Modulo p representations of $GL(2, Q_p)$ and (φ, Γ) -modules

Marie-France Vignéras

May 28, 2010

Lectures WAM Princeton May 2010

Two deep theories were independently developed this last 50 years in number theory, the p-adic theory of Fontaine and the theory of automorphic representations by Langlands. These two theories emerge together these last 10 years giving rise to the local p-adic and modulo p Langlands correspondence for $GL(2, Q_p)$.

We fix a finite field k of characteristic p with q elements.

Lectures

- 1. Etale (φ, Γ) -modules over k((T)) and the mirabolic monoid P^+ of $GL(2, Q_p)$.
- 2. Irreducible k-representations of $GL(2, F_p)$ and of $GL(2, Q_p)$.
- 3. From smooth k-representations of the mirabolic P of $GL(2, Q_p)$ to etale (φ, Γ) -modules over k((T)).
- 4. Coefficient system on the tree and finite dimensional etale (φ, Γ) -modules over k((T)).

References

- 1. Laurent Berger On some modular representations of the modular subgroup of $GL_2(Q_p)$.
- 2. Pierre Colmez (φ, Γ) -modules et représentations du mirabolique de $GL_2(Q_p)$ Representations de $GL_2(Q_p)$ et (φ, Γ) -modules
- 3. Yongquan Hu Diagrammes canoniques et représentations modulo p de $GL_2(F)$

We consider the groups $Gal(Q_p^{ac}/Q_p)$, where Q_p^{ac} is an algebraic closure of Q_p and $GL(n, Q_p)$. We put on these groups the topology such that the finite index subgroups of $Gal(Q_p^{ac}/Q_p)$ and of $GL(n, Z_p)$ are all open.

This is the usual topology ***.

Definition 0.1. Let G be a topological group. A k-representation of G is a group morphism $G \to GL_k(V)$ where V is a k-vector topogical space; the representation is continuous if the map

$$G \times V \to V \to V$$
 , $(g, v) \mapsto g.v$

is continuous. The k-dimension of V is the dimension of the representation, and can be infinite.

When the topology of V is discrete, the k-representation of G on V is continuous if and only if for any $v \in V$ the subgroup of $g \in G$ such that $v_r(g)v = v$ is open. One says that the representation is smooth.

When the k-dimension is finite we suppose that V is discrete. When V = k, the k-representation is called a character.

Lemma 0.2. Any finite dimensional k-representation of $Gal(Q_p^{ac}/Q_p)$ and of $GL(n, Z_p)$ is smooth.

Proof. Any finite index subgroup is open.

A profinite group is a projective limit of finite groups with the projective limit topology. A topological group is finitely generated when it contains finitely many elements generating a dense subgroup. Any finite dimensional k-representation of finitely generated profinite group is smooth because any finite index subgroup is open (Segal Nikolov, annals of math 165 (2007)).

The aim of the local Langlands correspondence over Q_p is to compare in a meaningful way the *n*-dimensional *k*-representations of $Gal(Q_p^{ac}/Q_p)$ and the smooth *k*-representations of $GL(n, Q_p)$.

Fontaine showed that the category of *n*-dimensional *k*-representations of $Gal(Q_p^{ac}/Q_p)$ is equivalent to the category of *n*-dimensional etale (φ, Γ) -modules over the field $k((T)) = \{\sum_{n\geq r} a_n T^n , a_n \in k, r \in Z\}$ of Laurent series in one indeterminate T with coefficients in k.

We denote $k[[T]] = \{\sum_{n \ge 0} a_n T^n , a_n \in k, r \in Z\}$ the ring of Taylor series in one indeterminate T with coefficients in k.

Definition 0.3. A n-dimensional etale (φ, Γ) -module D over k((T)) is :

1) a k((T))-vector space D.

2) A k-linear endomorphism φ of D which is semi-linear in the sense that

$$\varphi(P(T)x) = P(T^p)\varphi(x)$$

for all $x \in D$, $P(T) \in k((T))$ and etale in the sense that the image of a k((T))-basis e_1, \ldots, e_n of D by φ is a k((T))-basis $\varphi(e_1), \ldots, \varphi(e_n)$ of D.

2) A continuous representation of $\Gamma = Gal(Q_p^{cyc}/Q_p)$ where Q_p^{cyc} is the p-adic cyclotomic field, on the k-vector space D with the topology with neigbourhood basis of 0 equal to $(T^nL)_{n\in L}$, where L is the k[[T]]-module generated by a k((T))-basis of D, which is semi-linear in the sense that

$$\gamma(P(T)x) = P((1+T)^{\chi(\gamma)} - 1)\gamma(x)$$

for all $x \in D, P(T) \in k((T))$, where $\chi : \Gamma \to Z_p^*$ is the isomorphism given by the cyclotomic character, and commutes with φ

$$\gamma \circ \varphi = \varphi \circ \gamma.$$

As an exercise, show that φ is etale if and only if φ is injective and

$$D = \bigoplus_{i=0}^{p-1} (1+T)^i \varphi(D)$$

As an exercise, show that for $x = a_0 + pa_1 + \ldots + p^n a_n + \ldots$ with $a_i \in \{0, \ldots, p-1\}$, the sequence $(1+T)^{a_0+pa_1+\ldots+p^n a_n}$ converges in k[[T]]. By definition, the limit is $(1+T)^x$.

Definition 0.4. Let D, D' be two finite dimensional etale (φ, Γ) -modules over k((T)). A morphism $f: D \to D'$ is a k-linear morphism $f: D \to D'$ which is φ and Γ -equivariant: $f \circ \varphi_D = \varphi_{D'} \circ f$, $f \circ \gamma_D = \gamma_{D'} \circ f$.

As an exercise, show that the category of finite dimensional etale (φ, Γ) -modules over k((T)) is abelian.

1 The case n = 1

The characters $GL(1, Q_p) = Q_p^* \to k^*$ are easy to describe. We have $Q_p^* = p^{\mathbb{Z}} Z_p^*$ and k^* is a cyclic group of order prime to p and divisible by p - 1. A character of Z_p^* factorizes by the reduction map $Z_p^* \to F_p^*$. A character $\eta : Q_p^* \to k^*$ is given by $\eta(p) \in k^*$ and a k-character of F_p^* . There are (q-1)(p-1) character $Q_p^* \to k^*$.

Proposition 1.1. The isomorphism classes of etale 1-dimensional (φ, Γ) -modules over k((T)) are in bijection with the (q-1)(p-1) characters $Q_p^* \to k^*$.

Proof. We associate to a character $\eta: Q_p^* \to k^*$ the etale (φ, Γ) -module $D_\eta = k((T))e$ of basis e such that

$$\varphi(e) = \eta(p))e$$
 , $\gamma . e = \eta(\chi(\gamma))e$

We must check two things:

- 1) When $\eta \neq \eta'$ then D_{η} and $D_{\eta'}$ are not isomorphic.
- 2) Any 1-dimensional etale (φ, Γ) -module over k((T)) is isomorphic to some D_{η} .

*** Let D be a 1-dimensional etale (φ, Γ) -module over k((T)). We choose a non zero element $e \in D$. Then D = k((T))e. The semilinear endomorphism φ and the semilinear action of Γ on D commuting with φ are given by

$$\varphi(e) = a(T)e$$
 , $\gamma . e = b_{\gamma}(T)e$

for some $a(T) \in k((T))$ and a 1-dimensional continuous k((T))-representation $\gamma \mapsto b_{\gamma} : \Gamma \to b_{\gamma}$ $k((T))^*$, satisfying

$$a((1+T)^{\chi(\gamma)}-1)b_{\gamma}(T) = b_{\gamma}(T^{p})a(T)$$
.

