
The pro-p Iwahori Hecke algebra of a reductive p-adic group IV

(Levi subgroup and central extension)
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Abstract

Let R be a commutative ring and let G be a connected reductive p-adic group. We
compare the parahoric subgroups and the pro-p Iwahori Hecke R-algebra of G with those
of groups naturally related to G, as a Levi subgroup M , a z-extension of G (more generally
a central extension H of G), the derived group Gder of G, the simply connected cover Gsc

of the derived group of G.
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Lu dans Gan-Savin metaplectic II. Suppose p 6= 2. Let V + and V − be two quadratic
spaces of dimension 2n+ 1, trivial discriminant, and trivial and non-trivial Hasse invari-
ants, respectively. Then SO(V +) is a split, adjoint group of type Bn, while SO(V −) is
its unique non-split inner form. Dans §3, description des sous-groupes ouverts compacts
stabilisateurs de bons lattices, alcove poour le groupe symplectique.

The exceptional types are both simply connected and adjoint. SL(n + 1), Spin(2n +
1), Sp(2n), Spin(2n) simply connected of types An, Bn, Cn, Dn and Spin(2n+1), Spin(2n)
are double covers of SO(2n + 1), SO(2n) Section 1.11 of Carter’s book Finite groups of
Lie type.

1 Introduction

Let F be a finite extension of the field of p-adic numbers or a field of Laurent series in one
variable over a finite field of characteristic p. The residue field k of F is a finite field of
characterictic p and order q. Algebraic F -groups will be denoted by a bold capital letter
and the group of their F -rational points by the same capital letter but not in bold. Let
G be a connected reductive linear algebraic F -group and G = G(F ) be the group of its
F -rational points.

The parameters of the quadratic relations of the Iwahori-Matsumoto presentation of
the (pro-p) Iwahori Hecke ring HZ(G,U) of G determine a priori the parameters of the
quadratic relations in the (pro-p) Iwahori Hecke ring of a Levi subgroup M of G, but the
relation between the parameters for G and for M was not known, even for the complex
Iwahori Hecke algebras of reductive split groups. The solution of this problem is simple:
we extend the parameters to “parameter maps” and we show that the parameter maps
of a Levi subgroup M are the restrictions of the parameter maps for G. This is is new,
even for the complex Iwahori Hecke algebras. A more elaborate comparison of the pro-p
Iwahori Hecke rings of M and of G with applications to the theory of parabolic induction
for the Hecke algebras is given in [Vig5].

The main body of this article is the comparison of the pro-p Iwahori Hecke rings
of G [Vig1] and of a central F -extension H of G; for example, a z-extension, the simply
connected extension Gsc of the derived group Gder of G. The property that an irreducible
admissible R-representations of G is supercuspidal if and only if its invariants by a pro-p-
Iwahori subgroup U is a supersingular HR(G,U)-module, is reduced to the simplest case
where G is almost simple, simply connected and isotropic (a proof of this simple case is
proved in [OV])

This work is motivated by the forthcoming articles [OV], [AHHV2] on irreducible R-
representations of a reductive p-adic group G, and [Abe] on the classification of simple
HR(G,U)-modules, when R is an algebraically closed field of characteristic p.

Ackowledgements I thank Abe, Henniart, Herzig, Ollivier for our discussions on the
representations modulo p of reductive p-adic groups or pro-p Iwahori Hecke algebras, and
the Mathematical Institute of Jussieu for a stimulating scientific environment.

2 Main definitions and results

2.1 Admissible datum

The structure of (pro-p) Iwahori Hecke rings of connected reductive p-adic groups inspired
the notions of an admissible datum W, of a parameter map c of (W, R) where R is a
commutative ring, and of a splitting ofW; they give rise to R-algebras allowing flexibility
to study (pro-p) Iwahori Hecke rings.
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Definition 2.1. [Vig3, §1.2] An admissible datum is a datum

W = (Σ,∆,Ω,Λ, ν,W,Zk,W1)(1)

consisting of:

(i) A reduced root system Σ with basis ∆. We denote by (V,H,D,C) a real vector
space V of dual of basis ∆ with a scalar product invariant by the finite Weyl group
W0 of ∆, the set H of affine hyperplanes of V associated to the affine roots of Σ,
H0 ⊂ H the set of hyperplanes containing 0, the dominant open Weyl chamber D,
the alcove C ⊂ D of (V,H) of vertex 0, (W0, S) ⊂ (W aff , Saff ) the finite and affine
Weyl Coxeter systems, Hs ∈ H the affine hyperplane fixed by s ∈ Saff , sα ∈ S the
reflection with respect to Kerα ∈ H for α ∈ ∆.

(ii) Three abelian groups Ω,Λ, Zk with Ω,Λ finitely generated and Zk finite.

(iii) A group with two semidirect product decompositions W = Λ oW0 = W aff o Ω.

(iv) An exact sequence 1→ Zk →W1 →W → 1.

(v) A W0-equivariant homomorphism ν : Λ → V giving an action of Λ by translation
on (V,H), and extending to an action of W on (V,H), compatible with the action of
W aff and where the action of Ω normalizes C.

We denote by ` the length of W and of W1 inflating the length of the affine Weyl
Coxeter system (W aff , Saff ), by w̃ a lift in W1 of an element w ∈ W and by X(1) the
inverse image in W1 of a subset X ⊂W as in [Vig1], [Vig2], [Vig3], [Vig5]. changer pour
X1 ou W1 = W (1) But in this article, if X ⊂ W is a subgroup we will write often X1

instead of X(1) (in [AHHV], we write 1X), for example W1. The set of elements of length
0 is Ω in W , and Ω1 in W1. The set Saff is stable by conjugation by Ω, the same holds
true for Saff (1) and Ω1.

Example 2.2. If the reduced root system Σ is trivial, there is no (Σ,∆, ν) and W = Ω =
Λ; we denote W = (Λ, Zk,Λ1).

The product of W (Definition 2.1) and of W ′ = (Λ′, Z ′k,Λ
′
1) with a trivial reduced

root system, is an admissible datum with the same based root system (Σ,∆):

W ×W ′ = (Σ,∆,Ω× Λ′,Λ× Λ′, ν ◦ p,W × Λ′, Zk × Z ′k,W1 × Λ′1)

where Λ× Λ′
p−→ Λ is the first projector.

Example 2.3. We say that W is affine if the abelian group Ω is trivial, because W =
W aff ; then W = (Σ,∆,Λ, ν,W,Zk,W1) is determined by (Σ,∆, Zk,W1).

We say that W is Iwahori if the finite abelian group Zk is trivial, because W = W1;
we denote W = (Σ,∆,Ω,Λ, ν,W ).

If the two abelian groups Ω, Zk are trivial, then W = (Σ,∆,Λ, ν,W ) is determined by
the based reduced root system (Σ,∆).

An admissible datumW (Definition 2.1) determines an affine admissible datumWaff ,
an Iwahori one WIw and an affine, Iwahori one Waff,Iw =WIw,aff with the same based
reduced root system (Σ,∆):

Waff = (Σ,∆,Λaff , νaff ,W aff , Zk,W
aff
1 ) with Λaff = Λ ∩W aff isomorphic to

the coroot lattice in V (generated by the set Σ∨ of coroots of Σ) with its natural
action on V by translation.

WIw = (Σ,∆,Ω,Λ, ν,W ).

Waff,Iw =WIw,aff = (Σ,∆,Λaff , νaff ,W aff ).
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We denote by S ⊂W aff the subset of elements W aff -conjugate to an element of Saff ;
it is stable by conjugation by W . Its inverse image S(1) in W1 is stable by conjugation
by W1. The finite abelian subgroup Zk of W1 acts by by left and right multiplication on
S(1) and on itself.

Let W be an admissible datum (Definition 2.1) and R a commutative ring.

Definition 2.4. An R-parameter map c of W is a W1 × Zk-equivariant map S(1)
c−→

R[Zk]:

c(s̃t) = c(ts̃) = tc(s̃), w̃c(s̃)(w̃)−1 = c(w̃s̃(w̃)−1) for t ∈ Zk, w̃ ∈W1.

An R-parameter map ofWIw (Example 2.3) is a W -equivariant map S
q−→ R. Its inflation

is the map S(1)
q̃−→ R satisfying

q̃(s̃) = q̃(s̃t) = q̃(ts̃) = q̃(w̃s̃(w̃)−1) for t ∈ Zk, w̃ ∈W1.

An R-parameter map S(1)
c−→ R[Zk] of W is also an R-parameter map of Waff , but

not conversely because W aff (1) 6= W1.

Remark 2.5. If R[Zk]
ε−→ R denotes the augmentation map, then ε ◦ c is the inflation of

an R-parameter map of WIw, that we denote also by ε ◦ c.

Let q be an R-parameter map of WIw and c an R-parameter map of W
(Definition 2.4).

Definition 2.6. [Vig1, Theorem 2.4, 4.7] The R-algebra HR(W, q, c) is the free R-module
of basis (Tw̃)w̃∈W1

with a product satisfying the relations generated by:

(i) The braid relations Tw̃Tw̃′ = Tw̃w̃′ for w̃, w̃′ ∈W1 if `(w) + `(w′) = `(ww′).

(ii) The quadratic relations T 2
s̃ = q(s)Ts̃2 + c(s̃)Ts̃ for s̃ ∈ Saff (1) (we identify the

R-algebra R[Ω1] to a subalgebra HR(W, q, c) via the linear map z 7→ Tz for z ∈ Ω1).

Example 2.7. When the root system is trivial (Example 2.2) the parameter maps q, c
are the trivial maps {1} → R; the corresponding algebra is the group algebra R[Λ1].

Definition 2.8. The affine subalgebra of HR(W, q, c) is HR(Waff , q, c).

The intersection R[Ω1] ∩ HR(Waff , q, c) is the commutative subalgebra R[Zk]. The
algebra HR(W, q, c) identifies with the twisted tensor product of R[Zk] and of its affine
subalgebra:

(2) HR(W, q, c) ' HR(Waff , q, c) oR[Zk] R[Ω1] ' R[Ω1] oR[Zk] HR(Waff , q, c).

Definition 2.9. The Iwahori quotient algebra of HR(W, q, c) is HR(WIw, q, ε ◦ c).

The Iwahori quotient algebra HR(WIw, q, ε ◦ c) identifies with the tensor product by

the augmentation map R[Zk]
ε−→ R, of HR(W, q, c):

(3) HR(WIw, q, ε ◦ c) ' RoR[Zk],ε HR(W, q, c) ' HR(W, q, c) oR[Zk],ε R

As a particular case of (2), HR(WIw, q, ε ◦ c) ' HR(WIw,aff , q, ε ◦ c) oR R[Ω].
T ∗w

The algebra HR(W, q, c) posseses other important bases, called the alcove walk bases.
They are a generalization of the bases given in [], which themselves generalize the Bernstein
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basis given in []. They are parametrized by the Weyl chambers of (V,H0), or equivalently
by the orientations of (V,H) defined by the alcoves with vertex the origin.

An orientation o of alcove Co with vertex the origin, allows to distinguish the two
sides of the affine hyperplanes in H. An affine hyperplane H ∈ H is uniquely written
as H = KerV (αo + no) for αo ∈ Σ positive on Co, no ∈ Z; the o-negative side of H is
(V −H)o,− = {x ∈ V | αo(x) + no < 0}. For s̃ ∈ Saff (1) fixing Hs ∈ H and w ∈ W aff

such that `(ws) > `(w), we set:

T
εo(w,s)
s̃ =

{
Ts̃ if w(C) ⊂ (V −Hs)

o,−,

Ts̃ − c(s̃) otherwise .
(4)

Let o be an orientation of (V,H).

Definition 2.10. [Vig1, Theorem 2.7] For w̃ ∈W1,

Eo(w̃) := T
εo(1,s1)
s̃1

. . . T
εo(s1...sr−1,sr)
s̃r

Tũ,

where w̃ = s̃1 . . . s̃rũ with s̃i ∈ Saff (1), r = `(w), ũ ∈ Ω1, is a reduced decomposition,
depends only on w̃. The alcove walk basis of HR(W, q, c) associated to o is (Eo(w̃))w̃∈W1 .

The Bernstein basis was introduced to the study the center of the Iwahori Hecke
algebras. Our aim is now to describe the center of HR(W, q, c) using the alcove walk basis
when W admits a splitting.

Definition 2.11. A splitting of W is W0-equivariant splitting Λ[
ι−→ Λ[1 of the quotient

map Λ1 → Λ on a W0-stable finite index subgroup Λ[ ⊂ Λ with W0-fixed set (Λ[)W0 =
Ω ∩ Λ[, of image ι(Λ[) = Λ[1 central in Λ1.

Note that Λ[1 is not the inverse image (Λ[)1 of Λ[ in Λ1.
The definition is motivated by the properties of the finite conjugacy classes of W1. A

conjugacy class of W1 is finite if and only it is contained in the normal subgroup Λ1 of
W1. On a finite conjugacy class C1 of W1, the length is constant, denoted by `(C1), and

E(C1) :=
∑
λ̃∈C1

Eo(λ̃)

does not depend on the orientation o. The group Λ is commutative and the action of W
on Λ by conjugation is trivial on Λ hence factorizes by the natural action of W0. The
group Λ1 is not commutative, but its center of Λ1 is stable by conjugation by W1, and the
action of W1 on it is trivial on Λ1, hence defines an action of W0. For a central element
µ̃ ∈ Λ1 lifting µ ∈ Λ, the quotient map Λ1 → Λ induces a surjective W0-equivariant map
from the W1-conjugacy class C1(µ̃) onto the W -conjugacy class C(µ) of µ.

The homomorphism ν : Λ → V is W0-equivariant of kernel Ker ν = Ω ∩ Λ and
VW0 = ∩α∈Σ Kerα = {0}. Therefore ΛW0 is contained in Ω ∩ Λ. The maximal subgroup
of the dominant monoid Λ+ (the set of µ ∈ Λ such that ν(µ) belongs to the dominant
closed Weyl chamber D) is ΛW0 .

We suppose now that W admits a splitting Λ[
ι−→ Λ[1

Definition 2.12. Let ZR(W, q, c) be the R-submodule of HR(W, q, c) of basis E(C1) for
all conjugacy classes C1 of W1 contained in Λ1, and ZR(W, q, c)ι the R-submodule of basis
E(C1) for all conjugacy classes C1 of W1 contained in Λ[1.

The submodules where we restrict to the C1 with `(C1) = 0 are denoted with an index
` = 0; those with `(C1) > 0 with an index ` > 0.
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The maximal subgroup of the dominant monoid Λ[,+ = Λ+ ∩ Λ[ is (Λ[)W0 . The
commutative groups Λb, (Λb)W0 are finitely generated and the monoid Λ[,+ \ (Λ[)W0 is
finitely generated (see Lemma 3.5) with no non trivial invertible element.

By [Vig2, Theorem 1.3], [Vig3, Theorem 5.1, Lemma 6.3, Proposition 6.4] and Lemma
3.9, check the proofs we have:

Proposition 2.13. (i) ZR(W, q, c) is the center of HR(W, q, c) and ZR(W, q, c)ι is a
subalgebra of ZR(W, q, c).

(ii) ZR(W, q, c)ι`=0 is isomorphic to the group algebra R[(Λ[)W0 ] and ZR(W, q, c)ι`>0 is
an ideal of ZR(W, q, c)ι.

(iii) When the ring R is noetherian, the filtrations ((ZR(W, q, c)ι`>0)nHR(W, q, c))n∈N
and ((ZR(W, q, c)`>0)nHR(W, q, c))n∈N are equivalent.

(iv) The ZR(W, q, c)ι-module HR(W, q, c) is finitely generated.

(v) Assume that q = 0. Then ZR(W, 0, c)ι isomorphic to the monoid algebra R[Λ[,+]
and ZR(W, 0, c)ι`>0 to R[Λ[,+ \ (Λ[)W0 ].

The central subalgebra ZR(W, q, c)ι can often replace the center and is easier to ma-
nipulate.

Definition 2.14. Assume that q = 0. Let M be a right HR(W, 0, c)-module.
An non-zero element of M is called supersingular if it is killed by (ZR(W, 0, c)`>0)n

for some positive integer n.
M is called supersingular if all its non-zero elements are supersingular.

When R is noetherian, we can replace ZR(W, 0, c)`>0 by ZR(W, 0, c)ι`>0 in the defini-
tion (Proposition 2.13 (iii)).

2.2 Reductive groups

We consider now a reductive connected F -group G [Borel, Chapter V] which is not
anisotropic modulo its center and we fix a triple (T,B, ϕ), where T is a maximal F -
split subtorus of G, B is a minimal parabolic F -subgroup of G of Levi decomposition
B = ZU where Z is the G-centralizer of T, and ϕ is a special discrete valuation of the
root datum of G associated to B, compatible with the valuation ω of F normalized by
ω(F ) = Z. We choose an uniformizer pF of the ring of integers OF of F . For an open
compact subgroup K ⊂ G, the Hecke ring HZ(G,K) is the module of functions G → Z,
constant on the double classes modulo K, endowed with the convolution product. We
associate to (G,T,B, ϕ, pF ) an admissible datum, a Z-parameter map and a splitting;
they are implicit in [Vig1, §3, §4], [Vig3, §1.3].

