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Two deep theories were independently developped this last 50 years in number theory, the
p-adic theory of Fontaine and the theory of automorphic representations by Langlands. These
two theories emerge together these last 10 years giving rise to the local p-adic and modulo p
Langlands correspondence for GL(2, Qp).

We fix a finite field k of characteristic p with q elements.
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We consider the groupsGal(Qacp /Qp), whereQacp is an algebraic closure ofQp andGL(n,Qp).
We put on these groups the topology such that the finite index subgroups of Gal(Qacp /Qp)

and of GL(n,Zp) are all open.
This is the usual topology ***.

Definition 0.1. Let G be a topological group. A k-representation of G is a group morphism
G → GLk(V ) where V is a k-vector topogical space; the representation is continuous if the
map

G× V → V → V , (g, v) 7→ g.v

is continuous. The k-dimension of V is the dimension of the representation, and can be
infinite.

When the topology of V is discrete, the k-representation of G on V is continuous if and
only if for any v ∈ V the subgroup of g ∈ G such that vr(g)v = v is open. One says that the
representation is smooth.

When the k-dimension is finite we suppose that V is discrete. When V = k, the k-
representation is called a character.

Lemma 0.2. Any finite dimensional k-representation of Gal(Qacp /Qp) and of GL(n,Zp) is
smooth.

Proof. Any finite index subgroup is open.

A profinite group is a projective limit of finite groups with the projective limit topology.
A topological group is finitely generated when it contains finitely many elements generating a
dense subgroup. Any finite dimensional k-representation of finitely generated profinite group
is smooth because any finite index subgroup is open (Segal Nikolov, annals of math 165
(2007)).

The aim of the local Langlands correspondence over Qp is to compare in a meaningful
way the n-dimensional k-representations of Gal(Qacp /Qp) and the smooth k-representations
of GL(n,Qp).

Fontaine showed that the category of n-dimensional k-representations of Gal(Qacp /Qp)
is equivalent to the category of n-dimensional etale (ϕ,Γ)-modules over the field k((T )) =
{
∑

n≥r anT
n , an ∈ k, r ∈ Z} of Laurent series in one indeterminate T with coefficients

in k.

We denote k[[T ]] = {
∑

n≥0 anT
n , an ∈ k, r ∈ Z} the ring of Taylor series in one

indeterminate T with coefficients in k.

Definition 0.3. A n-dimensional etale (ϕ,Γ)-module D over k((T )) is :
1) a k((T ))-vector space D.
2) A k-linear endomorphism ϕ of D which is semi-linear in the sense that

ϕ(P (T )x) = P (T p)ϕ(x)
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for all x ∈ D,P (T ) ∈ k((T )) and etale in the sense that the image of a k((T ))-basis e1, . . . , en
of D by ϕ is a k((T ))-basis ϕ(e1), . . . , ϕ(en) of D.

2) A continous representation of Γ = Gal(Qcycp /Qp) where Qcycp is the p-adic cyclotomic
field, on the k-vector space D with the topology with neigbourhood basis of 0 equal to (TnL)n∈L,
where L is the k[[T ]]-module generated by a k((T ))-basis of D, which is semi-linear in the sense
that

γ(P (T )x) = P ((1 + T )χ(γ) − 1)γ(x)

for all x ∈ D,P (T ) ∈ k((T )), where χ : Γ → Z∗p is the isomorphism given by the cyclotomic
character, and commutes with ϕ

γ ◦ ϕ = ϕ ◦ γ.

As an exercise, show that ϕ is etale if and only if ϕ is injective and

D = ⊕p−1
i=0 (1 + T )iϕ(D) .

As an exercise, show that for x = a0 + pa1 + . . .+ pnan + . . . with ai ∈ {0, . . . , p− 1}, the
sequence (1 + T )a0+pa1+...+pnan converges in k[[T ]]. By definition, the limit is (1 + T )x.

Definition 0.4. Let D,D′ be two finite dimensional etale (ϕ,Γ)-modules over k((T )). A
morphism f : D → D′ is a k-linear morphism f : D → D′ which is ϕ and Γ-equivariant:
f ◦ ϕD = ϕD′ ◦ f , f ◦ γD = γD′ ◦ f .

As an exercise, show that the category of finite dimensional etale (ϕ,Γ)-modules over
k((T )) is abelian.

1 The case n = 1

The characters GL(1, Qp) = Q∗p → k∗ are easy to describe. We have Q∗p = pZZ∗p and k∗ is a
cyclic group of order prime to p and divisible by p − 1. A character of Z∗p factorizes by the
reduction map Z∗p → F ∗p . A character η : Q∗p → k∗ is given by η(p) ∈ k∗ and a k-character of
F ∗p . There are (q − 1)(p− 1) character Q∗p → k∗.

Proposition 1.1. The isomorphism classes of etale 1-dimensional (ϕ,Γ)-modules over k((T ))
are in bijection with the (q − 1)(p− 1) characters Q∗p → k∗.

Proof. We associate to a character η : Q∗p → k∗ the etale (ϕ,Γ)-module Dη = k((T ))e of basis
e such that

ϕ(e) = η(p))e , γ.e = η(χ(γ))e .

We must check two things:
1) When η 6= η′ then Dη and Dη′ are not isomorphic.
2) Any 1-dimensional etale (ϕ,Γ)-module over k((T )) is isomorphic to some Dη.

*** Let D be a 1-dimensional etale (ϕ,Γ)-module over k((T )). We choose a non zero
element e ∈ D. Then D = k((T ))e. The semilinear endomorphism ϕ and the semilinear
action of Γ on D commuting with ϕ are given by

ϕ(e) = a(T )e , γ.e = bγ(T )e
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for some a(T ) ∈ k((T )) and a 1-dimensional continuous k((T ))-representation γ 7→ bγ : Γ →
k((T ))∗, satisfying

a((1 + T )χ(γ) − 1)bγ(T ) = bγ(T p)a(T ) .

The endomorphism ϕ is etale if and only if a(T ) 6= 0. ***

2 k-representations of Zp

The compact group Zp is the projective limit of the finite groups Z/pnZ = Zp/p
nZp with the

projective limit topology,
Zp = projlimZ/pnZ

The subgroup Z is dense in Zp. The group Zp is topologically cyclic generated by 1.