The endomorphism φ is etale if and only if $a(T) \neq 0$. ***

$\mathbf{2}$ k-representations of Z_p

The compact group Z_p is the projective limit of the finite groups $Z/p^n Z = Z_p/p^n Z_p$ with the projective limit topology,

$$Z_p = projlimZ/p^nZ$$

The subgroup Z is dense in Z_p . The group Z_p is topologically cyclic generated by 1.

We denote by k[G] the group k-algebra of a group G. We denote by [g] the element $g \in G$ in k[G].

Definition 2.1. The completed k-group algebra of Z_p is

$$k[[Z_p]] = projlimk[Z_p/p^n Z_p]$$

with the projective limit topology.

Clearly $k[Z_p]$ embeds as a dense subalgebra of $k[[Z_p]]$.

Theorem 2.2. The completed k-group algebra $k[[Z_p]]$ is topologically isomorphic to k[[T]] by the map sending u to 1+T.

Proof. Alain Robert ***

In particular a k[[T]]-module is a k-representation of Z_p . Conversely, is a k-representation V of Z_p always a k[[T]]-module ?

A topological k-vector space V which is a projective limite $V = \text{proj} \lim V_n$ of finite kvector spaces V_n with the profinite topology, is called profinite.

A finite k-vector space or a finitely generated k[[T]]-module with the topology induced by k[T] is a profinite k-vector space.

Proposition 2.3. Let M be a profinite k-vector space. A continuous k-representation of Z_p on M is the same than a structure of topological $k[[Z_p]]$ -module on M.

Proof. **** Wilson Profinite groups (1998) 7.2.4

The monoid $Z_p - \{0\} = Z_p^o$ acts continuously by multiplication on the group Z_p (in the additive notation) and acts continuously the k-algebra $k[[Z_p]]$. In the multiplicative notation $x \in Z_p^o$ sends [1] to [x]. By the theorem we get a continuum action of Z_p^o on the k-algebra k[[T]] such that $x.(1+T) := (1+T)^x$ for $x \in Z_p^0$. The group Z_p^o acts on the field k((T)). ****

3 Etale k-representations of P^+

The produit semidirect $Z_p \rtimes Z_p^o$ where $Z_p^o = Z_p - \{0\} = p^{\mathbb{N}} Z_p^*$, is isomorphic to the mirabolic submonoid P^+ of $GL(2, Q_p)$ defined by

$$P^+ := \begin{pmatrix} Z_p^o & Z_p \\ 0 & 1 \end{pmatrix} = P_0 t^N = P_0 t^N P_0$$

where

$$N_0 := \begin{pmatrix} 1 & Z_p \\ 0 & 1 \end{pmatrix} , P_0 := \begin{pmatrix} Z_p^* & Z_p \\ 0 & 1 \end{pmatrix}, t := \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$$

Definition 3.1. Let D be a k-representation of P^+ . The action φ of t is called etale, if φ is injective and

$$D = \bigoplus_{i=1}^{p-1} \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \circ \varphi(D)$$

When the action of t is etale, one says that the k-representation D of P^+ is etale.

As an exercise, show that the action of any element of P^+ is etale when the action of t is etale.

Show as an exercise, that $D = \bigoplus_{i=1}^{p-1} \theta_i \circ \varphi(D)$ is equivalent to $D = \bigoplus_{\theta \in \Theta_1} \theta \circ \varphi(D)$ for any system Θ_1 of representatives of N_0/tN_0t^{-1} .

A finite dimensional (φ, Γ) -module D over k((T)) is a continuous k-representation of P^+ , where

$$\begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} x = (1+T)^i x \quad , \quad tx = \varphi(x) \quad , \quad \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} = \chi^{-1}(a)(x)$$

where $x \in D, a \in Z_p^*$. We leave as an exercise to show that D is etale as a finite dimensional (φ, Γ) -module over k((T)) if and only if D is etale as a k-representation of P^+ .

As an exercise show that the category of etale k-representations of P^+ is abelian.

The interpretation of a finite dimensional (φ, Γ) -module over k((T)) as an etale continuous k-representation of the monoid P^+ is due to Colmez and is the first step towards the local modulo p Langlands correspondence for $GL(2, Q_p)$.

Definition 3.2. Let D be an etale k-representation of P^+ . The injective endomorphism φ has a canonical left inverse ψ with kernel

$$D^{\psi=0} = (N_0 - tN_0t^{-1})\varphi(D) = \bigoplus_{i=1}^{p-1} \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \varphi(D)$$

Note that $D = \varphi(D) \oplus D^{\psi=0}$. The k-endomorphism $e := \varphi \circ \psi$ satisfies $e \circ e = e$ because $\psi \circ \varphi = id_D$. Hence e is a projector from D onto $\varphi(D)$. The k-endomorphism $e_g := g \circ \varphi \circ \psi \circ g^{-1}$ for any $g \in P^+$ is also a projector.

Proposition 3.3. The projectors $e \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}$ are orthogonal for $0 \le i \le p-1$ of sum id_D .

Proof. Let Θ_1 be any system of representatives of N_0/tN_0t^{-1} . $x = \varphi\varphi(x) + \sum_{\theta \in \Theta_1} \theta\varphi(x_\theta)$ with $x_\theta \in D$. Left multiply by θ^{-1} and use that $\theta^{-1}(\Theta_1 - \theta)$ is a system of representatives of $(N_0 - N_1)/N_1$. We leave the orthogonality as an exercise.

As an exercise show that the projectors e_{θ} for θ in a system Θ_k of representatives of N_0/N_k and $N_k = t^k N_0 t^{-k}$ are orthogonal of sum id_D for any integer $k \ge 1$.

The k-endomorphism ψ does not respect the product but we have:

Lemma 3.4. Let $a \in k[[T]], x \in D$. We have

$$\psi(a\varphi(x)) = \psi(a)x$$
 , $\psi(\varphi(x)a) = x\psi(a)$

Proof. We leave the proof as an exercise. The second formula is easier.

4 Lattices

Let D be a finite dimensional etale continuous (φ, Γ) -module over k((T)).

We want to find a canonical k[[T]]-lattice D^{\sharp} which is P^{-} -stable and on which the action of ψ is surjective.

A lattice in D is a k[[T]]-submodule generated by a k((T))-basis of D, or equivalently a compact k[[T]]-submodule generating the k((T))-vector space D. A k[[T]] module containing a lattice and contained in a lattice is a lattice.

The image by Γ of a lattice L generates a Γ -stable lattice because Γ is compact.

Why does it exist a ψ -stable lattice in D?

When D = k((T)), then k[[T]] is φ and ψ -stable and ψ is surjective is k[[T]]. Show as an exercise that $T^{-1}k[[T]]$ is the maximal lattice of k((T)) where ψ is surjective and that k[[T]] is the minimal lattice where ψ is surjective.

In general one cannot find a lattice in D which is stable by φ and by φ .

