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Résumé Soient F un corps p-adique, R un anneau commutatif de valuation discrète complet et L un
système de coefficients GL(2, F )-équivariant de R-modules libres de type fini sur l’arbre de PGL(2, F ). On
donne un critère nécessaire et suffisant pour que l’homologie de degré 0 de L soit un R-module libre. Ceci
permet de construire des structures entières sur des représentations localement algébriques de GL(2, F ), et
par réduction de montrer que des représentations de GL(2, F ) sur un corps fini de caractéristique p qui se
relèvent à la caractéristique 0, sont isomorphes à l’homologie de degré 0 d’un système de coefficients. Par
exemple, prenons un caractère modérément ramifié p-adique χ1 ⊗ χ2 du tore diagonal T (F ) de GL(2, F ),
tel que χ1(pF )χ2(pF ) soit une unité p-adique, qχ1(pF ) et χ2(pF ) soient des entiers p-adiques, pF étant une
uniformisante de F et q l’ordre du corps résiduel; alors la série principale de GL(2, F ) induite lisse non
normalisée de χ1 ⊗ χ2 est entière avec une structure entière remarquable explicite. Toute représentation
irréductible de GL(2,Qp) sur un corps fini de caractéristique p 6= 2, ayant un caractère central, s’obtient
comme réduction d’une telle structure entière, et est égale à l’homologie de degré 0 d’un système de coefficients
GL(2, F )-équivariant sur l’arbre.

Introduction
Let p be a prime number, q a power of p, let F be a local non archimedean field of characteristic 0

or p, with ring of integers OF and residual field kF = Fq, let G be the group of F -points of a reductive
connected F -group and let E/F is a finite extension. An irreducible locally algebraic E-representation of G
is the tensor product Vsm ⊗E Valg of a smooth one Vsm and of an algebraic one Valg , uniquely determined
([Prasad] th.1). The problem of existence of integral structures in Vsm ⊗E Valg (and their classification
modulo commensurability) is crucial for the p-adic local Langlands correspondence expected to relate p-adic
continuous finite dimensional E-representations of the absolute Galois group GalF and Banach admissible E-
representations of G. The classification of irreducible representations ofG over a finite field k of characteristic
p remains a mystery when G 6= GL(2,Qp), and the reduction of integral structures is a fundamental open
problem. It is either “obvious” or “very hard” to see if Vsm ⊗E Valg is integral or to determine the reduction
of an integral structure. It is obvious that a non trivial algebraic representation Valg is not integral, or that
a smooth cuspidal irreducible representation Vsm with an integral central character is integral.

From now on, G = GL(2, F ).

We fix a local non archimedean field E of characteristic 0 and of residual field kE of characteristic p and
we suppose Valg trivial when F is not contained in E, in particular when the characteristic of F is p. We
will present a local integrality criterion for Vsm ⊗E Valg, by a purely representation theoretic method, not
relying on the theory of (φ,Γ)-modules as in [Co04], [Co05], [BeBr] or on rigid analytic geometry as in [Br].
The idea is to realise Vsm ⊗E Valg as the 0-homology of a G-equivariant coefficient system on the Serre’s
tree [Se77] (an easy generalization of a general result of Schneider and Stuhler [SS97] for complex finitely
generated smooth representations).

Let X be the tree of PGL(2, F ) with the natural action of G [Se77]. The vertices of X are the similarity
classes [L] of OF -lattices L in the 2-dimensional F -vector space F 2. Two vertices zo, z1 are related by an
edge {zo, z1} when they admit representatives Lo, L1 such that pFLo ⊂ L1 ⊂ Lo. The group G = GL(2, F )
acts naturally on the tree; a fundamental system consists of an edge σ1 and of a vertex σo of σ1. For i = 0, 1,
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we denote by Ki the stabilizer in G of σi; the intersection Ko ∩K1 has index 2 in K1, we choose t ∈ K1 not
in Ko ∩K1, and we denote by ε the non trivial Z-character of K1/(Ko ∩K1).

We choose for σo the vertex defined by the OE-module generated by the canonical basis of F 2 and for
σ1 the edge between σo and tσo where

t =

(

0 1
pF 0

)

, pF uniformizer of OF .

Then Ko = GL(2, OF )Z and K1 =< IZ, t > is the group generated by IZ and t, where Z is the center
of GL(2, F ), isomorphic to F ∗ diagonally embedded, and I is the Iwahori group of matrices of GL(2, OF )
congruent modulo pF to the upper triangular group B(Fq) of GL(2,Fq). The intersection Ko ∩K1 is IZ.
The element t normalizes the Iwahori subgroup I and its congruence subgroups I(e) for e ≥ 1.

Let R be a commutative ring. A G-equivariant coefficient system L of R-modules on X is determined
by its restriction to the vertex σo and to the edge σ1, i.e. by a diagram

r : L1 → Lo

where r is a R(Ko∩K1)-morphism from a representation of K1 on an R-module L1 to a representation of Ko

on an R-module Lo. The word “diagram” was introduced by Paskunas [Pas] in his beautiful construction of
supersingular irreducible representations of GL(2, F ) on finite fields of characteristic p. The boundary map
from the oriented 1-chains to the 0-chains gives an exact sequence of RG-modules

0 → H1(L) → indG
K1

(L1 ⊗ ε) → indG
Ko
Lo → Ho(L) → 0,

where the middle map associates to the function [1, tv1] supported on K1 and value tv1 ∈ L1 at 1, the
function [1, r(tv1)] − t[1, r(v1)] supported on Ko ∪Kot

−1 of value r(tv1) at 1 and −r(v1) at t−1, and Hi(L)
is the i-th homology of L for i = 0, 1.

The natural RKo-equivariant map wo : Lo → Ho(L) is injective, and the natural map wo ◦ r : L1 →
Lo → Ho(L) is K1-equivariant (lemma 1.2).

0.1 Basic proposition: integrality local criterion.
1) H1(L) = 0 if and only if r is injective.
2) Suppose that
- R is a complete discrete valuation ring of fractions field S,
- Lo is a free R-module of finite rank,
- r is injective,

and let V := L⊗RS, rS := r⊗R idS : V1 → Vo. Then, the map Ho(L) → Ho(V) is injective and the R-module
Ho(L) is torsion free and contains no line Sv for v ∈ Ho(V), when the equivalent conditions are satisfied :

a) rS(V1) ∩ Lo = r(L1),
b) the map V1/L1 → Vo/Lo is injective.
c) r(L1) is a direct factor in Lo.

Let R as in 2). An S-representation V of G of countable dimension with a basis generating a G-stable
R-submodule L, is called integral of R-integral structure L. When the properties of 2) are true, Ho(L) is an
R-integral structure of Ho(V) such that (lemma 1.4.bis)

Ho(L) ∩ Vo = Lo.

