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Four scores years ago ... Bon anniversaire, Jean-Pierre.

Résumé Soient F' un corps p-adique, R un anneau commutatif de valuation discrete complet et £ un
systéme de coefficients GL(2, F)-équivariant de R-modules libres de type fini sur Parbre de PGL(2, F'). On
donne un critére nécessaire et suffisant pour que I’homologie de degré 0 de £ soit un R-module libre. Ceci
permet de construire des structures entieéres sur des représentations localement algébriques de GL(2, F'), et
par réduction de montrer que des représentations de GL(2, F) sur un corps fini de caractéristique p qui se
relevent a la caractéristique 0, sont isomorphes a I’homologie de degré 0 d’un systeme de coefficients. Par
exemple, prenons un caractére modérément ramifié p-adique x1 ® x2 du tore diagonal T'(F) de GL(2, F),
tel que x1(pr)x2(pr) soit une unité p-adique, gx1(pr) et x2(pr) soient des entiers p-adiques, pr étant une
uniformisante de F' et ¢ l'ordre du corps résiduel; alors la série principale de GL(2, F') induite lisse non
normalisée de x; ® x2 est entiere avec une structure entiere remarquable explicite. Toute représentation
irréductible de GL(2,Q,) sur un corps fini de caractéristique p # 2, ayant un caractére central, s’obtient
comme réduction d'une telle structure entiere, et est égale a I’homologie de degré 0 d’un systeme de coeflicients
GL(2, F)-équivariant sur l’arbre.

Introduction

Let p be a prime number, ¢ a power of p, let F' be a local non archimedean field of characteristic 0
or p, with ring of integers Or and residual field kr = Fy, let G be the group of F-points of a reductive
connected F-group and let F/F is a finite extension. An irreducible locally algebraic E-representation of G
is the tensor product Vi, ® g Vaig of a smooth one Vi, and of an algebraic one V44, uniquely determined
([Prasad] th.1). The problem of existence of integral structures in Vi, ®g Vag (and their classification
modulo commensurability) is crucial for the p-adic local Langlands correspondence expected to relate p-adic
continuous finite dimensional E-representations of the absolute Galois group Galy and Banach admissible E-
representations of G. The classification of irreducible representations of G over a finite field k of characteristic
p remains a mystery when G # GL(2,Q),), and the reduction of integral structures is a fundamental open
problem. It is either “obvious” or “very hard” to see if Vi, @ Vg is integral or to determine the reduction
of an integral structure. It is obvious that a non trivial algebraic representation V4 is not integral, or that
a smooth cuspidal irreducible representation Vj,, with an integral central character is integral.

From now on, G = GL(2, F).

We fix a local non archimedean field F of characteristic 0 and of residual field kg of characteristic p and
we suppose V4 trivial when F' is not contained in £, in particular when the characteristic of F'is p. We
will present a local integrality criterion for Vi, ®g Vaig, by a purely representation theoretic method, not
relying on the theory of (¢, I')-modules as in [Co04], [Co05], [BeBr] or on rigid analytic geometry as in [Br].
The idea is to realise Vs, ® g Viig as the 0-homology of a G-equivariant coefficient system on the Serre’s
tree [Se77] (an easy generalization of a general result of Schneider and Stuhler [SS97] for complex finitely
generated smooth representations).

Let X be the tree of PGL(2, F') with the natural action of G [Se77]. The vertices of X" are the similarity
classes [L] of Op-lattices L in the 2-dimensional F-vector space F2. Two vertices z,, 21 are related by an
edge {z,, 21} when they admit representatives L,, L1 such that ppL, C L1 C L,. The group G = GL(2, F)
acts naturally on the tree; a fundamental system consists of an edge o1 and of a vertex o, of o1. For¢ =0, 1,
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we denote by K; the stabilizer in G of o;; the intersection K, N K7 has index 2 in K7, we choose t € K7 not
in K, N K1, and we denote by e the non trivial Z-character of K1/(K, N K1).

We choose for o, the vertex defined by the Og-module generated by the canonical basis of F2 and for
o1 the edge between o, and to, where

t= ( 0 1) , pr uniformizer of Op.
pr 0

Then K, = GL(2,0r)Z and K; =< IZ,t > is the group generated by IZ and t, where Z is the center
of GL(2, F), isomorphic to F* diagonally embedded, and I is the Iwahori group of matrices of GL(2,OF)
congruent modulo pg to the upper triangular group B(F,) of GL(2,F,). The intersection K, N K; is IZ.
The element ¢ normalizes the Iwahori subgroup I and its congruence subgroups I(e) for e > 1.

Let R be a commutative ring. A G-equivariant coefficient system £ of R-modules on X is determined
by its restriction to the vertex o, and to the edge o1, i.e. by a diagram

r:Li — L,

where r is a R(K,N K7 )-morphism from a representation of K on an R-module L; to a representation of K,
on an R-module L,. The word “diagram” was introduced by Paskunas [Pas] in his beautiful construction of
supersingular irreducible representations of GL(2, F') on finite fields of characteristic p. The boundary map
from the oriented 1-chains to the 0-chains gives an exact sequence of RG-modules

0 — Hi(£) — ind%, (L1 ® €) — ind§, L, — Ho(L) — 0,

where the middle map associates to the function [1,%v;] supported on K; and value tv; € Ly at 1, the
function [1,7(tv1)] — ¢[1,7(v1)] supported on K, U K,t~! of value r(tvy) at 1 and —r(vy) at =1, and H;(L)
is the i-th homology of £ for ¢ = 0, 1.

The natural RK,-equivariant map w, : L, — H,(L) is injective, and the natural map w, or : L; —
L, — H,(L) is K;-equivariant (lemma 1.2).

0.1 Basic proposition: integrality local criterion.

1) H1 (L) =0 if and only if r is injective.

2) Suppose that

- R is a complete discrete valuation ring of fractions field S,

- L, is a free R-module of finite rank,

- r is injective,
andletV := L&RS,rs :=r®pgids : Vi — V,. Then, the map H,(L) — H,(V) is injective and the R-module
H,(L) is torsion free and contains no line Sv for v € H,(V), when the equivalent conditions are satisfied :

a)rs(Vi)N L, =r(Ly),

b) the map V1 /L1 — V, /L, is injective.

