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Abstract

We extend the results of Emerton on the ordinary part functor to the category of the
smooth representations over a general commutative ring R, of a general reductive p-adic
group G (rational points of a reductive connected group over a local non archimedean
field F of residual characteristic p). In Emerton’s work, the characteristic of F is 0, R is
a complete artinian local Zp-algebra having a finite residual field, and the representations
are admissible. We show:

The smooth parabolic induction functor admits a right adjoint. The center-locally
finite part of the smooth right adjoint is equal to the admissible right adjoint of the
admissible parabolic induction functor when R is noetherian. The smooth and admissible
parabolic induction functors are fully faithful when p is nilpotent in R.

Contents

1 Introduction 1

2 Review on adjunction between grothendieck abelian categories 3

3 The category Mod∞R (G) 5
3.1 Mod∞R (G) is grothendieck . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Admissibility and z-finiteness . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 The right adjoint RGP of IndGP : Mod∞R (M)→ Mod∞R (G) 7

5 IndGP is fully faithful if p is nilpotent in R 8

6 z-locally finite parts of RGP and of RPPP ◦ ResG
P

are equal 9

7 The Hecke description of RPP
P

: Mod∞R (P )→ Mod∞R (M) 11

8 The right adjoint OrdP of IndGP : ModadmR (M)→ ModadmR (G) 13

1 Introduction

Let R be a commutative ring, let F be a local non archimedean field of finite residual field
of characteristic p, let G be a reductive connected F -group. Let P,P be two opposite
parabolic F -subgroups of unipotent radicals N,N and same Levi subgroup M = P ∩P.
Let AM be the maximal F -split central subtorus of M. The groups of F -points are denoted
by the same letter but not in bold. The parabolic induction functor IndGP : Mod∞R (M)→
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Mod∞R (G) between the categories of smooth R-representations of M and of G, is the right
adjoint of the N -coinvariant functor, and respects admissibility.

For any (R,F,G), we show that IndGP admits a right adjoint RGP .
When R is noetherian, we show that the AM -locally finite part of RGP respects admissi-

bility, hence is the right adjoint of the functor IndGP between admissible R-representations.
When 0 is the only infinitely p-divisible element in R, we show that the counit of the

adjoint pair (−N , IndGP ), is an isomorphism. Therefore, IndGP is fully faithful and the unit
of the adjoint pair (IndGP , R

G
P ) is an isomorphism.

The results of this paper have already be used in [HV] to compare the parabolic
and compact inductions of smooth representations over an algebraically closed field R of
characteristic p for any pair (F,G), following the arguments of Herzig when the charac-
teristic of F is 0 and G is split. The comparison is a basic step in the classification of
the non-supersingular admissible irreducible representations of G (work in progress with
Abe, Henniart, and Herzig, see also Ly’s work [Ly] for GL(n,D) where D/F is a finite
dimensional division algebra).

When p is invertible in R, it was known that IndGP has a right adjoint, called also
the “second adjoint”. When R is the field of complex numbers, Casselman for admissible
representations and Bernstein in general proved that the right adjoint is equal to the
N -coinvariant functor multiplied by the modulus of P . Another proof was published by
Bushnell [Bu]. Both proofs rely on the property that the category ModC(G) is noetherian.
Conversely, Dat [Dat] proved that the second adjointess implies the noetheriannity of
ModR(G) and prove it assuming the existence of certain idempotents (constructed using
the theory of types for linear groups, classical groups if p 6= 2, and groups of semi-simple
rank 1). Under this hypothesis on G, Dat showed also that the N -coinvariant functor
respects admissibility.

When the characteristic of F is 0 and R is a complete artinian local Zp-algebra hav-

ing finite residual field, Emerton [Emerton] showed that IndGP restricted to admissible
representations has a right adjoint equal to the ordinary part functor OrdP . Introduc-
ing the derived ordinary functors he showed also that the N -coinvariant functor respects
admissibility [Emerton2, 3.6.7 Cor].

In section 2 we give precise definitions and references to the litterature on adjoint
functors and on grothendieck abelian categories.

In sections 3 and 4, the existence of a right adjoint of IndGP : Mod∞R (M)→ Mod∞R (G)
is proved using that Mod∞R (G) is a grothendieck abelian category and that IndGP is an
exact functor commuting with small direct sums. This method does not apply to the
functor IndGP : ModadmR (M) → ModadmR (G) because the category of smooth admissible
R-representations is not grothendieck in general. It is not even known if it is an abelian
category when R is a field of characteristic p as well as F .

In section 5, we assume that p is nilpotent in R; we show the vanishing of the N -
coinvariants of indPgPP when PgP 6= P and that the counit of the adjunction (−N , IndGP ) is
an isomorphism; the general arguments of section 2 imply that the unit of the adjunction
(IndGP , R

G
P ) is an isomorphism and that IndGP is fully faithful. When R is noetherian,

IndGP : ModadmR (M)→ ModadmR (G) is also obviously fully faithful.
In section 6, we replace G by its open dense subset PP . The partial compact induction

functor indPPP : Mod∞R (M) → Mod∞R (P ) admits a right adjoint RPPP by the general
method of section 2. Let ResG

P
: ModR(G) → ModR(P ) be the restriction functor. Let

AM be the split center of M . We fix an element z ∈ AM strictly contracting N . We prove

that the z-locally finite parts of RGP and of RPPP ◦ResG
P

are isomorphic. The right adjoint

RPP
P

: Mod∞R (P ) → Mod∞R (M) of indPP
P

is explicit: it is the smooth part of the functor
HomR[N ](C

∞
c (N,R),−).
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In section 7, following Casselman and Emerton, we give the Hecke description of the

above functor RPP
P

: Mod∞R P → Mod∞R (M). We fix an open compact subgroup N0 of N .

The submonoid M+ of elements of M contracting N0 acts on V N0 by the Hecke action.
We have the smooth induction functor IndMM+ : Mod∞R (M+)→ Mod∞R (M). We show that

RPP
P

is the functor V 7→ IndMM+(V N0). The AM -locally finite part of this functor is the
Emerton’s ordinary part functor OrdP : Mod∞R P → Mod∞R (M).

