Journal of the Institute of Mathematics of Jussieu

http://journals.cambridge.org/JMJ
Additional services for Journal of the Institute of Mathematics of Jussieu:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

THE PRO-p-IWAHORI HECKE ALGEBRA OF A REDUCTIVE p-ADIC GROUP III (SPHERICAL HECKE ALGEBRAS AND SUPERSINGULAR MODULES)

Marie-France Vigneras

Journal of the Institute of Mathematics of Jussieu / FirstView Article / August 2015, pp 1-38 DOI: 10.1017/S1474748015000146, Published online: 03 June 2015

Link to this article: http://journals.cambridge.org/abstract_S1474748015000146
How to cite this article:
Marie-France Vigneras THE PRO-p-IWAHORI HECKE ALGEBRA OF A REDUCTIVE p-ADIC GROUP III (SPHERICAL HECKE ALGEBRAS AND SUPERSINGULAR MODULES). Journal of the Institute of Mathematics of Jussieu, Available on CJO 2015 doi:10.1017/S1474748015000146

Request Permissions: Click here

Cambridee JoURNALS

THE PRO- p-IWAHORI HECKE ALGEBRA OF A REDUCTIVE p-ADIC GROUP III (SPHERICAL HECKE ALGEBRAS AND SUPERSINGULAR MODULES)

MARIE-FRANCE VIGNERAS
UMR 7586, Institut de Mathematiques de Jussieu, 4 place Jussieu, Paris 75005, France (vigneras@math.jussieu.fr)

(Received 26 May 2014; accepted 30 March 2015)

Abstract

Let R be a large field of characteristic p. We classify the supersingular simple modules of the pro- p-Iwahori Hecke R-algebra \mathcal{H} of a general reductive p-adic group G. We show that the functor of pro- p-Iwahori invariants behaves well when restricted to the representations compactly induced from an irreducible smooth R-representation ρ of a special parahoric subgroup K of G. We give an almost-isomorphism between the center of \mathcal{H} and the center of the spherical Hecke algebra $\mathcal{H}(G, K, \rho)$, and a Satake-type isomorphism for $\mathcal{H}(G, K, \rho)$. This generalizes results obtained by Ollivier for G split and K hyperspecial to G general and K special.

Keywords: group theory and generalizations; number theory

2010 Mathematics subject classification: Primary 20C08
Secondary 22E50

Contents

1 Introduction 2
2 The characters of \mathfrak{h} and $\mathcal{H}^{\text {aff }}$ 10
3 Distinguished representatives of $W_{0} \backslash W$ 13
$4 \mathfrak{h}$-eigenspace in $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ 16
5 Centers 22
6 Supersingular \mathcal{H}-modules 24
7 Pro- p-Iwahori invariants and compact induction 31
References 37

1. Introduction

Let p be a prime number, let F be a finite extension of \mathbb{Q}_{p} or $\mathbb{F}_{p}((T))$, and let G be the group of rational points of a connected reductive F-group.

1.1.

The smooth representations of G over an algebraically closed field C of characteristic p have been the subject of many investigations in recent years, in the modulo p Langlands program. The pro- p-Iwahori invariant functor $V \mapsto V^{I(1)}$ relates the representations of G to the modules of the pro- p-Iwahori Hecke C-algebra $\mathcal{H}=\mathcal{H}_{C}(G, I(1))$ studied in [13-15]. The $I(1)$-invariant functor and the theory of \mathcal{H}-modules play an increasingly important role in the representation theory of G modulo p. They are the key to the proof of the change of weight in the recent classification of irreducible smooth C-representations of G in terms of supersingular ones (a forthcoming work by Abe et al. [1]). The supersingular smooth irreducible C-representations π of G and their I (1)-invariant remain mysterious, but the supersingular simple \mathcal{H}-modules are classified in this paper, and the supersingularity of $\pi^{I(1)}$ and of π are related. A variant of the modulo p Langlands program seems to exist for \mathcal{H}-modules. Grosse-Kloenne [5] constructed a functor from finite-dimensional $\mathcal{H}_{C}\left(G L\left(n, \mathbb{Q}_{p}\right), I(1)\right)$-modules to finite-dimensional smooth C-representations of $\mathrm{Gal}_{\mathbb{Q}_{p}}$, inducing a bijection between the simple supersingular $\mathcal{H}_{C}(G L(n, F), I(1))$-modules of dimension n and the irreducible smooth C-representations of Gal_{F} (the absolute Galois group of F) of dimension n as in [9, 14].

In this paper, we prove that the $I(1)$-invariant functor behaves well when restricted to compactly induced representations $\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho$, where ρ is an irreducible smooth C-representation of a special parahoric subgroup K of G. The vector space $\rho^{I(1)}$ has dimension 1, and the pro- p-Iwahori Hecke C-algebra $\mathfrak{h}=H_{C}(K, I(1))$ of K acts on $\rho^{I(1)}$ by a character η. The \mathcal{H}-module $\left(\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho\right)^{I(1)}$ is isomorphic to $\eta \otimes_{\mathfrak{h}} \mathcal{H}$, and the spherical algebra $\operatorname{End}_{C G}\left(\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho\right)$ is isomorphic to the algebra $\operatorname{End}_{\mathcal{H}}\left(\eta \otimes_{\mathfrak{h}} \mathcal{H}\right)$. This paper is devoted to the study of the modules $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ and of the spherical Hecke algebras $\operatorname{End}_{\mathcal{H}}\left(\eta \otimes_{\mathfrak{h}} \mathcal{H}\right)$. In the last section, we transfer our results from \mathcal{H} to the group G using the $I(1)$-invariant functor.

Let ρ be an irreducible smooth C-representation of K, and let η, η_{1} be two arbitrary characters of \mathfrak{h}. We obtain the following:
(i) Isomorphisms

$$
\left(\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho\right)^{I(1)} \simeq \rho^{I(1)} \otimes_{\mathfrak{h}} \mathcal{H}, \quad \operatorname{End}_{C G}\left(\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho\right) \simeq \operatorname{End}_{\mathcal{H}}\left(\rho^{I(1)} \otimes_{\mathfrak{h}} \mathcal{H}\right)
$$

(ii) A Satake-type isomorphism for the spherical Hecke algebra $\mathcal{H}(\mathfrak{h}, \eta)=\operatorname{End}_{\mathcal{H}}\left(\eta \otimes_{\mathfrak{h}}\right.$ $\mathcal{H})$.
(iii) A basis of the space of intertwiners $\operatorname{Hom}_{\mathcal{H}}\left(\eta_{1} \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H}\right)$.
(iv) An almost-isomorphism from the center of \mathcal{H} to the center of $\mathcal{H}(\mathfrak{h}, \eta$) (an isomorphism between finite index affine subalgebras).
(v) The classification of the supersingular simple \mathcal{H}-modules.

When G is split and K hyperspecial, Ollivier proved (i), (ii), (iv) and (v). We follow her method. The alcove walk bases of \mathcal{H} and the product formula [12, 15] allow us to simplify her method and to extend it to G general and K special. Analogs of 2,3 were proved for G in $[6,7]$ and 5 for G remains a wide-open question.

In the rest of this introduction, we consider the content of $2,3,4,5$.
After [13, 14], a generalization of $\mathcal{H}_{C}(G, I(1))$ was introduced in [12] when G is split, and in [15] for G general, in order to study it. This is an algebra $\mathcal{H}_{R}\left(q_{s}, c_{\tilde{s}}\right)$ over a commutative ring R with two sets of parameters $\left(q_{s}\right),\left(c_{\tilde{s}}\right)$. The properties of this algebra are often proved by reduction to $\left(q_{s}\right)=(1)$ (this changes the parameters $\left(c_{\tilde{s}}\right)$), and transferred to $\mathcal{H}_{R}\left(0, c_{\tilde{s}}\right)$ by specialization to $\left(q_{s}\right)=(0)$. The algebra $\mathcal{H}_{R}\left(q_{s}, c_{\tilde{s}}\right)$ contains a natural finite-dimensional subalgebra $\mathfrak{h}_{R}\left(q_{s}, c_{\tilde{s}}\right)$.

In 1.2 and 1.3 , we recall the basic properties of $\mathcal{H}_{R}\left(q_{s}, c_{\tilde{s}}\right)$ used in this work and the dictionary between $\mathfrak{h}_{R}\left(q_{s}, c_{\tilde{s}}\right), \mathcal{H}_{R}\left(q_{s}, c_{\tilde{s}}\right)$ and $\mathcal{H}_{R}(K, I(1)), \mathcal{H}_{R}(G, I(1))$ [15, 16]. Theorems 1.2, 1.3, 1.4, and 1.5 are proved for $\mathfrak{h}_{R}\left(0, c_{\tilde{s}}\right), \mathcal{H}_{R}\left(0, c_{\tilde{s}}\right)$, and are given in 1.4. They apply to the algebras $\mathcal{H}_{R}(K, I(1)), \mathcal{H}_{R}(G, I(1))$ when R has characteristic p.

1.2.

Let $\mathcal{W}=\left(\Sigma, \Delta, \Omega, \Lambda, \nu, W, Z_{k}, W(1)\right)$ be data consisting of the following:
(i) a reduced root system Σ of basis Δ associated with the finite Weyl Coxeter system (W_{0}, S) of an affine Weyl Coxeter system ($W^{\text {aff }}, S^{\text {aff }}$) acting on a real vector space V of dual of basis Δ, with a W_{0}-invariant scalar product;
(ii) three commutative groups, Ω and Λ finitely generated, and Z_{k} finite;
(iii) a group $W=W^{\text {aff }} \rtimes \Omega=\Lambda \rtimes W_{0}$ which is a semi-direct product of subgroups in two different ways, Ω acting on ($W^{\text {aff }}, S^{\text {aff }}$) and W_{0} on Λ. The length ℓ and the Bruhat order \leqslant of ($W^{\text {aff }}, S^{\text {aff }}$) extend trivially to $W=W^{\text {aff }} \rtimes \Omega$;
(iv) a W_{0}-equivariant homomorphism $v: \Lambda \rightarrow V$ such that the action of $W^{\text {aff }}$ on V and the action of Λ on V by translation $v \mapsto v+v(\lambda)$ for $\lambda \in \Lambda, v \in V$, extend to an action of W by affine automorphisms permuting the set of affine hyperplanes $\mathfrak{H}=\left\{\operatorname{Ker}(\alpha+n), \mid \alpha+n \in \Sigma^{\text {aff }}=\Sigma+\mathbb{Z}\right\} ;$
(v) a system of the representatives of W_{0} in Λ :

$$
\Lambda^{+}:=\left\{\mu \in \Lambda \mid \nu(\mu) \in \overline{\mathfrak{D}}^{+}\right\}
$$

where $\overline{\mathfrak{D}}^{+}=\{x \in V \mid 0 \leqslant \alpha(x), \alpha \in \Delta\}$ is the dominant closed Weyl chamber;
(vi) an extension $1 \rightarrow Z_{k} \rightarrow W(1) \rightarrow W \rightarrow 1$.

Notation. The inverse image in $W(1)$ of a subset X of W is denoted by $X(1)$, and \tilde{w} denotes an element of $W(1)$ of image $w \in W$. For $c \in R\left[Z_{k}\right]$, the conjugate of c by \tilde{w} depends only on w, and is denoted $w \bullet c:=\tilde{w} c \tilde{w}^{-1}$. The dominant Weyl chamber $\mathfrak{D}^{+}=$ $\{x \in V \mid 0<\alpha(x), \alpha \in \Delta\}$ is open. The dominant alcove \mathfrak{C}^{+}is the connected component $\mathfrak{D}^{+} \cap\left(V-\bigcup_{H \in \mathfrak{H}} H\right)$ of vertex $0 \in V$. The set $\Sigma^{\text {aff,+ }}$ of positive affine roots is the set of $\gamma \in \Sigma^{\text {aff }}$ positive on \mathfrak{C}^{+}. The action of W on V defines by functoriality an action of W on $\Sigma^{\text {aff }}$.

We will often suppose that Λ contains a subgroup Λ_{T} satisfying the following.
(T1) $\Lambda=\bigsqcup_{y \in Y} \Lambda_{T} y$ for a finite set Y.
(T2) Λ_{T} is W_{0}-stable.
(T3) There exists a central subgroup $\tilde{\Lambda}_{T}$ of $\Lambda(1)$ normalized by $W_{0}(1)$ such that the quotient $\operatorname{map} \Lambda(1) \rightarrow \Lambda$ induces a group isomorphism $\tilde{\Lambda}_{T} \xrightarrow{\simeq} \Lambda_{T}$ sending $\tilde{w} \tilde{\mu} \tilde{w}^{-1}$ to $w \mu w^{-1}$ if $\tilde{w} \in W_{0}(1)$ lifts $w \in W_{0}$ and $\tilde{\mu} \in \tilde{\Lambda}_{T}$ lifts $\mu \in \Lambda_{T}$.

Let $\left.\left(q_{\tilde{s}}, c_{\tilde{s}}\right)_{\tilde{s} \in S^{\text {aff }}(1)}\right)$ be a set of elements in $R \times R\left[Z_{k}\right]$ satisfying $q_{\tilde{s}^{\prime}}=q_{\tilde{s}}, c_{\tilde{s}^{\prime}}=w \bullet c_{\tilde{s}}$ if $\tilde{s}^{\prime}=\tilde{w} \tilde{s} \tilde{w}^{-1} \in S^{\text {aff }}(1), \tilde{w} \in W(1)$, and $q_{t \tilde{s}}=q_{\tilde{s}}, c_{t \tilde{s}}=t c_{\tilde{s}}$ if $t \in Z_{k}$. As $q_{\tilde{s}}$ depends only on the image $s \in S^{\text {aff }}$ of \tilde{s}, we denote also $q_{\tilde{s}}=q_{s}$.

There is a unique R-algebra $\mathcal{H}=\mathcal{H}_{R}\left(\mathcal{W}, q_{s}, c_{\tilde{s}}\right)$, free of basis $\left(T_{\tilde{w}}\right)_{\tilde{w} \in W(1)}$, with product satisfying
(i) the braid relations:

$$
\begin{equation*}
T_{\tilde{w}} T_{\tilde{w}^{\prime}}=T_{\tilde{w} \tilde{w}^{\prime}}, \quad \text { if } \tilde{w}, \tilde{w}^{\prime} \in W(1), \ell(w)+\ell\left(w^{\prime}\right)=\ell\left(w w^{\prime}\right), \tag{1}
\end{equation*}
$$

allowing one to identify $R[\Omega(1)]$ to a subalgebra of \mathcal{H};
(ii) the quadratic relations:

$$
\begin{equation*}
T_{\tilde{s}} T_{\tilde{s}}^{*}=q_{s} \tilde{s}^{2}, \quad \text { if } \tilde{s} \in S^{\mathrm{aff}}(1), T_{\tilde{s}}^{*}=T_{\tilde{s}}-c_{\tilde{s}} \tag{2}
\end{equation*}
$$

This is called the Iwahori-Matsumoto presentation of $\mathcal{H}_{R}\left(\mathcal{W}, q_{s}, c_{\tilde{s}}\right)$.
The R-submodule of basis $\left(T_{\tilde{w}}\right)_{\tilde{w} \in W_{0}(1)}$ is a finite subalgebra $\mathfrak{h}=\mathfrak{h}_{R}\left(\mathcal{W}, q_{s}, c_{\tilde{s}}\right)$.
The R-submodule of basis $\left(T_{\tilde{w}}\right)_{\tilde{w} \in W^{\text {aff }}(1)}$ is a subalgebra $\mathcal{H}^{\text {aff }}$. The R-algebra $\mathcal{H}^{\text {aff }}$ is an algebra like \mathcal{H} with Ω trivial, and \mathcal{H} is isomorphic to the twisted tensor product

$$
\begin{equation*}
x \otimes y \mapsto x y: \mathcal{H}^{\mathrm{aff}} \otimes_{R\left[Z_{k}\right]}^{t} R[\Omega(1)] \rightarrow \mathcal{H} \tag{3}
\end{equation*}
$$

 ι, equal to the identity on $R[\Omega(1)]$ and such that [15, Proposition 4.23]

$$
\begin{equation*}
\iota\left(T_{\tilde{s}}\right):=-T_{\tilde{s}}^{*} \quad \text { for } s \in S^{\text {aff }} \tag{4}
\end{equation*}
$$

All the orientations that we consider are spherical [15]. For the orientation o associated to an (open) Weyl chamber \mathfrak{D}_{o}, the o-positive side of the affine hyperplane $\operatorname{Ker}(\alpha+n)$ is the set of $x \in V$ where $\alpha(x)+n>0$, if $\alpha \in \Sigma$ takes positive values on \mathfrak{D}_{o}. The dominant orientation o, denoted by o^{+}, is associated to the dominant Weyl chamber \mathfrak{D}^{+}, and the anti-dominant orientation, denoted by o^{-}, to the anti-dominant Weyl chamber $-\mathfrak{D}^{+}=$ \mathfrak{D}^{-}. The orientation associated to the Weyl chamber $w^{-1}\left(\mathfrak{D}_{o}\right), w \in W_{0}$, is denoted by $o \bullet w$. For $w \in W$ of projection $w_{0} \in W_{0}$, the orientation $o \bullet w_{0}$ is also denoted by $o \bullet w$. We have $o \bullet \lambda=o$ for $\lambda \in \Lambda$. We set

$$
\begin{equation*}
S_{o}^{\text {aff }}:=\left\{s \in S^{\text {aff }} \mid \mathfrak{C}^{+} \text {is in the } o \text {-positive side of } H_{s}\right\}, \quad S_{o}:=S \cap S_{o}^{\text {aff }} \tag{5}
\end{equation*}
$$

where H_{s} is the affine hyperplane of V fixed by s and \mathfrak{C}^{+}the dominant alcove (Notation). There exists a unique set of bases $\left(E_{o}(\tilde{w})\right)_{\tilde{w} \in W(1)}$ of \mathcal{H}, parameterized by
the orientations o, satisfying [15, §5.3]

$$
\begin{equation*}
E_{o}(\tilde{s}):=T_{\tilde{s}} \text { if } s \in S^{\text {aff }}-S_{o}^{\text {aff }}, \quad E_{o}(\tilde{s}):=T_{\tilde{s}}^{*} \text { if } s \in S_{o}^{\text {aff }} \tag{6}
\end{equation*}
$$

and the product formula, for $\tilde{w}, \tilde{w}^{\prime} \in W(1)$,

$$
\begin{equation*}
E_{o}(\tilde{w}) E_{o \bullet w}\left(\tilde{w}^{\prime}\right)=E_{o}\left(\tilde{w} \tilde{w}^{\prime}\right) \quad \text { if } \ell(w)+\ell\left(w^{\prime}\right)=\ell\left(w w^{\prime}\right) . \tag{7}
\end{equation*}
$$

In particular, for $\tilde{\lambda}, \tilde{\lambda}^{\prime} \in \Lambda(1)$,

$$
\begin{equation*}
E_{o}(\tilde{\lambda}) E_{o}\left(\tilde{\lambda}^{\prime}\right)=E_{o}\left(\tilde{\lambda} \tilde{\lambda}^{\prime}\right) \quad \text { if } \nu(\lambda), \nu\left(\lambda^{\prime}\right) \text { belong to a same closed Weyl chamber. } \tag{8}
\end{equation*}
$$

We have $E_{o}(\lambda)=T_{\lambda}$ when $v(\lambda) \in \overline{\mathcal{D}_{o}}$.
The basis $\left(E_{o}(\tilde{w})\right)_{\tilde{w} \in W(1)}$ is called an alcove walk basis; the alcove walk bases generalize the integral Bernstein bases defined in [11, 14].

The R-submodule of basis $\left(E_{o}(\tilde{\lambda})\right)_{\tilde{\lambda} \in \Lambda(1)}$ is a subalgebra \mathcal{A}_{o} of \mathcal{H} containing the subalgebra \mathcal{A}_{o}^{+}of basis $\left(E_{o}(\tilde{\lambda})\right)_{\tilde{\lambda} \in \Lambda^{+}(1)}$, isomorphic to $R\left[\Lambda^{+}(1)\right]$.

If $q_{s}=0$ for all $s \in S^{\text {aff }}$, then for $\tilde{w}, \tilde{w}^{\prime} \in W(1)$ such that $\ell(w)+\ell\left(w^{\prime}\right)>\ell\left(w w^{\prime}\right)$ we have $E_{o}(\tilde{w}) E_{o \bullet w}\left(\tilde{w}^{\prime}\right)=0$; in particular, $E_{o}(\tilde{\lambda}) E_{o}\left(\tilde{\lambda}^{\prime}\right)=0$ if $\tilde{\lambda}, \tilde{\lambda}^{\prime} \in \Lambda(1)$, and $v(\lambda), \nu\left(\lambda^{\prime}\right)$ do not belong to the same closed Weyl chamber.

1.3.

Let F be a local field of finite residue field k with q elements and of characteristic p, and p_{F} a generator of the maximal ideal of the ring of integers O_{F} of F. Let G, T, Z, and N be respectively the F-rational points of a connected reductive F-group, a maximal F-split subtorus, its centralizer, and its normalizer. Let \mathfrak{C}^{+}be an open alcove of the semi-simple apartment of G defined by T, let x_{0} be a special vertex of the closed alcove $\overline{\mathfrak{C}}^{+}$, and let $I, I(1), K$, be respectively the Iwahori subgroup of G fixing \mathfrak{C}^{+}, its pro- p-Sylow subgroup, and the parahoric subgroup of G fixing x_{0}.

We associate to $G, T, Z, N, I, I(1), K$ the data

$$
\left(\mathcal{W}=\left(\Sigma, \Delta, \Omega, \Lambda, v, W, Z_{k}, W(1)\right) ;\left(q_{s}, c_{\tilde{s}}\right)\right),
$$

and a group Λ_{T}, satisfying the properties given in $\S 1.2$ with $R=\mathbb{Z}$, as follows.
The apartment defined by T identifies with a Euclidean real vector space V. The set $S^{\text {aff }}$ of orthogonal reflections with respect to the walls of \mathfrak{C}^{+}generates an affine Coxeter system ($W^{\text {aff }}, S^{\text {aff }}$), given by a based reduced root system (Σ, Δ). The action of N on the apartment transfers to an action on V. The subgroup Z acts by translations $(z, x) \mapsto x+$ $v_{Z}(z),(z, x) \in Z \times V$, for an homomorphism $v_{Z}: Z \rightarrow V$ satisfying $\alpha \circ v_{Z}(t)=-\alpha(t)$ for $t \in T$ and α in the root system Φ of T in G. There is a surjective map $\alpha \mapsto e_{\alpha} \alpha: \Phi \rightarrow \Sigma$, where e_{α} is a positive integer for all $\alpha \in \Phi$.

Let $T_{0}:=T \cap K$ (the maximal compact subgroup of T), $Z_{0}:=K \cap Z$ (the parahoric subgroup of Z), and let $Z_{0}(1)$ be the pro- p-Sylow subgroup of Z_{0}. Then

$$
\begin{gathered}
\Lambda_{T}:=T / T_{0}, \quad \Lambda:=Z / Z_{0}, \quad \Lambda(1):=Z / Z_{0}(1), \quad Z_{k}:=Z_{0} / Z_{0}(1), \\
W_{0}:=N / Z, \quad W:=N / Z_{0}, \quad W(1):=N / Z_{0}(1) .
\end{gathered}
$$

The homomorphism v_{Z} and the action of N on V are trivial on Z_{0}. They induce an homomorphism $v: \Lambda \rightarrow V$ and an action of W on N. The monoid Λ^{+}represents the
orbits of W_{0} in $\Lambda[7,6.3]$ and the double cosets $K \backslash G / K$. The groups $W, W(1)$ represent the double cosets $I \backslash G / I, I(1) \backslash G / I(1)$. The group Ω is the W-stabilizer of the alcove \mathfrak{C}^{+}. We denote by \tilde{w} an element of $W(1)$ of image w in W, and we call \tilde{w} a lift of w.

For $s \in S^{\text {aff }}$, let K_{s} be the parahoric subgroup of G fixing the face of $\overline{\mathcal{C}^{+}}$fixed by s. The quotient of K_{s} by its pro- p-radical is the group $G_{s, k}$ of rational points of a k-reductive connected group of rank 1 . The image of $I(1)$ in $G_{s, k}$ is the group $U_{s, k}$ of rational points of the unipotent radical of a k-Borel subgroup $Z_{k} U_{s, k}$ of opposite group $Z_{k} \bar{U}_{s, k}$. It is known that s admits a lift $n_{s} \in N \cap K_{s}$ of image in $G_{s, k}$ belonging to the group $\left\langle U_{s, k}, \bar{U}_{s, k}\right\rangle$ generated by $U_{s, k} \cup \bar{U}_{s, k}$. The image of n_{s} in $W(1)$ is called an admissible lift of s. We set $Z_{k, s}=Z_{k} \cap\left\langle U_{s, k}, \bar{U}_{s, k}\right\rangle$.

For $s \in S^{\text {aff }}, \tilde{s}$ an admissible lift of s, and $t \in Z_{k}$, let

$$
q_{s}=\left[\operatorname{In}_{s} I: I\right] \text { is a power of } q, \quad c_{s}:=\left(q_{s}-1\right)\left|Z_{k, s}\right|^{-1} \sum_{z \in Z_{k, s}} z,
$$

and $c_{t \tilde{s}}=\sum_{z \in Z_{k, s}} c_{\tilde{s}}(z) t z$, for positive integers $c_{\tilde{s}}(z)=c_{\tilde{s}}\left(z^{-1}\right)$ of sum $q_{s}-1$, constant on each coset modulo $\left\{x s(x)^{-1} \mid x \in Z_{k}\right\}$, and $c_{\tilde{s}} \equiv c_{s} \bmod p$ as in [15, Theorem 2.2].