¢) r(Ly) is a direct factor in L.

Let R as in 2). An S-representation V' of G of countable dimension with a basis generating a G-stable
R-submodule L, is called integral of R-integral structure L. When the properties of 2) are true, H,(L£) is an
R-integral structure of H,(V) such that (lemma 1.4.bis)

H,(L)NV, = L,.
0.2 Corollary Let R asin 2). The S-representation H,(V) of G is R-integral if and only if there exists

an R-integral structure L, of the representation V, of K, such that L, = L, NV is stable by t (considering
V1 embedded in V).



When this is true, the diagram L1 — L, defines an G-equivariant coefficient system L of R-modules on
X, and H,(L) is an R-integral structure of H,(V).

From now on, r is injective (and we forget r) and V, = K, ;.

When V;, for ¢ = 0,1 identified with an element of Z/2Z, contains a R-integral structure M; which
is finitely generated R-submodule, one constructs inductively an increasing sequence of finitely generated
R-integral structures (2"(M;))n>1 of Vi, called the zigzags of M;, as follows.

The RK;1-module M;; defined by

-if ¢ =1, then M, = K,Mj,

-if i =0, then M; = (M, NVy) +t(M, N V),
is an R-integral structure of the SK;i1-module V;11 (a finitely generated R-module is free if and only if it
is torsion free and does not contain a line). We repeat this construction to get the first zigzag z(M;):

-if ¢ =1, then Z(Ml) = (KOMl N Vl) + t(KOMl n ‘/1),

-if 4 =0, then 2(M,) = K,((M, N'V1) + t(M, N V1)).

0.3 Corollary Let i € Z/2Z and let M; be an R-integral structure of the SK;-module V;. The
representation of G on H,(V) is R-integral if and only if the sequence of zigzags (2™ (M;))n>0 Is finite.
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Set Pp = Oppp. For an integer e > 1, the e-congruence subgroup K(e) = (
1+pPs Pt

P 1+ P
K(e) and tK (e)t~!. The pro-p-Iwahori subgroup of I is I(1).

normalized by K, is contained in the group I(e) = ( ) normalized by K7 and generated by

0.4 Proposition Let Vg, be an irreducible algebraic E-representation of G (hence F' C E if Vg4 Is
not trivial), let Vs, be a finite length smooth E-representation of G and let e be an integer > 1 such that
Vim is generated by its K (e)-invariants .

1) The locally algebraic E-representation V := Vg, @ Vag of G is isomorphic to the 0-th homology
H,(V) of the coefficient system V associated to the inclusion

‘/;177(16) QF Valg - ‘/SK(E) OF Valg-

m

2) The representation of G on V is Og-integral if and only if there exists an Og-integral structure L,
of the representation of K, on Vsﬁ(e) ® g Vaig such that L1 = L, N (Vsln(f) ®F Vaig) Is invariant by t. Then
the 0-th homology L of the G-equivariant coefficient system on X defined by the diagram L, — L, is an

Og-structure of V.

We have L, = LN (Vel® @ Varg) in 2) by the lemma 1.4bis; when (Vi ™ ® g Vaig) = Ko(Ves? @5 Vag),
one can suppose L, = K,L; in 2) by the corollary 0.3.

We define the contragredient V =Vin® eV, 9 of V. = Vi ® gVaig by tensoring the smooth contragredient

Vem of Vi, and the linear contragredient V, g of Vag.

0.5 Corollary A finite length locally algebraic E-representation of G is Og-integral if and only if its
contragredient is O g-integral.

0.6 Remark A “moderately ramified” diagram:
- an R-representation L, of K, trivial on K (1) with Z acting by a character w,
- an R-representation L; of K trivial on /(1) and semi-simple as a S7-module,
- an RIZ-inclusion L1 — L,,

is equivalent by “inflation” to a data:
- an R-representation Y, of GL(2,F,) with Z(F,) acting by a character,
- a semi-simple R-representation Y7 of T'(F,),



- an RT(F)-inclusion ¥; — Y, with image contained in Y," *?,

- an operateur 7 on Y7 such that:
72 is the multiplication by a scalar a € E*,
T permutes the x-isotypic part and the xs isotypic part of Y7 for any character x of T'(F,).
The action of GL(2,0F) on L, inflates the action of Y, the action of I on L; inflates the action of Y7, the
action of t on L is given by 7, and a = w(pr).

Reduction An R-integral finitely generated S-representation V of G contains an R-integral structure
L which is finitely generated as a RH-module; two finitely generated R-integral structures L, L}t of V
are commensurable: there exists a € R non zero such that aLy C L, al’;, C Ly,

Let x be an uniformizer of R and k¥ = R/xR. When the reduction fft = Ly;/xLy, is a finite length
kG-module, the reduction L of an R-integral structure L of V commensurable to Ly has finite length and
the same semi-simplification than L¢;. See [Vig96] 1.9.5 Remarque, and [Vig96] 1.9.6).

0.7 Lemma If the reduction Ly, is an irreducible k-representation of H, then the R-integral structures
of V' are the multiples of L.

In the integrality criterion 0.1, when the properties of 2) are true, the reduction of the R-integral
structure H,(L) of the S-representation H,(V) of G is the 0-th homology of the G-equivariant coefficient
system defined by the diagram L; — L,. We have the exact sequences of SG-modules:

0 — ind%, Vi @ e — ind§. V, — H,(V) — 0,

of free RG-modules:
0— ind%1 Li®e— indf(o L, — H,(L) — 0,

of kG-modules:
0— indf(l Li®e— indf(o L, — H,(L) — 0.

We will explicit the integral structures constructed in the proposition 0.4 when Vi, is a Steinberg
representation, and when V' = V,, is a moderately ramified principal series.

The Steinberg representation Let B = NT be the upper triangular subgroup of GG, with unipotent
radical NV and diagonal torus 7. The Steinberg R-representation Stg of G is the R-module of B-left invariant
locally constant functions f : G — R modulo the constant functions, with G acting by right translations.
By [BS] 2.6, we have

Stz ®zR = Str.