In section 8 we assume that R is noetherian and we show that OrdP (V ) is admissible
when V is an admissible R-representation of G. Therefore the parabolic induction functor
IndGP : ModadmR M → ModadmR G admits a right adjoint equal to the functor OrdG

P
:

OrdP ◦ResG
P

. The unit of the adjunction (IndGP ,OrdP ) is an isomorphism.

I thank Noriyuki Abe, Florian Herzig, Guy Henniart and Michael Rapoport for their
comments and questions, and the referee for an excellent report, allowing me to improve
the paper and to correct some mistakes.

2 Review on adjunction between grothendieck abelian
categories

We fix an universe U and we denote by Set the category of U-sets, i.e. belonging to U . In
a small category, the set of objects is U-small, i.e. isomorphic to a U-set, as well as the
set of morphisms Hom(A,B) for any objects A and B. In a locally small category, only
the set Hom(A,B) is supposed to be U-small. (In [KS, 1.1, 1.2], small is called U-small,
and a locally small category is called a U-category.)

Let I be a small category and let C,D be locally small categories. We denote by Cop
the opposite category of C and by DC the category of functors C → D. A contravariant
functor C → D is a functor Cop → D. The categories SetC

op

,SetC are not locally small in
general (if C is not small) [KS, Def. 1.4.2].

Proposition 2.1. [KS, Def. 1.2.11, Cor. 1.4.4]
The contravariant Yoneda functor : C 7→ Hom(C,−) : C → SetC and the covariant

Yoneda functor : C 7→ Hom(−, C) : C → SetC
op

are fully faithful.

A functor F in SetC or in SetC
op

is called representable when it is isomorphic to the
image of an object C ∈ C by the Yoneda functor [KS, Def.1.4.8]. The object C which is
unique modulo unique isomorphism is called a representative of F .

A functor F : I → C defines functors

lim
−→

F ∈ SetC C 7→ HomCI (F, ctC), lim
←−

F ∈ SetC
op

C 7→ HomCI (ctC , F ),

where ctC : I → C is the constant functor defined by C ∈ C. When the functor lim−→F is
representable, a representative is called the injective limit (or colimit or direct limit) of
F , is denoted also by lim−→F , and we have natural isomorphism [ML, III.4 (2), (3)]

lim−→F (C) = HomCI (F, ctC) ' HomC(lim−→F,C).

When the functor lim←−F is representable, a representative is called the projective limit (or
inverse limit or limit ) of F , is denoted also by lim←−F , and we have natural isomorphism

lim←−F (C) = HomCI (ctC , F ) ' HomC(C, lim←−F ).

One says also that (F (i))i∈I is an inductive or projective system in C indexed by I or Iop
and one writes lim−→(F (i))i∈I or lim←−(F (i))i∈Iop for the object lim−→F or lim←−F .
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Example 2.2. 1) A set of objects (Ci)i∈I of C indexed by a set I can be viewed as a
functor F : I → C where I is identified with a discrete category (the only morphisms
are the identities). When they exist, lim−→F = ⊕i∈ICi is the direct sum, or coproduct, or
disjoint union ti∈ICi, and lim←−F =

∏
i∈I Ci is the direct product.

2) When I has two objects and two parallel morphisms other than the identities, a

functor F : I → C is nothing but two parallels arrows C1

g−→−→
f
C2 in C. When they are

representable, lim−→F is the cokernel of (f, g) and lim←−F is its kernel [KS, Def. 2.2.2].
3) When they are representable, it is possible to construct the inductive (resp. pro-

jective) limit of a functor F : I 7→ C, using only coproduct and cokernels (resp. products
and kernels) [KS, Prop. 2.2.9]. If Hom(I) denotes the set of morphisms s : σ(s) → τ(s)
with σ(s), τ(s) ∈ I, of the category I,

lim−→F is the cokernel of f, g : ⊕s∈Hom(I)F (σ(s))
g−→−→
f
⊕i∈IF (i),(1)

where f, g correspond respectively to the two morphisms idF (σ(s)), F (s), for s ∈ Hom(I),

lim←−F is the kernel of
∏
i∈I

F (i)
g−→−→
f

∏
s∈Hom(I)

F (σ(s)),

where f, g are deduced from the morphisms idF (τ(s)), F (s) : F (τ(s))×F (σ(s))
g−→−→
f
F (τ(s))

for s ∈ Hom(I).

A non-empty category C is called filtrant if, for any two objects C1, C2 there exist

morphisms C1 → C3, C2 → C3, and for any parallel morphisms C1

g−→−→
f
C2, there exists a

morphism h : C2 → C3 such that h ◦ f = h ◦ g [KS, Def. 3.1.1].
Let F : C 7→ D be a functor. For U ∈ D, we have the category CU whose objects

are the pairs (X,u) with X ∈ C, u : F (X) → U in Hom(D). We say that F is right
exact if the category CU is filtrant for any U ∈ D, and that F is left exact if the functor
F op : Dop → Cop is right exact [KS, 3.3.1].

Proposition 2.3. Let a functor F : C 7→ D.
1) When C admits finite projective limits, F is left exact if and only it commutes with

finite projective limits. In this case, F commutes with the kernel of parallel arrows.
2) When C admits small projective limits, F is left exact and commutes with small

direct products, if and only if F commutes with small projective limits.
3) The similar statements hold true for right exact functors, inductive limits, small

direct sums, and cokernels.

Proof. 1) See [KS, Prop. 3.3.3, Cor. 3.3.4] .
2) If F preserves small projective limits, F is left exact and preserves small direct

products (Example 2.2 1)). Conversely, from (1), a left exact functor which commutes
wit small direct products preserves small projective limits because it commutes with the
kernel of the parallel arrows.

3) Replace C by Cop.

Let F : C → D and G : D → C be two functors. Then (F,G) is a pair of adjoint
functors, or F is the left adjoint of G, or G is the right adjoint if F , if their exists an
isomorphism of bifunctors from Cop × C to Set

HomD(F (.), .) ' HomC(., G(.)),
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called the adjunction isomorphism [KS, Def. 1.5.2]. The functor F determines the func-
tor G up to unique isomorphism and G determines F up to unique isomorphism [KS,
Thm. 1.5.3]. For X ∈ C, the image of the identity idF (X) ∈ HomD(F (X), F (X)) by the
adjunction isomorphism is a morphism X 7→ G ◦ F (X). Similarly, for Y ∈ D, the image
of idG(Y ) is a morphism F ◦G(Y )→ Y . The morphisms are functorial in X and Y . The
corresponding morphisms of functors are called the unit and the counit :

ε : 1C → G ◦ F, η : F ◦G→ 1D.