Lemma 4.1. There are two lattices L_0 and L_1 in D such that

$$\varphi(L_0) \subset T^{-1}L_0 \subset L_1 \subset k[[T]]\varphi(L_1)$$

Proof. Start with any k((T))-basis e_1, \ldots, e_d of D. Because D is etale, $\varphi(e_1), \ldots, \varphi(e_d)$ is also a k((T))-basis of D. There are $a'_{ij} \in k((T))$ and $b'_{ij} \in k((T))$ such that

$$\varphi(e_j) = \sum_i a'_{ij} e_i \quad , \quad e_j = \sum_i b'_{ij} \varphi(e_i)$$

Choose T^n such that $T^n a'_{ij} \in k[[T]]$ and $T^n b'_{ij} \in k[[T]]$. Take for L_0 the lattice of k[[T]]-basis $(T^n e_i)$ and for L_1 the lattice of k[[T]]-basis $(T^{-n} e_i)$. They satisfy the lemma because

$$\varphi(T^n e_i) = T^{np} \varphi(e_i) = T^{n(p-1)} \sum_i a_{ij} T^n e_i$$

and

$$T^{-n}e_{j} = T^{-n}\sum_{i} b'_{ij}\varphi(e_{i}) = T^{-n}\sum_{i} b'_{ij}T^{np}\varphi(T^{-n}e_{i}) = T^{n(p-2)}\sum_{i} b_{ij}\varphi(T^{-n}e_{i}) \quad .$$

Lemma 4.2. The lattice L_0 is φ -stable. The lattice L_1 of D is ψ -stable.

Proof. $\varphi(L_0) \subset T^{-1}L_0 \subset L_0$ and $\psi(L_1) \subset \psi(k[[T]])L_1 = L_1$.

For $n \in N$ let $M_n = \psi^n(N_0)$. Then M_n is a lattice contained in L_1 and the sequence M_n is increasing. As k[[T]] is noetherian, it has a limit M_∞ which is a lattice such that $\psi(M_\infty) = M_\infty$. The sequence $\psi^n(T^{-1}M_\infty)$ is a decreasing sequence of lattices containing M_∞ . It has a limit D^{\sharp} such that $\psi(D^{\sharp}) = D^{\sharp}$.

Proposition 4.3. D contains a maximal lattice D^{\sharp} satisfying $\psi(D^{\sharp}) = D^{\sharp}$.

D contains a minimal lattice D^{\natural} satisfying $\psi(D^{\natural}) = D^{\natural}$.

D contains a maximal lattice D^+ stable by φ .

These three lattices are Γ -stable and $D^+ \subset D^{\natural} \subset D^{\natural}$.

5 k-representations of the mirabolic group P

The subgroup P of $GL(2, Q_p)$ generated by P^+ is the mirabolic subgroup

$$P = \begin{pmatrix} Q_p^* & Q_p \\ 0 & 1 \end{pmatrix} \simeq Q_p \rtimes Q_p^*$$

We denote $N = \begin{pmatrix} 1 & Q_p \\ 0 & 1 \end{pmatrix}$.

The second step is to associate to an etale k-representation D of the mirabolic monoid P^+ a k-representation of the mirabolic group P.

There is a classical method, called induction and denoted by ind_H^G which associates a k-representation of a group G to a k-representation of a submonoid H.

Definition 5.1. Let H be a submonoid of a group G. Let V be k-representation of H. The group G acts on the space

$$ind_{H}^{G}D := \{f: G \rightarrow V \quad , \quad f(hg) = hf(g) \quad \text{for } g \in GP, h \in H \quad \}$$

by right translations.

The induction from H to G is the right adjoint of the restriction from G to H, and is a left exact functor. The induction from H to G behaves better when the elements of H acts surjectively on V.

Let

$$P^{-} := \{g^{-1} \mid g \in P^{+} \} = t^{-N} P_{0}$$

be the inverse monoid. An etale k-representation D of P^+ has a canonical structure of k-representation of P^- , which coincide on P_0 with the original action and such that the action of t^{-1} is the canonical left inverse ψ of φ defined as follows. The canonical lattices $D^{\natural} \subset D^{\sharp}$ of D are P^- -stable and the action of P^- is surjective on these lattices. We consider the k-representations of P

$$ind_{P^-}^P D^{\natural} \subset ind_{P^-}^P D^{\sharp}$$

Proposition 5.2. (i) If D is irreducible, $\dim_{k((T))}D \ge 2$, then $D^{\natural} = D^{\sharp}$.

(ii) the functor $D \to ind_{P^-}^P D^{\sharp}$ is exact (this is not true for D^{\natural}),

(iii) If D, D' are two finite dimensional etale (φ, Γ) -modules over k((T)) such that $ind_{P^-}^P D^{\sharp} \simeq ind_{P^-}^P D^{\sharp}$ then $D \simeq D'$.

We do not prove the proposition but we prove the following corollary of (i).

Corollary 5.3. If D is irreducible, $\dim_{k((T))} D \ge 2$, then the representation of P on $\psi^{-\infty}(D^{\sharp})$ is topologically irreducible (a closed P-stable subspace of is trivial).

Proof. If M is a non zero P-stable subspace of $\psi^{-\infty}(D^{\sharp})$ the n-th projection of M is a ψ -stable non zero k[[T]]-submodule of D^{\sharp} hence is equal to D^{\sharp} by (i) in the last proposition. This implies that M is dense in $\psi^{-\infty}(D^{\sharp})$.

**** Not done in the lecture, until the end of this section. The representation $ind_{P-}^P D$ has two other useful models.

Lemma 5.4. $P = \bigcup_{n \in \mathbb{N}} P^- t^n$ (disjoint union).

Proof. We have $t^{-n}P_0t^n = \begin{pmatrix} Z_p^* & p^{-n}Z_p \\ 0 & 1 \end{pmatrix}$ and $t^{-n}P_0t^m = \begin{pmatrix} p^{m-n}Z_p^* & p^{-n}Z_p \\ 0 & 1 \end{pmatrix}$. Let $p = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in P$. Write $a = p^r a'$ with $a' \in Z_p^*$ and $r \in Z$. Choose $r' \in N$ such that $b \in p^{-r'}Z_p$. For $n \ge r'$ we have $p^{-r'}Z_p \subset p^{-n}Z_p$. Choose n such that $n \le r$ and take m = r - n. \Box

Proposition 5.5. Let D be an etale k-representation of P^+ . The map $f \mapsto (f(t^n))_{n \in N}$ is a bijection from $ind_{P^-}^P D$ to the space

$$\psi^{-\infty}(D) := \{ (x_n)_{n \in N} \mid x_n = \psi(x_{n+1}) \text{ for all } n \in N \}$$

and the restriction to N is a N-equivariant bijection from $ind_{P-}^P D$ to $ind_{N_0}^N D$.

Proof. The disjoint union

$$P = \bigcup_{n \in N} P^- t^n$$

show that f is determined by its restriction to t^N . We have $\psi f(t^{n+1}) = t^{-1} f(t^{n+1}) = f(t^n)$ for $n \in N$. and conversely $f(p) = p^-(x_n)$ if $p = p^-t^n$ for $p \in P$ equal to p^-t^n with $p^- \in P^-$, $n \in N$.

The second assertion is deduced from the first assertion and the formula

$$f(t^k) = \sum_{\theta \in N_0/N_k} \theta \varphi^k \psi^k \theta^{-1}(f(t^k)) = \sum_{\theta \in N_0/N_k} \theta \varphi^k t^{-k} \theta^{-1}(f(t^k)) = \sum_{\theta \in N_0/N_k} \theta \varphi^k (f(t^{-k} \theta^{-1} t^k)) \quad ,$$

$$f(t^{-k}\theta t^k) = \psi^k \theta^{-1}(f(t^k))$$

for any $k \in N$. Note that the group $N = \bigcup_{k \in N} t^{-k} N_0 t^k$. We leave the rest of the proof as an exercise.

As an exercise, give the action of P in the two models $\psi^{-\infty}(D)$ and $ind_{N_0}^N D$ of the representation of P on $ind_{P^-}^P D$, obtained by restriction to the submonoid t^N and to the subgroup $N := \begin{pmatrix} 1 & Q_p \\ 0 & 1 \end{pmatrix}$.

