The right adjoint of the parabolic induction

September 8, 2016

Abstract

We extend the results of Emerton on the ordinary part functor to the category of the
smooth representations over a general commutative ring R, of a general reductive p-adic
group G (rational points of a reductive connected group over a local non archimedean
field F' of residual characteristic p). In Emerton’s work, the characteristic of F is 0, R is
a complete artinian local Z,-algebra having a finite residual field, and the representations
are admissible. We show:

The smooth parabolic induction functor admits a right adjoint. The center-locally
finite part of the smooth right adjoint is equal to the admissible right adjoint of the
admissible parabolic induction functor when R is noetherian. The smooth and admissible
parabolic induction functors are fully faithful when p is nilpotent in R.
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1 Introduction

Let R be a commutative ring, let F' be a local non archimedean field of finite residual field
of characteristic p, let G be a reductive connected F-group. Let P, P be two opposite
parabolic F-subgroups of unipotent radicals N, N and same Levi subgroup M = PN P.
Let Ang be the maximal F-split central subtorus of M. The groups of F-points are denoted
by the same letter but not in bold. The parabolic induction functor IndICSv : Mod% (M) —



Mod% (G) between the categories of smooth R-representations of M and of G, is the right
adjoint of the N-coinvariant functor, and respects admissibility.

For any (R, F,G), we show that Indg admits a right adjoint RG.

When R is noetherian, we show that the Ajs-locally finite part of RS respects admissi-
bility, hence is the right adjoint of the functor IndIGg between admissible R-representations.

When 0 is the only infinitely p-divisible element in R, we show that the counit of the
adjoint pair (—p, Indg)7 is an isomorphism. Therefore, Indg is fully faithful and the unit
of the adjoint pair (Ind%, R$) is an isomorphism.

The results of this paper have already be used in [HV] to compare the parabolic
and compact inductions of smooth representations over an algebraically closed field R of
characteristic p for any pair (F, G), following the arguments of Herzig when the charac-
teristic of F'is 0 and G is split. The comparison is a basic step in the classification of
the non-supersingular admissible irreducible representations of G (work in progress with
Abe, Henniart, and Herzig, see also Ly’s work [Ly] for GL(n, D) where D/F is a finite
dimensional division algebra).

When p is invertible in R, it was known that Inle; has a right adjoint, called also
the “second adjoint”. When R is the field of complex numbers, Casselman for admissible
representations and Bernstein in general proved that the right adjoint is equal to the
N-coinvariant functor multiplied by the modulus of P. Another proof was published by
Bushnell [Bul. Both proofs rely on the property that the category Modc(G) is noetherian.
Conversely, Dat [Dat] proved that the second adjointess implies the noetheriannity of
Modg(G) and prove it assuming the existence of certain idempotents (constructed using
the theory of types for linear groups, classical groups if p # 2, and groups of semi-simple
rank 1). Under this hypothesis on G, Dat showed also that the N-coinvariant functor
respects admissibility.

When the characteristic of F' is 0 and R is a complete artinian local Z,-algebra hav-
ing finite residual field, Emerton [Emerton] showed that Ind$ restricted to admissible
representations has a right adjoint equal to the ordinary part functor Ordp. Introduc-
ing the derived ordinary functors he showed also that the N-coinvariant functor respects
admissibility [Emerton2] 3.6.7 Cor].

In section 2 we give precise definitions and references to the litterature on adjoint
functors and on grothendieck abelian categories.

In sections 3 and 4, the existence of a right adjoint of Ind% : Mod% (M) — Mod% (G)
is proved using that Mod (G) is a grothendieck abelian category and that Ind$ is an
exact functor commuting with small direct sums. This method does not apply to the
functor Ind$ : Mod %™ (M) — Mod%"™(G) because the category of smooth admissible
R-representations is not grothendieck in general. It is not even known if it is an abelian
category when R is a field of characteristic p as well as F'.

In section 5, we assume that p is nilpotent in R; we show the vanishing of the N-
coinvariants of indig P when PgP # P and that the counit of the adjunction (—y,Ind%) is
an isomorphism; the general arguments of section 2 imply that the unit of the adjunction
(Ind$, R) is an isomorphism and that Ind$ is fully faithful. When R is noetherian,
nd$ : Mod"™ (M) — Mod %™ (G) is also obviously fully faithful.

In section 6, we replace G by its open dense subset PP. The partial compact induction
functor indb” : Mod3 (M) — Mod3 (P) admits a right adjoint R5” by the general
method of section 2. Let Res% : Modg(G) — Modg(P) be the restriction functor. Let
Ajps be the split center of M. We fix an element z € Ay strictly contracting N. We prove
that the z-locally finite parts of RS and of REF o Res% are isomorphic. The right adjoint

Rgp : Modg (P) — Mod% (M) of indgp is explicit: it is the smooth part of the functor
HomR[N] (Cgo(Na R): _)'



In section 7, following Casselman and Emerton, we give the Hecke description of the
above functor R%P : Mod% P — Mod% (M). We fix an open compact subgroup Ny of N.
The submonoid M+ of elements of M contracting Ny acts on Vo by the Hecke action.
We have the smooth induction functor Ind}+ : Mod§s (M*) — Mod$ (M). We show that
R%P is the functor V +— Ind}f (Vo). The Aps-locally finite part of this functor is the
Emerton’s ordinary part functor Ordp : Modg P — Modg (M).

In section 8 we assume that R is noetherian and we show that Ordp (V') is admissible
when V' is an admissible R-representation of G. Therefore the parabolic induction functor
md$ : Mod%™ M — Mod%™ G admits a right adjoint equal to the functor Ord% :

Ord;ORes% The unit of the adjunction (Indg, Ordp) is an isomorphism.