We denote by k[G] the group k-algebra of a group G. We denote by [g] the element g ∈ G
in k[G].

Definition 2.1. The completed k-group algebra of Zp is

k[[Zp]] = projlimk[Zp/pnZp]

with the projective limit topology.

Clearly k[Zp] embeds as a dense subalgebra of k[[Zp]].

Theorem 2.2. The completed k-group algebra k[[Zp]] is topologically isomorphic to k[[T ]] by
the map sending u to 1 + T .

Proof. Alain Robert ***

In particular a k[[T ]]-module is a k-representation of Zp. Conversely, is a k-representation
V of Zp always a k[[T ]]-module ?

A topological k-vector space V which is a projective limite V = proj limVn of finite k-
vector spaces Vn with the profinite topology, is called profinite.

A finite k-vector space or a finitely generated k[[T ]]-module with the topology induced by
k[[T ]] is a profinite k-vector space.

Proposition 2.3. Let M be a profinite k-vector space. A continuous k-representation of Zp
on M is the same than a structure of topological k[[Zp]]-module on M .

Proof. **** Wilson Profinite groups (1998) 7.2.4

The monoid Zp − {0} = Zop acts continuously by multiplication on the group Zp (in the
additive notation) and acts continuously the k-algebra k[[Zp]]. In the multiplicative notation
x ∈ Zop sends [1] to [x]. By the theorem we get a continous action of Zop on the k-algebra
k[[T ]] such that x.(1 +T ) := (1 +T )x for x ∈ Z0

p . The group Zop acts on the field k((T )). ****
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3 Etale k-representations of P +

The produit semidirect Zp oZop where Zop = Zp−{0} = pNZ∗p , is isomorphic to the mirabolic
submonoid P+ of GL(2, Qp) defined by

P+ :=
(
Zop Zp
0 1

)
= P0t

N = P0t
NP0

where

N0 :=
(

1 Zp
0 1

)
, P0 :=

(
Z∗p Zp
0 1

)
, t :=

(
p 0
0 1

)
.

Definition 3.1. Let D be a k-representation of P+. The action ϕ of t is called etale, if ϕ is
injective and

D = ⊕p−1
i=1

(
1 i
0 1

)
◦ ϕ(D) .

When the action of t is etale, one says that the k-representation D of P+ is etale.

As an exercise, show that the action of any element of P+ is etale when the action of t is
etale.

Show as an exercise, that D = ⊕p−1
i=1 θi ◦ϕ(D) is equivalent to D = ⊕θ∈Θ1θ ◦ϕ(D) for any

system Θ1 of representatives of N0/tN0t
−1.

A finite dimensional (ϕ,Γ)-module D over k((T )) is a continuous k-representation of P+,
where (

1 i
0 1

)
x = (1 + T )ix , tx = ϕ(x) ,

(
a 0
0 1

)
= χ−1(a)(x) ,

where x ∈ D, a ∈ Z∗p . We leave as an exercise to show that D is etale as a finite dimensional
(ϕ,Γ)-module over k((T )) if and only if D is etale as a k-representation of P+.

As an exercise show that the category of etale k-representations of P+ is abelian.

The interpretation of a finite dimensional (ϕ,Γ)-module over k((T )) as an etale continuous
k-representation of the monoid P+ is due to Colmez and is the first step towards the local
modulo p Langlands correspondence for GL(2, Qp).

Definition 3.2. Let D be an etale k-representation of P+. The injective endomorphism ϕ
has a canonical left inverse ψ with kernel

Dψ=0 = (N0 − tN0t
−1)ϕ(D) = ⊕p−1

i=1

(
1 i
0 1

)
ϕ(D) .

Note that D = ϕ(D)⊕Dψ=0. The k-endomorphism e := ϕ ◦ ψ satisfies e ◦ e = e because
ψ◦ϕ = idD. Hence e is a projector from D onto ϕ(D). The k-endomorphism eg := g◦ϕ◦ψ◦g−1

for any g ∈ P+ is also a projector.

Proposition 3.3. The projectors e0@1 i
0 1

1A are orthogonal for 0 ≤ i ≤ p− 1 of sum idD.
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Proof. Let Θ1 be any system of representatives of N0/tN0t
−1. x = ϕϕ(x) +

∑
θ∈Θ1

θϕ(xθ)
with xθ ∈ D. Left multiply by θ−1 and use that θ−1(Θ1 − θ) is a system of representatives of
(N0 −N1)/N1. We leave the orthogonality as an exercise.

As an exercise show that the projectors eθ for θ in a system Θk of representatives of N0/Nk

and Nk = tkN0t
−k are orthogonal of sum idD for any integer k ≥ 1.

The k-endomorphism ψ does not respect the product but we have:

Lemma 3.4. Let a ∈ k[[T ]], x ∈ D. We have

ψ(aϕ(x)) = ψ(a)x , ψ(ϕ(x)a) = xψ(a)

Proof. We leave the proof as an exercise. The second formula is easier.

4 Lattices

Let D be a finite dimensional etale continuous (ϕ,Γ)-module over k((T )).

We want to find a canonical k[[T ]]-lattice D] which is P−-stable and on which the action
of ψ is surjective.

A lattice in D is a k[[T ]]-submodule generated by a k((T ))-basis of D, or equivalently a
compact k[[T ]]-submodule generating the k((T ))-vector space D. A k[[T ]] module containing
a lattice and contained in a lattice is a lattice.

The image by Γ of a lattice L generates a Γ-stable lattice because Γ is compact.

Why does it exist a ψ-stable lattice in D ?

When D = k((T )), then k[[T ]] is ϕ and ψ-stable and ψ is surjective is k[[T ]]. Show as an
exercise that T−1k[[T ]] is the maximal lattice of k((T )) where ψ is surjective and that k[[T ]]
is the minimal lattice where ψ is surjective.

In general one cannot find a lattice in D which is stable by ϕ and by ϕ.

Lemma 4.1. There are two lattices L0 and L1 in D such that

ϕ(L0) ⊂ T−1L0 ⊂ L1 ⊂ k[[T ]]ϕ(L1)

Proof. Start with any k((T ))-basis e1, . . . , ed of D. Because D is etale, ϕ(e1), . . . , ϕ(ed) is also
a k((T ))-basis of D. There are a′ij ∈ k((T )) and b′ij ∈ k((T )) such that

ϕ(ej) =
∑
i

a′ijei , ej =
∑
i

b′ijϕ(ei) .

