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Let H be the group of points of a connected reductive group over a local non archimedean field F . Let ω
be a character of the center of H. Let C := ModωH be the category of complex representations of H which
are smooth (the stabilizer of a vector is an open subgroup of H), with central character ω. It is known that C
has enough injectives and projectives, and we can define ExtiC(V, V

′) for two representations V, V ′ ∈ C, using
a projective resolution (P i)i≥0 of V , or an injective resolution (Ii)i≥0 of V ′. The cohomology of the complex
HomC(P i, V ′) and of the complex HomC(V, Ii) are the same, and are equal to ExtiC(V, V

′) by definition.

Question Let V, V ′ ∈ C irreducible, with V essentially square integrable (essentially because of the
center), and V ′ essentially tempered. Is is true that

ExtiC(V, V
′) = ExtiC(V

′, V ) = 0

for all integers i > 0 ?

This question is motivated by the orthogonal decomposition of the Schwartz algebra of H given by the
Plancherel formula ([Sil th.3 page 4679] for example). I tried to prove without success that the answer was
yes, some years ago while writing [Vig1]. The answer (yes) is an exercise for GL(n, F ) for any integer n > 1.

It can be worth to publish it.
Let H = G := GL(n, F ). Let V ∈ C irreducible essentially square integrable. We can describe all the

irreducible V ′ ∈ C such that ExtiC(V
′, V ) �= 0 for at least one integer i ≥ 0. For such a V ′, there is a unique

i such that ExtiC(V
′, V ) � C, and is zero otherwise. If V ′ �� V , then V ′ does not have a Whittaker model.

An irreducible essentially tempered representation has a Whittaker model. For all irreducible tempered
representation V ′ not isomorphic to V , we get Ext∗C(V

′, V ) = 0. Using duality, we get Ext∗C(V, V
′) = 0.

The computation of Ext∗C(V
′, V ) for V irreducible essentially square integrable and V ′ irreducible, is a

corollary of the classification of square integrable representations by Zelevinski, the theory of simple types
by Bushnell and Kutzko, the Zelevinski involution by Aubert, Schneider and Stuhler, the computation of
Ext∗C(1, V

′) by Casselman.
We give a very short proof of Ext∗C(V, V

′) = 0 for V, V ′ ∈ C, irreducible tempered and not isomorphic,
suggested by Waldspurger. The group G has the particularity to have at most one irreducible tempered
representation with a given infinitesimal character (i.e. cuspidal support), and Ext∗C(V, V

′) = 0 for two
irreducible representations V, V ′ of G having different infinitesimal characters. This second fact is very
general, and uses the interpretation by Yoneda of ExtnC(V, V

′) by n-extensions, as in the real case.
The author was supported by a grant of the von Humboldt foundation, and this work was done in the

wonderful atmosphere of the Max Planck Institute in Bonn in the fall of 1996.

1 We set G := GL(n, F ) and C = ModG (we do not fix the central character). From Bernstein [Z
9.3], any V ∈ C irreducible essentially square integrable is a Steinberg representation Stk(ρ) where ρ is an
irreducible cuspidal representation of GL(r, F ) for some integer r > 0, and rk = n. The Steinberg represen-
tation Stk(ρ) is the unique irreducible subquotient with a Whittaker model in the natural representation of
G in the space of locally constant functions f : G → ⊗kρ such that f(mug) = ⊗kρ(m)f(g) for any g ∈ G
and any element mu (m ∈M, u ∈ U), in a parabolic subgroup of G with Levi component M isomorphic to
GL(r, F )k, and unipotent radical U . When r = 1 and ρ = 1 is the trivial character 1 of F ∗, Stn(1) = St is
the usual Steinberg representation.

A block in the abelian category C is an indecomposable abelian subcategory which is a direct factor.
There are no non trivial homomorphisms between two different blocks. The blocks are classified by the
semi-simple types of Bushnell-Kutzko [BK2, BK3], and also by the irreducible cuspidal representations of
Levi subgroups modulo G-conjugation, and twist by unramified characters [BD].
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The semi-simple type of a block is a distinguished irreducible representation σ of a distinguished open
compact subgroup K of G, such that the functor

Fσ : V → HomG(indG,K σ, V )

is an equivalence of categories between the block and the category of right EndG indG,K σ-modules.