Proposition 2.4. Let (F,G) be a pair of adjoint functors.
F is fully faithful if and only if the unit ε : 1→ G ◦ F is an isomorphism.
G is fully faithful if and only if the counit η : F ◦G→ 1 is an isomorphism.
F and G are fully faithful if and only if F is an equivalence (fully faithful and essentially

surjective [KS, Def. 1.2.11,1.3.13] if and only if G is an equivalence. In this case F and
G are quasi-inverse one to each other.

Proof. See [KS, Prop. 1.5.6].

Proposition 2.5. Let (F,G) be a pair of adjoint functors. Then F is right exact and G
is left exact.

Proof. See [KS, Prop. 3.3.6].

Let A be a locally small abelian category. A generator of A is an object E ∈ A such
that the functor Hom(E,−) : A → Set is faithful (i.e. any object of A is a quotient of a
small direct sum ⊕iE). If A admits small inductive limits, the functor between abelian
categories

F 7→ lim
−→

F : AI → A

is additive and right exact.

Definition 2.6. [KS, Def. 8.3.24] A locally small abelian category A is called grothendieck
if it admits a generator, small inductive limits, and the small filtered inductive limits are
exact.

Example 2.7. Given a ring R ∈ U , the category of left R-modules in U is small, abelian,
and grothendieck with generator R.

Proof. See [KS, Ex. 8.3.25].

Proposition 2.8. A grothendieck abelian locally small category admits small projective
limits.

Proof. See [KS, Prop. 8.3.27].

Proposition 2.9. Let a functor F : A → C where A is a grothendieck abelian locally
small category. The following properties are equivalent:

1) F admits a right adjoint,
2) F commutes with small inductive limits,
3) F is right exact and commutes with small direct sums.

Proof. See [KS, Prop. 8.3.27].

A similar statement characterizes the existence of a left adjoint.
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3 The category Mod∞R (G)

Let R be a commutative ring, let G be a secound countable locally profinite group (for
instance, a parabolic subgroup of a reductive group), and let (Kn)n∈N be a strictly de-
creasing sequence of pro-p-open subgroups of G, with trivial intersection, such that Kn

normal in K0 for all n.

3.1 Mod∞
R (G) is grothendieck

A R-representation V of G is a left R[G]-module. A vector v ∈ V is called smooth when
it is fixed by an open subgroup of G. The set of smooth vectors of V is a R[G]-submodule
of V , equal to V∞ = ∪n∈NV Kn where V Kn is the submodule of v ∈ V fixed by Kn. When
every vector of V is smooth, V is called smooth. (The same definition applies to a locally
profinite monoid (the maximal subgroup is open and locally profinite).)

Example 3.1. The module Cc(G,R) of functions f : G → R with compact support
is a R[G × G]-module for the left and right translations. For n ∈ N, the submodule
Cc(Kn\G,R) of compactly supported functions left invariant by Kn, is a smooth rep-
resentation of G for the right translation. These submodules form a strictly increasing
sequence of union the smooth part C∞c (G,R) of Cc(G,R).

We allow only theR-modules of cardinal< c for some uncountable strong limit cardinal
c > |R|, so that the R-representations of G form a set rather than a proper class (we work
in the same artinian universe Uc [SGA4, Exposé 1, page 4]; the cardinal of HomRG(V, V ′)
is < c for two R-representations V, V ′ of G). The abelian category ModR(G) of left R[G]-
modules is small, grothendieck of generator R[G] (Ex. 2.7), and contains the abelian full
subcategory Mod∞R (G) of smooth R-representations of G.

Lemma 3.2. Mod∞R (G) is a grothendieck category of generator ⊕n∈NCc(Kn\G,R).

Proof. An arbitrary direct sum of smooth R-representations of G is smooth. The cokernel
of two parallel arrows in Mod∞R (G) is smooth hence Mod∞R (G) admits small inductive
limits (Ex. 2.2 3)). Small filtered inductive limits are exact because they are already exact
in the grothendieck category ModR(G).

For W ∈ Mod∞R (G), V ∈ ModR(G) we have HomR[G](W,V ) = HomR[G](W,V
∞). The

smoothification
V 7→ V∞ : ModR(G)→ Mod∞R (G)

is the right adjoint of the inclusion Mod∞R (G) → ModR(G), hence is left exact (Prop.
2.5). The smoothification is never right exact if G is not the trivial group [Viglivre, I.4.3]
hence does not have a right adjoint (Prop. 2.5).

3.2 Admissibility and z-finiteness

Definition 3.3. An R-representation V of G is called admissible when it is smooth and
for any compact open subgroup H of G, the R-module V H of H-fixed elements of V is
finitely generated.

When R is a noetherian ring, we consider the category ModadmR (G). It may not have
a generator or small inductive limits. Worse, it may be not abelian.

Example 3.4. Let R be an algebraically closed field of characteristic p and G = G(F ) a
group as in the introduction. Given an open pro-p-subgroup I of G, a non-zero smooth R-
representation of G contains a non-zero vector fixed by I; the set of irreducible admissible
R-representations of G (modulo isomorphism) is infinite. Therefore their direct sum is not
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admissible. But it is a quotient of a generator of ModadmR (G), if a generator exists. If the
quotient an admissible representation remains admissible, a generator cannot exist. The
admissibility is preserved by quotient when the characteristic of F is zero [VigLang], but
this is unknown when the characteristic of F is p.

Let H any subset of the center of G, and let V ∈ ModR(G).

Definition 3.5. An element v ∈ V is called H-finite if the R-module R[H]v is contained
in a finitely generated R-submodule of V .

The subset V H−lf of H-finite elements is a R-subrepresentation of V , called the H-
locally finite part of V . When every element of V is H-finite, V is called H-locally finite.
The category ModH−lfR (G) of H-locally finite smooth R-representations of G is a full
abelian subcategory of Mod∞R (G). The H-locally finite functor

V 7→ V H−lf : Mod∞R (G)→ ModH−lfR (G)(2)

is the right adjoint of the inclusion ModH−lfR (G)→ Mod∞R (G).

Lemma 3.6. If V is admissible, then V is H-locally finite.