The Steinberg representation over any field of characteristic p is irreducible [BL], [Vig06]. The same definition
and the same property hold for the Steinberg R-representation stg of the finite group GL(2,F,) [CE] 6.13,
ex. 6. From the lemma 0.7 and [SS91] th.8, one obtains:

0.8 Proposition The Steinberg R-representation Str of G is the 0-th homology of the moderately
ramified diagram inflated from the Steinberg R-representation stg of GL(2,F,), the trivial character of

T(F,) on stg(F") ~ R, and the multiplication by —1 on stg(FQ) (remark 0.6).
The S-Steinberg representation Stgs of G is integral, all R-integral structures are multiple of Stp.

The irreducible algebraic representation Sym” of G of dimension k + 1 is realized in the space F (X, Y]

of homogeneous polynomials in X, Y of degree k > 0 with coefficients in F; it has a central character z — z*.

We denote by |?| the absolute value on an algebraic closure F% of F normalized by |p| = p~!. Over any

finite extension E of F [p]}/ 2] contained in F'*¢ the representation

Sym* @ | det(?)[*/?
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of G has an Opg-integral central character. Let us consider the Og-module M; generated in Og[X,Y]; by
the monomials

X7 if i<j and pl; I PXIYI i 0> g
and the image ¢pr in Stp, of the characteristic function of BI. One sees that the Og-integral structure
L1 = Op¢pr®o, M of the representation st!M @, Sym” QE]| det(?)|k/2 of K is equal to its zigzag z(L1) =
KoLi N (St'V @5 Sym* @ | det(?)[¥/2), using tX = p¥2uY, tYy = p;1/2uX where v € O} and a small
computation.

0.9 Proposition The locally algebraic representation Sty ® g Sym"® ®p|det(?)[¥/? is Op-integral for
any integer k > 0; the 0-th homology of the G-equivariant coefficient system on the tree defined by the
diagram

L1 = Op¢Br ®oy M1 — Lo = KoLy

is an integral Opg-structure.

When F = Q,, there are other four different non trivial proofs of the integrality, Teitelbaum [T},
Grosse-Klonne [GK1], Breuil [Br] (with some restrictions), Colmez [Co4].

Principal series Let x1 ® x2 : T — E* be an E-character of T inflated to B. The principal series
ind(x1 ® x2) is the set of functions f : G — E satisfying f(hgk) = x1(a)x2(d)f(g) for all g € G, h € B
with diagonal (a,d), and & in a small open subgroup of G depending on f, with the group G acting by right
translation.

When x1 ® x2 is moderately ramified, i.e. trivial on T'(1+ Pr), its restriction to T(OF) is the inflation of
an E-character m; ®n2 of T'(F), and the principal series is the 0-th homology of the G-equivariant coefficient
system defined by the moderately ramified diagram

(indG (x1 ® x2))"™ — (ind(x1 ® x2))*"

inflated (Remark 0.6) from the inclusion

. LG(F, . . LG(F,
(mdBEFqg(nl ®@n2))NF) — 1ndBEFq;(n1 ®n2)

and the operator 7 on (indggzg(m @n2))VFa) = E¢y @ E¢p, such that

T¢1 = Xx1(pr)$s and 77 is the multiplication by x1(pr)x2(pr),

where ¢1, ¢s have support B(F,), B(F;)sN(F,) and value 1 at id, s. Clearly,
Y1 = Op¢1 © Opx1(pr)ds,

is an Opg-integral structure of (indggzg(nl @ 12))N(Fa) stable by 7 and

Y, = GL(2,F,)Y;
is an Op-integral structure of indgg"g(m ® n2). When the central character xix2 is integral, (Y,,Y7,7)

inflates to a moderately ramified diagram Ly, — Ly, := K,Ly, defining a G-equivariant coefficient system
L of free Og-modules of finite rank on X'. An Hg(G,I(1))-module is called Opg-integral when it contains an
E-basis which generates an Og-module stable by Ho, (G, I(1)).

0.10 Theorem We suppose that the E-character x1 ® x2 is moderately ramified, that x1(pr)x2(pr) €
O% is a unit, and that E contains a p-root of 1. The following properties are equivalent:

a) the principal series ind$(x1 ® x2) is Op-integral,

b) the Hg (G, I(1))-module (ind$(x1 ® x2))'™ is Op-integral,
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¢) x2(pr), x1(pr)q are integral,
d) Y;)N(Fq) _ Yi,
e) L := H,(L) is an Og-integral structure of ind%(y; ® xa2).
When they are satisfied, we have LX) = Ly. and L'™) = Ly, generates the OgG-module L.

When x1x5 ! is moderately unramified, one reduces to x; ® y2 moderately ramified by twist by a
character. When F' = Q,, and x1x5 1is unramified, i.e. trivial on O3%, the equivalence between c) and a)
has been proved by [Brl].

0.11 Remarks (i) In the theorem 0.10, x1(pr) is a unit if and only if the character x1 ® x2 of T
is Og-integral. Using [Vig04] th. 4.10, L is the natural Og-integral structure of functions in indg(xl ® X2)
with values in Og. The reduction of L is the kg-principal series of G induced from the reduction ¥; ® X, of
X1 ® X2; When X, # X it is irreducible [BL], [Vig04], [Vig06] and each O pg-integral structure of ind% (x1 ® x2)
is a multiple of L, by the lemma 0.7.

When X; = Xo, then ind%(%; ® X,) has length 2; are the Op-integral structures of ind%(y; ® x2)
OpG-finitely generated ? When F = Q,,, compare with [BeBr| 5.4.4 and [Co05] 8.5.

(i) The module of B is |?|r ® |?|z* where |pr|r = 1/g. The contragredient of ind%(x; ® x2) is
ind% (x7?|r ® X3 2171 ([Vig96] 1.5.11), hence the proposition 0.10 and the corollary 0.5 are compatible.

The representation

ind3(x1 ® x2) = indG (x1|?r ® xa|?[7")

is irreducible when X1 # X2, X2|?|% (the induction is not normalized); the isomorphism is compatible with
the theorem 0.10.

(iii) Theoretically, there is no reason to restrict to the moderately ramified smooth case, but the com-
putations become harder when the level increases or when one adds an algebraic part.