Let I be an Iwahori subgroup (unique modulo G-conjugation). A representation V ∈ C generated by
the I-invariant vectors V I , is called unipotent. The unipotent representations form a block, of semisimple
type the trivial representation of I. Set FI = HomG(indG,I 1,−).

Let (e, f, d), efd = r, be the invariants of ρ [Vig1 III.5]. Let q be the order of the residual field of F .
Let F ′ be any local non archimedean field, with residual field of order q′ = qfd. We set G′ = GL(k, F ′) and
C′ = ModG′. Denote I ′ an Iwahori subgroup of G′.

Bushnell and Kutzko [BK1 7.6.18] have shown that there is a natural algebra isomorphism [BK1 7.6.18,
7.6.21]

i : EndG′ indG′,I′ 1→ EndG indG,K σ.

We get a functor Φ which is an equivalence of categories, from the unipotent block in C′ to the block in C
containing Stk(ρ) such that

i∗ ◦ Fσ ◦ Φ′ = HomG′(indG′,I′ 1,−).

For any Levi subgroup M ′ of G′, there is a similar functor Φ′ which is an equivalence from the unipotent
block of M ′ to a block in a Levi subgroup M of G. This is compatible with the normalized parabolic induction
iG′,M ′ and iG,M , or restriction rM ′,G′ and rM,G , along Q′ = M ′Q′o and Q = MQo, where Q′o and Qo are
suitable Borel subgroups of G′ and G:

Φ ◦ iG′,M ′ = iG,M ◦ Φ′, Φ′ ◦ rM ′,G′ = rM,G ◦ Φ

This is a consequence of [BK1 7.6.21].

Proposition The functor Φ sends an essentially square integrable (resp. unitary, having a Whittaker
model, essentially tempered) irreducible unipotent representation of G′ to an essentially square integrable
(resp. unitary, having a Whittaker model, essentially tempered) irreducible representation of G.

For essentially square integrable see [BK1 7.7]. For unitary see [BK1 7.6.25]. The irreducible repre-
sentations of G with a Whittaker model are induced from essentially square integrable representations of
Levi subgroups [Z 9.11]. The assertion for the Whittaker model follows from this and the compatibility of
Φ′,Φ with the induction. The tempered irreducible representations of G are induced from square integrable
representations [Sil 4.5.11]. Hence the assertion for essentially tempered representations.

2 We want to prove a vanishing result for Ext1, between characters of affine Hecke algebras, directly
and in an elementary way. In fact, the best method to compute Ext∗ between modules for affine Hecke
algebras, is to use the dictionnary with representations. This paragraph could be skipped.

The Hecke algebra EndG indG,I 1 is naturally isomorphic to the affine Hecke algebra HC(n, q) of type
An−1 and parameter q [BK1 5.6.6].

The Hecke C-algebra Ho
C(n, x) of type An−1 with parameter x ∈ C∗, x �= 0, 1, is the C-algebra generated

by (s1, . . . , sn−1) with the relations
(si + 1)(si − x) = 0 (1 ≤ i ≤ n− 1),
sisj = sjsi (1 ≤ i, j ≤ n− 1, |j − i| �= 1)
sisi+1si = si+1sisi+1 (1 ≤ i ≤ n− 2).

The affine Hecke C-algebra HC(n, x) of type An−1 with parameter x is generated by Ho
C(n, x) and t with
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tt−1 = t−1t = 1, tsi = si−1t (1 < i < n), t2s1 = sn−1t
2.

Note that this description [BK 5.4 page 177] is not the Bernstein description.

The finite algebra Ho
C(n, x) is isomorphic to the group algebra C[Sn] of the symmetric group Sn and

has two characters. For the character sign, the image of all the si is −1. For the trivial character, the image
of all the si is x. The two characters extend to characters of HC(n, x), the image of t beeing an arbitrary
not zero complex element. The HC(k, q)-module F (St) is a sign character of HC(n, q).

The center of G is naturally identified with F ∗ diagonally enbedded in G. The center of HC(n, x)
contains tn. The central character of St is trivial. The category of unipotent representations of G with
trivial central character is isomorphic by the functor FI defined in (1) to the category ModHC(n, q)1 of
right modules of the quotient HC(n, q)1 of HC(n, q) by the two-sided ideal generated by tn− 1 [Vig2 I.3.14].