I thank Noriyuki Abe, Florian Herzig, Guy Henniart and Michael Rapoport for their
comments and questions, and the referee for an excellent report, allowing me to improve
the paper and to correct some mistakes.

2 Review on adjunction between grothendieck abelian
categories

We fix an universe U and we denote by Set the category of U-sets, i.e. belonging to U. In
a small category, the set of objects is U-small, i.e. isomorphic to a U-set, as well as the
set of morphisms Hom(A, B) for any objects A and B. In a locally small category, only
the set Hom(A, B) is supposed to be U-small. (In [KS| 1.1, 1.2], small is called U-small,
and a locally small category is called a U-category.)

Let Z be a small category and let C, D be locally small categories. We denote by C°P
the opposite category of C and by D€ the category of functors C — D. A contravariant
functor C — D is a functor C°? — D. The categories Setcop,Setc are not locally small in
general (if C is not small) [KS| Def. 1.4.2].

Proposition 2.1. [KS| Def. 1.2.11, Cor. 1.4.4]
The contravariant Yoneda functor : C — Hom(C,—) : C — Set® and the covariant
Yoneda functor : C — Hom(—,C) : C — Set®™ are fully faithful.

A functor F in SetC or in Set®” is called representable when it is isomorphic to the
image of an object C' € C by the Yoneda functor [KS| Def.1.4.8]. The object C' which is
unique modulo unique isomorphism is called a representative of F.

A functor F : T — C defines functors

lim F € Set® C — Homez(F,cte), limF € Set®” € Homez(cte, F),
— —

where ctc : T — C is the constant functor defined by C' € C. When the functor lim F' is
representable, a representative is called the injective limit (or colimit or direct limit) of
F, is denoted also by lim F', and we have natural isomorphism ML I11.4 (2), (3)]

hﬂF(C) = Homez (F, cte) ~ Homc(liglF7 ).

When the functor lim F' is representable, a representative is called the projective limit (or
inverse limit or limit ) of F', is denoted also by @ F, and we have natural isomorphism

I&nF(C) = Homez(cte, F) ~ Homc(Cﬂl'&nF).

One says also that (F'(4));cz is an inductive or projective system in C indexed by Z or Z°P
and one writes h_n;(F(z))ZGI or @(F(i))iezop for the object lim £ or lim F.



Example 2.2. 1) A set of objects (C;);cz of C indexed by a set Z can be viewed as a
functor F' : T — C where 7 is identified with a discrete category (the only morphisms
are the identities). When they exist, lim F' = @®;c7C; is the direct sum, or coproduct, or
disjoint union U;c7C;, and lim F' = Hiel’ C; is the direct product.

2) When Z has two objects and two parallel morphisms other than the identities, a

functor F' : T — C is nothing but two parallels arrows Cy é; Cs in C. When they are
f

representable, lim I is the cokernel of (f,g) and Hm I is its kernel IKS| Def. 2.2.2].

3) When they are representable, it is possible to construct the inductive (resp. pro-
jective) limit of a functor F' : Z +— C, using only coproduct and cokernels (resp. products
and kernels) [KS, Prop. 2.2.9]. If Hom(Z) denotes the set of morphisms s : o(s) — 7(s)
with o(s),7(s) € Z, of the category Z,

(1) lim " is the cokernel of f,9: ®sctiomz)F(a(s)) é@ieIF(i),
f
where f, g correspond respectively to the two morphisms idp(,(s)), F'(s), for s € Hom(Z),

@F is the kernel of H F(i) é H F(o(s)),

ieT F seHom(T)
where f, g are deduced from the morphisms idp (- (s)y, F'(s) : F'(7(s)) x F(co(s)) é} F(71(s))
f

for s € Hom(Z).

A non-empty category C is called filtrant if, for any two objects Cy,Cy there exist
g

morphisms C7 — C3,Cy — (3, and for any parallel morphisms C; —= Cs, there exists a
f

morphism h : Cy — C3 such that ho f = hog [KS| Def. 3.1.1].

Let F : C — D be a functor. For U € D, we have the category Cy whose objects
are the pairs (X,u) with X € C,u : F(X) — U in Hom(D). We say that F is right
exact if the category Cy is filtrant for any U € D, and that F is left exact if the functor
FeP . D% — C°P ig right exact [KS| 3.3.1].

Proposition 2.3. Let a functor F : C — D.

1) When C admits finite projective limits, F' is left exact if and only it commutes with
finite projective limits. In this case, F' commutes with the kernel of parallel arrows.

2) When C admits small projective limits, F' is left exact and commutes with small
direct products, if and only if F commutes with small projective limits.

3) The similar statements hold true for right exact functors, inductive limits, small
direct sums, and cokernels.

Proof. 1) See [KS| Prop. 3.3.3, Cor. 3.3.4] .

2) If F preserves small projective limits, F' is left exact and preserves small direct
products (Example 1)). Conversely, from , a left exact functor which commutes
wit small direct products preserves small projective limits because it commutes with the
kernel of the parallel arrows.

3) Replace C by C°P. O

Let F: C — D and G : D — C be two functors. Then (F,G) is a pair of adjoint
functors, or F' is the left adjoint of G, or G is the right adjoint if F', if their exists an
isomorphism of bifunctors from C°? x C to Set

Homyp(F'(.),.) ~ Home(., G(.)),



called the adjunction isomorphism [KS| Def. 1.5.2]. The functor F' determines the func-
tor G up to unique isomorphism and G determines F' up to unique isomorphism [KS|
Thm. 1.5.3]. For X € C, the image of the identity idpx) € Homp(F(X), F(X)) by the
adjunction isomorphism is a morphism X — G o F(X). Similarly, for Y € D, the image
of idg(y) is a morphism F o G(Y) — Y. The morphisms are functorial in X and Y. The
corresponding morphisms of functors are called the unit and the counit :

€:le >GoF, n:FoG— lp.