(iv) One should see c) as the limit at oo of the integrality local criterion. For ind$(x; ® x2) ®
Sym” ®| det(?)|¥/2, one should replace c) by:

k/2 1—k/2

are integral.

x2(pr)a 7, x1(pr)q

This condition is automatic when the representation is integral; this can be seen either via Hecke algebras
or via exponents [E]. The representation of 7' on the 2-dimensional space of N-coinvariants (Vi,,)n of the
smooth part Vi, = |det(?)[*/? ® ind(x1 ® x2) is a direct sum of two characters

| det()]*?[(x1 ® x2) @ (x2l?|F @ xal?[F")]-

The N-invariants Va][Vg of the algebraic part Vg = Sym” has dimension 1 and T acts Va]lvg by 7¥ @ 1. The

representation of T on (Vi )y @ VY

alg 1S the direct sum of two characters called the exponents of V,

k/2 k/2 k/2+1 k/2—1
O 1752 @ xal25%) @ O [718H @ xa 71827,

(0 )

1—k/2

They are integral on the element

which dilates N if and only if x2(pr)g~*/? and x1(pr)q are integral.

k-representations of GG. Let k be a finite field of characteristic p. The theorem 0.10 and the remark
0.11 (i)) imply that a principal series of G over k is the 0-th homology of a G-equivariant coefficient system.

Let p1 ® pe be a k-character of T'; its restriction to T'(Op) is the inflation of a k-character m; ® 72 of
T(F,). As before, (indggzi(nl ®@n2))NFa) = B¢y @ Eps where ¢, ¢, have support B(F,), B(F,)sN(F,)
and value 1 at id, s.



0.12 Proposition The principal series indg(ﬂl ® p2) is the 0-th homology of the G-equivariant
coefficient system defined by the moderately ramified diagram

(ind (s @ p2))"™ — (indf (s @ pr)) <

inflated (Remark 0.6) from the inclusion
. .G(F . .G(F
(ind 55" (m @ 12))VEFD — ind G0 (m @ no)

and the operator T on (indgg g(m ®n2))NFa) such that

q
q

71 = x1(pr)ds and 72 is the multiplication by x1(pr)x2(pr).

Supersingular representations
The theorem 0.10 and [Vig04] imply:

0.13 Proposition The simple supersingular modules of the Hecke k-algebra Hy,(G,I(1)) are the
reductions of the integral structures of the I(1)-invariants of integral principal series of G induced from non
integral moderately ramified characters of B.

Recall that a simple Hy,, (G, I(1))-module is supersingular if the action of the center of Hy,, (G, I(1)) is
“null” [Vig04].

0.14 Proposition Let L be the Og-integral structure of the theorem 0.10, of an Og-integral principal
series of G induced from non integral moderately ramified E-characters x1 ® x2 of B, and let L be its
reduction.

a) If the reduction of L'™ is equal to (L)'("), the kpg-representation L of G is irreducible and supersin-

gular.
b) The reduction of L'") is equal to (L)!") when F = Q,,p # 2.

From [Vig04], the map V — V! is a bijection between the irreducible k-representations of GL(2,Q,)
and the simple Hy (G, I(1))-modules, when the central element pr acts by a fixed scalar. The proposition
0.14 implies:

0.15 Corollary When F' = Q,,p # 2, any irreducible representation of G over a finite field of
characteristic p, with a central character, is the reduction of a moderately ramified integral principal series
of G, and is the 0-th homology of a coeflicient system on the tree.

These results were presented in Tel-Aviv and Montreal (2005) and in Luminy (2006). One can hope that
the new techniques introduced by Elmar Grosse-Klénne on the Bruhat-Tits building of PGL(n, F) [GK2]
will allow to generalize the local integrality criterion to GL(n, F) for n > 2.

1 Coefficient system on the tree

Let R be a commutative ring. A G-equivariant coefficient system of R-modules V on the tree X' consists
of

- an R-module V, for each simplex o of X,

- a restriction linear map 7 : V; — V, for each edge 7 containing the vertex o,

- linear maps g, : V, — Vjy, for each simplex o of X and each g € G, compatible with the product of G
and with the restriction: (99")o = 94096, goTs =I5 gr

The stabilizer in G of a simplex ¢ acts on V,, and the restrictions r
of the stabilizers of the vertices o,0’ of 7.

T, T7, are equivariant by the intersection



We denote by X(0) the set of vertices, by X(1) the set of oriented edges (o,0’) (with origin o) and by
X the set of non oriented edges {c,c'}.

The R-module Co(V) of 0-chains is the set of functions ¢ : X(0) — [, e x (o) Vo With finite support such
that ¢(o) € V, for any vertex o.

The R-module C1(V) of oriented 1-chains is the set of functions w : X(1) — [], ;yex, Vioor} with
finite support such that w(o,0’) = —w(o’,0) € Vi, 5y for any edge {o,0'}.

The boundary 0 : C1(V) — Cy(V) is the R-linear map sending an oriented 1-chain w supported on one
edge 7 = {0, 0’} to the 0-chain dw supported on the vertices o, ¢’, with

dw(o) =rlw(o,0"), Ow(c') =rlw(d, o).
The group G acts on the R-module of oriented *-chains, for x = 0,1, by

(gw)(go) = g(w(0))
for any g € G and any oriented #-chain w; the boundary 0 is G-equivariant; the 0-homology

W)
H,(V) = e v)

and the 1-homology H; (V) = Ker 0 are R-representations of G.

For any oriented edge (o,0’) there exists g € G such that g(o,0") = (0,,t0,).
This property is equivalent to the fact that a G-equivariant coefficient system is determined by its
restriction to the vertex o, and to the edge o1 := (0,,t0,), i.e. by a diagram

r:Vi—V,

where V, is an R-representation on K,, V; is an R-representation of K7 and r is an R-linear map which is
K, N Kj-equivariant,
Voi=Vo,, Vii=Vs, ri=1r

Oo°

Conversely, any diagram defines a G-equivariant coefficient system [Pas]. The representations of G on C,(V)
and on C1(V) are isomorphic to the compactly induced representations indf(o V, and imd?(l (Vi ® €) where
e : K1 — R* is the R-character of K trivial on K, N K3 such that £(t) = —1.