In the model $\psi^{-\infty}(D)$, it is convenient to identity $(x_n)_{n \in N}$ o $(x_n)_{n \in Z}$ where $x_n = \psi^{-n}(x_0)$ when $n \leq -1$.

For $a \in Z_p^*, b \in Q_p$

$$t(x_n)_{n \in N} = (x_{n+1})_{n \in N} , \quad \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} (x_n)_{n \in N} = (ax_n)_{n \in N} , \quad \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} (x_n)_{n \in N} = (y_n)_{n \in N}$$

where $y_n = \begin{pmatrix} 1 & p^n b \\ 0 & 1 \end{pmatrix} x_n$ if $p^n b \in Z_p$ and $y_n = \psi^{-v_p(b)-n}(y_{-v_p(b)})$ if $n \leq -v_p(b)$.

We see easily that $\psi^{-\infty}(D) = D$ when φ is invertible.

Proposition 5.6. If $0 \to D_1 \to D \to D_2 \to 0$ is an exact sequence of of representations of P^- such that the action ψ of t^{-1} on D_1 is surjective. Then $0 \to \psi^{-\infty}(D_1) \to \psi^{-\infty}(D) \to \psi^{-\infty}(D_2) \to 0$ is an exact sequence of representations of P.

Proof. To prove the surjectivity of the map $\psi^{-\infty}(D) \to \psi^{-\infty}(D)$ we have to show that for $x \in D_2$ and $y \in D$ of image in D_2 equal to $\psi(x)$ there exists $z \in D$ of image $x \in D_2$ with $\psi(z) = y$. Choose $z' \in D$ with image x and set $y' := \psi(z')$. Consider D_1 embedded in D. Then $y' - y \in D_1$. As ψ is surjective on D_1 choose $t \in D_1$ with $\psi(t) = y' - y$. Take z := z' + t.

Definition 5.7. Let Res_{N_0} the k-endomorphism of $ind_{N_0}^N D$ sending $f \in ind_{N_0}^N D$, the function $Res_{N_0}(f) \in ind_{N_0}^N D$ vanishes outside N_0 and equal to f on N_0 .

Clearly Res_{N_0} is a projector of $ind_{N_0}^N D$.

In the $\psi^{-\infty}(D)$ -model the projector Res_{N_0} admits the following description. The map

$$\iota: D \to \psi^{-\infty}(D) \quad , \quad x \mapsto (\varphi^n(x))_{n \in N} \quad ,$$

corresponds to the map $D \to ind_{N_0}^N D$ sending $x \in D$ to the function vanishing outside N_0 and value x at 1. It is injective and P^+ -equivariant. The map

$$\pi: \psi^{-\infty}(D) \to D \quad , \quad (x)_{n \in N} \mapsto x_0 \quad ,$$

corresponds to the map $ind_{N_0}^N D \to D$ sending f to f(1). It is surjective and P^- -equivariant. We have $\pi \circ \iota = id_D$.

Lemma 5.8. The projector $\iota \circ \pi$ in the $\psi^{-\infty}(D)$ -model corresponds to the projector Res_{N_0} in the $\operatorname{ind}_{N_0}^N D$ model. We write an element $g \in P$ as $g = nt^k a$ with $n \in N, k \in Z$ and $a \in Z_p^*$. We have $hN_0h^{-1} = N_k$.

Lemma 5.9. For $g \in P$ as above, the projector $g \circ \iota \circ \pi \circ g^{-1}$ depends only on the set nN_k in N.

Proof. It is true to prove $g \circ \iota \circ \pi \circ g^{-1} = h \circ \iota \circ \pi \circ h^{-1}$ for $h = n't^k$ with $n' \in N$ such that $n'N_k = nN_k$. We have $g^{-1}h = a^{-1}t^{-k}n^{-1}n't^k$ and $n^{-1}n' \in t^kN_0t^{-k}$. Hence $g^{-1}h \in P_0$. Clearly $Res_{N_0} = \iota \circ \pi$ commutes with P_0 .

We denote $Res_{nN_k} := g \circ \iota \circ \pi \circ g^{-1}$ when $g = nt^k a$ as above. A open compact subset U of N is a finite disjoint union of $\bigcup_{n \in N/N_k} nN_k$ (the group N is commutative) for some $k \in Z$. We define $Res_U = \sum_{n \in N/N_k} Res_{nN_k}$.

As an exercise, show that Res_U does not depend of the choice of $k \in Z$ and for $g \in P$ we have $g \circ Res_{gU} = Res_U \circ g$ for all $g \in P$.

As an exercise, show that the projector $1 - \varphi \circ \psi : D \to D^{\psi=0}$ corresponds to the restriction to D embedded canonically in $ind_{P}^{P}D$ of the projector $Res_{N_{0}^{*}}$.

Proposition 5.10. ??? The map

$$Res: C_c^{\infty}(N;k) \to End_kind_{P^-}^P D$$

defined by

$$1_U \mapsto Res_U$$

fro all open compact subsets U of N characteristic function 1_U , is well defined k-linear.

The group P acts naturally on $End_kind_{P-}^P D$. For $f: D \to D$ and $p \in P$ we have $(p.f)(x) = p.f(p^{-1}.x)$.

Proposition 5.11. ??? The map

$$Res: C_c^{\infty}(N;k) \to End_kind_{P^-}^P D$$

is P-equivariant.

6 Irreducible smooth k-representations of the mirabolic P

Proposition 6.1. Let V be a topological k-vector space. If V is discrete (resp. profinite) then $V^* = Hom_{cont}(V,k)$ is profinite (resp. discrete) and $V^{**} = V$. If V is a smooth k-representation of Z_p , then V^{Z_p} is finite if and only if V^* is a fnitely generated $k[[Z_p]]$ -module.

Proof. 1) Topological Nakayama lemma (Howson).

Claim: If M is a profinite k-vector space which is a topological k[[T]]-module such that M = TM then M = 0.

Proof. Assume that $M \neq 0$ and let U be an open neighborhood of 0 in M with $U \neq M$. Let $m \in M$. There exists a neighborhood U_m of m in M such that $T^n M \subset U$ for $n \in N$ large enough. We cover the compact space M by finitely many U_m . For n large enough we have $T^n M \subset U$. But $T^n M = M$. Hence we get a contradiction. Claim: If M/TM is a finite dimensional k-vector space then M is a finitely generated k[[T]]-module.

Proof of claim. Let $N = k[[T]]e_1 + \ldots + k[[T]]e_n$ such that M = N + TM. The quotient M/N is compact and Hausdorff. We have T(M/N) = (TM + N)/N = 0. Hence M/N = 0 and M = N.

The dual $\Omega(D^{\natural})$ of c-ind^P_{P-} (D^{\natural}) is a quotient of the dual $\Omega(D^{\sharp})$ of c-ind^P_{P-} (D^{\sharp}) . They are smooth k-representations of P for the contragredient action

$$< bv^*, bv > = < v^*, v >$$

By duality we obtain :

Corollary 6.2. (i) If D is irreducible, $\dim_{k((T))}D \ge 2$. Then $\Omega(D)$ is an irreducible smooth k-representation of P.

(ii) the functor $D \to ind_{P^-}^P D^{\sharp}$ is exact and contravariant.

(iii) If D, D' are two finite dimensional etale continuous (φ, Γ) -modules over k((T)) such that $\Omega(D) = \Omega(D')$ then $D \simeq D'$.

We consider the upper triangular subgroup

$$B := \begin{pmatrix} Q_p^* & Q_p \\ 0 & Q_p^* \end{pmatrix} = P \times Z \quad ,$$

where

$$Z := \{ \begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix} \quad , \quad d \in Q_p^* \}$$

is the center of $GL(2, Q_p)$.

