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Abstract

We give basic properties of the parabolic induction and coinduction functors associated
to R-algebras modelled on the pro-p-Iwahori-Hecke R-algebras H

R

(G) and H
R

(M) of a
reductive p-adic group G and of a Levi subgroup M when R is a commutative ring. We
show that the parabolic induction and coinduction functors are faithful, have left and right
adjoints that we determine, respect finitely generated R-modules, and that the induction
is a twisted coinduction.
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1 Introduction

We give basic properties of the parabolic induction and coinduction functors associated
to R-algebras modelled on the pro-p-Iwahori-Hecke R-algebras H

R

(G) and H
R

(M) of a
reductive p-adic group G and of a Levi subgroup M when R is a commutative ring. We
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show that the parabolic induction and coinduction functors are faithful, have left and right
adjoints that we determine, respect finitely generated R-modules, and that the induction
is a twisted coinduction.

When R is an algebraically closed field of characteristic p, Abe [Abe, Section 4] proved
that the induction is a twisted coinduction, when he classified the simple H

R

(G)-modules
in term of supersingular simple H

R

(M)-modules. In two forthcoming articles [OV] and
[AHHV2], we will use this paper to compute the images of an irreducible admissible R-
representation of G by the basic functors: invariants by a pro-p-Iwahori subgroup, left or
right adjoint of the parabolic induction.

Let R be a commutative ring and let H be a pro-p Iwahori Hecke R-algebra, associated

to a pro-p Iwahori Weyl group W (1) and parameter maps S
q�! R, S(1)

c�! R[Z
k

] [Vig1,
§4.3], [Vig4].

For the reader unfamiliar with these definitions, we recall them briefly. The pro-
p Iwahori Weyl group W (1) is an extension of an Iwahori Weyl group W by a finite
commutative group Z

k

, X(1) denotes the inverse image in W (1) of a subset X of W , the
Iwahori Weyl group contains a normal a�ne Weyl subgroup W

aff , S is the set of all
a�ne reflections of W aff , q is a W -equivariant map S ! R, W acting by conjugation on
S and trivially on R, c is a W (1) ⇥ Z

k

-equivariant map S(1) ! R[Z
k

], W (1) acting by
conjugation and Z

k

by multiplication on both sides.
The Iwahori Weyl group is a semidirect product W = ⇤ oW0 where ⇤ is the (com-

mutative finitely generated) subgroup of translations and W0 is the finite Weyl subgroup
of W aff .

Let Saff be a set of generators of W aff such that (W aff

, S

aff ) is an a�ne Coxeter
system and (W0, S := S

aff \W0) is a finite Coxeter system. The Iwahori Weyl group is
also a semidirect product W = W

aff

o⌦ where ⌦ denotes the normalizer of Saff in W .
Let ` denote the length of (W aff

, S

aff ) extended to W and then inflated to W (1) such
that ⌦ ⇢ W and ⌦(1) ⇢ W (1) are the subsets of length 0 elements.

Let w̃ 2 W (1) denote a fixed but arbitrary lift of w 2 W .
The subset S ⇢ W

aff of all a�ne reflections is the union of the W

aff -conjugates of
S

aff and the map q is determined by its values on S

aff , the map c is determined by its
values on any set S̃aff ⇢ S

aff (1) of lifts of Saff in W (1).

Definition 1.1. The R-algebra H associated to (W (1), q, c) and S

aff is the free R-module
of basis (T

w̃

)
w̃2W (1) and relations generated by the braid and quadratic relations:

T

w̃

T

w̃

0 = T

w̃w̃

0
, T

2
s̃

= q(s)(s̃)2 + c(s̃)T
s̃

,

for all w̃, w̃0 2 W (1) with `(w) + `(w0) = `(ww0) and all s̃ 2 S

aff (1).

By the braid relations, the map R[⌦(1)] ! H sending ũ 2 ⌦(1) to T

ũ

identifies R[⌦(1)]
with a subring ofH containing R[Z

k

]. This identification is used in the quadratic relations.
The isomorphism class of H in independent of the choice of Saff .

Let S

M

be a subset of S. We recall the definitions of the pro-p Iwahori Weyl group

W

M

(1), the parameter maps S
M

q
M��! R, S

M

(1)
c
M��! R[Z

k

] and S

aff

M

given in [Vig4].
The set S

M

generates a finite Weyl subgroup W

M,0 of W0, WM

:= ⇤ o W

M,0 is a
subgroup of W , W

M

(1) is the inverse image of W
M

in W (1), S
M

(1) = S(1) \ W

M

(1),
q
M

is the restriction of q to S
M

, and c
M

is the restriction of c to S
M

(1). The subgroup
W

aff

M

:= W

aff\W
M

⇢ W

M

is an a�ne Weyl group and S

aff

M

denotes the set of generators

of W aff

M

containing S

M

such that (W aff

M

, S

aff

M

) is an a�ne Coxeter system.

Definition 1.2. For S

M

⇢ S, the R-algebra H
M

associated to (W
M

(1), q
M

, c
M

) and
S

aff

M

is called a Levi algebra of H.