Choose Tn such that Tna′ij ∈ k[[T ]] and Tnb′ij ∈ k[[T ]]. Take for L0 the lattice of k[[T ]]-basis
(Tnei) and for L1 the lattice of k[[T ]]-basis (T−nei). They satisfy the lemma because

ϕ(Tnei) = Tnpϕ(ei) = Tn(p−1)
∑
i

aijT
nei
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and

T−nej = T−n
∑
i

b′ijϕ(ei) = T−n
∑
i

b′ijT
npϕ(T−nei) = Tn(p−2)

∑
i

bijϕ(T−nei) .

Lemma 4.2. The lattice L0 is ϕ-stable. The lattice L1 of D is ψ-stable.

Proof. ϕ(L0) ⊂ T−1L0 ⊂ L0 and ψ(L1) ⊂ ψ(k[[T ]])L1 = L1.

For n ∈ N let Mn = ψn(N0). Then Mn is a lattice contained in L1 and the sequence
Mn is increasing. As k[[T ]] is noetherian, it has a limit M∞ which is a lattice such that
ψ(M∞) = M∞. The sequence ψn(T−1M∞) is a decreasing sequence of lattices containing
M∞. It has a limit D] such that ψ(D]) = D].

Proposition 4.3. D contains a maximal lattice D] satisfying ψ(D]) = D].
D contains a minimal lattice D\ satisfying ψ(D\) = D\.
D contains a maximal lattice D+ stable by ϕ.
These three lattices are Γ-stable and D+ ⊂ D\ ⊂ D].

5 k-representations of the mirabolic group P

The subgroup P of GL(2, Qp) generated by P+ is the mirabolic subgroup

P =
(
Q∗p Qp
0 1

)
' Qp oQ∗p

We denote N =
(

1 Qp
0 1

)
.

The second step is to associate to an etale k-representation D of the mirabolic monoid
P+ a k-representation of the mirabolic group P .

There is a classical method, called induction and denoted by indGH which associates a
k-representation of a group G to a k-representation of a submonoid H.

Definition 5.1. Let H be a submonoid of a group G. Let V be k-representation of H. The
group G acts on the space

indGHD := {f : G→ V , f(hg) = hf(g) for g ∈ GP, h ∈ H }

by right translations.

The induction from H to G is the right adjoint of the restriction from G to H, and is a
left exact functor. The induction from H to G behaves better when the elements of H acts
surjectively on V .

Let
P− := {g−1 | g ∈ P+ } = t−NP0
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be the inverse monoid. An etale k-representation D of P+ has a canonical structure of k-
representation of P−, which coincide on P0 with the original action and such that the action
of t−1 is the canonical left inverse ψ of ϕ defined as follows. The canonical lattices D\ ⊂ D]

of D are P−-stable and the action of P− is surjective on these lattices. We consider the
k-representations of P

indPP−D
\ ⊂ indPP−D

] .

Proposition 5.2. (i) If D is irreducible, dimk((T ))D ≥ 2, then D\ = D].
(ii) the functor D → indPP−D

] is exact (this is not true for D\),
(iii) If D,D′ are two finite dimensional etale (ϕ,Γ)-modules over k((T )) such that indPP−D

] '
indPP−D

] then D ' D′.

We do not prove the proposition but we prove the following corollary of (i).

Corollary 5.3. If D is irreducible, dimk((T ))D ≥ 2, then the representation of P on ψ−∞(D])
is topologically irreducible (a closed P -stable subspace of is trivial).

Proof. If M is a non zero P -stable subspace of ψ−∞(D]) the n-th projection of M is a ψ-
stable non zero k[[T ]]-submodule of D] hence is equal to D] by (i) in the last proposition.
This implies that M is dense in ψ−∞(D]).

***** Not done in the lecture, until the end of this section. The representation indPP−D
has two other useful models.

Lemma 5.4. P = ∪n∈NP−tn (disjoint union).

Proof. We have t−nP0t
n =

(
Z∗p p−nZp
0 1

)
and t−nP0t

m =
(
pm−nZ∗p p−nZp

0 1

)
. Let p =(

a b
0 1

)
∈ P . Write a = pra′ with a′ ∈ Z∗p and r ∈ Z. Choose r′ ∈ N such that b ∈ p−r′Zp.

For n ≥ r′ we have p−r
′
Zp ⊂ p−nZp. Choose n such that n ≤ r and take m = r − n.

Proposition 5.5. Let D be an etale k-representation of P+. The map f 7→ (f(tn))n∈N is a
bijection from indPP−D to the space

ψ−∞(D) := {(xn)n∈N | xn = ψ(xn+1) for all n ∈ N}

and the restriction to N is a N -equivariant bijection from indPP−D to indNN0
D.

Proof. The disjoint union
P = ∪n∈NP−tn

show that f is determined by its restriction to tN . We have ψf(tn+1) = t−1f(tn+1) = f(tn)
for n ∈ N . and conversely f(p) = p−(xn) if p = p−tn for p ∈ P equal to p−tn with p− ∈
P−, n ∈ N.

The second assertion is deduced from the first assertion and the formula

f(tk) =
∑

θ∈N0/Nk

θϕkψkθ−1(f(tk)) =
∑

θ∈N0/Nk

θϕkt−kθ−1(f(tk)) =
∑

θ∈N0/Nk

θϕk(f(t−kθ−1tk)) ,
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f(t−kθtk) = ψkθ−1(f(tk)) .

for any k ∈ N . Note that the group N = ∪k∈N t−kN0t
k. We leave the rest of the proof as an

exercise.

As an exercise, give the action of P in the two models ψ−∞(D) and indNN0
D of the

representation of P on indPP−D, obtained by restriction to the submonoid tN and to the

subgroup N :=
(

1 Qp
0 1

)
.

In the model ψ−∞(D), it is convenient to identity (xn)n∈N o (xn)n∈Z where xn = ψ−n(x0)
when n ≤ −1.

For a ∈ Z∗p , b ∈ Qp

t(xn)n∈N = (xn+1)n∈N ,

(
a 0
0 1

)
(xn)n∈N = (axn)n∈N ,

(
1 b
0 1

)
(xn)n∈N = (yn)n∈N

where yn =
(

1 pnb
0 1

)
xn if pnb ∈ Zp and yn = ψ−vp(b)−n(y−vp(b)) if n ≤ −vp(b).