Proposition 6.3. We have the Bruhat decomposition $GL(2, Q_p) = B \cup BsB$ where $s := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and

$$BsB = BsN = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, Q_p) \quad , \quad c \neq 0 \}$$

is open in $GL(2, Q_p)$.

Proof.

To extend a representation of P to a k-representation of $GL(2, Q_p)$, the action of Z is given by a character $Z \simeq Q_p^* \to k^*$, and we look for a compatible action of s.

Theorem 6.4. When D is irreducible and $\dim_{k((T))}D = 2$, the representation $\Omega(D)$ of P extends to a smooth irreducible k-representation of $GL(2, Q_p)$.

Proof. (Berger) The proof uses the classification of the smooth irreducible k-representations of $GL(2, Q_p)$ with a central character and results in characteristic 0. It would be nice to have a direct proof.

This is no more the case when D is irreducible and $\dim_{k(T)}D \geq 3$ The representation $\Omega(D)$ is not seen by $GL(2, Q_p)$. Is it seen by $GL(d, Q_p)$? In which way?

When $D = D_{\eta}$ is the 1-dimensional (φ, Γ) -module associated to a character $\eta : Q_p^* \to k$, we take $D^{\natural} = k[[T]]e$ for the $e \in D$ non zero with $\varphi(e) = \eta(p), \gamma(e) = \eta(\chi^{-1}(\gamma))$ and not $D^{\sharp} = T^{-1}k[[T]]e$ to define $\Omega(D)$.

7 The special representation

Let Z be the center of $GL(2, Q_p)$. The group B = PZ is the subgroup of upper triangular matrices in $GL(2, Q_p)$. Let s :=. By the Bruhat decomposition $G = B \cap BsN$ and $B \setminus BsN \simeq N$ by $Bsn \mapsto n$. The space $C^{\infty}(B \setminus GL(2, Q_p; k))$ of locally constant k-valued functions $f : B \setminus GL(2, Q_p \to k \text{ is a smooth representation of } GL(2, Q_p)$ such that g.f(x) = f(xg)for $g \in GL(2, Q_p)$. The center Z acts trivially. The representation is not irreducible because the subspace of constant functions is stable by $GL(2, Q_p)$. The quottient of $C^{\infty}(B \setminus GL(2, Q_p; k))$ by the constant functions is a smooth representation of $GL(2, Q_p)$ called the special krepresentation Sp of $GL(2, Q_p)$.

The restriction of $C_c(B \setminus G; k)$ to P contains the functions with support in BsN which form a P-stable subspace isomorphic to sp.

Formula

$$s\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix} ,$$
$$\begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} d & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & \frac{dx-b}{a} \end{pmatrix} ,$$

We have ZPsP = ZPsN and the map $s \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ is a representative system of the cosets $ZP \setminus ZPsN$. The space $C_c^{\infty}(ZP \setminus ZPsP;k)$ has a natural action of B trivial on Z and isomorphic to $C_c^{\infty}(Q_p;k)$ by the map $f \to r(x) = f(s \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix})$. The induced action of B trivial on Z on $C_c^{\infty}(Q_p;k)$ is

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \cdot r(x) = \left(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \cdot f \right) \left(\begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix} \right) = f\left(\begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = r\left(\frac{dx - b}{a} \right)$$

We give now a very useful proposition.

Proposition 7.1. 1) Let H be a finite p-group acting on a non zero k-vector space V. Then $V^H \neq 0$.

2) Let G be a finite group containing H acting on a k-vector space V. When $\dim_k V^H = 1$ and V is the k-space generated by the G-orbits of V^H , the k-representation of G on V is irreducible.

3) 1) and 2) remain true when H is a pro-p-subgroup of a profinite group acting smoothly on V

Proof. 1) Let $v \in V$ non zero and let W be the non zero k-vector space generated by the H-orbit of v. The number of elements of W is finite and is a power of p. For $w \in W$ the order

of the *H*-orbit of w is a power of p, equal to 1 if and only if $w \in W^H$. Hence W^H which is not empty because it contains 0 is divisible by p.

2) Let V' be a non zero subspace of V which is stable by G. Then $(V')^H$ is a non zero k-subspace of V^H . As $\dim_k V^H = 1$ we have $(V')^H = V^H$. Hence $V \subset V' \subset V$.

3) The orbits of G in V are finite in the profinite case, and this is all what the proof is using.

Proposition 7.2. The k-vector space $C_c^{\infty}(Q_p; k)$ of locally constant compactly supported k-valued functions $r: Q_p \simeq N$ with the action of $(a, b) \in Q_p^* \rtimes Q_p \simeq P$ given by

$$(a,b).r(x) = r(\frac{x-b}{a})$$

is an irreducible k-representation of P.

It is isomorphic to the restriction to P of the special representation

 $Sp := C_c(B \setminus G; k) / \text{constant functions}$

of G.

Proof. Proof of the irreducibility. Let $f \in C_c^{\infty}(Q_p;k)$ non zero generating a subrepresentation W. There exists $n \in N$ such that the support of f is contained in $p^{-n}Z_p$. Hence $f \in C_c^{\infty}(p^{-n}Z_p;k)$. A function in $C_c^{\infty}(p^{-n}Z_p;k)$ fixed by $p^{-n}Z_p$ is constant. The subrepresentation W_n of $p^{-n}Z_p$ generated by f is contained in $C_c^{\infty}(p^{-n}Z_p;k)$ and has a vector fixed by $p^{-n}Z_p$, hence W_n contains the characteristic function of $p^{-n}Z_p$. We deduce that W contains the characteristic functions of $b + p^{-m}Z_p$ for any $b \in Q_p, m \in N$. Hence $W = C_c^{\infty}(Q_p;k)$.

Proposition 7.3. $sp \otimes (\eta^{-1} \circ det) = \Omega(D_\eta).$

Proof. ***

Proposition 7.4. The special k-representation Sp of $GL(2, Q_p)$ is irreducible.

Proof. The restriction to the mirabolic group P of Sp is isomorphic to the special representation of P which is irreducible.

8 Bruhat-Cartan-Iwasawa decompositions

Let $B := \begin{pmatrix} Q_p^* & Q_p \\ 0 & Q_p^* \end{pmatrix}$ be the upper triangular group. We have B = PZ. Let $s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $t = \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$, $st = \begin{pmatrix} 0 & 1 \\ p_F & 0 \end{pmatrix}$

Theorem 8.1. Bruhat decomposition $G = B \cup BsB$ disjoint union and BsB is open in GCartan decomposition $G = \bigcup_{n \in N} KZt^{nN}K$ Iwasawa decomposition G = BK

Proof. With the tree *** (Rachel)

9 Irreducible k-representations of $GL(2, F_p)$

For $r \in \{0, \ldots, p-1\}$, let $k[X, Y]_r$ be the space homogenous of polynomials of degree r with two indeterminates X, Y and coefficients in k. This is a k-vector space of dimension r + 1 of basis $X^i Y^j$ for $i, j \in N$ such that i + j = r. The group $GL(2, F_p)$ acts on $k[X, Y]_r$ by

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} X^i Y^j = (aX + cY)^i (bX + dY)^j \quad .$$

This representation is denoted Sym^r and is of dimension r+1. When r = 0 we have $k[X, Y]_0 = k$ and $GL(2, F_p)$ acts trivially. When r = p - 1 the representation Sym^{p-1} of dimension p is isomorphic to the special k-representation of $GL(2, F_p)$ (exercise).

