Extensions between irreducible representations of a p-adic GL(n)

Marie-France Vignéras

Let H be the group of points of a connected reductive group over a local non archimedean field F. Let ω be a character of the center of H. Let $\mathcal{C} := \operatorname{Mod}_{\omega} H$ be the category of complex representations of H which are smooth (the stabilizer of a vector is an open subgroup of H), with central character ω . It is known that \mathcal{C} has enough injectives and projectives, and we can define $\operatorname{Ext}^i_{\mathcal{C}}(V,V')$ for two representations $V,V'\in\mathcal{C}$, using a projective resolution $(P^i)_{i\geq 0}$ of V, or an injective resolution $(I^i)_{i\geq 0}$ of V'. The cohomology of the complex $\operatorname{Hom}_{\mathcal{C}}(P^i,V')$ and of the complex $\operatorname{Hom}_{\mathcal{C}}(V,I^i)$ are the same, and are equal to $\operatorname{Ext}^i_{\mathcal{C}}(V,V')$ by definition.

Question Let $V, V' \in \mathcal{C}$ irreducible, with V essentially square integrable (essentially because of the center), and V' essentially tempered. Is is true that

$$\operatorname{Ext}_{\mathcal{C}}^{i}(V, V') = \operatorname{Ext}_{\mathcal{C}}^{i}(V', V) = 0$$

for all integers i > 0?

This question is motivated by the orthogonal decomposition of the Schwartz algebra of H given by the Plancherel formula ([Sil th.3 page 4679] for example). I tried to prove without success that the answer was yes, some years ago while writing [Vig1]. The answer (yes) is an exercise for GL(n, F) for any integer n > 1. It can be worth to publish it.

Let H = G := GL(n, F). Let $V \in \mathcal{C}$ irreducible essentially square integrable. We can describe all the irreducible $V' \in \mathcal{C}$ such that $\operatorname{Ext}^i_{\mathcal{C}}(V', V) \neq 0$ for at least one integer $i \geq 0$. For such a V', there is a unique i such that $\operatorname{Ext}^i_{\mathcal{C}}(V', V) \simeq \mathbf{C}$, and is zero otherwise. If $V' \not\simeq V$, then V' does not have a Whittaker model. An irreducible essentially tempered representation has a Whittaker model. For all irreducible tempered representation V' not isomorphic to V, we get $\operatorname{Ext}^*_{\mathcal{C}}(V', V) = 0$. Using duality, we get $\operatorname{Ext}^*_{\mathcal{C}}(V, V') = 0$.

The computation of $\operatorname{Ext}^*_{\mathcal{C}}(V',V)$ for V irreducible essentially square integrable and V' irreducible, is a corollary of the classification of square integrable representations by Zelevinski, the theory of simple types by Bushnell and Kutzko, the Zelevinski involution by Aubert, Schneider and Stuhler, the computation of $\operatorname{Ext}^*_{\mathcal{C}}(1,V')$ by Casselman.

We give a very short proof of $\operatorname{Ext}^*_{\mathcal{C}}(V,V')=0$ for $V,\ V'\in\mathcal{C}$, irreducible tempered and not isomorphic, suggested by Waldspurger. The group G has the particularity to have at most one irreducible tempered representation with a given infinitesimal character (i.e. cuspidal support), and $\operatorname{Ext}^*_{\mathcal{C}}(V,V')=0$ for two irreducible representations V,V' of G having different infinitesimal characters. This second fact is very general, and uses the interpretation by Yoneda of $\operatorname{Ext}^n_{\mathcal{C}}(V,V')$ by n-extensions, as in the real case.

The author was supported by a grant of the von Humboldt foundation, and this work was done in the wonderful atmosphere of the Max Planck Institute in Bonn in the fall of 1996.