For v; € V4, if w is the oriented 1-chain with support the edge o1 = {0,,t0,} such that w(o,,to,) = tvy,
the boundary map 0 : C1(V) — Co(V) is the linear G-equivariant map such

(boundaryformula) O(w)(oo) = r(tvr), O(w)(to,) = =1y tvy = —tg,r(v1).

The combinatorial distance on X is the number of edges between two vertices; the action of the group
G respects the distance. For any integer n > 0, we denote by S, the sphere of vertices of distance n to o,
and by B,, the ball of radius n. For any chain w # 0 , let n(w) be the integer such that the support of w is
contained in the ball By, and not in By (,)—1. When w is a 1-chain we have n(w) > 1.

For any vertex o € S, with n > 1, the neighbours of o belong to S,+1 except one neighbour which
belongs to S, _1; let 7, be the unique oriented edge starting from o and pointing toward the origin o,. For

any oriented 1-chain w,

(key formula) dw(o) =ry7w(t,) forall o € Sy



We identify naturally v, € V, with a 0O-chain with support on the single vertex o,; we consider the
natural K,-equivariant linear map
we : Vo — Hyo(X, V)

and the K, N Kj-equivariant map
weor: Vi =V, — Hy(X,V).

1.2 Lemma The map w, is injective when r is injective and the map w, o r is Kj-equivariant.

Proof. There is no non zero 1-chain w with dw supported on the single vertex o, because n(w) > 1 and
Ow is not zero on S,y by the key formula, because r is injective.
The boundary formula gives the K;-equivariance.

When the boundary map 0 is injective, » must be injective. By the key formula, the converse is true.
1.3 Lemma 0 is injective if the map r is injective.

Proof. Let w # 0 be any oriented 1-chain and let o € S,,(.,); the edge 7, belongs to the support of w. By
the key formula 9(w)(c) = rfw(7,) does not vanish because r7 is injective if r is injective, by the properties
of the action of G.

We suppose from now on that the map r : V3 — V,, is injective.

Descent Let ¢ # 0 be a 0-chain not supported on the origin. There exists an oriented 1-chain w such
that n(¢ — Ow) < n(¢) if and only if ¢(c) belongs to r7=V;, for all ¢ € Sy(y)-

Proof. Let w be any oriented 1-chain. By the key formula, n(¢—0w) < n(¢) is equivalent to n(w) = n(¢)
and

$(0) = ryw(rs)

for all o € S),(y). When the necessary condition ¢(o) = 77 (v, ), vr, € V5, for all o € S,,(4) is satisfied, the
oriented 1-chain wgy supported on

UUGSn(¢)Td

with value v, on 7,, satisfies n(¢ — dwy) < n(¢p). The oriented 1-chains satisfying n(¢ — dw) < n(¢) are
wg + w’ with n(w') < n(¢p) — 1.

When the R-module r(V;) has a supplementary in V, = W, @ r(V41), then the R-module vV, has a
(non canonical) supplementary in V, = W, @ r7(V;); we can find an oriented 1-chain w supported on 7,
such that (¢ — dw)(0) € W, for any o € Sy, 4). By induction on n(¢), any non zero element of H,(V) has a
representative ¢ either supported on the origin, or such that ¢(o) € W, for any o € Sp(4).

1.4 Proof of the basic proposition 0.1.

1) Lemma 1.3.

2) As r is injective, we can reduce 7 to an inclusion V; — V.

Equivalence of the properties a), b), ¢). It is obvious that V4 N L, = Ly is equivalent to: the kernel of
Vi — V,/L, is L, is equivalent to: the quotient of L, by L is torsion free, and is equivalent to L; is a
direct factor of L, because L, is a free module of finite rank over the principal ring R.

The R-module H,(L) embeds in the S-vector space H,(V) because the map Vi /L1 — V, /L, is injective
by b) hence Hi(V/L) =0 by 1) and the sequence Hy(V/L) — H,(L) — H,(V) is exact.

Let v be a non zero element of H,(L). Suppose that the line Sv is contained in H,(L). We choose

- a representative ¢ € C,(L) of v such that ¢ is supported on o, or such that ¢(c) € W, for any
0 € Sn(e),

- a vertex o’ € Sy,(4) such that ¢(o’) # 0,

- an integer n > 1 such that ¢(¢’) does not belong to ™ L.
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As Sv C H,(L), there exists an integral oriented 1-cocycle w € C1(L) such that (¢ + 0(w))(0) € "L,
for any vertex o of the tree.

We may suppose n(w) < n(¢) by the following argument. If n(w) > n(¢), the key formula implies that
w(7y) € 2" L(7,), for any vertex o € S, (., because r7v L, Na"L, = r}7(z"L,,) by a) and the injectivity of
r7e. Let weyt be the integral oriented 1-cocycle supported on

UO’ESTL(M)TO'

and equal to w on this set. We may replace w by w — weyzt; a8 n(w — wegt) < n(w) we reduce to n(w) < n(ep)
by decreasing induction.

If ¢ is supported on ,, then w = 0 and ¢(o,) € 2™ L, which is false.

If ng > 1, we have ¢(0) + w(7,) € 2" Ly for any o € S,,(4) by the key formula. As ¢(o) € W, and
w(1,) € r77(V;,), this is impossible.

As R is a local complete principal ring, H,(L) is R-free.

1.4bis Lemma Let ¢ be a 0-chain with support on the single vertex o, and let w be an oriented
1-chain such that ¢ + 0(w) is integral. Then ¢ is integral.

Proof. As n(w) > 1, the restriction of w on S, is integral by the key formula. By a decreasing
induction on n(w), ¢ is integral.

1.5 Proof of the corollary 0.2

Sufficient. When L, is an R-integral structure of V,, such that Ly = L, NV is stable by ¢, then L; is
an R-integral structure of V7; the map r induces an injective diagram L; — L,. By the integrality criterion
0.1, Hy(V) is R-integral.