Theorem 2.15. To (G,T,B, ϕ, pF ) is associated

(i) an admissible datum W =W(G,T,B, ϕ) = (Σ,∆,Ω,Λ, ν,W,Zk,W1) with a param-
eter map c = c(G,T,B, ϕ),

(ii) an Iwahori subgroup B = B(G,T,B, ϕ) of pro-p Iwahori subgroup U = U(G,T,B, ϕ)
with Hecke rings

HZ(G,B) ' HZ(WIw, q, q− 1), HZ(G,U) ' HZ(W, q, c), q = ε ◦ c + 1.

(iii) a splitting ι = ι(G,T,B, ϕ, pF ) of W.

The proof and definitions are given in section 3. The group U is the maximal open
normal pro-p-subgroup of B. The Hecke rings HZ(G,B) and HZ(G,U) are analogous
to the Iwahori and unipotent Hecke rings of a reductive finite group. To (W, q, c, ι) is
associated a central subring ZZ(G,U)ι of HZ(G,U) (Definition 2.12).
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Example 2.16. Let H be a reductive connected linear algebraic F -group which is
anisotropic modulo the center (for example Z). A maximal F -split torus TH is cen-
tral. The group H has a unique parahoric subgroup H0 and a unique pro-p parahoric
subgroup H1 which is the pro-p Sylow subgroup of H0 and the quotient Hk = H0/H1 is
the group of k-points of a k-torus. The Iwahori Hecke ring, resp. pro-p Iwahori Hecke
ring, is the group rings Z[H/H0], resp. Z[H/H1].

For the product G × H and the triple (T × TH,B × H, ϕ), the admissible datum

WG×H has the same based root system than W, the parameter map is S(1)×Hk
c⊗id−−−→

Z[Zk]⊗ Z[Hk], the Iwahori and pro-p Iwahori Hecke rings are HZ(G,B)⊗ Z[H/H0] and
HZ(G,U)⊗ Z[H/H1].

Example 2.17. Let G′ be the subgroup of G generated the G-conjugates of U [AHHV,
**]. This is not in general the group of F -rational points of a connected reductive F -
group. We have G = ZG′, the subgroup Gaff := Z0G

′ ⊂ G is generated by the parahoric
subgroups of G, the subgroup Z1G

′ ⊂ G is generated by the pro-p parahoric subgroups.
Let denote X ′ := G′ ∩ X for a subgroup X ⊂ G and (X/Y )′ := X ′/Y ′ for a normal
subgroup Y ⊂ X. We have

Λaff = Λ′, W aff = W ′

and Z ′k ⊂ Zk (it is often different, for instance if G = GL(2, F ) where G′ = SL(2, F ) ).
Set

W ′ :=W(G′, T ′, B′, ϕ) := (Σ,∆,Λ′, ν|Λ′ ,W ′, Z ′k,W ′1).(5)

This is an affine admissible datum, the only difference with Waff = W aff (G,T,B, ϕ)

is Z ′k ⊂ Zk and W ′1 ⊂ W aff
1 . The Hecke rings HZ(G′,B′) and HZ(G′,U′) are naturally

subrings of HZ(G,B) and HZ(G,U) respectively, and (Example 3.3):

HZ(G′,B′) ' HZ(W ′, q, q− 1), HZ(G′,U′) ' HZ(W ′, q, c).(6)

for the parameter map c = c(G,T,B, ϕ), q = q(G,T,B, ϕ) restricted to W ′. As in (2),
(3), we have isomorphisms

HZ(G,B) ' HZ(G′,B′) oZ Z[Ω], HZ(G,U) ' HZ(G′,U′) oZ[Z′k] Z[Ω1].(7)

The splitting ι = ι(G,T,B, ϕ, pF ) gives a splitting ofW ′. When R is a commutative ring,
the R-algebras HR(G,U) = R ⊗Z HZ(G,U) and ZR(G,U)[∗ = R ⊗Z ZZ(G,U)[∗ (where ∗
stands for ` = 0 or ` > 0), satisfy the same properties.

2.3 Levi datum

In section 4, we return to a general admissible datum W = (Σ,∆,Ω,Λ, ν,W,Zk,W1)
(Definition ??) and we introduce the Levi data of W.

Let ∆M be a subset of ∆.

Definition 2.18. The Levi datum WM of W associated to ∆M is

WM = (ΣM ,∆M ,ΩM ,Λ, νM ,WM , Zk,WM,1)

where

(i) ΣM ⊂ Σ is the reduced root subsystem generated by ∆M . The objects associated as
in Definition 2.1 to the based root system (ΣM ,∆M ) are indicated with a lower index

M . We have the surjective linear map V
pM−−→ VM defined by 〈α, v〉 = 〈α, pM (v)〉 for

v ∈ V, α ∈ ΣM .
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(ii) WM = Λ oWM,0 ⊂W and WM,1 is the inverse image of WM in W1.

(iii) νM = pM ◦ ν.

(iv) ΩM is the WM -stabilizer of CM (see lemma 4.1).

We note that Λ, Zk and the W0-equivariant extension 1 → Zk → Λ1 → Λ → 1 is the
same for W and WM , which have therefore the same splittings.

Given a commutative ring R and a parameter map S(1)
c−→ R[Zk], let cM be the

restriction of c to S(1) ∩WM,1.

Proposition 2.19. The Levi datum WM is admissible, pM is WM -equivariant, W aff
M =

W aff ∩WM , SM = S ∩WM , and cM is a parameter map of (WM , R).

We note that (WIw)M = (WM )Iw and SaffM ⊂ SM ⊂ S. But in general ΩM 6⊂
Ω, SaffM 6⊂ Saff , and the restriction of c on SaffM (1) is not easy to compute from the
values of c on Saff (1).

compare the Bruhat orders of G and on M for two elements of M

Definition 2.20. HR(WM , qM , cM ) is called a Levi R-algebra of HR(W, q, c).

Naturally, the definition of a Levi datum and of a Levi algebra is motivated by a
Levi subgroup of a reductive connected p-adic group. As well known, a Levi algebra is
generally not isomorphic to a subalgebra [Vig5].

Withe the notations F,G,T,B, ϕ, pF introduced earlier, let M be a Levi subgroup of
G centralizing a F -split subtorus of T; we set BM = B∩M and let ϕM be the restriction
of ϕ to the root datum of M with respect to T . To (M,T,BM , ϕM ) is associated an
admissible datum, a splitting, a parameter map, an Iwahori subgroup and a pro-p Iwahori
subgroup by Theorem 2.15.

To M is associated a subset ΠM of the basis Π of the root system Φ of T in G relative
to B, and the natural bijection between Π and the basis ∆ of the reduced root system Σ
(Theorem 2.15) sends ΠM onto a subset ∆M ⊂ ∆. With the notations of Theorem 2.15
and of Proposition 2.19, we have:

Theorem 2.21. The Levi subdatum WM and the map cM associated to W(G,T,B, ϕ),
∆M ⊂ ∆ and the parameter map c(G,T,B, ϕ), are the admissible datum and the param-
eter map associated to (M,T,BM , ϕM ).

The splittings ι(M,T,BM , ϕM ) = ι(G,T,B, ϕ), pF ) are equal.
B(M,T,BM , ϕM ) = M ∩B(G,T,B, ϕ) and U(M,T,BM , ϕM ) = M ∩ U(G,T,B, ϕ).

W ′ affM = (W ′)M
We arrive now to the core of this article which is the comparison of the pro-p Iwahori

Hecke rings of central extensions of connected reductive p-adic groups, done in section 5.
We introduce:

Definition 2.22. A morphism WH
i−→ W between admissible data (notation and defi-

nition 2.1) with the same based reduced root system (Σ,∆), is a set of compatible group
homomorphims, all denoted by i,

(ΩH ,ΛH ,WH , ZH,k,WH,1)
i−→ (Ω,Λ,W,Zk,W1),

such that WH
i−→W is the identity on W aff , and νH = ν ◦ i : ΛH

i−→ Λ
ν−→ V .

The morphism WH
i−→ W induces morphisms between the affine and Iwahori data

Waff
H

i−→ Waff and WIw
H

i−→ WIw. The homomorphism WH,1
i−→ W1 respects the length,

the kernel of WH,1
i−→W1, of ΩH,1

i−→ Ω1 and of ΛH,1
i−→ Λ1 are equal. We denote Xf=1 the
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kernel of a group homomorphism X
f−→ Y and Af=0 the kernel of a ring homomorphism

A
f−→ B.
The image i(WH) = (Σ,∆, i(ΩH), i(ΛH), ν|i(ΛH), i(WH), i(ZH,k), i(WH,1)) of WH is

an admissible datum. The subgroup i(WH) = W aff o i(ΩH) of W = W aff oΩ is normal
of quotient Ω/i(ΩH) and W1 = i(WH,1)Ω1. We have SH = S and i(SH(1)) ⊂ S(1). The
restriction to i(SH(1)) of a parameter map c of (W, R) is a parameter map of (i(WH), R),
still denoted by c.

Definition 2.23. Let WH
i−→ W be a morphism between admissible data with the same

based reduced root system. Parameter maps (cH , c) of (WH , R), (W, R) and splittings
(ιH , ι) of (WH ,W) are called i-compatible when the following diagrams are commutative:

SH(1)
i //

cH

��

S(1)

c

��
R[ZH,k]

i
// R[Zk]

Λ[H,1
i // Λ[1

Λ[H i
//

ιH

OO

Λ[

ι

OO

Splittings (ι′, ι) of W compatible for the identity map W id−→W are called compatible.

Let Λ[H
ιH−−→ Λ[H,1 be a splitting of WH . The subgroup i(Λ[H) ⊂ Λ is W0-stable. If ιH

is compatible with a splitting of W, then i ◦ ιH(Λ[H) is central in Λ1. If this is true and if

i(Λ[H) has a finite index in Λ, the unique splitting i(Λ[H)
ι−→ i(Λ[H,1) on i(Λ[H) compatible

with i is called the image of ιH by i.

Let WH
i−→ W be a morphism between admissible data with the same based re-

duced root system, let (cH , c), be i-compatible parameter maps of (WH , R), (W, R) and
let (qH , q) be i-compatible parameter maps of (WIw

H , R), (WIw, R). Let

(8) HR(WH , qH , cH)
i−→ HR(W, q, c),

denote the linear map sending THw̃H to Tw̃ for w̃ = i(w̃H), w̃H ∈WH,1 (the upper index H
indicates that the element is relative to WH).

Proposition 2.24. The map i (8) is an algebra homomorphism respecting the alcove walk
elements

i(EHo (w̃H)) = Eo(i(w̃H)) (w̃H ∈WH,1, o an orientation of (V,H)),

of kernel R[(ΩH,1)i=1]ε=0. Therefore, we have the exact sequence

0→ R[(ΩH,1)i=1]ε=0 → HR(WH , qH , cH)
i−→ HR(i(WH), q, c)→ 0,

and the twisted tensor products

HR(W, q, c) ' HR(i(WH), q, c)) oR[i(ΩH,1)] R[Ω1],

HR(i(WH), q, c)) ' HR(Waff , q, c)) oR[i(ZH,k)] R[i(ΩH,1)].

We return to F,G,T,B, ϕ, pF introduced before Theorem 2.15. The inclusion G′ ⊂ G
induces a morphism W ′ →W between the admissible data (Theorem 2.15, (5)) with the
same root system.

9



2.4 Central extension

Let H
i−→ G be a central F -extension of connected reductive F -groups [Borel, 22.3]. An

isogeny is a surjective homomorphism with finite kernel; every separable isogeny is central;
two groups are strictly isogenous when there is a group and central isogenies from this
group to the two groups (this relation is transitive) [T0, 1.2.1].

There is a profusion of examples: a z-extension G̃
ĩ−→ G of G, the multiplication map

C0 × Gder
j−→ G where C0 is the connected component of the center of G and Gder

the derived group of G, the simply connected cover Gsc
idersc−−→ Gder of Gder, the natural

morphism C0 ×Gsc
j◦(id×idersc )−−−−−−−→ G, a separable isogeny. When the characteristic of F is

2, the standard isogeny SL2 → PGL2 is not separable but is central while the isogeny
PGL2 → SL2 is not central. references

The kernel µ of H
i−→ G is a central algebraic F -subgroup of H. The subgroup

i(H) ⊂ G is the kernel of the natural homomorphism from G to the first cohomology
group H1(F,µ). When the algebraic group µ is affine, the group H1(F,µ) is finite [PR,
Theorem 6.14] hence G/i(H) is finite, but there are examples where G/i(H) is infinite,
hence also H1(F,µ), [Spr, 16.3.9. Exercise (1) (b)]. For the F -isogeny SL(2)→ PGL(2),
the group H1(F,µ) ' PGL(2, F )/PSL(2, F ) ' F ∗/(F ∗)2 is finite if and only if the
characteristic of F is not 2.

The group TH = i−1(T) is a maximal F -split subtorus of H such that i(TH) = T,
the group BH = i−1(B) is a minimal F -parabolic sugroup of H such that i(BH) = B,

UH
i−→ U is an isomorphism, ZH = i−1(Z) is the H-centralizer of TH and i(ZH) = Z,

NH = i−1(N) is the H-normalizer of TH and i(NH) = N [Borel, Theorem 22.6].
The special discrete valuation ϕ compatible with ω of the root datum (Z, (Uα)α∈Φ)

generating G is also a special discrete valuation ϕH compatible with ω of the root datum
(ZH , (UH,α)α∈ΦH ) generating H. By Theorem 2.15, we have the admissible data WH =
W(H,TH , BH , ϕ) and W = W(G,T,B, ϕ), the parameter maps cH = c(H,TH , BH , ϕ)
and c = c(G,T,B, ϕ), the splittings ιH = ι(H,TH , BH , ϕ, pF ) and ι = ι(G,T,B, ϕ, pF ).

Theorem 2.25. Let H
i−→ G be a central F -extension of connected reductive F -groups.

(i) The homomorphism H
i−→ G induces an homomorphism WH

i−→ W between the
admissible data WH and W = W(G,T,B, ϕ) which have the same based reduced
root system. The parameter maps cH and c are i-compatible. The splitting ι is the
image by i of the splitting ιH . Proposition 2.24 applies to the pro-p Iwahori rings.

(ii) The homomorphism H
i−→ G sends the (pro-p) parahoric subgroup of H fixing a facet

of (V,H) into the (pro-p) parahoric subgroup of G fixing the same facet. We have
i(H ′) = G′ and the semidirect product i(H)Z1 has a finite index in G.

(iii) The homomorphism HZ(H,UH)
i−→ HZ(G,U) between the pro-p Iwahori Hecke rings

respects the central elements:

i(EH(CH,1(µH))) = E(C1(i ◦ µH)) (µH ∈ X∗(TH),

induces an isomorphism ZZ(H,UH)[`>0
i−→ ZZ(G,U)[`>0, and i(ZZ(H,UH)[`=0) =

ZZ(G,U)[`=0. The homomorphism ZZ(H,UH)[
i−→ ZZ(G,U) is surjective.

(iv) The kernel of WH,1
i−→ W1 is i−1(Z1)/ZH,1. When it is finite, the homomorphism

ZZ(H,UH)[
i−→ ZZ(G,U) is injective.

We assume now that R is a field and we consider R-representations. For an R-
representation π of G, we denote by πH the inflation to H of π|i(H), by πU the right
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HR(G,U)-module of U-invariants of π, and by πUH
H the right HR(H,UH)-module of UH -

invariants of πH . A supercuspidal R-representation of G is an irreducible admissible
R-representation of G which is not the quotient of a parabolically induced representation
from an irreducible admissible R-representation of a proper Levi subgroup [AHHV, I.3].

When G/i(H) is finite, Clifford’s theory can be used to obtain the irreducible admis-
sible R-representations of H knowing those of G and vice versa.

Proposition 2.26. We suppose that G/i(H) is finite. Let π be an irreducible admissible
R-representation of G.

(i) The R-representation πH of H is admissible semisimple of finite length.

π is supercuspidal if and only if all the irreducible components of πH are supercusp-
idal if and only if some irreducible component of πH is supercuspidal.

(ii) Assume that the characteristic of the field R is p.

πU contains a supersingular element if and only if πUH
H contains a supersingular

element.

πU is supersingular if and only if πUH
H is supersingular.

When G/i(H) is finite and R is an algebraically closed field of characteristic p, The-
orem 2.27 describes πH using the classification of isomorphism classes of the irreducible
admissible R-representations of G have been classified [AHHV, Theorems 2 and 3].

