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Abstract

We give basic properties of the parabolic induction and coinduction functors associated
to R-algebras modelled on the pro-p-Iwahori-Hecke R-algebras Hgr(G) and Hr(M) of a
reductive p-adic group G and of a Levi subgroup M when R is a commutative ring. We
show that the parabolic induction and coinduction functors are faithful, have left and right
adjoints that we determine, respect finitely generated R-modules, and that the induction
is a twisted coinduction.
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1 Introduction

We give basic properties of the parabolic induction and coinduction functors associated
to R-algebras modelled on the pro-p-Iwahori-Hecke R-algebras Hgr(G) and Hr(M) of a
reductive p-adic group G and of a Levi subgroup M when R is a commutative ring. We



show that the parabolic induction and coinduction functors are faithful, have left and right
adjoints that we determine, respect finitely generated R-modules, and that the induction
is a twisted coinduction.

When R is an algebraically closed field of characteristic p, Abe [Abe, Section 4] proved
that the induction is a twisted coinduction, when he classified the simple H g(G)-modules
in term of supersingular simple H (M )-modules. In two forthcoming articles [OV] and
[AHHV?2], we will use this paper to compute the images of an irreducible admissible R-
representation of G' by the basic functors: invariants by a pro-p-Iwahori subgroup, left or
right adjoint of the parabolic induction.

Let R be a commutative ring and let H be a pro-p Iwahori Hecke R-algebra, associated
to a pro-p Iwahori Weyl group W (1) and parameter maps & 4 R, &(1) S R[Z,] [Vigl,
84.3], [Vigd].

For the reader unfamiliar with these definitions, we recall them briefly. The pro-
p Iwahori Weyl group W (1) is an extension of an Iwahori Weyl group W by a finite
commutative group Zi, X (1) denotes the inverse image in W (1) of a subset X of W, the
Iwahori Weyl group contains a normal affine Weyl subgroup W%/, & is the set of all
affine reflections of We/f, q is a W-equivariant map & — R, W acting by conjugation on
G and trivially on R, ¢ is a W(1) x Zg-equivariant map &(1) — R[Zy], W(1) acting by
conjugation and Zj by multiplication on both sides.

The Iwahori Weyl group is a semidirect product W = A x W, where A is the (com-
mutative finitely generated) subgroup of translations and Wy is the finite Weyl subgroup
of Walt,

Let S/ be a set of generators of W/ such that (Wef/ S%f/) is an affine Coxeter
system and (W, S := S/ N W)) is a finite Coxeter system. The Iwahori Weyl group is
also a semidirect product W = W2/ f x Q where Q denotes the normalizer of S*ff in W.
Let ¢ denote the length of (W/f S4/F) extended to W and then inflated to W (1) such
that Q@ C W and Q(1) C W(1) are the subsets of length 0 elements.

Let w € W (1) denote a fized but arbitrary lift of w € W.

The subset & C WS of all affine reflections is the union of the We/f-conjugates of
S2/f and the map q is determined by its values on S%/f, the map ¢ is determined by its
values on any set S%/f  §%/f(1) of lifts of S/ in W(1).

Definition 1.1. The R-algebra H associated to (W (1),q,¢) and S*/ is the free R-module
of basis (Tiw)wew (1) and relations generated by the braid and quadratic relations:

T3Ta = Taar, T2 = q(s)(3)” + ¢(3)T5,
for all w,w" € W(1) with {(w) + £(w') = {(ww') and all § € S/ (1).

By the braid relations, the map R[2(1)] — H sending @ € (1) to Tj identifies R[©2(1)]
with a subring of H containing R[Z;]. This identification is used in the quadratic relations.
The isomorphism class of A in independent of the choice of S/,

Let Sy be a subset of S. We recall the definitions of the pro-p Iwahori Weyl group
War(1), the parameter maps &y 5 R, Sp(1) 25 R[Z;] and SX/[ff given in [Vigd].

The set Sjps generates a finite Weyl subgroup Wy o of Wy, Wy := A x Wy is a
subgroup of W, Wy, (1) is the inverse image of Wy, in W (1), G (1) = &(1) N Wy (1),
qus is the restriction of g to &y, and ¢y is the restriction of ¢ to Syr(1). The subgroup
W]?/If I= WalfnWy, € W)y is an affine Weyl group and SX}f denotes the set of generators
of Wt containing Sy such that (W7 §977) is an affine Coxeter system.

Definition 1.2. For Sy C S, the R-algebra Hys associated to (Was(1),qar, car) and
Sﬂf is called a Levi algebra of H.

Let (T2") pew,, (1) denote the basis of Hyy associated to (War(1),qas, ¢ar) and Sﬁff

w

and £j; the length of Wy, (1) associated to S](tff.



Remark 1.3. When Sy = S, Har = H. When Sy =0, Har = R[A(1)].
In general when Sys # S, Sﬂf is not Wy, NS/ and H,, is not a subalgebra of ;
it embeds in H only when the parameters q(s) € R for s € S/ are invertible.

As in the theory of Hecke algebras associated to types, one introduces the subalgebra
Hi, C Hur of basis (Tg[)meWMJr(l) associated to the positive monoid Wi+ = {w €
Wi | w(Et = 3,) € X4f+) where ¥y C ¥ are the reduced root systems defining
W;}ff C We/f, the upper index indicates the positive roots with respect to S%ff, Sﬂf,
and X%/ is the set of affine roots of . One chooses an element fip; central in W (1),
in particular of length £/ (fins) = 0, lifting a strictly positive element pps in Ap+ =

ANWyr+. The element T}L‘f{ of H s is invertible of inverse T}%{l but in general T};,, is not

invertible in H.
Theorem 1.4. (i) The R-submodule Hys+ of basis (715)‘/[)u~,eWM+ (1) 18 a subring of Har,
called the positive subalgebra of Hays.

(ii) The R-algebra Har = Har+ [(TH)7'] is a localization of Harv at TAT .

(iii) The injective linear map Has % n sending T to Ty for @ € Wiy (1) restricted to
Har+ 1S a ring homomorphism.
(iv) As an 0(Hpr+)-module, H is the almost localization of a left free (Hps+)-module
VM+ at TﬂM'
The theorem was known in special cases. The part (iv) means that H is the union
over r € N of

Vu+ i ={x eH | T[:M:E €EVy+t, Vu+ = @dGMWOQ(/HMJr)Td.

Here MW, is the set of elements of minimal lengths in the cosets War0\Wo and de W (1)
is an arbitrary lift of d. The theorem admits a variant for the subalgebra H;—- C Hy

associated the negative submonoid Wj,-, inverse of W+, for the linear map Has o
sending (T2)* to T for w € Wy (1) [Vigl, Prop. 4.14], and with left replaced by right
in (iv): Hy = HMf[Tﬁl], 0* restricted to Hp;— is a ring homomorphism, the right
0* (H - )-module H is the almost localisation at T;J_Ml of a right free 0*(# ;- )-module

Vi, of rank |W,0|™*|Wo|, meaning that H is the union over r € N of

Vi ={eeH | a(T ) €V b Vi= Y T;0"(Har-).

1
Har
dewM

Here WM is the inverse of M W.

For aring A, let Mod 4 denote the category of right A-modules and 4 Mod the category
of left A-modules. Given two rings A C B, the induction — ® 4 B and the coinduction
Hom 4 (B, —) from Mods to Modp are the left and the right adjoint of the restriction
Resﬁ . The ring B is considered as a left A-module for the induction, and as a right
A-module for the coinduction.

The property (iv) and its variant describe H as a left 6(H,,+)-module and as a right
0* (H - )-module. The linear maps 6 and 0* identify the subalgebras H s+, Ha— of Hays
with the subalgebras 6(H s+ ), 0* (Ha-) of H.

Definition 1.5. The parabolic induction and coinduction from Mody,, to Mody are the
functors I%M =—Q®y. . oH and ]I%M = Homy, _ o«(H,—)-

We show:

Mt

Theorem 1.6. The parabolic induction I%M 1s faithful, transitive, respects finitely gen-
erated R-modules, admits a right adjoint Homs, .  (Hu, -).
If R is a field, the right adjoint functor respects finite dimension.



The transitivity of the parabolic induction means that for Sy, C Sy C S,

H  _ TH Horr .
Iy, = IHM/ oly ™+ Mody,, — Mody,, — Mody, .

Let wo denote the longest element of Wy, Sy (ar) the subset woSa wo of S, wdl =
wowpr,0 where wyy o is the longest element of Wiy . A lift @w)! € Wy(1) of wi! defines an
R-algebra isomorphism

(1) HM — Hwo(M)v Tg/[ — qu);&(M)

Wi W (W

ary-1 for w € Wi (1),

. . . . w)!
inducing an equivalence of categories Mody,, —— Mody,,

by the lift (w21)~1 € Wy(1) of w2 = (wd)~1.

Definition 1.7. The wqg-twisted parabolic induction and coinduction from Mody,, to
Mody, are the functors I}} ot} and T% ool
Huwg(a) 0 Huwg (M) 0

. ~ wo(M
o+ Of inverse mg)O( ) defined

( (

Modulo equivalence, these functors do not depend on the choice of the lift of w}! used
for their construction.

Theorem 1.8. The parabolic induction (resp. coinduction) is equivalent to the wy-twisted
parabolic coinduction (resp. induction):
M

H o TH ~ M H o TH -
]IHM - I?'lw()(M) SR IHM - H'HwO(M) oy -

Using that the coinduction admits a left adjoint and that the induction is a twisted
coinduction, one proves:

Theorem 1.9. The parabolic induction IL"M admits a left adjoint equivalent to

— MOdHM

wo (M)

~ wo (M
mz)u()( ) o (— ®’;—Lwo(M),19* HwO(Jy[)) : Mody — Mody
When R is a field, the left adjoint functor respects finite dimension.
The coinduction satisfies the same properties as the induction:

Corollary 1.10. The coinduction I[%M 1s faithful, transitive, respects finitely generated
R-modules, admits a left and a right adjoint. When R is a field, the left and right adjoint
functors respect finite dimension.