Let (TM

w̃

)
w̃2W

M

(1) denote the basis of H
M

associated to (W
M

(1), q
M

, c
M

) and S

aff

M

and `

M

the length of W
M

(1) associated to S

aff

M

.
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Remark 1.3. When S

M

= S, H
M

= H. When S

M

= ;, H
M

= R[⇤(1)].
In general when S

M

6= S, Saff

M

is not W
M

\ S

aff , and H
M

is not a subalgebra of H;
it embeds in H only when the parameters q(s) 2 R for s 2 S

aff are invertible.

As in the theory of Hecke algebras associated to types, one introduces the subalgebra
H+

M

⇢ H
M

of basis (TM

w̃

)
w̃2W

M

+ (1) associated to the positive monoid W

M

+ := {w 2
W

M

| w(⌃+ � ⌃+
M

) ⇢ ⌃aff,+} where ⌃
M

⇢ ⌃ are the reduced root systems defining

W

aff

M

⇢ W

aff , the upper index indicates the positive roots with respect to S

aff

, S

aff

M

,
and ⌃aff is the set of a�ne roots of ⌃. One chooses an element µ̃

M

central in W

M

(1),
in particular of length `

M

(µ̃
M

) = 0, lifting a strictly positive element µ

M

in ⇤
M

+ :=
⇤\W

M

+ . The element TM

µ̃

M

of H
M

is invertible of inverse TM

µ̃

�1
M

but in general T
µ̃

M

is not

invertible in H.

Theorem 1.4. (i) The R-submodule H
M

+ of basis (TM

w̃

)
w̃2W

M

+ (1) is a subring of H
M

,
called the positive subalgebra of H

M

.

(ii) The R-algebra H
M

= H
M

+ [(TM

µ̃

M

)�1] is a localization of H
M

+ at TM

µ̃

M

.

(iii) The injective linear map H
M

✓�! H sending T

M

w̃

to T

w̃

for w̃ 2 W

M

(1) restricted to
H

M

+ is a ring homomorphism.

(iv) As an ✓(H
M

+)-module, H is the almost localization of a left free ✓(H
M

+)-module
V
M

+ at T
µ̃

M

.

The theorem was known in special cases. The part (iv) means that H is the union
over r 2 N of

r

V
M

+ := {x 2 H | T r

µ̃

M

x 2 V
M

+}, V
M

+ = �
d2M

W0
✓(H

M

+)T
d̃

.

Here M

W0 is the set of elements of minimal lengths in the cosets W
M,0\W0 and d̃ 2 W (1)

is an arbitrary lift of d. The theorem admits a variant for the subalgebra H
M

� ⇢ H
M

associated the negative submonoid W

M

� , inverse of W
M

+ , for the linear map H
M

✓

⇤
�! H

sending (TM

w̃

)⇤ to T

⇤
w̃

for w̃ 2 W

M

(1) [Vig1, Prop. 4.14], and with left replaced by right
in (iv): H

M

= H
M

� [TM

µ̃

M

], ✓

⇤ restricted to H
M

� is a ring homomorphism, the right
✓

⇤(H
M

�)-module H is the almost localisation at T

⇤
µ̃

�1
M

of a right free ✓

⇤(H
M

�)-module

V⇤
M

� of rank |W
M,0|�1|W0|, meaning that H is the union over r 2 N of

r

V⇤
M

� := {x 2 H | x(T ⇤
µ̃

�1
M

)r 2 V⇤
M

�}, V⇤
M

� :=
X

d2W

M

0

T

⇤
d̃

✓

⇤(H
M

�).

Here W

M

0 is the inverse of M

W0.
For a ring A, let Mod

A

denote the category of right A-modules and
A

Mod the category
of left A-modules. Given two rings A ⇢ B, the induction � ⌦

A

B and the coinduction
Hom

A

(B,�) from Mod
A

to Mod
B

are the left and the right adjoint of the restriction
ResB

A

. The ring B is considered as a left A-module for the induction, and as a right
A-module for the coinduction.

The property (iv) and its variant describe H as a left ✓(H
M

+)-module and as a right
✓

⇤(H
M

�)-module. The linear maps ✓ and ✓

⇤ identify the subalgebras H
M

+
,H

M

� of H
M

with the subalgebras ✓(H
M

+), ✓⇤(H
M

�) of H.

Definition 1.5. The parabolic induction and coinduction from ModH
M

to ModH are the
functors I

H
H

M

= �⌦H
M

+ ,✓

H and I

H
H

M

= HomH
M

� ,✓

⇤(H,�).

We show:

Theorem 1.6. The parabolic induction I

H
H

M

is faithful, transitive, respects finitely gen-
erated R-modules, admits a right adjoint HomH

M

+
,✓

(H
M

,�).
If R is a field, the right adjoint functor respects finite dimension.
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The transitivity of the parabolic induction means that for S
M

⇢ S

M

0 ⇢ S,

I

H
H

M

= I

H
H

M

0 � IHM

0
H

M

: ModH
M

! ModH
M

0 ! ModH .

