c}-\operatorname{ind}_{K Z}^{G} S y m^{r}} \otimes(\eta \circ \operatorname{det})}{} .
$$

The representation $\pi(r, \lambda, \eta)$ is not irreducible if and only if $\lambda= \pm 1$ and $r \in\{0, p-1\}$ (theorem of Barthel-Livne-Breuil). When $r=0, \pi(0, \pm 1, \eta)$ has a unique irreducible subrepresentation $S p \otimes\left(\eta \mu_{ \pm 1} \circ \operatorname{det}\right)$ and the quotient is $\eta \mu_{\lambda} \circ$ det. When $r=p-1, \pi(p-1, \pm 1, \eta)$ has a unique irreducible subrepresentation $\eta \mu_{ \pm 1} \circ \operatorname{det}$ and the quotient is $S p \otimes\left(\eta \mu_{ \pm 1} \circ \mathrm{det}\right)$, where μ_{λ} is the character of Q_{p}^{*} trivial on Z_{p}^{*} sending p on λ and $S p$ is the special representation of G, equal to the quotient of the space $C^{\infty}(P Z \backslash G ; k)$ of locally constant functions by the constant functions, with the natural action of G by translation. I will prove later that it is irreducible.

The representations with $\lambda=0$ are all irreducible; they called supersingular by the number theorists and supercuspidal by the group theorists. Their number when the action of p is fixed is $\left(p^{2}-p\right) / 2$. It is also the number of irreducible k-representations of $\operatorname{Gal}\left(Q_{p}^{a c} / Q_{p}\right)$ of dimension 2 where the determinant of a Frobenius is fixed.

The number of irreducible k-representations of $\operatorname{Gal}\left(Q_{p}^{a c} / Q_{p}\right)$ of dimension n where the determinant of a Frobenius is fixed, is the number of unitary irreducible polynomials in $F_{p}[X]$ of degree n

$$
n^{-1} \sum_{d \mid n} \mu(n / d) q^{d}
$$

Theorem 9.4. The smooth irreducible k-representations of $G L\left(2, Q_{p}\right)$ with p acting by a scalar are
(1) the characters $\eta \circ$ det where $\eta: Q_{p}^{*} \rightarrow k^{*}$ is a smooth character
(2) the special representations $S p \otimes(\eta \circ \mathrm{det})$ where $S p$ is the "special" representation.
(3) the supercuspidal (=supersingular) representations $\pi(r, 0, \eta)$
(4) the irreducible representations $\pi(r, \lambda, \eta)$ with $\lambda \neq 0$.

The only isomorphisms occur when $\lambda=0$ and are

$$
\pi(r, 0, \eta) \simeq \pi\left(r, 0, \eta \mu_{-1}\right) \simeq \pi\left(p-1-r, 0, \eta \omega^{r}\right) \simeq \pi\left(p-1-r, 0, \eta \omega^{r} \mu_{-1}\right)
$$

where μ_{-1} is the unramified quadratic character of Q_{p}^{*}, trivial on Z_{p}^{*} sending p to -1 and ω is the character of Q_{p}^{*} trivial on p^{Z} given by the reduction $Z_{p}^{*} \rightarrow F_{p}^{*}$.

Corollary 9.5. An irreducible smooth k-representation of $G=G L\left(2, Q_{p}\right)$ where p acts by a scalar is a quotient $\pi:{\mathrm{c}-\mathrm{ind}_{K Z}^{G} V_{0} \rightarrow V \text { where } V_{0} \text { is an irreducible } k \text {-representation of } K Z, ~(h) ~}_{\text {ren }}$ and the kernel R of π is a finitely generated smooth k-representation of G.

Proof. The kernel is $W+(T-\lambda) \operatorname{c-ind}_{K Z}^{G} V_{0}$ where $W=0$ or $\eta \circ \operatorname{det}$ or $S p \otimes(\eta \circ \operatorname{det})$. The k-vector spaces c-ind ${ }_{K Z}^{G} V_{0}$ and $(T-\lambda) \mathrm{c}$-ind ${ }_{K Z}^{G} V_{0}$ are generated by a single G-orbit, the same is true for any irreducible k-representation.