The parabolic F -subgroups P of G containing B, called standard, are in bijection
with the subsets of simple roots of T in B hence with the subsets ∆P of ∆. A Levi
decomposition P = MN where the Levi subgroup M contains Z is called standard.
We denote by PH = MHNH the standard decomposition of the parabolic subgroup

of H with ∆PH = ∆P . By restriction, we have the central extension MH
i−→ M of

kernel µ. An element α ∈ ∆ corresponds to a minimal standard Levi subgroup Mα.
An R-representation σ of M defines the standard parabolic subgroup P (σ) with ∆P ⊂
∆P (σ) and α ∈ ∆ − ∆P lies in ∆P (σ) if and only if σ is trivial on Z ∩ M ′α [AHHV,
II.7 Proposition]. If P,Q are two standard parabolic subgroups of G, P ⊂ Q ⊂ P (σ),
we denote by IndGQ the smooth induction and eQ(σ) the representation of Q trivial on N

extending σ. For P ⊂ Q ⊂ Q′ ⊂ P (σ), the representation IndGQ′ eQ′(σ) identifies naturally

with a subrepresentation of IndGQ eQ(σ).
If σ is a supercuspidal representation of M , (P, σ,Q) with P ⊂ Q ⊂ P (σ) is called a

supercuspidal standard triple of G [AHHV, I.3]. For such a triple, the R-representation
of G

IG(P, σ,Q) =
IndGQ eQ(σ)∑

Q(Q′⊂P (σ) IndGQ′ eQ′(σ)

is irreducible admissible. Every irreducible admissible R-representation of G is isomorphic
to IG(P, σ,Q) for a unique supercuspidal standard triple (P, σ,Q) of G.

Assume that G/i(H) is finite. Then M/i(MH) is finite. Let (P, σ,Q) be a supercuspi-
dal standard triple of G. The restriction of σ to i(MH) is a finite sum of irreducible repre-
sentations σj . Let σj,MH

denote the inflation of σj to MH for all j, and PH = MHNH the
standard Levi decomposition of the standard parabolic subgroup of H with ∆PH = ∆P .

Theorem 2.27. Assume that G/i(H) is finite. Then (PH , σj,MH
, QH) is a supercuspidal

standard triple of H for all j, and (IG(P, σ,Q))H = ⊕jIH(PH , σj,MH
, QH).

We consider a variant of Theorem 2.25, Proposition 2.26 and Theorem 2.27, which

applies to Gder
i−→ G, Gsc

i◦isc−−−→ G, which motivate this work. We recall that C0 is the
connected center of G.

Theorem 2.28. Let H
i−→ G be an F -homomorphism of reductive F -groups such that the

map H×C0 j−→ G sending (h, c) to i(h)c is a central F -extension of kernel µ.

11



(i) Theorem 2.25 remains valid except that in (iii) we have

ZZ(G,U)[`=0 = i(ZZ(H,UH)[`=0)Z[(C0/C0
0 )[1],

ZZ(G,U)[`>0 = i(ZZ(H,UH)[`>0)Z[(C0/C0
0 )[1].

(ii) Proposition 2.26 remains valid when π has a central character.

(iii) Theorem 2.27 remains valid.

In section 6, we reformulate our results for the homomorphisms Gsc,1
isc−−→ Gder,1

i−→ G
in Proposition 6.11 and Theorem 6.12, after Lemma 6.5 where we compare the pro-p

parahoric subgroups Zsc,1
isc−−→ Zder,1

i−→ Z1 of the mininal Levi subgroups.
As an application, we give Theorem 2.29 motivated by a forthcoming article [OV]. We

suppose that R is a field of characteristic p. We consider the two properties of G (where
π is any irreducible admissible R-representation π of G with a central character):

(i) π is supercuspidal if and only if πU is supersingular,

(ii) πU is supersingular if and only if πU contains a supersingular element.

Theorem 2.29. If (i), resp. (ii), is satisfied for all simply connected, F -simple and F -
isotropic F -groups G, then (i), resp. (ii), is satisfied for all connected reductive F -groups
G such that G/isc(Gsc)C

0 is finite.

When R is an algebraically closed field of characteristic p, it is proved in [OV] that (i)
and (ii) are satisfied for all simply connected, F -simple and F -isotropic F -groups G.

3 Reductive F -group

3.1 Elementary lemmas

We start with elementary lemmas which are useful throughout this paper. Let K be a
profinite group having an open pro-p subgroup. By [HV1, 3.6], the group K has a largest
open normal pro-p subgroup K1, called the pro-p radical. Any normal pro-p subgroup
H ⊂ K is contained in K1 because HK1 ⊂ K is a normal open pro-p subgroup.

A closed subgroup H ⊂ K is profinite with an open pro-p subgroup H ∩ K1. If H
is normal, the quotient K/H with the quotient topology is profinite with an open pro-p
subgroup.

If the order of K/K1 is prime to p , then K1 is an open pro-p Sylow subgroup of K;
as K1 is normal, K1 ⊂ K is the unique pro-p Sylow subgroup.

Lemma 3.1. Let K
f−→ K ′ be a continuous homomorphism between profinite groups

having open pro-p radicals K1 and K ′1, and let H be a closed normal subgroup of K.

(i) H has an open pro-p radical H1 and H1 = H ∩K1.

(ii) The subgroup f(K) ⊂ K ′ is closed, has an open pro-p radical f(K)1 and f(K1) ⊂
f(K)1.

(iii) If the orders of K/K1 and of K ′/K ′1 are prime to p, then f(K1) = f(K)1 = f(K)∩
K ′1 and f induces an exact sequence

0→ Ker f/(Ker f)1 → K/K1
f−→ f(K)/f(K)1 → 0.

Proof. (i) The pro-p subgroup H ∩K1 ⊂ H is normal hence H ∩K1 ⊂ H1. We prove the
reverse inclusion: for k ∈ K, the pro-p subgroup kH1k

−1 ⊂ H is normal as for h ∈ H,
hkH1k

−1h−1 = k(k−1hk)H1(k−1h−1k)k−1 ⊂ kH1k
−1. Hence kH1k

−1 ⊂ H1 implying
that H1 is normalized by K and that H1K1 ⊂ K is a normal open pro-p-subgroup
containing K1, hence H1K1 = K1. Therefore H ∩K1 ⊃ H1.
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(ii) The subgroup f(K) ⊂ K ′ is closed (a profinite subgroup is compact and Hausdorff)
hence profinite. The pro-p subgroup f(K1) ⊂ f(K) is normal hence f(K1) ⊂ f(K)1.

(iii) The order of K/K1 is prime to p, and the same is true its quotient f(K)/f(K1)
and for the subgroup f(K)1/f(K1) ⊂ f(K)/f(K1). As f(K)1 is a pro-p groups, it must
be equal to f(K1). The order of K ′/K ′1 is prime to p, and the same is true for its
subgroup f(K)/f(K) ∩ K ′1. The pro-p subgroup f(K) ∩ K ′1 ⊂ f(K) is normal hence
f(K) ∩ K ′1 ⊂ f(K)1. As the index is prime to p, we have f(K) ∩ K ′1 = f(K)1. This

implies the existence of K/K1
f−→ K ′/K ′1 and the values of the kernel and of the image of

this homomorphism.

Lemma 3.2. Let H ⊂ G be a closed normal subgroup of a topological group G and let
K ⊂ G be an open subgroup such that for any g ∈ G, the double coset KgK is the union
of finite cosets Kg′, and also of finite cosets g′′K. Then the inclusions H ⊂ HK ⊂ G
induce respectively an isomorphism and an inclusion of Hecke rings

HZ(H,K ∩H)
'−→ HZ(HK,K) ↪→ HZ(G,K).

The finiteness of left and right K-cosets in a double coset KgK for any g ∈ G allows
to form the Hecke ring HZ(G,K).

Proof. As the subgroup H ⊂ G is normal, HK ⊂ G is a subgroup and the Hecke ring
HZ(HK,K) is naturally isomorphic to the subring of elements in HZ(G,K) with support
in HK. We write C = K ∩ H. The inclusion H ⊂ HK induces a bijection of cosets
C\H → K\KH, and also of double cosets C\H/C → K\HK/K. The bijection between
the cosets respects the convolution product as

Kg1K ∩Kg2Kg = tg∈H(g1,g2)Kg, Cg1C ∩ Cg2Cg = tg∈H(g1,g2)Cg,

where H(g1, g2) is a finite subset of H. We check these equalities. For g1, g2 ∈ H the
set Kg1K ∩Kg2Kg is a disjoint union tg∈H(g1,g2)Kg for some finite subset H(g1, g2) ⊂
H, because KHKHK ⊂ KHK. The insersection with H is Kg1K ∩ Kg2Kg ∩ H =
(tg∈H(g1,g2)Kg) ∩ H = tg∈H(g1,g2)Cg. As g1 ∈ Kg2K implies g1 ∈ Cg2C we have
Kg1K ∩H = Cg1C and Kg2Kg ∩H = Cg2Cg.

Example 3.3. Recalling the notations of the introduction,

HZ(G,B) ⊃ HZ(Z0G
′,B) = HZ(G′B,B) ' HZ(G′,B′),

HZ(G,U) ⊃ HZ(Z1G
′,U) = HZ(G′U,U) ' HZ(G′,U′).

We recall the Gordan’s lemma on convex polytopes [HV1, 2.11 Lemma]:

Lemma 3.4. (Gordan’s lemma) If L is a finitely generated free abelian group and T a
convex rational polyhedral closed cone in L⊗R, then L∩T is a finitely generated monoid.

We apply Gordan’s lemma in the following context. Let W be an admissible datum
and let Λ[ be a W0-stable finite index subgroup of Λ, Λ[,+ the monoid of λ ∈ Λ[ with
ν(λ) ∈ D and (Λ[)W0 ⊂ Λ[ the subgroup of elements fixed by W0 (Definitions 2.1, 2.11
and 2.12).

Lemma 3.5. The abelian groups Λ[, (Λ[)W0 and the monoids Λ[,+, Λ[,+ − (Λ[)W0 are
finitely generated.

Proof. The monoid ν(Λ[,+) = ν(Λ[)∩D is finitely generated by the Gordan’s lemma. The
submonoid ν(Λ[,+) − {0} is also finitely generated. We have ν(Λ[) = ∪w∈W0

w(ν(Λ[,+))
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and the kernel of Λ[
ν−→ V is Λ[ ∩ Ω = (Λ[)W0 . The subgroups Λ[, (Λ[)W0 of the finitely

generated abelian group Λ are finitely generated. The exact sequence

1→ (Λ[)W0 → Λ[,+
ν−→ ν(Λ[,+)→ 1

implies that the monoid Λ[,+ is finitely generated. The inverse image Λ[,+ − (Λ[)W0 of
the finitely generated monoid ν(Λ[,+)− {0} is also finitely generated.

3.2 The admissible datum, the parameter map and the splitting
of a reductive p-adic group

Let G be a reductive connected F -group and let (T,B, ϕ, pF ) be a quadruple as in §2. We
describe in this subsection the admissible datum (Σ,∆,Ω,Λ, ν,W,Zk,W1), the Iwahori
subgroup B and the pro-p subgroup U of G associated to the triple (T,B, ϕ) and the

splitting Λ[
ι−→ Λ[1 associated to the triple (T,B, pF ), following [Vig1, §3] and [Vig3, §1.3].

When G is anisotropic modulo its center, the maximal F -split subtorus T is central, G
contains a unique Iwahori subgroup G0, and a unique pro-p Iwahori subgroup G1 equal to
the unique pro-p-Sylow subgroup of G0. The group Gk = G0/G1 is the group of k-points
of a k-torus. The admissible datum is W = (G/G0, Gk, G/G1) with a trivial root system.

An homomorphism H
f−→ G between reductive connected F -groups which are anisotropic

modulo its center, induces an homomorphism H0
f−→ G0 between the unique parahoric

subgroups such that f(H1) = f(H) ∩ G1 and induces an homomorphism Hk
f−→ Gk

between the finite k-tori as Lemma 3.1 (iii). When G is a F -split torus, G0 is the unique
maximal compact subgroup of G.

We suppose now G general. The G-centralizer Z of T is anisotropic modulo the
center and we define Z0, Z1, Zk,Λ = Z/Z0,Λ1 = Z/Z1 as above. When G is semisimple
and simply connected, Z0 is the unique maximal compact subgroup of Z. Let N be the
G-normalizer of T. The finite, Iwahori, pro-p Iwahori, Weyl groups of G with respect to
T are respectively W0 = N/ = N/Z0, W1 = N/Z1. We denote by Φ the set of roots of
(T,G) and by Φ+ ⊂ Φ the subset of roots of (T,B).

The group Λ is abelian (it may have torsion when G is not F -split), finitely generated
of rank the number of simple roots in Φ+; it is a normal subgroup of W and Λ1 is a

normal subgroup of W1. We denote by Z
λ−→ Λ, Z

λ1−→ Λ1 the quotient maps. Let
Λ[ = λ(T ). The group Λ[ is isomorphic to T/T0. The group λ1(T ) is central in Λ1

and isomorphic to T/T1. We denote by X∗(T) the group of F -cocharacters of T. Let
Λ[1 = {λ1(µ(p−1

F )) | µ ∈ X∗(T )}; this is a subgroup of λ1(T ). The uniformizer pF induces
W0-equivariant isomorphisms

(9) X∗(T )
∼−→ Λ[

∼−→ Λ[1, µ 7→ λ(µ(p−1
F )) 7→ λ1(µ(p−1

F )).

The W0-equivariance follows from nµ(p−1
F )n−1 = w(µ)(p−1

F ) for n ∈ N of image w ∈ W0.
The second isomorphism from Λ[ on to Λ[1 is a W0-equivariant splitting ι of the quotient
map Λ[1 → Λ[.

For α ∈ Φ, let Uα ⊂ G denote the root group of α (U2α ⊂ Uα if 2α ∈ Φ), ϕα :
Uα − {1} → R the map given by the valuation ϕ of the root datum (Z, (Uα)α∈Φ) of type
Φ generating G. A root α ∈ Φ is called reduced if α/2 6∈ Φ. There exist positive integers
(eα)α∈Φ with 2e2α = eα if α, 2α ∈ Φ, and (fα)α,2α∈Φ such that [Vig1, (39),(40)] the image
of ϕα is

Γα =

{
e−1
α Z if α is reduced,

e−1
α/2fα/2Z otherwise.

For r ∈ Γα, Uα+r := {1} ∪ ϕ−1
α (r + e−1

α N) is a subgroup of Uα [Vig1, §3.5]. The image Σ
of Φ by the map α 7→ e(α)α is a reduced root system [Vig1, §3.4] of basis ∆, image of the
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basis of Φ relative to B. The Weyl groups of the root systems Φ and Σ are isomorphic to
W0.

The center C of G is the intersection of the kernels of the roots of G relative to a
maximal subtorus of G [Spr, 8.1.8]. We choose on the R-vector space

V = (X∗(T)⊗ R)/(X∗(C)⊗ R)

a W0-invariant scalar product. The group N acts on V by affine automorphisms respecting
the set H ⊂ V of kernels of the affine roots of Σ [Vig1, §3.3]. We denote by C the alcove
of (V,H) with vertex 0 ∈ V contained in the open Weyl chamber D = {v ∈ V |〈α, v〉 ≥ 0}
for α ∈ Φ+. For α ∈ Φ and u ∈ Uα−{1}, the unique element m(u) in N∩U−αuU−α acts
by orthogonal reflection with respect to the affine hyperplane Ker(α + ϕα(u)) ∈ H. The
group N is generated by Z and the m(u) for α ∈ Φ and u ∈ Uα − {1}. An element z ∈ Z
acts on V by translation by the element ν(z) ∈ V determined by

(10) (α ◦ ν)(z) = −n−1(ω ◦ α)(znx) (α ∈ Φ),

for any positive integer n and x ∈ Z0 such that znx ∈ T . The group Z0 is contained in
the kernel of ν. We still denote by Λ

ν−→ V or Λ1
ν−→ V the induced homomorphisms. The

action of N, denoted also by ν, being trivial in Z0 gives an action ν of W1 and of W , on
(V,H). The elements λ ∈ Λ acts by translations by ν(λ).

The normal subgroup W aff ⊂ W generated by the images of m(u) for α ∈ Φ, u ∈
Uα−{1}, is isomorphic by ν to the affine Weyl group of Σ. Let Saff ⊂W aff corresponding
to the orthogonal reflections with respect to the walls of the alcove C and S corresponding
to the walls containing 0 ∈ V . The subgroup of W aff generated by S is isomorphic to the
finite Weyl group W0. The W -normalizer Ω of Saff is an abelian finitely generated group,
isomorphic to the image of the Kottwitz homomorphism κG [Ko, 7.1-4], [Vig1, §3.9] as
noticed by Haines, Rapoport and Richartz. The kernel KerκG of κG is the subgroup of
G generated by the parahoric subgroups of G. In particular, Z0 = KerκZ . We have the

For x ∈ V , let Nx denote the N-stabilizer of x and Ux the subgroup of G generated
by ∪α∈ΦUα+rx(α) and rx(α) ∈ Γα the smallest element such that α(x) + rx(α) ≥ 0 [Vig1,
(44)]. We have the subgroup Px := NxUx ⊂ G. The semisimple Bruhat-Tits building
BT(G) is the quotient of G×V by the equivalence relation (g, x) ∼ (g′, x′)⇔ there exists
n ∈ N such that x′ = ν(n)(x) and g−1g′n ∈ Px, with the natural action of G [Vig1,
Definition 3.12].