Note that the induction and the coinduction are exact functors, as they admit a left
and a right adjoint. A localization functor is exact hence also the left adjoint of the
induction and of the coinduction.

We prove Theorem 1.4 in chapter 2, Theorem 1.6 in chapter 3.2, Theorem 1.8, Theorem
1.9 in chapter 3.2.

Remark 1.11. One cannot replace (H, Har, Hi,) by (K, Har, Hy;) to define the induction
.
MWhen no non-zero element of the ring R is infinitely p-divisible, is the parabolic in-

I'H
duction functor Mody,,, B2 Mody fully faithful 7 The answer is yes for the parabolic

Ind§
induction functor Mod% (M) — Mod} (G) when M is a Levi subgroup of a parabolic

subgroup P of a reductive p-adic group G and Mod} (G) the category of of smooth R-
representations of G [Vig2, Theorem 5.3].

This paper is influenced by discussions with Rachel Ollivier, Noriyuki Abe, Guy Hen-
niart and Florian Herzig, and by our work in progress on representations modulo p of
reductive p-adic groups and their pro-p Iwahori Hecke algebras. I thank them, and the
Institute of Mathematics of Jussieu, the University of Paris 7 for providing a stimulating
mathematical environment.



2 Levi algebra

We prove Theorem 1.4 and its variant on the subalgebra 9, C s, its image in H, on
Hmr as a localisation of £, and on ‘H as an almost left localisation of 0(.6&), and almost
left localisation of 6*(};).

2.1 Monoid Wy,

Let Syy € S and € € {+,—}. To S%/7 is associated a submonoid Wjse C W), defined as
follows.

Let ¥ denote the reduced root system of affine Weyl group W/, V the real vector
space of dual generated by ¥, 2%/f = ¥ + Z the set of affine roots of ¥ and § =
{Kery () |y € 2477} the set of kernels of the affine roots in V. We fix a Wy-invariant
scalar product on V. The affine Weyl group W/ identifies with the group generated by
the orthogonal reflections with respect to the affine hyperplanes of $).

Let 2 denote the alcove of vertex 0 of (V,$) such that S/ is the set of orthogonal
reflections with respect to the walls of 2l and S is the subset associated to the walls
containing 0. An affine root which is positive on 2 is called positive. Let 2%/f* denote
the set of positive affine roots, ¥ := X N Z:ff, voffi— = _yeffi- $= = _nT.

Let Ay denote the set of positive roots o € % such that Ker « is a wall of 2 and the
orthogonal reflection s, of V with respect to Ker a belongs to Sy, Xy C X the reduced
root system generated by Apy, X9, :=Xp N XL ;4.

Definition 2.1. The positive monoid W+ C Wy is {w € Wiy | w(ES+—-X7F,) c Xe//+},

The negative monoid Wy, = {w € Wy | w™t € W+ } is the inverse monoid.

It is well known that the finite Weyl group Wy, o is the Wy-stabilizer of ¢ —3,. This
implies

WMe = AIVIE X WM,O where AMe =AN WMe.

Let A % V denote the homomorphism such that A € A acts on V by translation by v(A).
Lemma 2.2. Ayje ={A €A | —(yov)(A) >0 forally € X — X5, }.
Proof. Let A € A. By definition, A € A+ if and only if () is positive for all v €
¥t —¥3,. We have A(y) = v — v(A). The minimum of the values of v on 2 is 0[Vigl,

(35)]. So (v —w(X) >0 for y € 2+ — 51 and v € A is equivalent to —(yov)(A\) > 0 for
ally € o+ — %71 O

When Sy € Sy C S, we have the inclusion X5, C X9,/, the inverse inclusion
3¢ =Xy C X — X9, and the inclusions Wy C Wiy and Wye C Wiy

Remark 2.3. Set D¢ := {v € V | y(v) > 0 for v € X} and A€ := (—v)" (D). The
antidominant Weyl chamber of V is D~ and the dominant Weyl chamber is Dt. Careful:
[Vig3, §1.2 (v)] uses a different notation: A€ = (v)~1(D¢).

The Bruhat order < of the affine Coxeter system (Wa/f S%/f) extends to W: for
wy,we € W uq us € Q, wiug < wous if uq = ug and wy < wo [VigRT, Appendice].
We write w < w’ if w < w’ and w # w’ for w,w’ € W. Careful: the Bruhat order <;; on
W associated to (Wfff, S;ff) is not the restriction of < when Sﬂf is not contained in
Saff [Vigd].

Remark 2.4. The basic properties of (W §%/1) extend to W:
(i) If x <y for z,y € W and s € S/,

st < (yorsy), xzs<(yorys), (zorsr) <sy, (xorazs) <ys

[Vig3, Lemma 3.1, Remark 3.2].



(11) W = Upyeac Wo AW [HVl, 6.3 Lemma}.

(i) For A € AT, WoAW, admits a unique element of maximal length wy = woA where
wp is the unique element of maximal length in Wy, and £(wy) = £(wp) + £(\) [Vig3,
Lemma 3.5].

(iv) For Ae AT, {w e W |w < wx} D Uyea+ p<xWopWs [Vig3, Lemma 3.5].

Remark 2.5. {w € W |w < wy} is a union of (Wy, Wy)-classes only if A\, p € A1, u < wo
implies ¢ < A. 1 see no reason for this to be true.

Lemma 2.6. The monoid Wyse is a lower subset of Wy for the Bruhat order <p;: for
w € Wyye, any element v € Wy such that v <p; w belongs to Wiye.

Proof. [Abe, Lemma 4.1]. O

An element w € W admits a reduced decomposition in (W, S%f), w = s ... s,u with
s; € S 4 € Q. As in [Vigl], we set for w,w’ € W,
(2) Gu ‘= CI(Sl) s CI(Sr)7 qu,w’ ‘= (quw’q;i,/)l/?
This is independent of the choice of the reduced decomposition. For w,w’ € Wy, and
s; € SX/Iff, u € Qur, let garw, @arw,w denote the similar elements. They may be different

from Guwy Qw,w’-

Lemma 2.7. We have Sﬁf N Ware C S and quw = qurww if W, W' € Wige.
In particular, Ly (w) + Ly (w') — €pr(ww') = L(w) + L(w') — L(ww'), if w,w' € Wye.

Proof. [Abe, Lemma 4.4 and proof of lemma 4.5]. O

An element A\ € Apre such that all the inequalities in (2.2) are strict is called strictly
positive if € = 4, and strictly negative if e = +. We choose

a central element fipy of Wiy (1) lifting a stricty positive element upr of A.

We set fip+ 1= fipr and fip- = [ng. The center of the pro-p Iwahori Weyl group W, (1)
is the set of elements in the center of A(1) fixed by the finite Weyl group Wy o [Vig2].
Hence fip- is an element of the center of A(1) fixed by Wiy, o and —yov(upre) > 0 for all
v € X¢ — X9, We have yov(upe<) =0 for v € Xps. The length of ppze is 0 in Wy, and
is positive in W when Sys # S.

Let Hpse denote the R-submodule of the Iwahori Hecke R-algebra Hpa; of M of basis

(T2 pewye (1), and Hay 4y (resp. Hy LAN H) the linear map sending T2 to Ty (

w

resp. T to T%) for @ € War(1).

The proof of the properties (i), (ii), (iii) of Theorem 1.4 and its variant are as follows:

1. Hpse is a subring of Hys, because T, £/[ T 7%4 is a linear combination of elements Tj
such that v <p; ww’ [Vigl].

2. O(TYTY) = Ty, Ty, and 0*(TY)*(TX)*) = Ty Ty, for wi,wy € Wiy for
w1, wy € Wire. This follows from the braid relations if €57 (wy) + € (we) = £as (wiws) be-
cause £(wy)+£4(ws) = f(wyws) (Lemma 2.7). Iffwy = s € Sﬁf with £pr(w1)—1 = €pr(wys)
this follows from the quadratic relations

T, Ts = Ty 5-1(a(5)(3)° + T5¢(3)) = a(8)Tays + Ty (3), T, T3 = a(s)T5,5 — T, (3),

s € ST U(wy) — 1 = L(wys) (Lemma 2.7) and q(s) = qar(s),¢(3) = car(8) [Vigd]. In
general the formula is proved by induction on £j;(ws) [Abe, 4.1]. The proof of [Abe,
Lemma 4.5] applies.



We have 9*(T,%’I) = T,%’j for w € Wiy o because for s € Sy,

0" (TM) = 0" (T2 + M) = T7 + ¢5 = Ts.

3. Ha = Hue[(T31,) "], because for w € Wiy there exists r € N such that pu§w €
WM&.

Remark 2.8. If the parameters q(s) are invertible in R, then H,+ Y5 H extends uniquely
to an algebra homomorphism H,; < H, sending Té\{“‘w to T[;NLTQ for w € Wy+(1),7 €
M
N.
Remark 2.9. The trivial character x; : H — R of H is defined by
x1(Tz) = qu (0 € W(1)).

When H is the Hecke algebra of the pro-p-Iwahori subgroup of a reductive p-adic group
G, H acts on the trivial representation of G by x1. Note that the restriction of the trivial
character of Hps to 8(H s+ ) is not equal to x1 0 @ when £y (puar) = 0,€(uar) # 0.

2.2 An anti-involution (

The R-linear bijective map
(3) HSH  suchthat ((Tp) =Ty for e W(l),

is an anti-involution when ((h1he) = ((ha)((hy) for hy, he € H because ¢ o ( = id. For
S CS,let H Lury Hr denote the linear map such that ((T2) = T2, for w € Wa(1).
Lemma 2.10. 1. The following properties are equivalent:

(i) ¢ is an anti-involution,

(it) C(c(8)) = c()—1 for § € ST (1),

(iii) (o ¢ = co (=)~ where &(1) = R[Zy] is the parameter map.