Let w0 denote the longest element of W0, S
w0(M) the subset w0SM

w0 of S, wM

0 :=
w0wM,0 where w

M,0 is the longest element of W
M,0. A lift w̃M

0 2 W0(1) of wM

0 defines an
R-algebra isomorphism

H
M

! H
w0(M), T

M

w̃

7! T

w0(M)
w̃

M

0 w̃(w̃M

0 )�1 for w̃ 2 W

M

(1),(1)

inducing an equivalence of categories ModH
M

w̃M

0��! ModH
w0(M)

, of inverse w̃w0(M)
0 defined

by the lift (w̃M

0 )�1 2 W0(1) of w
w0(M)
0 = (wM

0 )�1.

Definition 1.7. The w0-twisted parabolic induction and coinduction from ModH
M

to
ModH are the functors I

H
H

w0(M)
� w̃M

0 and I

H
H

w0(M)
� w̃M

0 .

Modulo equivalence, these functors do not depend on the choice of the lift of wM

0 used
for their construction.

Theorem 1.8. The parabolic induction (resp. coinduction) is equivalent to the w0-twisted
parabolic coinduction (resp. induction):

I

H
H

M

' I

H
H

w0(M)
� w̃M

0 , I

H
H

M

' I

H
H

w0(M)
� w̃M

0 .

Using that the coinduction admits a left adjoint and that the induction is a twisted
coinduction, one proves:

Theorem 1.9. The parabolic induction I

H
H

M

admits a left adjoint equivalent to

w̃
w0(M)
0 � (�⌦H

w0(M)� ,✓

⇤ H
w0(M)) : ModH ! ModH

w0(M)
! ModH

M

When R is a field, the left adjoint functor respects finite dimension.

The coinduction satisfies the same properties as the induction:

Corollary 1.10. The coinduction I

H
H

M

is faithful, transitive, respects finitely generated
R-modules, admits a left and a right adjoint. When R is a field, the left and right adjoint
functors respect finite dimension.

Note that the induction and the coinduction are exact functors, as they admit a left
and a right adjoint. A localization functor is exact hence also the left adjoint of the
induction and of the coinduction.

We prove Theorem 1.4 in chapter 2, Theorem 1.6 in chapter 3.2, Theorem 1.8, Theorem
1.9 in chapter 3.2.

Remark 1.11. One cannot replace (H,H
M

,H+
M

) by (H,H
M

,H�
M

) to define the induction
I

H
H

M

.
When no non-zero element of the ring R is infinitely p-divisible, is the parabolic in-

duction functor ModH
M

I

H
H

M���! ModH fully faithful ? The answer is yes for the parabolic

induction functor Mod1
R

(M)
IndG

P���! Mod1
R

(G) when M is a Levi subgroup of a parabolic
subgroup P of a reductive p-adic group G and Mod1

R

(G) the category of of smooth R-
representations of G [Vig2, Theorem 5.3].

This paper is influenced by discussions with Rachel Ollivier, Noriyuki Abe, Guy Hen-
niart and Florian Herzig, and by our work in progress on representations modulo p of
reductive p-adic groups and their pro-p Iwahori Hecke algebras. I thank them, and the
Institute of Mathematics of Jussieu, the University of Paris 7 for providing a stimulating
mathematical environment.
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2 Levi algebra

We prove Theorem 1.4 and its variant on the subalgebra H✏

M

⇢ H
M

, its image in H, on
H

M

as a localisation of H✏

M

and on H as an almost left localisation of ✓(H+
M

), and almost
left localisation of ✓⇤(H�

M

).

2.1 Monoid WM✏

Let S
M

⇢ S and ✏ 2 {+,�}. To S

aff is associated a submonoid W

M

✏ ⇢ W

M

defined as
follows.

Let ⌃ denote the reduced root system of a�ne Weyl group W

aff , V the real vector
space of dual generated by ⌃, ⌃aff = ⌃ + Z the set of a�ne roots of ⌃ and H =
{Ker

V

(�) |� 2 ⌃aff} the set of kernels of the a�ne roots in V . We fix a W0-invariant
scalar product on V . The a�ne Weyl group W

aff identifies with the group generated by
the orthogonal reflections with respect to the a�ne hyperplanes of H.

Let A denote the alcove of vertex 0 of (V,H) such that S

aff is the set of orthogonal
reflections with respect to the walls of A and S is the subset associated to the walls
containing 0. An a�ne root which is positive on A is called positive. Let ⌃aff,+ denote
the set of positive a�ne roots, ⌃+ := ⌃ \ ⌃+

aff

, ⌃aff,� := �⌃aff,�
,⌃� := �⌃+.

Let �
M

denote the set of positive roots ↵ 2 ⌃+ such that Ker↵ is a wall of A and the
orthogonal reflection s

↵

of V with respect to Ker↵ belongs to S

M

, ⌃
M

⇢ ⌃ the reduced
root system generated by �

M

, ⌃✏

M

:= ⌃
M

\ ⌃✏

aff

.