The parahoric subgroups of G are the G-conjugates of the KerκG-stabilisers KF of
the facets F of (V,H). The pro-p parahoric subgroups of G are the G-conjugates of
the largest open normal pro-p-sugroups KF,1 of KF (§3.1, [HV1, 3.6]). The quotient
KF,k = KF/KF,1 is group of k-points of a connected reductive k-group. The parahoric
subgroup KF and the pro-p-parahoric subgroup KF,1 are generated by their intersections
KF ∩ Uα = KF,1 ∩ Uα with the root groups Uα for the reduced roots α ∈ Φ, and by their
intersections KF ∩ Z = Z0,KF,1 ∩ Z = Z1, with Z. We have

KF,1 = (KF,1 ∩ U−)Z1(KF,1 ∩ U)

with any order.
The Iwahori subgroup and the pro-p Iwahori subgroup of G determined by (G,T,B, ϕ)

are the parahoric and pro-p parahoric groups B = KC,U = KF,1 fixing the alcove C. The
natural maps from N to B\G/B, B\G/B, U\G/U, induce bijections W0 ' B\G/B,
W ' B\G/B, W1 ' U\G/U.

3.3 The parameter map of a reductive p-adic group

We describe the parameter map c : S(1) → Z[Zk] associate to the triple (T,B, ϕ). The
value of c is given first on the set of admissible elements s̃ ∈ S(1), defined as follows.
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Definition 3.6. (i) Let α ∈ Φ and u ∈ Uα − {1}. The pair (α, u) is called admissible
when α is either

reduced and not multipliable,

or multipliable and Uα+ϕα(u) 6= Uα+ϕα(u)+e−1
α
U2α+ϕ2α(u),

or not reduced and Uα/2+ϕα/2(u) = Uα/2+ϕα/2(u)+e−1
α/2
Uα+ϕα(u).

(ii) An element s̃ ∈ S(1) lifting s ∈ S is called admissible if there exists an admissible
pair (α, u) such that s̃ is the image of m(u) ∈ N in W1. The triple (α, u, s̃) is called
admissible.

The definition of an admissible pair comes from [Vig1, §4.2]. An admissible pair (α, u)
determines an admissible triple (α, u, s̃), where the affine hyperplane Hs ⊂ V fixed by
s is Ker(α + ϕα(u)). The admissible pair (α, u) such that Hs = Ker(α + ϕα(u)) is not
determined by s. If r = ϕα(u), all the other admissible pairs are

(11) {(α, y) |y ∈ ϕ−1
α (r)} ∪ {(−α, z) |z ∈ ϕ−1

−α(−r)}.

Let (α, u, s̃) be an admissible triple. We define a subgroup Zs,k ⊂ Zk and an element
c(α, u) ∈ N[Zs,k] which will be c(s̃) [Vig1, §4.2]. For this, we choose an alcove of (V,H)
having a face Fs fixed by s. The parahoric subgroup KFs ⊂ G fixing Fs contains the
groups Z0Uα+ϕα(u) and Gα,ϕα(u) generated by Uα+ϕα(u)∪U−α−ϕα(u). The finite reductive
quotient Ks,k of KFs does not depend on the choice of Fs. The image of Z0Uα+ϕα(u) in Ks,k
is a Borel subgroup of Levi decomposition ZkUs,k where Us,k ' Uα+ϕα(u)/Uα+ϕα(u)+e−1

α
.

The unipotent group Uops,k opposite to Us,k is isomorphic to U−α−ϕα(u)/U−α−ϕα(u)+e−1
α

(as

eα = e−α). The image of Gα,ϕα(u) in Ks,k is the subgroup Gs,k generated by Us,k ∪ Uops,k.
The image of Z0 ∩ Gα,ϕα(u) is Zs,k = Zk ∩ Gs,k. These groups, in particular Zs,k, are
determined by s. The image uk ∈ Us,k of u is not trivial. Let m(uk) denote the unique
element of Uops,kukU

op
s,k normalizing Zs,k. We consider the map uniquely defined by [Vig1,

Step 2 of proof of Proposition 4.4], [CE, Proof of Proposition 6.8(iii)]:

(12) xk 7→ z(xk) : Us,k − {1} → Zs,k, m(uk)x−1
k m(uk) ∈ Us,km(uk)z(xk)Us,k.

The element c(α, u) is the sum of z(xk) for all xk ∈ Us,k − {1},

(13) c(α, u) =
∑

xk∈Us,k−{1}

z(xk).

We note the properties

ε(c(α, u)) = qs − 1, tc(α, u) = c(α, u)s(t), s(c(α, u)) = c(α, u),(14)

where Z[Zk]
ε−→ Z is the augmentation morphism, qs is the order of Us,k (a power of the

order q of the residual field k of F ), t ∈ Zk, s(t) ∈ Zk such that tm(uk) = m(uk)s(t). We
have tc(α, u) = c(α, u)s(t) because z(tx−1

k t−1) = ts(t−1)z(xk) as s(t)m(uk)x−1
k m(uk)s(t)−1 =

m(uk)tx−1
k t−1m(uk) lies in s(t)Us,km(uk)z(xk)Us,ks(t)

−1 = Us,km(uk)tz(xk)s(t)−1Us,k.
We have s(c(α, u)) = c(α, u) by the quadratic relation T 2

m(uk) = qsTm(uk)2 +Tm(uk)c(α, u)

in the finite Hecke complex algebra HR(Gs,k, Us,k) [CE, Proof of Proposition 6.8(iii)
where Tm(uk) is denoted am(uk)]. When p is invertible in R, we multiply the quadratic

relation on the right or left by T−1
m(uk) to get Tm(uk) = qsTm(uk) + c(α, u) = qsTm(uk) +

Tm(uk)c(α, u)T−1
m(uk) = qsTm(uk) + s(c(α, u)) by the braid relations.

Theorem 3.7. There exists a unique map S(1)
c−→ Z[Zk] satisfying

c(s̃) := c(α, u), c(ts̃) := tc(s̃),
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for all admissible triples (α, u, s̃) and t ∈ Zk. The map c is W1 × Zk-equivariant:

c(w̃ s̃ w̃−1) = w̃c(s̃)w̃−1, c(t s̃) = c(s̃ t) = tc(s̃),

for w̃ ∈W1, t ∈ Zk, s̃ ∈ S(1).

The theorem follows from [Vig1, Proposition 4.4, Theorem 4.7, Remark 4.8] where we
prove the formula c(tw̃ s̃ w̃−1) = tw̃c(s̃)w̃−1 when s̃ and w̃ s̃ w̃−1 belong to Saff (1). We
give here a simpler proof.

Proof. An element s ∈ S admits always an admissible lift s̃. The lifts of s ∈ S are ts̃ for
t ∈ Zk. If its exists, the map c is unique. The map c exists if and only if c(α, u) = tc(β, v)
for the admissible triples (α, u, s̃) and (β, v, ts̃) with t ∈ Zk. Note that c will be left and
right Zk-equivariant by (14) because ts̃ = s̃s(t) and (14).

We need a lemma before the proof the existence of c.
For u ∈ Uα−{1}, there exist unique elements v, v′ ∈ U−α−{1} such that u = vm(u)v′

[BT1, 6.1.2 (2) ]. If u ∈ ϕ−1
α (r) we have v, v′ ∈ ϕ−1

−α(−r) by [BT1, property (V5)]. Let
Gα,r ⊂ G denote the compact subgroup generated by Uα,r ∪ U−α−r.

Lemma 3.8. We have m(v) = m(v′) = m(u−1) = m(u)−1. The elements m(u)−1m(u′),
m(u′)m(u)−1 lie in Z0 ∩Gα,r.

Proof. We have m(v) = m(v′) = m(u−1) because v = um(u)−1m(u)v′−1m(u)−1 and
similarly for v′. We have m(u−1) = m(u)−1 by inverting u = vm(u)v′. For the second
assertion we can cite [Vig1, Lemma 4.5] or give the following arguments. For a facet
F of (A,H) contained in Ker(α + r), the parahoric subgroup KF ⊂ G fixing F contains
Gα,r[Vig1, (44)] and Z ∩KF = Z0. Obviously m(u)−1m(u′),m(u′)m(u)−1 lie in Gα,r ∩N.
They lie in Z because their image in W0 is trivial.

We start the proof of the existence of c. Let s ∈ S and let (α, u) be an admissible pair
such that Ker(α + ϕα(u)) is the affine hyperplane of V fixed by s. The other admissible
pairs with this property are given in (11). There exists ty ∈ Zs,k such that m(yk) =
tym(uk) = m(uk)s(ty) by Lemma 3.8 and the paragraph above (12). The image of m(y)
in W1 is ty s̃ = s̃s(ty). Let v, v′ ∈ U−α be the elements such that u = vm(u)v′. By Lemma
3.8, (−α, v, s̃−1) is an admissible triple. To show the existence of c, it suffices to show

c(α, y) = c(α, u)s(ty), c(−α, v) = s̃−2c(α, u).

The equality c(α, y) = c(α, u)s(ty) follows from (12) which implies m(yk)x−1
k m(yk) =

tym(uk)x−1
k m(uk)s(ty) ∈ tyUs,km(uk)z(xk)Us,ks(ty) = Us,km(yk)z(xk)s(ty)Us,k.

We show now the second equality. By Lemma 3.8, m(vk) = m(uk)−1 and m(uk)2 = s̃2.
When xopk runs through Uops,k−{1}, then xk := m(uk)−1xopk m(uk) runs through Us,k−{1}.
Let z(xk) ∈ Zs,k such that x−1

k ∈ m(vk)Us,km(uk)z(xk)Us,km(vk) = Uops,kz(xk)m(vk)Uops,k.

Then m(vk)(xopk )−1m(vk) = m(vk)2x−1
k lies in the set

Uops,km(vk)2z(xk)m(vk)Uops,k = Uops,km(vk)3m(vk)−1z(xk)m(vk)Uops,k.
Recalling (14), we obtain the second equality:
c(−α, v) = m(vk)c(α, u)m(vk) = s̃−2m(vk)−1c(α, u)m(vk) = s̃−2s(c(α, u)) = s̃−2c(α, u).
It remains only to prove that c is W1-equivariant. Let s̃ ∈ S(1). We note that

w̃c(s̃)w̃−1 = c(w̃s̃w̃−1) for all w̃ ∈W1, implies c(w̃ ts̃ w̃−1) = w̃c(ts̃)w̃−1 for all w̃ ∈W1 and
all t ∈ Zk, because the left side is w̃tw̃−1c(w̃ s̃ w̃−1) and the right side is w̃tw̃−1w̃c(s̃)w̃−1

by Zk-equivariance of of c.
So, we are reduced to c(s̃) = c(α, u) for an admissible triple (α, u, s̃). Let n ∈ N

lifting w̃ ∈ W1. The root w(α) is reduced if and only if α is reduced. We have Uw(α) =
nUαn

−1 and m(nun−1) = nm(u)n−1. The triple (w(α), nun−1, w̃s̃(w̃)−1) is admissible
and c(w̃s̃(w̃)−1) = c(w(α), nun−1). We have to prove w̃c(α, u)w̃−1 = c(w(α), nun−1)
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The image by n of an alcove of (V,H) having a face Fs fixed by s is an alcove having a
face Fwsw−1 fixed by wsw−1. The conjugation by n induces an isomorphism between the
(pro-p) parahoric subgroups of G fixing Fs and Fwsw−1 , hence an isomorphism jk between
their reductive finite quotients. We have jk(Zs,kUs,k) = Zwsw−1,kUwsw−1,k. For z ∈ Z0

of image t ∈ Zk, the image of nzn−1 ∈ Z0 in Zk is jk(t) = w̃tw̃−1. Hence jk(c(α, u)) =
w̃c(α, u)w̃−1. The image of nun−1 in Gwsw−1,k is jk(m(uk)). For xk ∈ Us,k−{1} we have

jk(m(uk)x−1
k m(uk)) ∈ jk(Us,km(uk)z(xk)Us,k) = Uwsw−1,kjk(m(uk))jk(z(xk))Uwsw−1,k.

By (13), jk(c(α, u)) = c(w(α), nun−1). This ends the proof of Theorem 3.7.

The Hecke rings

HZ(G,B) ' HZ(WIw, q, q− 1), HZ(G,U) ' HZ(W, q, c), q = ε ◦ c + 1.

Isomorphism Hecke ring . Reflechir s’il ne faut pas mettre la suite de cette section dans
le cadre general

The two isomorphisms of (9) induce bijective maps between the W0-conjugacy class
of µ, the W -conjugacy class C(µ) of λ(µ(p−1

F )) and the W1-conjugacy class C1(µ) of
λ1(µ(p−1

F )). The monoid X∗(T )+ of dominant cocharacters µ such that α ◦ µ(pF ) ∈ OF
for α ∈ Φ+, is isomorphic to Λ[,+ by the first isomorphism; the subgroup of invertible
elements in X∗(T )+ equal to the group (X∗(T ))W0 of cocharacters µ ∈ X∗(T ) fixed by
W0, is isomorphic to (Λ[)W0 ; X∗(T )+ is a system of representatives of the W0-conjugacy
classes of X∗(T ). We denote by ZZ(G,U)[ ⊂ HZ(G,U) the central subalgebra of basis
(E(C1(µ))µ∈X∗(T )+ , and by ZZ(G,U)[`=0, respectively ZZ(G,U)[`>0 the subrings of basis

E(C1(µ)) for µ running in (X∗(T ))W0 , respectively X∗(T )+ − (X∗(T ))W0 .
An element λ(µ(p−1

F )) ∈ Λ[∩Ω if and only if it is fixed by W0 if and only if λ1(µ(p−1
F ))

is fixed by W1 if and only if E(C1(µ)) = Tλ1(µ(p−1
F )). The linear map

µ 7→ Tλ1(µ(p−1
F )) : Z[X∗(T )W0 ]

'−→ ZZ(G,U)[`=0

is a ring isomorphism. By Lemma 3.5, the ring ZZ(G,U)[`=0 is finitely generated.

Lemma 3.9. Assume that R is a commutative ring of characteristic p.
The linear map µ 7→ E(C1(µ)) : R[X∗(T )+] → ZR(G,U)[ is an R-algebra isomor-

phism. The R-algebras ZR(G,U)[, ZR(G,U)[`>0 are finitely generated.

Proof. When G is split [OComp, Proposition 2.10]. The proof is valid in general, and
is as follows. We have E(C1(µ)) =

∑
µ′∈W0(µ)Eo(λ1(µ′)) where o is an orientation of

(V,H). When the characteristic of the ring R is p, for µ1, µ2 ∈ X∗(T ), the product
Eo(λ1(µ1))Eo(λ1(µ2)) is equal to Eo(λ1(µ1µ2)) if µ1, µ2 ∈ w(X∗(T )+) for some w ∈ W0,
and is 0 otherwise. For µ1, µ2 ∈ X∗(T )+, the map (µ′1, µ

′
2) 7→ µ′1µ

′
2 yields a bijection from

the set of (µ′1, µ
′
2) ∈ W0(µ1) ×W0(µ2) with µ′1, µ

′
2 ∈ w(X∗(T )+) for some w ∈ W0, onto

W0(µ1µ2).
Then, Lemma 3.5 follows for the second assertion.

4 Levi subgroup

Let W be an admissible datum of based reduced root system (Σ,∆) and let ∆M ⊂ ∆. In
Definition (2.18), we defined a Levi datum WM of based reduced root system (ΣM ,∆M )

and a linear map V
pM−−→ VM the linear map such that 〈α, v〉 = 〈α, pM (v)〉 for v ∈ V, α ∈

∆M . We have the set H of affine hyperplanes KerV (α + r) in V for (α, r) ∈ Σ × Z, and
the set HM of affine hyperplanes KerVM (α+ r) in VM for (α, r) ∈ ΣM ×Z. Before proving
that WM is admissible, we examine the compatibility of pM with H and HM .
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Lemma 4.1. (i) For (α, r) ∈ ΣM×Z, the inverse image p−1
M (HM ) of the affine hyperplane

HM = KerVM (α+ r) ∈ HM is the affine hyperplane H = KerV (α+ r) ∈ H, and pM (H) =
HM .

(ii) The image pM (F) of a facet F of (V,H) is contained in a facet of (VM ,HM ), that
we denote by pM (F).

(iii) For any facet FM of (VM ,HM ), there exists a facet F of (V,H) such that pM (F) =
FM

Proof. (i) is obvious.
Let F be a facet of (V,H). For x, y in F, α ∈ ΣM , r ∈ Z, the real numbers 〈α+ r, x〉 =

〈α+ r, pM (x)〉 and 〈α+ r, y〉 = 〈α+ r, pM (y)〉 are both zero, positive or negative. Hence
pM (F) is contained in a facet of (VM ,HM ). The image of the dominant alcove C of (V,H)
associated to ∆ is contained in the dominant alcove CM of (VM ,HM ) associated to ∆M ,
pM (C) ⊂ CM .

A point x in V is H-special if for any α ∈ Σ, there exists r ∈ Z such that α(x)+r = 0
[BT1, (1.3.7)]. It suffices to suppose α ∈ ∆. The origin of V is H-special.