0.2 Corollary Let R as in 2). The S-representation Ho(V) of G is R-integral if and only if there exists
an R-integral structure Lo of the representation Vo of Ko such that L1 = Lo ∩ V1 is stable by t (considering
V1 embedded in Vo).
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When this is true, the diagram L1 → Lo defines an G-equivariant coefficient system L of R-modules on
X , and Ho(L) is an R-integral structure of Ho(V).

From now on, r is injective (and we forget r) and Vo = KoV1.

When Vi, for i = 0, 1 identified with an element of Z/2Z, contains a R-integral structure Mi which
is finitely generated R-submodule, one constructs inductively an increasing sequence of finitely generated
R-integral structures (zn(Mi))n≥1 of Vi, called the zigzags of Mi, as follows.

The RKi+1-module Mi+1 defined by
- if i = 1, then Mo = KoM1,
- if i = 0, then M1 = (Mo ∩ V1) + t(Mo ∩ V1),

is an R-integral structure of the SKi+1-module Vi+1 (a finitely generated R-module is free if and only if it
is torsion free and does not contain a line). We repeat this construction to get the first zigzag z(Mi):

- if i = 1, then z(M1) = (KoM1 ∩ V1) + t(KoM1 ∩ V1),
- if i = 0, then z(Mo) = Ko((Mo ∩ V1) + t(Mo ∩ V1)).

0.3 Corollary Let i ∈ Z/2Z and let Mi be an R-integral structure of the SKi-module Vi. The
representation of G on Ho(V) is R-integral if and only if the sequence of zigzags (zn(Mi))n≥0 is finite.

Set PF = OF pF . For an integer e ≥ 1, the e-congruence subgroup K(e) =

(

1 + P e
F P e

F

P e
F 1 + P e

F

)

normalized by Ko is contained in the group I(e) =

(

1 + P e
F P e−1

F

P e
F 1 + P e

F

)

normalized by K1 and generated by

K(e) and tK(e)t−1. The pro-p-Iwahori subgroup of I is I(1).

0.4 Proposition Let Valg be an irreducible algebraic E-representation of G (hence F ⊂ E if Valg is
not trivial), let Vsm be a finite length smooth E-representation of G and let e be an integer ≥ 1 such that
Vsm is generated by its K(e)-invariants .

1) The locally algebraic E-representation V := Vsm ⊗E Valg of G is isomorphic to the 0-th homology
Ho(V) of the coefficient system V associated to the inclusion

V I(e)
sm ⊗E Valg → V K(e)

sm ⊗E Valg.

2) The representation of G on V is OE-integral if and only if there exists an OE-integral structure Lo

of the representation of Ko on V
K(e)
sm ⊗E Valg such that L1 = Lo ∩ (V

I(e)
sm ⊗E Valg) is invariant by t. Then

the 0-th homology L of the G-equivariant coefficient system on X defined by the diagram L1 → Lo is an
OE-structure of V .

We have Lo = L∩(V
K(e)
sm ⊗E Valg) in 2) by the lemma 1.4bis; when (V

K(e)
sm ⊗E Valg) = Ko(V

I(e)
sm ⊗EValg),

one can suppose Lo = KoL1 in 2) by the corollary 0.3.

We define the contragredient Ṽ = Ṽsm⊗EV
′
alg of V = Vsm⊗EValg by tensoring the smooth contragredient

Ṽsm of Vsm and the linear contragredient V ′
alg of Valg.

0.5 Corollary A finite length locally algebraic E-representation of G is OE-integral if and only if its
contragredient is OE-integral.

0.6 Remark A “moderately ramified” diagram:
- an R-representation Lo of Ko trivial on K(1) with Z acting by a character ω,
- an R-representation L1 of K1 trivial on I(1) and semi-simple as a SI-module,
- an RIZ-inclusion L1 → Lo,

is equivalent by “inflation” to a data:
- an R-representation Yo of GL(2,Fq) with Z(Fq) acting by a character,
- a semi-simple R-representation Y1 of T (Fq),
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- an RT (Fq)-inclusion Y1 → Yo with image contained in Y
N(Fq)
o ,

- an operateur τ on Y1 such that:
τ2 is the multiplication by a scalar a ∈ E∗,
τ permutes the χ-isotypic part and the χs isotypic part of Y1 for any character χ of T (Fq).

The action of GL(2, OF ) on Lo inflates the action of Yo, the action of I on L1 inflates the action of Y1, the
action of t on L1 is given by τ , and a = ω(pF ).

Reduction An R-integral finitely generated S-representation V of G contains an R-integral structure
Lft which is finitely generated as a RH-module; two finitely generated R-integral structures Lft, L

′
ft of V

are commensurable: there exists a ∈ R non zero such that aLft ⊂ L′
ft, aL

′
ft ⊂ Lft.

Let x be an uniformizer of R and k = R/xR. When the reduction Lft := Lft/xLft is a finite length
kG-module, the reduction L of an R-integral structure L of V commensurable to Lft has finite length and
the same semi-simplification than Lft. See [Vig96] I.9.5 Remarque, and [Vig96] I.9.6).

0.7 Lemma If the reduction Lft is an irreducible k-representation of H , then the R-integral structures
of V are the multiples of Lft.

In the integrality criterion 0.1, when the properties of 2) are true, the reduction of the R-integral
structure Ho(L) of the S-representation Ho(V) of G is the 0-th homology of the G-equivariant coefficient
system defined by the diagram L1 → Lo. We have the exact sequences of SG-modules:

0 → indG
K1
V1 ⊗ ε→ indG

Ko
Vo → Ho(V) → 0,

of free RG-modules:
0 → indG

K1
L1 ⊗ ε→ indG

Ko
Lo → Ho(L) → 0,

of kG-modules:
0 → indG

K1
L1 ⊗ ε→ indG

Ko
Lo → Ho(L) → 0.

We will explicit the integral structures constructed in the proposition 0.4 when Vsm is a Steinberg
representation, and when V = Vsm is a moderately ramified principal series.

The Steinberg representation Let B = NT be the upper triangular subgroup of G, with unipotent
radical N and diagonal torus T . The Steinberg R-representation StR of G is the R-module of B-left invariant
locally constant functions f : G → R modulo the constant functions, with G acting by right translations.
By [BS] 2.6, we have

StZ ⊗ZR = StR .

The Steinberg representation over any field of characteristic p is irreducible [BL], [Vig06]. The same definition
and the same property hold for the Steinberg R-representation stR of the finite group GL(2,Fq) [CE] 6.13,
ex. 6. From the lemma 0.7 and [SS91] th.8, one obtains:

0.8 Proposition The Steinberg R-representation StR of G is the 0-th homology of the moderately
ramified diagram inflated from the Steinberg R-representation stR of GL(2,Fq), the trivial character of

T (Fq) on st
N(Fq)
R ≃ R, and the multiplication by −1 on st

N(Fq)
R (remark 0.6).

The S-Steinberg representation StS of G is integral, all R-integral structures are multiple of StR.