We see easily that ψ−∞(D) = D when ϕ is invertible.

Proposition 5.6. If 0 → D1 → D → D2 → 0 is an exact sequence of of representations of
P− such that the action ψ of t−1 on D1 is surjective. Then 0 → ψ−∞(D1) → ψ−∞(D) →
ψ−∞(D2)→ 0 is an exact sequence of representations of P .

Proof. To prove the surjectivity of the map ψ−∞(D) → ψ−∞(D) we have to show that for
x ∈ D2 and y ∈ D of image in D2 equal to ψ(x) there exists z ∈ D of image x ∈ D2 with
ψ(z) = y. Choose z′ ∈ D with image x and set y′ := ψ(z′). Consider D1 embedded in D.
Then y′− y ∈ D1. As ψ is surjective on D1 choose t ∈ D1 with ψ(t) = y′− y. Take z := z′+ t.

Definition 5.7. Let ResN0 the k-endomorphism of indNN0
D sending f ∈ indNN0

D, the function
ResN0(f) ∈ indNN0

D vanishes outside N0 and equal to f on N0.

Clearly ResN0 is a projector of indNN0
D.

In the ψ−∞(D)-model the projector ResN0 admits the following description. The map

ι : D → ψ−∞(D) , x 7→ (ϕn(x))n∈N ,

corresponds to the map D → indNN0
D sending x ∈ D to the function vanishing outside N0

and value x at 1. It is injective and P+-equivariant. The map

π : ψ−∞(D)→ D , (x)n∈N 7→ x0 ,

corresponds to the map indNN0
D → D sending f to f(1). It is surjective and P−-equivariant.

We have π ◦ ι = idD.

Lemma 5.8. The projector ι ◦ π in the ψ−∞(D)-model correspponds to the projector ResN0

in the indNN0
D model.
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We write an element g ∈ P as g = ntka with n ∈ N, k ∈ Z and a ∈ Z∗p . We have
hN0h

−1 = Nk.

Lemma 5.9. For g ∈ P as above, the projector g ◦ ι ◦ π ◦ g−1 depends only on the set nNk

in N .

Proof. It is true to prove g ◦ ι ◦ π ◦ g−1 = h ◦ ι ◦ π ◦ h−1 for h = n′tk with n′ ∈ N such
that n′Nk = nNk. We have g−1h = a−1t−kn−1n′tk and n−1n′ ∈ tkN0t

−k. Hence g−1h ∈ P0.
Clearly ResN0 = ι ◦ π commutes with P0.

We denote ResnNk
:= g ◦ ι ◦ π ◦ g−1 when g = ntka as above. A open compact subset U

of N is a finite disjoint union of ∪n∈N/Nk
nNk (the group N is commutative) for some k ∈ Z.

We define ResU =
∑

n∈N/Nk
ResnNk

.

As an exercise, show that ResU does not depend of the choice of k ∈ Z and for g ∈ P we
have g ◦ResgU = ResU ◦ g for all g ∈ P .

As an exercise, show that the projector 1−ϕ◦ψ : D → Dψ=0 corresponds to the restriction
to D embedded canonically in indPP−D of the projector ResN∗0 .

Proposition 5.10. ??? The map

Res : C∞c (N ; k)→ Endkind
P
P−D

defined by
1U 7→ ResU

fro all open compact subsets U of N characteristic function 1U , is well defined k-linear.

The group P acts naturally on Endkind
P
P−D. For f : D → D and p ∈ P we have

(p.f)(x) = p.f(p−1.x).

Proposition 5.11. ??? The map

Res : C∞c (N ; k)→ Endkind
P
P−D

is P -equivariant .

6 Irreducible smooth k-representations of the mirabolic P

Proposition 6.1. Let V be a topological k-vector space. If V is discrete (resp. profinite)
then V ∗ = Homcont(V, k) is profinite (resp. discrete) and V ∗∗ = V . If V is a smooth k-
representation of Zp, then V Zp is finite if and only if V ∗ is a fnitely generated k[[Zp]]-module.

Proof. 1) Topological Nakayama lemma (Howson).
Claim: If M is a profinite k-vector space which is a topological k[[T ]]-module such that

M = TM then M = 0.
Proof. Assume that M 6= 0 and let U be an open neighborhood of 0 in M with U 6= M .

Let m ∈M . There exists a neighborhood Um of m in M such that TnM ⊂ U for n ∈ N large
enough. We cover the compact space M by finitely many Um. For n large enough we have
TnM ⊂ U . But TnM = M . Hence we get a contradiction.
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Claim: If M/TM is a finite dimensional k-vector space then M is a finitely generated
k[[T ]]-module.

Proof of claim. Let N = k[[T ]]e1 + . . . + k[[T ]]en such that M = N + TM . The quotient
M/N is compact and Hausdorff. We have T (M/N) = (TM + N)/N = 0. Hence M/N = 0
and M = N .

The dual Ω(D\) of c-indPP−(D\) is a quotient of the dual Ω(D]) of c-indPP−(D]). They are
smooth k-representations of P for the contragredient action

< bv∗, bv >=< v∗, v >

By duality we obtain :

Corollary 6.2. (i) If D is irreducible, dimk((T ))D ≥ 2. Then Ω(D) is an irreducible smooth
k-representation of P .

(ii) the functor D → indPP−D
] is exact and contravariant.

(iii) If D,D′ are two finite dimensional etale continuous (ϕ,Γ)-modules over k((T )) such
that Ω(D) = Ω(D′) then D ' D′.

We consider the upper triangular subgroup

B :=
(
Q∗p Qp
0 Q∗p

)
= P × Z , ,

where

Z := {
(
d 0
0 d

)
, d ∈ Q∗p}

is the center of GL(2, Qp).

Proposition 6.3. We have the Bruhat decomposition GL(2, Qp) = B ∪ BsB where s :=(
0 1
1 0

)
and

BsB = BsN = {
(
a b
c d

)
∈ GL(2, Qp) , c 6= 0}

is open in GL(2, Qp).

Proof.