1 We set G := GL(n, F) and $C = \operatorname{Mod} G$ (we do not fix the central character). From Bernstein [Z 9.3], any $V \in C$ irreducible essentially square integrable is a Steinberg representation $St_k(\rho)$ where ρ is an irreducible cuspidal representation of GL(r, F) for some integer r > 0, and rk = n. The Steinberg representation $St_k(\rho)$ is the unique irreducible subquotient with a Whittaker model in the natural representation of G in the space of locally constant functions $f: G \to \otimes^k \rho$ such that $f(mug) = \otimes^k \rho(m)f(g)$ for any $g \in G$ and any element mu ($m \in M$, $u \in U$), in a parabolic subgroup of G with Levi component M isomorphic to $GL(r, F)^k$, and unipotent radical U. When r = 1 and $\rho = 1$ is the trivial character 1 of F^* , $St_n(1) = St$ is the usual Steinberg representation.

A block in the abelian category \mathcal{C} is an indecomposable abelian subcategory which is a direct factor. There are no non trivial homomorphisms between two different blocks. The blocks are classified by the semi-simple types of Bushnell-Kutzko [BK2, BK3], and also by the irreducible cuspidal representations of Levi subgroups modulo G-conjugation, and twist by unramified characters [BD].

The semi-simple type of a block is a distinguished irreducible representation σ of a distinguished open compact subgroup K of G, such that the functor

$$F_{\sigma}: V \to \operatorname{Hom}_{G}(\operatorname{ind}_{G,K} \sigma, V)$$

is an equivalence of categories between the block and the category of right $\operatorname{End}_G\operatorname{ind}_{G,K}\sigma$ -modules.

Let I be an Iwahori subgroup (unique modulo G-conjugation). A representation $V \in \mathcal{C}$ generated by the I-invariant vectors V^I , is called *unipotent*. The unipotent representations form a block, of semisimple type the trivial representation of I. Set $F_I = \text{Hom}_G(\text{ind}_{G,I} 1, -)$.

Let (e, f, d), efd = r, be the invariants of ρ [Vig1 III.5]. Let q be the order of the residual field of F. Let F' be any local non archimedean field, with residual field of order $q' = q^{fd}$. We set G' = GL(k, F') and C' = Mod G'. Denote I' an Iwahori subgroup of G'.

Bushnell and Kutzko $[BK1\ 7.6.18]$ have shown that there is a natural algebra isomorphism $[BK1\ 7.6.18,$ 7.6.21]

$$i: \operatorname{End}_{G'} \operatorname{ind}_{G',I'} 1 \to \operatorname{End}_{G} \operatorname{ind}_{G,K} \sigma.$$

We get a functor Φ which is an equivalence of categories, from the unipotent block in \mathcal{C}' to the block in \mathcal{C} containing $St_k(\rho)$ such that

$$i^* \circ F_{\sigma} \circ \Phi' = \operatorname{Hom}_{G'}(\operatorname{ind}_{G',I'} 1, -).$$

For any Levi subgroup M' of G', there is a similar functor Φ' which is an equivalence from the unipotent block of M' to a block in a Levi subgroup M of G. This is compatible with the normalized parabolic induction $i_{G',M'}$ and $i_{G,M}$, or restriction $r_{M',G'}$ and $r_{M,G}$, along $Q' = M'Q'_o$ and $Q = MQ_o$, where Q'_o and Q_o are suitable Borel subgroups of G' and G:

$$\Phi \circ i_{G',M'} = i_{G,M} \circ \Phi', \quad \Phi' \circ r_{M',G'} = r_{M,G} \circ \Phi$$

This is a consequence of [BK1 7.6.21].

Proposition The functor Φ sends an essentially square integrable (resp. unitary, having a Whittaker model, essentially tempered) irreducible unipotent representation of G' to an essentially square integrable (resp. unitary, having a Whittaker model, essentially tempered) irreducible representation of G.

For essentially square integrable see [BK1 7.7]. For unitary see [BK1 7.6.25]. The irreducible representations of G with a Whittaker model are induced from essentially square integrable representations of Levi subgroups [Z 9.11]. The assertion for the Whittaker model follows from this and the compatibility of Φ' , Φ with the induction. The tempered irreducible representations of G are induced from square integrable representations [Sil 4.5.11]. Hence the assertion for essentially tempered representations.

2 We want to prove a vanishing result for Ext¹, between characters of affine Hecke algebras, directly and in an elementary way. In fact, the best method to compute Ext* between modules for affine Hecke algebras, is to use the dictionnary with representations. This paragraph could be skipped.