Necessary. Suppose that L is an R-integral structure of H,(V). We apply the lemma 1.2. The inverse
image L, of w,(V,) N L in V, by w, is an R-integral structure of the representation of K, on V,, and the
inverse image Ly of w,(V1) N L is an R-integral structure of Vi, of course stable by ¢, equal to L, N V.

1.6 Proof of the corollary 0.3

1) When the sequence of zigzags is finite, there exists a finitely generated R-integral stucture M; of V;
equal to its first zigzag z(M;) = M;, for i =0 or i = 1. If 2(My) = My, set L, = K,M;. If 2(M,) = M,, set
L, = M,. In both cases, L, is a finitely generated R-integral structure of V, and L; = L, NV} is stable by
t. By the corollary 0.2, H,(V) is R-integral.

2) When H,(V) is R-integral, there exists an R-integral structure L, of V, such that Ly = V4 N L, is
t-invariant by the corollary 0.2.

- Let M; be an R-integral structure of Vi. Replacing L by a multiple, we suppose My C L;. Then
K,M; C L, and z(M7) C Li. The sequence of zizgags of M is contained in L; and increasing, hence finite
because L; is a finitely generated R-module and R is noetherian.

- Let M, be an R-integral structure of V,. We apply the above argument to My = (V1N M,)+¢(ViNM,);
the sequence of zizgags of M, is finite, and also the sequence of zizgags of M,.

1.7 Proof of the proposition 0.4
1)The exactness of the sequence

0 — ind%, (VL) @ Vay @5 €) — ind% (VE® @5 Vag) — Vem @5 Vag — 0

follows from the following facts.

The assertion is true when Vg4 is trivial if E is replaced by the field C of complex numbers by [SS97]
I1.3.1; this is also true for E because the scalar extension ® gC commutes with the invariants by an open
compact subgroup and with the compact induction from an open subgroup. The tensor product by ® g Va4
of an exact sequence of FG-representations remains exact and commutes with the compact induction from
an open subgroup.

2) The finite length representation Vi, is admissible; this is known for complex representations and
remain true for E-representations because V,,, ® g C has finite length [Vig96] 11.43.c, and ? ® g C commutes
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with the K (e)-invariant functor. The E-vector space Vsﬁ(e) ® g Valg is finite dimensional. Apply the corollary
0.2.

1.8 Proof of the corollary 0.5

Let Vi, be a non zero smooth E-representation of G of finite length; there exists an integer e > 1 such
that each non zero irreducible subquotient of V;,, contains a non zero K (e)-invariant vector. The E-vector
space (Vi) (©) isomorphic to the dual (fon(e))’ . the irreducible subquotients of the contragredient Vi,
are the contragredients of the irreducible subquotients of Vj,,. Hence Vj,, and f/sm are generated by their
K (e)-invariants.

Suppose that V' = Vi, @ Vaig is Op-integral. We choose an Og-integral structure L, of the repre-
sentation of K, on VSI,;(E) ®E Vg such that Ly := L, N (VSI,,(LB) ®E Vag) is t-stable (proposition 0.4), and
we take the linear dual L = Homo,, (Lo, O) of L,. It is clear that L/ is an Og-integral structure of the
representation of K, on

(VR @p Vag) ~ (VDY @5 (Vaig)' ~ (Vem) ¥ @5 V),

We take the intersection LN (Vi )'® @ Vi) = LoN (ng,(f) ®E Vaig)'. The Og-module L, is a direct factor
of L, hence its linear dual L} is equal to this intersection; it is clearly invariant by ¢. By the proposition 0.4,
V is Op-integral.

The length of V., and the FE-dimension of Vg, are finite, hence V' is isomorphic to the contragredient
of V. If V is Op-integral then V is Op-integral.

1.9 Proof of the lemma 0.7
Let L be an R-integral structure of V' which is different from L;. Taking a multiple of L, we reduce
to Ly C L and Ly; not contained in L. The inclusions

xLyy C (xL N Lft) C Ly,

the right one beeing strict, and the irreducibility of L/ L imply LN Ly = x Ly, equivalent to L = Ly
because there exists no v € L and v € Ly, such that v € a:flLft.

2 The Steinberg representation
The proposition 0.8 results from the remarkable properties of the Steinberg representations that we
recall below and from the lemma 0.7.

2.1 Sty is the 0-th homology of the G-coefficient system associated to the inclusion
I(1) K(1)
St~ — Stg

by [SS91] th. 8.
2.2 Stgr = Stz ®zR is an R-free module, isomorphic as an R-representation of B to C2°(N, R), where
N acts by translations and T by conjugation, by the map [BS] 3.7:

f—o5(n)=f(n)— f(sn) forne N and s = ((1) (1))

One can check that the image of Stg(l) is C(N(0), R)N™ where N(0) = N N GL(2,0r) and N(1) =
NN K(1).

2.3 When R is a field of characteristic p, the action of the monoid generated by N and (p (f (1))
on C(N, R) is irreducible [Vig06]. The unique projective irreducible R-representation of GL(2,F,) is stg
[CE] 6.12.
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2.4 The Steinberg R-representation Stg of GG is the highest cohomology with compact supports of the
tree by [BS] 5.6, and by [SS91] cor. 17,

Str = R[G/I] QHR(G,I) sign .

where sign is the character of the Hecke algebra Hg(G, I) of the Iwahori subgroup I on Sté{ = Stgl).
2.5 Let ¢ps be the characteristic function of BI modulo the constants. We have

St/ = Rep;, K,Répr =Sth W, tép = —op,

by the same proof of [BL] lemma 26 for the first equality, because the characteristic function of B(Fy)
generates indggz) 1g for the second equality (see also the lemma 2.7), and because ¢p;(t) = —ppsr(t) = —1
for the third equality.

The representation of K, on Stg(l) is the inflation of the Steinberg representation stgp = stz ®zR of

GL(2,F,) which is a free R-module of rank g.

A system of representatives of K,/ZI ~ GL(2,F,)/B(F,) is s, (vz)zecF, Where v, = ! 1

GL(2,F,) = B(F,)UN(F,)sB(F,). One embeds F, in Op by the Teichmiiller map. If M is an RZI-module,
then

, because

K M = sM + Z vy M.
z€F,

2.6 Lemma s¢pr+ >,
an R-basis of Stg(l).

wcF, ve¢pr = 0. When R is a field, the q elements s¢pr,v.¢pr (x € F;;) form

Proof. RK,ppr = Stg(l) is R-free of rank ¢ (2.5), the sum s¢pr + >
Stie = 0.