2.1 Lemma Let χ, χ′ ∈ C := ModHC(n, q)1 two characters. Then Ext1C(χ, χ
′) = 0.

Indeed the algebras Ho
C(n, q) and C[t], tn = 1, are semisimple (but the quotient HC(n, q)1 is not semisim-

ple). If V ∈ C is an extension of χ by χ, then hv = χ(h)v for all h ∈ Ho
C(n, q), v ∈ V, and t acting semisimply,

V � χ⊕ χ.
There is another proof when n = 2 in [DPrasad p.175 proof of the lemma 7]. Note that if we were not

fixing the center, we could have extensions. I do not know how to compute directly Exti when i > 1.
When V is an extension of two different characters χ′ �= χ in ModHC(n, q)1 or in ModHC(n, q), one

sees that V � χ⊕ χ′ by restriction to the commuting algebras Ho
C(n, q) and C[t].

2.2 From (2.1), Ext1(St, St) = 0 in Mod1 G. Any irreducible square integrable unipotent representation
V of G is the twist St⊗χx of St by an unramified character of G

χx(g) = xval det g, g ∈ G,

for some x ∈ C∗, where val : (F )∗ → Z is the valuation of F , sending an uniformizing parameter to 1. The
central character of St⊗χx is the character χkx of F ∗. It is trivial if and only if St⊗χx � St .

The twist by a character χ of G does not change the value of Ext∗. If V, V ′ ∈ C := Modω G, then
V ⊗ χ, V ′ ⊗ χ ∈ Cχ := Modωω(χ) G where ω(χ) is the restriction of χ to the center of G. We have :

Ext∗C(V, V
′) � Ext∗Cχ(V ⊗ χ, V ′ ⊗ χ).

Using the functor FI of (1), we get :

Proposition Let V, V ′ irreducible and essentially square integrable in the category C := Modω G.
Then

Ext1C(V, V
′) = 0.

There is another proof due to Silberger of this result, valid for a general reductive group [Sil2]. To
compute some ExtiC(V, V

′) when i > 1, we use the results of Casselman [Cas].

3 Let H as in the introduction. Let C := Mod1 H be the category of representations of H with trivial
character. Denote by StQ ∈ C the Steinberg representation defined by a parabolic subgroup Q of H [BW 4.6
page 308]. If τQ is the natural representation of H on the complex space of locally constant left Q-invariant
functions H → C, then StQ is the quotient of τQ by the subrepresentation generated by the natural images
of τQ′ in τQ, for all parabolic subgroups Q′ of H which contain Q. We have StH = 1. When Q = Qo is
minimal, then StQo = St is the usual Steinberg representation. The representations StQ are irreducible and
not isomorphic.

The parabolic rank of Q is the rank of a maximal split torus in the center of a Levi component of Q.
We denote

mQ = parabolic rank of Q − parabolic rank of H .
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This an integer ≥ 0.

Theorem [BW 5.1 th.4.12 page 313] Let V ∈ C := Mod1 H irreducible such that Ext∗(1, V ) �= 0.
Then there exists a parabolic subgroup Q of H such that V � StQ. Moreover ExtmC (1, StQ) � C if m = mQ,
and is zero otherwise.

Remarque Suppose H = G := GL(n, F ), and C := Mod1 G.
We have ExtoC(1, 1) � C and ExtmC (1, 1) = 0 for any integer m ≥ 1.
The representation τQ ∈ C has a unique irreducible subquotient with a Whittaker model, this unique

subquotient is isomorphic to St [Z 9.7]. In particular, when Q �= Qo the representation StQ does not have a
Whittaker model. Hence Ext∗C(1, V ) = 0 for any irreducible representation V �= St with a Whittaker model.

4 Zelevinski involution Let G as in (1). The Zelevinski involution τ in ModG has the following
properties :

a) τ respects the property of beeing irreducible [A 2.3, 2.9].
b) τ exchanges the trivial and the usual Steinberg representation [Z 9.2].
c) τ(−⊗ χ) = τ(−)⊗ χ commutes with the twist by a character χ of G [Z 9.1].
d) τ respects the cuspidal support [Z 9.1].
e) τ is an exact contravariant functor and respects the cuspidal support [SS 3.1], hence respects the

representations with a given central character.

Set C := ModG or C := Modω G, where ω is a character of the center of G. By e) we have for any
V, V ′ ∈ C

Ext∗C(V, V
′) � Ext∗C(τ(V

′), τ(V )).