Proposition 2.4. Let (F,G) be a pair of adjoint functors.

F is fully faithful if and only if the unit € : 1 — G o F' is an isomorphism.

G is fully faithful if and only if the counit n: F o G — 1 is an isomorphism.

F and G are fully faithful if and only if F' is an equivalence (fully faithful and essentially
surjective [KSL Def. 1.2.11,1.3.13] if and only if G is an equivalence. In this case F and
G are quasi-inverse one to each other.

Proof. See [KS|, Prop. 1.5.6]. O

Proposition 2.5. Let (F,G) be a pair of adjoint functors. Then F is right exact and G
is left exact.

Proof. See [KS|, Prop. 3.3.6]. O

Let A be a locally small abelian category. A generator of A is an object E € A such
that the functor Hom(E,—) : A — Set is faithful (i.e. any object of A is a quotient of a
small direct sum @;F). If A admits small inductive limits, the functor between abelian
categories

FlimF: AT - A
—

is additive and right exact.

Definition 2.6. [KS| Def. 8.3.24] A locally small abelian category A is called grothendieck
if it admits a gemerator, small inductive limits, and the small filtered inductive limits are
exact.

Example 2.7. Given a ring R € U, the category of left R-modules in U is small, abelian,
and grothendieck with generator R.

Proof. See [KS, Ex. 8.3.25]. O

Proposition 2.8. A grothendieck abelian locally small category admits small projective
limits.

Proof. See [KS| Prop. 8.3.27]. O

Proposition 2.9. Let a functor F' : A — C where A is a grothendieck abelian locally
small category. The following properties are equivalent:

1) F admits a right adjoint,

2) F commutes with small inductive limits,

8) F is right exact and commutes with small direct sums.

Proof. See [KS|, Prop. 8.3.27]. O

A similar statement characterizes the existence of a left adjoint.



3 The category Mody (G)

Let R be a commutative ring, let G be a secound countable locally profinite group (for
instance, a parabolic subgroup of a reductive group), and let (K, )nen be a strictly de-
creasing sequence of pro-p-open subgroups of G, with trivial intersection, such that K,
normal in K for all n.

3.1 ModZ(G) is grothendieck

A R-representation V of G is a left R[G]-module. A vector v € V is called smooth when
it is fixed by an open subgroup of G. The set of smooth vectors of V' is a R[G]-submodule
of V, equal to V> = U,,enV & where VE» is the submodule of v € V fixed by K,,. When
every vector of V' is smooth, V' is called smooth. (The same definition applies to a locally
profinite monoid (the maximal subgroup is open and locally profinite).)

Example 3.1. The module C.(G, R) of functions f : G — R with compact support
is a R[G x G]-module for the left and right translations. For n € N, the submodule
C.(K,\G, R) of compactly supported functions left invariant by K, is a smooth rep-
resentation of G for the right translation. These submodules form a strictly increasing
sequence of union the smooth part C°(G, R) of C.(G, R).

We allow only the R-modules of cardinal < ¢ for some uncountable strong limit cardinal
¢ > |R], so that the R-representations of G form a set rather than a proper class (we work
in the same artinian universe U, [SGA4, Exposé 1, page 4]; the cardinal of Homgg(V, V)
is < ¢ for two R-representations V, V’ of G). The abelian category Modg(G) of left R[G]-
modules is small, grothendieck of generator R[G] (Ex. , and contains the abelian full
subcategory Mody (G) of smooth R-representations of G.

Lemma 3.2. Mod% (G) is a grothendieck category of generator ®n,enCe(Kn\G, R).

Proof. An arbitrary direct sum of smooth R-representations of G is smooth. The cokernel
of two parallel arrows in Mod% (G) is smooth hence Mod% (G) admits small inductive
limits (Ex. 3)). Small filtered inductive limits are exact because they are already exact
in the grothendieck category Modg(G). O

For W € Modg (G),V € Modg(G) we have Hompgjg)(W, V) = Homp(g) (W, V>°). The
smoothification
V= V> : Modgr(G) — Mody (G)

is the right adjoint of the inclusion Mod% (G) — Modg(G), hence is left exact (Prop.
2-5). The smoothification is never right exact if G is not the trivial group [Viglivre, 1.4.3]
hence does not have a right adjoint (Prop. [2.5)).

3.2 Admissibility and z-finiteness

Definition 3.3. An R-representation V' of G is called admissible when it is smooth and
for any compact open subgroup H of G, the R-module VI of H-fized elements of V is
finitely generated.

When R is a noetherian ring, we consider the category Mod%™ (G). It may not have
a generator or small inductive limits. Worse, it may be not abelian.

Example 3.4. Let R be an algebraically closed field of characteristic p and G = G(F) a
group as in the introduction. Given an open pro-p-subgroup I of G, a non-zero smooth R-
representation of G contains a non-zero vector fixed by I; the set of irreducible admissible
R-representations of G (modulo isomorphism) is infinite. Therefore their direct sum is not



admissible. But it is a quotient of a generator of Mod ™ (G), if a generator exists. If the
quotient an admissible representation remains admissible, a generator cannot exist. The
admissibility is preserved by quotient when the characteristic of F is zero [VigLang], but
this is unknown when the characteristic of F' is p.

Let H any subset of the center of G, and let V € Modg(G).

Definition 3.5. An element v € V is called H-finite if the R-module R[H]v is contained
in a finitely generated R-submodule of V.