Lemma 4.2. (i) The image y = pM (x) of a H-special point x ∈ V is HM -special.
(ii) A HM -special point y ∈ VM is the image y = pM (x) of a H-special point x ∈ V .

Proof. (i) is obvious.
(ii) ∆ is a basis of the dual of V . There exists x ∈ V with α(x) = 0 for α ∈ ∆ \∆M ,

and 〈α, x〉 = 〈α, y〉 for v ∈ V, α ∈ ∆M . Then x is special and pM (x) = y.

Lemma 4.3. The group WM = Λ oWM,0 acts on (VM ,HM ) and is a semidirect product

WM = W aff
M o ΩM . The surjective map V

pM−−→ VM is WM -equivariant.

Proof. The subgroup WM = Λ o W0,M ⊂ W acts on (V,H) and on (VM ,HM ): Λ by
translation by ν on (V,H) and by νM = pM ◦ ν on (VM ,HM ), and W0,M by its natural
action: for w ∈W0,M , v ∈ V, vM ∈ VM , α ∈ Σ, αM ∈ ΣM , we have 〈α,w(v)〉 = 〈w−1(α), v〉
and 〈αM , w(vM )〉 = 〈w−1(αM ), vM 〉 The map pM is cleary Λ-equivariant; it is W0,M -
equivariant because 〈αM , w(v)〉 = 〈w−1(αM ), v〉 = 〈w−1(αM ), pM (v)〉 = 〈αM , w(pM (v))〉.
Therefore pM is WM -equivariant.

We prove Proposition 2.19. We choose, as we can, the scalar products such that

V
pM−−→ VM such that

pM ◦ sα+r = sα+r,M ◦ pM : V → VM ,

for α ∈ ΣM , r ∈ Z, if sα+r denote the orthogonal reflection of V with respect to KerV (α+r)
and sα+r,M the orthogonal reflection of VM with respect to KerVM (α+ r).

The map sα+r,M 7→ sα+r for α ∈ ΣM , r ∈ Z injects SM into S and induces an

injective homomorphism W aff
M → W aff of image W aff ∩WM . We identify W aff

M with

W aff ∩WM , hence SM with S∩WM . We have WM = W aff
M oΩM because WM acts on

(VM ,HM ). Although the group ΩM is not contained in Ω, it is isomorphic to a subgroup of

Ω, hence is abelian and finitely generated, because ΩM 'WM/W
aff
M 'WM/W

aff ∩WM

embeds in W/W aff ' Ω.
As WM,1 is the inverse image of WM ⊂ W in W1, we have SM (1) ⊂ S(1) and the

inclusion is WM,1 × Zk-equivariant. Hence the restriction cM to SM (1) of a parameter
map c of (W, R) is a parameter map of (WM , R). This ends the proof of Proposition 2.19.

Let M be a Levi subgroup of G. We recall the natural surjective linear map V
pM−−→ VM ,

and for a facet F of (V,H), the facet pM (F) of (VM ,HM ) containing pM (F) (Lemma 4.1).
LetKF,KpM (F) denote the parahoric subgroup ofG,M fixing F, pM (F), andKF,1,KpM (F),1
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denote their pro-p radicals. We have pM (C) = CM and KC = B,KCM = BM ,KC,1 =
U,KCM ,1 = UM .

The map F 7→ pM (F) from the set of facets of (V,H) to the set of facets of (VM ,HM )

is surjective because the map V
pM−−→ VM is surjective.

Proposition 4.4. Let F be a facet of (V,H) and HM ∈ HM . Then,

(i) pM (F) ⊂ HM if and only if pM (F) ⊂ HM .

(ii) KpM (F) = M ∩KF and KpM (F),1 = M ∩KF,1.

Proof. (i) is obvious.
(ii) The equality KpM (F) = M ∩ KF is proved in [Morris, Lemma 1.13] using the

extended buildings (where the apartment attached to T is the same for G and for M),
and in [HRo, Lemma 4.1.1].

We prove KpM (F),1 = M ∩ KF,1. A (pro-p) parahoric subgroup of G or of M is
generated by its intersections Uα for α in Φ or ΦM and by the (pro-p) parahoric subgroup
of Z. We check that for α ∈ ΦM , Uα∩KpM (F) = Uα∩KF and Uα∩KpM (F),1 = Uα∩KF,1

using [Vig1, (43), (51), (52)].
The smallest element rF(α) ∈ Γα denote such that α(x) + rF(α) ≥ 0 for x ∈ F is equal

to rpM (F)(α), hence Uα ∩KpM (F) = Uα+rpM (F)(α) = Uα+rF(α) = Uα ∩KF.

We have F ⊂ KerV (α + rF(α)) if and only if pM (F) ⊂ KerVM (α + rF(α)) by (i), the
element r∗F(α) = rF(α) if F ⊂ Ker(α+ rF(α)), r∗F(α) = rF(α) + e−1

α otherwise, is equal to
r∗pM (F)(α), hence Uα ∩KpM (F),1 = Uα+r∗

pM (F)
(α) = Uα+r∗F(α) = Uα ∩KF,1.

We can only deduce KpM (F) ⊂M ∩KF, but the Iwahori decomposition of KF,1 [Vig1,
Proposition 3.19] implies KpM (F),1 = M ∩KF,1.

We prove Theorem 2.21.
Proposition 4.4 implies that the (pro-p) Iwahori subgroup of (M,T,BM , ϕM ) is the

intersection with M of the (pro-p) Iwahori subgroup of (G,T,B, ϕ).
We check that the datum WM of (M,T,BM , ϕM ) is equal to the datum (2.18) associ-

ated to the datumW of (G,T,B, ϕ) and SM . The M-centralizer of T is Z, henceWM ,W
have the same Λ, Zk. Recalling from section 3 the relation between Φ and the reduced
root system Σ and the definition of the basis ∆, the reduced root system ΣM for M is
{eαα | α ∈ ΦM} because ϕM,α = ϕα for α ∈ ΦM and the basis ∆M of ΣM corresponding
to BM = B ∩M is ∆ ∩ ΣM . The property (ii) of (2.18) is clear. The property (iii) also
because the M-normalizer of T is NM = N ∩M.

We check that the parameter map cM of (M,T,BM , ϕM ) and the parameter map c
of (G,T,B, ϕ) are equal on SM (1). Let α ∈ ΦM , u ∈ Uα − {1} and s̃ ∈ SM (1). The
definition of the admissibility of the pair (α, u) or of the triple (α, u, s̃) (Definition 3.6) is
the same for M and G. The parameter maps are Zk-equivariant hence it suffices to check
that cM and c are equal on admissible elements of SM (1). Let (α, u, s̃) be an admissible
triple. We have to show that c(α, u) (13) is the same for M and G. Let Hs ∈ H and
HM,s ∈ HM fixed by s. We have Hs = p−1

M (HM,s). Let As be an alcove of (V,H) with a
face Fs ⊂ Hs. The unique facet of (VM ,HM ) containing pM (As) is an alcove AM,s with
a face FM,s ⊂ HM,s containing pM (Fs). Let KM,s,Ks denote the parahoric subgroups of
M,G fixing FM,s,Fs, KM,s,1,Ks,1 their pro-p radicals, KM,s,k,Ks,k their finite reductive
quotients.

Lemma 4.5. KM,s,k = Ks,k.

Proof. By proposition, KM,s = M ∩ Ks, KM,s,1 = M ∩ Ks,1. This implies KM,s,k ⊂ Ks,k.
Both groups generated by Zk, Us,k = Uα+r/Uα+r+e−1

α
hence they are equal.

The lemma implies that c(α, u) is the same for M and G. This ends the proof of
Theorem 2.21.
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5 Central extension

5.1 Morphism of admissible data with the same based reduced
root system

LetWH
i−→W be a morphism of admissible data with the same based reduced root system,

and let (qH , q) and (cH , c) be i-compatible parameter maps of (WIw
H , R), (WIw, R) and

(WH , R), (W, R). We prove Proposition 2.24.

The linear map H(WH , qH , cH)
i−→ H(W, q, c) respects the product, because it respects

the braid relations as WH,1
i−→W1 respects the length, and the quadratic relations as the

parameters are i-compatible. Obviously, its image is isomorphic to H(i(W)H , q, c) and
its kernel is R[(WH,1)i=1]ε=0. We prove that it respects the alcove walk elements. Let

o be an orientation of (V,H). We recall that i is the identity on W aff
H = W aff . Let

s ∈ SaffH = Saff , w ∈ W aff such that `(ws) = `(w) + 1, and s̃H ∈ SaffH (1) lifting s in
WH,1, the definition (4) implies:

i(T
H,εo(w,s)
s̃H

) = T
εo(w,s)
i(s̃H)(15)

where i(s̃H) ∈ S(1) lifts s in W1. Let w̃H ∈ WH,1 of reduced decomposition w̃H =

s̃H,1 . . . s̃H,rũH , r = `(wH), s̃H,i ∈ SaffH (1), ũH ∈ ΩH,1. A reduced decomposition of i(w̃H)
is i(w̃H) = s̃1 . . . s̃rũ, r = `(w), s̃i = i(s̃H,i) ∈ Saff (1), ũ = i(ũH) ∈ Ω1. As i is an algebra
homomomorphism, definition 2.10 and (15) imply i(EHo (w̃H)) = Eo(i(w̃H)).

We have i(ΩH) ⊂ Ω and i(WH) is the subgroup W aff o i(ΩH) of W = W aff o Ω.
The exact sequence

1→ i(ZH,k)→ i(WH,1)→ i(WH)→ 1

is contained in the exact sequence 1→ Zk →W1 →W → 1. We have

W1 = i(WH,1)Ω1 = Ω1i(WH,1), i(ΩH,1) = Ω1 ∩ i(WH,1).

We deduce from (2) that the algebra HR(W, q, c) is isomorphic to

i(HR(WH , qH , cH))⊗R[i(ΩH,1)] R[Ω1] ' R[Ω1]⊗R[i(ΩH,1)] i(HR(WH , qH , cH)).

This ends the proof of Proposition 2.24.

Remark 5.1. The homomorphism Waff
H,1

i−→ Waff
1 is surjective (injective) if only if the

homomorphism ZH,k
i−→ Zk is surjective (injective).

5.2 Pro-p Iwahori Hecke algebras of central extensions

Let H
i−→ G be a central extension of connected F -reductive groups. We indicate with a

lower or upper index H an object relative to H. as in §2, we associate to a triple (T,B, ϕ)
of G a triple (TH , BH , ϕ) of H. The homomorphism i induces a bijection α 7→ α ◦ i
from the root system Φ of (G,T) onto the root system ΦH of (H,TH) respecting the

positive roots relative to B and BH, and an F -isomorphism UH,α◦i
i−→ Uα between the

root group of α ◦ i in H and of α in G for all α ∈ Φ. Let W, c be the admissible
datum and the parameter map associated to (G,T,B, ϕ) as in section 3 and Theorem
2.15. The special discrete valuation ϕ = (ϕα)α∈Φ compatible with ω of the root datum
(Z, (Uα)α∈Φ) generating G is also a special discrete valuation compatible with ω of the
root datum (ZH , (UH,α)α∈ΦH ) generating H.

We prove Theorem 2.25.
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(i) We sometimes identify α and α ◦ i, hence ΦH and Φ, VH and V . The action of
NH and of N on the semisimple apartment (V,H) associated to Φ and ϕ are compatible

with the homomorphism NH
i−→ N. The based reduced root systems of the admissible

datum WH of (H,TH , BH , ϕ) and of the admissible datum W of (G,T,B, ϕ) are the

same. The functoriality of the Kottwitz homomorphism applied to ZH
i−→ Z implies that

i(ZH,0) ⊂ Z0. Lemma 3.1 (ii), (iii) applied to ZH,0
i−→ Z0 implies i(ZH,1) ⊂ (i(ZH,0))1 =

ZH,0 ∩ Z1 ⊂ Z1. We deduce that the homomomorphism NH
i−→ N induces compatible

homomorphisms

(ΛH ,WH , ZH,k,WH,1)
i−→ (Λ,W,Zk,W1)

equal to the identify on W aff , and νH = ν ◦ i. Hence H
i−→ G induces an homomorphism

WH
i−→W between the admissible data with the same reduced root system.

(ii) The homomorphism between the F -rational points does no remain surjective in
general. The subgroup i(H) ⊂ G is normal because it is the kernel of the natural homo-
morphism G → H1(F, µ). The group G/i(H) may be infinite (PGL(2, F )/PSL(2, F ) is
infinite when the characteristic of F is 2). But we note the finiteness property:

Lemma 5.2. Λ/i(ΛH) is finite.

Proof. The kernel µ is central and ΦH ' Φ have the same number r of simple roots. The
groups Λ and ΛH are finitely generated of rank r.

For later use, let P = MN,PH = MHNH be standard parabolic subgroups of G,H
corresponding to the same subset of ∆, with their standard Levi decomposition.

Lemma 5.3. i(PH) = i(MH)N = P ∩ i(H) and P i(H) = G.

Proof. The isomorphism NH
i−→ N implies i(PH) = i(MH)N and (M∩i(H))N = P∩i(H).

We recall that G = ZG′ where G′ is generated by the root subgroups Uα for α in the root
system Φ of T in G and G′ = i(H ′). We have M = ZM ′ = Zi((MH)′) and Z ∩ i(H) =
i(ZH). Hence M∩i(H) = i(ZH)i((MH)′) = i(MH) and G = ZG′ = Z i(H) = P i(H).

The homomorphism NH/ZH,1
i−→ N/Z1 has kernel i−1(Z1)/ZH,1 and image i(NH)Z1/Z1.

We deduce that i(H) = G⇔ i(ZH) = Z ⇔ i(NH) = N. The latter equivalence follows

from the isomorphism WH,0 = NH/ZH
i−→ N/Z = W0.

(iii) The map (h, x) 7→ (i(h), x) : H×V → G×V induces a map BTH
i−→ BT between

the semisimple Bruhat-Tits buildings of H and G (the definition and notation is recalled

in section 3). Indeed, for x ∈ V , we have the isomorphism UH,x+rx(α◦i)
i−→ Ux+rx(α)

for α ∈ Φ, homomorphisms NH,x
i−→ Nx between the NH and N stabilizers of x, and

PH,x = NH,xUH,x
i−→ Px = NxUx. Let F be a facet of (V,H). We denote by KH,F ⊂ H

the parahoric subgroup fixing F, by KH,F,1 and by KH,F,k the finite reductive quotient.

Lemma 5.4. i(KH,F), i(KH,F,1) are open normal subgroups of KF,KF,1 and i induces an

homomorphism KH,F,k
i−→ KF,k.

Proof. For a reduced root α ∈ Φ, we have i(KH,F ∩ UH,α◦i) = KF ∩ Uα and i(KH,F,1 ∩
UH,α◦i) = KF,1 ∩ Uα. The group KH,F is generated by ZH,0 and KH,F ∩ UH,α◦i for all
reduced root α ∈ Φ, the group KH,F,1 is generated by ZH,1 and KH,F,1 ∩ UH,α◦i. We
deduce that i(KH,F), i(KH,F,1) are open subgroups of KF,KF,1.
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(iv) We prove that the parameter maps cH of (H,TH , BH , ϕ) and c of (G,T,B, ϕ) are
i-compatible. Let (α ◦ i, uH , s̃T ) be an admissible pair for (H,TH , BH , ϕ) and tH ∈ ZH,k.
Write (u, s̃, t) = i(uH , s̃H , tH). Then (α, u, s̃) is an admissible pair for (G,T,B, ϕ) and
t ∈ Zk. By Theorem 3.7,

cH(s̃HtH) =
∑

xH,k∈UH,sH,k−{1}

zH(xH,k)tH , c(s̃t) =
∑

xk∈Us,k−{1}

z(xk)t.

Let FsH = Fs be a face fixed by sH hence by s of an alcove of (V,H). By Lemma

5.4, the homomorphism G
i−→ H induces an homomorphism KH,sH ,k

i−→ Ks,k between the
finite reductive quotients of the parahoric subgroups fixing this face. This homomor-
phism restricts to an isomorphism UH,sH ,k ' Us,k, i(NH,sH ,k) ⊂ Ns,k, i(GH,sH ,k) ⊂ Gs,k,
i(ZH,sH ,k) ⊂ Zs,k. As (12), the element zH(xH,k) ∈ ZH,sH ,k for xH,k ∈ UH,sH ,k − {1}, is
defined by

mH(uH,k)x−1
H,kmH(uH,k) ∈ UH,sH ,kmH(uH,k)zH(xH,k)UH,sH ,k,

where uH,k ∈ UH,sH ,k−{1} is the image of uH , {mH(uH,k)} = NH,sH ,k∩U
op
H,sH ,k

uH,kU
op
H,sH ,k

.
We have i(mH(uH,k)) = m(uk) where uk is the image of u and i(zH(xH,k)) = z(xk) where
i(xH,k) = xk. We deduce that i(cH(s̃HtH)) = c(s̃t). Hence the the parameter maps cH
and c are i-compatible.