The irreducible k-representations $\pi(r, \lambda, \eta)$ of $G L(2, F)$ are called principal series. They are the irreducible k-representations c-ind ${ }_{B}^{G} \eta_{1} \otimes \eta_{2}$ induced from a k-character $\eta_{1} \otimes \eta_{2}$ of B

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \rightarrow \eta_{1}(a) \otimes \eta_{2}(b)
$$

The principal series are c-ind ${ }_{B}^{G} \eta_{1} \otimes \eta_{2}$ with $\eta_{1} \neq \eta_{2}$ and there are no isomorphic.
The Bruhat decomposition $G=B \cup B s B$ implies that the restriction to P of a principal series c-ind ${ }_{B}^{G} \eta_{1} \otimes \eta_{2}$ contains $s p \otimes\left(\eta_{2} \eta_{1}\right) \circ$ det and that the quotient is $\left(\eta_{1} \eta_{2}\right) \circ$ det.

Theorem 9.6. The restrictions to P of the irreducible smooth k-representations of $G L\left(2, Q_{p}\right)$ where p acts by a scalar, which are NOT principal series, are irreducible and not isomorphic.

This is quite surprising if one thinks of the modulo ℓ irreducible representations of $G L\left(2, Q_{p}\right)$ where the restrictions to P of generic representations all isomorphic.

10 A functor from the smooth k-representations of P to (φ, Γ) modules

Let V be a smooth k-representation of P. When V is finitely presented, one associates canonically to V an etale (φ, Γ)-module over $k((T))$.

A finitely generated smooth k-representation V of P is $k[P]$-generated by finitely many vectors v_{1}, \ldots, v_{r}. The group $P_{0}=\left(\begin{array}{cc}Z_{p}^{*} & Z_{p} \\ 0 & 1\end{array}\right)$ is open and compact in P. As the representation of P on V is smooth, the $k\left[P_{0}\right]$-submodule V_{0} of V generated by v_{1}, \ldots, v_{r} is finite.

Let c-ind $P_{P^{0}}^{P}\left(V_{0}\right)$ be the compact induced representation. This is the space of functions f : $P \rightarrow V_{0}$ with compact support such that $f(x g)=x f(g)$ for $x \in P^{0}, g \in G$ by right translation $(g . f)(x)=f(x g)$ for $x, g \in P$. The group P acts by right translations: $g . f(x)=f(x g)$ for $x, g \in P$. We denote by $\left[1, v_{0}\right]$ the function with value $v_{0} \in V_{0}$ at 1 and vanishing outside P_{0}.

Show as an exercise, that the compact induced representation $\operatorname{ind}_{P^{0}}^{P}\left(V_{0}\right)$ is a smooth k representation of P, that the functions $g\left[1, v_{0}\right]$ for v_{0} in a k-basis of V_{0} and $g \in P / P_{0}$ form a k-basis of $i n d_{P^{0}}^{P}\left(V_{0}\right)$.

The k-linear map

$$
\pi: i n d_{P_{0}}^{P}\left(V_{0}\right) \rightarrow V \quad, \quad \pi\left(g\left[1, v_{0}\right]\right)=g \cdot v_{0}
$$

is P-equivariant and surjective. The kernel R of π is a subrepresentation of $i n d_{P_{0}}^{P}\left(V_{0}\right)$.
When the kernel of π is a finitely generated representation of P, one says that π is a finite presentation of V. A smooth k-representation V of P is finitely presented if it admits a finite presentation.

Let V be a finitely presented smooth k-representation of P, and let

$$
\pi: \operatorname{ind}_{P_{0}}^{P}\left(V_{0}\right) \rightarrow V
$$

be a finite presentation of kernel R.
Let $P^{+} V_{0}$ be the k-vector space generated by $g . v$ for $g \in P^{+}, v \in V^{0}$. The dual $\left(P^{+} V_{0}\right)^{*}$ is a profinite k-vector space with an action of P^{-}; in particular it is a $k\left[\left[Z_{p}\right]\right]$-module, i.e. a $k[[T]]$-module. Let

$$
D:=k((T)) \otimes_{k[[T]]}\left(P^{+} V_{0}\right)^{*}
$$

Proposition 10.1. The $k((T))$-vector space D does not depend on the choice of V_{0}.
Proof. Claim. Let V_{0}^{\prime} be a P_{0}-stable finite k-subspace of V generating V. Then $P^{+} V_{0}^{\prime}$ is contained in $P^{+} V_{0}+X$ for some N_{0}-stable finite k-vector subspace X of V.

The claim implies the proposition. By duality $\left(P^{+} V_{0}^{\prime}\right)^{*}$ is a quotient of $\left(P^{+} V_{0}\right)^{*}$ as a $k[[T]]-$ module. The kernel W is a finite $k[[T]]$-module. It is killed by a power of T, hence vanishes when one inverts T. We have $k((T)) \otimes_{k[T]]} W=0$. This proves the proposition.