The subset VH = of H-finite elements is a R-subrepresentation of V, called the H-
locally finite part of V. When every element of V' is H-finite, V is called H-locally finite.
The category Modg_lf (G) of H-locally finite smooth R-representations of G is a full
abelian subcategory of Mod% (G). The H-locally finite functor

(2) Vs VI Mod (G) — Mod 2~ (@)

is the right adjoint of the inclusion Modgflf(G) — ModR (G).
Lemma 3.6. If V is admissible, then V is H-locally finite.

Proof. Let v € V. As V is smooth, v € VE» for some n € N. As V is admissible, VX» is
a finitely generated R-module. As H is central, V5~ is H-stable. O

4 The right adjoint R% of Ind% : Mod% (M) — Mod% (G)

Let F' be a local non archimedean field of finite residue field of characteristic p, let G be a
reductive connected F-group. We fix a maximal F-split subtorus S of G, and a minimal
parabolic F-subgroup B of G containing S. We suppose that S is not trivial. Let U be
the unipotent radical of B. The G-centralizer Z of S is a Levi subgroup of B. We choose
a pair of opposite parabolic F-subgroups P,P of G with P containing B, of unipotent
radicals N, N and Levi subgroup M = PNP. Let Ap; C S be the maximal F-split central
subtorus of M. We denote by X the group of F-rational points of an algebraic group X
over F', with the exception that we write Ng(S) for the group of F-rational points of
the G-normalizer Ng(S) of S. The finite Weyl group is Wy = Ng(S)/Z = Ng(S)/Z.
We fix a strictly decreasing sequence (K, )nen of pro-p-open subgroups of G with trivial
intersection, such that for all n, K, is normal in K and has an Iwahori decomposition

(3) K, =N,M,N, = N,M,N,,
where M,, .= K, " M,N,, .= K, NN,N, :=K,NN.

For W € Mod$% (M), the representation Ind% (1) € Mod% (G) parabolically induced
by W is the R-module of functions f : G — W such that f(mngx) = mf(g) for m €
M,n€e N,g € G,x € K, where n € N depends on f, with G acting by right translations.
The smooth parabolic induction

Ind$ : Mod3 (M) — Mod3y (G)
is the right adjoint of the N-coinvariant functor [Viglivre, 1.5.7 (i), I.A.3 Prop.]
Vi Vn @ Mody (G) = Mod% (M) .

The N-coinvariant functor Modr(P) — Modgr(M) is the left adjoint of the inflation
functor Infl}; : Modgr(M) — Modg(P) sending a representation of M = P/N to the
natural representation of P trivial on N.



Remark 4.1. The N-coinvariants of the inflation functor Infl}; is the identity functor of
Modg M (the co-unit —y o InflY, — 1 of the adjunction (—y,Infl};) is an isomorphism).

Proposition 4.2. The smooth parabolic induction functor Ind% : Mod3y (M) — Mod$ (G)
Indg is exact, commutes with small direct sums, and admits a right adjoint

RS - Mod% (G) — Mod$3y (M).

Proof. For W € Mod% (M), we write C*°(P\G,W) for the R-module of locally constant
functions on the compact set P\G with values in W. We fix a continuous section

(4) v : P\G — G.

The R-linear map

(5) f = fop:IndG(W) = C®(P\G, W)

is an isomorphism. We have a natural isomorphism

(6) C*(P\G,W) ~C*(P\G,R) @r W ~ C*(P\G,Z) ®z W.

The Z-module C*(P\G,Z) is free, because it is the union of the increasing sequence of
the Z-modules L,, :== C*°(P\G/K,,Z) for n € N, which are free of finite rank as well as
the quotients L, /L, 1. Hence the tensor product by C*°(P\G,Z) is exact, and Ind$ is
also exact.

The smooth parabolic induction commutes with small direct sums @;czW; because a
function f € C°(P\G, W) takes only finitely many values.

Applying Prop.[2.9]and Lemma([3.2] the parabolic induction admits a right adjoint. O

Remark 4.3. When p is invertible in R, Dat [Datl between Cor. 3.7 and Prop. 3.8]
showed that

RE(V) = ([Homp)(C(G, R), V)]V)* (V€ Mod (G)).

The modulus §p of P is well defined. When R is the field of complex numbers (Bernstein)
or when G is a linear group, a classical group when p # 2, or of semi-simple rank 1 [Dat],
we have:

RE(V) ~ 6pV.

Let ¢ € G and @Q an arbitrary closed subgroup of G. The partial compact smooth
parabolic induction functor

indb9% : Mod3s (M) — Mod3 (Q)

associates to W € Modg (M) the smooth representation indIPDgQ(W) of @ by right trans-
lation on the module of functions f : PgQQ — W with compact support modulo left
multiplication by P (P\PgQ is generally not closed in the compact set P\G) such that
flmnghx) = mf(gh) for me M,n € N,h € Q,z € K, NQ where n € N depends on f.

Remark 4.4. When PgP = P, the functor indb : Mod3 (M) — Mod¥ (P) is the
inflation functor Infl};.

Proposition 4.5. The functor indI;gQ s exact, commutes with small direct sums, and
admits a right adjoint
REI? - Mod (Q) — ModSy (M).

Proof. Same proof as for the functor Indg (Prop. |4.2)). O



Lemma 4.6. W € Mod% (M) is admissible if and only if Ind$(W) € Mod®(G) is
admissible.

Proof. This is well known and follows from the decomposition [Viglivrel 1.5.6, 11.2.1]:
(Ind$ W)Er ~ @ pyr, (Indb95" W)En ~ @ py e, WM™ (n e N, g € @),

where the sum is finite and IndggK" W C Ind$ W is the R-submodule of functions with
support contained in PgkK,. O

Corollary 4.7. When the ring is noetherian, the smooth parabolic induction restricts to
a functor, called the admissible parabolic induction,

Ind% : Mod%™ (M) — Mod %™ (@).