Definition 2.1. The positive monoid W

M

+ ⇢ W

M

is {w 2 W

M

| w(⌃+�⌃+
M

) ⇢ ⌃aff,+}.
The negative monoid W

M

� := {w 2 W

M

| w�1 2 W

M

+} is the inverse monoid.

It is well known that the finite Weyl group W

M,0 is the W0-stabilizer of ⌃✏�⌃✏

M

. This
implies

W

M

✏ = ⇤
M

✏

oW

M,0 where ⇤
M

✏ := ⇤ \W

M

✏

.

Let ⇤
⌫�! V denote the homomorphism such that � 2 ⇤ acts on V by translation by ⌫(�).

Lemma 2.2. ⇤
M

✏ = {� 2 ⇤ | � (� � ⌫)(�) � 0 for all � 2 ⌃✏ � ⌃✏

M

}.
Proof. Let � 2 ⇤. By definition, � 2 ⇤

M

+ if and only if �(�) is positive for all � 2
⌃+ � ⌃+

M

. We have �(�) = � � ⌫(�). The minimum of the values of � on A is 0[Vig1,
(35)]. So �(v� ⌫(�)) � 0 for � 2 ⌃+ �⌃+

M

and v 2 A is equivalent to �(� � ⌫)(�) � 0 for
all � 2 ⌃+ � ⌃+

M

.

When S

M

⇢ S

M

0 ⇢ S, we have the inclusion ⌃✏

M

⇢ ⌃✏

M

0 , the inverse inclusion
⌃✏ � ⌃✏

M

⇢ ⌃✏ � ⌃✏

M

0 , and the inclusions W
M

⇢ W

M

0 and W

M

✏ ⇢ W

✏

M

0 .

Remark 2.3. Set D✏ := {v 2 V | �(v) � 0 for � 2 ⌃✏} and ⇤✏ := (�⌫)�1(D✏). The
antidominant Weyl chamber of V is D� and the dominant Weyl chamber is D+. Careful:
[Vig3, §1.2 (v)] uses a di↵erent notation: ⇤✏ = (⌫)�1(D✏).

The Bruhat order  of the a�ne Coxeter system (W aff

, S

aff ) extends to W : for
w1, w2 2 W

aff

, u1, u2 2 ⌦, w1u1  w2u2 if u1 = u2 and w1  w2 [VigRT, Appendice].
We write w < w

0 if w  w

0 and w 6= w

0 for w,w0 2 W . Careful: the Bruhat order 
M

on
W

M

associated to (W aff

M

, S

aff

M

) is not the restriction of  when S

aff

M

is not contained in
S

aff [Vig4].

Remark 2.4. The basic properties of (W aff

, S

aff ) extend to W :

(i) If x  y for x, y 2 W and s 2 S

aff ,

sx  (y or sy), xs  (y or ys), (x or sx)  sy, (x or xs)  ys

[Vig3, Lemma 3.1, Remark 3.2].
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(ii) W = t
�2⇤✏

W0�W0 [HV1, 6.3 Lemma].

(iii) For � 2 ⇤+, W0�W0 admits a unique element of maximal length w

�

= w0� where
w0 is the unique element of maximal length in W0, and `(w

�

) = `(w0) + `(�) [Vig3,
Lemma 3.5].

(iv) For � 2 ⇤+, {w 2 W |w  w

�

} � t
µ2⇤+

,µ�

W0µW0 [Vig3, Lemma 3.5].

Remark 2.5. {w 2 W |w  w

�

} is a union of (W0,W0)-classes only if �, µ 2 ⇤+, µ  w0�

implies µ  �. I see no reason for this to be true.

Lemma 2.6. The monoid W

M

✏ is a lower subset of W
M

for the Bruhat order 
M

: for
w 2 W

M

✏ , any element v 2 W

M

such that v 
M

w belongs to W

M

✏ .

Proof. [Abe, Lemma 4.1].

An element w 2 W admits a reduced decomposition in (W,S

aff ), w = s1 . . . sru with
s

i

2 S

aff

, u 2 ⌦. As in [Vig1], we set for w,w0 2 W ,

q

w

:= q(s1) . . . q(sr), q

w,w

0 := (q
w

q

w

0
q

�1
ww

0)1/2.(2)

This is independent of the choice of the reduced decomposition. For w,w

0 2 W

M

and
s

i

2 S

aff

M

, u 2 ⌦
M

, let q
M,w

, q

M,w,w

0 denote the similar elements. They may be di↵erent
from q

w

, q

w,w

0 .

Lemma 2.7. We have S

aff

M

\W

M

✏ ⇢ S

aff and q

w,w

0 = q

M,w,w

0 if w,w0 2 W

M

✏ .
In particular, `

M

(w) + `

M

(w0)� `

M

(ww0) = `(w) + `(w0)� `(ww0), if w,w0 2 W

M

✏ .

Proof. [Abe, Lemma 4.4 and proof of lemma 4.5].