To extend a representation of P to a k-representation of GL(2, Qp), the action of Z is
given by a character Z ' Q∗p → k∗, and we look for a compatible action of s .

Theorem 6.4. When D is irreducible and dimk((T ))D = 2, the representation Ω(D) of P
extends to a smooth irreducible k-representation of GL(2, Qp).

Proof. (Berger) The proof uses the classification of the smooth irreducible k-representations
of GL(2, Qp) with a central character and results in characteristic 0. It would be nice to have
a direct proof.
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This is no more the case when D is irreducible and dimk((T ))D ≥ 3 The representation
Ω(D) is not seen by GL(2, Qp). Is it seen by GL(d,Qp) ? In which way ?

When D = Dη is the 1-dimensional (ϕ,Γ)-module associated to a character η : Q∗p → k,
we take D\ = k[[T ]]e for the e ∈ D non zero with ϕ(e) = η(p), γ(e) = η(χ−1(γ)) and not
D] = T−1k[[T ]]e to define Ω(D).

7 The special representation

Let Z be the center of GL(2, Qp). The group B = PZ is the subgroup of upper trian-
gular matrices in GL(2, Qp). Let s :=. By the Bruhat decomposition G = B ∩ BsN and
B\BsN ' N by Bsn 7→ n. The space C∞(B\GL(2, Qp; k) of locally constant k-valued func-
tions f : B\GL(2, Qp → k is a smooth representation of GL(2, Qp) such that g.f(x) = f(xg)
for g ∈ GL(2, Qp). The center Z acts trivially. The representation is not irreducible because the
subspace of constant functions is stable by GL(2, Qp). The quottient of C∞(B\GL(2, Qp; k)
by the constant functions is a smooth representation of GL(2, Qp) called the special k-
representation Sp of GL(2, Qp).

The restriction of Cc(B\G; k) to P contains the functions with support in BsN which
form a P -stable subspace isomorphic to sp.

Formula

s

(
1 x
0 1

)
=
(

0 1
−1 x

)
,(

0 1
−1 x

)(
a b
0 d

)
=
(
d 0
0 a

)(
0 1
−1 dx−b

a

)
.

We have ZPsP = ZPsN and the map s

(
1 x
0 1

)
is a representative system of the cosets

ZP\ZPsN . The space C∞c (ZP\ZPsP ; k) has a natural action of B trivial on Z and isomor-

phic to C∞c (Qp; k) by the map f → r(x) = f(s
(

1 x
0 1

)
). The induced action of B trivial on

Z on C∞c (Qp; k) is(
a b
0 d

)
.r(x) = (

(
a b
0 d

)
.f)(

(
0 1
−1 x

)
) = f(

(
0 1
−1 x

)(
a b
0 d

)
= r(

dx− b
a

)

We give now a very useful proposition.

Proposition 7.1. 1) Let H be a finite p-group acting on a non zero k-vector space V . Then
V H 6= 0.

2) Let G be a finite group containing H acting on a k-vector space V . When dimk V
H = 1

and V is the k-space generated by the G-orbits of V H , the k-representation of G on V is
irreducible.

3) 1) and 2) remain true when H is a pro-p-subgroup of a profinite group acting smoothly
on V

Proof. 1) Let v ∈ V non zero and let W be the non zero k-vector space generated by the
H-orbit of v. The number of elements of W is finite and is a power of p. For w ∈W the order

12



of the H-orbit of w is a power of p, equal to 1 if and only if w ∈ WH . Hence WH which is
not empty because it contains 0 is divisible by p.

2) Let V ′ be a non zero subspace of V which is stable by G. Then (V ′)H is a non zero
k-subspace of V H . As dimk V

H = 1 we have (V ′)H = V H . Hence V ⊂ V ′ ⊂ V .
3) The orbits of G in V are finite in the profinite case, and this is all what the proof is

using.

Proposition 7.2. The k-vector space C∞c (Qp; k) of locally constant compactly supported k-
valued functions r : Qp ' N with the action of (a, b) ∈ Q∗p oQp ' P given by

(a, b).r(x) = r(
x− b
a

)

is an irreducible k-representation of P .
It is isomorphic to the restriction to P of the special representation

Sp := Cc(B\G; k)/constant functions

of G.

Proof. Proof of the irreducibility. Let f ∈ C∞c (Qp; k) non zero generating a subrepresen-
tation W . There exists n ∈ N such that the support of f is contained in p−nZp. Hence
f ∈ C∞c (p−nZp; k). A function in C∞c (p−nZp; k) fixed by p−nZp is constant. The subrepresen-
tation Wn of p−nZp generated by f is contained in C∞c (p−nZp; k) and has a vector fixed by
p−nZp, hence Wn contains the characteristic function of p−nZp. We deduce that W contains
the characteristic functions of b+ p−mZp for any b ∈ Qp,m ∈ N . Hence W = C∞c (Qp; k).

Proposition 7.3. sp⊗ (η−1 ◦ det) = Ω(Dη).

Proof. ***

Proposition 7.4. The special k-representation Sp of GL(2, Qp) is irreducible.

Proof. The restriction to the mirabolic group P of Sp is isomorphic to the special represen-
tation of P which is irreducible.

8 Bruhat-Cartan-Iwasawa decompositions

Let B :=
(
Q∗p Qp
0 Q∗p

)
be the upper triangular group. We have B = PZ. Let

s =
(

0 1
1 0

)
, t =

(
p 0
0 1

)
, st =

(
0 1
pF 0

)
Theorem 8.1. Bruhat decomposition G = B ∪BsB disjoint union and BsB is open in G

Cartan decomposition G = ∪n∈NKZtnNK
Iwasawa decomposition G = BK

Proof. With the tree *** (Rachel)
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9 Irreducible k-representations of GL(2, Fp)

For r ∈ {0, . . . , p− 1}, let k[X,Y ]r be the space homogenous of polynomials of degree r with
two indeterminates X,Y and coeffcients in k. This is a k-vector space of dimension r + 1 of
basis XiY j for i, j ∈ N such that i+ j = r. The group GL(2, Fp) acts on k[X,Y ]r by

g =
(
a b
c d

)
XiY j = (aX + cY )i(bX + dY )j .

This representation is denoted Symr and is of dimension r+1. When r = 0 we have k[X,Y ]0 =
k and GL(2, Fp) acts trivially. When r = p− 1 the representation Symp−1 of dimension p is
isomorphic to the special k-representation of GL(2, Fp) (exercise).