The augmentation maps satisfy Z[ZH,k]
εH−−→ Z = Z[ZH,k]

i−→ Z[Zk]
ε−→ Z hence the

parameter maps qH = εH ◦ cH , q = ε ◦ c of WIw
H ,WIw are i-compatible and we can

apply Proposition 2.24 to the algebra homomorphism HZ(H,UH) = HZ(WH , qH , cH)
i−→

HZ(W, q, c) = HZ(G,U) between the pro-p Iwahori Hecke rings.

(v) The kernel Z[i−1(Z1)/ZH,1] of HZ(H,UH)
i−→ HZ(G,U) (Proposition 2.24) is con-

tained in Z[ΩH,1]. Recalling the isomorphism (7), we haveHZ(H,UH) = HZ(H ′,U′H)oZ[Z′H,k]

Z[ΩH,1]. We have i(HZ(H ′,U′H)) = HZ(i(H ′)U,U) = HZ(Z1G
′,U) ' HZ(G′,U′) (Lemma

3.2), and
i(HZ(H,UH)) ' HZ(G′,U′) oZ[i(Z′H,k)] Z[i(ΩH,1].

Remark 5.5. We have

i(HZ(H,UH)) = HZ(i(H)U,U) ' HZ(i(H), (Z1 ∩ i(ZH))U′).

Indeed, i(HZ(H,UH)) = HZ(i(H)U,U) ' HZ(i(H),U∩i(H)) by Lemma 3.2 applied to the
normal subgroup i(H) ⊂ G. By the Iwahori decomposition of a pro-p Iwahori subgroup,

U = Z1U
′, U′ = U ∩G′ = i(U′H).

We have i(H) = i(ZH)G′, i(H)U = Z1i(ZH)G′, U ∩ i(H) = (Z1 ∩ i(ZH))U′.

(vi) The F -extension TH
i−→ T of F -split tori induces a surjective homomorphism

µH 7→ i ◦ µH : X∗(TH)
i−→ X∗(T) and i(µH(p−1

F )) = (i ◦ µH)(p−1
F ). This homomorphism

is W0-equivariant (we identify naturally WH,0 and W0).

The commutative diagram ZH
λ−→ ΛH

i−→ Λ = ZH
i−→ Z

λ−→ Λ and the inclusion
i(TH) ⊂ T imply that i(Λ[H) = (i ◦ λ)(TH) = (λ ◦ i)(TH) ⊂ Λ[ = λ(T ). For µH ∈
X∗(TH), µ = i ◦ µH , we have i(λ(µH(pF )−1)) = λ(µ(pF )−1).

The commutative diagram ZH
λ1−→ ΛH,1

i−→ Λ1 = ZH
i−→ Z

λ1−→ Λ1 shows that
i(λ1(µH(pF )−1)) = λ1(µ(pF )−1).

The splitting Λ[H
ιH−−→ Λ[H,1 of (H,TH , BH , ϕ, pF ) is defined by ιH(λ(µH(pF )−1)) =

λ1(µH(pF )−1). It is i-compatible with the splitting Λ[
ι−→ Λ[1 of (G,T,B, ϕ, pF ) because

(i◦ ιH)(λ(µH(pF )−1)) = (i◦λ1)(µH(pF )−1) = (λ1 ◦ i)(µH(pF )−1) = (ι◦ i)(λ(µH(pF )−1)).
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All the homomorphisms λ, λ1, i are W0-equivariant, and HZ(H,UH)
i−→ HZ(G,U) sat-

isfying Proposition 2.24 respect the alcove walk elements. We deduce that the algebra
homomorphism i between the pro-p Iwahori Hecke rings respects the central elements

i(EH(CH,1(µH))) = E(C1(i ◦ µH)). Hence the homomorphism ZZ(H,UH)[
i−→ ZZ(G,U)[

is surjective. Its kernel is ZZ(H,UH)[ ∩ Z[i−1(Z1)/ZH,1]. As WH,1
i−→ W1 respects the

length, ZZ(H,UH)[ ∩Z[i−1(Z1)/ZH,1] = ZZ(H,UH)[`=0 ∩Z[i−1(Z1)/ZH,1] by Remark ??,

and ZZ(H,UH)[`>0
i−→ ZZ(G,U)[`>0 is an isomorphism.

As (T/T0)W0 ' X∗(T )W0 ' ZZ(H,UH)[`=0, contains no element of finite order, ZZ(H,UH)[∩
Z[i−1(Z1)/ZH,1] = {0} if i−1(Z1)/ZH,1 is finite.

This ends the proof of Theorem 2.25.

5.3 Supercuspidal representations and supersingular modules

Notations as in section 5.2. We denote by πH the inflation to H of the restriction π|i(H)

of a smooth R-representation π of G. The functor π 7→ πH from the R-representations
of G to those of H is exact, of image the R-representations of H where the kernel L of

H
i−→ G acts trivially. The R-submodules πK ⊂ π and πKHH ⊂ πH fixed by open compact

subgroups K ⊂ G and KH ⊂ H with i(KH) ⊂ K satisfy

πK ⊂ πKHH = πi(KH).

As the subgroup i(H) ⊂ G is open, i(KH) ⊂ G is open (and compact), and an arbi-
trary open compact subgroup K ⊂ G contains i(KH) for some open compact subgroup
KH ⊂ H. Therefore, the representation π is smooth, or admissible if and only if the
representation πH is smooth, or admissible. The R-module πK has a structure of right
module over the Hecke R-algebra HR(G,K), and the R-module πKHH = πi(KH) has a
structure of right HR(H,KH)-module and of right HR(G, i(KH))-module. We note that
HR(i(H), i(KH)) ⊂ HR(G, i(KH)).

Assume that R is a field. By Clifford’s theory, the restriction of the irreducible ad-
missible R-representation π of G to the normal open subgroup i(H) ⊂ G of finite index
is a finite direct sum ⊕jπj of G-conjugate irreducible admissible R-representations πj of
i(H) conjugate in G. The representations πj are Z-conjugate because G = i(H)Z. The

induced representation ρG(π) = IndGi(H)(πj) of G does not depend on the choice of j mod-
ulo isomorphism. It is admissible of finite length and contains π because the induction is
the right adjoint of the restriction. The representation πH of H is admissible semisimple
of finite length, of irreducible components πj,H inflating πj for all j.

Let π, τ be irreducible admissible R-representations of G,M . We decompose π|i(H) =
⊕jπj and τ |i(MH) = ⊕rτr as a finite sum of irreducible admissible representations. We

consider the parabolic induced representation IndGP (τ) (where τ is inflated to P ).

Lemma 5.6. (i) The restriction of IndGP (τ) to H is equal to (IndGP (τ))H = IndHPH (τMH
),

and it is also the inflation to H of Ind
i(H)
i(PH)(τ |i(MH)).

(ii) If π is a subquotient of IndGP (τ), then πH is a subquotient of (IndGP (τ))H .

(iii) If πj,H is a subquotient of (IndGP (τ))H for some j, then ρG(π) is a subquotient of

IndGP ρM (τ).

Proof. (i) We have G = Pi(H) and P ∩ i(H) = i(PH) (Lemma 5.3). The restric-

tion of IndGP (τ) to i(H) is Ind
i(H)
i(PH)(τ |i(MH)). The inflation of Ind

i(H)
i(PH)(τ |i(MH)) to H

is IndHPH (τMH
) because the kernel of H

i−→ G is equal to the kernel of MH
i−→M .
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(ii) By exactitude of the inflation and of the restriction, if π is a subquotient of IndGP (τ)
then πH is a subquotient of (IndGP (τ))H .

(iii) We denote by Ind
i(H)
i(PH) the functor from smooth representations of i(MH) to

smooth representations of i(H) similar to the parabolic induction: one induces smoothly

the inflation to i(PH) of a smooth representation of i(MH). The functor Ind
i(H)
i(PH) com-

mutes with finite direct sums. Assume that πj,H is a subquotient of (IndGP (τ))H . Then πj

is a subquotient of Ind
i(H)
i(PH)(τ |i(MH)) by (i). There exists r such that πj is a subquotient of

Ind
i(H)
i(PH)(τr). By exactness of the induction, ρ(π) is a subquotient of IndGi(H)(Ind

i(H)
i(PH)(τr)).

By transitivity of the induction IndGi(H)(Ind
i(H)
i(PH)(τr)) = IndGi(PH)(τr) = IndGP (IndPi(PH)(τr)).

As i(PH) = i(MH)N,P = MN , the representation IndPi(PH)(τr) is the inflation to P of

ρM (τ) = IndMi(MH)(τr). Hence ρG(π) is a subquotient of IndGP ρM (τ).

We prove Proposition 2.26.
Let R be a field and π an irreducible admissible R-representation of G. We deduce

from Lemma 5.6 (ii) that if π is not supercuspidal then πj,H is not supercuspidal for all
j, and from Lemma 5.6 (iii) that if πj,H is not supercuspidal for some i that then π is not
supercuspidal. The part (i) of Proposition 2.26 is proved.

We denote by πH the inflation to H of the restriction of π to i(H).
We consider the parabolic induction IndGP from the smooth R-representations of M

to those of G (the smooth induction from P to G of the inflation from M to P ), and

similarly the parabolic induction Ind
i(H)
i(PH) (from the smooth R-representations of i(MH)

to those of i(PH) by inflation then to those of G by smooth induction). The parabolic
functors commute with finite direct sums.

Let τ be a smooth R-representation of M .

Lemma 5.7. (i) The restriction of IndGP (τ) to i(H) is equal to Ind
i(H)
i(PH)(τ |i(MH)). The

inflation ot H of IndGP (τ)|i(H) is equal to IndHPH G(τMH
).

(ii) If π is a subquotient of IndGP (τ), then πH is a subquotient of (IndGP (τ))H .

Proof. (i) We have G = Pi(H) and P ∩ i(H) = i(PH) (Lemma ??). The restriction of

IndGP (τ) to i(H) is Ind
i(H)
i(PH)(τ |i(MH)). The inflation of this latter representation to H is

IndHPH (τMH
) because the kernel of H

i−→ i(H) is equal to the kernel of MH
i−→ i(MH). **

(ii) Exactitude of the inflation and of the restriction.

We assume from now on that R is a field. Let π be an irreducible admissible R-
representation of G and τ an irreducible admissible R-representation of M .

The subgroup i(H) ⊂ G is normal open of finite index. By Clifford’s theory, the
restriction of π to i(H) is a finite direct sum ⊕jπj of G-conjugate irreducible admissible
R-representations πj of i(H). The representation πH of H is admissible semisimple of
finite length, of irreducible components the representations πj,H of H inflating πj for
all j. The representations πj are Z-conjugate because G = i(H)Z. The representation
ρG(π) of G induced from πj does not depend on the choice of j modulo isomorphism.
The representation ρG(π) of G is admissible of finite length and contains π because the
induction is the right adjoint of the restriction.

Similar considerations apply to the subgroup i(MH) ⊂ M and to the quotient map
MH → i(MH). The restriction of τ to i(MH) is a finite direct sum ⊕rτr of Z-conjugate
irreducible admissible R-representations τr of i(MH) inflating to representations τr,×MH

of MH . The representation ρM (τ) of M induced from τr of M is admissible of finite length
and contains τ .
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Lemma 5.8. a enlever probablement
Assume that R is a field and that π, τ are irreducible admissible R-representations of

G,M . If πj,H is a subquotient of (IndGP (τ))H for some j, then ρG(π) (defined in ***) is

a subquotient of IndGP ρM (τ).

Proof. Assume that πj,H is a subquotient of (IndGP (τ))H . Then πj is a subquotient of

the restriction of IndGP (τ) to i(H), hence of Ind
i(H)
i(PH)(τ |i(MH)) by Lemma 5.7 (i). As

Ind
i(H)
i(PH)(τ |i(MH)) is the finite direct sum of the representations Ind

i(H)
i(PH)(τr), there exists

r such that πj is a subquotient of Ind
i(H)
i(PH)(τr). By exactness of the induction, ρ(π) is a

subquotient of the representation of G induced by Ind
i(H)
i(PH)(τr). The smooth induction

from i(PH) to i(H) followed by the induction from i(H) to G is the smooth induction
from i(PH) to G. As i(PH) = i(MH)N and P = MN , the smooth induction from i(PH)
to G is the smooth induction from i(PH) to P to the smooth induction from P to G, and
the representation of P smoothly induced from the the inflation of τr to i(PH) is equal
to the inflation to P of the induction ρM (τ) of τr to M . Hence ρG(π) is a subquotient of
IndGP (ρM (τ).

Lemma 5.9. Assume that R is a field. An irreducible admissible R-representation of H
is the tensor product π ⊗ πH of irreducible admissible representations π, πH of , H which
are unique modulo isomorphism.

Proof. ***

Proposition 5.10. Assume that R is a field. Let π be an irreducible admissible R-
representation of G, πj the irreducible components of the restriction of π to i(H) and
πj,H the inflation of πj to H. Then, the representations πj , πj,H of i(H), H are irreducible
admissible, and the following properties are equivalent:

π is supercuspidal,
πj,H is supercuspidal for one j,
πj,H is supercuspidal for all j.

Proof. If π is a subquotient of IndGP (τ) for some P, τ as in Lemma 5.7, then the inflation
πH = ⊕jπj,H to H of the restriction of π to i(H) is a subquotient of

IndHPH (⊕rτr,H) = ⊕r IndHPH (τr,H)

** by Lemma 5.7 (ii). We deduce that for each j there is r such that πj,H is a subquotient

of IndHPH (τr,H). We have P 6= G if and only if PH 6= H. Hence if π is not supercuspidal,
all πj,H are not supercuspidal.

Suppose that there exists j such that πj,H is a subquotient of IndHPH (σ) for some PH , σ

an irreducible admissible representation of MH , then πj,H is a subquotient of IndHPH (σ),
then σ is trivial on the kernel of MH → i(MH) because this kernel is also the kernel of H →
i(H), and this kernel acts trivially on πj,H . Hence σ is the inflation of a representation
σj of i(H). The representation σj of i(H) is irreducible admissible because σ is. The

representation πj is a subquotient of Ind
i(H)
i(PH)(σj). By adjunction, the representation π is

a subquotient of the representation of G induced by Ind
i(H)
i(PH)(σj). The smooth induction

from i(PH) to i(H) followed by the induction from i(H) to G is the smooth induction
from i(PH) to G. As i(PH) = i(MH)N and P = MN , the smooth induction from i(PH)
to G is the smooth induction from i(PH) to P to the smooth induction from P to G, and
the representation of P smoothly induced from the the inflation of σj to i(PH) is equal

to the inflation to P of the induction σ of σj to M . Hence π is a subquotient of IndGP (σ).
Hence if πj,H is not supercuspidal for one j, then π is not supercuspidal.
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We assume now that R is a field of characteristic p.

Proposition 5.11. When R is a field of characteristic p, a finite dimensional non-
supersingular right HR(G,U)-module contains a simple non-supersingular submodule.

Proof. When G is F -split [OComp, §5.3]. The proof is valid for G general (this will be
explained in [OV]).

By Lemma 3.2 we have natural isomorphisms

HZ(i(H), i(UH)) ' HZ(i(H), i(UH)),

HZ(i(H), i(H) ∩ U) ' HZ(i(H)U,U).

The inclusion i(H) ⊂ G induces an homomorphismHZ(i(H), i(UH))→ HZ(G,U) of image
the Hecke subring HZ(i(H)U,U). The homomorphism H → i(H) induces an homomor-
phism HZ(H,UH) → HZ(i(H), i(UH)) which coincides, via the natural isomorphisms of
Hecke rings, with the homomorphism HZ(H,UH)→ HZ(i(H), i(UH)) induced by i.

Proposition 5.12. Assume that R is a field of characteristic p. Let π be a smooth
R-representation of G, and πH the inflation to H of π|i(H).

(i) The HZ(H,UH)-module (πH)UH contains a supersingular submodule if and only if
the HZ(G,U)-module πU contains a supersingular submodule.

(ii) If π is admissible, the HZ(H,UH)-module (πH)UH is supersingular if and only if the
HZ(G,U)-module πU is supersingular.

Proof. (i) The vector spaces πUH
H and πi(UH) are equal. We have U = Z1i(UH). A non-zero

subspace of πi(UH) fixed by Z1 contains a non-zero element of πU.

We recall that the map ZR(H,UH)[`>0
i−→ ZR(G,U)[`>0 is an isomorphism (Theorem

2.25 (vi)). Hence ZR(i(H), i(UH))[`>0 ' ZR(G,U)[`>0 ***. For a positive integer n, let

XH,n ⊂ πUH
H be the HR(H,UH)-submodule killed by (ZR(H,UH)[`>0)n,

X ′n ⊂ πi(UH) be the HR(i(H), i(UH))-submodule killed by (ZR(G,U)[`>0)n,

Xn ⊂ πU be the HR(G,U)-module killed by (ZR(G,U)[`>0)n.
We have

XH,n = X ′n, Xn = πU ∩X ′n.