An element � 2 ⇤
M

✏ such that all the inequalities in (2.2) are strict is called strictly
positive if ✏ = +, and strictly negative if ✏ = +. We choose

a central element µ̃
M

of W
M

(1) lifting a stricty positive element µ
M

of ⇤.

We set µ̃
M

+ := µ̃

M

and µ̃

M

� := µ̃

�1
M

. The center of the pro-p Iwahori Weyl group W

M

(1)
is the set of elements in the center of ⇤(1) fixed by the finite Weyl group W

M,0 [Vig2].
Hence µ̃

M

✏ is an element of the center of ⇤(1) fixed by W

M,0 and �� � ⌫(µ
M

✏) > 0 for all
� 2 ⌃✏ � ⌃✏

M

. We have � � ⌫(µ
M

✏) = 0 for � 2 ⌃
M

. The length of µ
M

✏ is 0 in W

M

, and
is positive in W when S

M

6= S.
Let H

M

✏ denote the R-submodule of the Iwahori Hecke R-algebra H
M

of M of basis

(TM

w̃

)
w̃2W

M

✏ (1), and H
M

✓�! H (resp. H
M

✓

⇤
�! H) the linear map sending T

M

w̃

to T

w̃

(

resp. TM,⇤
w̃

to T

⇤
w̃

) for w̃ 2 W

M

(1).

The proof of the properties (i), (ii), (iii) of Theorem 1.4 and its variant are as follows:
1. H

M

✏ is a subring of H
M

, because T

M

w̃

T

M

w̃

0 is a linear combination of elements T

ṽ

such that v 
M

ww

0 [Vig1].
2. ✓(TM

w̃1
T

M

w̃2
) = T

w̃1Tw̃2 and ✓

⇤((TM

w̃1
)⇤(TM

w̃2
)⇤) = T

⇤
w̃1

T

⇤
w̃2

for w1, w2 2 W

M

✏ for
w1, w2 2 W

M

✏ . This follows from the braid relations if `
M

(w1)+ `

M

(w2) = `

M

(w1w2) be-
cause `(w1)+`(w2) = `(w1w2) (Lemma 2.7). If w2 = s 2 S

aff

M

with `

M

(w1)�1 = `

M

(w1s)
this follows from the quadratic relations

T

w̃1Ts̃

= T

w̃1s̃
�1(q(s)(s̃)2 + T

s̃

c(s̃)) = q(s)T
w̃1s̃ + T

w̃1c(s̃), T

⇤
w̃1

T

⇤
s̃

= q(s)T ⇤
w̃1s̃

� T

⇤
w̃1

c(s̃),

s 2 S

aff , `(w1) � 1 = `(w1s) (Lemma 2.7) and q(s) = q
M

(s), c(s̃) = c
M

(s̃) [Vig4]. In
general the formula is proved by induction on `

M

(w2) [Abe, 4.1]. The proof of [Abe,
Lemma 4.5] applies.
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We have ✓

⇤(TM

w̃

) = T

M

w̃

for w 2 W

M,0 because for s 2 S

M

,

✓

⇤(TM

s̃

) = ✓

⇤(TM,⇤
s̃

+ c

M

s̃

) = T

⇤
s̃

+ c

s̃

= T

s̃

.

3. H
M

= H
M

✏ [(TM

µ̃

M

✏

)�1], because for w 2 W

M

there exists r 2 N such that µ✏r

M

w 2
W

M

✏ .

Remark 2.8. If the parameters q(s) are invertible in R, thenH
M

+
✓�! H extends uniquely

to an algebra homomorphism H
M

,! H, sending T

M

µ̃

�✏r

M

w̃

to T

�r

µ̃

M

✏

T

w̃

for w̃ 2 W

M

+(1), r 2
N.

Remark 2.9. The trivial character �1 : H ! R of H is defined by

�1(Tw̃

) = q

w

(w̃ 2 W (1)).

When H is the Hecke algebra of the pro-p-Iwahori subgroup of a reductive p-adic group
G, H acts on the trivial representation of G by �1. Note that the restriction of the trivial
character of H

M

to ✓(H
M

+) is not equal to �1 � ✓ when `

M

(µ
M

) = 0, `(µ
M

) 6= 0.

2.2 An anti-involution ⇣

The R-linear bijective map

H ⇣�! H such that ⇣(T
w̃

) = T

w̃

�1 for w̃ 2 W (1),(3)

is an anti-involution when ⇣(h1h2) = ⇣(h2)⇣(h1) for h1, h2 2 H because ⇣ � ⇣ = id. For

S

M

⇢ S, let H ⇣

M��! H
M

denote the linear map such that ⇣(TM

w̃

) = T

M

w̃

�1 for w̃ 2 W

M

(1).

Lemma 2.10. 1. The following properties are equivalent:
(i) ⇣ is an anti-involution,
(ii) ⇣(c(s̃)) = c(s̃)�1 for s̃ 2 S

aff (1),

(iii) ⇣ � c = c � (�)�1 where S(1)
c�! R[Z

k

] is the parameter map.
2. If ⇣ is an anti-involution then ⇣

M

is an anti-involution.