Lemma 9.1. kX^r is the subspace of elements of $k[X,Y]_r$ fixed by $\begin{pmatrix} 1 & F_p \\ 0 & 1 \end{pmatrix}$). kY^r is the subspace of elements of $k[X,Y]_r$ fixed by $\begin{pmatrix} 1 & 0 \\ F_p & 1 \end{pmatrix}$).

The k-subspace generated by the $GL(2, F_p)$ -orbit of X^r (or Y^r) is equal to $k[X, Y]_r$.

Proof. Exercise.

Theorem 9.2. The irreducible k-representations of $GL(2, F_p)$ are $Sym^r \otimes (\eta \otimes det)$ for $0 \le r \le p-1$ and a morphism $\eta : F_p^* \to k^*$.

Proof. These k-representations are irreducible and they are not isomorphic (exercise). Their number is p(p-1). This is true for any $k \subset F_p^{ac}$. Hence they remain irreducible and not isomorphic when one extends the scalar to F_p^{ac} .

By the theory of Brauer, the number of isomorphism classes of irreducible F_p^{ac} -representations of $GL(2, F_p)$ is equal to the number of conjugacy classes of elements pf order prime to p (Serre Linear representations of finite groups). The number of conjugacy classes of elements of order prime to p is p(p-1) (Exercise).

Let $K := GL(2, \mathbb{Z}_p)$. The reduction is a surjective morphism $K \to GL(2, \mathbb{F}_p)$. We inflate Sym^r to a k-representation of K.

Let $Z := \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$, $a \in Q_p^*$ the center of $GL(2, F_p)$. We inflate Sym^r to a representation of KZ where p acts trivially.

Theorem 9.3. Modulo isomorphism, the irreducible smooth k-representations of KZ are $Sym^r \otimes (\eta \otimes det)$ for $0 \le r \le p-1$ and a continuous morphism $\eta : Z_p^* \to k^*$. Their number is p(p-1).

Proof. It remains only to prove that $\begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix}$ acts by a scalar in an irreducible smooth k-representation of KZ. ***

Let $\operatorname{c-ind}_{KZ}^G Sym^r$ be the space of functions $f: G := GL(2, Q_p) \to k[X, Y]_r$ with compact support modulo Z such that $f(kg) = Sym^r(k)f(g)$ for $k \in KZ, g \in GL(2, Q_p)$. The group $G = GL(2, Q_p)$ acts by right translation. We have gf(x) = f(xg). This representation is called the compact induction of Sym^r to G. Fix $v_r \in \text{c-ind}_{KZ}^G Sym^r$ for the function with support KZ and $v_r(1) = X^r$. Then v_r generates $\text{c-ind}_{KZ}^G Sym^r$, i.e. the k-vector space generated by the G-orbit of v_r is $\text{c-ind}_{KZ}^G Sym^r$.

It is known that $End_{kG} \operatorname{c-ind}_{KZ}^G Sym^r \simeq k[\mathcal{T}]$ for some \mathcal{T} . To define \mathcal{T} is suffices to defined Tv_r . Let (Paskunas, restriction to the Borel)

When r = 0

$$\mathcal{T}v_r = \begin{pmatrix} 1 & 0\\ p & 0 \end{pmatrix} v_r + \sum_{i=0}^p \begin{pmatrix} p & i\\ 0 & 1 \end{pmatrix} v_r$$

When r = 1, ..., p - 1

$$\mathcal{T}v_r = \sum_{i=0}^p \begin{pmatrix} p & i \\ 0 & 1 \end{pmatrix} v_r \quad .$$

For any $\lambda \in k$, the image $\mathcal{T} - \lambda \in End_{kG} \operatorname{c-ind}_{KZ}^G Sym^r$ is a subrepresentation k-representation of G. Let $\eta : Q_p^* \to k^*$ be a smooth character and let

$$\pi(r,\lambda,\eta) := \frac{\operatorname{c-ind}_{KZ}^G Sym^r}{(\mathcal{T}-\lambda)\operatorname{c-ind}_{KZ}^G Sym^r} \otimes (\eta \circ det)$$

The representation $\pi(r, \lambda, \eta)$ is not irreducible if and only if $\lambda = \pm 1$ and $r \in \{0, p - 1\}$ (theorem of Barthel-Livne-Breuil). When r = 0, $\pi(0, \pm 1, \eta)$ has a unique irreducible subrepresentation $Sp \otimes (\eta \mu_{\pm 1} \circ \det)$ and the quotient is $\eta \mu_{\lambda} \circ \det$. When r = p - 1, $\pi(p - 1, \pm 1, \eta)$ has a unique irreducible subrepresentation $\eta \mu_{\pm 1} \circ \det$ and the quotient is $Sp \otimes (\eta \mu_{\pm 1} \circ \det)$, where μ_{λ} is the character of Q_p^* trivial on Z_p^* sending p on λ and Sp is the special representation of G, equal to the quotient of the space $C^{\infty}(PZ \setminus G; k)$ of locally constant functions by the constant functions, with the natural action of G by translation. I will prove later that it is irreducible.

The representations with $\lambda = 0$ are all irreducible; they called supersingular by the number theorists and supercuspidal by the group theorists. Their number when the action of p is fixed is $(p^2-p)/2$. It is also the number of irreducible k-representations of $Gal(Q_p^{ac}/Q_p)$ of dimension 2 where the determinant of a Frobenius is fixed.

The number of irreducible k-representations of $Gal(Q_p^{ac}/Q_p)$ of dimension n where the determinant of a Frobenius is fixed, is the number of unitary irreducible polynomials in $F_p[X]$ of degree n

$$n^{-1} \sum_{d|n} \mu(n/d) q^d$$

Theorem 9.4. The smooth irreducible k-representations of $GL(2, Q_p)$ with p acting by a scalar are

(1) the characters $\eta \circ \det$ where $\eta : Q_p^* \to k^*$ is a smooth character

(2) the special representations $Sp \otimes (\eta \circ \det)$ where Sp is the "special" representation.

(3) the supercuspidal (=supersingular) representations $\pi(r, 0, \eta)$

(4) the irreducible representations $\pi(r, \lambda, \eta)$ with $\lambda \neq 0$.

The only isomorphisms occur when $\lambda = 0$ and are

$$\pi(r, 0, \eta) \simeq \pi(r, 0, \eta \mu_{-1}) \simeq \pi(p - 1 - r, 0, \eta \omega^r) \simeq \pi(p - 1 - r, 0, \eta \omega^r \mu_{-1})$$

where μ_{-1} is the unramified quadratic character of Q_p^* , trivial on Z_p^* sending p to -1 and ω is the character of Q_p^* trivial on p^Z given by the reduction $Z_p^* \to F_p^*$.

Corollary 9.5. An irreducible smooth k-representation of $G = GL(2, Q_p)$ where p acts by a scalar is a quotient π : c-ind^G_{KZ} $V_0 \to V$ where V_0 is an irreducible k-representation of KZ and the kernel R of π is a finitely generated smooth k-representation of G.

Proof. The kernel is $W + (T - \lambda) \operatorname{c-ind}_{KZ}^G V_0$ where W = 0 or $\eta \circ \det$ or $Sp \otimes (\eta \circ \det)$. The k-vector spaces $\operatorname{c-ind}_{KZ}^G V_0$ and $(T - \lambda) \operatorname{c-ind}_{KZ}^G V_0$ are generated by a single G-orbit, the same is true for any irreducible k-representation.