Hence Xn 6= 0 implies X ′n 6= 0. But the space X ′n is stable by Z1. If X ′n 6= 0 is non-zero
then it contains a non-zero element of πU. We deduce

X ′n 6= 0⇔ Xn 6= 0.

We have Xn = πU ∩X ′n. Hence Xn non-zero is equivalent to XH,n non-zero.
(ii) We set X = ∪n>0Xn, X ′ = ∪n>0X

′
n, XH = ∪n>0XH,n. The module πU is

not supersingular if and only if Y = πU − X is non-zero. By (i)m Xn = πU ∩ X ′n,
hence X = πU ∩ X ′ and Y = πU ∩ Y ′ where Y ′ = πi(UH) − X ′. By (i), Y ′ is equal to
YH = πUH

H −XH .
We saw that π is admissible if and only if πH is admissible. As a pro-p Iwahori

subgroup is a pro-p group and the characteristic of R is p, this is also equivalent to πU is
finite dimensional or to πUH

H is finite dimensional.

We suppose that π is admissible. The finite dimensional module πUH
H is not super-

singular if and only if YH is non-zero, if and only if πi(UH) contains a non-supersingular
simple submodule by Proposition 5.11. By (i) there exists a non-zero element v ∈ πU

in a simple submodule πi(UH). If the submodule is not supersingular, then v ∈ Y . We
have Y ′ = YH , Y = πU ∩ Y ′ and YH non-zero implies Y non-zero. Hence Y non-zero is
equivalent to YH non-zero.
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Let P = MN ⊂ G be a standard parabolic subgroup with its standard Levi decom-
position, let σ be an irreducible admissible representation of M , and let Q = MQNQ ⊂ G
be a parabolic subgroup containing P with its standard Levi decomposition.

The subgroup i(MH) ⊂M is normal of finite index. As explained in the introduction,
σ|i(MH) = ⊕jσj is a finite direct sum of Z-conjugate irreducible representations σj of
inflation σj,MH

to MH .

Lemma 5.13. We have:

(i) (P (σ))H = PH(σj,MH
) for all j.

(ii) (P, σ,Q) is a standard supercuspidal triple of G, if and only if (PH , σj,MH
, QH) is

a standard supercuspidal triple of H for one j, if and only if (PH , σj,MH
, QH) is a

standard supercuspidal triple of H for all j.

(iii) For P ⊂ Q ⊂ P (σ), we have eQH (σMH
) = ⊕jeQH (σj,MH

).

Proof. (i) We recall that a simple root α ∈ ∆ − ∆P is contained in P (σ) if and only if
σ is trivial on M ′α. The group M ′α is contained in i(H). Hence σ is trivial on M ′α if and
only if all σj are trivial on M ′α. But σj is trivial on M ′α if and only if σj,MH

is trivial on
M ′H,α because i(M ′H,α) = M ′α. The group Z normalizes M ′α and the σj are Z-conjugate,
hence if one σj is trivial on M ′α then all σj are trivial on M ′α.

(ii) follows from (i) and Proposition 2.26 which says that σ is supercuspidal if and
only if σj,MH

is supercuspidal for all j.
(iii) follows from (i).

We prove now the equality (IG(P, σ,Q))H = ⊕jIH(PH , σj,MH
, QH) of Theorem 2.27.

By exactness of the functor π 7→ πH from the smooth representations of G to those of H,

(IG(P, σ,Q))H =
(IndGQ eQ(σ))H

(
∑
Q(Q′⊂P (σ) IndGQ′ eQ′(σ))H

.

By Lemma 5.6 (i) we have for P ⊂ Q ⊂ P (σ), (IndGQ eQ(σ))H = IndHQH eQH (σMH
) and by

Lemma 5.13 (i) we have PH(σMH
) = P (σ). Hence

(IG(P, σ,Q))H =
IndHQH eQH (σMH

)∑
QH(Q′H⊂PH(σMH ) IndHQ′H eQ

′
H

(σMH
)
.

By 5.13 (i) we have PH(σj,MH
) = PH(σH) for all j. This implies that for PH ⊂ QH ⊂

PH(σMH
), The parabolic induction commutes with finite direct sums, for P ⊂ Q ⊂ P (σ),

we have eQH (σMH
) = ⊕jeQH (σj,MH

) and PH(σj,MH
) = PH(σMH

) for all j by Lemma
5.13 (i), (iii) hence

(IG(P, σ,Q))H =
⊕j IndHQH eQH (σj,MH

)

⊕j
∑
QH(Q′H⊂PH(σj,MH ) IndHQ′H eQ

′
H

(σj,MH
)

= ⊕jIH(PH , σj,MH
, QH).

This ends the proof of Theorem 2.27.

5.4 Variant

Let H
i−→ G be an F -homomorphism such that the map H × C0 j−→ G sending (h, c)

to i(h)c is a central F -extension (where C0 is the connected component of the center
C of the reductive F -group G). The kernel of i remains central in H but we have only
i(H) ⊂ G = i(H)C0. Notation as in section 5.3 and ??.
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To prove Theorem 2.28, we review the proof of Theorem 2.25 for the central extension

H×C0 j−→ G and we restrict the arguments to H
i−→ G.

The group C0 contains a unique maximal F -split torus T0 and defines an admissible
datum with a trivial root system WC0 = (C0/C0

0 , C
0
k , C

0/C0
1 ) with the notations after

Definition 2.1 and Theorem 2.15. We have the groups TH,BH,ZH,NH such that TH ×
T0,BH×C0,ZH×C0,NH×C0 satisfy the requirements given before Theorem 2.25 for

the central F -extension H ×C0 j−→ G. The map α 7→ α ◦ i identifies the root system Φ
with the root system ΦH , respects the positivity defined by B,BH and the roots groups

are isomorphic UH,α◦i
i−→ Uα. The valuation ϕ of (Z,Uα)α∈Φ is also a valuation of

(ZH , Uα)α∈ΦH .
The admissible root datum WH×C0 = WH ×WC0 (notation after Definition 2.1) has

the same reduced root system than WH . The restriction NH
i−→ N of NH × C0 j−→ N

induces an homomorphism WH,1
i−→ W1 which is the restriction of WH,1 × C0/C0

1
j−→

W1. The kernel of this last homomorphism is the image of j−1(Z1) ⊂ NH × C0 in

WH,1 × C0/C0
1 . As C0

1 ⊂ Z1, the kernel of WH,1
i−→ W1 is the image i−1(Z1)/ZH,1 of

i−1(Z1) ⊂NH in WH,1.
The subgroups j(H ×C0) = i(H)C0 ⊂ G, j(ZH ×C0) = i(ZH)C0 ⊂ Z, j(NH ×C0) =

i((NH)C0 ⊂ N are normal open of finite index, and the subgroup i(H) ⊂ i(H)C0 is
normal. The subgroup j(WH,1 × C0/C0

1 ) = i(WH,1)C0/C0
1 ⊂ W1 is normal of finite

index with cosets of representatives in Ω1 and the subgroup i(WH,1) ⊂ i(WH,1)C0/C0
1 is

normal. As C0/C0
1 ⊂ Ω1, the left and right cosets of the subgroup i(WH,1) ⊂ W1 admit

representatives in Ω1.
The parahoric subgroups of H × C0 fixing a facet F of (V,H) are KH,F × C0

0 and
KH,F ⊂ KH,FC

0
0 is contained in the parahoric subgroup of G fixing F. The same proprery

holds true for the pro-p parahoric subgroups.
The parameter maps cH×C0 and c are j-compatible: j ◦cH×C0 = c◦j (Definition 2.23).

We have SH(1)×Ck = SH×C0(1), and cH×C0(s̃, c) = cH(s̃)c for (s̃, c) ∈ SH(1)×Ck. We
deduce that cH , c are i-compatible.

The pro-p Iwahori Hecke ring of H × C0 is HZ(H,H) ⊗Z Z[C0/C0
1 ]. The homomor-

phism HZ(H ×C0,UH ×C0
1 )

j−→ HZ(G,U) of image i(HZ(H,UH)Z[C0/C0
1 ] restricts to the

homomorphism HZ(H,UH)
i−→ HZ(G,U). Recalling C0/C0

1 ⊂ Ω1, we have

HZ(G,U) = i(HZ(H,UH))Z[C0/C0
1 ]Z[Ω1] = i(HZ(H,UH))⊗i(ΩH,1) Z[Ω1].

The kernel of HZ(H,UH)
i−→ HZ(G,U) is (Z[i−1(Z1)/ZH,1])ε=0. The image is the subring

HZ(Ui(H)U,U) of elements with support in Ui(H)U.
We have j(TH × TC0) = T and j(X∗(TH×C0)) = j(X∗(TH) × X∗(TC0) = X∗(T),

and the splitting (ΛH × C0/C0
0 )[

ιH×C0

−−−−→ (ΛH × C0/C0
0 )[1 satisfies ι ◦ j = j ◦ ιH×C0 . The

splitting ιH×C0 is equal to Λ[H× (C0/C0
0 )[

(ιH ,ιC0 )
−−−−−→ Λ[H,1× (C0/C0

0 )[1 hence ιH ◦ i = i◦ ιH .

The splittings ιH , ι are i-compatible. The homomorphism HZ(H × C0,UH × C0
1 )

j−→
HZ(G,U) respects the central elements associated to X∗(TH×C0). Clearly this is means

that the homomorphism HZ(H,UH)
i−→ HZ(G,U) respects the central elements associated

to X∗(TH).
We have ZZ(C0, C0

1 )[ = Z[(C0/C0
0 )[1] and ZZ(G,U)[ is equal to

j(ZZ(H ×C0,UH ×C0
1 )[) = j(ZZ(H,UH)[ ⊗ Z[(C0/C0

0 )[1]) = i(ZZ(H,UH)[)Z[(C0/C0
0 )[1].

The length on WH,1 is the restriction of the length of WH×C0,1 and j, i respects the length.
We have

ZZ(G,U)[`=0 = i(ZZ(H,UH)[`=0)Z[(C0/C0
0 )[1], ZZ(G,U)[`>0 = i(ZZ(H,UH)[`>0)Z[(C0/C0

0 )[1].
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The homomorphism i is injective on ZZ(H,UH)[`>0 because j is injective on ZZ(H ×
C0,UH × C0

1 )[`>0. This ends the proof of (i) in Theorem 2.28.

We prove (ii) of Theorem 2.28. LetR be a field and let π be an irreducible admissibleR-
representation of G. We saw already that the representation π|i(H)C0 is a finite direct sum
⊕jπj of irreducible admissible R-representations πj which are Z-conjugate, as G = i(H)Z.

We suppose that C0 acts on π by a character χ and we check that π satisfies Proposition
2.26. Lemma 5.3, 5.6 and their proof remain valid in our new setting. Assume that R is
a field of characteristic p. Proposition 5.12 (ii) and (iii) remains valid for the following

reason. We haveHR(H×C0,UH×C0
1 ) = HR(H,UH)⊗RR[C0/C0

1 ] and π
UH×C0

1

H×C0 = πUH
H ⊗χ.

The submodules of theHR(H×C0,UH×C0
1 )-submodule of πUH

H ⊗χ are the tensor product

of the HR(H,UH)-submodules of πUH
H by χ. A HR(H,UH)-module is supersingular if and

only if its product by χ is a supersingularHR(H×C0,UH×C0
1 )-module. Hence Proposition

5.12 (ii) and (iii) remains valid. Proposition 2.26 follows.

We prove (iii) of Theorem 2.28. Assume that R is algebraically closed of characteristic
p. Let (P, σ,Q) be a standard supercuspidal triple of G, and let χ be the character of
C0 giving its action on IG(P, σ,Q). We have PH×C0 = PH × C0. The representation
σ|i(MH)C0 = ⊕jσj is a sum of irreducible admissible representations σj . The representa-
tions σj |i(MH) and their inflations σj,MH

to MH are irreducible admissible. The inflation
of σ|i(MH)C0 to MH × C0 is σH×C0 = ⊕j(σj,MH

⊗ χ). We have

(IG(P, σ,Q))H ⊗ χ = (IG(P, σ,Q))H×C0
= ⊕jIH×C0(PH × C0, σj,MH

⊗ χ,QH × C0)

= ⊕jIH(PH , σj,MH
, QH)⊗ χ

The second equality follows from Theorem 2.27 applied to the central extension H×C0 j−→
G. We deduce (IG(P, σ,Q))H = ⊕jIH(PH , σj,MH

, QH).

6 Classical examples

6.1 z-extension

A z-extension G̃
ĩ−→ G of connected reductive F -groups is a central F -extension where

the derived group of G̃ is simply connected, G̃sc = G̃der, and the kernel of G̃
ĩ−→ G is a

central F -induced torus L. The homomorphism G̃
ĩ−→ G between the rational F -points is

surjective because H1(F,L) = 0 [Spr, 11.3.4, 12.4.7]. The torus L has a unique parahoric
subgroup L0 and a unique pro-p parahoric subgroup L1. As in section 5, we associate to
a triple (T,B, ϕ) in G a similar triple in G̃ and (pro-p) parahoric subgroups. We add an
upper index ˜ on an object relative to G̃. By [HV1, 3.5], the parahoric groups form an

exact sequence 1→ L0 → Z̃0
ĩ−→ Z0 → 1.

Lemma 6.1. We have an exact sequence of pro-p parahoric subgroups

1→ L1 → Z̃1
ĩ−→ Z1 → 1,

Proof. ĩ(Z̃1) = Z1 by Lemma 3.1 (iii) and L0 ∩ Z̃1 = L1 by Lemma 3.1 (i).

Remark 6.2. Let F be an arbitrary facet of (V,H). The (pro-p) parahoric subgroups
fixing F satisfy a similar exact sequence.

Proposition 6.3. The pro-p Iwahori Hecke rings satisfy the exact sequence:

0→ Z[L/L1]ε=0 → HZ(G̃, Ũ)
ĩ−→ HZ(G,U)→ 0.
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Proof. Proposition 2.24 (i), Theorem 2.25 (v) and Lemma 6.1.

Example: G̃ = GL(n, F )
ĩ−→ G = PGL(n, F ). We have L̃/L1 = F ∗/UF where UF

denotes the pro-p Sylow subgroup of the group O∗F of units of F .

6.2 Simply connected cover of the derived group and adjoint
group and scalar restriction

Let G be a connected reductive F -group, Gder its derived group, C0 the connected center

of G (an F -torus [Spr, 8.1.8]). The multiplication map Gder ×C0 j−→ G is a central F -

extension. The simply connected cover Gsc
ider
sc−−→ Gder is a central F -extension. We have

the F -central extension Gsc ×C0 j◦(idersc ×id)−−−−−−−→ G. The groups G,Gder,Gsc are canonical

F -central extensions of the adjoint group Gad of Gder, G
iad−−→ Gad, Gder

iadder−−→ Gad,

Gsc
iadsc =iadder◦i

der
sc−−−−−−−−−→ Gad. All the central extensions have a finite kernel.

The group Gsc is in a unique way a direct product of almost F -simple simply connected
groups (a group is almost F -simple if it has no infinite normal F -subgroup). If Gsc is
almost F -simple, there exist a separable finite field extension F ′/F and an (absolutely)
almost simple simply connected F ′-group H such that Gsc is F -isomorphic to the group
RF ′/F (H) obtained from H by restriction of the scalar field from F ′ of F [?, 6.21 (ii)].
We may everywhere replace “simply connected” by “adjoint”, in which case, the “almost”
can be dropped [T0, 3.1.2] [Borel, 14.10 Proposition, 22.10 Theorem].

We write Gsc = Gis
sc × Ganis

sc where Gis
sc =

∏
b∈Bis

sc
Gis

sc,b denotes the product of

the isotropic almost simple components Gis
sc,b, and Ganis

sc the product of the anisotropic
components. We write the same for the adjoint group. An object relative to G′∗ will be
denote the same way with an upper index ′ and lower index ∗. An object relative to C0

with an index C0.
As explained in section 5 for a general central extension, one associate to a triple

(T,B, ϕ) for G, via j and isc, a triple (Tder ×TC0 ,Bder × C0, ϕ) for Gder ×C0 and a
triple (Tsc,Bsc, ϕ) for Gsc such that

j−1(X) = Xder ×C0, i−1
sc (Xder) = Xsc and X = XderC

0,Xder = isc(Xsc) for X = Z,B,N,

and U = Uder is homeomorphic to Usc via isc. By factorization one gets triples for Gis
sc

and Gis
sc,b for all b.

We consider the (pro-p) Iwahori subgroups, admissible data, parameter maps and
splittings associated to these triples (we fixed an uniformizer pF ). The irreducible com-
ponents of the based reduced root system (Σ,∆) of G,Gder, Gsc are the based reduced
root systems (Σb,∆b) of Gissc,b for all b.