The cocharacter group $X_{*}(T)$ of T is isomorphic to Λ_{T} and embeds in $\Lambda(1)$ by the map $\mu \mapsto \mu\left(p_{F}\right)^{-1}: X_{*}(T) \rightarrow Z$ followed by the quotient maps of Z onto Λ and $\Lambda(1)$. Remembering the sign - in the definition of v,

$$
\mu \in \Lambda_{T}^{+} \Leftrightarrow \alpha\left(\mu\left(p_{F}\right)\right) \in O_{F} \quad \text { for all } \alpha \in \Delta
$$

We identify μ with its image in Λ_{T}, and $\tilde{\mu}$ denotes its image in $\Lambda(1)$.
For a commutative ring R, the pro- p-Iwahori Hecke R-algebra $\mathcal{H}_{R}(G, I(1))$ is isomorphic to the algebra $\mathcal{H}_{R}\left(q_{s}, c_{\tilde{s}}\right)$ associated to this data.

The pro- p-Iwahori Hecke R-algebra $\mathcal{H}_{R}(K, I(1))$ of K is a subalgebra of $\mathcal{H}_{R}(G, I(1))$ isomorphic to the finite subalgebra $\mathfrak{h}\left(q_{s}, c_{\tilde{s}}\right)$ of \mathcal{H}.

The Iwahori Hecke R-algebra $\mathcal{H}_{R}(G, I)$ is an algebra \mathcal{H} associated to the same data except that $Z_{k}=\{1\}, W(1)=W, c_{s}=q_{s}-1$.

The group G is split $\Leftrightarrow T=Z \Rightarrow \Lambda_{T}=\Lambda$. The group G is quasi-split $\Leftrightarrow Z$ is the F-points of an F-torus $\Rightarrow \Lambda(1)$ is commutative. The group G is semi-simple $\Leftrightarrow \operatorname{Ker} v$ is finite $\Rightarrow \Omega$ is finite and v is injective on Λ_{T}.

The quotient of K by its pro- p-radical $K(1)$ is the group G_{k} of k-rational points of a connected reductive k-group. The images in G_{k} of T_{0}, Z_{0}, I, and $I(1)$ are the groups T_{k}, Z_{k}, B_{k}, and U_{k} of k-rational points of a maximal k-split torus, its centralizer (a k-torus), a Borel k-subgroup containing the maximal k-split torus, and its unipotent radical.

The finite Hecke algebras $\mathcal{H}_{R}(K, I(1))$ and $\mathcal{H}_{R}\left(G_{k}, U_{k}\right)$ are isomorphic.
The condition $q_{s}=0$ for all $s \in S^{\text {aff }}$ means that the characteristic of R is p. Then,

$$
c_{t \tilde{s}}=-\left|Z_{k, s}\right|^{-1} \sum_{z \in Z_{k, s}} t z
$$

and the irreducible smooth R-representations ρ of K are trivial on $K(1)$; they identify with the irreducible R-representations of G_{k}, in bijection with the characters of $\mathcal{H}_{R}\left(G_{k}, U_{k}\right)$ by the U_{k}-invariant functor $\rho \mapsto \rho^{U_{k}}$ for R as in 1.4.

1.4.

For the remainder of this article, unless otherwise specified, we are in the setting of $\S 1.2$ with $q_{s}=0$ for all $s \in S^{\text {aff }}$, and R is a field containing a root of unity of order the exponent of Z_{k}.

Notation. We denote by \hat{Z}_{k} the group of R-characters of Z_{k}. For a character $\chi \in \hat{Z}_{k}$, a character η of \mathfrak{h}, and a character Ξ of $\mathcal{H}^{\text {aff }}$, we set

$$
\begin{gather*}
S_{\chi}^{\text {aff }}:=\left\{s \in S^{\text {aff }} \mid \chi\left(c_{\tilde{s}}\right) \neq 0\right\}, \quad S_{\chi}:=S_{\chi}^{\text {aff }} \cap S, \tag{9}\\
S_{\eta}:=\left\{s \in S \mid \eta\left(T_{\tilde{s}}\right) \neq 0\right\}, \quad S_{\Xi}^{\text {aff }}:=\left\{s \in S^{\text {aff }} \mid \Xi\left(T_{\tilde{s}}\right) \neq 0\right\} . \tag{10}
\end{gather*}
$$

These sets are independent of the choice of the lift \tilde{s} of s. For $(\tilde{w}, \chi) \in W(1) \times \hat{Z}_{k}$ we denote by $\chi^{w} \in \hat{Z}_{k}$ the character $\chi^{w}(t)=\chi\left(\tilde{w} t \tilde{w}^{-1}\right)$ for $t \in Z_{k}$. The subgroup generated by a subset X of a group is denoted by $\langle X\rangle$. For $\lambda \in \Lambda$ we set

$$
\begin{equation*}
\Delta_{\lambda}:=\{\alpha \in \Delta \mid \alpha \circ v(\lambda)=0\}, \quad S_{\lambda}:=\left\{s_{\alpha} \mid \alpha \in \Delta_{\lambda}\right\} . \tag{11}
\end{equation*}
$$

We recall from $\S 1.2$ the R-algebra \mathfrak{h} associated to the finite Coxeter system (W_{0}, S) and the extension $1 \rightarrow Z_{k} \rightarrow W_{0}(1) \rightarrow W_{0} \rightarrow 1$, of basis $\left(T_{\tilde{w}}\right)_{\tilde{w} \in W_{0}(1)}$ satisfying the braid relations and the quadratic relations $T_{\tilde{s}}\left(T_{\tilde{s}}-c_{\tilde{s}}\right)=0$ for $\tilde{s} \in S(1)$.

Theorem 1.1 (The characters of \mathfrak{h}). (a) The characters η of \mathfrak{h} are in bijection with the pairs (χ, J), where $\chi \in \hat{Z}_{k}$ and $J \subset S_{\chi}, \chi=\left.\eta\right|_{z_{k}}$, and $J=S_{\eta}$.
(b) For any η, there exists an orientation o such that the equivalent properties $S_{\eta}=$ $S_{\chi} \cap S_{o} \Leftrightarrow \eta\left(E_{o}(\tilde{s})\right)=0$, for all $s \in S$, hold true. We set $\chi_{o}:=\eta$.
(c) For two characters η_{1}, η of \mathfrak{h}, there exists an orientation o such that $\eta_{1}=\left(\chi_{1}\right)_{o}, \eta=$ χ_{o} if and only if

$$
S_{\eta} \cap S_{\chi_{1}}=S_{\eta_{1}} \cap S_{\chi} .
$$

For a reduced decomposition of $\tilde{w}=\tilde{s}_{1} \ldots \tilde{s}_{r}$ of $W(1)$, the element $c_{\tilde{w}}=c_{\tilde{s}_{1}} \ldots c_{\tilde{s}_{r}}$ of $R\left[Z_{k}\right]$ does not depend on the choice of the reduced decomposition [15, Propositions 4.13(ii) and 4.22].

Theorem 1.2 (A basis of the intertwiners). Let η_{1}, η be two characters of \mathfrak{h} of restrictions χ_{1}, χ to Z_{k}.
(a) η_{1} is contained in $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ (is a submodule) if and only if

$$
\chi_{1}=\chi^{\lambda}, \quad S_{\eta_{1}} \cap S_{\lambda}=S_{\eta} \cap S_{\lambda}, \quad \text { for some } \lambda \in \Lambda^{+} .
$$

(b) For $\lambda \in \Lambda^{+}$satisfying (a), there exists a non-zero \mathcal{H}-intertwiner

$$
\Phi_{\tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes \mathcal{E}_{\tilde{\lambda}}: \eta_{1} \otimes_{\mathfrak{h}} \mathcal{H} \rightarrow \eta \otimes_{\mathfrak{h}} \mathcal{H}, \quad \mathcal{E}_{\tilde{\lambda}}:=\sum_{w_{0} \in Y_{\lambda}} \chi_{1}\left(c_{\tilde{w}_{0}}\right)^{-1} \otimes T_{\tilde{\lambda} \tilde{w}_{0}}
$$

where $Y_{\lambda}=\left\{w_{0} \in\left\langle S_{\chi_{1}}-S_{\eta_{1}}\right\rangle \mid \chi_{1}^{w_{0}}=\chi_{1}, \ell\left(\lambda w_{0}\right)=\ell(\lambda)-\ell\left(w_{0}\right)\right\}$, and \tilde{w}_{0} is a lift of w_{0}; note that $\chi_{1}\left(c_{\tilde{w}_{0}}\right)^{-1} \otimes T_{\tilde{\lambda} \tilde{w}_{0}}$ does not depend on the choice of the lift. $\left(\Phi_{\tilde{\lambda}}\right)$, for $\lambda \in \Lambda^{+}$satisfying (a), is a basis of $\operatorname{Hom}_{\mathcal{H}}\left(\eta_{1} \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H}\right)$.

M.-F. Vigneras

(c) If o satisfies (d) and $\lambda \in \Lambda^{+}$satisfies (a), there exists a non-zero \mathcal{H}-intertwiner

$$
\Phi_{o, \tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes E_{o}(\tilde{\lambda}):\left(\chi_{1}\right)_{o} \otimes_{\mathfrak{h}} \mathcal{H} \rightarrow \chi_{o} \otimes_{\mathfrak{h}} \mathcal{H}
$$

$\left(\Phi_{o, \tilde{\lambda}}\right)$, for $\lambda \in \Lambda^{+}$satisfying (a), is a basis of $\operatorname{Hom}_{\mathcal{H}}\left(\left(\chi_{1}\right)_{o} \otimes_{\mathfrak{h}} \mathcal{H}, \chi_{o} \otimes_{\mathfrak{h}} \mathcal{H}\right)$.
We note that $\chi_{1}\left(c_{\tilde{w}_{0}}\right)^{-1} \otimes T_{\tilde{\lambda} \tilde{w}_{0}} \in \eta \otimes_{\mathfrak{h}} \mathcal{H}$ does not depend on the choice of the lift \tilde{w}_{0} of $w_{0} \in Y_{\lambda}$. We set

$$
\begin{equation*}
\Lambda_{\chi}:=\left\{\lambda \in \Lambda \mid \chi^{\lambda}=\chi\right\}, \quad \text { resp. } \Lambda_{\chi}^{+}:=\Lambda^{+} \cap \Lambda_{\chi} \tag{12}
\end{equation*}
$$

The idempotent $e_{\chi}:=\left|Z_{k}\right|^{-1} \sum_{t \in Z_{k}} \chi(t)^{-1} t$ of $R\left[Z_{k}\right]$ is central in $R\left[\Lambda_{\chi}(1)\right]$, and the R-linear map

$$
\begin{equation*}
\chi \otimes_{R\left[Z_{k}\right]} R\left[\Lambda_{\chi}(1)\right] \rightarrow e_{\chi} R\left[\Lambda_{\chi}(1)\right] \quad 1 \otimes \tilde{\lambda} \mapsto e_{\chi} \tilde{\lambda} \quad\left(\lambda \in \Lambda_{\chi}\right) \tag{13}
\end{equation*}
$$

is an isomomorphism. Any R-algebra A with a basis $\left(a_{\tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$satisfying

$$
\begin{equation*}
a_{\tilde{\lambda}} a_{\tilde{\lambda}^{\prime}}=\chi(t) a_{\tilde{\lambda}^{\prime \prime}} \quad \text { for } \lambda, \lambda^{\prime}, \lambda^{\prime \prime} \in \Lambda_{\chi}^{+}, t \in Z_{k}, \tilde{\lambda} \tilde{\lambda}^{\prime}=t \tilde{\lambda}^{\prime \prime} \tag{14}
\end{equation*}
$$

is canonically isomorphic to the algebra $e_{\chi} R\left[\Lambda_{\chi}^{+}(1)\right]$ with its natural basis $\left(e_{\chi} \tilde{\lambda}\right)_{\lambda \in \Lambda_{\chi}^{+}}$.
For an orientation o, the R-submodule $\mathcal{A}_{o, \chi}^{+}$of basis $\left(E_{o}(\tilde{\lambda})\right)_{\tilde{\lambda} \in \Lambda_{\chi}^{+}(1)}$ is a subalgebra of \mathcal{H}. The algebra $\chi \otimes_{R\left[Z_{k}\right]} \mathcal{A}_{o, \chi}^{+}$of basis $\left(1 \otimes E_{o}(\tilde{\lambda})\right)_{\lambda \in \Lambda_{\chi}^{+}}$is an R-algebra with a basis satisfying (14).

A spherical Hecke algebra is the algebra of \mathcal{H}-intertwiners of a right \mathcal{H}-module $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ induced from a character η of \mathfrak{h}, by analogy with the reductive p-adic groups

$$
\mathcal{H}(\mathfrak{h}, \eta):=\operatorname{End}_{\mathcal{H}}\left(\eta \otimes_{\mathfrak{h}} \mathcal{H}\right)
$$

Theorem 1.2 with $\eta_{1}=\eta$ becomes the following.
Theorem 1.3 (A Satake-type isomorphism for the spherical algebra). (a) A basis of the spherical Hecke algebra $\mathcal{H}(\mathfrak{h}, \eta)$ is $\left(\Phi_{\tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$, where

$$
\begin{gathered}
\Phi_{\tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes \mathcal{E}_{\tilde{\lambda}}: \eta \otimes_{\mathfrak{h}} \mathcal{H} \rightarrow \eta \otimes_{\mathfrak{h}} \mathcal{H}, \quad \mathcal{E}_{\tilde{\lambda}}:=\sum_{w_{0} \in Y_{\lambda}} \chi\left(c_{\tilde{w}_{0}}\right) \otimes T_{\tilde{\lambda} \tilde{w}_{0}}, \\
Y_{\lambda}=\left\{w_{0} \in\left\langle S_{\chi}-S_{\eta}\right\rangle \mid \chi^{w_{0}}=\chi, \ell\left(\lambda w_{0}\right)=\ell(\lambda)-\ell\left(w_{0}\right)\right\} .
\end{gathered}
$$

(b) Let o be an orientation such that $\eta=\chi_{o}$. For $\lambda \in \Lambda_{\chi}^{+}$, there exists an injective \mathfrak{h}-intertwiner

$$
\Phi_{o, \tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes E_{o}(\tilde{\lambda}): \eta \otimes_{\mathfrak{h}} \mathcal{H} \rightarrow \eta \otimes_{\mathfrak{h}} \mathcal{H}
$$

$\left(\Phi_{o, \tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$is a basis of the spherical Hecke algebra $\mathcal{H}(\mathfrak{h}, \eta)$ satisfying (14), inducing an isomorphism

$$
\mathcal{H}(\mathfrak{h}, \eta) \simeq e_{\chi} R\left[\Lambda_{\chi}^{+}(1)\right]
$$

We suppose now that Λ_{T} exists. The center \mathcal{Z} of \mathcal{H} is the algebra $\mathcal{A}_{o}^{W(1)}$ of W (1)-invariants of \mathcal{A}_{o}, and is a free R-module of basis

$$
\begin{equation*}
E(\tilde{C})=\sum_{\tilde{\lambda} \in \tilde{C}} E_{o}(\tilde{\lambda}) \tag{15}
\end{equation*}
$$

$(E(\tilde{C})$ is independent of the choice of o) for all finite conjugacy classes \tilde{C} of $W(1)$. We denote by $\tilde{C}(\mu)$ the $W(1)$-conjugacy class of $\tilde{\mu}$ for $\mu \in \Lambda_{T}^{+}$. The R-subspace of
basis $(E(\tilde{C}(\mu)))_{\mu \in \Lambda_{T}^{+}}$is a central subalgebra \mathcal{Z}_{T} of \mathcal{H} which has better properties than \mathcal{Z}.

A central element $x \in \mathcal{Z}$ induces naturally a \mathcal{H}-intertwiner of $\eta \otimes_{\mathfrak{h}} \mathcal{H}$:

$$
\begin{equation*}
\Phi_{x}: 1 \otimes h \mapsto 1 \otimes x h=1 \otimes h x \quad \text { for } h \in \mathcal{H} \tag{16}
\end{equation*}
$$

It is straightforward to check that Φ_{x} belongs to the center $\mathcal{Z}(\eta, \mathfrak{h})$ of $\mathcal{H}(\eta, \mathfrak{h})$. The R-subspace of basis $\left(\Phi_{E(\tilde{C}(\mu))}\right)_{\mu \in \Lambda_{T}^{+}}$is a central subalgebra $\mathcal{Z}(\eta, \mathcal{H})_{T}$ of the spherical algebra $\mathcal{H}(\eta, \mathfrak{h})$.

Theorem 1.4 (Almost-isomorphism between the centers of \mathcal{H} and $\mathcal{H}(\eta, \mathfrak{h})$). We suppose that Λ_{T} exists. Let η be a character of \mathfrak{h}.
(a) \mathcal{Z}_{T} is a finitely generated central R-subalgebra of \mathcal{H}, and \mathcal{H} is a finitely generated \mathcal{Z}_{T}-module. This is also true for $\left(\mathcal{Z}(\eta, \mathcal{H})_{T}, \mathcal{H}(\eta, \mathfrak{h})\right)$ instead of $\left(\mathcal{Z}_{T}, \mathcal{H}\right)$.
(b) $\Phi_{E(\tilde{C}(\mu))}=\Phi_{o, \tilde{\mu}}$ for $\mu \in \Lambda_{T}^{+}$and any orientation o such that $\eta=\chi_{o}$.

The linear map $\tilde{\mu} \mapsto \Phi_{E(\tilde{C}(\mu))}: R\left[\tilde{\Lambda}_{T}^{+}\right] \rightarrow \mathcal{Z}(\eta, \mathcal{H})_{T}$ is an algebra isomorphism.
(c) The map $x \mapsto \Phi_{x}: \mathcal{Z} \rightarrow \mathcal{Z}(\eta, \mathcal{H})$ restricts to an isomorphism $\mathcal{Z}_{T} \rightarrow \mathcal{Z}(\eta, \mathcal{H})_{T}$.

We prove (a) over any commutative ring R.
We transfer these results to the group G. The spherical Hecke algebra $\mathcal{H}_{R}(G, K, \rho)=$ $\operatorname{End}_{R G} \mathrm{c}-\operatorname{Ind}_{K}^{G} \rho$ of an irreducible smooth representation ρ of K with $\mathcal{H}_{R}(K, I(1))$ acting by η on $\rho^{I(1)}$ is isomorphic to $\mathcal{H}(\eta, \mathfrak{h})$ by the pro- p-Iwahori invariant functor. We denote by $\mathcal{Z}_{R}(G, K, \rho)_{T}$ the algebra corresponding to $\mathcal{Z}(\eta, \mathcal{H})_{T}$. We denote by $\mathcal{H}_{R}\left(Z^{+}, Z_{0}, \chi\right)$ the R-algebra of elements in the Hecke algebra $\mathcal{H}_{R}\left(Z^{+}, Z_{0}, \chi\right)$ with support contained in the monoid Z^{+}of $z \in Z$ with $\nu_{Z}(z)$ dominant.

From Theorem 1.3 we obtain an algebra isomomorphism

$$
\begin{equation*}
\mathcal{S}_{o}: \mathcal{H}_{R}(G, K, \rho) \rightarrow \mathcal{H}_{R}\left(Z^{+}, Z_{0}, \chi\right) \tag{17}
\end{equation*}
$$

for each orientation o such that $\eta=\chi_{o}$. This isomorphism restricts to an isomorphism, independent of the choice of o,

$$
\begin{equation*}
\mathcal{S}_{T}: \mathcal{Z}_{R}(G, K, \rho)_{T} \rightarrow \mathcal{H}_{R}\left(T^{+}, T_{0}, \chi\right) \tag{18}
\end{equation*}
$$

Let π be a smooth R-representation of G such that $\operatorname{Hom}_{R}(\rho, \pi)$ contains a $\mathcal{Z}_{R}(G, K, \rho)_{T}$-eigenvector A of eigenvalue ξ, seen as an homomorphism $\tilde{\Lambda}_{T}^{+} \rightarrow R$ (Theorem 1.4). From Theorem 1.4, for $v \in \rho^{I(1)}$ non-zero and $\mu \in \Lambda_{T}^{+}$,

$$
\xi(\tilde{\mu}) A(v)=A(v) E_{o}(\tilde{\mu})=A(v) E(\tilde{C}(\mu))
$$

Theorem 1.5 (Supersingularity in G and in \mathcal{H}). The eigenvalue ξ of the $\mathcal{Z}_{R}(G, K, \rho)_{T}$-eigenvector $A \in \operatorname{Hom}_{R}(\rho, \pi)$ is supersingular if and only if the submodule $A(v) \mathcal{H}$ of $\pi^{I(1)}$ is supersingular.

We recall that an homomorphism $\tilde{\Lambda}_{T}^{+} \rightarrow R$ is called supersingular if it vanishes on the non-invertible elements, and that a simple right \mathcal{H}-module M is called supersingular if $\operatorname{ME}(\tilde{C})=0$ for all finite conjugacy classes \tilde{C} in $W(1)$ with positive length [13, Definition 1]. This is equivalent to $\operatorname{ME}(\tilde{C}(\mu))=0$ for all non-invertible $\mu \in \tilde{\Lambda}_{T}^{+}$.

In a forthcoming article, we will study the parabolic induction for \mathcal{H}-modules; we hope to prove that the isomorphism $\mathcal{S}_{o}(17)$ is the Satake isomorphism of [7] for a good choice of o such that $\eta=\chi_{o}$ (this was proved by Ollivier [10, Theorem 5.5]), when G is split with a simply connected derived group, and K is hyperspecial; as $Z=T$, we have $\mathcal{S}_{o}=\mathcal{S}_{T}$, and that an irreducible smooth admissible representation π is supersingular if and only if $\pi^{I(1)}$ contains a supersingular module (this was proved by Ollivier for $G=G L(n, F)$ and $P G L(n, F)$ [11, Theorem 5.26]).

Finally, we classify the supersingular simple finite-dimensional \mathcal{H}-modules (proved by Ollivier when G is split, and K is hyperspecial [11, Corollary 5.15]).

For a character Ξ of $\mathcal{H}^{\text {aff }}$, the R-subalgebra \mathcal{H}_{Ξ} of \mathcal{H} generated by $\mathcal{H}^{\text {aff }}$ and the Ω (1)-fixator of Ξ,

$$
\Omega(1)_{\Xi}:=\left\{u \in \Omega(1) \mid \Xi\left(u h u^{-1}\right)=\Xi(h) \text { for } h \in \mathcal{H}^{\text {aff }}\right\}
$$

is identified by (3) with the twisted tensor product $\mathcal{H}^{\text {aff }} \otimes_{R\left[Z_{k}\right]} R\left[\Omega(1)_{\Xi}\right] \rightarrow \mathcal{H}_{\Xi}$. For a simple finite-dimensional R-representation σ of $\Omega(1)_{\Xi}$ equal to Ξ on Z_{k}, let

$$
\begin{equation*}
M(\Xi, \sigma):=(\Xi \otimes \sigma) \otimes_{\mathcal{H}_{\Xi}} \mathcal{H} \tag{19}
\end{equation*}
$$

be the right \mathcal{H}-module induced from the right \mathcal{H}_{Ξ}-module $\Xi \otimes \sigma$. The induced module $M(\Xi, \sigma)$ is finite dimensional. Two pairs $\left(\Xi_{1}, \sigma_{1}\right),\left(\Xi_{2}, \sigma_{2}\right)$ are called conjugate by an element $u \in \Omega(1)$ if

$$
\Xi_{1}\left(u h u^{-1}\right)=\Xi_{2}(h), \sigma_{1}\left(u v u^{-1}\right)=\sigma_{2}(v) \quad \text { for }(h, v) \in \mathcal{H}^{\text {aff }} \times u^{-1} \Omega_{\Xi}(1) u
$$

The affine Coxeter system ($W^{\text {aff }}, S^{\text {aff }}$) is the direct product of the irreducible affine Coxeter systems $\left(W_{i}^{\text {aff }}, S_{i}^{\text {aff }}\right)_{1 \leqslant i \leqslant r}$ associated to the irreducible components $\left(\Sigma_{i}, \Delta_{i}\right)_{1 \leqslant i \leqslant r}$ of the based reduced root system (Σ, Δ). The R-submodule of basis $\left(T_{\tilde{w}}\right)_{\tilde{w}_{i} \in W_{i}^{\text {aff }}(1)}$ is a subalgebra $\mathcal{H}_{i}^{\text {aff }}$ of $\mathcal{H}^{\text {aff } . ~ T h e ~ a l g e b r a s ~} \mathcal{H}_{i}^{\text {aff }}$ are called the irreducible components of $\mathcal{H}^{\text {aff }}$.

Theorem 1.6 (Supersingular simple modules). (a) The characters Ξ of $\mathcal{H}^{\text {aff }}$ are in bijection with the pairs (χ, J), where $\chi \in \hat{Z}_{k}$ and $J \subset S_{\chi}^{\text {aff }}, \chi=\left.\Xi\right|_{Z_{k}}$, and $J=S_{\Xi}^{\text {aff }}$ (10). When $S_{\Xi}^{\text {aff }}=S^{\text {aff }}, \Xi$ is called a sign character, and the character $\Xi \circ \iota$ (4) is called a trivial character.
(b) A character Ξ of $\mathcal{H}^{\text {aff }}$ is supersingular if and only if it is not a sign or trivial character on each irreducible component of $\mathcal{H}^{\text {aff }}$.
(c) A finite-dimensional right \mathcal{H}-module is supersingular if and only if it is isomorphic to $M(\Xi, \sigma)$, where Ξ is a supersingular character of $\mathcal{H}^{\text {aff }}$ and σ is a simple finite-dimensional R-representation σ of $\Omega(1)_{\Xi}$ equal to Ξ on Z_{k}.
(d) $M\left(\Xi_{1}, \sigma_{1}\right) \simeq M\left(\Xi_{2}, \sigma_{2}\right)$ if and only if $\left(\Xi_{1}, \sigma_{1}\right),\left(\Xi_{2}, \sigma_{2}\right)$ are $\Omega(1)$-conjugate.