€F, vz¢pr is K,y-invariant and

2.7 Proof of the integrality of St ®S; (proposition 0.9).
We can suppose k > 1. We have

Lo =KoLy = (s¢p1 @ sM1) + Y (va¢pr ® v, My).
zeF,

The first zizgag z(L1) = KoL1 N (Stfg(l) ®p Sym” ® | det(?)|*/2) of L, is, by (2.5) and the lemma 2.6,
2(L1) = Opdpr ®op (M1 + N),

where IV is the intersection of sM; with ﬂzeF; v M.

It is clear that Og[X,Y]r C N because Og[X, Y] is stable by K, and contained in M;. The key of the
proof is to check the opposite inclusion, because N = Og[X, Y]y implies z(L1) = L1 and one can apply the
corollary 0.3.

As L, C My, one deduces from N = L, that L; is equal to its first zigzag z(L1). We apply the corollaries
0.3 and 0.2 and the proposition 0.9 is proved. Let us check the opposite inclusion. A basis of sM; is X?YJ
if i > j and pC /T2 XY I i i < j for i,j € N,i+j = k; a basis of v, M, is (X +2Y)iY7 if i < j and
PR (X 4 aY )Y if i > j for i,j € N,i+ j = k. Suppose that

S XY = > dij(@)(X +2Y)YT (cij.dij(z) € B,z € F})
i+j=k i+i=k
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belongs to N. Modulo Og[X, Y], we can forget the ¢; ; with ¢ > j and d; ;(z) with ¢ < j, and we have

D e XY= di(@)(X +2Y)'Y? mod Op[X, Y]y
i<j §<i
When k = 2u is even and ¢ > u, X does not appear on the left side. By decreasing induction on i, we can

show that dj (), dk—11(x)...,dyw(z) € Og. When k = 2u+ 1 is odd and i > u + 1, X? does not appear
on the left side, and we can show that the d; j(z) for j < i belong to Og. Hence N C Og[X,Y]s.

3 Principal series. Proof of the theorem 0.10

A moderately ramified character of O% is the inflation of a character of F}, that we denote by the same
letter; we use the Teichmiiller embedding F; — Op.

As G = BGL(2,0r), the restriction to GL(2,Or) of ind%(x1 ® x2) is isomorphic to

. GL(2,0
mdB(Léi) @)

and the representation of GL(2,Or) on (ind%(x1 ® x2))X™ is the inflation of the principal series

. GL(2,F,
1ndB(1§j) )(771 ®n2).

A system of representatives of B(Or)\GL(2,0r)/K(1) ~ B(F,)\GL(2,F,) is

1 =z
1, su, for z € Fy, um:(o 1)

by the decomposition GL(2,F,;) = B(F;) U B(F,)sN(F,). Let L, be the Og-integral structure of the E-

representation of K, on (indg(L(gQF?F)(m ®@mn9))K (1) given by the functions with values in Og. We denote by

fq € Lo the function of support B(Or)gK (1) and value 1 at g. An R-basis of L, is {f1, (fsu,)zeF,}. The
OgK,-module L, is cyclic generated by f; because

UgSf1 = fou_, forxeF,.

Modulo the first congruence group K (1), the pro-p-Iwahori I(1) is represented by (us)zcr,. A basis of L

1S
f17 Z .fsuz-

zeF,

It is convenient to write ¢ = sh = shss where h = (pF O). It is obvious that tf1 (1) = f1(¢t) =0, tf1(s) =

0 1
fi(st) = x(h) = x1(pF), hence
th =xi1pr) Y fou.

zeF,

and because t2 = prid,

t Z fsu, :X2(pF)f1-

zeF,

The Og-module L := Lg(l) + tLg(l) is equal to

L1 = (O + x2(pr)OE) /1 ® (O + x1(pr)OE Y _ fou,-
z€eF,

We see that the module L2 is stable by ¢ if and only if x1(pr) and x2(pr) belong to Og, i.e. are units
because their product is a unit. When x1(pr) and x2(pr) are units, L1 = Ly,, L, = Ly,, Lg(l) = 1.
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As L, = RK, f1, the zigzag z(L,) = K,L1 contains x2(pr)Lo; if the sequence of zigzags (2™ (Lo))n>0 is
finite, then x2(pr) € Og. By the corollary 0.3, if x2(pr) does not belong to Op then ind%(Xl ® x2) is not
integral.

Suppose x2(pr) € Op and x1(pr) € Op. Then

Ll - OE'fl + Xl(pF)OE Z fsuc - LYU LYO - KoLl - Lo + Xl(pF)KoOE Z fsuc-
ceF, ceF,

A system of representatives of K,/ZI(1) ~ GL(2,F,)/Z(F,)N(F,) is

X A0
{dy, dyugs forallgcqu,,\qu}7 d)‘:(o 1>'

We compute the Og K,-module M, generated by Ecqu fsu.- As sucdy = sdyssuy-1, we have

d>\f1 = nl()\)flu d)xfsuc = 772()‘).][51“5

As m2(X) is a unit, we have

Opdy > fo. =08 Y feu.

ceF, ceF,
As
-z 1 .
Sug—1is = | o 1 ) SUa, if © #0,

we have, if c € F7,
uzsfs = f1, UxSfou. = 771(—1)9(0)fsu,1,z, 0= 771772_15

and

Fx = UgS Z fSUc fl +771 Z 0~ I"'C fs’u.C

ceF, ceF,

where the character =1 of F} is extended to a function on Fy vanishing on 0. We have

datizs Y foue =mN)fr+mO)m(=1) D 07 (@ + ¢) faur. = m(N) Faa-

ceF, ceF,

As m1(A) is a unit, we have
OEd)\qu § fsuc - OEF)\x
ceFy

We deduce that M, is the Og-module generated by

Z fsucu (Fm)mEFq .

ceF,

The sum }° cp Fois ¢ft +m(=1)(¢—1) X cp, fsu. if 0 is the trivial character, and ¢fy if 6 is not trivial.
Hence M, contains qf1; beeing K,-stable, M, contains ¢L,. The zizgag z(L,) = K,L1 = L, + x1(pr) M,
contains qx1(pr)L,. If the sequence of zigzags (2™ (Lo))n>0 is finite, then ¢xi(pr) € Op. By the corollary
0.3, if gx1(pr) does not belong to O then indg (x1 ® x2) is not integral.