As in the introduction, we denote by G′ the subgroup of G generated by the set UG of
conjugates of U and we set X ′ := X∩G′ and (X/Y )′ := X ′/Y ′ for subgroups Y ⊂ X ⊂ G.
The group G′ is also generated by U and Uop

We consider first the product decomposition of the simply connected group Gsc. As
G′sc = Gissc [AHHV, II.4 Proposition] we have Z ′sc,k = Zissc,k, U′sc = Uissc, Ωissc = {1} hence

Ωissc,1 = Zissc,k. The factorisation Gsc = Gis
sc ×Ganis

sc transfers to a factorization of the

pro-p Iwahori subgroups Usc = Uissc × Uanissc and of the pro-p Iwahori Hecke rings and the
central subrings.
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Lemma 6.4. We have

Ωsc,1 = Zissc,k × Ωanissc,1 , Ωanissc,1 = Ganissc /Ganissc,1

HZ(Gsc,Usc) = HZ(Gissc,U
is
sc)⊗Z HZ(Ganissc ,Uanissc ),

ZZ(Gsc,Usc)
[
`=0 = ZZ(Gissc,U

is
sc)

[
`=0 ⊗Z ZZ(Ganissc ,Uanissc )[,

ZZ(Gsc,Usc)
[
`>0 = ZZ(Gissc,U

is
sc)

[
`>0 ⊗Z ZZ(Ganissc ,Uanissc )[,

HZ(Ganissc ,Uanissc ) = Z[Ganissc /(Ganissc )1], ZZ(Ganissc ,Uanissc )[ ' Z[T anissc /(T anissc )0].

The product decomposition of the adjoint group Gad ***

We compare now Gsc and Gad with Gder and G. The differences between the (pro-p)
Iwahori subgroups of Gsc, G

is
sc, Gder, G or their images by isc is seen by their intersections

with the different groups Z. The Kottwitz’s functoriality implies the inclusions

isc(Zsc,0) ⊂ (isc(Gsc) ∩ Z0), Zder,0 ⊂ (Gder ∩ Z0), Zder,0C0 ⊂ (GderC ∩ Z0).

Recalling isc(G
is
sc) = G′ we have also the inclusion isc(Z

is
sc,0) ⊂ (G′ ∩ Z0).

The Kottwitz homomorphism of Gsc being trivial, the Iwahori subgroup Zsc,0 ⊂ Zsc
is equal to the maximal compact subgroup Zmaxsc,0 ⊂ Zsc. As the kernel of isc is finite, the
images of the parahoric subgroups

(16) isc(Zsc,0) = isc(Gsc) ∩ Z0, isc(Z
is
sc,0) = G′ ∩ Z0

are as big as possible because the inverse images by isc of the compact groups on the right
side of the equalities are compact subgroups of Zsc and Zissc hence equal to the maximal
compact subgroups Zsc,0 and Zissc,0. The images of the unique pro-p Sylow subgroups

(17) isc(Zsc,1) = isc(Gsc) ∩ Z1, isc(Z
is
sc,1) = G′ ∩ Z1

are also as big as possible by Lemma 3.1 (iii). The p-part of the kernel of Gsc
isc−−→ G is a

central p-subgroup of Zsc hence is contained in the pro-p Sylow subgroup of the maximal
compact subgroup Zsc,0 ⊂ Zsc. The inverse images by isc of the groups on the right side
of the above equalities are µZsc,1 and (µ∩Zissc)Zissc,1 where µ is the prime to p part of the

kernel of Gsc
isc−−→ G. We deduce:

Lemma 6.5. The finite group µ of order prime to p, and the group µis = µ∩Zissc identify
with the kernels of the surjective homomorphisms

Zsc,k
isc−−→ (Z0 ∩ isc(Gsc))/(Z1 ∩ isc(Gsc)) ⊂ Zk, Zissc,k

isc−−→ (G′ ∩ Z0)/(G′ ∩ Z1) = Z ′k ⊂ Zk.

Remark 6.6. We have the inclusions isc(Zsc,0) ⊂ Zder,0 ⊂ Zder ∩ Z0. When the homo-

morphism Gsc
isc−−→ Gder is surjective, isc(Zsc,0) = Zder,0 is the maximal compact subgroup

Zmaxder,0 ⊂ Zder. Clearly Zder,0 = Zmaxder,0 implies Zder,0 = Zder ∩ Z0 and Zder,0 = Zder ∩ Z0

implies Zder,1 = Zder ∩ Z1 by Lemma 3.1 (i).

The kernel of Gsc
isc−−→ G is a finite abelian subgroup µ1µ ⊂ Zsc,0 of p-part µ1 and prime

to p-part µ. The restriction Gissc
iissc−−→ G of isc to Gissc ⊂ Gsc has kernel (µ1µ)is = µ1µ∩Gissc

and image G′der as G′sc = Gissc. By Remark 3.2 and (7)), the image of HZ(Gissc,U
is
sc)

iissc−−→
HZ(G,U) is HZ(G′U,U) ' HZ(G′,U′). We obtain:

Lemma 6.7. We have an exact sequence

0→ Z[µis]ε=0 → HZ(Gissc,U
is
sc)

iissc−−→ HZ(G′,U′)→ 0,

32



inducing an isomorphism between the central subalgebras ZZ(Gissc,U
is
sc)

[ '−→ ZZ(G′,U′)[

respecting the decomposition by the length:

ZZ(Gissc,U
is
sc)

[
`=0

'−→ ZZ(G′,U′)[`=0 and ZZ(Gissc,U
is
sc)

[
`>0

'−→ ZZ(G′,U′)[`>0.

Proof. It remains only to check the isomorphisms. The homomorphism W is
sc

isc−−→ W ′

respects the length hence the isomorphism ZZ(Gissc,U
is
sc)

[ '−→ ZZ(G′,U′)[ implies the two
other ones. We have (i ◦ iissc)(Tis

sc × Tanis
sc ) × TC0 = T. For µissc ∈ X∗(T

is
sc) and µ ∈

X∗(T ), µ = (i ◦ iissc) ◦ µ, we have (i ◦ iissc)(Eissc(µissc)) = E(µ) and Λis,[sc **

Theorem 6.8. (i) The homomorphisms Gsc
isc−−→ Gder

i−→ G induce homomorphisms

Wsc
isc−−→Wder

i−→W, between the admissible data Wsc,Wder,W with the same based
root system (Σ,∆), compatible with the parameter maps and the splittings.

(ii) µ is the kernel of Ωsc,1
isc−−→ Ωder,1 and of Ωsc,1

i◦isc−−−→ Ω1, (Z1 ∩ Zder)/Zder,1 is the

kernel of Ωder,1
i−→ Ω1. The subgroup isc(Ωsc,1) ⊂ Ωder,1 is normal of finite index,

the subgroup i(Ωder,1) ⊂ Ω1 is normal.

(iii) The homomorphisms Gsc
isc−−→ Gder

i−→ G send the (pro-p) parahoric subgroup fixing
a facet of (V,H) into the (pro-p) parahoric subgroup fixing the same facet.

(iv) The maps HZ(Gsc,Usc)
isc−−→ HZ(Gder,Uder)

i−→ HZ(G,U) between the pro-p Iwahori
Hecke rings satisfy Proposition 2.24.

(v) The kernel of the homomorphism HZ(Gder,Uder)
i−→ HZ(G,U) is Z[(Z1∩Zder)/Zder,1]ε=0.

The image of i is

HZ(G′,U ′) oZ[i(Z′k)] Z[i(Ωder,1)] = HZ(GderU,U) ' HZ(Gder, (Z1 ∩ Zder)U′der).

In particular when Zder,0 = Zmaxder,0, the homomorphism HZ(Gder,Uder)
i−→ HZ(G,U)

is injective.

The kernels of HZ(Gsc,Usc)
isc−−→ HZ(Gder,Uder) and of HZ(Gsc,Usc)

i◦isc−−−→ HZ(G,U)
are Z[µ]ε=0. The image of isc is

HZ(G′der,U ′der)oZ[Z′der,k]Z[isc(Ωsc,1)] = HZ(isc(Gsc)Uder,Uder) ' HZ(isc(Gsc), isc(Usc)).

The image of i ◦ isc is HZ(G′,U ′) oZ[Z′k] Z[(i ◦ isc)(Ωsc,1)].

(vi) The homomorphisms isc and i between the pro-p Iwahori Hecke rings induce homo-
morphisms between the central subrings respecting the length

The homomorphism ZZ(Gsc,Usc)
[
∗
isc−−→ ZZ(Gder,Uder)

[
∗ is an isomorphism

The homomorphism ZZ(Gder,Uder)[∗
i−→ ZZ(G,U)[∗ is injective.

We have ZZ(G,U)[`=0 = i(ZZ(Gder,Uder)
[
`=0)Z[(C0/C0

0 )[1],

ZZ(G,U)[`>0 = i(ZZ(Gder,Uder)
[
`>0)Z[(C0/C0

0 )[1].

Proof. Theorem 2.25 for Gsc
isc−−→ Gder, Theorem 2.28 for Gder

i−→ G and Gsc
i◦isc−−−→ G,

and Remark 5.5. Note that each subgroup isc(Gsc) ⊂ Gder ⊂ G is normal in the next
one, µ ' i−1

sc (Zder,1)/Zsc,1 ' (i ◦ isc)−1(Z1)/Zsc,1, (Zder,1 ∩ isc(Zsc)) ⊂ isc(Usc), and if
Zder,0 = Zmaxder,0 that (Z1 ∩ Zder) ⊂ Uder (Lemma 6.5 (i)).

Remark 6.9. The Iwahori Hecke rings satisfy stronger results: the homomorphism

HZ(Gsc,Bsc)
i◦isc−−−→ HZ(G,B) is injective, and the affine Iwahori Hecke rings are iso-

morphic to the Iwahori Hecke ring of Gissc:

HZ(Gissc,B
is
sc) ' H

aff
Z (Gsc,Bsc)

∼−→ HaffZ (Gder,Bder)
∼−→ HaffZ (G,B) = HZ(G′,B′).
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Remark 6.10. The results are simpler when G is F -split. In this case,

Gissc = Gsc, Ωsc,1 = Zsc,k, Zder,0 = Zmaxder,0, Z0 = Zmax0 , Λ = Λ[,

the homomorphism HZ(Gder,Uder)
i−→ HZ(G,U) is injective, and if Gder is simply con-

nected, we have HZ(G,U) ' HZ(Gsc,Usc)⊗Z[Zsc,k] Z[Ω1].

et dans le cas quasi-split
We consider now R-representations. For an R-representation π of a subgroup of G

containing i ◦ isc(Gsc), we denote by πsc the inflation to Gsc of π|i◦isc(Gsc).

Proposition 6.11. Let π be an irreducible admissible R-representation of G.

(i) Assume that R is a field. We have:

π|i◦isc(Gsc) = ⊕jπj and πsc = ⊕jπj,sc, πj,sc = πisj,sc ⊗ πanisj,sc , π
is
j,sc = ⊕j(

∏
i π

is
j,sc,i)

where the sum is finite and πj , π
is
j,sc,i, π

anis
j,sc are irreducible admissible.

π is supercuspidal if and only if πisj,sc is supercuspidal for all j if and only if πisj,sc is
supercuspidal for one j.

πisj,sc is supercuspidal if and only if πisj,sc,i is supercuspidal for all i.

(ii) Assume that that R is a field of characteristic p. We have:

πU contains a supersingular module if and only if (πj,sc)
Usc contains a supersingular

module for some j.

πU is supersingular if and only if all (πj,sc)
Usc is supersingular for all j.

(πj,sc)
Usc is supersingular if and only if (πisj,sc,i)

Uis,isc is supersingular for all i. We
can replace “is supersingular” by “contains a supersingular module”.

Proof. Theorem 2.28 and Proposition 2.26 We apply applied to Gsc
i◦isc−−−→ G.

Let P ⊂ G,Psc ⊂ Gsc, P
is
sc,i ⊂ Gissc,i be standard parabolic subgroups with ∆P =

∆Psc,∆P ∩ ∆i = ∆Psc,i , and let P = NM,Psc = MscNsc, P
is
sc,i = M is

sc,iN
is
sc,i be the

standard Levi decompositions. We have Psc = (
∏
i Psc,i)×Ganissc .

Assume that R is a field. Let σ be a supercuspidal R-representation of M . Its restric-
tion to (i ◦ isc)(M) lifts to a semisimple finite length representation σMsc

= ⊕jσj,Msc
=

⊕j(
∏
i σ

is
j,Msc,i

) ⊗ σanisj,Msc
where σisj,Msc,i

is supercuspidal for all (j, i) by Proposition 6.11
(i).

Theorem 6.12. Assume that R is an algebraically closed field of characteristic p and
that (P, σ,Q) is a supercuspidal standard triple of G.

Then (P (σ))sc = (
∏
i P (σj,Msc,i))×Ganissc , and

(IG(P, σ,Q))sc = ⊕jIGsc(Psc, σj,Msc
, Qsc),

IGsc(Psc, σj,Msc
, Qsc) = (⊗iIGissc,i(P

is
sc,i, σ

is
j,Msc,i, Q

is
sc,i))⊗ σanisj,Msc

.

Proof. Theorem 2.28 and Theorem 2.27 applied to Gsc
i◦isc−−−→ G.

————————————————————-

NEW

The relative local Dynkin diagram of (G, F ) is the Dynkin diagram ∆ = ∆(Φaf ) of
the affine root system Φaf (or “échelonnage” [BT1, 1.4]) of (G, F ). It is the Coxeter
diagram of the affine reflection group (W,S), where double and triple edges and possibly
some fat ones are oriented, and some vertices (possibly none) are marked with a cross,
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such that for every vertex ν marked with a cross, all edges having ν as an extremity are
double or fat and none of them is oriented away from ν.

To each vertex ν of ∆ is attached a positive integer d(ν) which depends not only on
Φaf and on ν but on (G, F ) itself. If G is F -split, all d(ν) are equal to 1 [Tits, 1.8].

The index of (G, F ) consists of
(a) The Dynkin diagram ∆1 = ∆(Φ1af ) of the affine root system Φ1af (or “échelonnage”

[BT1, 1.4]) of (G, Funr) where Funr is the maximal unramfied extension of F (absolute
local Dynkin diagram).

(b) The action of Gal(Funr/F ) on ∆1.
(c) The Gal(Funr/F )-invariant set of distinguished vertices of ∆1. When G is simple,

all vertices are distinguished except for the unique anisotropic type dAd−1.

The index of (G, F ) determines its relative local Dynkin diagram ∆ and the integers
d(ν) uniquely.

First of all, there is a canonical bijection ν 7→ O(ν) between the vertices of ∆ and the
Gal(Funr/F )-orbits of distinguished vertices of ∆1. For every vertex ν of ∆, ∆1,ν *** is
the index of a semisimple group of relative rank 1 over the residue field k of F , the integer
d(ν) is half the total number of absolute roots of that group and ν is maked with a cross
in ∆ if and only if the relative root system of the group in question has type BC1, that
means that ∆1,ν is a disjoint union of diagrams of type A2.

The type of the edge joining ν and ν′ in ∆ is determined by ∆1,ν,ν′ ∗ ∗∗, O(ν) and
O(ν′). This is an “empty edge” if and only if no connected component of ∆1,ν,ν′ meets
both O(ν) and O(ν′). Otherwise Gal(Funr/F ) permutes the connected components of
∆1,ν,ν′ and the result can be described in terms of any one of them, say ∆o

1,ν,ν′ . If the
latter has only two vertices ν1 ∈ O(ν) and ν′1 ∈ O(ν′), then ν and ν′ are joined in ∆ in
the same way they are joined in ∆o

1,ν,ν′ . When ∆o
1,ν,ν′ has at least three vertices, we refer

to the tables which give ∆. [Tits, 1.11]
The tables provide a list of all central isogeny classes of absolutely quasi-simple F -

groups.

We say the G is residually split if G has the same rank over F and over Funr. A
residually split group is quasi-split. The group is residually split if and only if

There is a smallest unramified extension F ′/F on which G is residually split (the
smallest splitting field of T1), and G being quasi-split over F ′, has a smallest splitting
field F ′′ over F ′. The field F ′′ is the unique splitting field of G over F for which the degree
[F ′′ : F ] and the ramification index e(F ′′/F ) are minimal for the lexicographic ordering.

A F -simple F -group G is the scalar restriction G = RF′/F(G′) of a connected ab-
solutely simple F ′-group G′ over a finite separable extension F ′/F [BorelTits, 6.21 (ii)].
The relative local Dynkin diagram, the integers d(ν), and the index of (G, F ) can be
deduced from those of (G′, F ′) [Tits, 1.12]. We decompose F ′/F into its unramified and
its totally ramified parts and handle the two cases separately.

If F ′/F is totally ramified, the local Dynkin diagram, the integers d(ν) and the index
are the same for (G, F ) as for (G′, F ′).

If F ′/F is unramified of degree f , the index of (G, F ) consists of f copies of the index
of (G′, F ′) permuted transitively by Gal(F sep/F ) whose action on the whole diagram
us “induced up” from the action of Gal(F sep/F ) on one copy, the relative local Dynkin
diagram of (G, F ) is the same as that of (G′, F ′) and the integers d(ν) are f times as big.

When G is semi-simple, the Iwahori-Hecke algebra of (G, F ) is given by (W,S), the
integers d(ν), and a finite commutative subgroup Ω of the group Aut Cox(W,S) of auto-
morphisms of the Coxeter diagram Cox(W,S) of (W,S).
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