The irreducible algebraic representation Symk of G of dimension k+ 1 is realized in the space F [X,Y ]k
of homogeneous polynomials in X,Y of degree k ≥ 0 with coefficients in F ; it has a central character z → zk.
We denote by |?| the absolute value on an algebraic closure F ac of F normalized by |p| = p−1. Over any

finite extension E of F [p
k/2
F ] contained in F ac, the representation

Symk ⊗E | det(?)|k/2
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of G has an OE-integral central character. Let us consider the OE-module M1 generated in OE [X,Y ]k by
the monomials

X iY j if i ≤ j and p
(−i+j)/2
F X iY j if i > j,

and the image φBI in StOE
of the characteristic function of BI. One sees that the OE-integral structure

L1 = OEφBI ⊗OE
M1 of the representation StI(1) ⊗E Symk ⊗E | det(?)|k/2 of K1 is equal to its zigzag z(L1) =

KoL1 ∩ (StI(1) ⊗E Symk ⊗E | det(?)|k/2), using tX = p
1/2
F uY, tY = p

−1/2
F uX where u ∈ O∗

F and a small
computation.

0.9 Proposition The locally algebraic representation StE ⊗E Symk ⊗E | det(?)|k/2 is OE-integral for
any integer k ≥ 0; the 0-th homology of the G-equivariant coefficient system on the tree defined by the
diagram

L1 = OEφBI ⊗OE
M1 → Lo = KoL1

is an integral OE-structure.

When F = Qp, there are other four different non trivial proofs of the integrality, Teitelbaum [T],
Grosse-Klönne [GK1], Breuil [Br] (with some restrictions), Colmez [Co4].

Principal series Let χ1 ⊗ χ2 : T → E∗ be an E-character of T inflated to B. The principal series
indG

B(χ1 ⊗ χ2) is the set of functions f : G → E satisfying f(hgk) = χ1(a)χ2(d)f(g) for all g ∈ G, h ∈ B
with diagonal (a, d), and k in a small open subgroup of G depending on f , with the group G acting by right
translation.

When χ1⊗χ2 is moderately ramified, i.e. trivial on T (1+PF ), its restriction to T (OF ) is the inflation of
an E-character η1⊗η2 of T (Fq), and the principal series is the 0-th homology of the G-equivariant coefficient
system defined by the moderately ramified diagram

(indG
B(χ1 ⊗ χ2))

I(1) → (indG
B(χ1 ⊗ χ2))

K(1)

inflated (Remark 0.6) from the inclusion

(ind
G(Fq)

B(Fq)(η1 ⊗ η2))
N(Fq) → ind

G(Fq)

B(Fq)(η1 ⊗ η2)

and the operator τ on (ind
G(Fq)

B(Fq)(η1 ⊗ η2))
N(Fq) = Eφ1 ⊕ Eφs such that

τφ1 = χ1(pF )φs and τ2 is the multiplication by χ1(pF )χ2(pF ),

where φ1, φs have support B(Fq), B(Fq)sN(Fq) and value 1 at id, s. Clearly,

Y1 = OEφ1 ⊕OEχ1(pF )φs,

is an OE-integral structure of (ind
G(Fq)

B(Fq)(η1 ⊗ η2))
N(Fq) stable by τ and

Yo := GL(2,Fq)Y1

is an OE-integral structure of ind
G(Fq)

B(Fq)(η1 ⊗ η2). When the central character χ1χ2 is integral, (Yo, Y1, τ)

inflates to a moderately ramified diagram LY1 → LYo
:= KoLY1 defining a G-equivariant coefficient system

L of free OE-modules of finite rank on X . An HE(G, I(1))-module is called OE-integral when it contains an
E-basis which generates an OE-module stable by HOE

(G, I(1)).

0.10 Theorem We suppose that the E-character χ1⊗χ2 is moderately ramified, that χ1(pF )χ2(pF ) ∈
O∗

E is a unit, and that E contains a p-root of 1. The following properties are equivalent:

a) the principal series indG
B(χ1 ⊗ χ2) is OE-integral,

b) the HE(G, I(1))-module (indG
B(χ1 ⊗ χ2))

I(1) is OE-integral,
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c) χ2(pF ), χ1(pF )q are integral,

d) Y
N(Fq)
o = Y1,

e) L := Ho(L) is an OE-integral structure of indG
B(χ1 ⊗ χ2).

When they are satisfied, we have LK(1) = LYo
and LI(1) = LY1 generates the OEG-module L.

When χ1χ
−1
2 is moderately unramified, one reduces to χ1 ⊗ χ2 moderately ramified by twist by a

character. When F = Qp and χ1χ
−1
2 is unramified, i.e. trivial on O∗

F , the equivalence between c) and a)
has been proved by [Br1].

0.11 Remarks (i) In the theorem 0.10, χ1(pF ) is a unit if and only if the character χ1 ⊗ χ2 of T
is OE-integral. Using [Vig04] th. 4.10, L is the natural OE-integral structure of functions in indG

B(χ1 ⊗ χ2)
with values in OE . The reduction of L is the kE-principal series of G induced from the reduction χ1 ⊗χ2 of
χ1⊗χ2; when χ1 6= χ2 it is irreducible [BL], [Vig04], [Vig06] and each OE-integral structure of indG

B(χ1⊗χ2)
is a multiple of L, by the lemma 0.7.

When χ1 = χ2, then indG
B(χ1 ⊗ χ2) has length 2; are the OE-integral structures of indG

B(χ1 ⊗ χ2)
OEG-finitely generated ? When F = Qp, compare with [BeBr] 5.4.4 and [Co05] 8.5.

(ii) The module of B is |?|F ⊗ |?|−1
F where |pF |F = 1/q. The contragredient of indG

B(χ1 ⊗ χ2) is

indG
B(χ−1

1 |?|F ⊗ χ−1
2 |?|−1

F ) ([Vig96] I.5.11), hence the proposition 0.10 and the corollary 0.5 are compatible.
The representation

indG
B(χ1 ⊗ χ2) ≃ indG

B(χ1|?|F ⊗ χ2|?|
−1
F )

is irreducible when χ1 6= χ2, χ2|?|
2
F (the induction is not normalized); the isomorphism is compatible with

the theorem 0.10.
(iii) Theoretically, there is no reason to restrict to the moderately ramified smooth case, but the com-

putations become harder when the level increases or when one adds an algebraic part.
(iv) One should see c) as the limit at ∞ of the integrality local criterion. For indG

B(χ1 ⊗ χ2) ⊗
Symk ⊗| det(?)|k/2, one should replace c) by:

χ2(pF )q−k/2, χ1(pF )q1−k/2 are integral.

This condition is automatic when the representation is integral; this can be seen either via Hecke algebras
or via exponents [E]. The representation of T on the 2-dimensional space of N -coinvariants (Vsm)N of the
smooth part Vsm = | det(?)|k/2 ⊗ indG

B(χ1 ⊗ χ2) is a direct sum of two characters

| det(?)|k/2[(χ1 ⊗ χ2) ⊕ (χ2|?|F ⊗ χ1|?|
−1
F )].