Proof. Let v ∈ V . As V is smooth, v ∈ V Kn for some n ∈ N. As V is admissible, V Kn is
a finitely generated R-module. As H is central, V Kn is H-stable.

4 The right adjoint RG
P of IndGP : Mod∞R (M)→ Mod∞R (G)

Let F be a local non archimedean field of finite residue field of characteristic p, let G be a
reductive connected F -group. We fix a maximal F -split subtorus S of G, and a minimal
parabolic F -subgroup B of G containing S. We suppose that S is not trivial. Let U be
the unipotent radical of B. The G-centralizer Z of S is a Levi subgroup of B. We choose
a pair of opposite parabolic F -subgroups P,P of G with P containing B, of unipotent
radicals N,N and Levi subgroup M = P∩P. Let AM ⊂ S be the maximal F -split central
subtorus of M. We denote by X the group of F -rational points of an algebraic group X
over F , with the exception that we write NG(S) for the group of F -rational points of
the G-normalizer NG(S) of S. The finite Weyl group is W0 = NG(S)/Z = NG(S)/Z.
We fix a strictly decreasing sequence (Kn)n∈N of pro-p-open subgroups of G with trivial
intersection, such that for all n, Kn is normal in K0 and has an Iwahori decomposition

(3) Kn = NnMnNn = NnMnNn,

where Mn := Kn ∩M,Nn := Kn ∩N,Nn := Kn ∩N .

For W ∈ Mod∞R (M), the representation IndGP (W ) ∈ Mod∞R (G) parabolically induced
by W is the R-module of functions f : G → W such that f(mngx) = mf(g) for m ∈
M,n ∈ N, g ∈ G, x ∈ Kn where n ∈ N depends on f , with G acting by right translations.
The smooth parabolic induction

IndGP : Mod∞R (M)→ Mod∞R (G)

is the right adjoint of the N -coinvariant functor [Viglivre, I.5.7 (i), I.A.3 Prop.]

V 7→ VN : Mod∞R (G)→ Mod∞R (M) .

The N -coinvariant functor ModR(P ) → ModR(M) is the left adjoint of the inflation
functor InflPM : ModR(M) → ModR(P ) sending a representation of M = P/N to the
natural representation of P trivial on N .
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Remark 4.1. The N -coinvariants of the inflation functor InflPM is the identity functor of
ModRM (the co-unit −N ◦ InflPM → 1 of the adjunction (−N , InflPM ) is an isomorphism).

Proposition 4.2. The smooth parabolic induction functor IndGP : Mod∞R (M)→ Mod∞R (G)
IndGP is exact, commutes with small direct sums, and admits a right adjoint

RGP : Mod∞R (G)→ Mod∞R (M).

Proof. For W ∈ Mod∞R (M), we write C∞(P\G,W ) for the R-module of locally constant
functions on the compact set P\G with values in W . We fix a continuous section

(4) ϕ : P\G→ G.

The R-linear map

(5) f 7→ f ◦ ϕ : IndGP (W )→ C∞(P\G,W )

is an isomorphism. We have a natural isomorphism

(6) C∞(P\G,W ) ' C∞(P\G,R)⊗RW ' C∞(P\G,Z)⊗Z W.

The Z-module C∞(P\G,Z) is free, because it is the union of the increasing sequence of
the Z-modules Ln := C∞(P\G/Kn,Z) for n ∈ N, which are free of finite rank as well as
the quotients Ln/Ln+1. Hence the tensor product by C∞(P\G,Z) is exact, and IndGP is
also exact.

The smooth parabolic induction commutes with small direct sums ⊕i∈IWi because a
function f ∈ C∞(P\G,W ) takes only finitely many values.

Applying Prop. 2.9 and Lemma 3.2, the parabolic induction admits a right adjoint.

Remark 4.3. When p is invertible in R, Dat [Dat, between Cor. 3.7 and Prop. 3.8]
showed that

RGP (V ) = ([HomR[G](C
∞
c (G,R), V )]N )∞ (V ∈ Mod∞R (G)).

The modulus δP of P is well defined. When R is the field of complex numbers (Bernstein)
or when G is a linear group, a classical group when p 6= 2, or of semi-simple rank 1 [Dat],
we have:

RGP (V ) ' δPVN .

Let g ∈ G and Q an arbitrary closed subgroup of G. The partial compact smooth
parabolic induction functor

indPgQP : Mod∞R (M)→ Mod∞R (Q)

associates to W ∈ Mod∞R (M) the smooth representation indPgQP (W ) of Q by right trans-
lation on the module of functions f : PgQ → W with compact support modulo left
multiplication by P (P\PgQ is generally not closed in the compact set P\G) such that
f(mnghx) = mf(gh) for m ∈M,n ∈ N,h ∈ Q, x ∈ Kn ∩Q where n ∈ N depends on f .

Remark 4.4. When PgP = P , the functor indPP : Mod∞R (M) → Mod∞R (P ) is the
inflation functor InflPM .

Proposition 4.5. The functor indPgQP is exact, commutes with small direct sums, and
admits a right adjoint

RPgQP : Mod∞R (Q)→ Mod∞R (M).

Proof. Same proof as for the functor IndGP (Prop. 4.2).
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Lemma 4.6. W ∈ Mod∞R (M) is admissible if and only if IndGP (W ) ∈ Mod∞R (G) is
admissible.

Proof. This is well known and follows from the decomposition [Viglivre, I.5.6, II.2.1]:

(IndGP W )Kn ' ⊕PgKn(IndPgKnP W )Kn ' ⊕PgKnWM∩gKng−1

(n ∈ N, g ∈ G),

where the sum is finite and IndPgKnP W ⊂ IndGP W is the R-submodule of functions with
support contained in PgKn.

Corollary 4.7. When the ring is noetherian, the smooth parabolic induction restricts to
a functor, called the admissible parabolic induction,

IndGP : ModadmR (M)→ ModadmR (G).

We will later show that the admissible parabolic induction admits also a right adjoint.

5 IndGP is fully faithful if p is nilpotent in R

We keep the notation of the preceding section. Let ΦG be the set of roots of S in G. We
write Uα for the subgroup of G associated to a root α ∈ ΦG (the group U(α) in [Bo, 21.9]).

Definition 5.1. The p-ordinary part Rp−ord of R is the subset of x ∈ R which are
infinitely p-divisible.