The Hecke algebra $\operatorname{End}_G \operatorname{ind}_{G,I} 1$ is naturally isomorphic to the affine Hecke algebra $H_{\mathbf{C}}(n,q)$ of type A_{n-1} and parameter q [BK1 5.6.6].

The Hecke C-algebra $H^o_{\mathbf{C}}(n,x)$ of type A_{n-1} with parameter $x \in \mathbf{C}^*$, $x \neq 0, 1$, is the C-algebra generated by (s_1, \ldots, s_{n-1}) with the relations

$$(s_i + 1)(s_i - x) = 0 \ (1 \le i \le n - 1),$$

 $s_i s_j = s_j s_i \ (1 \le i, j \le n - 1, |j - i| \ne 1)$
 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \ (1 \le i \le n - 2).$

The affine Hecke C-algebra $H_{\mathbf{C}}(n,x)$ of type A_{n-1} with parameter x is generated by $H_{\mathbf{C}}^{o}(n,x)$ and t with

 $tt^{-1} = t^{-1}t = 1$, $ts_i = s_{i-1}t$ (1 < i < n), $t^2s_1 = s_{n-1}t^2$.

Note that this description [BK 5.4 page 177] is not the Bernstein description.

The finite algebra $H^o_{\mathbf{C}}(n,x)$ is isomorphic to the group algebra $\mathbf{C}[S_n]$ of the symmetric group S_n and has two characters. For the character sign, the image of all the s_i is -1. For the trivial character, the image of all the s_i is x. The two characters extend to characters of $H_{\mathbf{C}}(n,x)$, the image of t beeing an arbitrary not zero complex element. The $H_{\mathbf{C}}(k,q)$ -module F(St) is a sign character of $H_{\mathbf{C}}(n,q)$.

The center of G is naturally identified with F^* diagonally enbedded in G. The center of $H_{\mathbf{C}}(n,x)$ contains t^n . The central character of St is trivial. The category of unipotent representations of G with trivial central character is isomorphic by the functor F_I defined in (1) to the category $\operatorname{Mod} H_{\mathbf{C}}(n,q)_1$ of right modules of the quotient $H_{\mathbf{C}}(n,q)_1$ of $H_{\mathbf{C}}(n,q)$ by the two-sided ideal generated by t^n-1 [Vig2 I.3.14].

2.1 Lemma Let $\chi, \chi' \in \mathcal{C} := \operatorname{Mod} H_{\mathbf{C}}(n, q)_1$ two characters. Then $\operatorname{Ext}^1_{\mathcal{C}}(\chi, \chi') = 0$.

Indeed the algebras $H^o_{\mathbf{C}}(n,q)$ and $\mathbf{C}[t], t^n = 1$, are semisimple (but the quotient $H_{\mathbf{C}}(n,q)_1$ is not semisimple). If $V \in \mathcal{C}$ is an extension of χ by χ , then $hv = \chi(h)v$ for all $h \in H^o_{\mathbf{C}}(n,q), v \in V$, and t acting semisimply, $V \simeq \chi \oplus \chi$.

There is another proof when n = 2 in [DPrasad p.175 proof of the lemma 7]. Note that if we were not fixing the center, we could have extensions. I do not know how to compute directly Ext^i when i > 1.

When V is an extension of two different characters $\chi' \neq \chi$ in $\operatorname{Mod} H_{\mathbf{C}}(n,q)_1$ or in $\operatorname{Mod} H_{\mathbf{C}}(n,q)$, one sees that $V \simeq \chi \oplus \chi'$ by restriction to the commuting algebras $H^o_{\mathbf{C}}(n,q)$ and $\mathbf{C}[t]$.

2.2 From (2.1), $\operatorname{Ext}^1(St, St) = 0$ in $\operatorname{Mod}_1 G$. Any irreducible square integrable unipotent representation V of G is the twist $\operatorname{St} \otimes \chi_x$ of St by an unramified character of G

$$\chi_x(g) = x^{\operatorname{val} \det g}, \ g \in G,$$

for some $x \in \mathbf{C}^*$, where val: $(F)^* \to \mathbf{Z}$ is the valuation of F, sending an uniformizing parameter to 1. The central character of $\operatorname{St} \otimes \chi_x$ is the character χ_{kx} of F^* . It is trivial if and only if $\operatorname{St} \otimes \chi_x \simeq \operatorname{St}$.