The N -invariants V N
alg of the algebraic part Valg = Symk has dimension 1 and T acts V N

alg by ?k ⊗ 1. The

representation of T on (Vsm)N ⊗E V N
alg is the direct sum of two characters called the exponents of V ,

(χ1?
k|?|

k/2
F ⊗ χ2|?|

k/2
F ) ⊕ (χ2?

k|?|
k/2+1
F ⊗ χ1|?|

k/2−1
F ).

They are integral on the element
(

1 0
0 pF

)

which dilates N if and only if χ2(pF )q−k/2 and χ1(pF )q1−k/2 are integral.

k-representations of G. Let k be a finite field of characteristic p. The theorem 0.10 and the remark
0.11 (i)) imply that a principal series of G over k is the 0-th homology of a G-equivariant coefficient system.

Let µ1 ⊗ µ2 be a k-character of T ; its restriction to T (OF ) is the inflation of a k-character η1 ⊗ η2 of

T (Fq). As before, (ind
G(Fq)

B(Fq)(η1 ⊗ η2))
N(Fq) = Eφ1 ⊕ Eφs where φ1, φs have support B(Fq), B(Fq)sN(Fq)

and value 1 at id, s.
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0.12 Proposition The principal series indG
B(µ1 ⊗ µ2) is the 0-th homology of the G-equivariant

coefficient system defined by the moderately ramified diagram

(indG
B(µ1 ⊗ µ2))

I(1) → (indG
B(µ1 ⊗ µ2))

K(1)

inflated (Remark 0.6) from the inclusion

(ind
G(Fq)

B(Fq)(η1 ⊗ η2))
N(Fq) → ind

G(Fq)

B(Fq)(η1 ⊗ η2)

and the operator τ on (ind
G(Fq)

B(Fq)(η1 ⊗ η2))
N(Fq) such that

τφ1 = χ1(pF )φs and τ2 is the multiplication by χ1(pF )χ2(pF ).

Supersingular representations
The theorem 0.10 and [Vig04] imply:

0.13 Proposition The simple supersingular modules of the Hecke k-algebra HkE
(G, I(1)) are the

reductions of the integral structures of the I(1)-invariants of integral principal series of G induced from non
integral moderately ramified characters of B.

Recall that a simple HkE
(G, I(1))-module is supersingular if the action of the center of HkE

(G, I(1)) is
“null” [Vig04].

0.14 Proposition Let L be the OE-integral structure of the theorem 0.10, of an OE-integral principal
series of G induced from non integral moderately ramified E-characters χ1 ⊗ χ2 of B, and let L be its
reduction.

a) If the reduction of LI(1) is equal to (L)I(1), the kE-representation L of G is irreducible and supersin-
gular.

b) The reduction of LI(1) is equal to (L)I(1) when F = Qp, p 6= 2.

From [Vig04], the map V → V I(1) is a bijection between the irreducible k-representations of GL(2,Qp)
and the simple Hk(G, I(1))-modules, when the central element pF acts by a fixed scalar. The proposition
0.14 implies:

0.15 Corollary When F = Qp, p 6= 2, any irreducible representation of G over a finite field of
characteristic p, with a central character, is the reduction of a moderately ramified integral principal series
of G, and is the 0-th homology of a coefficient system on the tree.

These results were presented in Tel-Aviv and Montreal (2005) and in Luminy (2006). One can hope that
the new techniques introduced by Elmar Grosse-Klönne on the Bruhat-Tits building of PGL(n, F ) [GK2]
will allow to generalize the local integrality criterion to GL(n, F ) for n ≥ 2.

1 Coefficient system on the tree
Let R be a commutative ring. A G-equivariant coefficient system of R-modules V on the tree X consists

of
- an R-module Vσ for each simplex σ of X ,
- a restriction linear map rτ

σ : Vτ → Vσ for each edge τ containing the vertex σ,
- linear maps gσ : Vσ → Vgσ for each simplex σ of X and each g ∈ G, compatible with the product of G

and with the restriction: (gg′)σ = gg′σg
′
σ, gσr

τ
σ = rgτ

gσgτ .
The stabilizer inG of a simplex σ acts on Vσ and the restrictions rτ

σ, r
τ
σ′ are equivariant by the intersection

of the stabilizers of the vertices σ, σ′ of τ .
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We denote by X (o) the set of vertices, by X (1) the set of oriented edges (σ, σ′) (with origin σ) and by
X1 the set of non oriented edges {σ, σ′}.

The R-module Co(V) of 0-chains is the set of functions φ : X (o) →
∏

σ∈X (o) Vσ with finite support such

that φ(σ) ∈ Vσ for any vertex σ.
The R-module C1(V) of oriented 1-chains is the set of functions ω : X (1) →

∏

{σ,σ′}∈X1
V{σ,σ′} with

finite support such that ω(σ, σ′) = −ω(σ′, σ) ∈ V{σ,σ′} for any edge {σ, σ′}.
The boundary ∂ : C1(V) → C0(V) is the R-linear map sending an oriented 1-chain ω supported on one

edge τ = {σ, σ′} to the 0-chain ∂ω supported on the vertices σ, σ′, with

∂ω(σ) = rτ
σω(σ, σ′), ∂ω(σ′) = rτ

σ′ω(σ′, σ).

The group G acts on the R-module of oriented ∗-chains, for ∗ = 0, 1, by

(gω)(gσ) = g(ω(σ))

for any g ∈ G and any oriented ∗-chain ω; the boundary ∂ is G-equivariant; the 0-homology

Ho(V) =
Co(V)

∂C1(V)

and the 1-homology H1(V) = Ker ∂ are R-representations of G.

For any oriented edge (σ, σ′) there exists g ∈ G such that g(σ, σ′) = (σo, tσo).
This property is equivalent to the fact that a G-equivariant coefficient system is determined by its

restriction to the vertex σo and to the edge σ1 := (σo, tσo), i.e. by a diagram

r : V1 → Vo

where Vo is an R-representation on Ko, V1 is an R-representation of K1 and r is an R-linear map which is
Ko ∩K1-equivariant,

Vo := Vσo
, V1 := Vσ1 , r := rσ1

σo
.

Conversely, any diagram defines a G-equivariant coefficient system [Pas]. The representations of G on Co(V)
and on C1(V) are isomorphic to the compactly induced representations indG

Ko
Vo and indG

K1
(V1 ⊗ ε) where

ε : K1 → R∗ is the R-character of K1 trivial on Ko ∩K1 such that ε(t) = −1.

For v1 ∈ V1, if ω is the oriented 1-chain with support the edge σ1 = {σo, tσo} such that ω(σo, tσo) = tv1,
the boundary map ∂ : C1(V) → C0(V) is the linear G-equivariant map such

(boundaryformula) ∂(ω)(σo) = r(tv1), ∂(ω)(tσo) = −rσ1
tσo
tv1 = −tσo

r(v1).

The combinatorial distance on X is the number of edges between two vertices; the action of the group
G respects the distance. For any integer n ≥ 0, we denote by Sn the sphere of vertices of distance n to σo

and by Bn the ball of radius n. For any chain ω 6= 0 , let n(ω) be the integer such that the support of ω is
contained in the ball Bn(ω) and not in Bn(ω)−1. When ω is a 1-chain we have n(ω) ≥ 1.