By [Viglivre, I (2.3.1)], Rp−ord = {0} if and only if there exists no Haar measure on
Uα with values in R. But p is nilpotent in R if and only if R[1/p] = {0} if and only if

C∞c (Uα, R)Uα = {0}.(7)

When R is a field, Rp−ord 6= {0} if and only if p is nilpotent in R if and only if the
characteristic of R is 6= p.

Proposition 5.2. We suppose that p is nilpotent in R. Let W ∈ Mod∞R M and g ∈ G.

The N -coinvariants of indPgPP (W ) is 0 if PgP 6= P .

Proof. We identify indPgPP (W ) with C∞c (P\PgP,R) ⊗R W as in (5). The action of N
on C∞c (P\PgP,R)⊗RW is trivial on W and is the right translation on C∞c (P\PgP,R).
Therefore

(indPgPP (W ))N = C∞c (P\PgP,R)N ⊗RW,
and we can forget W . To show that C∞c (P\PgP,R)N = 0 if PgP 6= P , we prove that
there exists a B-positive root α such that Uα ⊂ N and the space P\PgP is of the form
X × Uα where the right action of Uα on P\PgP is trivial on X and equals the natural
right action on Uα. Therefore

C∞c (P\PgP,R)Uα = C∞c (X,R)⊗R C∞c (Uα, R)Uα .

Applying (7), we obtain C∞c (P\PgP )Uα = 0 hence C∞c (P\PgP,R)N = 0.
It remains to explain the existence of such an α. As (B,NG(S)) is a Tits system in

G [BT1, 1.2.6], we have PgP = PνP for an element ν ∈ NG(S); we can suppose that
the image w of ν in W0 has minimal length in the double coset W0,M\W0/W0,M (where
W0,M := NM (S)/Z). This implies that the fixator Nν := {n ∈ N | Pνn = Pν} of Pν in
N is generated by the Uα for the roots α ∈ ΦG −ΦM such that α and w(α) are reduced,
B-positive. The fixator of Pν in M is a parabolic subgroup Q and the fixator of Pν in P
is QNν . The group N is directly spanned by the Uβ (β ∈ ΦG−ΦM positive and reduced)
taken in any order [Bo, 21.12]. As PgP 6= P , i.e. w 6= 1, there exists a reduced positive
root α ∈ ΦG − ΦM such that Uα 6⊂ Nν . Such an α satisfies all the properties that we
want.
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Theorem 5.3. We suppose that p is nilpotent in R. Then

1. The parabolic induction IndGP : Mod∞R (M)→ Mod∞R (G) is fully faithful,

2. The unit idMod∞R (M) → RGP ◦ IndGP of the adjoint pair (IndGP , R
G
P ) is an isomorphism.

3. The counit η : −N ◦ IndGP → idMod∞R (M) of the adjoint pair (−N , IndGP ) is an iso-
morphism.

Proof. By Lemma 3.2 and Prop. 2.4, the three properties are equivalent. We prove that
the counit η of the adjoint pair (−N , IndGP ) is an isomorphism.

a) It is well known that IndGP admits a finite filtration F1 ⊂ . . . ⊂ Fr of quotients

indPgPP , with last quotient indPP , associated to P\G/P .
b) Beeing a right adjoint, the N -coinvariant functor Mod∞R (P )→ Mod∞R (M) is right

exact.
c) Apply Prop. 5.2 and Remarks 4.1, 4.4.

6 z-locally finite parts of RG
P and of RPP

P ◦Res
G
P

are equal

We keep the notation of the preceding section. We fix an element z ∈ AM strictly con-
tracting N : the sequence (znN0z

−n)n∈Z is strictly decreasing of trivial intersection and
union N . We denote Nn := znN0z

−n when n < 0 (Nn for n ≥ 0 is defined in section 4).

We compare the right adjoint RGP : Mod∞R (G)→ Mod∞R (M) of the parabolic induction

IndGP to the functor RPPP ◦ ResG
P

, where ResG
P

: Mod∞R (G) → Mod∞R P is the restriction

functor and RPPP : Mod∞R (P ) → Mod∞R (M) is the right adjoint of the partial compact

parabolic induction indPPP . We denote by

RG,z−lfP : Mod∞R G→ Modz−lfR M, RPP,z−lfP : Mod∞R P → Modz−lfR M,

the z-locally finite parts of RGP and of RPPP .

Theorem 6.1. The functors RG,z−lfP and RPP,z−lfP ◦ ResG
P

are isomorphic.

Proof. We want to prove that there exists an isomorphism

(8) HomR[M ](W,R
G,z−lf
P (V ))→ HomR[M ](W,R

PP,z−lf
P (V ))

functorial in (W,V ) ∈ Modz−lfR (M) ×Mod∞R (G). We may replace RG,z−lfP , RPP,z−lfP by

RGP , R
PP
P in (8) (recall (2)). Then using the adjunctions (IndGP , R

G
P ) and (indPPP , RPPP ),

we reduce to find an isomorphism

(9) HomR[G](IndGP W,V )→ HomR[P ](indPPP W,V )

functorial in (W,V ) ∈ Modz−lfR (M) ×Mod∞R (G). There is an obvious functorial homo-

morphism because indPPP W is a submodule of IndGP W . This homomorphism, denoted by

J , sends a R[G]-homomorphism IndGP W → V to its restriction to indPPP W . The homo-
morphism J is injective because an arbitrary open subset of P\G is a finite disjoint union
of G-translates of compact open subsets of P\PP [SVZ, Prop. 5.3]. To show that J is
surjective, we introduce more notations.

Let (g, r, n, w) ∈ G× N×N ×W . We say that (g, r, n, w) is admissible if

w ∈WMr , PNrg = PNrn.

10



Let fr,n,w ∈ indPPP (W ) be the function supported on PNrn and equal to w on Nrn. The

function gfr,n,w ∈ IndGP (W ) is supported on PNrng
−1.

We fix an element Φ ∈ HomR[P ](indPPP W,V ). We show that Φ belongs to the image

of J if W is z-locally finite following Emerton’s method [Emerton, 4.4.6, resp. 4.4.3] in
two steps:

1) Φ belongs to the image of J when Φ(gfr,n,w) = gΦ(fr,n,w) for all admissible (g, r, n, w).