We will later show that the admissible parabolic induction admits also a right adjoint.

5 Ind$ is fully faithful if p is nilpotent in R

We keep the notation of the preceding section. Let &g be the set of roots of S in G. We
write U, for the subgroup of G associated to a root o € ®¢ (the group U(q) in [Bal 21.9]).

Definition 5.1. The p-ordinary part Rp_orq of R is the subset of v € R which are
infinitely p-divisible.

By [Viglivre, I (2.3.1)], Rp—ora = {0} if and only if there exists no Haar measure on
U, with values in R. But p is nilpotent in R if and only if R[1/p] = {0} if and only if

(7) C(Ua, R)u, = {0}

When R is a field, Ryp_orqa # {0} if and only if p is nilpotent in R if and only if the
characteristic of R is # p.

Proposition 5.2. We suppose that p is nilpotent in R. Let W € Modg M and g € G.
The N -coinvariants of indIP;gP(W) 1s 0 if PgP # P.

Proof. We identify indp?" (W) with C°(P\PgP,R) ®z W as in (§). The action of N
on C°(P\PgP,R) @ g W is trivial on W and is the right translation on C°(P\PgP, R).
Therefore
(ind?" (W) = C*(P\PgP, R)y ®r W,

and we can forget W. To show that C°(P\PgP,R)y = 0 if PgP # P, we prove that
there exists a B-positive root « such that U, C N and the space P\PgP is of the form
X x U, where the right action of U, on P\PgP is trivial on X and equals the natural
right action on U,. Therefore

CZ(P\PgP, R)y, = CZ(X, R) ®r C(Ua, R)u, -

Applying (7)), we obtain C2°(P\PgP)y, = 0 hence C°(P\PgP,R)y = 0.

It remains to explain the existence of such an a. As (B, Ng(S)) is a Tits system in
G [BTIl 1.2.6], we have PgP = PvP for an element v € N¢(S); we can suppose that
the image w of v in Wy has minimal length in the double coset Wy s \Wo/Wo ar (where
Wo,m = Nu(S)/Z). This implies that the fixator N, := {n € N | Pvn = Pv} of Pv in
N is generated by the U, for the roots @ € &g — @, such that o and w(«) are reduced,
B-positive. The fixator of Pv in M is a parabolic subgroup @ and the fixator of Pv in P
is QN,. The group N is directly spanned by the Ug (8 € ¢ — ®ps positive and reduced)
taken in any order [Bol 21.12]. As PgP # P, i.e. w # 1, there exists a reduced positive
root a € &g — Py such that U, ¢ N,. Such an « satisfies all the properties that we
want. O



Theorem 5.3. We suppose that p is nilpotent in R. Then
1. The parabolic induction Ind$ : Mod$y (M) — Mod$ (G) is fully faithful,
2. The unit idnoase () — R% OIndg of the adjoint pair (IndIGg, R§) is an isomorphism.

3. The counit 1) : —y o Ind% — idntoass () of the adjoint pair (—n,Ind$) is an iso-
morphism.

Proof. By Lemma [3.2] and Prop. the three properties are equivalent. We prove that
the counit 7 of the adjoint pair (—y, Indg) is an isomorphism.

a) It is well known that Indg admits a finite filtration Fy; C ... C F, of quotients
indigp7 with last quotient ind5, associated to P\G/P.

b) Beeing a right adjoint, the N-coinvariant functor Mod% (P) — Mod% (M) is right
exact.

c¢) Apply Prop. [5.2]and Remarks O

6 z-locally finite parts of Rg and of RﬁPoRes% are equal

We keep the notation of the preceding section. We fix an element z € A); strictly con-
tracting N : the sequence (2" Noz~™),cz is strictly decreasing of trivial intersection and
union N. We denote N,, := 2" Npz~" when n < 0 (N,, for n > 0 is defined in section 4).

We compare the right adjoint RS : Mod% (G) — Mod% (M) of the parabolic induction

Indg to the functor Rﬁﬁ o Res%7 where Res% : Mod% (G) — Mod} P is the restriction

functor and REP Mod% (P) — Modf (M) is the right adjoint of the partial compact
parabolic induction indgp . We denote by

RG* 1  Mod G — Mod% ¥ M,  REP*7U . Mod3y P — Mod% ™ M,

the z-locally finite parts of RG and of Rf;?.
Theorem 6.1. The functors RS>~ and RIIZFZ_U oRes$ are isomorphic.

Proof. We want to prove that there exists an isomorphism
(®) Hom gy (W, RE ™ (V) = Homppa (W, R (V)

functorial in (W, V) € Mod% (M) x Mod% (G). We may replace RS>~/ Rgi’z_lf by
R%, REF in (recall (2)). Then using the adjunctions (Ind%, RG) and (indp", REP),

we reduce to find an isomorphism
(9) Hom i) (Ind W, V) — Hom 5 (ind 27 W, V)

functorial in (W, V) € Modf{lf(M) x Mod% (G). There is an obvious functorial homo-
morphism because indgp W is a submodule of Indg W. This homomorphism, denoted by

J, sends a R|G]-homomorphism Indg W — V to its restriction to indIP;P W. The homo-
morphism J is injective because an arbitrary open subset of P\G is a finite disjoint union
of G-translates of compact open subsets of P\PP [SVZ, Prop. 5.3]. To show that J is
surjective, we introduce more notations.