Proof. Let w̃ = s̃1 . . . s̃
`(w)ũ be a reduced decomposition, s̃

i

2 S

aff (1), ũ 2 W (1), `(ũ) = 0
and let s̃ 2 S

aff (1). Then,

⇣(T
w̃

) = T(w̃)�1 = T(ũ)�1
T

s̃

�1
`(w)

. . . T

s̃

�1
1

= ⇣(T
ũ

)⇣(T
s̃

`(w)
) . . . ⇣(T

s̃1),

(⇣(T
s̃

))2 = T

2
s̃

�1 = q(s)s̃�2 + c(s̃�1)T
s̃

�1

Tthe map ⇣ is an anti-automorphism if and only if ⇣(c(s̃)) = c(s̃�1) for s̃ 2 S

aff (1). This
is equivalent to ⇣ � c = c � (�)�1 because S(1) is the union of the W (1)-conjugates of
S

aff (1), c is W (1)-equivariant and ⇣ commutes with the conjugation by W (1).
If c satisfies (iii), its restriction c

M

to S
M

(1) satisfies (iii).

Lemma 2.11. When H = H(G) is the pro-p Iwahori Hecke R-algebra of a reductive
p-adic group G, ⇣ is an anti-involution.

Proof. Let s 2 S, s̃ an admissible lift and t 2 Z

k

. Then c(s̃) is invariant by ⇣ [Vig1,
Prop.4.4] If u 2 U

⇤
�

for � = ↵ + r 2 �aff

red , then u

�1 2 U

⇤
�

and m

↵

(u)�1 = m

↵

(u�1).
Hence the set of admissible lifts of s is stable by the inverse map. As the group Z

k

is
commutative, we have

(⇣ � c)(ts̃) = ⇣(tc(s)) = t

�1
c(s) = c(s)t�1 = c((ts̃)�1

.
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From now on, we suppose that ⇣ is an anti-involution. We recall the involutive auto-
morphism [Vig1, Prop. 4.24]

H ◆�! H such that ◆(T
w̃

) = (�1)`(w)
T

⇤
w̃

for w̃ 2 W (1),

and [Vig1, Prop. 4.13 2)]:

T

⇤
s̃

:= T

s̃

� c(s̃) for s̃ 2 S

aff (1), T

⇤
w̃

:= T

⇤
s̃1
. . . T

⇤
s̃

r

T

ũ

for w̃ 2 W (1)(4)

of reduced decomposition w̃ = s̃1 . . . s̃
`(w)ũ.

Remark 2.12. We have ⇣(T ⇤
w̃

) = T

⇤
(w̃)�1 for w̃ 2 W (1), ⇣ and ◆ commute, ⇣

M

(H
M

✏) =

H�✏

M

, and ✓ � ⇣
M

= ⇣ � ✓, ✓

⇤ � ⇣
M

= ⇣ � ✓⇤.

2.3 ✏-alcove walk basis

We define a basis of H associated to ✏ 2 {+,�} and an orientation o of (V,H), that we
call an ✏-alcove walk basis associated to o.

For s 2 S

aff , let ↵

s

denote the positive a�ne root such that s is the orthogonal
reflection with respect to Ker↵

s

. For an orientation o of (V,H), let D
o

denote the corre-
sponding (open) Weyl chamber in (V,H), A

o

the (open) alcove of vertex 0 contained in
D

o

, and o.w the orientation of Weyl chamber w�1(D
o

) for w 2 W . We recall [Vig1]:

Definition 2.13. The following three properties determine uniquely elements E
o

(w̃) 2 H
for any orientation o of (V,H) and w̃ 2 W (1). For w̃ 2 W (1), s̃ 2 S

aff (1), ũ 2 ⌦(1):

E

o

(s̃) =

(
T

s̃

if ↵
s

is negative on A
o

,

T

⇤
s̃

= T

s̃

� c(s̃) if ↵
s

is positive on A
o

,

(5)

E

o

(ũ) = T

ũ

,(6)

E

o

(s̃)E
o.s

(w̃) = q

s,w

E

o

(s̃w̃).(7)

They imply, for w0 2 W,� 2 ⇤:

E

o

(w̃0)E
o.w

0(w̃) = q

w

0
,w

E

o

(w̃0
w̃), E

o

(�̃)E
o

(w̃) = q

�,w

E

o

(�̃w̃).(8)

We recall that � acts on V by translation by ⌫(�). The Weyl chamber D
o

of the orientation
o is characterized by:

E

o

(�̃) = T

�̃

when ⌫(�) belongs to the closure of D
o

.(9)

The alcove walk basis of H associated to o is (E
o

(w̃))
w̃2W (1) [Vig1]. The Bernstein basis

(E(w̃))
w̃2W (1) is the alcove walk basis associated to the antidominant orientation of Weyl

chamber D� Remark 2.3. By (5) and (9), the Bernstein basis satisfies

E(w̃) = T

w̃

for w 2 ⇤+ [W0, E(w̃) = T

⇤
w̃

for w 2 ⇤�
.