2. The characters of \mathfrak{h} and $\mathcal{H}^{\text {aff }}$

Proposition 2.1. A simple \mathfrak{h}-module has dimension 1 .

Proof. The finite-dimensional R-algebra \mathfrak{h} is generated by Z_{k} and $T_{\tilde{s}}$ for all $s \in S$. By the hypothesis on $R(\S 1.4)$, a right simple \mathfrak{h}-module is finite dimensional and contains an eigenvector v of Z_{k}. Following the argument of [4, Theorem 6.10], we choose w in the finite group W_{0} of maximal length such that $v T_{\tilde{w}} \neq 0$, and we show that $R v T_{\tilde{w}}$ is \mathfrak{h}-stable.
$R v T_{\tilde{w}}$ is stable by T_{t}, because $T_{\tilde{w}} T_{t}=(w \bullet t) T_{\tilde{w}}$ for $t \in Z_{k}$.
$R v T_{\tilde{w}}$ is stable by $T_{\tilde{s}}$, because

- if $\ell(w s)=\ell(w)+1, v T_{\tilde{w}} T_{\tilde{s}}=v T_{w \tilde{s}}$ and by the hypothesis on $w, v T_{\tilde{w} \tilde{s}}=0$;
- if $\ell(w s)=\ell(w)-1, T_{\tilde{w}} T_{\tilde{s}}=T_{\tilde{w} \tilde{s}^{-1}} T_{\tilde{s}}^{2}=T_{\tilde{w} \tilde{s}^{-1}} c_{\tilde{s}} T_{\tilde{s}}=T_{w \tilde{s}^{-1}} T_{\tilde{s}} c_{\tilde{s}}=\left(w \bullet c_{\tilde{s}}\right) T_{\tilde{w}}$. We used that $T_{\tilde{s}}$ and $c_{\tilde{s}}$ commute.

Proposition 2.2. The characters η of \mathfrak{h} are in bijection with the pairs (χ, J), where $\chi \in \hat{Z}_{k}$ and $J \subset S_{\chi}$ (9), by the recipe

$$
\left.\eta\right|_{z_{k}}=\chi, \quad S_{\eta}=\left\{s \in S \mid \eta\left(T_{\tilde{s}}\right) \neq 0\right\}=J .
$$

We have $\eta\left(T_{\tilde{s}}\right)=\chi\left(c_{\tilde{s}}\right)$ if $s \in J$.
The characters Ξ of $\mathcal{H}^{\text {aff }}$ are in bijection with the pairs (χ, J), where $\chi \in \hat{Z}_{k}$ and $J \subset S_{\chi}^{\text {aff }}$, by the recipe

$$
\left.\Xi\right|_{Z_{k}}=\chi, \quad S_{\Xi}^{\text {aff }}=\left\{s \in S^{\text {aff }} \mid \Xi\left(T_{\tilde{s}}\right) \neq 0\right\}=J .
$$

We have $\boldsymbol{\Xi}\left(T_{\tilde{s}}\right)=\chi\left(c_{\tilde{s}}\right)$ if $s \in J$.
The set J is independent of the choice of the lift \tilde{s} of s. We call (χ, J) the parameters of the character. The restriction to \mathfrak{h} of the character Ξ of $\mathcal{H}^{\text {aff }}$ with parameters $\left(\chi, S_{\Xi}^{\text {aff }}\right)$ is the character of parameters $\left(\chi, S_{\Xi}\right.$ aff $\left.\cap S\right)$.

Proof. The proposition follows from the Iwahori-Matsumoto presentation in both cases. If $\left.\eta\right|_{z_{k}}=\chi$, we have

$$
\eta\left(T_{\tilde{s}}\right)\left(\eta\left(T_{\tilde{s}}\right)-\chi\left(c_{\tilde{s}}\right)\right)=0
$$

for $s \in S$. We can replace η, S by $\Xi, S^{\text {aff }}$.
The involutive automorphism ι of $\mathcal{H}(4)$ has the property for $s \in S$ that

$$
\eta\left(T_{\tilde{s}}\right)=0 \Leftrightarrow \eta \circ \iota\left(T_{\tilde{s}}\right)=\eta\left(c_{\tilde{s}}\right) .
$$

The same holds for ($\Xi, S^{\text {aff }}$) instead of (η, S).
Lemma 2.3. Let η be a character with parameters $\left(\chi, S_{\eta}\right)$ of \mathfrak{h}. Then $\eta \circ \iota$ is a character of \mathfrak{h} with parameters $\left(\chi, S_{\chi}-S_{\eta}\right)$. We can replace η, S, \mathfrak{h} by $\Xi, S^{\text {aff }}, \mathcal{H}^{\text {aff }}$.

Let o be an orientation. We recall the notation (5), (6), (9), (10).
Lemma 2.4. Let η be a character of \mathfrak{h} with parameters $\left(\chi, S_{\eta}\right)$. Then $S_{\eta}=S_{\chi} \cap S_{o} \Leftrightarrow$ $\eta\left(E_{o}(\tilde{s})\right)=0$ for all $s \in S$. When this holds true, we denote $\eta=\chi_{o}$.

We can replace $\left(\eta, \mathfrak{h}, S, \chi_{o}\right)$ by $\left(\Xi, \mathcal{H}^{\text {aff }}, S^{\text {aff }}, \chi_{o}^{\text {aff }}\right)$.

M.-F. Vigneras

Proof. We compare the values of $E_{o}(\tilde{s})$ and $\eta\left(T_{\tilde{s}}\right)$ for $s \in S$:

$$
\begin{aligned}
E_{o}(\tilde{s}) & =T_{\tilde{s}} \Leftrightarrow s \in S-S_{o}, \\
& =T_{\tilde{s}}-c_{\tilde{s}} \Leftrightarrow s \in S_{o}, \\
\eta\left(T_{\tilde{s}}\right) & =0 \Leftrightarrow s \in S-S_{\eta}, \\
& =\chi\left(c_{\tilde{s}}\right) \neq 0 \text { if } s \in S_{\eta} .
\end{aligned}
$$

We see that

$$
\begin{aligned}
& \text { if } s \in S-S_{\chi} \text {, then } \eta\left(E_{o}(\tilde{s})\right)=\eta\left(T_{\tilde{s}}\right)=\chi\left(c_{\tilde{s}}\right)=0 \text {; } \\
& \text { if } s \in S_{\chi}-S_{\eta} \text {, then } \eta\left(E_{o}(\tilde{s})\right)=\eta\left(T_{\tilde{s}}\right)=0 \Leftrightarrow s \notin\left(S_{\chi}-S_{\eta}\right) \cap S_{o} \text {; } \\
& \text { if } s \in S_{\eta} \text {, then } \eta\left(E_{o}(\tilde{s})\right)=0 \Leftrightarrow s \in S_{\eta} \cap S_{o} .
\end{aligned}
$$

Hence we obtain the lemma for η. The proof is the same for Ξ.
Example 2.5. For the dominant orientation $o^{+}, S_{o^{+}}^{\text {aff }}=S$, and the parameters of $\chi_{o^{+}}$and of $\chi_{o^{+}}^{\text {aff }}$ are $\left(\chi, S_{\chi}\right)$.

For the anti-dominant orientation $o^{-}, S_{o^{-}}^{\text {aff }}=S^{\text {aff }}-S$, and the parameters of $\chi_{o^{-}}$are (χ, \emptyset), while those of $\chi_{o^{-}}^{\text {aff }}$ are $\left(\chi, S_{\chi}^{\text {aff }}-S_{\chi}\right)$.

Lemma 2.6. (i) Any subset of S is equal to S_{o} for some orientation o.
A character η of \mathfrak{h} of restriction χ to Z_{k} is equal to χ_{o} for some orientation o, and

$$
\eta=\chi_{o} \Leftrightarrow S_{o} \cap S_{\chi}=S_{\eta}
$$

(ii) Two R-characters η_{1}, η of \mathfrak{h} of parameters $\left(\chi_{1}, S_{\eta_{1}}\right),\left(\chi, S_{\eta}\right)$ are equal to $\left(\chi_{1}\right)_{o}, \chi_{o}$ for some orientation o if and only if

$$
S_{\eta_{1}} \cap S_{\chi}=S_{\eta} \cap S_{\chi_{1}}
$$

In this case, $\eta_{1}=\left(\chi_{1}\right)_{o}$ and $\eta=\chi_{o} \Leftrightarrow S_{o} \cap\left(S_{\chi_{1}} \cup S_{\chi}\right)=S_{\eta_{1}} \cup S_{\eta}$.

Proof. (i) Let $w_{o} \in W_{0}$. For $\alpha \in \Delta$, the root in $\{\alpha,-\alpha\}$ positive on $w_{o}^{-1}\left(\mathfrak{D}^{+}\right)$is equal to $\alpha_{o}=\alpha$ if $w_{o}(\alpha)>0$ and $\alpha_{o}=-\alpha$ if $w_{o}(\alpha)<0$; hence

$$
s_{\alpha} \in S_{o} \Leftrightarrow w_{o}(\alpha)>0 .
$$

For a subset X of S, we have $X=S_{o}$ for the orientation $o=o^{+} \bullet w_{o}$ of Weyl chamber $\mathfrak{D}_{o}=w_{o}^{-1}\left(\mathfrak{D}^{+}\right)$, where w_{o} is the longest element of the group $\langle S-X\rangle(w=1$ if $S=X)$.
(ii) $S_{o} \cap S_{\chi_{1}}=S_{\eta_{1}}$ and $S_{o} \cap S_{\chi}=S_{\eta}$ imply that $S_{o} \cap S_{\chi_{1}} \cap S_{\chi}=S_{\eta_{1}} \cap S_{\chi}=S_{\eta} \cap S_{\chi_{1}}$. If $S_{\eta_{1}} \cap S_{\chi}=S_{\eta} \cap S_{\chi_{1}}$, then $S_{o} \cap\left(S_{\chi_{1}} \cup S_{\chi}\right)=S_{\eta_{1}} \cup S_{\eta}$ implies that $S_{o} \cap S_{\chi_{1}}=S_{\eta_{1}}$ and $S_{o} \cap$ $S_{\chi}=S_{\eta}$.

Definition 2.7. A character of \mathfrak{h} not vanishing on $T_{\tilde{s}}$ for all $s \in S$ is called a twisted sign character, and its image by the involution ι is called a twisted trivial character.

We make the same definition for $\mathcal{H}^{\text {aff }}, S^{\text {aff }}$ replacing \mathfrak{h}, S.

The twisted sign characters η are never 0 on $T_{\tilde{w}}$ for $w \in W_{0}$. The algebra \mathfrak{h} admits no twisted sign or trivial characters when $c_{\tilde{s}}=0$ for some $s \in S$. They are equal to $\chi_{o^{+}}$, where $\chi \in \hat{Z}_{k}$ satisfies $S_{\chi}=S$.

The twisted trivial characters η vanish on $T_{\tilde{w}}$ for all $w \in W_{0}$. They are equal to $\chi_{o^{-}}$, where $\chi \in \hat{Z}_{k}$ satisfies $S_{\chi}=S$.

The same remarks can be made for $\mathcal{H}^{\text {aff }},\left(W^{\text {aff }}, S^{\text {aff }}\right)$ replacing $\mathfrak{h},\left(W_{0}, S\right)$.

3. Distinguished representatives of $W_{0} \backslash W$

We recall a well-known lemma for the affine Coxeter system ($W^{\text {aff }}, S^{\text {aff }}$) extended to the group $W=W^{\text {aff }} \rtimes \Omega$.

For $s \in S^{\text {aff }}$, we denote by A_{s} the unique positive affine root such that $s\left(A_{s}\right)$ is negative. We have $s\left(A_{s}\right)=-A_{s}[8,1.3 .11]$. When $s \in S$ we write $A_{s}=\alpha_{s}$.

Lemma 3.1. (1) For $(s, w) \in S^{\text {aff }} \times W$, we have

$$
\ell(w s)=1+\ell(w) \Leftrightarrow w\left(\alpha_{s}\right)>0 .
$$

(2) For $v \leqslant w$ in W and $s \in S^{\text {aff }}$, we have
(a) either $s v \leqslant w$ or $s v \leqslant s w$;
(b) either $v \leqslant s w$ or $s v \leqslant s w$.

Proof. We recall that $W=W^{\text {aff }} \rtimes \Omega$. Let $(s, u, w) \in S^{\text {aff }} \times \Omega \times W^{\text {aff }}$.
(1) We have $\ell(u w s)=\ell(w s), \ell(u w)=\ell(w)$, and $\quad \ell(w s)=\ell(w)+1 \Leftrightarrow w\left(\alpha_{s}\right)>0$ [8, 1.13.13]. By definition (§1.2) an affine root is positive if and only if it is positive on the dominant alcove \mathfrak{C}^{+}. As the group Ω normalizes \mathfrak{C}^{+}, it normalizes the set of positive affine roots, in particular $w\left(\alpha_{s}\right)>0 \Leftrightarrow(u w)\left(\alpha_{s}\right)>0$.
(2) Let $\left(v, u^{\prime}\right) \in W^{\text {aff }} \times \Omega$. By definition of the Bruhat-Chevalley partial order [14, Ap. 2], $v u^{\prime} \leqslant w u$ is equivalent to $u^{\prime}=u, v \leqslant w$. In $W^{\text {aff }}$ [8, 1.3.19],
(a) either $s v \leqslant w$ or $s v \leqslant s w$;
(b) either $v \leqslant s w$ or $s v \leqslant s w$.

We multiply (a) and (b) by u on the right without changing \leqslant.
Remark 3.2. As $\ell(w)=\ell\left(w^{-1}\right)$ and $v \leqslant w \Leftrightarrow v^{-1} \leqslant w^{-1}$, in Lemma 3.1(1) we also have $\ell(s w)=1+\ell(w) \Leftrightarrow w^{-1}\left(\alpha_{s}\right)>0$, and in Lemma 3.1(2), (a) and (b) can be replaced by
(c) either $v s \leqslant w$ or $v s \leqslant w s$;
(d) either $v \leqslant w s$ or $v s \leqslant w s$.

We introduce now a distinguished set \mathcal{D} of representatives of $W_{0} \backslash W$.
Proposition 3.3. The three sets

$$
\mathcal{D}_{1}=\left\{d \in W \mid d^{-1}(\alpha)>0 \text { for all } \alpha \in \Sigma^{+}\right\},
$$

$$
\begin{gathered}
\mathcal{D}_{2}=\left\{\lambda w_{0} \mid\left(\lambda, w_{0}\right) \in \Lambda^{+} \times W_{0}, \ell\left(\lambda w_{0}\right)=\ell(\lambda)-\ell\left(w_{0}\right)\right\}, \\
\mathcal{D}_{3}=\left\{d \in W \mid \ell\left(w_{0} d\right)=\ell\left(w_{0}\right)+\ell(d) \text { for all } w_{0} \in W_{0}\right\}
\end{gathered}
$$

are equal, and will be denoted by \mathcal{D}. The cosets $W_{0} d$, for $d \in \mathcal{D}$, are disjoint of union W.
Proof. The set \mathcal{D}_{1} is also equal to

$$
\begin{equation*}
\{d \in W \mid \ell(s d)=\ell(d)+1 \text { for all } s \in S\} \tag{20}
\end{equation*}
$$

because one can restrict to $\alpha \in \Delta$ in the definition of \mathcal{D}_{1} and, for $s \in S, d^{-1}\left(\alpha_{s}\right)>$ $0 \Leftrightarrow \ell(s d)=\ell(d)+1$ (Remark 3.2). Let $w \in W$ not in \mathcal{D}_{1}. There exists $s \in S$ with $\ell(s w)=\ell(w)-1$. Then $w_{1}=s w$ satisfies $\ell(w)=1+\ell\left(w_{1}\right)$. We reiterate, and after finitely many steps we obtain $\left(w_{0}, d\right) \in W_{0} \times \mathcal{D}_{1}$ such that $w=w_{0} d, \ell(w)=\ell\left(w_{0}\right)+\ell(d)$. The pair $\left(w_{0}, d\right)$ is unique. Indeed, for d, d^{\prime} in \mathcal{D}_{1} with $d^{\prime} d^{-1} \in W_{0}$, for all $\alpha \in \Delta$ we have $d^{\prime} d^{-1}(\alpha)=\gamma \in \Sigma$, and $d^{-1}(\alpha)=d^{\prime-1}(\gamma)$ is positive as $d \in \mathcal{D}_{1}$; hence $\gamma>0$ as $d^{\prime} \in \mathcal{D}_{1}$. This implies $d=d^{\prime}$. We deduce that \mathcal{D}_{1} is a set of representatives of $W_{0} \backslash W$, that $d \in \mathcal{D}_{1}$ is the unique element of minimal length in $W_{0} d$, and that $\mathcal{D}_{1} \subset \mathcal{D}_{3}$. This implies that $\mathcal{D}_{1}=\mathcal{D}_{3}$.

We now compare the sets \mathcal{D}_{1} and \mathcal{D}_{2}. For $\left(\lambda, w_{0}\right) \in \Lambda \times W_{0}$, we deduce from Lemma 3.1 (see [15, Corollary 5.11]) that

$$
\begin{equation*}
\ell\left(\lambda w_{0}\right)=\ell(\lambda)-\ell\left(w_{0}\right) \Leftrightarrow \alpha \circ \nu(\lambda)>0 \quad \text { for all } \alpha \in \Sigma^{+} \cap w_{0}\left(\Sigma^{-}\right) \tag{21}
\end{equation*}
$$

On the other hand, for all $\alpha \in \Sigma^{+},\left(\lambda w_{0}\right)^{-1}(\alpha)=w_{0}^{-1}(\alpha)+\alpha \circ \nu(\lambda)$ is positive if and only if

$$
\begin{equation*}
w_{0}^{-1}(\alpha)>0, \alpha \circ v(\lambda) \geqslant 0 \quad \text { or } \quad w_{0}^{-1}(\alpha)<0, \alpha \circ v(\lambda)>0 \tag{22}
\end{equation*}
$$

$[15,(36)]$. Comparing (21) and (22), we deduce that $\mathcal{D}_{1}=\mathcal{D}_{2}$.
Remark 3.4. (i) The distinguished set $\mathcal{D}^{\text {aff }}$ of representatives of $W_{0} \backslash W^{\text {aff }}$ given by Proposition 3.3 applied to $W^{\text {aff }}$ is equal to $\mathcal{D}^{\text {aff }}=\mathcal{D} \cap W^{\text {aff }}$, and $\mathcal{D}=\mathcal{D}^{\text {aff }} \Omega$.
(ii) The distinguished set \mathcal{D} of representatives of $W_{0} \backslash W^{\text {aff }}$ can be inductively constructed: it is the set of $\lambda w_{0} \in \mathcal{D}$ for $\lambda \in \Lambda^{+}$and $w_{0} \in W_{0}$, such that $w_{0}=1$ or w_{0} has a reduced decomposition $w_{0}=s_{1} \ldots s_{r}\left(s_{i} \in S\right)$, such that

$$
\ell\left(\lambda s_{1} \ldots s_{i+1}\right)=\ell\left(\lambda s_{1} \ldots s_{i}\right)-1 \quad \text { for } 1 \leqslant i \leqslant r
$$

Note that $\lambda s \in \mathcal{D} \Leftrightarrow \alpha_{s} \circ v(\lambda)>0$ when $s \in S$.
We denote by w_{1} the unique element of maximal length in the finite Weyl group W_{0}.
Lemma 3.5. Let $\lambda, \mu \in \Lambda^{+}$. The double W_{0}-coset $W_{0} \lambda W_{0}$ has a unique element w_{λ} of maximal length,

$$
w_{\lambda}=w_{1} \lambda, \quad \ell\left(w_{\lambda}\right)=\ell\left(w_{1}\right)+\ell(\lambda) \quad \text { and } \quad \lambda \leqslant \mu \Leftrightarrow w_{\lambda} \leqslant w_{\mu}
$$

The set $W_{0} \lambda W_{0} \cap \mathcal{D}$ is equal to $\mathcal{D}(\lambda)=\left\{\lambda w_{0} \mid w_{0} \in W_{0}, \ell\left(\lambda w_{0}\right)=\ell(\lambda)-\ell\left(w_{0}\right)\right\}$.

Proof. The coset $W_{0} d$ of $d \in \mathcal{D}$ contains a unique element of maximal length, equal to $w_{1} d, \ell\left(w_{1} d\right)=\ell\left(w_{1}\right)+\ell(d)$. For $\lambda \in \Lambda^{+}$, the set $\mathcal{D} \cap W_{0} \lambda W_{0}$ contains a unique element of maximal length, equal to λ (Remark 3.4(ii)). Hence $W_{0} \lambda W_{0}$ contains a unique element w_{λ} of maximal length, equal to $w_{1} \lambda$ and $\ell\left(w_{\lambda}\right)=\ell\left(w_{1}\right)+\ell(\lambda)$. As $w_{\mu}=w_{1} \mu, \ell\left(w_{\mu}\right)=$ $\ell\left(w_{1}\right)+\ell(\mu)$, the equivalence $\lambda \leqslant \mu \Leftrightarrow w_{1} \lambda \leqslant w_{1} \mu$ is clear. We have $\mathcal{D}(\lambda)=\lambda W_{0} \cap \mathcal{D}$ (Proposition 3.3), and $\mu \in W_{0} \lambda W_{0} \Leftrightarrow \mu=w \lambda w^{-1}$ for some $w \in W_{0} \Leftrightarrow \mu=\lambda$, as Λ^{+} represents the orbits of W_{0} in $\Lambda[7,6.3]$.

Lemma 3.6. Let $\left(\lambda, w_{0}\right) \in \Lambda^{+} \times W_{0}, d=\lambda w_{0} \in \mathcal{D}$, and let $\mu \in \Lambda^{+}$.
(1) For $s \in S^{\text {aff }}, d s \notin \mathcal{D} \Leftrightarrow d s d^{-1} \in S \Rightarrow \ell(d s)=\ell(d)+1$.
(2) For $s \in S$ and $d s \in \mathcal{D}$, we have $\ell(d s)=\ell(d)+1 \Leftrightarrow \ell\left(w_{0} s\right)=\ell\left(w_{0}\right)-1$.
(3) For $\left(w, d^{\prime}\right) \in W_{0} \times \mathcal{D}$, we have $d \leqslant w d^{\prime} \Rightarrow d \leqslant d^{\prime}$.
(4) For $s \in S$ such that $d s \in \mathcal{D}$, we have $d \leqslant \mu \Rightarrow d s \leqslant \mu$.
(5) We have $d \leqslant w_{\mu} \Leftrightarrow d \leqslant \mu \Leftrightarrow \lambda \leqslant \mu$.

Proof. (1) Let $s \in S^{\text {aff. By (20) and Remark 3.2, }}$

$$
d s \notin \mathcal{D} \Leftrightarrow(d s)^{-1}(\alpha)<0 \quad \text { for some } \alpha \in \Delta
$$

As $d^{-1}(\beta)>0$ for all $\beta \in \Sigma^{+}$, and $d s d^{-1} \in W^{\text {aff }}$, we have

$$
s\left(\left(d^{-1}(\alpha)\right)\right)<0 \Leftrightarrow d^{-1}(\alpha)=A_{s} \Leftrightarrow \alpha=d\left(A_{s}\right) \Leftrightarrow s_{\alpha}=d s d^{-1} .
$$

We have $\ell(d s)=\ell(d)+1$ by Lemma 3.1(1).
(2) Let $s \in S$ with $d s \in \mathcal{D}$. Then

$$
\ell(d s)=\ell(d)+1 \Leftrightarrow \ell(\lambda)-\ell\left(w_{0} s\right)=\ell(\lambda)-\ell\left(w_{0}\right)+1 \Leftrightarrow \ell\left(w_{0} s\right)=\ell\left(w_{0}\right)-1
$$

(3) $d \leqslant w d^{\prime}$ and $s \in S$ imply that $d \leqslant s w d^{\prime}$ or $s d \leqslant s w d^{\prime}$ by Lemma 3.1(2); as $d<s d$, we obtain

$$
d \leqslant w d^{\prime} \Rightarrow d \leqslant s w d^{\prime}
$$

If $w \neq 1$, we choose s such that $s w<w$. Repeating the procedure, we obtain $d \leqslant d^{\prime}$ by induction on the length of $w \in W_{0}$.
(4) As $d \leqslant \mu, d s \leqslant \mu$ or $d s \leqslant \mu s$ by Lemma 3.1(2). When $\mu s<\mu$, we obtain $d s \leqslant \mu$. Suppose that $\mu s>\mu$ and $d s \leqslant \mu s$. By Lemma 3.1(1),

$$
\begin{aligned}
& \ell(\mu s)=\ell(m u)+1 \Leftrightarrow \mu\left(\alpha_{s}\right)=\alpha_{s}-\alpha_{s} \circ v(\mu)>0 \Leftrightarrow \alpha_{s} \circ v(\mu) \leqslant 0, \\
& \quad \Leftrightarrow \alpha_{s} \circ v(\mu)=0 \Leftrightarrow v(\mu) \text { fixed by } s \Leftrightarrow \mu s=s \mu u, u \in \Lambda \cap \Omega .
\end{aligned}
$$

We deduce that $d s \leqslant s \mu u$. By (3), $d s \leqslant \mu u$, because $d s, \mu u \in \mathcal{D}$. As Λ is commutative, $d s \leqslant u \mu$. For $w \in W$, there is a unique element $u_{w} \in \Omega$ such that $w \in u_{w} W^{\text {aff. By the }}$ definition of the Bruhat-Chevalley order, $d \leqslant \mu, d s \leqslant u \mu$ imply that $u_{d}=u_{\mu}=u u_{\mu}$. We deduce that $u=1, d s \leqslant \mu$.
(5) The implications $d \leqslant w_{\mu} \Leftarrow d \leqslant \mu \Leftarrow \lambda \leqslant \mu$ are obvious, because $d \leqslant \lambda, \mu \leqslant w_{\mu}$. The implication $d \leqslant w_{\mu} \Rightarrow d \leqslant \mu$ follows from (3), because $w_{\mu}=w_{1} \mu$ (Lemma 3.5) and $\mu \in \mathcal{D}$. The implication $d \leqslant \mu \Rightarrow \lambda \leqslant \mu$ follows from (4) reiterated finitely many times for $s \in S$ such that $\ell(d s)=\ell(d)+1$ if $d \neq \lambda$ (Remark 3.4(ii)).