Proof of the claim. If $p_{1}, \ldots, p_{r} \in P$, there exists an integer $n>0$ such that $t^{n} p_{1}, \ldots, t^{n} p_{r} \in$ P^{+}. This implies that there is an integer $n>0$ such that $t^{n} V_{0} \subset P^{+} V_{0}^{\prime}$ for some $n \in N$ hence $P^{+} t^{n} V_{0} \subset P^{+} V_{0}^{\prime}$.
$P^{+}=P^{+} t^{n} P_{0}+N_{0} Y P_{0}$ for a finite subset Y of P^{+}. Hence $P^{+} V_{0}=P^{+} t^{n} V_{0}+X$ for some N_{0}-stable finite k-vector subspace X of V, because the action is smooth and N_{0}, P_{0} are compact.

The group P^{-}acts smoothly on D and not P^{+}.
When the kernel of the presentation $\pi: i n d_{P_{0}}^{P}\left(V_{0}\right) \rightarrow V$ is finitely generated, we show that the representation of P^{-}on D comes from an etale representation of P^{+}on D, i.e. a structure of etale (φ, Γ)-module over $k((T))$.

Lemma 10.2. The set $P-P^{+}$is stable by multiplication by P^{-}.
Proof. Let $p \in P$. We write uniquely $p=u a t^{r}$ with $u \in N, a \in Z_{p}^{*}, r \in Z$. We have $t^{-1} p=$ $t^{-1} u t a t^{r-1}$. If $u \notin N_{0}$ then $t^{-1} u t \notin N_{0}$. If $r<0$ then $r-1<0$.

The element p does not belong to P^{+}if and only if $u \notin N_{0}$ or $u \in N_{0}, r<0$. Hence $p \in P-P^{+}$implies $t^{-1} p \in P-P^{+}$. The monoid P^{-}is generated by t^{-1} and N_{0}. For $u \in N_{0}$ it is clear that $p \in P-P^{+}$if and only if $u p \in P-P^{+}$

The lemma implies that the group P^{-}acts naturally on

$$
\frac{i n d_{P_{0}}^{P}\left(V_{0}\right)}{R+\left(P-P^{+}\right)\left[1, V_{0}\right]}
$$

where $\left(P-P^{+}\right)\left[1, V_{0}\right]$ be the k-vector space generated by $g .\left[1, v_{0}\right]$ for $g \in P-P^{+}, v_{0} \in V^{0}$.

Lemma 10.3.

$$
\frac{i n d_{P_{0}}^{P}\left(V_{0}\right)}{R+\left(P-P^{+}\right)\left[1, V_{0}\right]} \simeq \frac{P^{+} V_{0}}{\Delta} \quad \text { where } \quad \Delta=P^{+} V_{0} \cap\left(P-P^{+}\right) V_{0}
$$

Proof. We leave the proof as an exercise.
Lemma 10.4. When the kernel of $\pi: \pi: \operatorname{ind}_{P_{0}}^{P}\left(V_{0}\right) \rightarrow V$ is finite, Δ is finite.
The dual $\left(\frac{P^{+} V_{0}}{\Delta}\right)^{*}$ is a k-representation of P^{+}and

$$
\left(\frac{P^{+} V_{0}}{\Delta}\right)^{*} \subset\left(P^{+} V_{0}\right)^{*}
$$

We deduce from the lemma that

$$
k((T)) \otimes_{k[[T]]}\left(P^{+} V_{0}\right)^{*} \simeq k((T)) \otimes_{k[[T]]}\left(\frac{P^{+} V_{0}}{\Delta}\right)^{*}
$$

Let $D_{V_{0}}^{+} \subset D_{V_{0}}^{\natural}$ be the natural images of $\left(\frac{P^{+} V_{0}}{\Delta}\right)^{*} \subset\left(P^{+} V_{0}\right)^{*}$ in D. Then $D_{V_{0}}^{+}$is a φ-stable lattice and $D_{V_{0}}^{\natural}$ is a ψ-stable lattice. Compare with Schneider Vigneras to find $P^{+} V_{0}$ minimal. Check if the minimal case corresponds to a finite presentation and that the lattices which are canonical correspond to D^{+}and D^{\natural}.

Theorem 10.5. $V \mapsto D(V)$ is a contravariant exact functor from the category of smooth k-representations of P to the category of etale $(\varphi, \Gamma) k((T))$-modules.