The alcove walk basis (E
o

+(w̃))
w̃2W (1)associated to the dominant orientation of Weyl

chamber D+ satisfies similar relations with T

⇤
w̃

permuted with T

w̃

:

E

o

+(w̃) = T

⇤
w̃

for w 2 ⇤+ [W0, E

o

+(w̃) = T

w̃

for w 2 ⇤�
.

Definition 2.14. The ✏-alcove walk basis (E✏

o

(w̃))
w̃2W (1) of H associated to o is

E

✏

o

(w̃) :=

(
E

o

(w̃) if ✏ = +,

⇣(E
o

(w̃�1)) if ✏ = �.

(10)
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Lemma 2.15. The elements E

�
o

(w̃) for any orientation o of (V,H) and w̃ 2 W (1) are
determined by the following properties. For w̃ 2 W (1), s̃ 2 S

aff (1), ũ 2 ⌦(1):

E

�
o

(s̃) = E

o

(s̃), E

�
o

(ũ) = E

o

(ũ),(11)

E

�
o.s

(w̃)E�
o

(s̃) = q

w,s

E

�
o

(w̃s̃).(12)

They imply for w

0 2 W,� 2 ⇤:

E

�
o.w

0�1(w̃)E
�
o

(w̃0) = q

w,w

0
E

�
o

(w̃w̃0), E

�
o

(w̃)E�
o

(�̃) = q

w,�

E

�
o

(w̃�̃).(13)

Proof.

E

�
o

(s̃) = ⇣(E
o

((s̃)�1)) = E

o

(s̃),

E

�
o

(w̃ũ) = ⇣(E
o

((w̃ũ)�1)) = ⇣(E
o

((ũ)�1(w̃)�1)) = ⇣(T(ũ)�1
E

o

((w̃)�1))

= ⇣(E
o

((w̃)�1))T
ũ

= E

�
o

(w̃)T
ũ

,

E

�
o.s

(w̃)E�
o

(s̃) = ⇣(E
o.s

((w̃)�1))⇣(E
o

((s̃)�1)) = ⇣(E
o

((s̃)�1)E
o.s

((w̃)�1))

= q

s,w

�1
⇣(E

o

((s̃)�1(w̃)�1)) = q

w,s

⇣(E
o

((w̃s̃)�1)) = q

w,s

E

�
o

(w̃s̃).

We used that q
w

= q

w

�1 implies q
w

�1
1 ,w

�1
2

= (q
w

�1
1

q

w

�1
2

q

�1
w

�1
1 w

�1
2

)1/2 = (q
w1qw2q

�1
w2w1

)1/2 =

q

w2,w1 for w1, w2 2 W .

The ✏-alcove walk bases satisfy the the triangular decomposition:

E

✏

o

(w̃)� T

w̃

2
X

w̃

02W (1),w̃0
<w̃

RT

w̃

0
.(14)

Remark 2.16. We will denote E+(w̃) = E

o

+(w̃) and E�(w̃) = E

�
o

+(w̃) as in [Abe] and
call (E

✏

(w̃))
w̃2W (1) the lower ✏-Bernstein basis of H (the upper ✏-Bernstein basis will be

the usual Bernstein basis).
Similarly, we will denote by (E✏

M

(w̃))
w̃2W

M

(1) and (EM

✏

(w̃))
w̃2W

M

(1) the upper and
lower ✏-Bernstein bases associated to the dominant orientation for (V

M

,H
M

); here V
M

ise
the real vector space of dual generated by ⌃

M

with a W

M,0-invariant scalar product and
H

M

the corresponding set of a�ne hyperplanes.

Lemma 2.17. For ✏, ✏0 2 {+,�} and any orientation o

M

of (V
M

,H
M

), (E✏

0
o

M

(w̃))
w̃2W

M

✏ (1)

is a basis of H
M

✏ .

When q(s) = 0 [Abe, Lemma 4.2].

Proof. A basis of H
M

✏ is (TM

w̃

)
w̃2W

M

✏ (1). As w <

M

w

0 and w

0 2 W

M

✏ implies w 2 W

M

✏

(Lemma 2.6), the triangular decomposition (14) implies that (E✏

0
o

M

(w̃))
w̃2W

M

✏ (1) is a basis
of H

M

✏ .

Lemma 2.18. The ✏-Bernstein basis satisfies E✏(w̃) = T

w̃

if w 2 ⇤✏[W0 and E

✏(w̃) = T

⇤
w̃

if w 2 ⇤�✏. The basis (E
✏

(w̃)) satisfies similar relations with T

⇤
w̃

permuted with T

w̃

:
E

✏

(w̃) = T

⇤
w̃

if w 2 ⇤✏ [W0 and E�(w̃) = T

w̃

if w 2 ⇤�✏.