Remark 3.7. Results similar to Proposition 3.3 and Lemma 3.6 are already in [9, Proposition 2.5, Lemma 2.6, Proposition 2.7], [10, Lemma 2.4], [11, Proposition 1.3], when W is the Iwahori Weyl group of a split reductive p-adic group G.

Lemma 3.8. In Lemma 3.6, for $s \in S$ and Δ_{λ} as in (11),

$$
d s \notin \mathcal{D} \Leftrightarrow d s d^{-1}=w_{0} s w_{0}^{-1} \in S_{\lambda} \Leftrightarrow w_{0}\left(\alpha_{s}\right) \in \Delta_{\lambda} \Leftrightarrow w_{0}\left(\alpha_{s}\right) \in \Sigma^{+}, w_{0}\left(\alpha_{s}\right) \circ v(\lambda)=0 .
$$

This implies that $\ell\left(w_{0} s\right)=\ell\left(w_{0}\right)+1$ and $\ell(d s)=\ell(d)+1=\ell(\lambda)-\ell\left(w_{0} s\right)+2$.
Proof. By Lemma 3.6(1), $d s \notin \mathcal{D} \Leftrightarrow d\left(\alpha_{s}\right)=\lambda w_{0}\left(\alpha_{s}\right)=w_{0}\left(\alpha_{s}\right)-w_{0}\left(\alpha_{s}\right) \circ v(\lambda) \in \Delta \Leftrightarrow$ $w_{0}\left(\alpha_{s}\right) \in \Delta, w_{0}\left(\alpha_{s}\right) \circ v(\lambda)=0 \Leftrightarrow w_{0}\left(\alpha_{s}\right) \in \Delta_{\lambda}$. In the proof of Lemma 3.6(1), we saw that $d s d^{-1}=s_{w_{0}\left(\alpha_{s}\right)}=w_{0} s w_{0}^{-1}$. Note that $d s \notin D$ implies that $\ell(d s)=\ell(d)+1=\ell(\lambda)-$ $\ell\left(w_{0}\right)+1 \neq \ell(\lambda)-\ell\left(w_{0} s\right)$. Hence $\ell\left(w_{0} s\right)=\ell\left(w_{0}\right)+1, \ell(d s)=\ell\left(\lambda w_{0} s\right)=\ell(\lambda)-\ell\left(w_{0} s\right)+$ 2.

By (22), $d s \in \mathcal{D} \Leftrightarrow \alpha \circ \nu(\lambda)>0$ for all $\alpha \in \Sigma^{+} \cap w_{0} s\left(\Sigma^{-}\right)$. We have

$$
\begin{aligned}
\Sigma^{+} \cap w_{0} s\left(\Sigma^{-}\right) & =\left(\Sigma^{+} \cap w_{0}\left(\Sigma^{-}\right)\right)-\left\{w_{0}\left(-\alpha_{s}\right)\right\} \quad \text { if } w_{0}\left(\alpha_{s}\right) \in \Sigma^{-} \\
& =\left(\Sigma^{+} \cap w_{0}\left(\Sigma^{-}\right)\right) \cup\left\{w_{0}\left(\alpha_{s}\right)\right\} \quad \text { if } w_{0}\left(\alpha_{s}\right) \in \Sigma^{+}
\end{aligned}
$$

because, for $\gamma \in \Sigma^{+}$, we have $s w_{0}^{-1}(\gamma)<0$ if and only if $\gamma \in\left\{w_{0}\left(\alpha_{s}\right)\right\} \cup\left(w_{0}\left(\Sigma^{-}\right)-\right.$ $\left\{w_{0}\left(-\alpha_{s}\right)\right\}$), as recalled at the beginning of this section. As $d \in \mathcal{D}$, we have $\alpha \circ \nu(\lambda)>0$ for all $\alpha \in \Sigma^{+} \cap w_{0}\left(\Sigma^{-}\right)$. We deduce that $d s \notin \mathcal{D} \Leftrightarrow w_{0}\left(\alpha_{s}\right) \in \Sigma^{+}, w_{0}\left(\alpha_{s}\right) \circ v(\lambda)=0$.

4. \mathfrak{h}-eigenspace in $\eta \otimes_{\mathfrak{h}} \mathcal{H}$

Proposition 4.1. For any choice of lift \tilde{d} of $d \in \mathcal{D}$ in $\mathcal{D}(1)$, the left \mathfrak{h}-module \mathcal{H} is free of basis $\left(T_{\tilde{d}}\right)_{d \in \mathcal{D}}$, and the right \mathfrak{h}-module \mathcal{H} is free of basis $\left(T_{\tilde{d}^{-1}}\right)_{d \in \mathcal{D}}$.

Proof. To the set \mathcal{D} of distinguished representatives of the right W_{0}-cosets in W is associated a disjoint union $W(1)=\bigsqcup_{d \in \mathcal{D}} W_{0}(1) \tilde{d}$. Hence \mathcal{H} admits the R-bases

$$
\left(T_{w \tilde{d}}\right)_{w \in W_{0}(1), d \in \mathcal{D}} \quad \text { and } \quad\left(T_{\tilde{d}-1} w\right)_{w \in W_{0}(1), d \in \mathcal{D}}
$$

A basis of \mathfrak{h} is $\left(T_{w}\right)_{w \in W_{0}(1)}$. By the braid relations, $T_{w \tilde{d}}=T_{w} T_{\tilde{d}}$ and $T_{\tilde{d}^{-1} w}=T_{\tilde{d}^{-1}} T_{w}$, because $\ell(w d)=\ell(w)+\ell(d)$.

Remark 4.2. An element of \mathcal{H} can be written as a sum $\sum_{d \in \mathcal{D}} h_{\tilde{d}} T_{\tilde{d}}$, where $h_{\tilde{d}} \in \mathfrak{h}$, and, for $t \in Z_{k}$,

$$
h_{\tilde{d}} T_{\tilde{d}}=h_{t \tilde{d}} T_{t \tilde{d}}=h_{t \tilde{d}} h_{t} T_{\tilde{d}}, \quad h_{\tilde{d}}=h_{t \tilde{d}} h_{t}
$$

The monoid Λ^{+}represents the orbits of W_{0} in Λ, and the double (W_{0}, W_{0})-cosets of W, because $W=\Lambda \rtimes W_{0}$. The $(\mathfrak{h}, \mathfrak{h})$-module \mathcal{H} is the direct sum

$$
\begin{equation*}
\mathcal{H}=\bigoplus_{\lambda \in \Lambda^{+}} \mathfrak{h}(\lambda) \tag{23}
\end{equation*}
$$

of the $(\mathfrak{h}, \mathfrak{h})$-submodules $\mathfrak{h}(\lambda)$ of R-basis $\left(T_{w}\right)_{w \in W_{0}(1) \tilde{\lambda} W_{0}(1)}$. We set $\mathcal{D}(\lambda):=W_{0} \lambda W_{0} \cap \mathcal{D}$.

Corollary 4.3. Let $\lambda \in \Lambda^{+}$. The left \mathfrak{h}-module $\mathfrak{h}(\lambda)$ is free of basis $\left(T_{\tilde{d}}\right)_{d \in \mathcal{D}(\lambda)}$, and the right \mathfrak{h}-module $\mathfrak{h}(\lambda)$ is free of basis $\left(T_{d^{-1}}\right)_{d \in \mathcal{D}\left(\lambda^{-1}\right)}$.

Let η be a character of \mathfrak{h} of parameters $\left(\chi, S_{\eta}\right)$. Let $\lambda \in \Lambda^{+}$. By Corollary 4.3, an R-basis of $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ is

$$
\begin{equation*}
\left(1 \otimes T_{\tilde{d}}\right)_{d \in \mathcal{D}(\lambda)} \tag{24}
\end{equation*}
$$

When the algebra \mathcal{H} arises from a split reductive p-adic group G, Ollivier proved that the right \mathfrak{h}-module $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ has multiplicity 1 (private communication by email March 2014). This property is general, and the characters of \mathfrak{h} contained in $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ admit the following description.

Proposition 4.4. Let η_{1} be a character of \mathfrak{h} of parameters $\left(\chi_{1}, S_{\eta_{1}}\right)$. The η_{1}-eigenspace of $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ is not 0 if and only if (η_{1}, η, λ) satisfies

$$
\chi_{1}=\chi^{\lambda}, \quad S_{\eta_{1}} \cap S_{\lambda}=S_{\eta} \cap S_{\lambda}
$$

When $\left(\eta_{1}, \eta, \lambda\right)$ satisfies these conditions, the η_{1}-eigenspace of $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ has dimension 1 and is generated by $1 \otimes \mathcal{E}_{\tilde{\lambda}}$ (defined in Theorem 1.2).

Proof. Let $\mathcal{E} \in \eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$. We write (24) $\mathcal{E}=\sum_{d \in \mathcal{D}(\lambda)} a_{\tilde{d}} \otimes T_{\tilde{d}}$, where $a_{\tilde{d}} \in R$, and, for $t \in Z_{k}$,

$$
a_{\tilde{d}} \otimes T_{\tilde{d}}=a_{t \tilde{d}} \otimes T_{t \tilde{d}}=\chi(t) a_{t \tilde{d}} \otimes T_{\tilde{d}}, \quad a_{\tilde{d}}=\chi(t) a_{t \tilde{d}}
$$

For $(w, t) \in W \times Z_{k}$ and a lift \tilde{w} of w in $W(1)$, using the notation of $\S \S 1.2$ and 1.4,

$$
\begin{equation*}
\left(1 \otimes T_{\tilde{w}}\right) T_{t}=1 \otimes(w \bullet t) T_{\tilde{w}}=\chi^{w}(t) \otimes T_{\tilde{w}} \tag{25}
\end{equation*}
$$

Using Proposition 2.2 and (25), \mathcal{E} is an \mathfrak{h}-eigenvector of $\eta \otimes \mathfrak{h} \mathfrak{h}(\lambda)$ with eigenvalue η_{1} if and only if \mathcal{E} satisfies

$$
\begin{gather*}
\mathcal{E}=\sum_{d \in \mathcal{D}(\lambda), \chi^{d}=\chi_{1}} a_{\tilde{d}} \otimes T_{\tilde{d}} \neq 0, \tag{26}\\
\mathcal{E} T_{\tilde{s}}=0 \quad \text { for } s \in S-S_{\eta_{1}}, \quad \mathcal{E} T_{\tilde{s}}=\chi_{1}\left(c_{\tilde{s}}\right) \mathcal{E} \quad \text { for } s \in S_{\eta_{1}} . \tag{27}
\end{gather*}
$$

The space $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ does not contain a \mathfrak{h}-eigenvector with eigenvalue η_{1} when the set $X=\left\{d \in \mathcal{D}(\lambda), \chi^{d}=\chi_{1}\right\}$ is empty, and the proposition is obviously true. When $v(\lambda)=0$, we have $\mathcal{D}(\lambda)=\{\lambda\}$ by Lemma 3.5, and the proposition is true, because it is clearly true when $X=\{\lambda\}$.

We suppose that $v(\lambda) \neq 0$. For $s \in S$, the set X is the disjoint union of the subsets

$$
\begin{aligned}
& X_{1}(s)=\{d \in X \mid \ell(d s)=\ell(d)+1, d s \in \mathcal{D}\}, \\
& X_{2}(s)=\{d \in X \mid d s \notin \mathcal{D}\}, \\
& X_{3}(s)=\{d \in X \mid \ell(d s)=\ell(d)-1\} .
\end{aligned}
$$

In $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$, we have

$$
\left(1 \otimes T_{\tilde{d}}\right) T_{\tilde{s}}=1 \otimes T_{\tilde{d}} T_{\tilde{s}}= \begin{cases}1 \otimes T_{\tilde{d} \tilde{s}} & \left(d \in X_{1}(s)\right) \\ \eta\left(T_{\tilde{d} \tilde{d} \tilde{d}^{-1}}\right) \otimes T_{\tilde{d}} & \left(d \in X_{2}(s)\right) \\ \chi_{1}\left(c_{\tilde{s}}\right) \otimes T_{\tilde{d}} & \left(d \in X_{3}(s)\right)\end{cases}
$$

Indeed, if $\ell(d s)=\ell(d)+1$, the braid relations imply that $T_{\tilde{d}} T_{\tilde{s}}=T_{\tilde{d} \tilde{s}}$. If $d s \notin \mathcal{D}$, by Lemma 3.6, $d s d^{-1} \in S, T_{\tilde{d} \tilde{s}}=T_{\tilde{d} \tilde{s} \tilde{d}^{-1} \tilde{d}}=T_{\tilde{d} \tilde{s} \tilde{d}^{-1}} T_{\tilde{d}}$. If $\ell(d s)=\ell(d)-1$, the braid and quadratic relations imply that $T_{\tilde{d}} T_{\tilde{s}}=T_{\tilde{d} \tilde{s}^{-1}} T_{\tilde{s}}^{2}=T_{\tilde{d} \tilde{s}^{-1}} c_{\tilde{s}} T_{\tilde{s}}=\tilde{d} c_{\tilde{s}} \tilde{d}^{-1} T_{\tilde{d} \tilde{s}^{-1}} T_{\tilde{s}}=\tilde{d} c_{\tilde{s}} \tilde{d}^{-1} T_{\tilde{d}}$. Multiplying (26) by $T_{\tilde{S}}$ on the right,

$$
\mathcal{E} T_{\tilde{s}}=\sum_{d \in X_{1}(s)} a_{\tilde{d}} \otimes T_{\tilde{d} \tilde{s}}+\sum_{d \in X_{2}(s)} \eta\left(T_{\tilde{d} \tilde{s} \tilde{d}^{-1}}\right) a_{\tilde{d}} \otimes T_{\tilde{d}}+\sum_{d \in X_{3}(s)} \chi_{1}\left(c_{\tilde{s}}\right) a_{\tilde{d}} \otimes T_{\tilde{d}}
$$

As $X_{1}(s) s=X_{3}(s)$, the expansion of $\mathcal{E} T_{\tilde{s}}$ in the basis (24) of $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$ is

$$
\begin{equation*}
\mathcal{E} T_{\tilde{s}}=\sum_{d \in X_{2}(s)} \eta\left(T_{\tilde{d} \tilde{d^{-1}}}\right) a_{\tilde{d}} \otimes T_{\tilde{d}}+\sum_{d \in X_{3}(s)}\left(a_{\tilde{d}(\tilde{s})^{-1}}+\chi_{1}\left(c_{\tilde{s}}\right) a_{\tilde{d}}\right) \otimes T_{\tilde{d}} \tag{28}
\end{equation*}
$$

Relations (27) are equivalent to the following.
For $d \in X_{2}(s)$,

$$
\begin{equation*}
\eta\left(T_{\tilde{d} \tilde{s} \tilde{d}^{-1}}\right) a_{\tilde{d}}=0 \quad \text { if } s \in S-S_{\eta_{1}}, \quad \eta\left(T_{\tilde{d} \tilde{s} \tilde{d}^{-1}}\right) a_{\tilde{d}}=\chi_{1}\left(c_{\tilde{s}}\right) a_{\tilde{d}} \quad \text { if } s \in S_{\eta_{1}} \tag{29}
\end{equation*}
$$

For $d \in X_{1}(s)$,

$$
0=\chi_{1}\left(c_{\tilde{s}}\right) a_{\tilde{d}} \quad \text { if } s \in S_{\eta_{1}} .
$$

For $d \in X_{3}(s)$,

$$
a_{\tilde{d}(\tilde{s})^{-1}}=\chi_{1}\left(c_{\tilde{s}}\right) a_{\tilde{d}} \quad \text { if } s \in S-S_{\eta_{1}}, \quad a_{\tilde{d}(\tilde{s})^{-1}}=0 \quad \text { if } s \in S_{\eta_{1}} .
$$

The relations for $d \in X_{3}(s)=X_{1}(s) s^{-1}$ are equivalent to the following.
For $d \in X_{1}(s)$,

$$
a_{\tilde{d}}=\chi_{1}\left(c_{\tilde{s}}\right) a_{\tilde{d} \tilde{s}} \quad \text { if } s \in S-S_{\eta_{1}}, \quad a_{\tilde{d}}=0 \quad \text { if } s \in S_{\eta_{1}}
$$

The relations associated to $\bigcup_{s \in S}\left(X_{1}(s) \cup X_{3}(s)\right)$ are equivalent to

$$
\begin{gather*}
a_{\tilde{d}}=0 \quad \text { if } d \in \bigcup_{s \in S_{\eta_{1}}} X_{1}(s) . \tag{30}\\
a_{\tilde{d}}=\chi_{1}\left(c_{\tilde{s}}\right) a_{\tilde{d} \tilde{s}} \quad \text { if } d \in \bigcup_{s \in S-S_{\eta_{1}}} X_{1}(s) . \tag{31}
\end{gather*}
$$

As $v(\lambda) \neq 0$, we have $X=\bigcup_{s \in S}\left(X_{1}(s) \cup X_{3}(s)\right)$, because $d=\lambda w_{0} \in \mathcal{D}(\lambda), w_{0} \in W_{0}$ (Lemma 3.5), satisfies $d s \notin \mathcal{D}(\lambda)$ for all $s \in S$ if and only if $w_{0}\left(\alpha_{s}\right) \in \Sigma^{+}, w_{0}\left(\alpha_{s}\right) \circ \nu(\lambda)=0$ for all $s \in S$ (Lemma 3.8), and this is equivalent to $v(\lambda)=0$.

For $d=\lambda w_{0} \in X$ and $\tilde{d}=\tilde{\lambda} \tilde{w}_{0}$, the relations (30), (31) are equivalent to

$$
\begin{equation*}
a_{\tilde{d}}=\chi_{1}\left(c_{\tilde{w}_{0}}\right)^{-1} a_{\tilde{\lambda}} \quad \text { if } w_{0} \text { in }\left\langle S_{\chi_{1}}-S_{\eta_{1}}\right\rangle, \quad a_{\tilde{d}}=0 \text { otherwise. } \tag{32}
\end{equation*}
$$

With the notation $\mathcal{E}_{\tilde{\lambda}}, Y_{\lambda}$ introduced in Theorem 1.2, (32) implies that $\mathcal{E}=a_{\tilde{\lambda}} \otimes \mathcal{E}_{\tilde{\lambda}}$. If η_{1} is contained in $\eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$, then $a_{\tilde{\lambda}} \neq 0$, the multiplicity of η_{1} is 1 , and $\chi_{1}=\chi^{\lambda}$.

To end the proof of the proposition, we show that the conditions associated to $\bigcup_{s \in S} X_{2}(s)$ on $\mathcal{E}=1 \otimes \mathcal{E}_{\tilde{\lambda}}$ are

$$
\begin{equation*}
S_{\lambda}-S_{\eta_{1}}=S_{\lambda}-S_{\eta} \tag{33}
\end{equation*}
$$

Relation (29) for $d \in X_{2}(s)$ is always true if $a_{\tilde{d}}=0$. For $\mathcal{E}=1 \otimes \mathcal{E}_{\tilde{\lambda}}$, we have $a_{\tilde{d}} \neq 0 \Leftrightarrow$ $d \in \lambda Y_{\lambda}$. By Lemma 3.8, $d \in \lambda Y_{\lambda} \cap X_{2}(s) \Leftrightarrow d=\lambda w_{0}$, where

$$
w_{0} \in\left\langle S_{\chi_{1}}-S_{\eta_{1}}\right\rangle, \quad \ell\left(\lambda w_{0}\right)=\ell(\lambda)-\ell\left(w_{0}\right), \quad \chi_{1}^{w_{0}}=\chi_{1}, \quad d s d^{-1}=w_{0} s w_{0}^{-1} \in S_{\lambda}
$$

For $s_{d}=d s d^{-1} \in S_{\lambda}$ and $\tilde{s}_{d}=\tilde{d} \tilde{d}^{-1}$, we have $\chi\left(c_{\tilde{s}_{d}}\right)=\chi\left(\tilde{d} c_{\tilde{s}} \tilde{d}^{-1}\right)=\chi^{d}\left(c_{\tilde{s}}\right)=\chi_{1}\left(c_{\tilde{s}}\right)$. The conditions associated to $\bigcup_{s \in S} X_{2}(s)$ are as follows: for all $d \in \lambda Y_{\lambda} \cap X_{2}(s)$,

$$
\begin{equation*}
s_{d} \in S-S_{\eta} \quad \text { if } s \in S-S_{\eta_{1}} \quad \text { and } \quad s_{d} \in S_{\eta} \quad \text { if } s \in S_{\eta_{1}} \tag{34}
\end{equation*}
$$

that is, $s \in S_{\eta_{1}} \Leftrightarrow s_{d} \in S_{\eta}$ when $s \in S, d \in \lambda Y_{\lambda} \cap X_{2}(s)$. They are equivalent to (33); that is, $s \in S_{\eta_{1}} \Leftrightarrow s \in S_{\eta}$ when $s \in S_{\lambda}$, because, for $d \in \lambda Y_{\lambda} \cap X_{2}(s)$, we have $s_{d} \in S_{\lambda}$, and $\left\langle s, S_{\chi_{1}}-S_{\eta_{1}}\right\rangle=\left\langle s_{d}, S_{\chi_{1}}-S_{\eta_{1}}\right\rangle$; hence $s_{d} \in S_{\eta_{1}} \Leftrightarrow s \in S_{\eta_{1}}$.

Let η, η_{1} be two characters of \mathfrak{h} of parameters $\left(\chi, S_{\eta}\right),\left(\chi_{1}, S_{\eta_{1}}\right)$, and let o, o_{1} be an orientation such that $\eta=\chi_{o}, \eta_{1}=\left(\chi_{1}\right)_{o_{1}}$.

By the decomposition (23), the \mathfrak{h}-module $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ is a direct sum of \mathfrak{h}-submodules:

$$
\begin{equation*}
\eta \otimes_{\mathfrak{h}} \mathcal{H}=\bigoplus_{\lambda \in \Lambda^{+}} \eta \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda) \tag{35}
\end{equation*}
$$

Proposition 4.5. The character η_{1} of \mathfrak{h} is contained in $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ if and only if there exists λ such that $\left(\eta, \eta_{1}, \lambda\right)$ satisfies

$$
\lambda \in \Lambda^{+}, \quad \chi_{1}=\chi^{\lambda}, \quad S_{\eta_{1}} \cap S_{\lambda}=S_{\eta} \cap S_{\lambda} .
$$

The η_{1}-eigenspace of $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ admits the R-basis $\left(1 \otimes \mathcal{E}_{\tilde{\lambda}}\right)$ for all λ such that $\left(\eta, \eta_{1}, \lambda\right)$ satisfies these conditions.

For (η, η_{1}, λ) as in Proposition 4.5, we denote by $\Phi_{\tilde{\lambda}}$ the \mathcal{H}-intertwiner

$$
\Phi_{\tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes \mathcal{E}_{\tilde{\lambda}}: \eta_{1} \otimes_{\mathfrak{h}} \mathcal{H} \rightarrow \eta \otimes_{\mathfrak{h}} \mathcal{H} .
$$

Corollary 4.6. An R-basis of $\operatorname{Hom}_{\mathcal{H}}\left(\eta_{1} \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H}\right)$ is $\left(\Phi_{\tilde{\lambda}}\right)$ for all λ such that $\left(\eta, \eta_{1}, \lambda\right)$ satisfies the conditions of Proposition 4.5.

Taking $\eta=\eta_{1}$, and recalling the Λ^{+}-fixator Λ_{χ}^{+}of χ (12), we obtain the following.
Corollary 4.7. $\left(\Phi_{\tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$is a basis of the spherical Hecke algebra $\mathcal{H}(\eta, \mathfrak{h})$.
To obtain a basis of the spherical Hecke algebra satisfying (14), for an orientation o we construct \mathfrak{h}-eigenvectors of the form

$$
1 \otimes E_{o}(\tilde{\lambda}) \in \chi_{o} \otimes_{\mathfrak{h}} \mathcal{H}
$$

with $\tilde{\lambda} \in \Lambda^{+}(1)$, where, as in $\S 1.2,\left(E_{o}(\tilde{w})\right)_{\tilde{w} \in W(1)}$ is the alcove walk basis of \mathcal{H} associated to $o\left[15, \S 5.3\right.$ Corollary 5.26], and the character χ_{o} of \mathfrak{h} is as in Lemma 2.4.

Lemma 4.8. Let $\lambda \in \Lambda$. We have, in $\chi_{o} \otimes_{\mathfrak{h}} \mathcal{H}$,

$$
1 \otimes E_{o}(\tilde{\lambda})-1 \otimes T_{\tilde{\lambda}} \in \sum_{d} R \otimes T_{\tilde{d}}
$$

where d runs over the elements of \mathcal{D} satisfying $d<\lambda$ and $\chi^{d}=\chi^{\lambda}$. If $\lambda \in \Lambda^{+}$, then $1 \otimes E_{o}(\tilde{\lambda}) \neq 0$ is a Z_{k}-eigenvector of eigenvalue χ^{λ}.

