Erratum

0.11 Remarks

(ii) The isomorphism between the irreducible representations is

$$
\operatorname{ind}_{B}^{G}\left(\chi_{1} \otimes \chi_{2}\right) \simeq \operatorname{ind}_{B}^{G}\left(\left.\chi_{2}|?|_{F} \otimes \chi_{1}|?|\right|_{F} ^{-1}\right)
$$

In the paper, χ_{1} and χ_{2} have not been inverted on the right side.
(iv) The integrality condition on the exponents of $\left(V_{s m}\right)_{N} \otimes V_{a l g}^{N}$ is that the exponents multiplied by the inverse $\delta^{-1}=|?|_{F}^{-1} \otimes|?|_{F}$ of the modulus δ of B are integral on

$$
\left(\begin{array}{cc}
p_{F} & 0 \\
0 & 1
\end{array}\right)
$$

which contracts $N[\mathrm{E}]$ lemma 1.6. The integrality condition on the exponents of $\operatorname{ind}_{B}^{G}\left(\chi_{1} \otimes \chi_{2}\right) \otimes \operatorname{Sym}^{k} \otimes$ $|\operatorname{det}(?)|_{F}^{k / 2}$ is $\chi_{1}\left(p_{F}\right) \chi_{2}\left(p_{F}\right)$ is a unit and

$$
\chi_{2}\left(p_{F}\right) q^{k / 2}, \chi_{1}\left(p_{F}\right) q^{1+k / 2} \text { are integral. }
$$

In the paper, p_{F} and 1 have been inverted in the matrix and k has been replaced by $-k$.
The theorem 0.10 given for moderately ramified principal series does not extend to locally algebraic representations because the exponents of the reducible representation $\operatorname{ind}_{B}^{G} 1 \otimes \operatorname{Sym}^{k} \otimes|\operatorname{det}|_{F}^{k / 2}$ satisfy the integrality condition and this representation is not integral because it contains the representation $\operatorname{Sym}^{k} \otimes$ $|\operatorname{det}|_{F}^{k / 2}$ which is not integral.

Corollary 0.5 and $\mathbf{1 . 8}$ Proof of the corollary 0.5

In the paper one says and one "proves" that the contragredient respects integrality for a locally algebraic representation of finite length. This is false in general. A counter-example is the reducible representation

$$
\operatorname{ind}_{B}^{G}\left(|?|_{F} \otimes|?|_{F}^{-1}\right) \otimes \operatorname{Sym}^{k} \otimes|\operatorname{det}|_{F}^{k / 2}
$$

for a positive integer $k>0$. This representation is integral (Berger-Breuil: Sur quelques représentations potentiellement cristallines de $G L_{2}\left(Q_{p}\right)$ Corollaire 5.3.4) but the contragredient representation

$$
\operatorname{ind}_{B}^{G} 1 \otimes \operatorname{Sym}^{k} \otimes|\operatorname{det}|_{F}^{k / 2} \otimes(\operatorname{det}(?)|\operatorname{det}(?)|)^{-k}
$$

is not integral.
The integrality condition on the exponents of $\operatorname{ind}_{B}^{G}\left(\chi_{1} \otimes \chi_{2}\right) \otimes \operatorname{Sym}^{k} \otimes|\operatorname{det}(?)|_{F}^{k / 2}$ is the same than the integrality condition on the exponents of the contragredient $\operatorname{ind}_{B}^{G}\left(\left.\chi_{1}^{-1}|?|\right|_{F} \otimes \chi_{2}^{-1}|?|_{F}^{-1}\right) \otimes \operatorname{Sym}^{k} \otimes|\operatorname{det}|_{F}^{k / 2} \otimes$ $(\operatorname{det}(?)|\operatorname{det}(?)|)^{-k}$.

It is possible for an irreducible locally algebraic representation, the integrality condition on the exponents is equivalent to the integrality of the representation, and that the contragredient respects integrality.