Let (g,7,m,w) € G x N x N x W. We say that (g,r, 7, w) is admissible if

we WM PN,g=PN,T.
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Let frmw € indﬁP(W) be the function supported on PN, 7 and equal to w on N, 7. The
function g frm,w € Indg(W) is supported on PN, 7g™'.

We fix an element ® € Hom pp) (ind5¥ W, V). We show that ® belongs to the image
of J if W is z-locally finite following Emerton’s method [Emertonl, 4.4.6, resp. 4.4.3] in

two steps:

1) @ belongs to the image of J when ®(gf,7.4) = ¢P(frm,w) for all admissible (g, r, 7, w).
2) ®(gfrmw) = 9®(frmw) for all admissible (g, r, 7, w) if W is z-locally finite.

Proof of 1) Let gi,...,g, in G and non-zero functions fi,..., f, in ind5?"(W). We
show that Y. ¢;®(fi) = ®(>_, gifi). We choose r € N large enough, such that the f;,
viewed as elements of C°(N, W), are left N ,.-invariant with values in W*r. We fix a
subset X, of G such that

G = I_IhGXTPth, PP = I_IheXmNPNTh.
Let Y; C X, N N such that the support of f; is Lizey, PN, 7. For n € Y;, we have
fi|PNm = frm fi(@)-

Since G = Lp¢ XTPNThgi, fi viewed as an element of indg W is equal to

‘fi = Z fi|PNThg'i

heX,

where h € X, contributes to a non zero term if and only if PN,hg; = PN,n for some

7 € Y;; when this happens fi‘PNThg,; = frm,f.(m) hence gi(I)(fi|PNThg7¢) = @(gi(fi|Pﬁrhgi))
by the assumption of 1). We compute

Zgiq)(fi) = Z Zgiq)(fi|Pﬁrhgi) = Z Z (g:(fil pw, 1g;))
i h i h [
=0 _6iQ_ filpwng) = ®Q_gifo).
i I i

Therefore 3, g:®(f;) = ®(3, g:f;) for all g1,...,g, in G and fi,..., f, in indp" (W),
hence ® belongs to the image of J.

Proof of 2). We assume W € ModZR*lf(M) and we prove ®(gfrmw) = 9P(fraw). We
reduce tom = 1,8 frmw =0 friw, (g0 1,7, 1,w) is admissible, and ® is N-equivariant.

Let (g,r,1,w) admissible. We may suppose w # 0. We choose (r',7",a) € Z x N x N
as follows. The integer r’ € Z depending on (g, r), is chosen so that the projection of the
compact subset N,.¢g~! € PN, onto N via the natural homeomorphism PN — N x P
is contained in N,/, i.e. N,.g=! C N, P. The integer " € N depending on (r,w) and
on our fixed element z € Ay, is chosen so that the R-submodule of V' € Modg (G),
generated by ®(f,1.,) for w’ in the finitely generated R-submodule R[z]w, is contained
in V& and r” > r. Finally, the integer a € N depending on 7,7, is chosen so that
2*Nyrz=% C Ny C Ny

Let © € N,. The set P2~ %N, 2°T = PN,2° is contained in PN, as z~' € Ay
contracts N. The restriction of f,. 1, to PN,z is fr 2%, 20 (w)- We deduce

fﬁLw = Z (Za@)ilfr,l,z“(wy

D€E2=oN,2*\N,

We are reduced to prove @(gv‘lz_“fmyza(w)) = g@(v_lz_afr,17za(w)). As @ is left P-
equivariant, g®(v™ 27 f,1 a(w)) = gv T 2T ®(f,1 2a(w)). The set gN, is contained in
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PN, and we may write go127% = pn, 2~ with n,» € N,.,p € P. Using again that ® is

left P-equivariant, we are reduced to prove

¢<nr’z_afr,1,za(w)) = nr’z_a(b(fr,l,za(w))'

Applying z%, we are reduced to prove
(I)(Zanr'ziafr,lg"'(w)) = Zanr’ziaq)(fnl,z“(w))-

Let w' € R[zJw and T € N,. The function f, . viewed in Ind%(W), of support PN,
and equal to w’ € WM on N, is fixed by K,. The element ®(f,.1,/) € V is fixed by
K. As 2°Npz=* C Npvw C N, both elements f,.1 .a(y) and ®(f;. 1 .a(y)) are fixed by
z%n, 2z~ %, and the equality is obvious. O

7 The Hecke description of R%P : Mod% (P) — Mod% (M)

We keep the notation of the preceding section. The submonoid MT C M contracting
the open compact subgroup Ny of N is the set of m € M such that mNom ™' C Npy; it
contains the open compact subgroup My of M. The union Uzenz~*M ™ is equal to M.

The right adjoint of the restriction functor Modg (M) — Modg(M™) is the induction
functor
M. - Modgr(M*) — Modg(M)

sending W € Modgr(M™) to the module 137, (W) of R-linear maps ¢ : M — W such
that ¢ (mx) = my(z) for all m € M, x € M, where M acts by right translations. The
smoothification of I ]J\\/I/IJr is the smooth induction functor

Ind}%, : Mod$s (M) — Mod® (M).

Definition 7.1. Let V € Mod¥ (P). The monoid M+ acts on VN0 by the Hecke action
(m,v) = hny m(v),

(10) hng.m(v) = Z nmv (m € M, ve V).
n€No/mNom~—1

The Hecke action of M+ on V™ is smooth because it extends the natural action of
My on VMo,

Theorem 7.2. The functor
(11) V — Indjr (Vo) : Mod® (P) — Mod% (M)
is right adjoint to the functor indgp.