Proof. For $t \in Z_{k}$, we have [15, Example 5.30] $E_{o}(\tilde{\lambda}) T_{t}=T_{\lambda(t)} E_{o}(\tilde{\lambda}), T_{\tilde{\lambda}} T_{t}=T_{\lambda(t)} T_{\tilde{\lambda}}$; hence $1 \otimes E_{o}(\tilde{\lambda}) T_{t}=\chi^{\lambda}(t) \otimes E_{o}(\tilde{\lambda}),\left(1 \otimes T_{\tilde{\lambda}}\right) T_{t}=\chi^{\lambda}(t) \otimes T_{\tilde{\lambda}}$. With the disjoint decomposition $W(1)=\bigcup_{d \in \mathcal{D}} W_{0}(1) \tilde{d}$ and the triangular decomposition of $E_{o}(\tilde{\lambda})$ in the basis $\left(T_{\tilde{w}}\right) \tilde{w} \in W(1)$ of \mathcal{H} [15, Corollary 5.26], if $1 \otimes E_{o}(\tilde{\lambda}) \neq 0$ is a Z_{k}-eigenvector of eigenvalue χ^{λ}, we have

$$
1 \otimes E_{o}(\tilde{\lambda})-1 \otimes T_{\tilde{\lambda}} \in \sum_{d \in \mathcal{D}, \chi^{d}=\chi^{\lambda}} \sum_{\tilde{w} \in W_{0}(1), w d<\lambda} R \otimes T_{\tilde{w} \tilde{d}}
$$

As $\ell(w d)=\ell(w)+\ell(d)$, by the braid relations, $1 \otimes T_{\tilde{w} \tilde{d}}=1 \otimes T_{\tilde{w}} T_{\tilde{d}}=\eta\left(T_{\tilde{w}}\right) \otimes T_{\tilde{d}}$,

$$
\sum_{\tilde{w} \in W_{0}(1), w d<\lambda} R\left(1 \otimes T_{\tilde{w} \tilde{d}}\right)=R\left(1 \otimes T_{\tilde{d}}\right)
$$

As $d<w d$ for $w \in W_{0}$, we deduce that

$$
1 \otimes E_{o}(\tilde{\lambda})-1 \otimes T_{\tilde{\lambda}} \in \sum_{d \in \mathcal{D}, \chi^{d}=\chi^{\lambda}, d<\lambda} R \otimes T_{\tilde{d}}
$$

For $\lambda \in \Lambda^{+}, 1 \otimes E_{o}(\tilde{\lambda})$ is not 0 , because $\Lambda^{+} \subset \mathcal{D}$, and $\left(1 \otimes T_{\tilde{d}}\right)_{d \in \mathcal{D}}$ is a basis of $\eta \otimes_{\mathfrak{h}} \mathcal{H}$ (Proposition 4.1).

Lemma 4.9. Let $\lambda \in \underset{\tilde{\lambda}}{ } \Lambda$. Then $1 \otimes E_{o}(\tilde{\lambda}) \in \chi_{o} \otimes_{\mathfrak{h}} \mathcal{H}$ is a \mathfrak{h}-eigenvector of eigenvalue $\left(\chi_{1}\right)_{o_{1}}$ if and only $1 \otimes E_{o}(\tilde{\lambda}) \neq 0$ and

$$
\chi_{1}=\chi^{\lambda}, \quad 1 \otimes E_{o}(\tilde{\lambda}) E_{o_{1}}(\tilde{s})=0 \quad \text { for all } s \in S
$$

Proof. By Lemma 4.8(ii), $1 \otimes E_{o}(\tilde{\lambda})$ is a \mathfrak{h}-eigenvector with eigenvalue η_{1} if and only if $1 \otimes E_{O}(\tilde{\lambda}) \neq 0$, and $\chi_{1}=\chi^{\lambda},\left(1 \otimes E_{o}(\tilde{\lambda})\right) E_{o_{1}}(\tilde{s})=0$ for all $s \in S$ (Lemma 2.4). We have $\left(1 \otimes E_{o}(\tilde{\lambda})\right) E_{O_{1}}(\tilde{s})=1 \otimes E_{o}(\tilde{\lambda}) E_{o_{1}}(\tilde{s})$.

Lemma 4.10. Let $\lambda \in \Lambda^{+}$. Then $1 \otimes E_{o}(\tilde{\lambda})$ is a \mathfrak{h}-eigenvector of eigenvalue $\left(\chi^{\lambda}\right)_{o}$ if and only if $\eta\left(E_{o}(\tilde{s})\right)=0$ for all $s \in S$ such that $\ell(\lambda s)=1+\ell(\lambda)$.

Proof. Let $s \in S$.
If $\ell(\lambda s)=\ell(\lambda)-1$, then $E_{o}(\tilde{\lambda}) E_{o}(\tilde{s})=0$ by the product formula.
If $\ell(\lambda s)=\ell(\lambda)+1$, then $E_{o}(\tilde{\lambda}) E_{o}(\tilde{s})=E_{o}(\lambda \tilde{s})=E_{O}\left(\tilde{s} \tilde{s}^{-1} \lambda \tilde{s}\right)=E_{O}(\tilde{s}) E_{O \bullet s}\left(\tilde{s}^{-1} \lambda \tilde{s}\right)$.
The latter equality follows from the fact that the length is constant on a W_{0}-orbit in Λ. It implies that $1 \otimes E_{o}(\tilde{s}) E_{o \bullet s}\left(\tilde{s}^{-1} \lambda \tilde{s}\right)=\eta\left(E_{o}(\tilde{s})\right) \otimes E_{o}(\tilde{\lambda})$. Apply Lemmas 4.8 and 4.9.

Proposition 4.11. Let $\lambda \in \Lambda^{+}$. Then,
$1 \otimes E_{o}(\tilde{\lambda})$ is a \mathfrak{h}-eigenvector in $\chi_{o} \otimes_{\mathfrak{h}} \mathcal{H}$ of eigenvalue $\left(\chi^{\lambda}\right)_{o}$, and $\mathcal{E}_{\tilde{\lambda}}$ is the component of $1 \otimes E_{o}(\tilde{\lambda})$ in $\chi_{o} \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda)$.

Proof. Use Lemmas 2.4 and 4.10 for the first assertion. The non-zero components of $1 \otimes E_{o}(\tilde{\lambda})$ in the direct decomposition (35) are \mathfrak{h}-eigenvectors of eigenvalue $\left(\chi^{\lambda}\right)_{o}$. Apply Proposition 4.4 and Lemma 4.8 for the second assertion.

Corollary 4.12. If $o=o_{1}$ (Lemma 2.6), an R-basis of $\operatorname{Hom}_{\mathcal{H}}\left(\left(\chi_{1}\right)_{o} \otimes_{\mathfrak{h}} \mathcal{H}, \chi_{o} \otimes_{\mathfrak{h}} \mathcal{H}\right)$ is $\left(1 \otimes E_{o}(\tilde{\lambda})\right)$ for all λ such that $\left(\chi_{o},\left(\chi_{1}\right)_{o}, \lambda\right)$ satisfies the conditions of Proposition 4.5.

Proposition 4.13. For each $\lambda \in \Lambda_{\chi}^{+}$, we have an injective \mathcal{H}-intertwiner

$$
\Phi_{o, \tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes E_{o}(\tilde{\lambda}): \chi_{o} \otimes_{\mathfrak{h}} \mathcal{H} \rightarrow \chi_{o} \otimes_{\mathfrak{h}} \mathcal{H} .
$$

$\left(\Phi_{o, \tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$is an R-basis satisfying (14) of the spherical Hecke algebra $\mathcal{H}\left(\chi_{o}, \mathfrak{h}\right)$.
Proof. By Corollary 4.12 and the product formula (8), $\left(\Phi_{o, \tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$is an R-basis of $\mathcal{H}\left(\chi_{o}, \mathfrak{h}\right)$ satisfying (14).

If $\Phi_{o, \tilde{\lambda}}$ is not injective, $\operatorname{Ker} \Phi_{o, \tilde{\lambda}}$ contains a simple character η_{1} of \mathfrak{h}, and $\Phi_{o, \tilde{\lambda}} \circ \Phi_{1}=0$ for some non-zero $\Phi_{1} \in \operatorname{End}_{\mathfrak{h}}\left(\eta_{1} \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H}\right)$.

Expanding $\Phi_{1}(1 \otimes 1)=\sum_{\mu \in \Lambda^{+}} a_{\tilde{\mu}} \otimes E_{o}(\tilde{\mu}), a_{\tilde{\mu}} \in R$, in the basis $\left(1 \otimes E_{o}(\tilde{\mu})\right)_{\mu \in \Lambda^{+}}$of $\eta \otimes_{\mathfrak{h}} \mathcal{H}$, and using the product formula $E_{o}(\tilde{\lambda}) E_{o}(\tilde{\mu})=E_{o}(\tilde{\lambda} \tilde{\mu})$, the decomposition of $\left(\Phi_{o, \tilde{\lambda}} \circ \Phi_{1}\right)(1 \otimes 1)$ in this basis is

$$
\sum_{\mu \in \Lambda^{+}} \Phi_{o, \tilde{\lambda}}\left(a_{\tilde{\mu}} \otimes E_{o}(\tilde{\mu})\right)=\sum_{\mu \in \Lambda^{+}} a_{\tilde{\mu}} \otimes E_{o}(\tilde{\lambda}) E_{o}(\tilde{\mu})=\sum_{\mu \in \Lambda^{+}} a_{\tilde{\mu}} \otimes E_{o}(\tilde{\lambda} \tilde{\mu})
$$

We have $\Phi_{1} \neq 0 \Leftrightarrow \Phi_{1}(1 \otimes 1) \neq 0 \Leftrightarrow a_{\tilde{\mu}} \neq 0$ for some $\mu \in \Lambda^{+} \Leftrightarrow\left(\Phi_{o, \tilde{\lambda}} \circ \Phi_{1}\right)(1 \otimes 1) \neq$ $0 \Leftrightarrow \Phi_{o, \tilde{\lambda}} \circ \Phi_{1} \neq 0$.

Corollary 4.14. $1 \otimes E_{o}(\tilde{\lambda})=0$ in $\chi_{o} \otimes_{\mathfrak{h}} \mathcal{H}$ if $\lambda \in \Lambda-\Lambda^{+}$.

Proof. Let $\lambda \in \Lambda-\Lambda^{+}$. We choose $\mu \in \Lambda_{\chi}^{+}$not 0 . Then $\Phi_{o, \tilde{\mu}}$ of $\operatorname{End}_{\mathfrak{h}} \eta \otimes_{\mathfrak{h}} \mathcal{H}$ is injective (Proposition 4.13) and $\Phi_{o, \tilde{\mu}}\left(1 \otimes E_{o}(\tilde{\lambda})\right)=1 \otimes E_{o}(\tilde{\mu}) E_{o}(\tilde{\lambda})$. As μ, λ belong to different closed Weyl chambers, $E_{o}(\tilde{\mu}) E_{o}(\tilde{\lambda})=0$; hence $1 \otimes E_{o}(\tilde{\lambda})=0$.

More generally, if $\left(\chi_{o},\left(\chi_{1}\right)_{o}, \lambda\right)$ satisfies the conditions of Proposition 4.5, we have the non-zero \mathcal{H}-intertwiner

$$
\Phi_{o, \tilde{\lambda}}: 1 \otimes 1 \mapsto 1 \otimes E_{o}(\tilde{\lambda}):\left(\chi_{1}\right)_{o} \otimes_{\mathfrak{h}} \mathcal{H} \rightarrow \chi_{o} \otimes_{\mathfrak{h}} \mathcal{H} .
$$

An R-basis of $\operatorname{Hom}_{\mathcal{H}}\left(\left(\chi_{1}\right)_{o} \otimes \mathcal{H}, \chi_{o} \otimes \mathcal{H}\right)$ is $\left(\Phi_{o, \tilde{\lambda}}\right)$ for all λ such that $\left(\chi_{o},\left(\chi_{1}\right)_{o}, \lambda\right)$ satisfies the conditions of Proposition 4.5.

We fix $x_{1} \in \Lambda$ such that $\chi_{1}=\chi^{x_{1}}$. For $\lambda \in \Lambda, \chi_{1}=\chi^{\lambda x_{1}} \Leftrightarrow \lambda \in \Lambda_{\chi}$. We embed $\operatorname{Hom}_{\mathcal{H}}\left(\eta_{1} \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H}\right)$ into the algebra $e_{\chi} R\left[\Lambda_{\chi}\right]$ (§1.4) by the R-linear map

$$
\begin{align*}
S_{\eta_{1}, \eta, \tilde{x}_{1}}: \operatorname{Hom}_{\mathcal{H}}\left(\eta_{1} \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H}\right) & \rightarrow e_{\chi} R\left[\Lambda_{\chi}\right], \tag{36}\\
\Phi_{o, \tilde{\lambda}_{1}} & \mapsto e_{\chi} \tilde{\lambda} \quad\left(\lambda \in \Lambda_{\chi} \cap \Lambda^{+} x_{1}^{-1}\right), \tag{37}
\end{align*}
$$

where $\tilde{\lambda}, \tilde{x}_{1} \in \Lambda(1)$ lift λ, x_{1}. If $\eta=\eta_{1}$ and $\tilde{x}_{1}=1$, the map $S_{\eta, \eta, 1}=S_{\eta, \eta}$ embeds the spherical Hecke algebra $\mathcal{H}(\eta, \mathfrak{h})=\operatorname{End}_{\mathcal{H}}\left(\eta \otimes_{\mathfrak{h}} \mathcal{H}\right)$ into the algebra $e_{\chi} R\left[\Lambda_{\chi}\right]$

$$
\begin{equation*}
S_{\eta, \eta}: \mathcal{H}(\eta, \mathfrak{h}) \rightarrow e_{\chi} R\left[\Lambda_{\chi}\right] . \tag{38}
\end{equation*}
$$

Lemma 4.15. The composition
$(A, B) \mapsto B \circ A: \operatorname{Hom}_{\mathcal{H}}\left(\eta_{1} \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H}\right) \times \operatorname{End}_{\mathcal{H}}\left(\eta \otimes_{\mathfrak{h}} \mathcal{H}\right) \rightarrow \operatorname{Hom}_{\mathcal{H}}\left(\eta_{1} \otimes_{\mathfrak{h}} \mathcal{H}, \eta \otimes_{\mathfrak{h}} \mathcal{H}\right)$, corresponds to the product $S_{\eta_{1}, \eta, \tilde{x}_{1}}(A \circ B)=S_{\eta, \eta}(B) S_{\eta_{1}, \eta, \tilde{x}_{1}}(A)$ in $e_{\chi} R\left[\Lambda_{\chi}\right]$.

Proof. For $\lambda \in \Lambda_{\chi}^{+}$and $\lambda_{1} \in \Lambda^{+}, \chi^{\lambda_{1}}=\chi_{1}, S_{\eta_{1}} \cap S_{\lambda_{1}}=S_{\eta} \cap S_{\lambda_{1}}$, we have

$$
\Phi_{o, \tilde{\lambda}} \circ \Phi_{o, \tilde{\lambda}_{1}}(1 \otimes 1)=\Phi_{o, \tilde{\lambda}}\left(1 \otimes E_{o}\left(\tilde{\lambda}_{1}\right)\right)=1 \otimes E_{o}(\tilde{\lambda}) E_{o}\left(\tilde{\lambda}_{1}\right)=1 \otimes E_{o}\left(\tilde{\lambda}^{\tilde{\lambda}_{1}}\right)
$$

by the product formula (8). Hence $\Phi_{o, \tilde{\lambda}} \circ \Phi_{o, \tilde{\lambda}_{1}}=\Phi_{o, \tilde{\lambda}_{1}}$ and $S_{\eta_{1}, \eta, \tilde{x}_{1}}\left(\Phi_{o, \tilde{\lambda}} \circ \Phi_{o, \tilde{\lambda}_{1}}\right)=e_{\chi} \tilde{\lambda} \tilde{\lambda}_{1}$ $\left(\tilde{x}_{1}\right)^{-1}$. As e_{χ} is a central idempotent of $R\left[\Lambda_{\chi}\right]$, we have $e_{\chi} \tilde{\lambda}_{\lambda} \tilde{\lambda}_{1}\left(\tilde{x}_{1}\right)^{-1}=e_{\chi} \tilde{\lambda} e_{\chi} \tilde{\lambda}_{1}\left(\tilde{x}_{1}\right)^{-1}=$ $S_{\eta, \eta}\left(\Phi_{o, \tilde{\lambda}}\right) S_{\eta_{1}, \eta, \tilde{x}_{1}}\left(\Phi_{o, \tilde{\lambda}_{1}}\right)$.

5. Centers

We make the same hypotheses as in $\S 1.2$, and we suppose that Λ_{T} exists.
As $\tilde{\Lambda}_{T}$ is central in $\Lambda(1)$, the action of $W(1)$ on $\tilde{\Lambda}_{T}$ factorizes through an action of W_{0}, and the R-module $\mathcal{A}_{o}\left(\Lambda_{T}\right)$ of basis $\left(E_{o}(\tilde{\mu})\right)_{\mu \in \Lambda_{T}}$ is a W_{0}-stable subalgebra of the center \mathcal{Z}_{o} of \mathcal{A}_{o}, for any orientation o. The quotient map $\Lambda_{T}(1) \rightarrow \Lambda_{T}$ of splitting $\mu \mapsto \tilde{\mu}$ is W_{0}-equivariant. For $\mu \in \Lambda_{T}$ of W_{0}-conjugacy class $C(\mu)$, and $\tilde{C}(\mu)$ the W_{0}-conjugacy class of $\tilde{\mu}$, the set $\nu(C(\mu))$ contains a single element in the dominant closed Weyl chamber, and

$$
\begin{equation*}
\ell(\mu)=0 \Leftrightarrow v(\mu)=0 \Leftrightarrow \mu \in \Lambda_{T}^{W_{0}} \Leftrightarrow \tilde{C}(\mu)=\tilde{\mu} \tag{39}
\end{equation*}
$$

By axiom (T1) (1.2), a $W(1)$-conjugacy class \tilde{C} is finite if and only if $\tilde{C} \subset \Lambda(1)$.
In the following theorem, R is any commutative ring.
Theorem 5.1. The center \mathcal{Z} of $\mathcal{H}_{R}\left(q_{s}, c_{\tilde{s}}\right)$ is the algebra $\mathcal{A}_{o}^{W(1)}$ of $W(1)$-invariants of \mathcal{A}_{o}, equal to the algebra $\mathcal{Z}_{0}^{W_{0}}$ of the W_{o}-invariants of the center \mathcal{Z}_{o} of \mathcal{A}_{o}. The center \mathcal{Z} is a free R-module of basis (independent of the choice of the orientation o)

$$
E(\tilde{C})=\sum_{\tilde{\lambda} \in \tilde{C}} E_{o}(\tilde{\lambda}) \quad \text { for } \tilde{C} \text { running through the finite conjugacy classes of } W(1) .
$$

The involution ८ of \mathcal{H} satisfies, for any finite conjugacy class \tilde{C} of $W(1)$,

$$
\begin{equation*}
\iota(E(\tilde{C}))=(-1)^{\ell(C)} E(\tilde{C}) \tag{40}
\end{equation*}
$$

The algebra $\mathcal{Z}_{T}=\mathcal{A}_{o}\left(\Lambda_{T}\right)^{W_{0}}$ of W_{0}-invariants of $\mathcal{A}_{o}\left(\Lambda_{T}\right)$ is a central subalgebra of \mathcal{H}, and a free R-module of basis $\left(E(\tilde{C}(\mu))_{\mu \in \Lambda_{T}^{+}}\right.$.
The \mathcal{Z}_{T}-modules \mathcal{Z} and $\mathcal{H}_{R}\left(q_{s}, c_{\tilde{S}}\right)$ are finitely generated.
When the ring R is noetherian, the R-algebras $\mathcal{Z}_{T}, \mathcal{Z}$, and $\mathcal{H}_{R}\left(q_{s}, c_{\tilde{s}}\right)$ are finitely generated.

Proof. The steps of the proof are as follows.
(1) The center \mathcal{Z}_{o} of \mathcal{A}_{o} is a free R-module of basis $E_{o}(\tilde{c})=\sum_{\tilde{\lambda} \in \tilde{c}} E_{o}(\tilde{\lambda})$ for all conjugacy classes \tilde{c} of $\Lambda(1)$.
(2) $\sum_{\tilde{\lambda} \in \tilde{C}} E_{o}(\tilde{\lambda})$ does not depend on the orientation o, and the center \mathcal{Z} is equal to $\mathcal{A}_{o^{-}}^{W(1)}$ for the anti-dominant orientation o^{-}.
(3) (a) The $\mathcal{A}_{o}\left(\Lambda_{T}\right)^{W_{0}}$-module $\mathcal{A}_{o}\left(\Lambda_{T}\right)$ is finitely generated, and if R is noetherian the algebra $\mathcal{A}_{o}\left(\Lambda_{T}\right)^{W_{0}}$ is finitely generated.
(b) The left $\mathcal{A}_{o}\left(\Lambda_{T}\right)$-module \mathcal{A}_{o} is finitely generated.
(c) The left \mathcal{A}_{o}-module $\mathcal{H}_{R}\left(q_{s}, c_{\tilde{s}}\right)$ is finitely generated.

The theorem is proved for the pro- p-Iwahori Hecke algebra $\mathcal{H}_{R}(G, I(1))$, where the assertions on \mathcal{Z}_{T} are not formulated but are implicit in the proof. Properties (1), (2), (3)(a), (b) and (40) admit exactly the same proofs as in [16, Propositions 2.3, 2.7, Lemma 2.15 and Proposition 3.3]. The same is true for the property (3)(c) [16, Lemma 2.17], once we have strengthened the finiteness property [14, 1.6.3], [16, Lemma 2.16]. This is done in Lemma 5.3 below. As in [16, added in proof], this is a variant of the finiteness of the set of minimal elements in a subset L of $\mathbb{Z}^{n}(n>0)$ [12, Lemma 4.2.18].
Let L be a group isomorphic to \mathbb{Z}^{n}. For $a=\left(a_{i}\right), b=\left(b_{i}\right) \in \mathbb{Z}^{n}$, we write $b \leqslant a$ if $\left|a_{i}\right|=$ $\left|b_{i}\right|+\left|a_{i}-b_{i}\right|$ for all i. We write $b<a$ if $a \neq b, b \leqslant a$; we say that $a \in L$ is minimal if $b \in L, b \leqslant a$ implies that $b=a$.

Lemma 5.2. (1) Let $a \in L$. There exists $b \in L$ minimal such that $b \leqslant a$.
(2) The set $L_{\text {min }}$ of minimal elements in L is finite.

Proof. We have $\left|a_{i}\right|=\left|b_{i}\right|+\left|a_{i}-b_{i}\right| \Leftrightarrow b_{i}=0$ or $a_{i} b_{i}>0,\left|b_{i}\right| \leqslant\left|a_{i}\right|$.
(1) If a is not minimal in L, we choose $b<a$ and we reiterate. The processes stops after finitely many steps, because $b<a$ implies that $\left|b_{i}\right| \leqslant\left|a_{i}\right|$ for $1 \leqslant i \leqslant n$, and $\left|b_{i}\right| \in \mathbb{N}$.
(2) Suppose that $L_{\text {min }}$ is infinite. If the set $\left\{a_{i} \mid a \in L_{\text {min }}\right\}$ is finite, a_{i} is constant for a in an infinite subset of $L_{\text {min }}$. If the set $\left\{a_{i} \mid a \in L_{\text {min }}\right\}$ is infinite, $L_{\text {min }}$ contains a sequence $(a(m))_{m \in \mathbb{N}}$ such that $\left(a(m)_{i}\right)_{m \in \mathbb{N}}$ is strictly increasing positive or strictly decreasing negative. Hence $L_{\text {min }}$ contains a sequence $(a(m))_{m \in \mathbb{N}}$ such that, for all $1 \leqslant$ $i \leqslant n,\left(a(m)_{i}\right)_{m \in \mathbb{N}}$ is either constant, or strictly increasing positive or strictly decreasing negative. For all i in the non-empty set where $\left(a(m)_{i}\right)_{m \in \mathbb{N}}$ is not constant, we have $a(m)_{i} a(m+1)_{i}>0,\left|a(m)_{i}\right|<\left|a(m+1)_{i}\right|$ for all $m \in \mathbb{N}$. Hence $a(m)<a(m+1)$ for all $m \in \mathbb{N}$. This contradicts the minimality of the $a(m)$.