2) Φ(gfr,n,w) = gΦ(fr,n,w) for all admissible (g, r, n, w) if W is z-locally finite.

Proof of 1) Let g1, . . . , gn in G and non-zero functions f1, . . . , fn in indPPP (W ). We
show that

∑
i giΦ(fi) = Φ(

∑
i gifi). We choose r ∈ N large enough, such that the fi,

viewed as elements of C∞c (N,W ), are left Nr-invariant with values in WMr . We fix a
subset Xr of G such that

G = th∈XrPNrh, PP = th∈Xr∩NPNrh.

Let Yi ⊂ Xr ∩N such that the support of fi is tn∈YiPNrn. For n ∈ Yi, we have

fi|PNrn = fr,n,fi(n).

Since G = th∈XrPNrhgi, fi viewed as an element of indGP W is equal to

fi =
∑
h∈Xr

fi|PNrhgi

where h ∈ Xr contributes to a non zero term if and only if PNrhgi = PNrn for some
n ∈ Yi; when this happens fi|PNrhgi = fr,n,fi(n) hence giΦ(fi|PNrhgi) = Φ(gi(fi|PNrhgi))
by the assumption of 1). We compute∑

i

giΦ(fi) =
∑
h

∑
i

giΦ(fi|PNrhgi) =
∑
h

∑
i

Φ(gi(fi|PNrhgi))

= Φ(
∑
i

gi(
∑
h

fi|PNrhgi)) = Φ(
∑
i

gifi).

Therefore
∑
i giΦ(fi) = Φ(

∑
i gifi) for all g1, . . . , gn in G and f1, . . . , fn in indPPP (W ),

hence Φ belongs to the image of J .
Proof of 2). We assume W ∈ Modz−lfR (M) and we prove Φ(gfr,n,w) = gΦ(fr,n,w). We

reduce to n = 1, as fr,n,w = n−1fr,1,w, (gn−1, r, 1, w) is admissible, and Φ isN -equivariant.
Let (g, r, 1, w) admissible. We may suppose w 6= 0. We choose (r′, r′′, a) ∈ Z× N× N

as follows. The integer r′ ∈ Z depending on (g, r), is chosen so that the projection of the
compact subset Nrg

−1 ⊂ PNr onto N via the natural homeomorphism PN → N × P
is contained in Nr′ , i.e. Nrg

−1 ⊂ Nr′P . The integer r′′ ∈ N depending on (r, w) and
on our fixed element z ∈ AM , is chosen so that the R-submodule of V ∈ Mod∞R (G),
generated by Φ(fr,1,w′) for w′ in the finitely generated R-submodule R[z]w, is contained
in V Kr′′ , and r′′ ≥ r. Finally, the integer a ∈ N depending on r, r′′, is chosen so that
zaNr′z

−a ⊂ Nr′′ ⊂ Nr.
Let v ∈ Nr. The set Pz−aNrz

av = PNrz
av is contained in PNr as z−1 ∈ AM

contracts N . The restriction of fr,1,w to PNrz
av is fr,zav,za(w). We deduce

fr,1,w =
∑

v∈z−aNrza\Nr

(zav)−1fr,1,za(w).

We are reduced to prove Φ(gv−1z−afr,1,za(w)) = gΦ(v−1z−afr,1,za(w)). As Φ is left P -

equivariant, gΦ(v−1z−afr,1,za(w)) = gv−1z−aΦ(fr,1,za(w)). The set gNr is contained in
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PNr′ and we may write gv−1z−a = pnr′z
−a with nr′ ∈ Nr′ , p ∈ P . Using again that Φ is

left P -equivariant, we are reduced to prove

Φ(nr′z
−afr,1,za(w)) = nr′z

−aΦ(fr,1,za(w)).

Applying za, we are reduced to prove

Φ(zanr′z
−afr,1,za(w)) = zanr′z

−aΦ(fr,1,za(w)).

Let w′ ∈ R[z]w and v ∈ Nr. The function fr,1,w′ viewed in IndGP (W ), of support PNr

and equal to w′ ∈ WMr on Nr, is fixed by Kr. The element Φ(fr,1,w′) ∈ V is fixed by
Kr′′ . As zaNr′z

−a ⊂ Nr′′ ⊂ Nr, both elements fr,1,za(w) and Φ(fr,1,za(w)) are fixed by
zanr′z

−a, and the equality is obvious.

7 The Hecke description of RPP
P

: Mod∞R (P )→ Mod∞R (M)

We keep the notation of the preceding section. The submonoid M+ ⊂ M contracting
the open compact subgroup N0 of N is the set of m ∈ M such that mN0m

−1 ⊂ N0; it
contains the open compact subgroup M0 of M . The union ∪a∈Nz−aM+ is equal to M .

The right adjoint of the restriction functor ModR(M)→ ModR(M+) is the induction
functor

IMM+ : ModR(M+)→ ModR(M)

sending W ∈ ModR(M+) to the module IMM+(W ) of R-linear maps ψ : M → W such
that ψ(mx) = mψ(x) for all m ∈ M+, x ∈ M , where M acts by right translations. The
smoothification of IMM+ is the smooth induction functor

IndMM+ : Mod∞R (M+)→ Mod∞R (M).

Definition 7.1. Let V ∈ Mod∞R (P ). The monoid M+ acts on V N0 by the Hecke action
(m, v) 7→ hN0,m(v),

(10) hN0,m(v) =
∑

n∈N0/mN0m−1

nmv (m ∈M+, v ∈ V N0).

The Hecke action of M+ on V N0 is smooth because it extends the natural action of
M0 on V N0 .

Theorem 7.2. The functor

(11) V 7→ IndMM+(V N0) : Mod∞R (P )→ Mod∞R (M)

is right adjoint to the functor indPP
P

.

The theorem says that the functors IndMM+(−N0) and RPP
P

are isomorphic. Their z-
locally finite parts are also isomorphic. The Emerton’s ordinary functor OrdP is the AM -
locally finite part of the functor IndMM+(−N0):

OrdP = (IndMM+(−N0))AM−lf : Mod∞R (P )→ ModAM−lfR (M),

or also the functor OrdGP := OrdP ◦ResGP : Mod∞R (G)→ ModAM−lfR (M). Applying Thm.
6.1, we obtain:
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Corollary 7.3. The functor RG,z−lf
P

is isomorphic to the functor

V 7→ (IndMM+(V N0))z−lf : Mod∞R (G)→ Modz−lfR (M)

The functor RG,AM−lf
P

is isomorphic to the Emerton’s ordinary functor OrdGP .