2. If ¢ is an anti-involution then (yr is an anti-involution.

Proof. Let W = 31 ... Sy()t be a reduced decomposition, §; € S/ (1),a € W(1),((a) =0
and let § € S%f/(1). Then,

((T5) = Tty = Tay-1 Tzt - Tir = ()T, ) - C(T),
(C(T5)* =TE: = q(s)57 2 + (37 1) Ts

Tthe map ( is an anti-automorphism if and only if ((¢(5)) = ¢(371) for § € S4/7(1). This
is equivalent to ( o ¢ = ¢ o (—)~! because &(1) is the union of the W (1)-conjugates of
S2ff(1), ¢ is W(1)-equivariant and ¢ commutes with the conjugation by W (1).

If ¢ satisfies (iii), its restriction cps to Sy (1) satisfies (iii). O

Lemma 2.11. When H = H(G) is the pro-p Iwahori Hecke R-algebra of a reductive
p-adic group G, € is an anti-involution.

Proof. Let s € &, § an admissible lift and ¢ € Z;. Then ¢(3) is invariant by ¢ [Vigl,
Prop.4.4] If u € UJ for v = a+1r € @fgdf7 then u=' € U and mq(u)™" = ma(u™).
Hence the set of admissible lifts of s is stable by the inverse map. As the group Zj is

commutative, we have

(Coc)(ts) = C(te(s)) =t e(s) = c(s)t™" = c((t3) ™.



From now on, we suppose that ( is an anti-involution. We recall the involutive auto-
morphism [Vigl, Prop. 4.24]

H S H  such that o(Ty) = (1) TE for we W(1),
and [Vigl, Prop. 4.13 2)]:

(4) T; ==Ts—«¢(3) for 5€ S/ (1), Th:=T:.. T; Ty for weW(1)

S1

of reduced decomposition w = 51 ... 5 U.

Remark 2.12. We have ((T};) = Ty for w € W (1), ¢ and v commute, (pr(Hpre) =
Hy and 8ol =Cob, 0* oy =(ob*.

2.3 e-alcove walk basis

We define a basis of H associated to € € {4+, —} and an orientation o of (V,$), that we
call an e-alcove walk basis associated to o.

For s € S%/7  let ay, denote the positive affine root such that s is the orthogonal
reflection with respect to Ker as. For an orientation o of (V, ), let D, denote the corre-
sponding (open) Weyl chamber in (V,$)), 2, the (open) alcove of vertex 0 contained in
D,, and o.w the orientation of Weyl chamber w=1(D,) for w € W. We recall [Vigl]:

Definition 2.13. The following three properties determine uniquely elements E,(0) € H
for any orientation o of (V,$) and w € W(1). Forw € W(1),5 € S/ (1), € Q(1):

- T if as is negative on As,,
o) YOS S A
*=Ts; —c(8) if as is positive on AUy,
(7) Eo<§>Eo.s(U~)) = QS,wEo(gw)-

They imply, for w’ € W, \ € A:
(8) Eo(0") Eguy (1) = Gur 1o Eo(0'0),  Eo(A)Eo(0) = qawEo(MD).

We recall that A acts on V' by translation by (). The Weyl chamber D, of the orientation
o is characterized by:

9) E4(X\) = T when v()) belongs to the closure of D,.

The alcove walk basis of H associated to o is (Eo(W))gew 1) [Vigl]. The Bernstein basis
(E())@ew 1) is the alcove walk basis associated to the antidominant orientation of Weyl
chamber D~ Remark 2.3. By (5) and (9), the Bernstein basis satisfies

E(Ww)=Tg for we ATUW,, EW)=T; for weA.

w

The alcove walk basis (E,+(@))gew 1)associated to the dominant orientation of Weyl
chamber D1 satisfies similar relations with T permuted with Ty:

Eyr(w)=T% for we ATUWy, E,(w)=T; for weA .

Definition 2.14. The e-alcove walk basis (E§5(W))gew 1) of H associated to o is

Eo(i) fe=t.

(10 Folw) = {<<Eo<w-1>> fe=—.



Lemma 2.15. The elements E, (W) for any orientation o of (V,H) and w € W (1) are
determined by the following properties. For w € W (1),5 € S*/(1),a € Q(1):

(11) E_(g) = Eo(g)’ E_(ﬂ’) = Eo(ﬂ‘)a

o o

(12) E; ("D)Eo_(g) = Gu, sE (ws)

0.8

They imply for w' € W, \ € A:

(13) E (w)Eo_ (d/) = Qw,w’Eo_(wUN}I)a Eo_ (@)EO_(S‘) = Qw,)\Eo_ (ﬁ};‘)

Proof. |
Ei(g) = C(Eo((g)il)) = Eo(g)a
By (wa) = ((Bo((wa) ™)) = ((Eo((@) " (@) ™) = ((Tiay-1 Eo((w) 1))
= ((Bo((0) ™) Ta = B, (0)Ta,
( (3)71) = CEo((3) ") Eo.s((@) 1))

( 5
= o1 C(Eo((3) (@) ™) = qu,sC(Eo(@08) ™)) = qu,s B, (@3).

We used that ¢, = ¢,,-1 implies Gt ozt = (qwflqwgl qflflwgl)l/2 = (qwlqwzq;;wl)lﬂ =

w

Gy ,wy fOT Wy, we € W. O
The e-alcove walk bases satisfy the the triangular decomposition:

(14) ES(®)-Ts€ >, RTg.
@ eW(1),0'<®

Remark 2.16. We will denote £, () = E,+ (w) and E_(w) = E_ () as in [Abe] and
call (Ec(W))gew (1) the lower e-Bernstein basis of H (the upper e-Bernstein basis will be
the usual Bernstein basis).

Similarly, we will denote by (Ef;(@))gew,, 1) and (E, 'I(ZIJ))MGWM(D the upper and
lower e-Bernstein bases associated to the dominant orientation for (Vas, $ar); here Vi, ise
the real vector space of dual generated by s with a W) ¢-invariant scalar product and
Hs the corresponding set of affine hyperplanes.

Lemma 2.17. Fore, e’ € {+,—} and any orientation opnr of (Var, ), (Eg;w (W) wew e (1)
is a basis of Hpye.

When q(s) =0 [Abe, Lemma 4.2].

Proof. A basis of H ;- is (Tqy)ﬁ,eWM((l). As w <p; w' and w’' € Wyye implies w € Wiye

(Lemma 2.6), the triangular decomposition (14) implies that (Eg/M (0))ew e (1) is a basis
of %Me .

Lemma 2.18. The e¢-Bernstein basis satisfies E<(0) = Ty if w € AUW, and E€(w) = T}
if w € A=, The basis (E.(w)) satisfies similar relations with T permuted with Tg:
E(w)=T: ifwe AUWy and E_(w) =Ty if we A™C.

Proof. We described ET (w) and E, (w) for w € AT UA™ UW, before Definition 2.14 and
we have:

o etpmtn (T ) =Ta (we A
E~(w) =¢(E(w ))_{C(T{—l)_T~ (we A~ UWy)
E_(%) = ((Eo+ (07)) = {EgW; z E; EZ E ﬁ*)u "



The upper and lower e-Bernstein bases are compatible with the linear embeddings 6
and 0* of Hy,s into H:

Proposition 2.19. We have 0(ES;(0)) = E<(w), 0*(EM () = E () forw € Wi+ (1)U
W (1).

This generalizes [Ollivier10, Prop. 4.7], [Ollivierl4, Lemma 3.8], [Abe, Lemma 4.5].
Proof. 1t suffices to prove the proposition when the q(s) are invertible. Let w € W (1).

We write & = A\ = )\1()\2) 4 with u € Wy, and A1, Ag in A¢. We have for any orientation
o of (V,h)

Eo(M)Eo((A2)™h) = qxl,AglEO(S‘)v Eo(A2)Eo((A2)™h) = Dgagt = Do
Eo(j‘l)E((S‘Q)il)Eo(ﬁ) = th)\;l(D,qu(@)-

Then, E,(w) = ¢, (q)\l’/\;1qA7u)*1E0(5\1)E0(Xg)*lEo(ﬂ). Applying Lemma 2.18 to the

orientations o of Weyl chamber D* we obtain:

(15) B(0) ( - 75,73 T if €=+
w) = —1 w
P T (1) i e -
1 2

and similar formulas for E, (w) with T permuted with T;. We suppose now w € Wjye,
that is A € Apre,u € Waso. Note A° C Apre and gasx 0 = ga,u (Lemma 2.7).
Suppose w € Wyy+. Then En (@) = qarn, (an 0, 2 SN, w)” 1T/~<\14(T/~<\f)*1TéM and

e(EM(’lI))) = M\, (qM AL IQA u) 1T5\1T5\_1Tﬁ

= qnr e (Gar g g 1 000) T 0, Oy, s 10 B (@) = aare (g a, a1 Dha) Oy, pp  E(@)

The triangular decomposition of E () and E(w) implies gas,x, (4py 5, 2 1q,\2) 1q/\17)\;1 =
1. Hence for w € Wy+ we have 6(Ey(w)) =
0 (EM(0)) = By ().

Suppose w € Wy—. We write @ = Ay with A € A( ) Mi-negative and s € wy €

~ ~ M ,* . M
Wi, 0. We have E(0) = QA.,onszIro and Ey(0) = qA on)\ Tiay With gxwy = @3,

(Lemma 2.7). Applying the homomorphism H M % 1 we obtain 0(Ey(w)) = E(w).
The same arguments show that 6*(EM (@) = E4(0).

Suppose w € Wyr+ U Wy—. We proved that §(Ey(0)) = E(w) and 6*(EM (w0)) =
E, (), i.e. that E,() is the image of EM (1) by 6 and 6* when o is the orientation of
Weyl chamber dominant or anti-dominant. Using E; (@) = ((E,((w)™!)) and that o6 =
0oCa, (00" = 0% oy (Remark 2.12), this implies that E, () is the image of £y, (W) by
0 and 0%, as E; () = (¢ 0 0)(Earo((®) 7)) = (0 0 () (Eno((0) 1)) = 0(Eyy o (@) O

E(w), and by the same arguments

2.4 wy-twist

Let Sy C S, wo denote the longest element of Wy and Sy, (a) = woSayrwo C woSwe = S.
The longest element wys0 of Wy o satisfies war0(25,) = Xy, and waro(X€ — X9,) =
3¢ — X9+ The longest element wy,(ar),0 0f Wa, (a0 18 wowM oWp.