By axiom (T1), $W=\bigsqcup_{\left(y, w_{0}\right) \in Y \times W_{0}} \Lambda_{T} y w_{0}$. For $\left(y, w_{0}\right) \in Y \times W_{0}$, let

$$
L\left(y, w_{0}\right)=\left\{\vec{\ell}(w)=\left(\ell_{\gamma}(w)\right)_{\gamma \in \Sigma^{+}} \mid w \in \Lambda_{T} y w_{0}\right\}
$$

where $\ell(w)=\sum_{\gamma \in \Sigma^{+}}\left|\ell_{\gamma}(w)\right|$ and $\ell_{\gamma}(w)$ as in [15, Propositions 5.7 and 5.9]. By Lemma 5.2, the set $L\left(y, w_{0}\right)_{\min }$ is finite. Let $X_{*}\left(y, w_{0}\right)$ be a finite subset of Λ_{T} such that

$$
L\left(y, w_{0}\right)_{\min }=\left\{\vec{\ell}(w) \mid w \in X_{*}\left(y, w_{0}\right) y w_{0}\right\} .
$$

Let X be the finite subset $\bigcup_{\left(y, w_{0}\right) \in Y \times W_{0}} X_{*}\left(y, w_{0}\right) y$ of Λ. We have

$$
\ell(w)=\ell\left(w w^{\prime-1}\right)+\ell\left(w^{\prime}\right) \quad \text { for } w, w^{\prime} \in \Lambda w_{0}, \quad \vec{\ell}\left(w^{\prime}\right) \leqslant \vec{\ell}(w)
$$

[16, Proof of Lemma 2.16(18)]. This implies the following.
Lemma 5.3. For any $\left(\lambda, w_{0}\right) \in \Lambda \times W_{0}$ there exists $x \in X$ such that

$$
\lambda x^{-1} \in \Lambda_{T}, \quad \ell\left(\lambda w_{0}\right)=\ell\left(\lambda x^{-1}\right)+\ell\left(x w_{0}\right) .
$$

For a central element x of \mathcal{H}, the \mathcal{H}-intertwiner

$$
\begin{equation*}
\Phi_{x}: 1 \otimes h \mapsto 1 \otimes x h=1 \otimes h x \quad \text { for } h \in \mathcal{H} . \tag{41}
\end{equation*}
$$

is central in $\mathcal{H}\left(\chi_{o}, \mathfrak{h}\right)$ by Proposition 4.13 and

$$
\begin{aligned}
\Phi_{x} \circ \Phi_{o, \tilde{\lambda}}(1 \otimes 1) & =\Phi_{x}\left(1 \otimes E_{o, \tilde{\lambda}}\right)=1 \otimes x E_{o, \tilde{\lambda}} \\
& =1 \otimes E_{o, \tilde{\lambda}} x=\Phi_{o, \tilde{\lambda}}(1 \otimes x)=\Phi_{o, \tilde{\lambda}} \circ \Phi_{x}(1 \otimes 1)
\end{aligned}
$$

We denote by $\mathcal{Z}\left(\chi_{o}, \mathfrak{h}\right)$ the center of $\mathcal{H}\left(\chi_{o}, \mathfrak{h}\right)$. The homomorphism

$$
\begin{equation*}
x \mapsto \Phi_{x}: \mathcal{Z} \rightarrow \mathcal{Z}\left(\chi_{o}, \mathfrak{h}\right) \tag{42}
\end{equation*}
$$

may be not injective or not surjective.
Proposition 5.4. (1) For $\mu \in \Lambda_{T}^{+}$, we have $1 \otimes E(\tilde{C}(\mu))=1 \otimes E_{o}(\tilde{\mu})$ and $\Phi_{E(\tilde{C}(\mu))}=$ $\Phi_{o, \tilde{\mu}}$.
(2) $\left(\Phi_{o, \tilde{\mu}}\right)_{\mu \in \Lambda_{T}^{+}}$is a basis, independent of o, satisfying (14) of a central subalgebra $\mathcal{Z}_{T}(\eta, \mathfrak{h})$ of the spherical algebra $\mathcal{H}(\eta, \mathfrak{h})$, and $\mathcal{H}(\eta, \mathfrak{h})$ is a finitely generated $\mathcal{Z}_{T}(\eta, \mathfrak{h})$-module.

Proof. (1) From Corollary 4.14,

$$
1 \otimes E(\tilde{C}(\mu))=\sum_{\tilde{\lambda} \in \tilde{C}(\mu) \cap \Lambda^{+}(1)} 1 \otimes E_{o}(\tilde{\lambda}) \quad \text { in } \chi_{o} \otimes \mathcal{H}
$$

For $\mu \in \Lambda_{T}^{+}$we have $\tilde{C}(\mu) \cap \Lambda^{+}(1)=\{\tilde{\mu}\}$. Hence $1 \otimes E(\tilde{C}(\mu))=1 \otimes E_{o}(\tilde{\mu})$ and $\Phi_{E(\tilde{C}(\mu))}=$ $\Phi_{o, \tilde{\mu}}$.
(2) The canonical isomorphism $\mathcal{H}(\eta, \mathfrak{h}) \rightarrow e_{\chi} R\left[\Lambda_{\chi}^{+}\right]$associated to the basis $\left(\Phi_{o, \tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$ (Proposition 4.13) sends $\mathcal{Z}_{T}(\eta, \mathfrak{h})$ to $e_{\chi} R\left[\Lambda_{T}^{+}\right]$, and $e_{\chi} R\left[\Lambda_{\chi}^{+}\right]$is a finitely generated $e_{\chi} R\left[\Lambda_{T}^{+}\right]$-module.

6. Supersingular \mathcal{H}-modules

We make the same hypotheses as in $\S 1.2$ and we suppose that Λ_{T} exists. We construct different filtrations of \mathcal{H} which are all equivalent when the $\operatorname{ring} R$ is noetherian.

Lemma 6.1. The R-module $\mathcal{F}_{o, n}$ of basis $\left\{E_{o}(\tilde{w}) \mid \tilde{w} \in W(1), \ell(w) \geqslant n\right\}$ for $n \in \mathbb{N}$ is a right ideal of \mathcal{H}, for any orientation o.

Proof. We have $\mathcal{F}_{o, n} \mathcal{H} \subset \mathcal{F}_{o, n}$, because, for $\tilde{w} \in W(1)$, a basis of \mathcal{H} is $\left(E_{o \bullet w}\left(\tilde{w}^{\prime}\right)\right)_{\tilde{w}^{\prime} \in W(1)}$, and $E_{o}(w) E_{o \bullet w}\left(\tilde{w}^{\prime}\right)=E_{o}\left(\tilde{w} \tilde{w}^{\prime}\right)$ if $\ell(w)+\ell\left(w^{\prime}\right)=\ell\left(w w^{\prime}\right)$ and 0 otherwise.

The length is constant on the projection C in W of a finite $W(1)$-conjugacy class \tilde{C}, and is denoted by $\ell(\tilde{C})=\ell(C)$.

Lemma 6.2. The R-module $\mathcal{Z}_{\ell>0}$ of basis $E(\tilde{C})$ for the finite $W(1)$-conjugacy classes \tilde{C} of positive length is an ideal of the center \mathcal{Z} of \mathcal{H}, stable by the involutive R-automorphism l (4).

Proof. Let $\tilde{C}_{1}, \tilde{C}_{2}$ be two finite $W(1)$-conjugacy classes. They are contained in $\Lambda(1)$. By the product formula,

$$
\begin{equation*}
E\left(\tilde{C}_{1}\right) E\left(\tilde{C}_{2}\right)=\sum_{\tilde{C}} a_{\tilde{C}} E(\tilde{C}) \tag{43}
\end{equation*}
$$

where \tilde{C} runs over finite conjugacy classes with $\ell(C)=\ell\left(C_{1}\right)+\ell\left(C_{2}\right)$. The stability by ι follows from (40).

It is more convenient to replace the center \mathcal{Z} of \mathcal{H} by the central subalgebra \mathcal{Z}_{T} of basis $(E(\tilde{C}(\mu)))_{\mu \in X_{*}^{+}(T)}$ which admits better properties.

Lemma 6.3. We have

$$
\mathcal{Z}_{T}=\mathcal{R}_{T} \oplus \mathcal{Z}_{T, \ell>0}
$$

where \mathcal{R}_{T} is the algebra of basis $\left(T_{\tilde{\mu}}\right)_{\mu \in \Lambda_{T}^{W_{0}}}$, isomorphic to $R\left[\Lambda_{T}^{W_{0}}\right]$, and $\mathcal{Z}_{T, \ell>0}$ is the ideal of \mathcal{Z}_{T} of basis $(E(\tilde{C}(\mu)))_{\mu \in \Lambda_{T}^{+}, \ell(\mu)>0}$.
The algebras \mathcal{R}_{T} and $\mathcal{Z}_{T, \ell>0}$ are stable by the involutive automorphism ι.
Proof. The proof is straightforward.
The R-module $\mathcal{F}_{T, o, n}$ of basis $\left(E_{o}(\tilde{\mu})\right)_{\mu \in \Lambda_{T}, \ell(\mu) \geqslant n}$ is contained in $\mathcal{F}_{o, n}$ and contains $\left(\mathcal{Z}_{T, \ell>0}\right)^{n}$.

Proposition 6.4. When R is noetherian, the filtrations of \mathcal{H}

$$
\left(\left(\mathcal{Z}_{T, \ell>0}\right)^{n} \mathcal{H}\right)_{n \in \mathbb{N}}, \quad\left(\left(\mathcal{Z}_{\ell>0}\right)^{n} \mathcal{H}\right)_{n \in \mathbb{N}}, \quad\left(\mathcal{F}_{T, o, n}\right)_{n \in \mathbb{N}} \mathcal{H}, \quad\left(\mathcal{F}_{o, n}\right)_{n \in \mathbb{N}}
$$

are equivalent.
We have $\left(\mathcal{Z}_{T, \ell>0}\right)^{n} \mathcal{H} \subset\left(\mathcal{Z}_{\ell>0}\right)^{n} \mathcal{H} \subset \mathcal{F}_{o, n}$. The last inclusion uses the product formula, the equality $\tilde{E}(C)=\tilde{E}_{o}(C)$, and that $\left(E_{o}(w)\right)_{w \in W(1)}$ is a basis of \mathcal{H}. The noetherianity of R is used only for the proof (Lemma 6.7) of the property (which implies the proposition):

$$
\text { for } n \in \mathbb{N} \text { there exists } n^{\prime} \in \mathbb{N} \text { such that } \mathcal{F}_{o, n^{\prime}} \subset\left(\mathcal{Z}_{T, \ell>0}\right)^{n} \mathcal{H}
$$

This property follows from the next three lemmas.
Lemma 6.5. $E(\tilde{C}(\mu))^{n} E_{o}(\tilde{\mu})=E_{o}\left(\tilde{\mu}^{n+1}\right)$ for $\mu \in \Lambda_{T}$ and $n>0$.

Proof. By the product formula, $E(C(\tilde{\mu})) E_{o}(\tilde{\mu})=E_{o}\left(\tilde{\mu}^{2}\right)$, because $\tilde{\mu}$ is the only element of $\tilde{C}(\mu)$ sent by v in the same closed Weyl chamber as $v(\mu)$. By induction on n,

$$
\begin{aligned}
E(\tilde{C}(\mu))^{n+1} E_{o}(\tilde{\mu}) & =E(\tilde{C}(\mu)) E(\tilde{C}(\mu))^{n} E_{o}(\tilde{\mu})=E(\tilde{C}(\mu)) E_{o}\left(\tilde{\mu}^{n+1}\right) \\
& =E(\tilde{C}(\mu)) E_{o}(\tilde{\mu}) E_{o}\left(\tilde{\mu}^{n}\right)=E_{o}\left(\tilde{\mu}^{2}\right) E_{o}\left(\tilde{\mu}^{n}\right)=E_{o}\left(\tilde{\mu}^{n+2}\right)
\end{aligned}
$$

Lemma 6.6. There exists a positive integer a such that, for any positive integer n,

$$
E_{o}(\mu) \in \mathcal{Z}_{T, \ell>0}^{n} \mathcal{A}_{o}
$$

if $\mu \in \Lambda_{T}$ satisfies $\ell(\mu) \geqslant n a$.
Proof. Let $\overline{\mathfrak{D}}$ be a closed Weyl chamber. We choose μ_{1}, \ldots, μ_{r} in $\Lambda_{T}-\Lambda_{T}^{W_{0}}$ such that $\nu\left(\mu_{1}\right), \ldots, \nu\left(\mu_{r}\right)$ generate the monoid $\nu\left(\Lambda_{T}\right) \cap \overline{\mathfrak{D}}$. We show that

$$
E_{o}(\mu) \in \mathcal{Z}_{T, \ell>0}^{n} \mathcal{A}_{o}
$$

if $\mu \in \Lambda_{T}, \nu(\mu) \in \overline{\mathfrak{D}}$ and $\ell(\mu)>n\left(\ell\left(\mu_{1}\right)+\cdots+\ell\left(\mu_{r}\right)\right)$. Clearly, this implies the lemma.
Let $\mu=\mu_{1}^{n_{1}} \ldots \mu_{r}^{n_{r}} u$ with $u \in\left(\Lambda_{T}\right)^{W_{0}}, n_{1}, \ldots, n_{r}$ in \mathbb{N}. We have $\ell\left(\mu_{i}\right) \neq 0$ for $1 \leqslant i \leqslant r$ and $\ell(\mu)=n_{1} \ell\left(\mu_{1}\right)+\cdots+n_{r} \ell\left(\mu_{r}\right)$. Changing the numerotation, we suppose that $n_{1}>n$, and obtain

$$
E_{o}(\mu)=E_{o}\left(\mu_{1}\right)^{n_{1}} h, \quad h=E_{o}\left(\mu_{2}\right)^{n_{2}} \ldots E_{o}\left(\mu_{r}\right)^{n_{r}} T_{u} \in \mathcal{A}_{o} .
$$

By Lemma 6.5, $\quad E_{o}\left(\mu_{1}\right)^{n_{1}}=E\left(\tilde{C}\left(\mu_{1}\right)\right)^{n_{1}-1} E_{o}\left(\mu_{1}\right)$. Hence $\quad E_{o}(\mu) \in E\left(\tilde{C}\left(\mu_{1}\right)\right)^{n} \mathcal{A}_{o} \subset$ $\mathcal{Z}_{T, \ell>0}^{n} \mathcal{A}_{o}$.

Lemma 6.7. When R is noetherian, for every positive integer $n>0$ there exists a positive integer $n^{\prime}>0$ such that $\mathcal{F}_{o, n^{\prime}} \subset\left(\mathcal{Z}_{T, \ell>0}\right)^{n} \mathcal{H}$.

Proof. By Lemma 5.3, we can choose a finite subset $X \subset \Lambda$ such that, for $\left(\lambda, w_{0}\right) \in$ $\Lambda \times W_{0}$, we have $\ell\left(\lambda w_{0}\right)=\ell\left(\lambda x^{-1}\right)+\ell\left(x w_{0}\right)$ for some $x \in X$ with $\mu=\lambda x^{-1} \in \Lambda_{T}$. By the product formula, $E_{o}\left(\lambda w_{0}\right)=E_{o}(\mu) E_{o}\left(x w_{0}\right)$. If

$$
\ell\left(\lambda w_{0}\right) \geqslant n^{\prime}=n a+\max \left\{\ell(x w) \mid(x, w) \in X \times W_{0}\right\}
$$

we have $\ell(\mu) \geqslant n a$. Taking a as in Lemma 6.6, $E_{o}(\mu) \in\left(\mathcal{Z}_{T, \ell>0}\right)^{n} \mathcal{A}_{0}$; hence $E_{o}\left(\lambda w_{0}\right) \in$ $\left(\mathcal{Z}_{T, \ell>0}\right)^{n} \mathcal{H}$. As ($\left.\lambda, w_{0}\right)$ was arbitrary, we get the lemma.

We define $\mathcal{F}_{o, n}^{\text {aff }}$ as $\mathcal{F}_{o, n}$, with $W(1)$ replaced by $W^{\text {aff }}(1)$. The isomorphism (3) restricts to an isomorphism

$$
\begin{equation*}
\mathcal{F}_{o, n}^{\mathrm{aff}} \otimes_{R\left[Z_{k}\right]} R[\Omega(1)] \simeq \mathcal{F}_{o, n} \tag{44}
\end{equation*}
$$

The based root system (Φ, Δ) is the finite disjoint union of irreducible based root systems $\left(\Phi_{i}, \Delta_{i}\right)$ for $1 \leqslant i \leqslant r$, the Coxeter affine Weyl group ($W^{\text {aff }}, S^{\text {aff }}$) is the product of the irreducible Coxeter affine Weyl groups ($W_{i}^{\text {aff }}, S_{i}^{\text {aff }}$), and $W^{\text {aff }}(1)$ is an extension

$$
1 \rightarrow Z_{k} \rightarrow W^{\mathrm{aff}}(1) \rightarrow \prod_{i} W_{i}^{\mathrm{aff}} \rightarrow 1
$$

The algebras $\mathcal{H}_{i}^{\text {aff }}$ defined by $\left(\Phi_{i}, \Delta_{i}\right)$ identify with the subalgebras of basis $\left(T_{w}\right)_{w \in W_{i}^{\text {aff }}(1)}$ of $\mathcal{H}^{\text {aff }}$, called the irreducible components of $\mathcal{H}^{\text {aff }}$.

Lemma 6.8. The filtrations of $\mathcal{H}^{\text {aff }}$

$$
\left(\mathcal{F}_{o, n}^{\mathrm{aff}}\right)_{n \in \mathbb{N}}, \quad\left(\sum_{i} \mathcal{F}_{i, o, n}^{\mathrm{aff}} \mathcal{H}^{\mathrm{aff}}\right)_{n \in \mathbb{N}}
$$

are equivalent.
Proof. The length of $w_{i} \in W_{i}^{\text {aff }}$ seen as an element of ($W_{i}^{\text {aff }}, S_{i}^{\text {aff }}$) or of ($W^{\text {aff }}, S^{\text {aff }}$) is the same; hence

$$
\mathcal{F}_{i, o, n}^{\mathrm{aff}} \subset \mathcal{F}_{o, n}^{\mathrm{aff}}
$$

For $w \in W^{\text {aff }}$ of components $w_{i} \in W_{i}^{\text {aff }}$, we have $\ell(w)=\sum_{i} \ell\left(w_{i}\right)$ and $E_{o}(w)=$ $\prod_{i} E_{o}\left(w_{i}\right)$ by the product formula, and the factors $E_{o}\left(w_{i}\right)$ commute. If $\ell(w) \geqslant n r$, at least one component w_{i} satisfies $\ell\left(w_{i}\right) \geqslant n$; hence

$$
\mathcal{F}_{o, n}^{\mathrm{aff}} \subset \sum_{i} \mathcal{F}_{i, o, n}^{\mathrm{aff}} \mathcal{H}^{\mathrm{aff}}
$$

Proposition 6.9. Let M be a right \mathcal{H}-module, and let o be an orientation. The following properties are equivalent.
(1) There exists a positive integer n such that $M \mathcal{F}_{o, n}=0$.
(2) There exists a positive integer n such that $M\left(\mathcal{Z}_{\ell>0}\right)^{n}=0$.
(3) There exists a positive integer n such that $M\left(\mathcal{Z}_{T, \ell>0}\right)^{n}=0$.
(4) There exists a positive integer n such that $M \mathcal{F}_{T, o, n}=0$.
(5) There exists a positive integer n such that $M \mathcal{F}_{o, n}^{\text {aff }}=0$.
(6) There exists a positive integer n such that $M \mathcal{F}_{i, o, n}^{\text {aff }}=0$ for $1 \leqslant i \leqslant r$.

Proof. The isomorphism (44) shows that $M \mathcal{F}_{o, n}=0 \Leftrightarrow M \mathcal{F}_{o, n}^{\text {aff }}=0$, because the action of $\Omega(1)$ is invertible. Applying Proposition 6.4 and Lemma 6.8 , the properties are equivalent.

Definition 6.10. A right \mathcal{H}-module M is called supersingular if it is not 0 and satisfies the properties of Proposition 6.9.

For future reference, we present the properties of the supersingular right \mathcal{H}-modules M deduced easily from Proposition 6.9 and Lemma 6.3, as a proposition. For a right \mathcal{H}-module M, we have the right \mathcal{H}-module $\iota(M)$, equal to M with $h \in \mathcal{H}$ acting by $\iota(h)$.

Proposition 6.11. (1) The category of supersingular right \mathcal{H}-modules is stable by subquotients, by extensions, and by finite sums.
(2) A right \mathcal{H}-module is supersingular if and only it is supersingular as a right $\mathcal{H}^{\text {aff }}$-module.
(3) A right \mathcal{H}-module generated by a supersingular right $\mathcal{H}^{\text {aff }}$-submodule is supersingular.
(4) A right $\mathcal{H}^{\text {aff }}$-module is supersingular if and only if it is supersingular as a right $\mathcal{H}_{i}^{\text {aff }}$-module for all the irreducible components $\mathcal{H}_{i}^{\text {aff }}$ of $\mathcal{H}^{\text {aff }}$.
(5) A right \mathcal{H}-module M is supersingular if and only if $\iota(M)$ is supersingular.
(6) A simple right \mathcal{H}-module M is supersingular if and only if $M \mathcal{Z}_{\ell>0}=0 \Leftrightarrow$ $M \mathcal{Z}_{T, \ell>0}=0$.
The properties in (vi) are also equivalent to $M \mathcal{F}_{T, o, 1}=0$. See Remark 6.16.
The classification of the supersingular simple \mathcal{H}-modules reduces to the classification of the supersingular characters of $\mathcal{H}^{\text {aff }}$. For the algebra $\mathcal{H}(G, I(1))$, this was a conjecture for $G=G L(n, F)[13]$ proved in [11, Proposition 5.10] for G split.

Proposition 6.12. A supersingular right \mathcal{H}-module M contains a character of $\mathcal{H}^{\text {aff }}$.
Proof. A non-zero element of M generates a right \mathfrak{h}-module containing a character of \mathfrak{h} (Proposition 2.1). We choose a \mathfrak{h}-eigenvector $v \in M$ of eigenvalue η. Let (χ, S_{η}) be the parameters of η (Proposition 2.2). As M is supersingular, there exists a positive integer n such that $M \mathcal{F}_{o, n}=0$. We choose $d \in \mathcal{D}$ of maximal length satisfying $v E_{o}(\tilde{d}) \neq 0$ (Proposition 3.3). We show that $v E_{o}(\tilde{d})$ is a $\mathcal{H}^{\text {aff }}$-eigenvector. Let $(t, s) \in Z_{k} \times S^{\text {afff }}$.

We have $v E_{o}(\tilde{d}) T_{t}=v T_{d t d^{-1}} E_{o}(\tilde{d})=\chi\left(d t d^{-1}\right) v E_{o}(\tilde{d})=\chi^{d}(t) v E_{o}(\tilde{d})$.
For the computation of $v E_{o}(\tilde{d}) T_{\tilde{s}}$, we distinguish three cases.
(1) $\ell(d s)=\ell(d)-1$. Then $E_{o}(\tilde{d})=T_{t} E_{o}(\tilde{d} \tilde{s}) E_{o}(\tilde{s})$, where $t \in Z_{k}, t \tilde{d} \tilde{s}^{2}=\tilde{d}$.

If $E_{o}(\tilde{s})=T_{\tilde{s}}-c_{\tilde{s}}$, we have $E_{o}(\tilde{s}) T_{\tilde{s}}=\left(T_{\tilde{s}}-c_{\tilde{s}}\right) T_{\tilde{s}}=0$.
If $E_{o}(\tilde{s})=T_{\tilde{s}}$, we have $E_{o}(\tilde{s}) T_{\tilde{s}}=T_{\tilde{s}}^{2}=c_{\tilde{s}} T_{\tilde{s}}=c_{\tilde{s}} E_{o}(\tilde{s})$; as $E_{o}(\tilde{d} \tilde{s}) c_{\tilde{s}}=\left(d s \bullet c_{\tilde{s}}\right) E_{o}(\tilde{d} \tilde{s})=$ $d \bullet c_{\tilde{s}} E_{o}(\tilde{d} \tilde{s})$, we deduce that $v E_{o}(\tilde{d}) T_{\tilde{s}}=0$ or $\chi\left(d \bullet c_{\tilde{s}}\right) v E_{o}(\tilde{d})=\chi^{d}\left(c_{\tilde{s}}\right) v E_{o}(\tilde{d})$.
(2) $\quad \ell(d s)=\ell(d)+1$ and $d s \in Z_{k} \mathcal{D}$. Either $E_{o}(\tilde{d}) T_{\tilde{s}}=E_{o}(\tilde{d}) E_{O}(\tilde{s})=E_{O}(\tilde{d} \tilde{s}) \quad$ or $E_{o}(\tilde{d}) T_{\tilde{s}}=E_{o}(\tilde{d})\left(E_{o}(\tilde{s})+c_{\tilde{s}}\right)=E_{o}(\tilde{d} \tilde{s})+\left(d \bullet c_{\tilde{s}}\right) E_{o}(\tilde{d})$. By the maximality of $\ell(d)$, $v E_{o}(\tilde{d} \tilde{s})=0$ and $v E_{o}(\tilde{d}) T_{\tilde{s}}=0$ or $\chi\left(d \bullet c_{\tilde{s}}\right) v E_{o}(\tilde{d})=\chi^{d}\left(c_{\tilde{s}}\right) v E_{o}(\tilde{d})$.
(3) $\ell(d s)=\ell(d)+1$ and $d s \notin Z_{k} \mathcal{D}$. Let $s_{d} \in S$ such that $\tilde{d} \tilde{s}=\tilde{s}_{d} \tilde{d}$ (Lemma 3.8). Either $E_{o}(\tilde{d}) T_{\tilde{s}}=E_{o}(\tilde{d}) E_{o}(\tilde{s})=E_{o}(\tilde{d} \tilde{s})=E_{o}\left(\tilde{s}_{d} \tilde{d}\right)=E_{o}\left(\tilde{s}_{d}\right) E_{o}(\tilde{d})$ or $E_{o}(\tilde{d}) T_{\tilde{s}}=E_{o}(\tilde{d})\left(E_{o}(\tilde{s})+\right.$ $\left.c_{\tilde{s}}\right)=E_{o}(\tilde{d} \tilde{s})+E_{o}(\tilde{d}) c_{\tilde{s}}=\left(E_{o}\left(\tilde{s}_{d}\right)+d \bullet c_{\tilde{s}}\right) E_{o}(\tilde{d})$. Hence $v E_{o}(\tilde{d}) T_{\tilde{s}}=\eta\left(E_{o}\left(\tilde{s}_{d}\right)\right) v E_{o}(\tilde{d})$ or $\eta\left(E_{o}\left(\tilde{s}_{d}\right)+d \bullet c_{\tilde{s}}\right) v E_{o}(\tilde{d})=\left(\eta\left(E_{o}\left(\tilde{s}_{d}\right)\right)+\chi\left(d \bullet c_{\tilde{s}}\right)\right) v E_{o}(\tilde{d})=\left(\eta\left(E_{o}\left(\tilde{s}_{d}\right)\right)+\chi^{d}\left(c_{\tilde{s}}\right)\right) v E_{o}(\tilde{d})$.