To prove that (indPP
P
, IndMM+(−N0)) is an adjoint pair, we view indPP

P
as

C∞c (N,R)⊗R − : Mod∞R (M)→ Mod∞R (P ),

where P = MN acts on C∞c (N,R) by:

mf : x 7→ f(m−1xm), nf : x 7→ f(xn), (m,n, f) ∈M ×N × C∞c (N,R).

(In particular m1N0 = 1mN0m−1 , n1N0 = 1N0n−1). The right adjoint is well known:

Lemma 7.4. The smoothification of the functor

HomR[N ](C
∞
c (N,R),−) : Mod∞R (P )→ ModR(M)

is the right adjoint of the functor indPP
P

.

The following proposition 7.5 implies that the functors HomR[N ](C
∞
c (N,R),−) and

IMM+(−N0) : Mod∞R (P )→ ModR(M).

are isomorphic.Therefore the same is true for their smoothifications,RPP
P

and indMM+(−N0),
and Theorem 7.2 is proved.

Let V ∈ Mod∞R (P ). We check that the value at 1N0

f 7→ f(1N0) : HomR[N ](C
∞
c (N,R), V )→ V N0

is M+-equivariant. As usual, p ∈ P acts on f by pf = p◦f ◦p−1. In particular, for m ∈M ,

(mf)(1N0) = mf(m−11N0) = mf(1m−1N0m).

For m ∈M+, we obtain

(mf)(1N0) = m
∑

n−1∈N0\m−1N0m

f(1N0n−1) =
∑

n−1∈N0\m−1N0m

mnf(1N0)

=
∑

n∈N0/mN0m−1

nmf(1N0) = hN0,m(f(1N0)) .

By the adjunction (ResMM+ , IMM+), the value at 1N0
induces an M -equivariant map

(12) Φ : HomR[N ](C
∞
c (N,R), V )→ IMM+(V N0) f 7→ Φ(f)(m) = (mf)(1N0

) (m ∈M).

Proposition 7.5. The map Φ is an isomorphism of R[M ]-modules.

Proof. Φ is injective because the R[P ]-module C∞c (N,R) is generated by 1N0
. Indeed let

f ∈ HomR[N ](C
∞
c (N,R), V ) such that Φ(f) = 0. Then fψ(m1N0

) = f(1m−1N0m) = 0 for
all m ∈ M . As f is N -equivariant, 0 = f((mn)−11N0

) = f(1m−1N0mn) for all n ∈ N ,
hence f = 0.

Φ is surjective because for ψ ∈ IMM+(V N0), there exists fψ ∈ HomR[N ](C
∞
c (N,R), V )

such that fψ(m1N0
) = m(ψ(m−1)) for all m ∈ M . We have Φ(fψ) = ψ. The function fψ

exists because, for all a ∈ N,

za(ψ(z−a)) = za(ψ(zz−a−1)) =
∑

n∈zaN0z−a/za+1N0z−a−1

nza+1(ψ(z−a−1)).

(Note that the R[N ]-module C∞c (N,R) is generated by (1zaN0z−a)a∈N, and that the values
at 1zaN0z−a = za1N0 identify HomR[N ](C

∞
c (N,R), V ) with the set of sequences (va)a∈N

in V such that va =
∑
n∈zaN0z−a/za+1N0z−a−1 nva+1.)
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Remark 7.6. For V ∈ Mod∞R (P ), a z−1-finite element ϕ ∈ IMM+(V N0) is smooth:

(IndMM+(V N0))z
−1−lf = (IMM+(V N0))z

−1−lf .

Proof. By hypothesis R[z−1]ϕ is contained in a finitely generated R-submodule Wϕ of
IMM+(V N0). The image of Wϕ by the map f 7→ f(1) is a finitely generated R-submodule of
V N0 containing ϕ(z−a) for all a ∈ N. Since the Hecke action ofM+ on V N0 is smooth, there
exists a large integer r ∈ N such that Mr fixes ϕ(z−a) for all a ∈ N. As M = ∪a∈NM+z−a,
two elements of IMM+(V N0) equal on z−a for all a ∈ N are equal. Hence ϕ is fixed by Mr,
ϕ is smooth.

Remark 7.7. Let W ∈ Mod∞R (M+) and r ∈ N. An element f ∈ IMM+(W ) is fixed by Mr

if and only if f(za) is fixed by Mr for all a ∈ Z. The map

f 7→ f |zZ : (IMM+W )Mr → Iz
Z

zN (WMr )

is a R[zZ]-isomorphism.

Proof. This is an easy consequence of (mrf)(m+za) = f(m+zamr) = f(m+mrz
a) =

m+mr(f(za)) for (m+,mr, a) ∈M+ ×Mr × Z.

8 The right adjoint OrdP of IndGP : ModadmR (M)→ ModadmR (G)

We keep the notation of the preceding section. We suppose that the commutative ring R
is noetherian.

Theorem 8.1. For V ∈ ModadmR (G), the representation (IMM+(V N0))z
−1−lf of M is ad-

missible.

Proof. By Remark 7.6, the representation (IMM+(V N0))z
−1−lf of M is smooth. Let r ∈ N.

Note that MrN0 is a group. By Remark 7.7, the map f 7→ f |zZ is an R[zZ]-isomorphism

from the Mr-fixed elements of (IMM+(V N0))z
−1−lf to

X = (Iz
Z

zN (V N0Mr ))z
−1−lf .

We have X ⊂ Iz
Z

zN (Y ) where Y is the image of X by f 7→ f(1), and is a zN-submodule of
V N0Mr (for the Hecke action) containing f(za) for all a ∈ Z. We have the compact open
subgroup NrMrN0. We will prove (Prop. 8.2) that

Y ⊂ V NrMrN0 .

Admitting this, Y is a finitely generated R-module because V is admissible and R is
noetherian. The action hN0,z of z on Y is surjective because, for f ∈ X we have f(1) =
f(zz−1) = hN0,zf(z−1). A surjective endomorphism of a finitely generated R-module
is bijective (this is an application of Nakayama lemma [Matsumura, Thm. 2.4]). Hence

the action of z on Y is bijective. Hence Y ' Iz
Z

zN (Y ) is a finitely generated R-module.