Lemma 9.1. kXr is the subspace of elements of k[X,Y ]r fixed by
(

1 Fp
0 1

)
).

kY r is the subspace of elements of k[X,Y ]r fixed by
(

1 0
Fp 1

)
).

The k-subspace generated by the GL(2, Fp)-orbit of Xr (or Y r) is equal to k[X,Y ]r.

Proof. Exercise.

Theorem 9.2. The irreducible k-representations of GL(2, Fp) are Symr ⊗ (η ⊗ det) for 0 ≤
r ≤ p− 1 and a morphism η : F ∗p → k∗.

Proof. These k-representations are irreducible and they are not isomorphic (exercise). Their
number is p(p − 1). This is true for any k ⊂ F acp . Hence they remain irreducible and not
isomorphic when one extends the scalar to F acp

By the theory of Brauer, the number of isomorphism classes of irreducible F acp -representations
of GL(2, Fp) is equal to the number of conjugacy classes of elements pf order prime to p (Serre
Linear representations of finite groups). The number of conjugacy classes of elements of order
prime to p is p(p− 1) (Exercise).

Let K := GL(2, Zp). The reduction is a surjective morphism K → GL(2, Fp). We inflate
Symr to a k-representation of K.

Let Z :=
(
a 0
0 a

)
, a ∈ Q∗p the center of GL(2, Fp). We inflate Symr to a representation

of KZ where p acts trivially.

Theorem 9.3. Modulo isomorphism, the irreducible smooth k-representations of KZ are
Symr ⊗ (η ⊗ det) for 0 ≤ r ≤ p− 1 and a continous morphism η : Z∗p → k∗. Their number is
p(p− 1).

Proof. It remains only to prove that
(
p 0
0 p

)
acts by a scalar in an irreducible smooth k-

representation of KZ. ***

Let c-indGKZ Sym
r be the space of functions f : G := GL(2, Qp)→ k[X,Y ]r with compact

support modulo Z such that f(kg) = Symr(k)f(g) for k ∈ KZ, g ∈ GL(2, Qp). The group
G = GL(2, Qp) acts by right translation. We have gf(x) = f(xg). This representation is
called the compact induction of Symr to G.
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Fix vr ∈ c-indGKZ Sym
r for the function with support KZ and vr(1) = Xr. Then vr gen-

erates c-indGKZ Sym
r, i.e. the k-vector space generated by the G-orbit of vr is c-indGKZ Sym

r.

It is known that EndkG c-indGKZ Sym
r ' k[T ] for some T . To define T is suffices to defined

Tvr. Let (Paskunas, restriction to the Borel)
When r = 0

T vr =
(

1 0
p 0

)
vr +

p∑
i=0

(
p i
0 1

)
vr

When r = 1, . . . , p− 1

T vr =
p∑
i=0

(
p i
0 1

)
vr .

For any λ ∈ k, the image T − λ ∈ EndkG c-indGKZ Sym
r is a subrepresentation k-

representation of G. Let η : Q∗p → k∗ be a smooth character and let

π(r, λ, η) :=
c-indGKZ Sym

r

(T − λ) c-indGKZ Symr
⊗ (η ◦ det) .

The representation π(r, λ, η) is not irreducible if and only if λ = ±1 and r ∈ {0, p − 1}
(theorem of Barthel-Livne-Breuil). When r = 0, π(0,±1, η) has a unique irreducible subrep-
resentation Sp⊗ (ηµ±1 ◦det) and the quotient is ηµλ ◦det. When r = p−1, π(p−1,±1, η) has
a unique irreducible subrepresentation ηµ±1 ◦det and the quotient is Sp⊗ (ηµ±1 ◦det), where
µλ is the character of Q∗p trivial on Z∗p sending p on λ and Sp is the special representation
of G, equal to the quotient of the space C∞(PZ\G; k) of locally constant functions by the
constant functions, with the natural action of G by translation. I will prove later that it is
irreducible.

The representations with λ = 0 are all irreducible; they called supersingular by the number
theorists and supercuspidal by the group theorists. Their number when the action of p is fixed
is (p2−p)/2. It is also the number of irreducible k-representations ofGal(Qacp /Qp) of dimension
2 where the determinant of a Frobenius is fixed.

The number of irreducible k-representations of Gal(Qacp /Qp) of dimension n where the
determinant of a Frobenius is fixed, is the number of unitary irreducible polynomials in Fp[X]
of degree n

n−1
∑
d|n

µ(n/d)qd

Theorem 9.4. The smooth irreducible k-representations of GL(2, Qp) with p acting by a
scalar are

(1) the characters η ◦ det where η : Q∗p → k∗ is a smooth character
(2) the special representations Sp⊗ (η ◦ det) where Sp is the “special” representation.
(3) the supercuspidal (=supersingular) representations π(r, 0, η)
(4) the irreducible representations π(r, λ, η) with λ 6= 0.
The only isomorphisms occur when λ = 0 and are

π(r, 0, η) ' π(r, 0, ηµ−1) ' π(p− 1− r, 0, ηωr) ' π(p− 1− r, 0, ηωrµ−1)
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where µ−1 is the unramified quadratic character of Q∗p, trivial on Z∗p sending p to −1 and ω

is the character of Q∗p trivial on pZ given by the reduction Z∗p → F ∗p .

Corollary 9.5. An irreducible smooth k-representation of G = GL(2, Qp) where p acts by a
scalar is a quotient π : c-indGKZ V0 → V where V0 is an irreducible k-representation of KZ
and the kernel R of π is a finitely generated smooth k-representation of G.

Proof. The kernel is W + (T − λ) c-indGKZ V0 where W = 0 or η ◦ det or Sp⊗ (η ◦ det). The
k-vector spaces c-indGKZ V0 and (T −λ) c-indGKZ V0 are generated by a single G-orbit, the same
is true for any irreducible k-representation.

The irreducible k-representations π(r, λ, η) of GL(2, F ) are called principal series. They
are the irreducible k-representations c-indGB η1 ⊗ η2 induced from a k-character η1 ⊗ η2 of B(

a b
0 d

)
→ η1(a)⊗ η2(b)

The principal series are c-indGB η1 ⊗ η2 with η1 6= η2 and there are no isomorphic.
The Bruhat decomposition G = B ∪BsB implies that the restriction to P of a principal

series c-indGB η1 ⊗ η2 contains sp⊗ (η2η1) ◦ det and that the quotient is (η1η2) ◦ det.