Let w)! := wowpr0- Its inverse Mapg = War,0Wo 18 woo( and wy (E6 ) = E;O(M).
This implies that wl! (£47€) = ZZ}’; {M)' Indeed the image by w}! of the simple roots of
Y is the set of simple roots of ¥, (ar), and this remains true for the simple affine roots
which are not roots. Note that the irreducible components ¥ ; of ¥3; have a unique
highest root aps;, and that the —aps,; + 1 are the simple affine roots of ¥ which are not
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roots. We have wi!(—an; + 1) = wowaro(—an; + 1) = wo(anr;) + 1. The irreducible
components of X, sy are the wo(Xas,;) and —wo(ans,) is the highest root of wo(Xas,:).
We deduce:

wd Sl (i)t = se L wh Wit )t = well o e Waro(wd) T = Wayano-
We have A = wfA(wd’)~! and wf A, (w)f)~t = A sary- Recalling Wiy = A

Wharo, Wae = Ape X Waro and the group Qs of elements which stabilize 205, we
deduce:

(16)
wéwWM(wM)*l :WwO(M)7 wéwQM(wéw)*l :Qwo(M)7 wéwWMe(wéV[)il :Wq;(f(M)'

Let vy denote the action of Wiy on Vi and 20y the dominant alcove of (Vas, Hr).
The linear isomorphism

w]\f
Vu —— Vo (ar), (o, ) = <wé\4(a),wé‘/[(z)> for a € Xy,

satisfies
M

w0 var(w) = Vo (ary (Wi w(wd") ™) o wd! for w € Wiy
It induces a bijection $r — o (ar) sending Ans to Ay (ar), @ bijection Dpr — wd (D)
between the Weyl chambers, a bijection oy +— w}!(0ns) between the orientations such
that /‘Dwé‘/[(oM) = wéw(iDoM).

Proposition 2.20. Let w}! € Wy (1) be a lift of w}!. The R-linear map

HM i> Hwo(M)v Té\)/[ — 1120&(34(25]\4)71 fOT‘ w S VVM(l)7
0 0
is a R-algebra isomorphism sending Hyre onto Ho,ary-< and respecting the €’ -alcove walk
basis )
(B, (0) = Egp (@5 0(wy) ™) for w e Wi(1),

oM

for any orientation opr of (Var,9ar) and e,€ € {+,—}.

Proof. The proof is formal using the properties given above the proposition and the
characterization of the elements in the €¢'-alcove walks bases given by (5), (6), (7) if
€ =+ and (11), (12) if € = —. O

We study now the transitivity of the wqg-twist. Let Sy € Sy € S. We have the

subset war oSpwar o = Sw,,, () of S and we associate to the conjugation by a lift

. .
War 0 of war o in W (1) an isomorphism H s TN Huw,, o) similar to Hyy EN Howo (M) I

Proposition 2.20. We will show that j factorizes by j'.

’ .
We have wi! = wl wil,, where wll, .= wyp gwaro (equal to wd? if S = Sy),

Wiy oy = W War(wiz) ™Y Wagny = wh" Wy, any(wy") ™ = wg W (wg") ™

For Sp;, C Swyv, let WME,M/ C Wy, denote the submonoid associated to Sﬁf,f as in
1

Definition 2.1 (the pair (X — X7, , X4//%) is replaced by the pair (37, — ZLI,E%,J(’JF)).
We note that:

— M M \—1
WwM’,O(M)_e’Ml = 'lUM/WMe(U)M/) s

Wso(a)—c = w(])WWwM/,O(M)—aM' (W)™ = W Wire (wd) ="

11



~ ~ ’ ~ . . . / . . ~ ~ [
Let @), wd!", wht, in Wy(1) lifting wif, w!", wif, and satisfying w)! = @}’ @}%,. The
algebra isomorphisms

Har - Moy o), Harr T Huonrys Hat 5 Hug(ar)

defined by w%,, wd! /711)6‘/1 respectively, as in Proposition 2.20, send the e-subalgebra to

the —e-subalgebra and are compatible with the ¢’-Bernstein bases. We cannot compose j’

with the map j” defined by w3?', but we can compose j’ with the bijective R-linear map
defined by the conjugation by @} in W(1):

k" Wt (M) M

Huyyr oar) — Huoarys T 70 = ij( )

w ,LDM’,LD(ﬂJ(J)\l’)—l

for © € Wy, ) (1)-

Proposition 2.21. j = k" o j' and k" is an R-algebra isomorphism respecting the e-
subalgebras and the e-Bernstein bases: k" (H.,,,  (ar)e) = Huwo(ar)e and k" (E (M) (w)) =

War! o0
E;O(M)(wéw w(wy" )t fore € {4, =}, we Wy, (-

Proof. The relations between the groups W, and W, imply obviously that j = k" o j’
and that k" respects the e-subalgebras.

k" is an algebra isomorphism respecting the ¢’-Bernstein bases because j, j' are algebra
isomorphisms respecting the ¢’-Bernstein bases and k" = j o (')~ 1. O

2.5 Distinguished representatives of W, modulo Wy,

The classical set MWy of representatives on Wi o\Wy is equal to pr Dy = pDy where
[Carter, 2.3.3]

(17) uDyi={deWy|d ' (Sf,) e XT},
(18) mDy = {d € Wy | l(wd) = l(w) + £(d) for all w € Wy}

The properties of MW, used in this article that we are going to prove are probably well
known. Note that the classical set of representatives of Wy\W is studied in [Vig3], that
+ can be replaced by € € {+, —} in the definition of 5Dy, that Mwy = wprowe € MWy
and that MWyNS =5 — Sy

Taking inverses, we get the classical set WY of representatives on Wy /Wy equal to
DM,l = DM,Q, where

(19) Dy i={d e Wy | d(X};) c T},
(20) Do = {d e Wy | £(dw) = £(d) + £(w) for all w € W0}

The length of an element of W is equal to the length of its inverse, and [Vigl, Cor. 5.10]:
for A € A,w € W,

(21) (Ow)= > |Bor(N+ Y [=Bor(A)+1]

BeTtnuw(Tt) BED,,

where ®,, := Xt Nw(X7). If w = s1...54,) is a reduced decomposition in (Wp, S),
@, = {as, } Usi(Ps,4) and £(w) is the order of ,,. If w € Wiy, @, C X1,. Let £5(Aw)
denote the contribution of 8 € £T to the right side of (21).

We show now that Wy o can be replaced by Wy,+ in (18) and by Wy,- in (20) (taking
the inverses). It is also a variant of the equivalence ¢(Aw) < £(A\) + £(w) < Bov(A) >0
for some 5 € ®,, for A,w as in (21).

Lemma 2.22. (i) {(wd) = {(w) + £(d) for w € Wyt and d € MWj.
{(dw) = €(d) + L(w) forw € Wy~ and d € WM.
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(ii) For A € A,w € Waro,d € MWy, then £(Awd) < £(Aw) + £(d) is equivalent to
w(B)ov(A) >0 and d”*(B) € ™ for some f € Xt — 1.

Proof. [Ollivier10, Lemma 2.3], [Abe, Lemma 4.8].

Let A€ A,w € Wyr0,d € MWy and B € 7.

Suppose B € £1,. Then £g(d) = 0, ®, = 0 because d~1(X,) C %€ (17), and £g(Awd) =
{5(Aw) because w=1(B) € X¢ & w(B) € B9, = d~w™(B) € B€ (17).

Suppose B € £t — %1, Then w™(8) € ¥ — 5}, and £5(\w) = |Bov(N)].

The number ¢(d) of B € X+ — ¥}, such that d=1(3) € X~ is equal to the number of
B € Xt —¥F, such that (wd)~1(8) € £~.

When A € Ay+ and (wd)~1(B) € 7, then Bov(\) <0 and £5(A\wd) = |Bov(N\)| + 1.
Therefore ¢(Awd) = ¢(Aw) + £(d), which gives (i).

When A € A — Apr+, L(Awd) < £(Aw) + £(d) if and only if there exists § € X+ — X7,
such that Bov(\) > 0 and d~'w™1(B) € ¥~. This gives (ii) because 8 — w=1(B) is a
permutation map of ¥+ — %7 . O

Lemma 2.23. (i) For A € A,w € Wy, we have q¢x = Quaw-1; w = GQuowwes NA
(wo) = L(w) + L(w™twy) = Llwow™ ) + £(w).
(ii) For w € War,, we have g, = Qoo (w )1 -
Proof. (i) [Vigl, Prop. 5.13]. The length on W, is invariant by inverse and by conjugation

by wg because wygSwy = S and [Bki, VI §1 Cor. 3].
(ii) qu = quﬂwszil,o = qwé”w(wé”)*l for w € WM,(). O]

Lemma 2.24. WM = WSUO(M)wéV[ = woWMwaro.

Proof. By (19), d € WM & d(x},) c T & d(wéw)_l(ZjUO(M)) C Xt e dw)) ! e

W(;UO(M). This proves the equality WM = W(;UO(M)wéw. The equality WM = woWMwys o,

follows from d(wéw)’l(E;;O(M)) cYt e dewM,OwO(EIO(M)) C X" e wodwpo(Xy) C

YT e wode,O € Wd\/[ O

Remark 2.25. Wy = A x Wiy0 bub gaw = qupraw(wiy-1 could be false for A € A, w €

W0 such that ¢(Aw) < £(A) + £(w).

Lemma 2.26. ((w}!) = ((w)d=1) + £(d) for any d € WM.

Proof. For d € WM we have ¢(dwys o) = €(d) + €(war,0) by (20) and w = wl?d~! satisfies

wo = wdwyy o and £(wp) = €(w) + €(dwpr). We have wd! = wowprp = wd and {(wi!) =

Z(wo) — K(wM,O) = E(w) + E(d) O
The Bruhat order z < 2’ in Wy is defined by the following equivalent two conditions:

(i) There exists a reduced decomposition of z’ such that by omitting some terms one
obtains a reduced decomposition of x.