The twist by a character χ of G does not change the value of Ext^* . If $V, V' \in \mathcal{C} := \operatorname{Mod}_{\omega} G$, then $V \otimes \chi, V' \otimes \chi \in \mathcal{C}_{\chi} := \operatorname{Mod}_{\omega\omega(\chi)} G$ where $\omega(\chi)$ is the restriction of χ to the center of G. We have :

$$\operatorname{Ext}_{\mathcal{C}}^*(V, V') \simeq \operatorname{Ext}_{\mathcal{C}_{\chi}}^*(V \otimes \chi, V' \otimes \chi).$$

Using the functor F_I of (1), we get :

Proposition Let V, V' irreducible and essentially square integrable in the category $\mathcal{C} := \operatorname{Mod}_{\omega} G$. Then

$$\operatorname{Ext}^1_{\mathcal{C}}(V, V') = 0.$$

There is another proof due to Silberger of this result, valid for a general reductive group [Sil2]. To compute some $\operatorname{Ext}_{\mathcal{C}}^{i}(V,V')$ when i>1, we use the results of Casselman [Cas].

3 Let H as in the introduction. Let $\mathcal{C} := \operatorname{Mod}_1 H$ be the category of representations of H with trivial character. Denote by $St_Q \in \mathcal{C}$ the Steinberg representation defined by a parabolic subgroup Q of H [BW 4.6 page 308]. If τ_Q is the natural representation of H on the complex space of locally constant left Q-invariant functions $H \to \mathbb{C}$, then St_Q is the quotient of τ_Q by the subrepresentation generated by the natural images of $\tau_{Q'}$ in τ_Q , for all parabolic subgroups Q' of H which contain Q. We have $St_H = 1$. When $Q = Q_o$ is minimal, then $St_{Q_o} = St$ is the usual Steinberg representation. The representations St_Q are irreducible and not isomorphic.

The parabolic rank of Q is the rank of a maximal split torus in the center of a Levi component of Q. We denote

 $m_Q = \text{parabolic rank of } Q - \text{parabolic rank of } H$.

This an integer ≥ 0 .

Theorem [BW 5.1 th.4.12 page 313] Let $V \in \mathcal{C} := \operatorname{Mod}_1 H$ irreducible such that $\operatorname{Ext}^*(1, V) \neq 0$. Then there exists a parabolic subgroup Q of H such that $V \simeq St_Q$. Moreover $\operatorname{Ext}_{\mathcal{C}}^m(1, St_Q) \simeq \mathbf{C}$ if $m = m_Q$, and is zero otherwise.

Remarque Suppose H = G := GL(n, F), and $C := \text{Mod}_1 G$.

We have $\operatorname{Ext}_{\mathcal{C}}^{o}(1,1) \simeq \mathbf{C}$ and $\operatorname{Ext}_{\mathcal{C}}^{m}(1,1) = 0$ for any integer $m \geq 1$.

The representation $\tau_Q \in \mathcal{C}$ has a unique irreducible subquotient with a Whittaker model, this unique subquotient is isomorphic to St [Z 9.7]. In particular, when $Q \neq Q_o$ the representation St_Q does not have a Whittaker model. Hence $\operatorname{Ext}_{\mathcal{C}}^*(1,V) = 0$ for any irreducible representation $V \neq \operatorname{St}$ with a Whittaker model.

- **4 Zelevinski involution** Let G as in (1). The Zelevinski involution τ in Mod G has the following properties:
 - a) τ respects the property of beeing irreducible [A 2.3, 2.9].
 - b) τ exchanges the trivial and the usual Steinberg representation [Z 9.2].
 - c) $\tau(-\otimes \chi) = \tau(-)\otimes \chi$ commutes with the twist by a character χ of G [Z 9.1].
 - d) τ respects the cuspidal support [Z 9.1].
- e) τ is an exact contravariant functor and respects the cuspidal support [SS 3.1], hence respects the representations with a given central character.