What are the finitely presented smooth k-representations V of P such that the associated etale (φ, Γ)-module D over $k((T))$ is finite dimensional ?
Proposition 10.6. If $\mathrm{c}-\operatorname{ind}_{P_{0}}^{P} V_{0} \rightarrow V$ is a finite presentation of V such that $\left(P^{+} V_{0}\right)^{N_{0}}$ is finite, then the $k((T))$-vector space D is finite dimensional.

Proof. See the proposition on duality.
By the topological Nakayama lemma, $\operatorname{dim}_{k}\left(P^{+} V_{0}\right)^{N_{0}}$ is the minimal number of generators of the $k[[T]]$-module $P^{+} V_{0}^{*}$. The ring $k[[T]]$ is principal. By the classification of the finitely generated $k[[T]]$-modules, the $k((T))$-dimension of D is the rank of the $k[[T]]$-free module $P^{+} V_{0}^{*}$ divided by its torsion submodule. Hence the $k((T))$-dimension of D of bounded by the k-dimension of $P^{+} V_{0}^{*}$, with equality if the $k[[T]]$-module $P^{+} V_{0}^{*}$ is free.

Theorem 10.7. Let V be an irrreducible smooth k-representation of $G L\left(2, Q_{p}\right)$ where p acts by a scalar. Then $\left.V\right|_{P}$ is finitely presented and the associated etale $(\varphi, \Gamma) k((T))$-module is a $k((T))$-vector space of dimension

0 if V is a character,
1 if V is special or a principal series,
2 if V is supercuspidal.
Before explaining the proof of the theorem, we give a corollary based on the following result on extensions

Proposition 10.8. If $V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$ is an exact sequence of smooth k-representations of P, and if V_{1} and V_{2} are finitely presented, then V is finitely presented.

Proof. To be written.
Corollary 10.9. $V \rightarrow D(V)$ is a well defined functor from the category of finite length smooth k-representations of $G L\left(2, Q_{p}\right)$ where p acts by a scalar on any irreducible subquotient. It is an exact contravariant functor to the category of finite dimensional etale $(\varphi, \Gamma) k((T))$-modules over $k((T))$.

This functor is the Colmez functor, and is not faithful because it vanishes on the smooth k-characters of $G L\left(2, Q_{p}\right)$.

We give now the proof of the theorem.
Proposition 10.10. Iwasawa decomposition. We have $G=P K Z$ with $P_{0}=P \cap K Z$.
Proof. Rachel's course on the tree.
Proposition 10.11. When V is the restriction to P of an irreducible smooth k-representation of $G L\left(2, Q_{p}\right)$ then V is finitely presented.

Proof. By Iwasawa decomposition, for any smooth k-representation V_{0} of $K Z$, the restriction to P of $\mathrm{c}-\operatorname{ind}_{K Z}^{G} V_{0}$ is $\mathrm{c}-\operatorname{ind}_{P_{0}}^{P} V_{0}$ and the restriction to P of a a finitely generated smooth k-representation of G is a finitely generated smooth k-representation of P. We know that V is the unique quotient of some $V(r, \lambda, \eta)$. The presentation of $\left.V\right|_{P}$ associated to the image V_{0} of $S y m^{r} \otimes(\eta \otimes \mathrm{det})$ is finite.

When $\operatorname{dim}_{k} V$ is finite, $D=0$ because $k((T)) \otimes_{k[[T]]}\left(P^{+} V_{0}\right)^{*}=0$ when $\left(P^{+} V_{0}\right)^{*}$ is finite.
The special representation $s p$ of P is the restriction of the special representation $S p$ of $G L\left(2, Q_{p}\right)$. The subspace $C^{\infty}\left(Z_{p} ; k\right)$ (functions with support in $\left.Z_{p}\right)$ in the model $C_{c}^{\infty}\left(Q_{p} ; k\right)$ is P^{+}-stable and generated by the characteristic function of Z_{p} as a representation of P^{+}. This implies that

$$
D(S p)=k((T)) \otimes_{k((T))}\left(C^{\infty}\left(Z_{p} ; k\right)\right)^{*}
$$