Theorem 9.6. The restrictions to P of the irreducible smooth k-representations of GL(2, Qp)
where p acts by a scalar, which are NOT principal series, are irreducible and not isomorphic.

This is quite surprising if one thinks of the modulo ` irreducible representations ofGL(2, Qp)
where the restrictions to P of generic representations all isomorphic.

10 A functor from the smooth k-representations of P to (ϕ, Γ)-
modules

Let V be a smooth k-representation of P . When V is finitely presented, one associates canon-
ically to V an etale (ϕ,Γ)-module over k((T )).

A finitely generated smooth k-representation V of P is k[P ]-generated by finitely many

vectors v1, . . . , vr. The group P0 =
(
Z∗p Zp
0 1

)
is open and compact in P . As the representation

of P on V is smooth, the k[P0]-submodule V0 of V generated by v1, . . . , vr is finite.

Let c-indPP 0(V0) be the compact induced representation. This is the space of functions f :
P → V0 with compact support such that f(xg) = xf(g) for x ∈ P 0, g ∈ G by right translation
(g.f)(x) = f(xg) for x, g ∈ P . The group P acts by right translations: g.f(x) = f(xg) for
x, g ∈ P . We denote by [1, v0] the function with value v0 ∈ V0 at 1 and vanishing outside P0.

Show as an exercise, that the compact induced representation indPP 0(V0) is a smooth k-
representation of P , that the functions g[1, v0] for v0 in a k-basis of V0 and g ∈ P/P0 form a
k-basis of indPP 0(V0).

The k-linear map
π : indPP0

(V0)→ V , π(g[1, v0]) = g.v0
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is P -equivariant and surjective. The kernel R of π is a subrepresentation of indPP0
(V0).

When the kernel of π is a finitely generated representation of P , one says that π is a finite
presentation of V . A smooth k-representation V of P is finitely presented if it admits a finite
presentation.

Let V be a finitely presented smooth k-representation of P , and let

π : indPP0
(V0)→ V

be a finite presentation of kernel R.
Let P+V0 be the k-vector space generated by g.v for g ∈ P+, v ∈ V 0. The dual (P+V0)∗

is a profinite k-vector space with an action of P−; in particular it is a k[[Zp]]-module, i.e. a
k[[T ]]-module. Let

D := k((T ))⊗k[[T ]] (P+V0)∗ .

Proposition 10.1. The k((T ))-vector space D does not depend on the choice of V0.

Proof. Claim. Let V ′0 be a P0-stable finite k-subspace of V generating V . Then P+V ′0 is
contained in P+V0 +X for some N0-stable finite k-vector subspace X of V .

The claim implies the proposition. By duality (P+V ′0)∗ is a quotient of (P+V0)∗ as a k[[T ]]-
module. The kernel W is a finite k[[T ]]-module. It is killed by a power of T , hence vanishes
when one inverts T . We have k((T ))⊗k[[T ]] W = 0. This proves the proposition.

Proof of the claim. If p1, . . . , pr ∈ P , there exists an integer n > 0 such that tnp1, . . . , t
npr ∈

P+. This implies that there is an integer n > 0 such that tnV0 ⊂ P+V ′0 for some n ∈ N hence
P+tnV0 ⊂ P+V ′0 .

P+ = P+tnP0 + N0Y P0 for a finite subset Y of P+. Hence P+V0 = P+tnV0 + X for
some N0-stable finite k-vector subspace X of V , because the action is smooth and N0, P0 are
compact.

The group P− acts smoothly on D and not P+.

When the kernel of the presentation π : indPP0
(V0) → V is finitely generated, we show

that the representation of P− on D comes from an etale representation of P+ on D, i.e. a
structure of etale (ϕ,Γ)-module over k((T )).

Lemma 10.2. The set P − P+ is stable by multiplication by P−.

Proof. Let p ∈ P . We write uniquely p = uatr with u ∈ N, a ∈ Z∗p , r ∈ Z. We have t−1p =
t−1utatr−1. If u 6∈ N0 then t−1ut 6∈ N0. If r < 0 then r − 1 < 0.

The element p does not belong to P+ if and only if u 6∈ N0 or u ∈ N0, r < 0. Hence
p ∈ P − P+ implies t−1p ∈ P − P+. The monoid P− is generated by t−1 and N0. For u ∈ N0

it is clear that p ∈ P − P+ if and only if up ∈ P − P+

The lemma implies that the group P− acts naturally on

indPP0
(V0)

R+ (P − P+)[1, V0]

where (P − P+)[1, V0] be the k-vector space generated by g.[1, v0] for g ∈ P − P+, v0 ∈ V 0.
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Lemma 10.3.

indPP0
(V0)

R+ (P − P+)[1, V0]
' P+V0

∆
where ∆ = P+V0 ∩ (P − P+)V0

Proof. We leave the proof as an exercise.

Lemma 10.4. When the kernel of π : π : indPP0
(V0)→ V is finite, ∆ is finite.

The dual (P
+V0
∆ )∗ is a k-representation of P+ and

(
P+V0

∆
)∗ ⊂ (P+V0)∗

We deduce from the lemma that

k((T ))⊗k[[T ]] (P+V0)∗ ' k((T ))⊗k[[T ]] (
P+V0

∆
)∗

Let D+
V0
⊂ D\

V0
be the natural images of (P

+V0
∆ )∗ ⊂ (P+V0)∗ in D. Then D+

V0
is a ϕ-stable

lattice and D\
V0

is a ψ-stable lattice. Compare with Schneider Vigneras to find P+V0 minimal.
Check if the minimal case corresponds to a finite presentation and that the lattices which are
canonical correspond to D+ and D\.

Theorem 10.5. V 7→ D(V ) is a contravariant exact functor from the category of smooth
k-representations of P to the category of etale (ϕ,Γ) k((T ))-modules.

What are the finitely presented smooth k-representations V of P such that the associated
etale (ϕ,Γ)-module D over k((T )) is finite dimensional ?