The theorem says that the functors Ind}f+(—"°) and Rgp are isomorphic. Their 2-
locally finite parts are also isomorphic. The Emerton’s ordinary functor Ordp is the Aps-
locally finite part of the functor Ind}s, (—N°):

Ordp = (Indjzs (=)~ - Modf (P) — MOdIgMilf(M)’

or also the functor Ord% := Ordp o Res% : Mod% (G) — ModgM*lf(M). Applying Thm.
we obtain:
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Corollary 7.3. The functor R%Z_lf is isomorphic to the functor
V i (Indyhy (VN0))2=U - Mod$ (@) — Mod3, (M)
The functor R%AM_lf 1s isomorphic to the Emerton’s ordinary functor Ordg.
To prove that (indgp ,Ind}t, (—=No)) is an adjoint pair, we view indgp as
CP(N,R)®gr — : ModR (M) — Mod% (P),
where P = M N acts on C°(N, R) by:
mf:x— f(m~tem), nf:x— flzn), (m,n,f) € M x N x C(N, R).
(In particular mly, = 1, ngm-1, 71N, = 1nyn-1). The right adjoint is well known:
Lemma 7.4. The smoothification of the functor
Hompgn)(C° (N, R), —) : Modg (P) — Modg(M)
is the right adjoint of the functor indgp .
The following proposition implies that the functors Hom gy (C2° (N, R), —) and
1M, (=) : Mod% (P) — Modg(M).

are isomorphic.Therefore the same is true for their smoothifications, Rgp and ind%+ (—No),
and Theorem [7.2] is proved.
Let V € Mod% (P). We check that the value at 1y,

f = f(lNo) : HomR[N] (Cgo(Na R)7 V) - VNO

is M T-equivariant. As usual, p € P acts on f by pf = po fop~!. In particular, for m € M,
(mf)(lNo) = mf(millNo) = mf(]-m—lNom)'

For m € M, we obtain

(mf)(1n,) =m > f(Angn—1) = > mn f(1n,)

n—1eNo\m~1tNom n=1eNo\m~—1Nom

= Z nmf(In,) = hng,m(f(1n,)) -

n€No/mNom~—1
By the adjunction (Res%Jr,I JJ\\/I/IJr), the value at 1y, induces an M-equivariant map
(12) @ : Hompn)(C2(N, R), V) = I (V) £ @(F)(m) = (mf)(1n,) (m € M).
Proposition 7.5. The map ® is an isomorphism of R[M]-modules.

Proof. ® is injective because the R[P]-module C°(N, R) is generated by 1y,. Indeed let
[ € Hompgn)(C°(N, R), V) such that ®(f) = 0. Then fy(mly,) = f(Ln-1nym) = 0 for
all m € M. As f is N-equivariant, 0 = f((mn) *1n,) = f(Ln-1nymn) for all n € N,
hence f = 0.

® is surjective because for ¢ € I3, (Vo) there exists f, € Hompn)(C(N, R),V)
such that fy,(mln,) = m(yp(m=1)) for all m € M. We have ®(f,,) = 1. The function fy,
exists because, for all a € N,

(=) = 2 (W) = > 2 (=),
n€z*Noz—a/z0+t1 Ngz—a—1

(Note that the R[N]-module C2°(N, R) is generated by (1,an,.-«)een, and that the values
at 1ian,.—a = 2%1y, identify Hompgn)(C°(N, R), V) with the set of sequences (vq)qen
in V' such that ve =3, ¢ any.—a/sat1 Ny 5-a—1 Mat1-) O
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Remark 7.6. For V € Mod (P), a z~'-finite element ¢ € I, (VN0) is smooth:
(Ind}f (V)7 = (I3, (VM) .

Proof. By hypothesis R[z7!]¢ is contained in a finitely generated R-submodule W,, of
IM, (Vo). The image of W, by the map f — f(1) is a finitely generated R-submodule of
VNo containing p(2~%) for all @ € N. Since the Hecke action of M+ on V™0 is smooth, there
exists a large integer r € N such that M, fixes p(27%) foralla € N. As M = UgenM 279,
two elements of I]]\‘% (Vo) equal on 2= for all @ € N are equal. Hence ¢ is fixed by M,,
 is smooth. O

Remark 7.7. Let W € Mod (M ™) and r € N. An element f € 131, (W) is fized by M,
if and only if f(2*) is fized by M, for all a € Z. The map

F s fle s (WM = (W)
is a R[2%]-isomorphism.

Proof. This is an easy consequence of (m,f)(m*z%) = f(m*z%m,) = f(mtm,.z%) =
e (£(2) for (m*,my,a) € M* x M, x Z. 0

8 The right adjoint Ord; of Ind$ : Mod%™ (M) — Mod%™ (@)

We keep the notation of the preceding section. We suppose that the commutative ring R
is noetherian.

Theorem 8.1. For V € Mod%"™(G), the representation (IM, (VNoY="' U of M is ad-
missible.

Proof. By Remarkm the representation (127, (VNO))zfl_lf of M is smooth. Let r € N.
Note that M, Ny is a group. By Remark the map f ~ f|.z is an R[2%]-isomorphism
from the M,-fixed elements of (IM, (VNo))= ' ~1f to

X = (Izi(VNoMry)= =11

We have X C IjNZ(Y) where Y is the image of X by f + f(1), and is a zN-submodule of
VNoMr(for the Hecke action) containing f(z®) for all a € Z. We have the compact open
subgroup N, M, Ny. We will prove (Prop. 8.2) that