With the notations of (3), the representation τ(StQ) is not isomorphic to St when Q �= G by b), and is a
subquotient of τQo by d). Hence τ(StQ) does not have a Whittaker model when Q �= G, in particular is not
essentially tempered. We deduce from (3):

Theorem Let V, V ′ ∈ C := Modw G, irreducible, such that V � St ⊗ χ is unipotent and essentially
square integrable as in 2), and Ext∗C(V

′, V ) �= 0. Then there exists a parabolic subgroup Q of G′ such that
V ′ � τ(St′Q)⊗χ. For V ′ = τ(StQ)⊗χ, we have ExtmC (V ′, V ) � C∗ if m = mQ as in 3), and zero otherwise.

In particular, if V is a unipotent Steinberg representation, and if V ′ �� V is essentially tempered, then

ExtoC(V, V ) � C, ExtiC(V, V ) = ExtiC(V
′, V ) = 0

for all integers i > 0. We will prove also

(4.1) ExtiC(V, V
′) = 0

using duality as follows.

5 Duality Let (H,ω) as in the introduction. The contragredient V → V ∗ is a contravariant exact func-
tor in ModH, which sends a projective representation to an injective representation [Vig2 I.4.18]. A represen-
tation V is called admissible when V ∗∗ � V . When V is admissible, and (Pi)→ V is a projective resolution
of V , then V ∗ → (P ∗i ) is an injective resolution of V ∗, and Hom(Pi,W ) � Hom(W ∗, P ∗i ) canonically [Vig2
I4.13]. If V ∈ ModωH, then V ∗ ∈ Modω−1 H. Set C := C∗ := ModH or C := ModωH, C∗ := Modω−1 H.

Proposition Let V,W ∈ C admissible of contragredient V ∗,W ∗ ∈ C∗, one has Ext∗C(V,W ) �
Ext∗C∗(W

∗, V ∗).

The contragredient respects the property of beeing essentially square integrable and of beeing essentially
tempered. We deduce (4.1). Hence the answer to the question in the introduction is yes, for G = GL(n, F ).
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There is another proof, suggested by Waldspurger, using that the essentially tempered irreducible repre-
sentations of G have different cuspidal support. This comes from the classification of Zelevinki [Z], which
shows that tempered irreducible representations are not degenerate (1), and that not degenerate irreducible
representations have different cuspidal support.

6 Let (H,w), C as in (5). There is a natural equivalence between the two bifunctors on C,

ExtnC(A,B) and YextnC(A,B)

given by the Yoneda n-extensions of A by B modulo an equivalence relation ≡. The proofs are the same
than in the category of (left) modules for a ring [M III.6.4, III.8.2].

An n-extension X of A by B is an exact sequence starting at B and ending at A,

X : 0→ B → Xn → . . .→ X1 → A→ 0.

A morphism γ : X → Y between two n-extensions starting with β and ending with α is a commutative
diagram

X : 0 → B → Xn → . . . → X1 → A → 0
↓ γ ↓ β ↓ ↓ ↓ α
Y : 0 → D → Yn → . . . → Y1 → C → 0

The equivalence relation ≡ in the set of n-extensions of A by B, is generated by the relation : there exists
a morphism γ : X → Y starting and ending with the identity.

An n-extension X ending at A can be spliced with an m-extension Y starting at A, to give an n + m-
extension X ◦ Y starting like X, ending like Y . If α : A′ → A, one defines by pull-back an extension Xα
starting like X, ending at A′. If Z is an m-extension starting by A′, one defines by push-out an m-extension
αZ starting at A, ending like Z. By definition of the equivalence relation, one has

Xα ◦ Z ≡ X ◦ αZ.

A morphism γ : X → Y starting with β and ending with α gives an equivalence [M III.5.1]

βX ≡ Y α.

An element z of the center of C defines an endomorphism of X. If z acts on A and on B by multiplication
by two different scalars za �= zB ∈ R, we deduce that the image of X in Yextn(A,B) � Extn(A,B) is 0.

For A,B ∈ C irreducible of different cuspidal support, there is an element z in the center of C which
acts by the identity on A and is zero on B′. This comes from the description of the center by Bernstein
[BD]. We get the following theorem.

6.1 Theorem Let V, V ′ ∈ C irreducible of different cuspidal support. Then Ext∗C(V, V
′) = 0.

6.2 Corollary Suppose that H = GL(n, F ). Let V, V ′ ∈ C irreducible not degenerate, and V �= V ′.
Then Ext∗C(V, V

′) = 0.
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