(ii) For any reduced decomposition of &', by omitting some terms one obtains a reduced
decomposition of x.

A reduced decomposition of w € Wy followed by a reduced decomposition of w’ € Wy is a
reduced decomposition of ww’ if and only ¢(ww’) = £(w)+£(w’). A reduced decomposition
of d € W cannot end by a non trivial element w € W ,o-

Lemma 2.27. For w,w' € Wy o,d,d € WM, we have dw < d'w' if and only if there
exists a factorisation w = wyws such that £(w) = L(wq) + L(ws), dwy < d and wy < w'.
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Proof. We prove the direction “only if” (the direction “if” is obvious). If dw < d'w’,
a reduced decomposition of dw is obtained by omitting some terms of the product of a
reduced decomposition of d’ and of a reduced decomposition of w’. We have dw = dyws
with di < d',we < w' and £(dywy) = £(dy) + €(wy). We have d; = dwy,w; = ww;l.
As w,wy € wpro and d € WM we have £(dw;) = £(d) + £(w;) and ¢(dw) = £(d) + L(w).
Hence £(w;) + £(ws) = £(w). O

Lemma 2.28. Let d' € "MW, d e WM.
(i) If there exists u € Wyro,u' € W such that v = wlu < w = du’, then d = w}!.
(ii) d'd € w)Ws o if and only if d'd = wit.

Proof. (i) As £(w) = (d) + £(u'), we have u = ujuy with wilu; < d,us < u' and uy,us €
Wiro (Lemma 2.27). We have £(wlfur) = O(wdl) + £(uy) = L(wdld=t) + £(d) + £(u1)
(Lemma 2.26). Hence d = wi!,u; = 1.

(ii) If there exists u € Wy such that d = '~ twl’u we have d = '~ w{! because
d~twd)t € WM (Lemma 2.24). O

2.6 H as a left 0(H+)-module and a right 6*(#,,-)-module

We prove Theorem 1.4 (iv) on the structure of the left 8(H y;+)-module H and its variant
for the right 6*(H,-)-module H. We suppose Sy # S.

Recalling the properties (i), (ii), (iii) of Theorem 1.4, Has = Hpr+[(T2])7'] is the
localisation of the subalgebra H s+ at the central element T%I. The algebra H,;+ embeds

in H by 6. Recalling (17), (18) we choose a lift d € W (1) for any element d in the classical
set of representatives ¥ Wy of War,0\Wo. We define

(22) Vare = > 0(Ha+ )Ty

deMW,

Proposition 2.29. (i) Va+ is a free left O(H s+ )-module of basis (T7)gerw,
(ii) For any h € H, there exists v € N such that T h € Vyr+.
(ili) If q =0, Tp,, is a left and right zero divisor in H.

For GL(n, F), (ii) is proved in [Ollivier10, Prop. 4.7] for (q(s)) = (0). When the q(s)
are invertible, Tz is invertible in H for w € W(1).

Proof. (i) As MW, is a set of representatives of Wj,;+\W, a set of representatives of
W+ (D\W (1) is the set {d | d € MWy} of lifts of MW, in W (1). The canonical bases of
Hpr+ and of H are respectively (Tz)(w)ew,,, (1) and (de)(m,d)eWM+(1)xMng and T, ; =
T3T; by the additivity of lengths (Lemma 2.22).

(i) We can suppose that h runs over in a basis of H. We cannot take the Iwahori-
Matsumoto basis (T )gew (1) and we explain why. For w = @ d with @y € W+ (1),d €
MW, we choose r € N such that 5wy € Wi+ (1). By the length additivity (Lemma
2.22) Tpr o = Tpan,wy, Ty lies in O(Hps+ )T, but we cannot deduce that Ty Ty lies in
O(Hnr+ )Ty

We take the Bernstein basis (2.18) and we suppose that q(s) = q is indeterminate
(but not invertible) with the same arguments as in [Ollivier10, Prop. 4.8]. Then E(d) =
T; for d € MW,. If we prove that E(i},w) lies in 6(Hy+)T; then E(fin)"Eo(w) =
Auy, wE ([ W) lies also in 0(Hpr+)T;. This implies T Eo(w) € 0(Has+ )Ty

M
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Now we prove E(iy,w) € 0(Hpy+)T;. We write Wy = ;\pr,;\ € A1), Wm0 €
Wiro(1). Recalling E(x) = T, for « € Wy(1) and the additivity of the length (Lemma
2.22),

q/ih)vwwf,odE(/TMw) = E(ﬂRIS‘)E(wM,OJ) = E(ﬂ?WS‘)Tu“;Mﬁoci = E(ﬂ?\/l;\)TﬁJM,on"

= qu}“\/[)\wa,oE(ﬂMwM)Td

The monoid Wy is a lower subset of (W, <ps) (Lemma 2.6). The triangular decompo-
sition (14) implies Ens(fh,war) € Hag+. By Proposition 2.19 E(ih,war) € 60(Ha+) and
by the additivity of the length (Lemma 2.22),

QwM,Od = QwM,UCIda qu}i{)\wjuyod = nyu)\wM,oqw

Implying qM}"WAqu,odq;’glJ)\wM,gd = qM}Lf)\qu,oq;Xl/I)\wM,o hence Aut, N warod = Auh, A waro¢

(iii) We have £(ppr) # 0 and equivalently, v(pas) # 0 in V. We choose w € Wy with
w(v(par) # v(par). Then v(wpprw™) = w(v(uar)) and v(upr) belong to different Weyl
chambers. The alcove walk basis (E,())gew (1) of H associated to an orientation o of V
of Weyl chamber containing v(uys) satisfies

(23) Eo(fine) = Tanys Bolfins) Bo(@fing® ™) = Eo(@hinrw™ ") Eo(finr) = 0.
O

The properties of the left 8(H r+)-module H transfer to properties of the right 0* (H ;- )-
module H, with the involutive anti-automorphism ¢ o ¢ of H (Remark 2.12) exchanging
Ty and (71)4(10)1“(*;1))_1 for w € W(].), G(HM+) and 9*(7‘[]\/[—), V]Vﬁ— and

(24) Vi = Z T30 (Has-),

dewM

where WM = {d'~1 | d' € MWy} is the set of classical representatives of Wo/Waso (19),
and d = (d')'ifd=d!.
Corollary 2.30. (i) V},- is a free right 0" (Har-)-module of basis (T75)acwpr -
(il) For any h € H, there exists r € N such that h(T(*;lM),l)T €V -
(iii) Ifq=0, T;_l is a left and right zero divisor in H.
M

3 Induction and coinduction

3.1 Almost localisation of a free module
In this chapter, all rings have unit elements.

Definition 3.1. Let A be a ring, and a € A a central non-zero divisor. We say that a
left A-module B is an almost a-localisation of a left A-module Bp C B of basis D when :

(i) D is a finite subset of B, and the map @qepA — B, (zq) = > xqd is injective,
(ii) for any b € B, there exists r € N such that a"b lies in Bp =), Ad.

Example 3.2. Our basic example is (A,a,B,D) = (Hy+, Tpp, Ho (T3)aervw,) (Thm.
2.29).
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As a is central and not a zero divisor in A, the a-localisation of A is ,A = A, =
UnenAa™"™. The left multiplication by a in A is an injective A-linear endomorphism
A — A,z — ax, and the left multiplication by a in B is a A-linear endomorphism
ap : x> azx of B which may be not injective hence B may be not a flat A-module. The
ring B is the union for r € N, of the A-submodules

+Bp = {b €B | a"b e BD},

and looks like a localisation of Bp at a.

Definition 3.3. Let A be a ring and a € A a central non-zero divisor. We say that a
right A-module B is an almost a-localisation of a right A-module pB of basis D if :

(i) D is a finite subset of B, and the map @qepA — B, (xq) — > d x4 is injective,

(ii) for any b € B, there exists r € N such that ba” € pB =}, ., dA.

The ring B is the union for r € N of the A-submodules
pB, = {b €B | ba" € DB}

Example 3.4. Our basic example is (A,a, B, D) = (Hp-, T,-1,H, (Tj)aewpt) (Theorem
2.30).
We note that (A, B) = (Ha, H) in Example 3.2 and in Example 3.4.

3.2 Induction and coinduction

3.2.1

For a ring A, let Mod 4 denote the category of right A-modules, and 4 Mod the category
of left A-modules. The A-duality X — X* := Homa (X, A) exchanges left and right
A-modules.

A functor from Mod 4 to a category admits a left adjoint if and only if it is left exact and
commutes with small direct products (small projective limits); it admits a right adjoint if
and only if it is right exact and commutes with small direct sums (small injective limits)
[Vigadjoint, Prop. 2.10].

For two rings A C B, are defined two functors:

the induction If := — ®4 B and the coinduction 1% := Hom 4 (B,—) : Mods — Modp,

where B is seen as a (A, B)-module for the induction, and as a (B, A)-module for the
coinduction. For M € Mod 4, we have (m®z)b = m®xb, (fb)(z) = f(bz) if z,b € B and
m e M, f e Homy (B, M).

The restriction Res]j : Modg — Mody is equal to Homp(B,—) = — ®p B where
B is seen first as a (A, B)-module and then as a (B, A)-module. The induction and the
coinduction are the left and right adjoints of the restriction [Benson, 2.8.2].

For two rings A and B and an (A, B)-module J, the functor

—®4 J : Mody — Modp is left adjoint to Homp(J, —) : Modg — Mod 4.
Let M € Mods, N € Modg. The adjunction is given by the functorial isomorphism
Homp(M @4 J,N') = Homa(M,Homp(7,N)), f(m®z)=a(f)(m)(z),

for f € Homp(M ®4 J,N),m € M,z € J |[Benson, Lemma 2.8.2].
For three rings A C B, A C C, the isomorphism « applied to M = C,J = B gives an
isomorphism:

Hompg(C ®4 B,—) ~ Homu(C, —) : Modg — Modc .
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3.2.2

Let A C B be two rings and a € A a central non-zero divisor. Let A, = A[a~!] denote
the localisation of A at a. There is a natural inclusion A C A,. The restriction Mod 4, —
Mod 4 identifies Mod 4, with the A-modules where the action of a is invertible. For M, M’
in Mod 4, , we have

(25) Hom., (M, M') = Homa (M, M), M@s, M =Me4 M.