For any vertex σ ∈ Sn with n ≥ 1, the neighbours of σ belong to Sn+1 except one neighbour which
belongs to Sn−1; let τσ be the unique oriented edge starting from σ and pointing toward the origin σo. For
any oriented 1-chain ω,

(key formula) ∂ω(σ) = rτσ

σ ω(τσ) for all σ ∈ Sn(ω).
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We identify naturally vo ∈ Vo with a 0-chain with support on the single vertex σo; we consider the
natural Ko-equivariant linear map

wo : Vo → Ho(X ,V)

and the Ko ∩K1-equivariant map
wo ◦ r : V1 → Vo → Ho(X ,V).

1.2 Lemma The map wo is injective when r is injective and the map wo ◦ r is K1-equivariant.

Proof. There is no non zero 1-chain ω with ∂ω supported on the single vertex σo because n(ω) ≥ 1 and
∂ω is not zero on Sn(ω) by the key formula, because r is injective.

The boundary formula gives the K1-equivariance.

When the boundary map ∂ is injective, r must be injective. By the key formula, the converse is true.

1.3 Lemma ∂ is injective if the map r is injective.

Proof. Let ω 6= 0 be any oriented 1-chain and let σ ∈ Sn(ω); the edge τσ belongs to the support of ω. By
the key formula ∂(ω)(σ) = rτ

σω(τσ) does not vanish because rτ
σ is injective if r is injective, by the properties

of the action of G.

We suppose from now on that the map r : V1 → Vo is injective.

Descent Let φ 6= 0 be a 0-chain not supported on the origin. There exists an oriented 1-chain ω such
that n(φ− ∂ω) < n(φ) if and only if φ(σ) belongs to rτσ

σ Vτσ
for all σ ∈ Sn(φ).

Proof. Let ω be any oriented 1-chain. By the key formula, n(φ−∂ω) < n(φ) is equivalent to n(ω) = n(φ)
and

φ(σ) = rτσ
σ ω(τσ)

for all σ ∈ Sn(w). When the necessary condition φ(σ) = rτσ
σ (vτσ

), vτσ
∈ Vτσ

for all σ ∈ Sn(φ) is satisfied, the
oriented 1-chain ωφ supported on

∪σ∈Sn(φ)
τσ

with value vτσ
on τσ, satisfies n(φ − ∂ωφ) < n(φ). The oriented 1-chains satisfying n(φ − ∂ω) < n(φ) are

ωφ + ω′ with n(ω′) ≤ n(φ) − 1.

When the R-module r(V1) has a supplementary in Vo = Wo ⊕ r(V1), then the R-module rτσ
σ Vτσ

has a
(non canonical) supplementary in Vσ = Wσ ⊕ rτ

σ(Vτ ); we can find an oriented 1-chain ω supported on τσ
such that (φ− ∂ω)(σ) ∈ Wσ for any σ ∈ Sn(φ). By induction on n(φ), any non zero element of Ho(V) has a
representative φ either supported on the origin, or such that φ(σ) ∈Wσ for any σ ∈ Sn(φ).

1.4 Proof of the basic proposition 0.1.
1) Lemma 1.3.
2) As r is injective, we can reduce r to an inclusion V1 → Vo.
Equivalence of the properties a), b), c). It is obvious that V1 ∩ Lo = L1 is equivalent to: the kernel of

V1 → Vo/Lo is L1, is equivalent to: the quotient of Lo by L1 is torsion free, and is equivalent to L1 is a
direct factor of Lo because Lo is a free module of finite rank over the principal ring R.

The R-module Ho(L) embeds in the S-vector space Ho(V) because the map V1/L1 → Vo/Lo is injective
by b) hence H1(V/L) = 0 by 1) and the sequence H1(V/L) → Ho(L) → Ho(V) is exact.

Let v be a non zero element of Ho(L). Suppose that the line Sv is contained in Ho(L). We choose
- a representative φ ∈ Co(L) of v such that φ is supported on σo or such that φ(σ) ∈ Wσ for any

σ ∈ Sn(φ),
- a vertex σ′ ∈ Sn(φ) such that φ(σ′) 6= 0,
- an integer n ≥ 1 such that φ(σ′) does not belong to xnLσ′ .
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As Sv ⊂ Ho(L), there exists an integral oriented 1-cocycle ω ∈ C1(L) such that (φ + ∂(ω))(σ) ∈ xnLσ

for any vertex σ of the tree.
We may suppose n(ω) ≤ n(φ) by the following argument. If n(ω) > n(φ), the key formula implies that

ω(τσ) ∈ xnL(τσ), for any vertex σ ∈ Sn(ω) because rτσ
σ Lτσ

∩ xnLσ = rτσ
σ (xnLτσ

) by a) and the injectivity of
rτσ
σ . Let ωext be the integral oriented 1-cocycle supported on

∪σ∈Sn(ω)
τσ

and equal to ω on this set. We may replace ω by ω− ωext; as n(ω− ωext) < n(ω) we reduce to n(ω) ≤ n(φ)
by decreasing induction.

If φ is supported on σo, then ω = 0 and φ(σo) ∈ xnLo which is false.
If nφ ≥ 1, we have φ(σ) + ω(τσ) ∈ xnLσ for any σ ∈ Sn(φ) by the key formula. As φ(σ) ∈ Wσ and

ω(τσ) ∈ rτσ
σ (Vτσ

), this is impossible.
As R is a local complete principal ring, Ho(L) is R-free.

1.4bis Lemma Let φ be a 0-chain with support on the single vertex σo and let ω be an oriented
1-chain such that φ+ ∂(ω) is integral. Then φ is integral.

Proof. As n(ω) ≥ 1, the restriction of ω on Sn(ω) is integral by the key formula. By a decreasing
induction on n(ω), φ is integral.

1.5 Proof of the corollary 0.2
Sufficient. When Lo is an R-integral structure of Vo such that L1 = Lo ∩ V1 is stable by t, then L1 is

an R-integral structure of V1; the map r induces an injective diagram L1 → Lo. By the integrality criterion
0.1, Ho(V) is R-integral.

Necessary. Suppose that L is an R-integral structure of Ho(V). We apply the lemma 1.2. The inverse
image Lo of wo(Vo) ∩ L in Vo by wo is an R-integral structure of the representation of Ko on Vo, and the
inverse image L1 of wo(V1) ∩ L is an R-integral structure of V1, of course stable by t, equal to Lo ∩ V1.

1.6 Proof of the corollary 0.3
1) When the sequence of zigzags is finite, there exists a finitely generated R-integral stucture Mi of Vi

equal to its first zigzag z(Mi) = Mi, for i = 0 or i = 1. If z(M1) = M1, set Lo = KoM1. If z(Mo) = Mo, set
Lo = Mo. In both cases, Lo is a finitely generated R-integral structure of Vo and L1 = Lo ∩ V1 is stable by
t. By the corollary 0.2, Ho(V) is R-integral.