The compatibility of supersingularity for \mathcal{H} and $\mathcal{H}^{\text {aff }}$ (Proposition 6.9) and Proposition 6.12 imply the following.

Corollary 6.13. (1) A simple supersingular right $\mathcal{H}^{\text {aff }}$-module has dimension 1.
(2) A simple right \mathcal{H}-module is supersingular
if and only if it contains a supersingular character of $\mathcal{H}^{\text {aff }}$;
if and only if any simple right $\mathcal{H}^{\text {aff }}$-submodule is a supersingular character of $\mathcal{H}^{\text {aff }}$.
The classification of the supersingular characters of $\mathcal{H}^{\text {aff }}$, given in Theorem 6.15 after technical Lemma 6.14, follows from the classification of the characters of $\mathcal{H}^{\text {aff }}$ (Proposition 2.2). The classification was done for $\mathcal{H}(G, I(1))$ in [13] for $G=G L(n, F)$ and in [11, Lemma 5.11 and Theorem 5.13] for G split.

Let Ξ be a character of $\mathcal{H}^{\text {aff }}, \chi$ a character of Z_{k}, and o an orientation such that $\left.\Xi\right|_{\mathfrak{h}}=\chi_{o}$ (Lemma 2.4). Let $w_{o} \in W_{0}$ such that the Weyl chamber of o is $w_{o}^{-1}\left(\mathfrak{D}^{+}\right)$. For a subset J of S, let w_{J} be the longest element of the subgroup of W_{0} generated by J.

Lemma 6.14. (1) $\Xi\left(E(\tilde{C}(\mu))=\Xi\left(E_{o}(\tilde{\mu})\right)\right.$ for $\mu \in \Lambda_{T}^{+}$.
(2) If $S^{\text {aff }}-S=\left\{s_{0}\right\}$ and $\lambda \in \Lambda^{+}$has positive length, we have
(i) $\ell\left(s_{0} \lambda\right)=-1+\ell(\lambda)$;
(ii) $E_{o}\left(\tilde{s}_{0}\right)=T_{\tilde{s}_{0}} \Leftrightarrow w_{o}\left(\alpha_{0}\right) \in \Sigma^{+}$, where α_{0} is the highest root of Σ^{+};
(iii) $E_{o}(\tilde{\lambda})=T_{\tilde{s}_{0}} E_{o \bullet s_{0}}\left(\tilde{s}_{0}^{-1} \tilde{\lambda}\right)$) if $w_{o}\left(\alpha_{0}\right) \in \Sigma^{+}$;
(iv) $w_{J}\left(\alpha_{0}\right) \in \Sigma^{+} \Leftrightarrow J \neq S$.

Proof. (1) The character ξ factorizes through the canonical homomorphism

$$
h \mapsto 1 \otimes h:\left.\mathcal{H}^{\text {aff }} \rightarrow \xi\right|_{\mathfrak{h}} \otimes_{\mathfrak{h}} \mathcal{H}^{\text {aff }}
$$

and $1 \otimes E(\tilde{C}(\mu))=1 \otimes E_{o}(\tilde{\mu})$ in $\chi_{o} \otimes_{\mathfrak{h}} \mathcal{H}^{\text {aff }}$ by Proposition 5.4.
(2) The hypothesis means that the root system Σ is irreducible. The highest positive root $\alpha_{0} \in \Sigma^{+}$has the following well-known properties: $-\alpha_{0}+1$ is a simple affine root and $s_{0}=s_{-\alpha_{0}+1}, 0<-\alpha_{0}(x)+1<1$ for $x \in \mathfrak{C}^{+}$.
(i) $\ell\left(s_{0} \lambda\right)=-1+\ell(\lambda) \Leftrightarrow \mathfrak{C}^{+}$and $\mathfrak{C}^{+}+\nu(\lambda)$ are not on the same side of $\operatorname{Ker}\left(-\alpha_{0}+1\right)$ [15, Example 5.4]. This is equivalent to $-\alpha_{0}(x+\nu(\lambda))+1=-\alpha_{0}(x)+1-\alpha_{0} \circ \nu(\lambda)$ is negative for $x \in \mathfrak{C}^{+} \Leftrightarrow \alpha_{0} \circ v(\lambda) \geqslant 1$, which is true, because $\alpha_{0} \circ v(\lambda) \in \mathbb{N}_{>0}$ as $\lambda \in \Lambda^{+}$ has positive length [15, Corollary 5.11].
(ii) By (6), $E_{o}\left(\tilde{s}_{0}\right)=T_{\tilde{s}_{0}} \Leftrightarrow \mathfrak{C}^{+}$is on the o-negative side of $\operatorname{Ker}\left(-\alpha_{0}+1\right)$. By [15, Definition 5.16], this means that $-\alpha_{0}$ is o-negative, because $-\alpha_{0}+1$ is positive on \mathfrak{C}^{+}. The root $-\alpha_{0}$ is o-negative if and only if α_{0} is positive on the Weyl chamber $w_{o}^{-1}\left(\mathfrak{D}^{+}\right)$ of o. This is true if and only if $w_{o}\left(\alpha_{0}\right) \in \Sigma^{+}$.
(iii) For any orientation $o, E_{o}(\tilde{\lambda})=E_{o}\left(\tilde{s}_{0}\right) E_{o \bullet s_{0}}\left(\tilde{s}_{0}^{-1} \tilde{\lambda}\right)$ by the product formula and $\ell(\lambda)=1+\ell\left(s_{0} \lambda\right)$ (i). Apply (ii).
(iv) Let $S=J \cup J^{\prime}$. We have $\alpha_{0}=\left(\sum_{s \in J} n_{s} \alpha_{s}\right)+\left(\sum_{s \in J^{\prime}} n_{s} \alpha_{s}\right)$ with $n_{s} \in \mathbb{N}_{>0}$, and $w_{J}\left(\alpha_{0}\right)=-\left(\sum_{s \in J} n_{s} \alpha_{s}\right)+\left(\sum_{s \in J^{\prime}} n_{s} w_{J}\left(\alpha_{s}\right)\right)$. If $J^{\prime}=\emptyset$, then $w_{J}\left(\alpha_{0}\right) \notin \Sigma^{+}$. If $J^{\prime} \neq \emptyset$, for any $s \in J^{\prime}$, the root $w_{J}\left(\alpha_{s}\right)$ is positive and does not belong to the group generated by J. The decomposition of $w_{J}\left(\alpha_{0}\right)$ on the basis $\left(\alpha_{S}\right)_{s \in S}$ has a positive coefficient; i.e., $w_{J}\left(\alpha_{0}\right) \in \Sigma^{+}$.

Theorem 6.15. A character of $\mathcal{H}^{\text {aff }}$ is supersingular if and only if its restriction to each irreducible component of $\mathcal{H}^{\text {aff }}$ is not a twisted sign or trivial character.

Proof. The involutive automorphism ι of $\mathcal{H}^{\text {aff }}$ respects supersingularity and exchanges a twisted sign character and a twisted trivial character (Definition 2.7). For $s \in S^{\text {aff }}$ and a character ξ of $\mathcal{H}^{\text {aff }}, \xi$ vanishes on T_{s} or $\iota\left(T_{s}\right)$ (Proposition 2.2). Let $\mu \in \Lambda_{T}^{+}$of positive length. We have $\xi(E(\tilde{C}(\mu)))=\xi\left(E_{o}(\tilde{\mu})\right)$ for any orientation o (Lemma 6.14) and $E_{o}(\tilde{\mu})=T_{\mu}$ when o is dominant [15, Example 5.30].
(i) A twisted sign character is not 0 on T_{w} for all $w \in W(1)$ of positive length; hence it is not 0 on $E(\tilde{C}(\mu))$, and it is not supersingular. Applying ι, a twisted trivial character is not supersingular.
(ii) It remains to prove that, when $\mathcal{H}^{\text {aff }}$ is irreducible, i.e., $S^{\text {aff }}-S=\left\{s_{0}\right\}$, a character ξ of $\mathcal{H}^{\text {aff }}$ different from a twisted sign or trivial character is supersingular.

Applying ι, it suffices to prove it when $\xi\left(T_{\tilde{s}_{0}}\right)=0$. The set $J=S-\left\{s \in S \mid \xi\left(T_{\tilde{s}}\right) \neq 0\right\}$ is different from S, because ξ is not a twisted sign character. Let o be the orientation of Weyl chamber $w_{J}^{-1}\left(\mathfrak{D}^{+}\right)$. By Lemma 2.6, the restriction of ξ to \mathfrak{h} is of the form χ_{o}, because $S_{o}=\left\{s \in S \mid \xi\left(T_{\tilde{s}}\right) \neq 0\right\}$ (5). Applying Lemma 6.14, we obtain, for any $\mu \in \Lambda_{T}^{+}$ of positive length,

$$
E_{o}\left(s_{0}\right)=T_{\tilde{s}_{0}}, \quad E_{o}(\tilde{\mu})=T_{\tilde{s}_{0}} E_{o \bullet s_{0}}\left(\left(\tilde{s}_{0}\right)^{-1} \tilde{\mu}\right), \quad \xi(E(C(\tilde{\mu})))=\xi\left(E_{o}(\tilde{\mu})\right)=0
$$

Hence ξ is supersingular.
Remark 6.16. We can complete Proposition 6.11(6): a simple \mathcal{H}-module M is supersingular if and only if $M \mathcal{F}_{T, o, 1}=0$. This follows from Corollary 6.13 and part (ii) in the proof of Theorem 6.15.

Clifford's theory studies classically the induction of representations from normal subgroups. We give a "Clifford's theory style" proposition to describe the simple finite-dimensional \mathcal{H}-modules containing a character of $\mathcal{H}^{\text {aff }}$, as in [13, Proposition 3], [11, Lemma 5.12] for the algebra $\mathcal{H}(G, I(1))$ when G is split.

Let R be a field, and let A be an R-algebra of the form $A=J B$, where J is an ideal of A and B a subalgebra of A equal to the R-algebra $R[G]$ of a group G.

Let $\Xi: J \rightarrow R$ be a character of J with a G-fixator $G_{\Xi}=\left\{g \in G \mid \Xi^{g}=\Xi\right\}$ of Ξ of finite index in G, where Ξ^{g} is the character $j \mapsto \Xi^{g}(j)=\Xi\left(g j g^{-1}\right)$ of J.

Let V be a finite-dimensional right $R\left[G_{\Xi}\right]$-module, where the group $J \cap G$ acts by $\left.\Xi\right|_{J \cap G}$. For $g \in G$, we denote by V^{g} the right $R\left[g^{-1} G_{\Xi} g\right]$-module V, where $g^{-1} h g$ acts by h for $h \in G_{\Xi}$.

We extend V to a right $A_{\Xi}=J R\left[G_{\Xi}\right]$-module, where J acts by Ξ, denoted by $\Xi \otimes V$. We induce $\Xi \otimes V$ to a right A-module

$$
I(\Xi, V)=(\Xi \otimes V) \otimes_{A_{\Xi}} A
$$

Proposition 6.17. Let R, A, J, G, Ξ, V be as above. We suppose V to be simple. We have the following.
(i) $I(\Xi, V)$ is finite dimensional and is a simple right A-module.
(ii) A finite-dimensional simple right A-module containing Ξ as a J-module is isomorphic to $I(\Xi, V)$ for some V.
(iii) $I\left(\Xi_{1}, V_{1}\right) \simeq I\left(\Xi_{2}, V_{2}\right)$ if and only if $\left(\Xi_{2}, V_{2}\right)=\left(\Xi_{1}^{g}, V_{1}^{g}\right)$, for some element $g \in G$.

Proof [11, Lemma 5.12]. $\Xi \otimes V$ is finite dimensional and is a simple A_{Ξ}-module, because its restriction to the subalgebra $R\left[G_{\Xi}\right]$ satisfies these properties. The left A_{Ξ}-module $A=\bigoplus_{g \in G_{\Xi} \backslash G} A_{\Xi} g$ is free of finite rank. The restriction of $I(\Xi \otimes V)$ to J is isomorphic
to a direct sum $\bigoplus^{\operatorname{dim}_{R} V} \bigoplus_{g \in G_{\Xi} \backslash G} \Xi^{g}$, and $I(\Xi, V)=\bigoplus_{g \in G_{\Xi \backslash G}\left(\Xi^{g} \otimes V^{g}\right) \text { is equal to the }}$ direct sum of all the conjugates of $\Xi \otimes V$ by G. The dimension of $I(\Xi \otimes V)$ is finite, equal to $\left[G: G_{\Xi}\right] \operatorname{dim}_{R} V$. The restriction to J of a non-zero A-submodule of $I(\Xi \otimes V)$ contains a submodule isomorphic to $\bigoplus_{g \in G \Xi \backslash G} \Xi^{g}$; hence its Ξ-isotypic component is not 0 . The Ξ-isotypic component of $I(\Xi \otimes V)$ is the simple A_{Ξ}-module $\Xi \otimes V$. Therefore $I(\Xi \otimes V)$ is a simple A-module.

Let M be a finite-dimensional simple right A-module with a non-zero Ξ-isotypic component as a J-module. The Ξ-isotypic component is an A_{Ξ}-module of the form $\Xi \otimes V^{\prime}$ for some finite-dimensional right $R\left[G_{\Xi}\right]$-module V^{\prime}. The non-zero $R\left[G_{\Xi}\right]$-module V^{\prime} contains a simple submodule V. The module $\Xi \otimes V$ is isomorphic to an A_{Ξ}-submodule of M, and $I(\Xi \otimes V)$ is isomorphic to an A-submodule of M. As M is simple, $M=I(\Xi, V)$.

The restriction of $I(\Xi \otimes V)$ to J shows that $I(\Xi \otimes V)$ determines the G-orbit of Ξ, the Ξ-isotypic part of $I(\Xi \otimes V)$ determines V, and the Ξ^{g}-isotypic part of $I(\Xi \otimes V)$ is $\Xi^{g} \otimes V^{g}$ for $g \in G$. This implies that $I\left(\Xi_{1}, V_{1}\right) \simeq I\left(\Xi_{2}, V_{2}\right)$ if and only if $\left(\Xi_{2}, V_{2}\right)=$ $\left(\Xi_{1}^{g}, V_{1}^{g}\right)$, for some $g \in G$.

We can apply Proposition 6.17 to the R-algebra $A=\mathcal{H}$, its ideal $J=\mathcal{H}^{\text {aff }}$, the group $G=\Omega(1)$, an arbitrary character Ξ of $\mathcal{H}^{\text {aff }}$, and a finite-dimensional simple right $R[\Omega(1)]$-module V such that Z_{k} acts on V by the character $\left.\Xi\right|_{Z_{k}}$. As a subgroup of Ω of finite index acts trivially on V, the fixator $\Omega(1)_{\Xi}$ of Ξ has a finite index in $\Omega(1)$.

Corollary 6.13, Theorem 6.15, and Proposition 6.17 imply the following.
Theorem 6.18. The supersingular simple finite-dimensional right \mathcal{H}-modules are isomorphic to the \mathcal{H}-modules $I(\Xi, V)$, where
(i) $\boldsymbol{\Xi}$ is a character of $\mathcal{H}^{\text {aff }}$ different from a twisted sign or trivial character on each irreducible component of $\mathcal{H}^{\text {aff }}$,
(ii) V is a simple finite-dimensional right $R\left[\Omega(1)_{\Xi}\right]$-module, where Z_{k} acts by $\left.\Xi\right|_{Z_{k}}$.

Two \mathcal{H}-modules $I\left(\Xi_{1}, V_{1}\right), I\left(\Xi_{2}, V_{2}\right)$ are isomorphic if and only if the pairs $\left(\Xi_{1}, V_{1}\right),\left(\Xi_{2}, V_{2}\right)$ are $\Omega(1)$-conjugate.

7. Pro- p-Iwahori invariants and compact induction

We use the notation of 1.3 , and R is as in 1.4. The algebras \mathcal{H} and \mathfrak{h} denote the pro- p-Iwahori Hecke algebra $\mathcal{H}_{R}(G, I(1))$ and $\mathcal{H}_{R}(K, I(1))$.

Let ρ be an irreducible smooth R-representation of K, let $v \in \rho^{I(1)}$ not 0 , let η be the character of \mathfrak{h} on $\rho^{I(1)}$, let χ be the restriction of η to Z_{k}, and let o be an orientation such that $\eta=\chi_{o}$ (Lemma 2.4).

We show that the pro- p-Iwahori invariant functor behaves well on compact induced representations of G, generalizing the results of Ollivier [10, Corollary 3.14] proved when G is split.

By Cabanes [3, Theorem 2], the $I(1)$-invariant functor $\rho \mapsto \rho^{I(1)}$ gives an equivalence

- from the category of finite-dimensional R-representations ρ of K trivial on $K(1)$, such that ρ and its dual ρ^{*} are generated by $I(1)$;
- to the category of finite-dimensional right \mathfrak{h}-modules.

Remark 7.1. For $n \in N \cap K$ of image $w \in W_{o}(1)$, the action on $\rho^{I(1)}$ of the basis element $T_{w} \in \mathfrak{h}$ is

$$
v T_{w}=\sum_{\gamma \in I(1) \backslash I(1) n I(1)} \gamma^{-1} v=\eta\left(T_{w}\right) v .
$$

The action of Z_{k} on $\rho^{I(1)}$ arising from the action of $Z_{0} \subset I$ normalizing $I(1)$ and the action of Z_{k} embedded in the Hecke algebra \mathfrak{h} on $\rho^{I(1)}$ are inverse from each other.

Let

$$
\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho
$$

be the compactly induced representation of G by right translations on the space of compactly supported functions $f: G \rightarrow V(\rho)$ satisfying $f\left(k_{1} g\right)=\rho\left(k_{1}\right) f(g)$ for $k_{1} \in K$ and $g \in G$. Let

$$
[1, v]_{K} \in\left(\mathrm{c}-\operatorname{-nd}_{K}^{G} \rho\right)^{I(1)}
$$

be the function of support K and value v at 1 . The representation c-Ind ${ }_{K}^{G} \rho$ is generated by $[1, v]_{K}$, and $\operatorname{dim}_{R} \rho^{I(1)}=1$.

Proposition 7.2. The \mathcal{H}-equivariant linear map

$$
\rho^{I(1)} \otimes \mathfrak{h} \mathcal{H} \rightarrow\left(\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho\right)^{I(1)} \quad 1 \otimes 1 \mapsto[1, v]_{K}
$$

is an isomorphism.
We explain the strategy of the proof, which reduces the proposition to the next lemma.
The disjoint union of W into W_{0}-cosets corresponds to a disjoint union of G into (K, I)-cosets. A (K, I)-coset is equal to a $(K, I(1))$-coset. We have

$$
\begin{equation*}
G=\bigcup_{d \in \mathcal{D}} K d I=\bigcup_{d \in \mathcal{D}} K \tilde{d} I(1) \tag{45}
\end{equation*}
$$

where, for d in the distinguished set \mathcal{D} of representatives of $W_{0} \backslash W$ (Proposition 3.3), $K d I=K \tilde{d} I(1)$ denotes the double coset $K n_{\tilde{d}} I=K n_{\tilde{d}} I(1), \tilde{d} \in \mathcal{D}(1)$ lifting d, and $n_{\tilde{d}} \in N$ lifting \tilde{d}, with $n_{1}=1$. The space $\left(c-\operatorname{Ind}_{K}^{G} \rho\right)^{I(1)}$ is the direct sum

$$
\begin{equation*}
\left(\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho\right)^{I(1)}=\bigoplus_{d \in \mathcal{D}}\left(\mathrm{c}-\operatorname{Ind}_{K}^{K d I} \rho\right)^{I(1)} \tag{46}
\end{equation*}
$$

of the subspaces of functions in $\left(c-\operatorname{Ind}_{K}^{G} \rho\right)^{I(1)}$ with support contained in $K d I$, for $d \in \mathcal{D}$. The pro- p-Iwahori Hecke algebra is the direct sum

$$
\begin{equation*}
\mathcal{H}=\bigoplus_{d \in \mathcal{D}} \mathfrak{h} T_{\tilde{d}} \tag{47}
\end{equation*}
$$

of the left \mathfrak{h}-modules $\mathfrak{h} T_{\tilde{d}}$ of functions in \mathcal{H} with support contained in $K d I$, for $d \in \mathcal{D}$. We denote by η the character of \mathfrak{h} on $\rho^{I(1)}$, and by $f_{\tilde{d}}$ the function in $\left(\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho\right)^{I(1)}$ of support $K d I$ with $f\left(n_{\tilde{d}}\right)=v$, for $d \in \mathcal{D}$. We have $f_{1}=[1, v]_{K}$. The proposition follows from the following lemma.

Lemma 7.3. (i) For $d \in \mathcal{D}$, we have $K(1)\left(K \cap n_{\tilde{d}} I(1) n_{\tilde{d}}^{-1}\right)=I(1)$.
(ii) A basis of $\left(c-\operatorname{Ind}_{K}^{G} \rho\right)^{I(1)}$ is $\left(f_{\tilde{d}}\right)_{d \in \mathcal{D}}$.
(iii) $f_{\tilde{d}}=f_{1} T_{\tilde{d}}$ for $d \in \mathcal{D}$.
(iv) f_{1} is a \mathfrak{h}-eigenvector in $\left(\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho\right)^{I(1)}$ of eigenvalue η.

Proof. (1) We denote by I^{\prime} the subgroup of I (1) generated by $U \cap I=U \cap K$ and $U^{-} \cap I$. We have $I(1)=Z_{0}(1) I^{\prime}$ and $Z_{0}(1)=K(1) \cap Z_{0}$. The lemma follows from the inclusion

$$
U \cap I \subset n_{\tilde{d}} I^{\prime} n_{\tilde{d}}^{-1},
$$

because $K(1)\left(K \cap n_{\tilde{d}} I(1) n_{\tilde{d}}^{-1}\right)=K(1)\left(K \cap n_{\tilde{d}} I^{\prime} n_{\tilde{d}}^{-1}\right)$ is a pro- p-subgroup of K and $I(1)=$ $K(1)(U \cap I)$ is a pro- p-Sylow subgroup of K. The group $U \cap I$ is the product of the groups $U_{\alpha, 0}=U_{\alpha} \cap K$ for all α in the set $\Phi_{\text {red }}^{+}$of positive reduced roots of associated root subgroup U_{α}. By Proposition 3.3 and $\S 1.3, d^{-1}\left(e_{\alpha} \alpha\right)$ is positive on \mathfrak{C}^{+}. As e_{α} is a positive integer, $d^{-1}(\alpha)$ is positive on \mathfrak{C}^{+}. By [15, $\S \S 3.3$ and 3.5], $n_{\tilde{d}}^{-1} U_{\alpha, 0} n_{\tilde{d}}=U_{d^{-1}(\alpha)}$. As $d^{-1}(\alpha)$ is positive on $\mathfrak{C}^{+}, U_{d^{-1}(\alpha)} \subset I^{\prime}$. Hence $U_{\alpha, 0} \subset n_{\tilde{d}} I^{\prime} n_{\tilde{d}}^{-1}$.
(2) By (46) and $f_{n_{\tilde{d}}} \in\left(\mathrm{c}-\operatorname{Ind}_{K}^{K d I(1)} \rho\right)^{I(1)}$, it suffices to prove that the dimension of $\left(\mathrm{c}-\operatorname{Ind}_{K}^{K n_{d} I(1)} \rho\right)^{I(1)}$ is 1 . The value at $n_{\tilde{d}}$ gives a linear map

$$
\left({\mathrm{c}-\operatorname{Ind}_{K}^{K d I(1)}}^{K} \rho\right)^{I(1)} \rightarrow \rho^{K \cap n_{\tilde{d}} I(1) n_{\tilde{d}}^{-1}}
$$

because $k f\left(n_{\tilde{d}}\right)=f\left(k n_{\tilde{d}}\right)=f\left(n_{\tilde{d}} n_{\tilde{d}}^{-1} k n_{\tilde{d}}\right)$ for $k \in K$. The map is clearly injective, and $\rho^{K \cap n_{\tilde{d}} I(1) n_{\tilde{d}}^{-1}}=\rho^{I(1)}$, because ρ is trivial on $K(1)$ and (1). As $\operatorname{dim}_{R} \rho^{I(1)}=1$, we have $\operatorname{dim}_{R}\left(\mathrm{c}-\operatorname{Ind}_{K}^{K n_{d} I(1)} \rho\right)^{I(1)}=1$.
(3) We show that the support of the function $f_{1} T_{n_{\tilde{d}}}$ is contained in $K d I(1)$ and that the value at $n_{\tilde{d}}$ of $f_{1} T_{n_{\tilde{d}}}$ is v.

For $g \in G$, we have

$$
f_{1} T_{g}=\sum_{\gamma \in I(1) \backslash I(1) g I(1)} \gamma^{-1} f_{1},
$$

and $\gamma^{-1} f_{1}(x)=f_{1}\left(x \gamma^{-1}\right)$ for $x \in G$. The support of f_{1} is K, and the support of $f_{1} T_{g}$ is contained in $K g I(1)$.