For f € Homa(M, M'),m € M,m' € M', we have f(aa"'m) = af(a"tm) = a=1f(m) =
fla™tm), and m@a~tm' = ma " la®a'm' =ma~t@m’ in M®@4 M’'. We view Mod 4,
as a full subcategory of Mod 4.

The restriction followed by the induction, resp. the coinduction, Mod4 — Modp
defines an induction, resp. coinduction,

1§ =1foRes)i* = — @4 B, 1§ =I5oRes|* =Homu(B,~) : Moda, — Modsg,
even when A, is not contained in B. The induction I fa admits a right adjoint
]Iﬁ“ o Resﬁ = Homy(A,,—) : Modp — Modg4,,

because the restriction Resﬁ“ and the induction I§ admit a right adjoint: the coinduction
Hﬁ“ and the restriction Res%. The coinduction 15 admits a left adjoint

I{* oResf = —®4 A, : Modp — Moda,,

because the restriction Resﬁ“ and the coinduction 15 admit a left adjoint: the induction
1 1’2“ and the restriction Resﬁ.

When a is invertible in B we have A, C B and they coincide with the induction and
coinduction from A, to B.

The induction and the coinduction of A, seen as a right A,-module, are the (A4,, B)-
modules

(26) 1% (A)) = A, ®4 B, 1§ (A,) = Homa(B, A,).
Lemma 3.5. Let M € Mody,. Then I§ (M) = M @4, 1§ (Aa) in Modp.

Proof. M®@a B =(M®a, Ay) @4 B=M®4, (Aa®a B). O

3.2.3
Let (A, a, B, D) satisfying Definition 3.1. Let M € Mod,4,. As R-modules,

(27) 15 (M) =M®4 Bp

because the action of ¢ on M is invertible hence M ® 4 ,Bp = M ®4 Bp for r € N. In
particular:

Lemma 3.6. The left Ay-module 15 (Ag) is free of basis (1 ® d)aep.

Remark 3.7. The A-dual (Bp)* of the left A-module Bp is the right A-module ®4cpd* A
of basis the dual basis D* = {d* | d € D} of D. Let M € Mod,,. We have canonical
isomorphisms of R-modules:

DagepM — M ®4 Bp = Homa((Bp)*, M)

(xd) — Z Tqg®d— (d* — xd)d€D~
deD
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The tensor product over A by a free A-module is exact and faithful hence the induction
is exact and faithful.

Let R C A be a subring central in B. The ring R is automatically commutative and
a central subring of the localisation A, of A. The modules over A, or B are naturally
R-modules.

Let M € Mod 4, be a finitely generated R-module. The R-module M &4, Iffa (Ay) is
finitely generated.

Let N' € Modp be a finitely generated R-module. The R-module Hom (A, N) is
finitely generated if R is a field by the Fitting’s lemma applied to the action of @ on N.
There exists a positive integer n such that N is a direct sum N = N, & N, where a”
acts on N, as an automorphism and a” is 0 on A]. Then, Hom4 (A, N) ~ N, is finite
dimensional.

We obtain:

Proposition 3.8. Let (A, a, B, D) satisfying Definition 3.1. The induction functor
I} =—®a B:Moda, — Modp

is exact, faithful and admits a right adjoint Rfia := Homy (Ag, —).
Let R C A be a subring central in B. Then Iffa respects finitely generated R-modules.
If R is a field, Rﬁ"a respects finite dimension over R.

3.2.4

Let (A4, a, B, D) satisfying Definition 3.3.

For M € Mod g4, the set M of f € Homa(pB, M) vanishing on D — {d} is isomorphic
to M by the value at d. The A-dual (pB)* of pB is a free left A-module of basis D*.
We have

(28) Homa(pB, M) = ®agepMa =~ Bgrep-Md* = M®4 (pB)”.

The A-modules My and M ® d* are isomorphic by f +— f(d) ® d*.
For M € Mod4,, we have linear isomorphisms

HEQ(M) = HOmA(B,M) >~ HOmA(DB,M), M XA (DB)* =M ®A Aa ®A (DB)>~<
For d € D, let fq € Homu(B, A,) equal to 1 on d and 0 on D — {d}. We deduce from
these arguments:

Lemma 3.9. Let (A,a, B, D) satisfying Definition 3.3. The left A,-module ]If;a (A,) is
free of basis (fa)aep and I (M) ~ M @4, 15(As).

Let R C A be a subring central in B. Let M € Moda, be a finitely generated R-
module. The R-module M ®4, Hﬁa (A,) is finitely generated. If R is a field, and the
dimension of A € Modp is finite over R, then N ®4 A, = N, ®4 A, ~ N, has finite
dimension over R by the Fitting’s lemma, as in the proof of Proposition 3.8. We obtain:

Proposition 3.10. Let (4,a, B, D) satisfying Definition 3.3. The coinduction
I5 =Homu(B,—): Moda, — Modp

is exact, faithful, and admits a left adjoint LBa = —®a A,
Let R C A be a subring central in B. Then Hﬁa respects finitely generated R-modules.
If R is a field, Lﬁa respects finite dimension over R.
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4 Parabolic induction and coinduction from H,; to H

We prove Theorems 1.6, 1.8 and 1.9 giving the properties of the parabolic induction from
Har to H.
4.1 Basic properties of the parabolic induction and coinduction

The example 3.2 satisfies Definition 3.1 and the example 3.4 satisfies Definition 3.3. In
these two examples (Aq, B) = (Har, H). The first one

(Aa avD) = (Q(HJVI+)?ZIM? (TJ)dEMWO)v

where we identify H p+ with 6(H,+ ), defines the parabolic induction I%M = —Qu. . oH:

Mody;,, — Mody. The second one

(A,a,D) = (0" (Har- ), T, )15 (T] ) aewar)

Mt

where we identify H ;- with 6*(H;-), defines the parabolic coinduction I} = Homy, (H,—):

Mody,, — Mody. Propositions 3.8 and 3.10 imply: o

Proposition 4.1. The parabolic induction I;_L{M and the coinduction H%M are exact, faith-
ful and respect finitely generated R-modules. The parabolic induction admits a Tight adjoint
R}, =Homy . o(Har,—): Mody — Mody,, .

The parabolic coinduction admits a left adjoint

]L%M == ®HM—79* Har : Mody — MOdHM .

If R is a field, the adjoint functors R%M and IL%M respect finite dimension over R.

4.2 Transitivity

Let Spr € Sy € S, Let Wypenrr = Appenrr X Wy denote the submonoid of Wiy
associated to Sjavf,f as in Definition 2.1 (see before Proposition 2.21), and

Ayerr =ANWyenr ={A€A| —(yov)(N) >0 forall y € X, — X9, },

By the property (i), (ii), (iii) of Theorem 1.4, the R-submodule H ;. of Hps of basis

(TIJT\J/[)IDGWME,M/(U’ is a subring of Hj, the restriction to H,s. - of the injective linear

map
Hor 5 Hapr, TM T for & € Wiy(1),

respects the product, and Har = Hyzear [(TM )7, Obviously, the map Hay LY

e
satisfies 6 = 0y o 0’ for the linear map H s 91\—4/> H, Téy/ — Ty for w € Wy (1).
Lemma 4.2. We have
(i) Wy C Wi, Wage = WMe,M’ N Whyre, 9/(7'[]\46) = 9/(HJVIEJW) NHappre.

(ii) fipgefingre is central in Wy (1), satisfies —(yov)(punsepipre) > 0 for all v € € — X9,
and the additivity of the lengths €(pprepinsre) = €(pare) + €(ppsre).

e ’
(111) JWWO = AIWM/70 M Wo.
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Proof. (1) We have Wy o C Wayr o and Apre = Alyye NAppe. Therefore Wy = Ax Wy C
AXWyprg =Wy, and Wypenr N Wiy = (N X Wago) N (Ayye X Waygr o) = (Alye N
AM/e) X WM70 = AME X WM70 = WMe.
(ii) fipse is central in Wi (1) which contains Wi (1), fiase is central in Wi (1), hence
finrefipgre is central in Wi (1). We have
—(yov)( pmre)>0forall y € B¢ =39, —(vov)( pupre) =0 for all v € Zpp,
—(yov)( pame) >0 for all v € ¢ —X9,, —(vov)( pme) =0 for all v € Xy,.
Hence —(y o v)(pyyepinrre) > 0 for all v € ¢ — X5, and €(pprepensre) = Lpare) + €(pngre).
(i) Let u € MWy o,v € MWy and let w € Wazg. We have £(wuv) = £(wu) 4 £(v) =
{(w) + £(u) + L(v) = £(w) + L(uv) hence uv € MW,. The injective map (u,v) — uv :
W o % M/Wo — MW, is bijective because
IMWo| = [Waro\Wo| = [Waro\Warr ol [War o \Wo| = [MWap o] |M Wol,
where | X| denotes the number of elements of a finite set X.

Proposition 4.3. The induction is transitive:
0, =1 oL : Mody,, — Mody,,, — Mody,.
The coinduction is also transitive. This is proved at the end of this paper.

Proof. By lemma 3.5, the proposition is equivalent to

Hy Oy HHM O Hie @y M

M/t

in Mody. As Hpp = Hap+ [(TM )71 is the localisation of the ring #,,/+ at the central

Hoppr+

. € Hppr+, the right H-module Harr ®% . H is the inductive limit of

(TﬁMM/,+ )"" ® H for r € N with the transition maps

!
element TM
Harr

(TM, )_T®$»—>(T%;/+)_T_1®T~ z, forxeH.