because two finitely generated P^{+}-stable submodules generating a smooth k-representation of P are equal modulo a finite N_{0}-stable set. The dual of $C_{c}^{\infty}\left(Z_{p} ; k\right)=\lim C_{c}^{\infty}\left(Z_{p} ; k\right)^{p^{n} Z_{p}}$ is $k\left[\left[Z_{p}\right]\right]=\operatorname{proj} \lim \left(C_{c}^{\infty}\left(Z_{p} ; k\right)^{p^{n} Z_{p}}\right)^{*} \simeq k[[T]]$. We deduce that $D(S p) \simeq k((T))$.
$D(S p \otimes \eta \otimes) \simeq D_{\eta^{\prime}}$ for two characters $\eta, \eta^{\prime} \rightarrow k^{*}$. Do we have $\eta^{\prime}=\eta$? or $\eta^{\prime}=\eta^{-1}$?
A smooth k-representation V of $G L\left(2, Q_{p}\right)$ is called admissible when V^{C} is finite for any open compact subgroup C of $G L\left(2, Q_{p}\right)$. Let I_{1} be the pro- p-Iwahori subgroup inverse image of $N\left(F_{p}\right)$ in K.
Proposition 10.12. A smooth k-representation V of $G L\left(2, Q_{p}\right)$ is admissible if and only V^{C} is finite for some open compact subgroup C of $G L\left(2, Q_{p}\right)$.

The dimension of the k-vector space $V^{I_{1}}$ is 1 when V is a character or a special representation and is 2 for the other irreducible smooth k-representations of $G L\left(2, Q_{p}\right)$ with p acting by a scalar.

We consider now a supersingular irreducible smooth k-representation $V(r, \eta)$ of $G L\left(2, Q_{p}\right)$ where p acts by a scalar. Let V_{0} be the image of $S y m^{r} \otimes(\eta \circ$ det) embedding in V by the quotient map c-ind $K_{K}^{G} S y m^{r} \otimes(\eta \circ \operatorname{det})$ of kernel $T \operatorname{c-ind}_{K Z}^{G} S y m^{r} \otimes(\eta \circ \operatorname{det})$. Let $\Delta=P^{+} V_{0} \cap\left(P-P^{+}\right) V_{0}$.

Proposition 10.13. Δ contains $\left(P^{+} V_{0}\right)^{N_{0}}$
As Δ is finite, we deduce that $\left(P^{+} V_{0}\right)^{N_{0}}$ is finite hence the $k((T))$-vector space $D(V)$ is finite dimensional. This is enough for the corollary of the theorem.

Proof. The following proof is due to Y. Hu.
a) If $v \in\left(P^{+} V_{0}\right)^{N_{0}}$ then v is fixed by some $\left(\begin{array}{cc}1 & 0 \\ p^{n_{v}} Z_{p} & 1\end{array}\right)$. The subgroup C_{v} of $G L\left(2, Q_{p}\right)$ generated by N_{0} and $\left(\begin{array}{cc}1 & 0 \\ p^{n_{v}} Z_{p} & 1\end{array}\right)$ is open and compact, The representation V of $G L\left(2, Q_{p}\right)$ is admissible. Hence $V^{C_{v}}$ is finite.
b) Let $T_{1}=\sum_{i=0}^{p-1}\left(\begin{array}{ll}p & i \\ 0 & 1\end{array}\right)$ seen as an operator of V. Set $T_{n}=T_{1} \circ \ldots \circ T_{1} n$-times. Then one can show ${ }^{* * *}$ that $T_{n} v \in V^{C_{v}}$ when $n \geq n_{v}$.
c) Let $\Delta_{0}=\Delta$ and by induction on n let $\Delta_{n}=P^{+} V_{0} \cap K s t \Delta_{n-1}$ where st $=\left(\begin{array}{ll}0 & 1 \\ p & 1\end{array}\right)$. Then one can show ${ }^{* * *}$ that the sequence of k-vector spaces $\left(\Delta_{n}\right)_{n \in N}$ is increasing of union $P^{+} V_{0}$. For $v \in P^{+} V_{0}$ let $\ell(v)$ be the minimal integer $n \in N$ such that $v \in \Delta_{n}$. Then one shows that $\ell\left(T_{1} v\right)=\ell(v)+1$ if $v \notin \Delta$.
d) By a) and b), the elements $T_{n} v$ for $n \geq n_{v}$ are linearly dependent. This implies that v belongs to Δ because $\ell\left(T_{n} v\right)=\ell(v)+n$ if $v \notin \Delta$.

In fact, Hu proved more:
Proposition 10.14. $\Delta=V^{I_{1}}$
Proof. ***
An element of Δ invariant by I_{1} belongs to $P^{+} V_{0}$ which contains Δ and is invariant by N_{0} which is contained in I_{1}. Hence we obtain

Corollary 10.15. $\left(P^{+} V_{0}\right)^{N_{0}}=V^{I_{1}}$
We deduce that the dimension of $D(V)$ over $k((T))$ is ≤ 2 with equality if $\left(P^{+} V_{0}\right)^{*}$ is a free $k((T))$-module.

To finish ***
The canonical diagram $\Delta \subset K \Delta$ To finish ${ }^{* * *}$