Proposition 10.6. If c-indPP0
V0 → V is a finite presentation of V such that (P+V0)N0 is

finite, then the k((T ))-vector space D is finite dimensional.

Proof. See the proposition on duality.

By the topological Nakayama lemma, dimk(P+V0)N0 is the minimal number of generators
of the k[[T ]]-module P+V ∗0 . The ring k[[T ]] is principal. By the classification of the finitely
generated k[[T ]]-modules, the k((T ))-dimension of D is the rank of the k[[T ]]-free module
P+V ∗0 divided by its torsion submodule. Hence the k((T ))-dimension of D of bounded by the
k-dimension of P+V ∗0 , with equality if the k[[T ]]-module P+V ∗0 is free.

Theorem 10.7. Let V be an irrreducible smooth k-representation of GL(2, Qp) where p acts
by a scalar. Then V |P is finitely presented and the associated etale (ϕ,Γ) k((T ))-module is a
k((T ))-vector space of dimension

0 if V is a character,
1 if V is special or a principal series,
2 if V is supercuspidal.

Before explaining the proof of the theorem, we give a corollary based on the following
result on extensions

Proposition 10.8. If V1 → V → V2 → 0 is an exact sequence of smooth k-representations
of P , and if V1 and V2 are finitely presented, then V is finitely presented.
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Proof. To be written.

Corollary 10.9. V → D(V ) is a well defined functor from the category of finite length smooth
k-representations of GL(2, Qp) where p acts by a scalar on any irreducible subquotient. It is an
exact contravariant functor to the category of finite dimensional etale (ϕ,Γ) k((T ))-modules
over k((T )).

This functor is the Colmez functor, and is not faithful because it vanishes on the smooth
k-characters of GL(2, Qp).

We give now the proof of the theorem.

Proposition 10.10. Iwasawa decomposition. We have G = PKZ with P0 = P ∩KZ.

Proof. Rachel’s course on the tree.

Proposition 10.11. When V is the restriction to P of an irreducible smooth k-representation
of GL(2, Qp) then V is finitely presented.

Proof. By Iwasawa decomposition, for any smooth k-representation V0 of KZ, the restriction
to P of c-indGKZ V0 is c-indPP0

V0 and the restriction to P of a a finitely generated smooth
k-representation of G is a finitely generated smooth k-representation of P . We know that V
is the unique quotient of some V (r, λ, η). The presentation of V |P associated to the image V0

of Symr ⊗ (η ⊗ det) is finite.

When dimkV is finite, D = 0 because k((T ))⊗k[[T ]] (P+V0)∗ = 0 when (P+V0)∗ is finite.

The special representation sp of P is the restriction of the special representation Sp of
GL(2, Qp). The subspace C∞(Zp; k) (functions with support in Zp) in the model C∞c (Qp; k)
is P+-stable and generated by the characteristic function of Zp as a representation of P+.
This implies that

D(Sp) = k((T ))⊗k((T )) (C∞(Zp; k))∗

because two finitely generated P+-stable submodules generating a smooth k-representation
of P are equal modulo a finite N0-stable set. The dual of C∞c (Zp; k) = limC∞c (Zp; k)p

nZp is
k[[Zp]] = proj lim(C∞c (Zp; k)p

nZp)∗ ' k[[T ]]. We deduce that D(Sp) ' k((T )).

D(Sp⊗ η⊗) ' Dη′ for two characters η, η′ → k∗. Do we have η′ = η ? or η′ = η−1 ?
A smooth k-representation V of GL(2, Qp) is called admissible when V C is finite for any

open compact subgroup C of GL(2, Qp). Let I1 be the pro-p-Iwahori subgroup inverse image
of N(Fp) in K.

Proposition 10.12. A smooth k-representation V of GL(2, Qp) is admissible if and only V C

is finite for some open compact subgroup C of GL(2, Qp).
The dimension of the k-vector space V I1 is 1 when V is a character or a special represen-

tation and is 2 for the other irreducible smooth k-representations of GL(2, Qp) with p acting
by a scalar.

We consider now a supersingular irreducible smooth k-representation V (r, η) of GL(2, Qp)
where p acts by a scalar. Let V0 be the image of Symr⊗(η◦det) embedding in V by the quotient
map c-indGKZ Sym

r⊗(η◦det) of kernel T c-indGKZ Sym
r⊗(η◦det). Let ∆ = P+V0∩(P−P+)V0.
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Proposition 10.13. ∆ contains (P+V0)N0

As ∆ is finite, we deduce that (P+V0)N0 is finite hence the k((T ))-vector space D(V ) is
finite dimensional. This is enough for the corollary of the theorem.

Proof. The following proof is due to Y. Hu.

a) If v ∈ (P+V0)N0 then v is fixed by some
(

1 0
pnvZp 1

)
. The subgroup Cv of GL(2, Qp)

generated by N0 and
(

1 0
pnvZp 1

)
is open and compact, The representation V of GL(2, Qp)

is admissible. Hence V Cv is finite.

b) Let T1 =
∑p−1

i=0

(
p i
0 1

)
seen as an operator of V . Set Tn = T1 ◦ . . . ◦ T1 n-times. Then

one can show *** that Tnv ∈ V Cv when n ≥ nv.

c) Let ∆0 = ∆ and by induction on n let ∆n = P+V0 ∩ Kst∆n−1 where st =
(

0 1
p 1

)
.

Then one can show *** that the sequence of k-vector spaces (∆n)n∈N is increasing of union
P+V0. For v ∈ P+V0 let `(v) be the minimal integer n ∈ N such that v ∈ ∆n. Then one
shows that `(T1v) = `(v) + 1 if v 6∈ ∆.

d) By a) and b), the elements Tnv for n ≥ nv are linearly dependent. This implies that v
belongs to ∆ because `(Tnv) = `(v) + n if v 6∈ ∆.

In fact, Hu proved more:

Proposition 10.14. ∆ = V I1

Proof. ***

An element of ∆ invariant by I1 belongs to P+V0 which contains ∆ and is invariant by
N0 which is contained in I1. Hence we obtain

Corollary 10.15. (P+V0)N0 = V I1

We deduce that the dimension of D(V ) over k((T )) is ≤ 2 with equality if (P+V0)∗ is a
free k((T ))-module.

To finish ***

The canonical diagram ∆ ⊂ K∆ To finish ***
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