The irreducible k-representations $\pi(r, \lambda, \eta)$ of GL(2, F) are called principal series. They are the irreducible k-representations c-ind^G_B $\eta_1 \otimes \eta_2$ induced from a k-character $\eta_1 \otimes \eta_2$ of B

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \to \eta_1(a) \otimes \eta_2(b)$$

The principal series are c-ind^G_B $\eta_1 \otimes \eta_2$ with $\eta_1 \neq \eta_2$ and there are no isomorphic.

The Bruhat decomposition $G = B \cup BsB$ implies that the restriction to P of a principal series c-ind ${}^{G}_{B}\eta_{1} \otimes \eta_{2}$ contains $sp \otimes (\eta_{2}\eta_{1}) \circ \text{det}$ and that the quotient is $(\eta_{1}\eta_{2}) \circ \text{det}$.

Theorem 9.6. The restrictions to P of the irreducible smooth k-representations of $GL(2, Q_p)$ where p acts by a scalar, which are NOT principal series, are irreducible and not isomorphic.

This is quite surprising if one thinks of the modulo ℓ irreducible representations of $GL(2, Q_p)$ where the restrictions to P of generic representations all isomorphic.

10 A functor from the smooth k-representations of P to (φ, Γ) modules

Let V be a smooth k-representation of P. When V is finitely presented, one associates canonically to V an etale (φ, Γ) -module over k((T)).

A finitely generated smooth k-representation V of P is k[P]-generated by finitely many vectors v_1, \ldots, v_r . The group $P_0 = \begin{pmatrix} Z_p^* & Z_p \\ 0 & 1 \end{pmatrix}$ is open and compact in P. As the representation of P on V is smooth, the $k[P_0]$ -submodule V_0 of V generated by v_1, \ldots, v_r is finite.

Let $\operatorname{c-ind}_{P^0}^P(V_0)$ be the compact induced representation. This is the space of functions $f: P \to V_0$ with compact support such that f(xg) = xf(g) for $x \in P^0, g \in G$ by right translation (g.f)(x) = f(xg) for $x, g \in P$. The group P acts by right translations: g.f(x) = f(xg) for $x, g \in P$. We denote by $[1, v_0]$ the function with value $v_0 \in V_0$ at 1 and vanishing outside P_0 .

Show as an exercise, that the compact induced representation $ind_{P^0}^P(V_0)$ is a smooth k-representation of P, that the functions $g[1, v_0]$ for v_0 in a k-basis of V_0 and $g \in P/P_0$ form a k-basis of $ind_{P^0}^P(V_0)$.

The k-linear map

$$\pi: ind_{P_0}^P(V_0) \to V \quad , \quad \pi(g[1, v_0]) = g.v_0$$

is P-equivariant and surjective. The kernel R of π is a subrepresentation of $ind_{P_0}^P(V_0)$.

When the kernel of π is a finitely generated representation of P, one says that π is a finite presentation of V. A smooth k-representation V of P is finitely presented if it admits a finite presentation.

Let V be a finitely presented smooth k-representation of P, and let

$$\pi: ind_{P_0}^P(V_0) \to V$$

be a finite presentation of kernel R.

Let P^+V_0 be the k-vector space generated by g.v for $g \in P^+, v \in V^0$. The dual $(P^+V_0)^*$ is a profinite k-vector space with an action of P^- ; in particular it is a $k[[Z_p]]$ -module, i.e. a k[[T]]-module. Let

$$D := k((T)) \otimes_{k[[T]]} (P^+ V_0)^*$$

Proposition 10.1. The k((T))-vector space D does not depend on the choice of V_0 .

Proof. Claim. Let V'_0 be a P_0 -stable finite k-subspace of V generating V. Then $P^+V'_0$ is contained in $P^+V_0 + X$ for some N_0 -stable finite k-vector subspace X of V.

The claim implies the proposition. By duality $(P^+V'_0)^*$ is a quotient of $(P^+V_0)^*$ as a k[[T]]-module. The kernel W is a finite k[[T]]-module. It is killed by a power of T, hence vanishes when one inverts T. We have $k((T)) \otimes_{k[[T]]} W = 0$. This proves the proposition.

Proof of the claim. If $p_1, \ldots, p_r \in P$, there exists an integer n > 0 such that $t^n p_1, \ldots, t^n p_r \in P^+$. This implies that there is an integer n > 0 such that $t^n V_0 \subset P^+ V'_0$ for some $n \in N$ hence $P^+ t^n V_0 \subset P^+ V'_0$.

 $P^+ = P^+ t^n P_0 + N_0 Y P_0$ for a finite subset Y of P^+ . Hence $P^+ V_0 = P^+ t^n V_0 + X$ for some N_0 -stable finite k-vector subspace X of V, because the action is smooth and N_0, P_0 are compact.

The group P^- acts smoothly on D and not P^+ .

When the kernel of the presentation $\pi : ind_{P_0}^P(V_0) \to V$ is finitely generated, we show that the representation of P^- on D comes from an etale representation of P^+ on D, i.e. a structure of etale (φ, Γ) -module over k((T)).

Lemma 10.2. The set $P - P^+$ is stable by multiplication by P^- .

Proof. Let $p \in P$. We write uniquely $p = uat^r$ with $u \in N, a \in Z_p^*, r \in Z$. We have $t^{-1}p = t^{-1}utat^{r-1}$. If $u \notin N_0$ then $t^{-1}ut \notin N_0$. If r < 0 then r - 1 < 0.

The element p does not belong to P^+ if and only if $u \notin N_0$ or $u \in N_0, r < 0$. Hence $p \in P - P^+$ implies $t^{-1}p \in P - P^+$. The monoid P^- is generated by t^{-1} and N_0 . For $u \in N_0$ it is clear that $p \in P - P^+$ if and only if $up \in P - P^+$

The lemma implies that the group P^- acts naturally on

$$\frac{ind_{P_0}^P(V_0)}{R + (P - P^+)[1, V_0]}$$

where $(P - P^+)[1, V_0]$ be the k-vector space generated by $g[1, v_0]$ for $g \in P - P^+, v_0 \in V^0$.

Lemma 10.3.

$$\frac{ind_{P_0}^P(V_0)}{R + (P - P^+)[1, V_0]} \simeq \frac{P^+ V_0}{\Delta} \quad \text{where} \quad \Delta = P^+ V_0 \cap (P - P^+) V_0$$

Proof. We leave the proof as an exercise.

Lemma 10.4. When the kernel of $\pi : \pi : ind_{P_0}^P(V_0) \to V$ is finite, Δ is finite.

The dual $\left(\frac{P+V_0}{\Delta}\right)^*$ is a k-representation of P^+ and

$$(\frac{P^+V_0}{\Delta})^* \subset (P^+V_0)^*$$

We deduce from the lemma that

$$k((T)) \otimes_{k[[T]]} (P^+V_0)^* \simeq k((T)) \otimes_{k[[T]]} (\frac{P^+V_0}{\Delta})^*$$

Let $D_{V_0}^+ \subset D_{V_0}^{\natural}$ be the natural images of $(\frac{P+V_0}{\Delta})^* \subset (P+V_0)^*$ in D. Then $D_{V_0}^+$ is a φ -stable lattice and $D_{V_0}^{\natural}$ is a ψ -stable lattice. Compare with Schneider Vigneras to find P^+V_0 minimal. Check if the minimal case corresponds to a finite presentation and that the lattices which are canonical correspond to D^+ and D^{\natural} .

Theorem 10.5. $V \mapsto D(V)$ is a contravariant exact functor from the category of smooth k-representations of P to the category of etale $(\varphi, \Gamma) k((T))$ -modules.

What are the finitely presented smooth k-representations V of P such that the associated etale (φ, Γ) -module D over k((T)) is finite dimensional ?