In particular, the support of the function $f_{1} T_{n_{\tilde{d}}}$ is contained in $K d I(1)$. We have

$$
\left(f_{1} T_{n_{\tilde{d}}}\right)\left(n_{\tilde{d}}\right)=\sum_{\gamma \in I(1) \backslash I(1) n_{\tilde{d}} I(1)} f_{1}\left(n_{\tilde{d}} \gamma^{-1}\right)=\sum_{u \in\left(K \cap n_{\tilde{d}} I(1) n_{\tilde{d}}^{-1}\right) /\left(I(1) \cap n_{\tilde{d}}^{\left.I(1) n_{\tilde{d}}^{-1}\right)}\right.} f_{1}(u) .
$$

By (1), this is equal to $f_{1}(1)=v$.
(4) For $k \in K$, the support of the function $f_{1} T_{k}$ is contained in K, and

$$
\left(f_{1} T_{k}\right)(1)=\sum_{\gamma \in I(1) \backslash I(1) k I(1)} f_{1}\left(\gamma^{-1}\right)=\sum_{\gamma \in I(1) \backslash I(1) k I(1)} \gamma^{-1} f_{1}(1)=\eta\left(T_{k}\right) v .
$$

Therefore $f_{1} T_{k}=\eta\left(T_{k}\right) f_{1}$ for $k \in K$.

Remark 7.4. For $\lambda \in \Lambda$, the isomorphism of Proposition 7.2 restricts to a right \mathfrak{h}-module isomorphism

$$
\rho^{I(1)} \otimes_{\mathfrak{h}} \mathfrak{h}(\lambda) \rightarrow\left(\mathrm{c}-\operatorname{Ind}_{K}^{K \lambda K} \rho\right)^{I(1)}
$$

Proposition 7.5. Let ρ_{1}, ρ be two irreducible smooth R-representations of K. The I(1)-invariant map

$$
\operatorname{Hom}_{R G}\left(\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho_{1}, \mathrm{c}-\operatorname{Ind}_{K}^{G} \rho\right) \rightarrow \operatorname{Hom}_{\mathcal{H}}\left(\left(\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho_{1}\right)^{I(1)},\left(\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho\right)^{I(1)}\right)
$$

is an isomorphism.
To explain the strategy of the proof, we recall the adjunction isomorphisms

$$
\begin{aligned}
\operatorname{Hom}_{R G}\left(\mathrm{c}-\operatorname{-nd}_{K}^{G} \rho_{1}, \pi\right) & \simeq \operatorname{Hom}_{R K}\left(\rho_{1}, \pi\right)=\operatorname{Hom}_{R K}\left(\rho_{1}, \pi^{K(1)}\right), \\
\operatorname{Hom}_{\mathcal{H}}\left(\rho_{1}^{I(1)} \otimes_{\mathfrak{h}} \mathcal{H}, \pi^{I(1)}\right) & \simeq \operatorname{Hom}_{\mathfrak{h}}\left(\rho_{1}^{I(1)}, \pi^{I(1)}\right),
\end{aligned}
$$

for any smooth R-representation π of G. The $I(1)$-invariant map

$$
\operatorname{Hom}_{R G}\left(\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho_{1}, \pi\right) \rightarrow \operatorname{Hom}_{\mathcal{H}}\left(\left(\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho_{1}\right)^{I(1)}, \pi^{I(1)}\right)
$$

is an isomorphism if and only if the $I(1)$-invariant map

$$
\begin{equation*}
\operatorname{Hom}_{K}\left(\rho_{1}, \pi^{K(1)}\right) \rightarrow \operatorname{Hom}_{\mathfrak{h}}\left(\rho_{1}^{I(1)}, \pi^{I(1)}\right) \tag{48}
\end{equation*}
$$

is an isomorphism, by Proposition 7.2. The map (48) is injective, because $\rho^{I(1)}$ generates ρ, but it is not surjective in general. The proposition says that the map (48) is surjective if $\pi=\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho$.

The dominant monoid Λ^{+}represents the cosets $K \backslash G / K$ (see 1.3). The anti-dominant monoid Λ^{-}has the same property and is more convenient now. The representation of K on c-Ind ${ }_{K}^{G} \rho$ is a direct sum

$$
\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho=\bigoplus_{\lambda \in \Lambda^{-}} \mathrm{c}-\operatorname{Ind}_{K}^{K \lambda K} \rho,
$$

where c-Ind ${ }_{K}^{K \lambda K} \rho$ is the space of functions in c-Ind ${ }_{K}^{G} \rho$ with support in $K \lambda K$. We will prove that, for all $\lambda \in \Lambda^{-}$, the I (1)-invariant map

$$
\begin{equation*}
\operatorname{Hom}_{K}\left(\rho_{1},\left({\operatorname{cc}-\operatorname{Ind}_{K}^{K \lambda K}}_{K}\right)^{K(1)}\right) \rightarrow \operatorname{Hom}_{\mathfrak{h}}\left(\rho_{1}^{I(1)},\left({\operatorname{cc}-\operatorname{Ind}_{K}^{K \lambda K}}^{K}\right)^{I(1)}\right) \tag{49}
\end{equation*}
$$

is an isomorphism. A representation of K trivial on $K(1)$ generated by its I (1)-invariant vectors identifies with a representation of the finite reductive group G_{k} generated by its U_{k}-invariant vectors (using the notation of $\S 1.3$). We describe $\left(\mathrm{c}-\operatorname{Ind}_{K}^{K \lambda K} \rho\right)^{K(1)}$ as a representation of G_{k}. Let $z \in Z^{-}$lifting λ. We have $K z K=K \lambda K$ and by [7, Proposition 6.13] the group

$$
K_{\lambda}=K(1)\left(K \cap z^{-1} K z\right)
$$

is the inverse image in K of a parabolic subgroup $P_{k}=M_{k} N_{k}$ of G_{k} containing B_{k}, of unipotent radical N_{k} equal to the image in G_{k} of $\left\langle\bigcup_{\alpha \in \Phi^{+}, \alpha o v(z)<0} U_{\alpha, 0}\right\rangle$ as $v(z)$ is anti-dominant and $\langle\alpha, z\rangle=\langle\alpha,-v(z)\rangle$ in the notation of [7, 6.11]; it is a parahoric
subgroup of G of pro- p-radical $K_{\lambda}(1)=K(1)\left(K \cap z^{-1} K(1) z\right)$. Let ρ_{z} be the representation of $K \cap z^{-1} K z$ on the space $V(\rho)$ of ρ such that $\rho_{z}(k)=\rho\left(z k z^{-1}\right)$. The map $f \mapsto \phi$: $k \mapsto f(z k): \operatorname{Ind}_{K}^{K z K} \rho \rightarrow \operatorname{Ind}_{K \cap z^{-1} K z}^{K} \rho_{z}$ is a K-equivariant isomorphism. It restricts to a K-equivariant isomorphism

$$
\left(\operatorname{Ind}_{K}^{K z K} \rho\right)^{K(1)} \rightarrow\left(\operatorname{Ind}_{K \cap z^{-1} K z}^{K} \rho_{z}\right)^{K(1)}=\operatorname{Ind}_{K_{\lambda}}^{K}\left(\rho_{z}^{K(1) \cap z^{-1} K z}\right),
$$

where the natural representation of $K \cap z^{-1} K z$ on $\rho_{z}^{K(1) \cap z^{-1} K z}$ is extended to a representation of K_{λ} trivial on $K(1)$. The representation $\rho_{z}^{K(1) \cap z^{-1} K z}$ of K_{λ} identifies to the representation $\rho_{z}^{N_{k}}$ of P_{k} on the space $V\left(\rho^{N_{k}}\right)$ of $\rho^{N_{k}}$ such that $\rho_{z}(m)=\rho\left(z m z^{-1}\right)$ for m in the group $M_{0}=\left\langle Z_{0}, \bigcup_{\alpha \in \Phi, \alpha \circ \nu(z)=0} U_{\alpha, 0}\right\rangle$. The representation $\operatorname{Ind}_{K_{\lambda}}^{K}\left(\rho_{z}^{K(1) \cap z^{-1} K z}\right)$ identifies to $\operatorname{Ind}_{P_{k}}^{G_{k}}\left(\rho_{z}^{N_{k}}\right)$. The representation $\rho_{z}^{N_{k}}$ of P_{k} is irreducible [2]. The U_{k}-invariant functor

$$
\begin{equation*}
\operatorname{Hom}_{G_{k}}\left(\rho_{1}, \operatorname{Ind}_{P_{k}}^{G_{k}}\left(\rho_{z}^{N_{k}}\right)\right) \rightarrow \operatorname{Hom}_{\mathfrak{h}}\left(\rho_{1}^{U_{k}},\left(\operatorname{Ind}_{P_{k}}^{G_{k}}\left(\rho_{z}^{N_{k}}\right)\right)^{U_{k}}\right) \tag{50}
\end{equation*}
$$

is an isomorphism, by Cabanes's equivalence recalled at the beginning of this section, because $\operatorname{Ind}_{P_{k}}^{G_{k}}\left(\rho_{z}^{N_{k}}\right)$ and its contragredient are generated by their U_{k}-invariant vectors. This is a general property proved in the next lemma.

Lemma 7.6. Let τ be an irreducible R-representation of P_{k} trivial on N_{k}. The representation $\operatorname{Ind}_{P_{k}}^{G_{k}} \tau$ of G_{k} and its contragredient are isomorphic to a subrepresentation and to a quotient of $\operatorname{Ind}_{U_{k}}^{G_{k}} 1$. In particular, they are generated by their U_{k}-invariant vectors. Their socle and their heads are multiplicity free.

Proof. A representation of G_{k} is generated by its U_{k}-invariant vectors if and only if it is a quotient of a direct sum of representations isomorphic to $\operatorname{Ind}_{U_{k}}^{G_{k}} 1$.

The representation $\operatorname{Ind}_{P_{k}}^{G_{k}} \tau$ is a quotient of $\operatorname{Ind}_{U_{k}}^{G_{k}}$, because it is generated by a U_{k}-invariant vector (a function in $\operatorname{Ind}_{P_{k}}^{G_{k}} \tau$ of support P_{k} with non-zero value in $\tau^{U_{k} \cap M_{k}}$).

The inflation of τ to P_{k} is contained in $\operatorname{Ind}_{U_{k}}^{P_{k}}$. By transitivity of the induction, $\operatorname{Ind}_{P_{k}}^{G_{k}} \tau$ is contained in $\operatorname{Ind}_{U_{k}}^{G_{k}} 1$.

The contragredient representation $\left(\operatorname{Ind}_{P_{k}}^{G_{k}} \tau\right)^{*}$ is a subrepresentation and a quotient of $\operatorname{Ind}_{U_{k}}^{G_{k}} 1$, because $\operatorname{Ind}_{U_{k}}^{G_{k}} 1$ is isomorphic to its contragredient, the contragredient permutes the irreducible R-representations of M_{k}, and it commutes with the parabolic induction.

The socle of a subrepresentation of $\operatorname{Ind}_{U_{k}}^{G_{k}} 1$ is contained in the socle of $\operatorname{Ind} U_{U_{k}}^{G_{k}} 1$. The socle of $\operatorname{Ind}_{U_{k}}^{G_{k}} 1$ is multiplicity free, because $\operatorname{dim} \rho_{U_{k}}=1$, and by adjunction $\operatorname{Hom}_{G_{k}}\left(\rho, \operatorname{Ind}_{U_{k}}^{G_{k}} 1\right) \simeq \operatorname{Hom}_{U_{k}}\left(\rho_{U_{k}}, 1\right)$ for any irreducible R-representation ρ of G_{k} of U_{k}-coinvariants $\rho_{U_{k}}$.

The contragredient of the socle is the head of the contragredient.
With (51) and the $I(1)$-invariant functor (Proposition 7.5 for $\rho_{1}=\rho$), we transfer our results on the spherical algebra $\mathcal{H}(\eta, \mathfrak{h})$ to the spherical algebra $\mathcal{H}_{R}(G, K, \rho)$, which is the convolution algebra of compactly supported functions

$$
\phi: G \rightarrow \operatorname{End}_{R}(V(\rho)) \text { satisfying } \phi\left(k_{1} g k_{2}\right)=\rho\left(k_{1}\right) \phi(g) \rho\left(k_{2}\right) \quad \text { for } k_{1}, k_{2} \in K, g \in G
$$

It is isomorphic to the algebra $\operatorname{End}_{R G} \mathrm{c}-\operatorname{Ind}_{K}^{G} \rho$ by the map sending ϕ to the $R G$-intertwiner E_{ϕ} of c-Ind ${ }_{K}^{G} \rho$ defined by

$$
\begin{equation*}
E_{\phi}\left(f_{1}\right)(g)=\phi(g)(v) \quad(g \in G) \tag{51}
\end{equation*}
$$

The spherical Hecke R-algebra $\mathcal{H}_{R}(G, K, \rho)$ admits a natural basis [7, 7.3] $\left(\mathcal{F}_{\tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$, where

$$
\begin{equation*}
\mathcal{F}_{\tilde{\lambda}} \text { has support } K \lambda K \quad \text { and } \quad \mathcal{F}_{\tilde{\lambda}}(\tilde{\lambda})(v)=v \tag{52}
\end{equation*}
$$

The basis $\left(\mathcal{F}_{\tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$does not satisfy (14) in general. The basis (52) for the spherical Hecke algebra $\mathcal{H}_{R}\left(Z, Z_{0}, \chi\right)$ is denoted by $\left(\tau_{\tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}}$,

$$
\tau_{\tilde{\lambda}} \text { has support } Z_{0} \lambda \text { and } \tau_{\tilde{\lambda}}(\tilde{\lambda})(v)=v
$$

The basis (52) for the central spherical Hecke subalgebra $\mathcal{H}_{R}\left(T, T_{0}, \rho^{I(1)}\right)$ is $\left(\tau_{\tilde{\mu}}\right)_{\mu \in \Lambda_{T}}$, and the $\mathcal{H}_{R}\left(T, T_{0}, \rho^{I(1)}\right)$-module $\mathcal{H}_{R}\left(Z, Z_{0}, \rho^{I(1)}\right)$ is finitely generated. We denote by $\mathcal{H}_{R}\left(T^{+}, T_{0}, \rho^{I(1)}\right) \subset \mathcal{H}_{R}\left(Z^{+}, Z_{0}, \rho^{I(1)}\right)$ the subalgebras of bases $\left(\tau_{\tilde{\mu}}\right)_{\mu \in \Lambda_{T}^{+}}$and $\left(\tau_{\tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$. The basis $\left(\tau_{\tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$satisfies (14).

Theorem 7.7. The R-algebras

$$
\mathcal{H}_{R}(G, K, \rho) \simeq \operatorname{End}_{R G} \mathrm{c}-\operatorname{Ind}_{K}^{G} \rho \simeq \operatorname{End}_{\mathcal{H}}\left(\eta \otimes_{\mathfrak{h}} \mathcal{H}\right)=\mathcal{H}(\eta, \mathfrak{h})
$$

are isomorphic via (51) and the I (1)-invariant functor (Proposition 7.5).
The basis $\left(\mathcal{F}_{\tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$of $\mathcal{H}_{R}(G, K, \rho)(52)$ corresponds to the basis $\left(\mathcal{E}_{\tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$of $\mathcal{H}(\eta, \mathfrak{h})$ (Proposition 4.4).

The basis $\left(\phi_{o, \tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$of $\mathcal{H}_{R}(G, K, \rho)$ corresponding to the basis $\left(\Phi_{o, \tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}$of $\mathcal{H}(\eta, \mathfrak{h})$ (Proposition 4.13) satisfies (14).

For $\mu \in \Lambda_{T}^{+}, \phi_{\tilde{\mu}}=\phi_{o, \tilde{\mu}}$ does not depend on the choice of o.
$\left(\phi_{\tilde{\mu}}\right)_{\mu \in \Lambda_{T}^{+}}$is a basis of a central subalgebra $\mathcal{Z}_{R}(G, K, \rho)_{T}$ of $\mathcal{H}_{R}(G, K, \rho)$, and $\mathcal{H}_{R}(G, K, \rho)$ is a finitely generated $\mathcal{Z}_{R}(G, K, \rho)_{T}$-module (Proposition 5.4).

Remark 7.8. The $R G$-endomorphism of $\mathrm{c}-\operatorname{Ind}_{K}^{G} \rho$ corresponding to $\phi_{\tilde{\mu}}$ sends $[1, v]_{K}$ to $[1, v]_{K} E_{o}(\tilde{\mu})$ for any orientation o such that $\eta=\chi_{o}$ (Propositions 7.2 and 4.13).

We denote by $\mathcal{A}_{o, T}^{+}$the R-algebra of basis $\left(1 \otimes E_{o}(\tilde{\mu})\right)_{\mu \in \Lambda_{T}^{+}}$.
Corollary 7.9. We have an R-algebra isomorphism

$$
\left(\phi_{o, \tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}} \mapsto\left(\tau_{\tilde{\lambda}}\right)_{\lambda \in \Lambda_{\chi}^{+}}: \mathcal{H}_{R}(G, K, \rho) \xrightarrow{\mathcal{S}_{o}} \mathcal{H}_{R}\left(Z^{+}, Z_{0}, \chi\right)
$$

restricting to an isomorphism $\mathcal{Z}_{R}(G, K, \rho)_{T} \xrightarrow{\mathcal{S}_{T}} \mathcal{H}_{R}\left(T^{+}, T_{0}, \chi\right)$ independent of o. We have the R-algebra isomorphisms

$$
\begin{gathered}
\mathcal{Z}_{T} \rightarrow \mathcal{Z}_{R}(G, K, \rho)_{T} \xrightarrow{\mathcal{S}_{T}} \mathcal{H}_{R}\left(T^{+}, T_{0}, \chi\right) \rightarrow \mathcal{A}_{o, T}^{+} \rightarrow R\left[\tilde{\Lambda}_{T}^{+}\right] \rightarrow R\left[\Lambda_{T}^{+}\right] \\
(E(\tilde{C}(\mu)))_{\mu \in \Lambda_{T}^{+}} \rightarrow\left(\phi_{\tilde{\mu}}\right)_{\mu \in \Lambda_{T}^{+}} \rightarrow\left(\tau_{\tilde{\mu}}\right)_{\mu \in \Lambda_{T}^{+}} \rightarrow\left(E_{o}(\tilde{\mu})\right)_{\mu \in \Lambda_{T}^{+}} \rightarrow(\tilde{\mu})_{\mu \in \Lambda_{T}^{+}} \rightarrow(\mu)_{\mu \in \Lambda_{T}^{+}}
\end{gathered}
$$

When the group G is split, $\left(Z^{+}, Z_{0}\right)=\left(T^{+}, T_{0}\right)$ and $\mathcal{Z}_{R}(G, K, \rho)_{T}=\mathcal{H}_{R}(G, K, \rho)$.

Theorem 1.5 in $\S 1$ follows from Corollary 7.9 and the next proposition. The R-characters ξ of Λ_{T}^{+}identify with the characters of the R-algebras isomorphic to $R\left[\tilde{\Lambda}_{T}^{+}\right]$ in Corollary 7.9. We write

$$
\xi\left(\tau_{\tilde{\mu}}\right)=\xi(E(\tilde{C}(\mu)))=\xi\left(\phi_{\tilde{\mu}}\right)=\xi\left(E_{o}(\tilde{\mu})\right)=\xi(\tilde{\mu})=\xi(\mu)
$$

for $\mu \in \Lambda_{T}^{+}$. Let π be a smooth R-representation of G. We suppose that $\left.\pi\right|_{K}$ contains ρ.
Proposition 7.10. Let $A \in \operatorname{Hom}_{R K}(\rho, \pi)$ be non-zero, and let $\mu \in \Lambda_{T}^{+}$. We have

$$
\left(A \phi_{\tilde{\mu}}\right)(v)=A(v) E_{o}(\tilde{\mu})=A(v) E(\tilde{C}(\mu))
$$

In particular, if A is a $\mathcal{Z}_{R}(G, K, \rho)_{T}$-eigenvector in $\operatorname{Hom}_{R K}(\rho, \pi)$ of eigenvalue ξ,

$$
\xi(\tilde{\mu}) A(v)=A(v) E_{o}(\tilde{\mu})=A(v) E(\tilde{C}(\mu))
$$

Proof. By the adjunction isomorphism, A and $A \phi_{\tilde{\mu}}$ correspond to the $R G$-intertwiners c-Ind $K_{K}^{G} \rho \rightarrow \pi$ sending $[1, v]_{K}$ to $A(v)$ and to $A(v) E_{o}(\tilde{\mu})$ (Remark 7.8). We deduce that $\left(A \phi_{\tilde{\mu}}\right)(v)=A(v) E_{o}(\tilde{\mu})$.

The \mathcal{H}-isomorphism $\left(c-\operatorname{Ind}_{K}^{G} \rho\right)^{I(1)} \rightarrow \chi_{o} \otimes_{\mathfrak{h}} \mathcal{H}$ of Proposition 7.2 sends [1, v] ${ }_{K} E(\tilde{C}(\mu))$ to $1 \otimes E(\tilde{C}(\mu))$. By Proposition $5.4,1 \otimes E(\tilde{C}(\mu))=1 \otimes E_{0}(\tilde{\mu})$. Hence $[1, v]_{K} E(\tilde{C}(\mu))=$ $[1, v]_{K} E_{o}(\tilde{\mu})$. Applying the \mathcal{H}-intertwiner $\left(\mathrm{c}^{-\operatorname{Ind}_{K}^{G}} \rho\right)^{I(1)} \rightarrow \pi^{I(1)}$ corresponding to A sending $[1, v]_{K}$ to $A(v)$, we deduce that $A(v) E_{o}(\tilde{\mu})=A(v) E(\tilde{C}(\mu))$.

If A is a $\mathcal{Z}_{R}(G, K, \rho)_{T}$-eigenvector in $\operatorname{Hom}_{R K}(\rho, \pi)$ of eigenvalue ξ (Corollary 7.9), we have $A \phi_{\tilde{\mu}}=\xi\left(\phi_{\tilde{\mu}}\right) A$ for $\mu \in \Lambda_{T}^{+}$(Theorem 7.7).

For $J \subset \Delta$, we denote by μ_{J} an element of Λ_{T}^{+}such that $\alpha \circ v\left(\mu_{J}\right)>0$ for all $\alpha \in \Delta-J$.
Remark 7.11. Let ξ be an R-character of Λ_{T}^{+}. The character ξ is called supersingular if it satisfies the following three equivalent properties.
(1) $\xi(\mu)=0$ for all $\mu \in \Lambda_{T}^{+}$non-invertible in Λ_{T}^{+}.
(2) $\xi\left(\mu_{J}\right)=0$ for any $J \neq \Delta$.
(3) For some $n \geqslant 1, \xi(\mu)=0$ for all $\mu \in \Lambda_{T}^{+}$with $\ell(\mu)>n$.

In Proposition 7.10, the eigenvalue ξ of A is supersingular if and only if the module $A(v) \mathcal{H}$ is supersingular (Definition 6.10).

Acknowledgements. I am grateful to N. Abe, G. Henniart, and R. Ollivier for helpful discussions. I thank the organizer of the conferences in Mumbai (D. Prasad) and in Berlin (E. Grosse-Kloenne) for their interest and for giving me the opportunity to present this work, and the Institut de Mathématiques de Jussieu for its support. I thank the anonymous referee for having read my article so carefully and for his/her comments.

References

1. N. Abe, G. Henniart, F. Herzig and M.-F. Vignéras, A classification of admissible irreducible modulo p representations of reductive p-adic groups, preprint, 2014.
2. M. Cabanes, Irreducible modules and Levi supplements, J. Algebra 90 (1984), 84-97.
3. M. CabANES, A criterion of complete reducibility and some applications, in Représentations linéeaires des groupes finis, (ed. M. CABANES), Astérisque, pp. 181-182. (1990) 93-112.
4. M. Cabanes and M. Enguehard, Representation theory of finite reductive groups (Cambridge University Press, 2004).
5. E. Grosse-Klönne, From pro- p-Iwahori Hecke modules to (ϕ, Γ)-modules, preprint, 2013.
6. G. Henniart and M.-F. Vigneras, Comparison of compact induction with parabolic induction, Pac. J. Math. 260(2) (2012), 457-495.
7. G. Henniart and M.-F. Vigneras, A Satake isomorphism for representations modulo p of reductive groups over local fields, J. Reine Angew. Math. 701 (2015), 33-75.
8. S. Kumar, Kac-Moody groups, their flag varieties and representation theory, Progr. Math. 204 (2002).
9. R. Ollivier, Parabolic Induction and Hecke modules in characteristic p for p-adic $G L_{n}$, ANT 4(6) (2010), 701-742.
10. R. Ollivier, An Inverse Satake isomorphism in characteristic p, Selecta Math., preprint, 2012.
11. R. Ollivier, Compatibility between Satake and Bernstein isomorphisms in characteristic p, preprint, 2013.
12. N. A. Schmidt, Generische pro-p-algebren (Dilpomarbeit, Berlin, 2009).
13. M.-F. Vignéras, On a numerical Langlands correspondence modulo p with the pro-p-Iwahori Hecke ring, Math. Ann. 331(3) 1432-1807. Erratum 333(3) (2005), 699-701.
14. M.-F. Vignéras, Algèbres de Hecke affines génériques, J. Represent. Theory 10 (2006), 1-20.
15. M.-F. Vignéras, The pro- p-Iwahori Hecke algebra of a reductive p-adic group I, preprint, 2013.
16. M.-F. Vignéras, The pro-p-Iwahori Hecke algebra of a reductive p-adic group II, Muenster J. Math. 7 (2014), 363-379.