2) When Ho(V) is R-integral, there exists an R-integral structure Lo of Vo such that L1 = V1 ∩ Lo is
t-invariant by the corollary 0.2.

- Let M1 be an R-integral structure of V1. Replacing L by a multiple, we suppose M1 ⊂ L1. Then
KoM1 ⊂ Lo and z(M1) ⊂ L1. The sequence of zizgags of M1 is contained in L1 and increasing, hence finite
because L1 is a finitely generated R-module and R is noetherian.

- Let Mo be an R-integral structure of Vo. We apply the above argument to M1 = (V1∩Mo)+t(V1∩Mo);
the sequence of zizgags of M1 is finite, and also the sequence of zizgags of Mo.

1.7 Proof of the proposition 0.4
1)The exactness of the sequence

0 → indG
K1

(V I(e)
sm ⊗E Valg ⊗E ε) → indG

Ko
(V K(e)

sm ⊗E Valg) → Vsm ⊗E Valg → 0

follows from the following facts.
The assertion is true when Valg is trivial if E is replaced by the field C of complex numbers by [SS97]

II.3.1; this is also true for E because the scalar extension ⊗EC commutes with the invariants by an open
compact subgroup and with the compact induction from an open subgroup. The tensor product by ⊗EValg

of an exact sequence of EG-representations remains exact and commutes with the compact induction from
an open subgroup.

2) The finite length representation Vsm is admissible; this is known for complex representations and
remain true for E-representations because Vsm ⊗E C has finite length [Vig96] II.43.c, and ?⊗E C commutes
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with the K(e)-invariant functor. The E-vector space V
K(e)
sm ⊗EValg is finite dimensional. Apply the corollary

0.2.

1.8 Proof of the corollary 0.5
Let Vsm be a non zero smooth E-representation of G of finite length; there exists an integer e ≥ 1 such

that each non zero irreducible subquotient of Vsm contains a non zero K(e)-invariant vector. The E-vector

space (Ṽsm)K(e) isomorphic to the dual (V
K(e)
sm )′; the irreducible subquotients of the contragredient Ṽsm

are the contragredients of the irreducible subquotients of Vsm. Hence Vsm and Ṽsm are generated by their
K(e)-invariants.

Suppose that V = Vsm ⊗E Valg is OE-integral. We choose an OE-integral structure Lo of the repre-

sentation of Ko on V
K(e)
sm ⊗E Valg such that L1 := Lo ∩ (V

I(e)
sm ⊗E Valg) is t-stable (proposition 0.4), and

we take the linear dual L′
o = HomOE

(Lo, OE) of Lo. It is clear that L′
o is an OE-integral structure of the

representation of Ko on

(V K(e)
sm ⊗E Valg)′ ≃ (V K(e)

sm )′ ⊗E (Valg)′ ≃ (Ṽsm)K(e) ⊗E V ′
alg .

We take the intersection L′
o∩((Ṽsm)I(e)⊗EV

′
alg) = L′

o∩(V
I(e)

sm ⊗EValg)
′. The OE-module L1 is a direct factor

of Lo hence its linear dual L′
1 is equal to this intersection; it is clearly invariant by t. By the proposition 0.4,

Ṽ is OE-integral.
The length of Vsm and the E-dimension of Valg are finite, hence V is isomorphic to the contragredient

of Ṽ . If Ṽ is OE-integral then V is OE-integral.

1.9 Proof of the lemma 0.7
Let L be an R-integral structure of V which is different from Lft. Taking a multiple of Lft, we reduce

to Lft ⊂ L and Lft not contained in xL. The inclusions

xLft ⊂ (xL ∩ Lft) ⊂ Lft,

the right one beeing strict, and the irreducibility of Lft/xLft imply xL∩Lft = xLft, equivalent to L = Lft

because there exists no v ∈ L and v 6∈ Lft such that v ∈ x−1Lft.

2 The Steinberg representation
The proposition 0.8 results from the remarkable properties of the Steinberg representations that we

recall below and from the lemma 0.7.

2.1 StR is the 0-th homology of the G-coefficient system associated to the inclusion

St
I(1)
R → St

K(1)
R

by [SS91] th. 8.
2.2 StR = StZ ⊗ZR is an R-free module, isomorphic as an R-representation of B to C∞

c (N,R), where
N acts by translations and T by conjugation, by the map [BS] 3.7:

f → φf (n) = f(n) − f(sn) for n ∈ N and s =

(

0 1
1 0

)

.

One can check that the image of St
K(1)
R is C∞

c (N(0), R)N(1) where N(0) = N ∩ GL(2, OF ) and N(1) =
N ∩K(1).

2.3 When R is a field of characteristic p, the action of the monoid generated by N and

(

pF 0
0 1

)

on C∞
c (N,R) is irreducible [Vig06]. The unique projective irreducible R-representation of GL(2,Fq) is stR

[CE] 6.12.
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2.4 The Steinberg R-representation StR of G is the highest cohomology with compact supports of the
tree by [BS] 5.6, and by [SS91] cor. 17,

StR = R[G/I] ⊗HR(G,I) sign .

where sign is the character of the Hecke algebra HR(G, I) of the Iwahori subgroup I on StI
R = St

I(1)
R .

2.5 Let φBI be the characteristic function of BI modulo the constants. We have

St
I(1)
R = RφBI , KoRφBI = St

K(1)
R , tφBI = −φBI ,

by the same proof of [BL] lemma 26 for the first equality, because the characteristic function of B(Fq)

generates ind
G(Fq)

B(Fq) 1R for the second equality (see also the lemma 2.7), and because φBI(t) = −φBsI(t) = −1

for the third equality.

The representation of Ko on St
K(1)
R is the inflation of the Steinberg representation stR = stZ ⊗ZR of

GL(2,Fq) which is a free R-module of rank q.

A system of representatives of Ko/ZI ≃ GL(2,Fq)/B(Fq) is s, (vx)x∈Fq
where vx =

(

1 0
x 1

)

, because

GL(2,Fq) = B(Fq)∪N(Fq)sB(Fq). One embeds Fq in OF by the Teichmüller map. If M is an RZI-module,
then

KoM = sM +
∑

x∈Fq

vxM.

2.6 Lemma sφBI +
∑

x∈Fq
vxφBI = 0. When R is a field, the q elements sφBI , vxφBI (x ∈ F∗

q) form

an R-basis of St
K(1)
R .

Proof. RKoφBI = St
K(1)
R is R-free of rank q (2.5), the sum sφBI +

∑

x∈Fq
vxφBI is Ko-invariant and

StKo

R = 0.

2.7 Proof of the integrality of St⊗Sk (proposition 0.9).
We can suppose k ≥ 1. We have

Lo = KoL1 = (sφBI ⊗ sM1) +
∑

x∈Fq

(vxφBI ⊗ vxM1).