Suppose x1(pr) € Or and gx1(pr) € Op. To go further, we need a lemma. For a function a : F; —
X1(pr)Op and a character 0 : F; — O we consider the function (a * 0) : F; — x1(pr)Op the function
defined by

(ax0)(y) := Z a(—xz)0(y + x) where 6(0) := 0;

zeF,
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we says that a * 0 is constant modulo Og if there exists z € E such that (a*6)(y) — 2z € Og for all y € F,,.
8.1 Lemma } g a(z) € Op ifa*0 is constant modulo Og.

Proof. When the character 6 is trivial, the function axf+a = Zcqu a(c) is constant. If a0 is constant
modulo Og, then a is constant modulo Og and Ewqu a(z) € gx1(pr)Og C Og.

When the character 6 is trivial, we use Fourier transform; we replace £ by a finite extension in order
to find a non trivial character ¢ : F; — Op to define the Fourier transform

f) =Y v f(x)

zeF,
of a function f : F;, — E. We denote by R the space of integral functions f : F; — Og, by R the image

of R by Fourier transform, by 6, € R the characteristic function of 0 and by A € R the constant function
A(?) = 1. The remarkable properties of the Fourier transform give

A, 6(0) =0,

~
I
S
s
g
I
S
<,
N
>,
S
I

0(x) is a Gauss sum and 0(z)(0~1)(z) = ¢8(—1) if =€ Fy;

the Fourier transform of a convolution product f * g is the product of the Fourier transforms

Frgxy= > fWez), frg=fd
y,2€F ¢,y+z=x
The lemma says that a(0) € O for all a € x1(pr)R such that a %0 € OpA + R.
By Fourier transform ax6 € Og A+ TR is equivalent to @0 € Oggd, +R. Multiplying by (0—1) vanishing
only at 0, this is equivalent to ga = qa(0)d, + (§~1)¢ for some ¢ € R. The function b = ga belongs to R

because qx1(pr) € Op. We have b = b(0)d, + (§~1)$ and by Fourier transform b = AA + ! % ¢ where
b(0) = A+ (071 % ¢)(0). We have A € O and a(0) = .

We return to the proof of the theorem 0.10. The Og-module z(L,) = L, + x1(pr)M, is generated by

Lou Xl(pF) Z fsucu (Xl(pF)Fw)wEFqu
ceF,

the Og-module (2(L,))'™ is generated by L; and by

Yo at=a)fi+m(=)(a*67)0) > fou

z€F, ceeF,

for all functions a : F, — x1(pr)Og such that a x 67! is constant modulo Og. As n;(—1)(a * 671)(0) €
x1(pr)Og and Zmqu a(—x) € Og by the lemma 3.1, we obtain

(2(L))' M = Ly,

This is equivalent to z(L;) = Ly, and also to L{,il) = Ly,. We summarize what we proved in the following
proposition.

3.2 Proposition 1) L, = Ly,, 1 = Ly, if and only if x1(pr), x2(pr) belongs to O%;.

2) ind%(x1 ® x2) is integral if and only if qx1(pr), x2(pr) belong to Og.

3) When x1(pr) ¢ Op, ax1(pr) € Ok, then Ly, = L'V +tLy", LiV = Ly, if  is trivial or if O
contains a p-root of 1.
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We prove now the theorem 0.10. By [Vig04 prop. 4.4], the properties b), ¢) are equivalent. By the
proposition 3.2 2) the properties a), ¢), d) are equivalent and L{él) = Ly,. By the corollary 0.2, d) and e)
are equivalent. By the lemma 1.4bis, Ly, = LEMW | As Ly, generates the Og K,-module Ly, which generates
the OpG-module L, by transitivity the the OpG-module L is generated by Ly, = L(1),

We prove now the remark 0.11 (i). By [Vig04] th.4.10, the natural O g-integral structure of ind% (y; ®x2)
of functions with values in O is OgpG-generated by the function with support BI and value 1 at 1, which
is contained in Ly,. As Ly, embeds in the functions in ind%()ﬁ ® x2) with values in Og and generates L,
the natural Og-integral structure is equal to L.

4 k-representations

Proof of the proposition 0.12.
Let 1 ®pe : T — k* be a continuous character. There exists a moderately ramified continuous character
X1 ® x2 : T — O% lifting 11 ® po. Apply the theorem 0.10 and the remark 0.11 (i).

Proof of the proposition 0.13.
Theorem 0.10 and [Vig04] proposition 3.2, théoreme 4.2 and proposition 4.4; by [Vig04] §2.4, one may
need to take a ramified extension of E with residual field k = kg.

Proof of the proposition 0.14.

By the proposition 0.13 and the Brauer-Nesbitt property, the reductions of the Og-integral structures of
V = (ind$ (x1 ® x2)’(") are simple and isomorphic Hy,, (G, I(1))-modules. This implies that the reduction of
L' is a simple supersingular Hy, (G, I(1))-module; it generates the kpG-module L because L'(1) generates
the OgG-module L.

A Ekp-representation of G generated by its I(1)-invariants is irreducible if the I(1)-invariants is a simple
Hy,, (G,I(1))-module (criterion 4.5 in [Vig04]). This implies the property a).

When F = Q,,p # 2, the following remarkable property

M QHL(G,I(1)) ind?(l) 1k

is irreducible of I(1)-invariants M ~ M ® 1, for any simple Hy(G, I(1))-module, well known for complex
representations, remains true over a field k of characteristic p [Ollivier], and implies:

4.1 Lemma A k-representation V of G = GL(2,Q,),p # 2, generated by a simple Hy(G,I(1))-
submodule M of VI is irreducible and M = V().

Proof. V' is a quotient of M ®p, (a,1(1)) ind?(l) 1 .
This implies the property b).
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