As R is noetherian, X is a finitely generated R-module. Therefore (IMM+(V N0))z
−1−lf is

admissible.

Proposition 8.2. If f ∈ (Iz
Z

zN (VMrN0))z
−1−lf , then f(1) ∈ V NrMrN0 .

14



Proof. We have

VMrN0 = ∪t≥rV NtMrN0 ,(13)

where N tMrN0 = KtMrN0 ⊂ G is a compact open subgroup as MrN0 ⊂ K0 normalizes
Kt, and the sequence (N tMrN0)t≥r is strictly decreasing of intersection MrN0. We write
n(r, t) ∈ N for the smallest integer such that z−nNrz

n ⊂ N t ⊂ Nr for n ≥ n(r, t). The
proof of the proposition is split in three steps.

1) hN0,zn(V NtMrN0) is fixed by NrMrN0 when n ≥ n(r, t).

Let v ∈ V NtMrN0 and n ≥ n(r, t). The element znv is fixed by NrMr as NrMrz
n ⊂

znN tMr. Let nr ∈ Nr and (ni)i∈I a system of representatives of N0/z
nN0z

−n. Using the
Iwahori decomposition NrMrN0 = N0NrMr we write nrni = n′ibi with n′i ∈ N0, bi ∈
NrMr. We compute:

nrhN0,zn(v) =
∑
i∈I

nrniz
nv =

∑
i∈I

n′ibiz
nv =

∑
i∈I

n′iz
nv.(14)

We show that (n′i)i∈I is a system of representatives of N0/z
nN0z

−n, hence that nr fixes

hN0,zn(v), hence 1). We have to prove that n′i
−1
n′j ∈ znN0z

−n implies i = j. We write

n′i
−1
n′j = bin

−1
i njb

−1
j and we assume that bin

−1
i njb

−1
j ∈ znN0z

−n. Then n−1i nj be-

longs to the group generated by NrMr and znN0z
−n, which is contained in the group

znNrMrN0z
−n. Hence n−1i nj ∈ znN0z

−n. This implies i = j.

2) V NtMrN0 is stable by hN0,z (hence by hN0,zn for n ∈ N).
When t = r, this follows from 1) because n(t, t) = 0. This is true for any large

t = r. Hence the intersection VMrN0 ∩V NtMtN0 is stable by hN0,z. But this intersection is

V NtMrN0 because the group generated by MrN0 and N tMtN0 is N tMrN0, as Mr contains
Mt and normalizes N t,Mt, N0. Hence 2).

3) Let f be a z−1-finite element of Iz
Z

zN (VMrN0). The R-module generated by f(z−a) for
a ∈ N is contained in a finitely generated R-submodule of VMrN0 . There exists t ≥ r such

that f(z−a) is contained in V NtMrN0 for all a ∈ N. By 2), f ∈ IzZzN (V NtMrN0). We have

f(1) ∈ ∩n≥1hN0,zn(V NtMrN0). By 1), hN0,zn(V NtMrN0) ⊂ V NrMrN0 when n ≥ n(r, t).

Hence f(1) ∈ V NrMrN0 . The proposition is proved.

This ends the proof of Thm. 8.1. An admissible representation of M is AM -locally
finite (Lemma 3.6). By Thm. 8.1, Remark 7.6, and Corollary 7.3, we deduce :

Corollary 8.3. The (admissible) parabolic induction IndGP : ModadmR (M)→ ModadmR (G)
admits a right adjoint, equal to

(RGP )AM−lf ' OrdG
P

: ModadmR (G)→ ModadmR (M).

Corollary 8.4. When p is nilpotent in R, the admissible parabolic induction IndGP is fully
faithful, and the unit id 7→ OrdG

P
◦ IndGP of the adjunction (IndGP ,OrdG

P
) is an isomorphism.

Proof. Lemma 4.6, Cor. 5.3.

It is not known if the N -coinvariant functor respects admissibility when the character-
istic of F is p. When R is a field where p is invertible, the N -coinvariant functor respects
admissibility. For the convenience of the reader, we give the proof which is a variant of
the proof of [Viglivre, II.3.4].
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(i) Let R be a commutative ring (we do not assume that R is noetherian) and
V ∈ Mod∞R (G). For v ∈ V N0 and a ∈ N, we have hN0,za(v) =

∑
n∈N0/zaN0z−a

nzav =

za
∑
n∈z−aN0za/N0

nv. Applying the map κ : V → VN , we get

(15) κ(hN0,za(v)) = [N0 : zaN0z
−a]zaκ(v).

The index [N0 : zaN0z
−a] is a power of p which goes to infinity with a. (Note that

when a power of p vanishes in R, κ(hN0,za(v)) = 0 when a is large.) For r ∈ N we have
κ(VMrN0) ⊂ (VN )Mr because mκ(v) = κ(mv) for m ∈M,v ∈ V .

(ii) We assume now that p is invertible in R. The above inclusion for r ∈ N is an
equality

(16) κ(VMrN0) = (VN )Mr .

Indeed, let w ∈ (VN )Mr and v ∈ V with κ(v) = w. The fixator Hr of v in the pro-p-
group MrN0 is open of index a power of p. The element [MrN0 : Hr]

−1 ∑
b∈MrN0/Hr

bv

is well defined, is fixed by MrN0 and has image w in VN . Hence (16). As VN is a smooth
representation of M and V N0 = ∪r∈NVMrN0 , (16) implies κ(V N0) = VN and by (13),

(17) ∪t≥r κ(V NtMrN0) = (VN )Mr .

Assume a ≥ n(r, t), by (15) and by the proof of Prop. 8.2,

(18) zaκ(V NtMrN0) = κ(hN0,za(V NtMrN0)) ⊂ κ(V NrMrN0).

If X is a finitely generated R-submodule of VMr

N , there exists t ∈ N such that X ⊂
κ(V NtMrN0), hence by (18) there exists a ∈ N such that

(19) zaX ⊂ κ(V NrMrN0).

(iii) We assume now that R is a field where p is invertible and V ∈ ModadmR (G). By
(19) the dimensions of the finite dimensional subspaces of VMr

N are bounded, hence VMr

N

is finite dimensional. This is true for all r ∈ N therefore VN ∈ ModadmR (M).
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