The first zizgag z(L1) = KoL1 ∩ (St
I(1)
E ⊗E Symk ⊗E | det(?)|k/2) of L1 is, by (2.5) and the lemma 2.6,

z(L1) = OEφBI ⊗OE
(M1 +N),

where N is the intersection of sM1 with ∩x∈F∗

q
vxM1.

It is clear that OE [X,Y ]k ⊂ N because OE [X,Y ]k is stable by Ko and contained in M1. The key of the
proof is to check the opposite inclusion, because N = OE [X,Y ]k implies z(L1) = L1 and one can apply the
corollary 0.3.

As Lo ⊂M1, one deduces from N = Lo that L1 is equal to its first zigzag z(L1). We apply the corollaries
0.3 and 0.2 and the proposition 0.9 is proved. Let us check the opposite inclusion. A basis of sM1 is X iY j

if i ≥ j and p
(−j+i)/2
F X iY j if i < j for i, j ∈ N, i + j = k; a basis of vxM1 is (X + xY )iY j if i ≤ j and

p
(−i+j)/2
F (X + xY )iY j if i > j for i, j ∈ N, i+ j = k. Suppose that

∑

i+j=k

ci,jX
iY j =

∑

i+j=k

di,j(x)(X + xY )iY j (ci,j , di,j(x) ∈ E, x ∈ F∗
q)
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belongs to N . Modulo OE [X,Y ]k, we can forget the ci,j with i ≥ j and di,j(x) with i ≤ j, and we have

∑

i<j

ci,jX
iY j ≡

∑

j<i

di,j(x)(X + xY )iY j mod OE [X,Y ]k.

When k = 2u is even and i ≥ u, X i does not appear on the left side. By decreasing induction on i, we can
show that dk,o(x), dk−1,1(x) . . . , du,u(x) ∈ OE . When k = 2u+ 1 is odd and i ≥ u + 1, X i does not appear
on the left side, and we can show that the di,j(x) for j < i belong to OE . Hence N ⊂ OE [X,Y ]k.

3 Principal series. Proof of the theorem 0.10
A moderately ramified character of O∗

F is the inflation of a character of F∗
q , that we denote by the same

letter; we use the Teichmüller embedding Fq → OF .

As G = BGL(2, OF ), the restriction to GL(2, OF ) of indG
B(χ1 ⊗ χ2) is isomorphic to

ind
GL(2,OF )
B(OF ) (η1 ⊗ η2)

and the representation of GL(2, OF ) on (indG
B(χ1 ⊗ χ2))

K(1) is the inflation of the principal series

ind
GL(2,Fq)

B(Fq) (η1 ⊗ η2).

A system of representatives of B(OF )\GL(2, OF )/K(1) ≃ B(Fq)\GL(2,Fq) is

1, sux for x ∈ Fq, ux =

(

1 x
0 1

)

by the decomposition GL(2,Fq) = B(Fq) ∪ B(Fq)sN(Fq). Let Lo be the OE-integral structure of the E-

representation of Ko on (ind
GL(2,OF )
B(OF ) (η1 ⊗ η2))

K(1) given by the functions with values in OE . We denote by

fg ∈ Lo the function of support B(OF )gK(1) and value 1 at g. An R-basis of Lo is {f1, (fsux
)x∈Fq

}. The
OEKo-module Lo is cyclic generated by f1 because

uxsf1 = fsu−x
for x ∈ Fq.

Modulo the first congruence group K(1), the pro-p-Iwahori I(1) is represented by (ux)x∈Fq
. A basis of L

I(1)
o

is
f1,

∑

x∈Fq

fsux
.

It is convenient to write t = sh = shss where h =

(

pF 0
0 1

)

. It is obvious that tf1(1) = f1(t) = 0, tf1(s) =

f1(st) = χ(h) = χ1(pF ), hence

tf1 = χ1(pF )
∑

x∈Fq

fsux

and because t2 = pF id,

t
∑

x∈Fq

fsux
= χ2(pF )f1.

The OE-module L1 := L
I(1)
o + tL

I(1)
o is equal to

L1 = (OE + χ2(pF )OE)f1 ⊕ (OE + χ1(pF )OE

∑

x∈Fq

fsux
.

We see that the module L
I(1)
o is stable by t if and only if χ1(pF ) and χ2(pF ) belong to OE , i.e. are units

because their product is a unit. When χ1(pF ) and χ2(pF ) are units, L1 = LY1 , Lo = LYo
, L

I(1)
o = L1.
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As Lo = RKof1, the zigzag z(Lo) = KoL1 contains χ2(pF )Lo; if the sequence of zigzags (zn(Lo))n≥0 is

finite, then χ2(pF ) ∈ OE . By the corollary 0.3, if χ2(pF ) does not belong to OE then indG
B(χ1 ⊗ χ2) is not

integral.
Suppose χ2(pF ) ∈ OE and χ1(pF ) 6∈ OE . Then

L1 = OEf1 + χ1(pF )OE

∑

c∈Fq

fsuc
= LY1 , LYo

= KoL1 = Lo + χ1(pF )KoOE

∑

c∈Fq

fsuc
.

A system of representatives of Ko/ZI(1) ≃ GL(2,Fq)/Z(Fq)N(Fq) is

{dλ, dλuxs for all x ∈ Fq, λ ∈ F∗
q}, dλ =

(

λ 0
0 1

)

.

We compute the OEKo-module Mo generated by
∑

c∈Fq
fsuc

. As sucdλ = sdλssuλ−1c we have

dλf1 = η1(λ)f1, dλfsuc
= η2(λ)fsuλc

.

As η2(λ) is a unit, we have

OEdλ

∑

c∈Fq

fsuc
= OE

∑

c∈Fq

fsuc
.

As

sux−1s =

(

−x 1
0 x−1

)

sux, if x 6= 0,

we have, if c ∈ F∗
q ,

uxsfs = f1, uxsfsuc
= η1(−1)θ(c)fsu

c−1
−x
, θ := η1η

−1
2 ,

and
Fx := uxs

∑

c∈Fq

fsuc
= f1 + η1(−1)

∑

c∈Fq

θ−1(x+ c)fsuc

where the character θ−1 of F∗
q is extended to a function on Fq vanishing on 0. We have

dλuxs
∑

c∈Fq

fsuc
= η1(λ)f1 + η2(λ)η1(−1)

∑

c∈Fq

θ−1(x+ c)fsuλc
= η1(λ)Fλx.

As η1(λ) is a unit, we have

OEdλuxs
∑

c∈Fq

fsuc
= OEFλx.

We deduce that Mo is the OE-module generated by

∑

c∈Fq

fsuc
, (Fx)x∈Fq

.

The sum
∑

x∈Fq
Fx is qf1 + η1(−1)(q − 1)

∑

c∈Fq
fsuc

if θ is the trivial character, and qf1 if θ is not trivial.