Bopgr+ Hoagr+7

As Har = Hppeonmr KT;%M )~1] is the localisation of the ring H ,,+.. at the central element

T%ﬁ € Hps+.m0, the right H-module Has O, v Hoar ®H,,v H is the inductive limit

of (Té‘;{l+ )7 ®@Hm @, H for s € N with the transition maps

(T )t eye (T ) eTM y, fory € Har ®n,,, H.

Har+ M/t

Using that Té‘fﬁr is central in Hpss and T%Jr € Hpp+, we have for y = (Té‘f’w+ )R

M M M N—r o . M N—rp M’ _ (M N=r o
Ty =15, (g )@= (T, ) Th @@= (T; )7 ®@T,, =

Alltogether, the right H-module H ;s OH, 4w My @y, H is the inductive limit of
(TM Y= (T%;/Jr )"" @ H for r,s € N with the transition maps

ll1u+

(T, )" @ (T, ) @ (T3 )7 e (T, )7 @ Ty, .0

Hoppr+ M+
M —s M’ —r M —s M’ —r—1
(Tﬁ'MJr) ® (TﬂM/Jr) ®z (TﬂM+) ® (TﬂM/Jr) ® T'G’M"*':E'

The right H-module H QH Har Q2,4 H is also the inductive limit of the modules
M —r M’ —r s sp
(Tz,.,) " ® (TﬁM/+) ® H for r € N with the transition maps

(@ )T e (I )T (T )T e (T )T e T T, 0

Boppr+ Boppr M+
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By Lemma 4.2 (ii), Tj, ., T+ =Th, 1, Hence, we have in Mody
Hu ®’H1\4+vM' Har ®HM’+ H =~ h&“ H.

ZF—)T[LJW+ ﬂM’+ x

On the other hand, Hy = Har+[( is the localisation of H/+ at T[ﬁ‘/[

M -1
Tﬁjy1+/1M/+) ]

M+ P+
. . . . . M —
(Lemma 4.2), hence Hyr ®%,,, H is the inductive limit of (TﬁMHiM/Jr) "®H forreN
with the transition maps
M —r M —r—1
(TﬁNI+ﬂA4/+) ®T— (TﬂM+ ﬂM/Jr) ® T[‘M+ Fipgrt X
We deduce that
HM ®H1\1+ H = h_H)l H
zHTﬁA{+‘1M/+ z

is isomorphic to Hs QU o Har @,y H in Mody. O

4.3 wy-twisted induction = coinduction

We prove Theorem 1.8. When H = Hg(G) is the pro-p Iwahori Hecke algebra of a
reductive p-adic group G over an algebraically closed field R of characteristic p, Theorem
1.8 is proved by Abe [Abe, Prop. 4.14]. We will extend his arguments to the general
algebra H.

Let w}! € Wp(1) lifting w))!. The algebra isomorphism H s =~ Huo () defined by wd!
(Proposition 2.20) induces an equivalence of categories :

‘:I')]\/I
(29) MOdHM —0) 1\/[0(21';.[“}0(]\4>
called a wo-twist. Let M be a right Hjs-module. The underlying R-module of ) (M)
and of M is the same; the right action of T2 on M is equal to the right action of

Tg(ggf(ﬁ;gﬂ*l on ) (M), for w € Wy (1). The inverse of ) is the algebra isomorphism
induced by (w}?)~! lifthing Mw := (w)!) ™1 = warowo = wowow s owo = wSUO(M).
Remark 4.4. The lifts of w)! are twd! = w}'t’ with t,t' € Zj, the elements T} €
HM,Ttwo(M) € Huo(m) are invertible, and the conjugation by T} in Hys, by Tth(M) in
Huwo () induce equivalence of categories

MOdHM L) MOdHM, MOde i) MOdH

0 (1) wo (M)
such that tw}! = to)! = wl! ot/ = w}!t.

Remark 4.5. The trivial characters of Hy; and H,,,(as) correspond by ol

HH
We will prove that, for all Sy C S, the coinduction Mody,, BULIN Mody is equivalent
to the wo-twist induction

H
I“wo(M)

20D Mody, .

7s

=
Mody,, —2+ Mody

wo (M)
This proves Theorem 1.8 because
(30) ]I%M ~ I o t{)é\/[ = Ing ~ ) tﬁg/[.

Hapg (M) Hag (M)
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Indeed, if the left hand side is true for all Sp; C S, permuting M and wg(M) we have
(M)

~ TH ~ wo . : ~wo(M)y—1 H  ~ TH
Dty nry = 13, © Mg , and composing with (1w, )7 we get Ipf, o~ Ty o
(Fog’(’(M))’l ~ I% o © d! as wg}‘)(M) = (wd?)~! The arguments can be reversed to get
wo

the equivalence.
Let M € Mody,,. We will construct an explicit functorial isomorphism in Mody:

(31) (T, © 06 (M) = T, (M)

From Lemmas 3.5, 3.6, 3.9 and Examples 3.2, 3.4, we get:

(i) I;";‘WO(M) (Havo (M) = Hug (M) B3, 0y, 0 H 18 aleft free Hy, (1r)-module of basis 10T,

for d € MW, and

(I, oADMY = 0 (M) @30 ) T ().
(it) 1% (M) = Homyy _ g+(H, Har) where 7 is seen as a right 6*(# ;- )-module, is
a left free Hp-module of basis (f7)gewar, where f3(775) = 1 and f3(T3) = 0 for
z € WM — {d}, and
H%M (M) =M OH s H%M (HM)

It is an exercise to prove that the left Hjy-module I} () admits also the basis
(fD)aewar, where f;(T;) = 1 and f3(T5) = 0 for = € WM — {d}. We will prove that
the linear map

(32) mT; —me® fi)éuTJ, : @d/eu)U(M)WO{béw(M) ® Ty LR @dGW[{”M ® f3

is a functorial isomorphism in Modyx. The bijectivity follows from the bijectivity of the
map d’ +— d' " tw)! oMW, — WM (Lemma 2.24) and:

Lemma 4.6.
fﬁJéWTJ’ — f(d/*lwé”)N lies in GameW({”,z<d’*1w{)” M® fz.

Proof. For d € WM we have (fouTp)(Ty) = famu(T5Ty) = fau(Tig) + 2 where z €
> Rfgu(Ts) the sum over the w € Wo(1) with w < d'd and w € wWhro. If d'd ¢
wd W0, there is no w € w! Wy o with w < d’d (Lemma 2.26). We have d'd € w}! Wy o
if and only if d = d’~ 1w}’ (part (ii) of Lemma 2.28). O

The restriction Res? : Mody — Mody is left adjoint to — ® oH
Hwo (M)+ 0 wq w

and the H,,,(nr)+-equivariance of the linear map

M)+ o(M)F>

(33) m s m® fgu w0 (M) = 15, (M)

implies the H-equivariance of (31), i.e. of (32). Let Ha, EN Huw,(vr) denote the iso-

morphism induced by @w{! (Proposition 2.20), and 6, the linear map Hys 9 H. The
H o (ar)+-invariance of the map m — m ® f@éw is equivalent to:

(34) FantOuoary(R) = 571 (R) fgar for h € My (aryt s
We can suppose that h lies in the Bernstein basis of H,, )+ Let @ € ng(M)+(1)

and h = Ey, (W) As Oy ar)(Ewe vy (W) = E(w), and j_l(EwO(M)(u?)) is equal to
En((0dh)~wwd?), (34) is equivalent to:
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Proposition 4.7. fgu E(w) = En((0dH) Lo )waVI for w € Wi, (ary+

Proof. By the usual reduction arguments, we suppose that the q(s) are invertible in R.
Using W+ = Awean)+ X Wag(an),0, the product formula (8) and Lemma 2.23 we
reduce to w € Ay (ary+ U Wi (ar),0- By induction on the length in W, (ar),0 with respect
to Sy, (ar), we reduce to w € Ay (any+ U Swg(ar)-

Let d € WM. We have (fap E(0))(T;) = fagu (E(@)T;) in Hp. We have to prove

) 0 if d # w,
for w € Awg(M)+ U Swo(M)-

(i) w =X € Ayyan+- Let A denote the subalgebra of H of basis (E(%))zea) [Vigl,
Cor. 2.8]. By the Bernstein relations [Vigl, Thm. 2.9], we have

BV = TiE((d)~'Ad) + 3. Toaa,
where a; € A and the sum is over @ € Wy(1),w < d. If d # w}?, the image by fwM of
the right hand side vanishes because w € wj’ War0,w < d implies w = d = wdt; hence
fam (E(S\)Td) = 0 as we want. For d = @}, using (wd")""Mod! e Wo(ar)—, we have
Pt (BT ) = Fane (Taps B~ Add) = 0% (@) Add!)) = Ene (1)),

(i) w = s € Syo(m). We have woswy € Sy, woswownr,o < war and swl =
SWoWp,0 = WoWoSWoWp,0 > WoWpr,0 = wé”.

Assume sd < d. We deduce d # wl!. Assume d = §(s~d) Then

EG3)T; = T:T; = TQT(Sd) = (q(s)(5)? + c(§)Tg)T(S~d) = q(s)(é)zT(S;i) + ¢(3)T;. We
deduce that fgu (E(5)T;) = 0.

Assume sd > d. We write §d = dy% with d; € WO 7u E Wi Then T5T; =T,; =
Ty, 5- Therefore fuu (E(35)T;) = fgu(Ty,;) = 0if di # wdl. We suppose now dy; = w}?.
We have d < w)! < sd hence wé” = d or w)! = sd. In the latter case, a reduced
decomposition of w}! starts by s. But this is incompatible with s € Swo(n) because
w = wo M)y, We deduce that d = wl!. For d = @), we have fap (E(8)Tgn) =
fw(])\/I(Tg ~ZM) — f JM(T ]MT(wM) 1~~]M) — f 1\4( ]ME(”LUM) 1""M) — 9 (E(IUM) 1""M)) ==
En((wd! ) Lspd! ) This ends the proof of Proposition 4.7 hence of Theorem 1.8. O
Corollary 4.8. The right H-modules Har @, 0 H and Homy,

wo (M)~

o (H, Hwo(M)) are

isomorphic.
4.4 Transitivity of the coinduction

Let Sy C Sy € S. By Proposition 2.21, the algebra isomorphisms

. k//
Har 2 Huo(rr),  Har Z, Huoyyr o(m) = Havg(ar)

. ~ ~ ~ / ~ ~ [ . . . .
corresponding to wi!, Wi, Wit , W)t = W' Wl satisfy j = k" o j. The associated

equivalences of categories, denoted by

~]\4 =~ M ~ M

oy W
(36) Mgy =2 Mg, s Mgy =25 Mag, 0 = My

wqo (M) ?
satisfy w}! = 1'5374,; o, We refer to this as the transitivity of the wo-twisting.