Set $\mathcal{C} := \operatorname{Mod} G$ or $\mathcal{C} := \operatorname{Mod}_{\omega} G$, where ω is a character of the center of G. By e) we have for any $V, V' \in \mathcal{C}$

$$\operatorname{Ext}_{\mathcal{C}}^*(V, V') \simeq \operatorname{Ext}_{\mathcal{C}}^*(\tau(V'), \tau(V)).$$

With the notations of (3), the representation $\tau(St_Q)$ is not isomorphic to St when $Q \neq G$ by b), and is a subquotient of τ_{Q_o} by d). Hence $\tau(St_Q)$ does not have a Whittaker model when $Q \neq G$, in particular is not essentially tempered. We deduce from (3):

Theorem Let $V, V' \in \mathcal{C} := \operatorname{Mod}_w G$, irreducible, such that $V \simeq St \otimes \chi$ is unipotent and essentially square integrable as in 2), and $\operatorname{Ext}_{\mathcal{C}}^*(V', V) \neq 0$. Then there exists a parabolic subgroup Q of G' such that $V' \simeq \tau(St'_Q) \otimes \chi$. For $V' = \tau(St_Q) \otimes \chi$, we have $\operatorname{Ext}_{\mathcal{C}}^m(V', V) \simeq \mathbf{C}^*$ if $m = m_Q$ as in 3), and zero otherwise.

In particular, if V is a unipotent Steinberg representation, and if $V' \not\simeq V$ is essentially tempered, then

$$\operatorname{Ext}_{\mathcal{C}}^{o}(V, V) \simeq \mathbf{C}, \quad \operatorname{Ext}_{\mathcal{C}}^{i}(V, V) = \operatorname{Ext}_{\mathcal{C}}^{i}(V', V) = 0$$

for all integers i > 0. We will prove also

$$\operatorname{Ext}_{\mathcal{C}}^{i}(V, V') = 0$$

using duality as follows.

5 Duality Let (H, ω) as in the introduction. The contragredient $V \to V^*$ is a contravariant exact functor in Mod H, which sends a projective representation to an injective representation [Vig2 I.4.18]. A representation V is called admissible when $V^{**} \simeq V$. When V is admissible, and $(P_i) \to V$ is a projective resolution of V, then $V^* \to (P_i^*)$ is an injective resolution of V^* , and $\operatorname{Hom}(P_i, W) \simeq \operatorname{Hom}(W^*, P_i^*)$ canonically [Vig2 I4.13]. If $V \in \operatorname{Mod}_{\omega} H$, then $V^* \in \operatorname{Mod}_{\omega^{-1}} H$. Set $\mathcal{C} := \mathcal{C}^* := \operatorname{Mod} H$ or $\mathcal{C} := \operatorname{Mod}_{\omega} H$, $\mathcal{C}^* := \operatorname{Mod}_{\omega^{-1}} H$.

Proposition Let $V, W \in \mathcal{C}$ admissible of contragredient $V^*, W^* \in \mathcal{C}^*$, one has $\operatorname{Ext}^*_{\mathcal{C}^*}(V, W) \simeq \operatorname{Ext}^*_{\mathcal{C}^*}(W^*, V^*)$.

The contragredient respects the property of beeing essentially square integrable and of beeing essentially tempered. We deduce (4.1). Hence the answer to the question in the introduction is yes, for G = GL(n, F).

There is another proof, suggested by Waldspurger, using that the essentially tempered irreducible representations of G have different cuspidal support. This comes from the classification of Zelevinki [Z], which shows that tempered irreducible representations are not degenerate (1), and that not degenerate irreducible representations have different cuspidal support.

6 Let $(H, w), \mathcal{C}$ as in (5). There is a natural equivalence between the two bifunctors on \mathcal{C} ,

$$\operatorname{Ext}^n_{\mathcal{C}}(A,B)$$
 and $\operatorname{Yext}^n_{\mathcal{C}}(A,B)$

given by the Yoneda n-extensions of A by B modulo an equivalence relation \equiv . The proofs are the same than in the category of (left) modules for a ring [M III.6.4, III.8.2].

An n-extension X of A by B is an exact sequence starting at B and ending at A,

$$X: 0 \to B \to X_n \to \ldots \to X_1 \to A \to 0.$$

A morphism $\gamma:X\to Y$ between two n-extensions starting with β and ending with α is a commutative diagram

The equivalence relation \equiv in the set of *n*-extensions of *A* by *B*, is generated by the relation: there exists a morphism $\gamma: X \to Y$ starting and ending with the identity.