Proposition 10.6. If c-ind^P_{P0} $V_0 \to V$ is a finite presentation of V such that $(P^+V_0)^{N_0}$ is finite, then the k((T))-vector space D is finite dimensional.

Proof. See the proposition on duality.

By the topological Nakayama lemma, $\dim_k (P^+V_0)^{N_0}$ is the minimal number of generators of the k[[T]]-module $P^+V_0^*$. The ring k[[T]] is principal. By the classification of the finitely generated k[[T]]-modules, the k((T))-dimension of D is the rank of the k[[T]]-free module $P^+V_0^*$ divided by its torsion submodule. Hence the k((T))-dimension of D of bounded by the k-dimension of $P^+V_0^*$, with equality if the k[[T]]-module $P^+V_0^*$ is free.

Theorem 10.7. Let V be an irreducible smooth k-representation of $GL(2, Q_p)$ where p acts by a scalar. Then $V|_P$ is finitely presented and the associated etale $(\varphi, \Gamma) k((T))$ -module is a k((T))-vector space of dimension

0 if V is a character,

- 1 if V is special or a principal series,
- 2 if V is supercuspidal.

Before explaining the proof of the theorem, we give a corollary based on the following result on extensions

Proposition 10.8. If $V_1 \rightarrow V \rightarrow V_2 \rightarrow 0$ is an exact sequence of smooth k-representations of P, and if V_1 and V_2 are finitely presented, then V is finitely presented.

Proof. To be written.

Corollary 10.9. $V \to D(V)$ is a well defined functor from the category of finite length smooth *k*-representations of $GL(2, Q_p)$ where *p* acts by a scalar on any irreducible subquotient. It is an exact contravariant functor to the category of finite dimensional etale $(\varphi, \Gamma) k((T))$ -modules over k((T)).

This functor is the Colmez functor, and is not faithful because it vanishes on the smooth k-characters of $GL(2, Q_p)$.

We give now the proof of the theorem.

Proposition 10.10. Iwasawa decomposition. We have G = PKZ with $P_0 = P \cap KZ$.

Proof. Rachel's course on the tree.

Proposition 10.11. When V is the restriction to P of an irreducible smooth k-representation of $GL(2, Q_p)$ then V is finitely presented.

Proof. By Iwasawa decomposition, for any smooth k-representation V_0 of KZ, the restriction to P of c-ind $_{KZ}^G V_0$ is c-ind $_{P_0}^P V_0$ and the restriction to P of a a finitely generated smooth k-representation of G is a finitely generated smooth k-representation of P. We know that Vis the unique quotient of some $V(r, \lambda, \eta)$. The presentation of $V|_P$ associated to the image V_0 of $Sym^r \otimes (\eta \otimes \det)$ is finite.

When $\dim_k V$ is finite, D = 0 because $k((T)) \otimes_{k[[T]]} (P^+V_0)^* = 0$ when $(P^+V_0)^*$ is finite.

The special representation sp of P is the restriction of the special representation Sp of $GL(2, Q_p)$. The subspace $C^{\infty}(Z_p; k)$ (functions with support in Z_p) in the model $C_c^{\infty}(Q_p; k)$ is P^+ -stable and generated by the characteristic function of Z_p as a representation of P^+ . This implies that

$$D(Sp) = k((T)) \otimes_{k((T))} (C^{\infty}(Z_p;k))^*$$

because two finitely generated P^+ -stable submodules generating a smooth k-representation of P are equal modulo a finite N_0 -stable set. The dual of $C_c^{\infty}(Z_p; k) = \lim C_c^{\infty}(Z_p; k)^{p^n Z_p}$ is $k[[Z_p]] = \operatorname{proj} \lim (C_c^{\infty}(Z_p; k)^{p^n Z_p})^* \simeq k[[T]]$. We deduce that $D(Sp) \simeq k((T))$.

 $D(Sp \otimes \eta \otimes) \simeq D_{\eta'}$ for two characters $\eta, \eta' \to k^*$. Do we have $\eta' = \eta$? or $\eta' = \eta^{-1}$?

A smooth k-representation V of $GL(2, Q_p)$ is called admissible when V^C is finite for any open compact subgroup C of $GL(2, Q_p)$. Let I_1 be the pro-p-Iwahori subgroup inverse image of $N(F_p)$ in K.

Proposition 10.12. A smooth k-representation V of $GL(2, Q_p)$ is admissible if and only V^C is finite for some open compact subgroup C of $GL(2, Q_p)$.

The dimension of the k-vector space V^{I_1} is 1 when V is a character or a special representation and is 2 for the other irreducible smooth k-representations of $GL(2, Q_p)$ with p acting by a scalar.

We consider now a supersingular irreducible smooth k-representation $V(r, \eta)$ of $GL(2, Q_p)$ where p acts by a scalar. Let V_0 be the image of $Sym^r \otimes (\eta \circ \det)$ embedding in V by the quotient map c-ind^G_{KZ} $Sym^r \otimes (\eta \circ \det)$ of kernel T c-ind^G_{KZ} $Sym^r \otimes (\eta \circ \det)$. Let $\Delta = P^+V_0 \cap (P-P^+)V_0$.

Proposition 10.13. Δ contains $(P^+V_0)^{N_0}$

As Δ is finite, we deduce that $(P^+V_0)^{N_0}$ is finite hence the k((T))-vector space D(V) is finite dimensional. This is enough for the corollary of the theorem.

Proof. The following proof is due to Y. Hu.

a) If $v \in (P^+V_0)^{N_0}$ then v is fixed by some $\begin{pmatrix} 1 & 0 \\ p^{n_v}Z_p & 1 \end{pmatrix}$. The subgroup C_v of $GL(2, Q_p)$

generated by N_0 and $\begin{pmatrix} 1 & 0 \\ p^{n_v}Z_p & 1 \end{pmatrix}$ is open and compact, The representation V of $GL(2, Q_p)$ is admissible. Hence $V_{v}^{C_v}$ is finite.

b) Let $T_1 = \sum_{i=0}^{p-1} {p \choose 0} = 1$ seen as an operator of V. Set $T_n = T_1 \circ \ldots \circ T_1$ *n*-times. Then one can show *** that $T_n v \in V^{C_v}$ when $n \ge n_v$.

c) Let
$$\Delta_0 = \Delta$$
 and by induction on n let $\Delta_n = P^+ V_0 \cap Kst\Delta_{n-1}$ where $st = \begin{pmatrix} 0 & 1 \\ p & 1 \end{pmatrix}$.
Then one can show *** that the sequence of k-vector spaces $(\Delta_n)_{n \in N}$ is increasing of union P^+V_0 . For $v \in P^+V_0$ let $\ell(v)$ be the minimal integer $n \in N$ such that $v \in \Delta_n$. Then one shows that $\ell(T_1v) = \ell(v) + 1$ if $v \notin \Delta$

shows that $\ell(T_1v) = \ell(v) + 1$ if $v \notin \Delta$. d) By a) and b), the elements $T_n v$ for $n \ge n_v$ are linearly dependent. This implies that v belongs to Δ because $\ell(T_nv) = \ell(v) + n$ if $v \notin \Delta$.

In fact, Hu proved more:

Proposition 10.14. $\Delta = V^{I_1}$

Proof. ***

An element of Δ invariant by I_1 belongs to P^+V_0 which contains Δ and is invariant by N_0 which is contained in I_1 . Hence we obtain

Corollary 10.15. $(P^+V_0)^{N_0} = V^{I_1}$

We deduce that the dimension of D(V) over k((T)) is ≤ 2 with equality if $(P^+V_0)^*$ is a free k((T))-module.

To finish ***

The canonical diagram $\Delta \subset K\Delta$ To finish ***

.