Hence Mo contains qf1; beeing Ko-stable, Mo contains qLo. The zizgag z(Lo) = KoL1 = Lo + χ1(pF )Mo

contains qχ1(pF )Lo. If the sequence of zigzags (zn(Lo))n≥0 is finite, then qχ1(pF ) ∈ OE . By the corollary

0.3, if qχ1(pF ) does not belong to OE then indG
B(χ1 ⊗ χ2) is not integral.

Suppose χ1(pF ) 6∈ OE and qχ1(pF ) ∈ OE . To go further, we need a lemma. For a function a : Fq →
χ1(pF )OE and a character θ : F∗

q → O∗
E we consider the function (a ∗ θ) : Fq → χ1(pF )OE the function

defined by

(a ∗ θ)(y) :=
∑

x∈Fq

a(−x)θ(y + x) where θ(0) := 0;
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we says that a ∗ θ is constant modulo OE if there exists z ∈ E such that (a ∗ θ)(y) − z ∈ OE for all y ∈ Fq.

3.1 Lemma
∑

x∈Fq
a(x) ∈ OE if a ∗ θ is constant modulo OE .

Proof. When the character θ is trivial, the function a∗θ+a =
∑

c∈Fq
a(c) is constant. If a∗θ is constant

modulo OE , then a is constant modulo OE and
∑

x∈Fq
a(x) ∈ qχ1(pF )OE ⊂ OE .

When the character θ is trivial, we use Fourier transform; we replace E by a finite extension in order
to find a non trivial character ψ : Fq → OE to define the Fourier transform

f̂(?) =
∑

x∈Fq

ψ(x?)f(x)

of a function f : Fq → E. We denote by R the space of integral functions f : Fq → OE , by R̂ the image
of R by Fourier transform, by δo ∈ R the characteristic function of 0 and by ∆ ∈ R the constant function
∆(?) = 1. The remarkable properties of the Fourier transform give

ˆ̂
f = qf, ∆̂ = qδo, δ̂o = ∆, θ̂(0) = 0,

θ̂(x) is a Gauss sum and θ̂(x) ˆ(θ−1)(x) = qθ(−1) if x ∈ F∗
q ;

the Fourier transform of a convolution product f ∗ g is the product of the Fourier transforms

f ∗ g(x) =
∑

y,z∈Fq,y+z=x

f(y)g(z), ˆf ∗ g = f̂ ĝ.

The lemma says that â(0) ∈ OE for all a ∈ χ1(pF )R such that a ∗ θ ∈ OE∆ + R.

By Fourier transform a∗θ ∈ OE∆+R is equivalent to âθ̂ ∈ OEqδo +R̂. Multiplying by ˆ(θ−1) vanishing

only at 0, this is equivalent to qâ = qâ(0)δo + ˆ(θ−1)φ̂ for some φ ∈ R. The function b = qa belongs to R

because qχ1(pF ) ∈ OE . We have b̂ = b̂(0)δo + ˆ(θ−1)φ̂ and by Fourier transform b = λ∆ + θ−1 ∗ φ where
b(0) = λ+ (θ−1 ∗ φ)(0). We have λ ∈ OE and â(0) = λ.

We return to the proof of the theorem 0.10. The OE-module z(Lo) = Lo + χ1(pF )Mo is generated by

Lo, χ1(pF )
∑

c∈Fq

fsuc
, (χ1(pF )Fx)x∈Fq

,

the OE-module (z(Lo))
I(1) is generated by L1 and by

∑

x∈Fq

a(−x)f1 + η1(−1)(a ∗ θ−1)(0)
∑

c∈∈Fq

fsuc

for all functions a : Fq → χ1(pF )OE such that a ∗ θ−1 is constant modulo OE . As η1(−1)(a ∗ θ−1)(0) ∈
χ1(pF )OE and

∑

x∈Fq
a(−x) ∈ OE by the lemma 3.1, we obtain

(z(Lo))
I(1) = L1.

This is equivalent to z(L1) = L1, and also to L
I(1)
Yo

= LY1 . We summarize what we proved in the following
proposition.

3.2 Proposition 1) Lo = LYo
, L

I(1)
o = LY1 if and only if χ1(pF ), χ2(pF ) belongs to O∗

E .

2) indG
B(χ1 ⊗ χ2) is integral if and only if qχ1(pF ), χ2(pF ) belong to OE .

3) When χ1(pF ) 6∈ OE , qχ1(pF ) ∈ OE , then LY1 = L
I(1)
o + tL

I(1)
o , L

I(1)
Yo

= LY1 if θ is trivial or if OE

contains a p-root of 1.
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We prove now the theorem 0.10. By [Vig04 prop. 4.4], the properties b), c) are equivalent. By the

proposition 3.2 2) the properties a), c), d) are equivalent and L
I(1)
Yo

= LY1 . By the corollary 0.2, d) and e)

are equivalent. By the lemma 1.4bis, LYo
= LK(1). As LY1 generates the OEKo-module LYo

which generates
the OEG-module L, by transitivity the the OEG-module L is generated by LY1 = LI(1).

We prove now the remark 0.11 (i). By [Vig04] th.4.10, the natural OE-integral structure of indG
B(χ1⊗χ2)

of functions with values in OE is OEG-generated by the function with support BI and value 1 at 1, which
is contained in LYo

. As LYo
embeds in the functions in indG

B(χ1 ⊗ χ2) with values in OE and generates L,
the natural OE-integral structure is equal to L.

4 k-representations

Proof of the proposition 0.12.
Let µ1⊗µ2 : T → k∗ be a continuous character. There exists a moderately ramified continuous character

χ1 ⊗ χ2 : T → O∗
E lifting µ1 ⊗ µ2. Apply the theorem 0.10 and the remark 0.11 (i).

Proof of the proposition 0.13.
Theorem 0.10 and [Vig04] proposition 3.2, théorème 4.2 and proposition 4.4; by [Vig04] §2.4, one may

need to take a ramified extension of E with residual field k = kE .

Proof of the proposition 0.14.
By the proposition 0.13 and the Brauer-Nesbitt property, the reductions of the OE-integral structures of

V := (indG
B(χ1⊗χ2)

I(1) are simple and isomorphic HkE
(G, I(1))-modules. This implies that the reduction of

LI(1) is a simple supersingular HkE
(G, I(1))-module; it generates the kEG-module L because LI(1) generates

the OEG-module L.
A kE-representation of G generated by its I(1)-invariants is irreducible if the I(1)-invariants is a simple

HkE
(G, I(1))-module (criterion 4.5 in [Vig04]). This implies the property a).
When F = Qp, p 6= 2, the following remarkable property

M ⊗Hk(G,I(1)) indG
I(1) 1k

is irreducible of I(1)-invariants M ≃ M ⊗ 1, for any simple Hk(G, I(1))-module, well known for complex
representations, remains true over a field k of characteristic p [Ollivier], and implies:

4.1 Lemma A k-representation V of G = GL(2,Qp), p 6= 2, generated by a simple Hk(G, I(1))-
submodule M of V I(1) is irreducible and M = V I(1).

Proof. V is a quotient of M ⊗Hk(G,I(1)) indG
I(1) 1k .

This implies the property b).
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