Y H
Lemma 4.9. The functors )l o IHM and IH“’O(M ' o mo [ from Mody, to

Hau Ml Lo (M) wg (M) wpgr o (M)
Mody are isomorphic.

wo (M)

23



The proof gives an explicit isomorphism.

Proof. Let M € Mody The R-module M ®4,

wagr o (M)
action of H,,,(ary defined by (z ® Tyl)jz”;}”;{(,ﬂégy,)il =2z@TM'TM for z € M,u,v €
W, is 0! o 1551;,0<M><M)-

As K" (Huw,, o(m)+) = Huo(an)+ (Proposition 2.21), the R-linear map M @ Harr —
ﬁ)év,[k/(M) Qn
of the quotient map M ® g Har — ) o M @y

o Har with the right

w0 (M)

9 Huwo () defined by z @ Téw —r® oM is the composite

wé“'ﬂ(uﬁgﬂ)*l

‘H s, and of the bijective linear

wo M)+

wJVI’,O(M)+

map
~ M’ Hrrr ~ M’
W, © IH1I‘\’JN1/,0(M> (M) — g, (M) Qo (aryt 0 Howg (M)

The displayed map is clearly H.,,,(ns)-equivariant. O

Proposition 4.10. The coinduction is transitive.

Proof. By the transitivity of the wo-twisting (36), Lemma 4.9, and the transitivity of the
induction (Proposition 4.3), we have:

H Hur _ M =M pHwganmt N g Huoga'y =M =M _
o = o o o = o o o =
]LH]\/I’ ]IHM LHWD(M’) g IHwo(l\l) g IHWO(M/) IHWO(M) M0, © Wy
,H !’ ~ ~
H wo (M) M _ 1H M _ TH
Hwo(M/) © IHwo(M) oWy = IHwU(M) oy = HHM' O

Proof of Theorem 1.9. The induction I;Q‘M is equivalent to I7¢ otwv)?. The coinduc-

wo (M)
tion ]IﬁM is the composite of the restriction Mody,, — Mody,, and of Homy ¢+ (H,-) :
Mody,, — Mody. These functors admit left adjoints, the restriction Mody — Mody,,, -
for Homy o~ (H,—), the induction — ®@31,, Ham :Mody,, — Mody,, for the restric-

tion Mody,, — Mody, , hence — ®H'§@f o0« Hayr + Mody — Mody,, for ]I%M, and
(1)) ™ 0 (= @, 4y, 0" Hu(ar) = 105" 0 (- @

-~ M
wo (M)~ _,0* Hwo(M)) for H% OmO A

wo (M) wo (M)

5

Let A = A; U Aj be an orthogonal decomposition, {i,5} = {1,2} and € € {+,—}. In
the notations, we will often replace a (lower or upper) index M; by a (lower or upper)
index ¢. The orthogonal decomposition of A corresponds to orthogonal decompositions
Y =%1U%,8 =S,USy, 2 = ui ungl/ gaff = §¢/7 5§97 and direct products
welf = Wfff X W;ff,Aaff = A‘fff X Agff, Wo = Wi0 x Wao. We have the semidirect
products quff = A;‘ff W0, Wl = AT Wy, W; = quff xQ; = Ax W, o analogous
to W = W/ % Q = A x Wy. The group W; acts by the identity on Efff. For w e W
we have w(XH7) ¢ 47 and (w) = £1(w) + £2(w) where

(37) ((w) = [0+ QSN Gw) = (S w(se )]

The kernel of ¢; is W]qfo (hence €2 normalizes Wjaff). For (A, wp) € A x Wy we have:

(38) (Owo) = Do HarODI+ Y [awr(V) =1,

aeXtNwo (EF) Q€S Nwo(S-)
(39) GOwe) = Y e+ D Haw(N) 1],
a€S] Nwo(S) a€S Nwo(S])
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For £(Awyg) see [Vigl, Cor. 5.10, Cor. 5.11]. For £;(Awg) *** Decomposing =+ = £ I_IZ;
and recalling that wy € Wy ; fixes ¥;, and that 3; vanishes on I/(A?f f ). The restriction
of £ and of ¢; to W; is the length associated to (Wfff, Sfff) and ¢; vanishes on Wj.

Lemma 5.1. The group W mnormalizes A?ff. For w € W; and p € A';ff we have
U(pw) = () + L(w).

Proof. The group A is commutative and contains A?f f , the group W; o normalizes A?f f ,
and the elements of W} o commute with those of A?ff. Hence the group W = A x (W; ¢ x
W;0) normalizes A%/

Using W; = A x Wy ;, we write w = Awg where (A, wp) € A x Wy,;. We have ¥* N
wo(XT) = (B Nwo(Z)) UE] and ST Nwe(E7) = B Nwo(X;). We apply the formula
(38) to (uA,wp) € A X Wy to obtain the equality between the lengths:

o)=Y Hew(A)+ Y0 Kaw(A)l+ > Hayw(ph) -1

a€E nwo (=) aext a€S Nwo(Z])

= > Har)+ D Kawm)l+ > [aw(N) -1
€S nwo(SH) aext a€Sf Nwo(Z;)

=l(p) + L(w).

O

Let (Walf = Wi« ;Wi c walf (1) be an extension of W2, We have W (1) =
WeFQ(1). Let 1W; ¢ and 1A?ff denote the inverse images in 1Wiaff of W; o and Afff.
Let H; the Levi algebra of H of basis (T"(@))gew, (1) associated to A;.

Lemma 5.2. (i) The left ideal Ji C Hi generated by Ty — 1 for ji € (AT s equal
to the right ideal generated by these elements, and also to the R-submodule generated by
By (jid) — By () for i € 1A b e Wi (1).

(11) The ideal J C H generated by T5 —1 for w € W contains E(jud) — E(w) for
fe 1 ASTT we W (1).

(i1i) T = Ose,warn\w @) (TN ge,warrs To) = Boe,wernw ) (TN ge, warsg E(W)).

(iv) Let w € Wi(1) written as w = ab,a € W 6,(b) = 0. Then E(w) — T, €
Dy LT+ J.

(v) TN ZbeW(l),eg(b):o ZT, is contained in the ideal of H generated by Tg —1 for
fe Zn will,

Proof. (i) Note that ¢1(u) = 0, that W; normalizes Agff (Lemma 5.1) and W1(1) nor-
malizes 1A%/ *¥* This implies that T; = i%* = E1(t) and we have E(ji)E;(w) =
By (i) = By (i) = Ey (@) Ey (') where @ € Wi (1), i/ = (@)L fub € 1A%

(ii) We have £(pw) = €(u) + ¢(w) (Lemma 5.1), hence E(fiw) = E(p)E(w). If p is
dominant we have E(f1) = T; and E(fw) — E(w) € J. For a general y, choose o € 1Agff
dominant such that pgu ! is dominant and write E(jiw)— E(w) = E(fw)— E(fiofi L fid) +
E(uow) — E(w). We get E(fun) — E(w) € J. O

Proposition 5.3. The homomorphism Hi LN H — H/T is surjective of kernel Hy NJ1.

The proposition in the particular case of the pro-p Iwahori Hecke algebra of a reductive
p-adic group over an algebraically closed field of characteristic p is proved in [Abe, Prop.
4.16].
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Proof. (i) Surjectivity. Let w € W(1). We want to prove that 7% € 0*(H; )+ J. Using
the semidirect product W = W/ x Q. we write 1 = wotw; @ with @; € ;W/ and @ € Q(1).
We suppose, as we can, s not in Z; — {1}. As seen above {(w) = £(w) + £(w2) hence
Ts=T5;T; T Ifwy # 1 we have Ty € T T + J. Hence we can suppose w = Wy .

Suppose more generally fo(w) = 0. As Ty = E(w) + Y ;. ; £(9) and © < @ imply
l2(v) = 0, to prove Ty € 0*(H; ) + J, it suffices to prove E(w) € 0*(H) + J. )

Using the semidirect product W = A x Wy, we write w0 = Mg oW1 with A €
A1), ;0 € 1Wip. As lo(w) = 0, we have a(v()\) € {0,1} for a € XF by *** hence
5\151,0 € Wy, - We have K

E(@)T; = E(Min ).

This implies E(w) € E(Mb1o) + J € 0*(H;) + J. We proved that the homomorphism
HY LANE YN H/J is surjective.

(ii) Kernel. Let }- oy, (1) co 1 (@) € Hi such that

By Lemma 5.2 (ii), the kernel Ker(#; — H/J) contains H; N J1. We prove the
inverse inclusion: if 3 ey, ) coE(0) € T then 350y, 4y cabr(w) € Jr.

Let v € le_(l) and Z@E]Wafff) Cqu(’LZ)) € j

Using Wy _ = Ay _Wi we write 0 = 5\’111(’),5\' € A _(1),w) € Wip(1), Let A€
A(1),w9 € Wy(1) such that @ = Ay € 1 W15, We have NA~' € A*//. Using A%/ =
1A(11ff X 1Agf~f we write 5\/5\7} = 5\15\2,&1 € 1A(fff,5\2 € 1Agff As »61()\2) = 0 we have
E1(w) — E1(Aw) = (1 — E1(Xe))E1 (W) € Jh.

As ) € Al,*’ PYPNS AL,

Using W = (W77 x WY 5 Q we write © = woitly, wo € Wi (1),uh € W (1)Q(1).
We have also @ = yily, u, € Wi (1)Q(1).

Put r = max £(wy ') |cg) # 0.
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