An *n*-extension X ending at A can be spliced with an m-extension Y starting at A, to give an n+m-extension $X \circ Y$ starting like X, ending like Y. If $\alpha: A' \to A$, one defines by pull-back an extension $X\alpha$ starting like X, ending at A'. If Z is an m-extension starting by A', one defines by push-out an m-extension αZ starting at A, ending like Z. By definition of the equivalence relation, one has

$$X\alpha \circ Z \equiv X \circ \alpha Z.$$

A morphism $\gamma: X \to Y$ starting with β and ending with α gives an equivalence [M III.5.1]

$$\beta X \equiv Y \alpha$$
.

An element z of the center of \mathcal{C} defines an endomorphism of X. If z acts on A and on B by multiplication by two different scalars $z_a \neq z_B \in R$, we deduce that the image of X in Yextⁿ(A, B) $\simeq \operatorname{Ext}^n(A, B)$ is 0.

For $A, B \in \mathcal{C}$ irreducible of different cuspidal support, there is an element z in the center of \mathcal{C} which acts by the identity on A and is zero on B'. This comes from the description of the center by Bernstein [BD]. We get the following theorem.

- **6.1 Theorem** Let $V, V' \in \mathcal{C}$ irreducible of different cuspidal support. Then $\operatorname{Ext}_{\mathcal{C}}^*(V, V') = 0$.
- **6.2 Corollary** Suppose that H = GL(n, F). Let $V, V' \in \mathcal{C}$ irreducible not degenerate, and $V \neq V'$. Then $\operatorname{Ext}^*_{\mathcal{C}}(V, V') = 0$.

References

[A] Aubert Anne-Marie. Dualité dans le groupe de Grothendieck des représentations lisses de longueur finie d'un groupe réductif p-adique. Trans. A.M.S. vol. 347, 1995, 2179-2189.

Erratum Trans. A.M.S. vol. 348, 1996, 4687-4690.

- [BD] Deligne Pierre. Le centre de Bernstein. Dans : Représentations des groupes réductifs sur un corps local. Bernstein Deligne Kazhdan Vigneras. Travaux en cours Hermann Paris 1984.
- [BW] Borel Armand, Wallach Nolan. Continuous cohomology, discrete subgroups, and representations of reductive groups. Annals of Math. Studies 94 1980.

- [BK1] Bushnell Colin, Kutzko Philip. The admissible dual via open compact groups. Annals of Math. Studies 129. Princeton University press 1993.
 - [BK2] Bushnell Colin, Kutzko Philip. Semisimple types in GL_n . Preprint 1996.
- [BK3] Bushnell Colin, Kutzko Philip. Smooth representations of reductive p-adic groups. Preprint 1996.
 - [Cas] Casselman William. On a p-adic vanishing theorem of Garland. Bull. A.M.S. 80, 1974, 1001-1004.
- [DPrasad] Prasad Dipendra. On the decomposition of a representation of GL(3) restricted to GL(2) over a p-adic field. Duke Math. J. 69, 1993.
 - [M] Mac Lane Saunders. Homology. Classics in Mathematics. Springer 1994.
- [SS] Schneider Peter, Stuhler Ulrich. Representation theory and sheaves on the Bruhat-Tits building. Preprint 1995.
- [Sil1] Silberger Allan. Harish-Chandra's Plancherel theorem for p-adic groups. Trans.A.M.S. vol. 348, 1996, 4673-4786.
 - [Sil2] Silberger Allan. Letter to D. Prasad. 30 oct. 1996.
- [Vig1] Vignéras Marie-France. On formal dimensions for reductive p-adic groups. Piatetski-Shapiro festchrift. The Weizmann Science press of Israel,1990.
- [Vig2] Vignéras Marie-France. Représentations l-modulaires d'un groupe réductif p-adique. Progress in Math. 137. Birkhauser 1996.
- [Z] Zelevinski Alexander. Induced representations of reductive p-adic groups II. Annales E.N.S. 13 1980 page 165-210.