Y ¢ YN-M-No,

Admitting this, Y is a finitely generated R-module because V is admissible and R is
noetherian. The action hy, , of z on Y is surjective because, for f € X we have f(1) =
f(zz™Y) = hn,.f(z71). A surjective endomorphism of a finitely generated R-module
is bijective (this is an application of Nakayama lemma [Matsumural Thm. 2.4]). Hence
the action of z on Y is bijective. Hence ¥ =~ IZZ§ (Y) is a finitely generated R-module.
As R is noetherian, X is a finitely generated R-module. Therefore (I ]J\‘/[/[+(VN°))271*lf is
admissible. O

Proposition 8.2. If f € (IZZIZ(VMTNO))ZA*IJ: then f(1) € VN-M:No

14



Proof. We have
(13) VMNo =, YN eMNo,

where N, M, Ny = K, M, Ny C G is a compact open subgroup as M, Ny C K, normalizes
K, and the sequence (N;M, No);>, is strictly decreasing of intersection M, Ny. We write
n(r,t) € N for the smallest integer such that z~"N,2" C N; C N, for n > n(r,t). The
proof of the proposition is split in three steps.

1) hyy,on (VNM-No) s fixed by N, M, Ny when n > n(r,t).

Let v € VﬁfM"N;’ and n > n(r,t). The element z"v is fixed by N,.M, as N,M,z" C
2"N¢M,. Let m,, € N, and (n;);cs a system of representatives of NQ/ZTLN()Z_TL. Usingﬁthe

Iwahori decomposition N,.M,Ng = NoN,M, we write 1,n; = nib; with n} € No,b; €
N, M,. We compute:

(14) Tphng 2 (V) = Zﬁrniz”v = Z nibiz"v = Z nz"v.

i€l el iel

We show that (n));cr is a system of representatives of Ny/z"Nyz~™, hence that 7, fixes
hng,zn(v), hence 1). We have to prove that nrln; € 2™Ngz~™ implies i = j. We write
n "t = Eini_lnjb

71 7.1 771 n —n -1
Pon; ;and we assume that byn; n;b; € 2"Noz~". Then n; "n; be-

longs to the group generated by N, M, and z"Ngz~", which is contained in the group
2" N, M, Noz~"™. Hence ni_lnj € 2" Nz~ ™. This implies ¢ = j.

2) VNeMrNo s stable by hy, . (hence by hy, .» for n € N).

When ¢ = r, this follows from 1) because n(¢,t) = 0. This is true for any large
t = r. Hence the intersection VMrNo 0/ NtM:No ig stable by hn,,.. But this intersection is
YV N:M:No hecause the group generated by M, Ny and N, M; Ny is N;M, Ny, as M, contains
M; and normalizes N, My, Ny. Hence 2).

3) Let f be a 2~ !-finite element of IZZNZ(VM"'NO). The R-module generated by f(z~%) for
a € N is contained in a finitely generated R-submodule of V¥No There exists ¢t > r such
that f(z7%) is contained in VN*MNo for all a € N. By 2), f € IZZNZ(VNtM"'NO). We have
f@ e ﬁnzthmzn(VﬁerNU). By 1), hNU,zn(VﬁtMTNO) C VN-M:No when n > n(r, t).
Hence f(1) € VN-M:No The proposition is proved. O

This ends the proof of Thm. An admissible representation of M is Ajs-locally
finite (Lemma . By Thm. Remark and Corollary we deduce :

Corollary 8.3. The (admissible) parabolic induction Ind$ : Mod%™ (M) — Mod%™(G)
admits a right adjoint, equal to

(RE)*~ ~ Ord% : Mod™(G) — Mod"™ (M).

Corollary 8.4. When p is nilpotent in R, the admissible parabolic induction Indg is fully
faithful, and the unitid — Ord%o Indg of the adjunction (Indg, Ord%) is an isomorphism.

Proof. Lemma, Cor. O

It is not known if the N-coinvariant functor respects admissibility when the character-
istic of F'is p. When R is a field where p is invertible, the N-coinvariant functor respects
admissibility. For the convenience of the reader, we give the proof which is a variant of
the proof of [Viglivre, 11.3.4].
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(i) Let R be a commutative ring (we do not assume that R is noetherian) and
V' € Mod (G). For v € VN and a € N, we have hny,za(v) = 3, cn, jzange-o 240 =
2% pes-anNgze N, M- Applying the map r : V — Vi, we get

(15) K(hNy 22 (V) = [No : 2°Noz~%2%k(v).

The index [Ng : z°Npz~%] is a power of p which goes to infinity with a. (Note that
when a power of p vanishes in R, k(hn, 2 (v)) = 0 when a is large.) For r € N we have
k(VMrNoy (Vi )Mr because mk(v) = k(mv) for m € M,v € V.

(ii) We assume now that p is invertible in R. The above inclusion for » € N is an
equality

(16) R(VIR) = (V)M

Indeed, let w € (V)M and v € V with k(v) = w. The fixator H, of v in the pro-p-
group M, Ny is open of index a power of p. The element [M, Ny : H,]™* ZbeMTNO/HT bv
is well defined, is fixed by M, Ny and has image w in V. Hence . As Vi is a smooth
representation of M and VN0 = U, oV MrNo, implies (V™) = Viy and by (13),

(17) Upsr (VN MNo) = () Mr
Assume a > n(r,t), by and by the proof of Prop. (8.2}
(18) 2 (VNMNOY = (B, o (VN EMN0Y) @ (VN MeNoy

If X is a finitely generated R-submodule of Vly ", there exists t € N such that X C
k(VNeMeNo) ‘hence by there exists a € N such that

(19) 2°X C K(VNTMTNO).

(iii) We assume now that R is a field where p is invertible and V' € Mod%™(G). By
the dimensions of the finite dimensional subspaces of VJ\]}L are bounded, hence V]yr
is finite dimensional. This is true for all 7 € N therefore Viy € Mod™ (M).
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