Proof. We described E

+(w̃) and E+(w̃) for w 2 ⇤+ [⇤� [W0 before Definition 2.14 and
we have:

E

�(w̃) = ⇣(E(w̃�1)) =

(
⇣(T ⇤

w̃

�1) = T

⇤
w̃

(w 2 ⇤+)

⇣(T
w̃

�1) = T

w̃

(w 2 ⇤� [W0)

E�(w̃) = ⇣(E
o

+(w̃�1)) =

(
⇣(T ⇤

w̃

�1) = T

⇤
w̃

(w 2 ⇤� [W0)

⇣(T
w̃

�1) = T

w̃

(w 2 ⇤+).
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The upper and lower ✏-Bernstein bases are compatible with the linear embeddings ✓

and ✓

⇤ of H
M

into H:

Proposition 2.19. We have ✓(E✏

M

(w̃)) = E

✏(w̃), ✓⇤(EM

✏

(w̃)) = E

✏

(w̃) for w̃ 2 W

M

+(1)[
W

M

�(1).

This generalizes [Ollivier10, Prop. 4.7], [Ollivier14, Lemma 3.8], [Abe, Lemma 4.5].

Proof. It su�ces to prove the proposition when the q(s) are invertible. Let w̃ 2 W (1).
We write w̃ = �̃ũ = �̃1(�̃2)�1

ũ with u 2 W0, and �1,�2 in ⇤✏. We have for any orientation
o of (V, h)

E

o

(�̃1)Eo

((�̃2)
�1) = q

�1,�
�1
2
E

o

(�̃), E

o

(�̃2)Eo

((�̃2)
�1) = q

�2,�
�1
2

= q

�2 ,

E

o

(�̃1)E((�̃2)
�1)E

o

(ũ) = q

�1,�
�1
2
q

�,u

E

o

(w̃).

Then, E
o

(w̃) = q

�2(q
�1,�

�1
2
q

�,u

)�1
E

o

(�̃1)Eo

(�̃2)�1
E

o

(ũ). Applying Lemma 2.18 to the

orientations o of Weyl chamber D± we obtain:

E(w̃) = q

�2(q
�1,�

�1
2
q

�,u

)�1

(
T

�̃1
T

�1
�̃2

T

ũ

if ✏ = +

T

⇤
�̃1
(T ⇤

�̃2
)�1

T

ũ

if ✏ = �(15)

and similar formulas for E+(w̃) with T

⇤
w̃

permuted with T

w̃

. We suppose now w 2 W

M

✏ ,
that is � 2 ⇤

M

✏

, u 2 W

M,0. Note ⇤✏ ⇢ ⇤
M

✏ and q

M,�,u

= q

�,u

(Lemma 2.7).
Suppose w 2 W

M

+ . Then E

M

(w̃) = q

M,�2(q
M,�1,�

�1
2
q

�,u

)�1
T

M

�̃1
(TM

�̃2
)�1

T

M

ũ

and

✓(E
M

(w̃)) = q

M,�2(q
M,�1,�

�1
2
q

�,u

)�1
T

�̃1
T

�1
�̃2

T

ũ

= q

M,�2(q
M,�1,�

�1
2
q

�,u

)�1
q

�1
�2

q

�1,�
�1
2
q

�,u

E(w̃) = q

M,�2(q
M,�1,�

�1
2
q

�2)
�1

q

�1,�
�1
2
E(w̃).

The triangular decomposition of E
M

(w̃) and E(w̃) implies q
M,�2(q

M,�1,�
�1
2
q

�2)
�1

q

�1,�
�1
2

=

1. Hence for w 2 W

M

+ we have ✓(E
M

(w̃)) = E(w̃), and by the same arguments
✓

⇤(EM

+ (w̃)) = E+(w̃).

Suppose w 2 W

M

� . We write w̃ = �̃w̃0 with �̃ 2 ⇤(1) M1-negative and s 2 w̃0 2
W

M1,0. We have E(w̃) = q

�,w0T
⇤
�̃

T

w̃0 and E

M

(w̃) = q

M

�,w0
T

M,⇤
�̃

T

w̃0 with q

�,w0 = q

M

�,w0

(Lemma 2.7). Applying the homomorphism H
M

�
1

✓�! H we obtain ✓(E
M

(w̃)) = E(w̃).

The same arguments show that ✓⇤(EM

+ (w̃)) = E+(w̃).
Suppose w 2 W

M

+ [ W

M

� . We proved that ✓(E
M

(w̃)) = E(w̃) and ✓

⇤(EM

+ (w̃)) =
E+(w̃), i.e. that E

o

(w̃) is the image of EM

o

(w̃) by ✓ and ✓

⇤ when o is the orientation of
Weyl chamber dominant or anti-dominant. Using E

�
o

(w̃) = ⇣(E
o

((w̃)�1)) and that ⇣ �✓ =
✓�⇣

M

, ⇣ �✓⇤ = ✓

⇤ �⇣
M

(Remark 2.12), this implies that E�
o

(w̃) is the image of E�
M,o

(w̃) by

✓ and ✓

⇤, as E�
o

(w̃) = (⇣ � ✓)(E
M,o

((w̃)�1)) = (✓ � ⇣
M

)(E
M,o

((w̃)�1)) = ✓(E�
M,o

(w̃)).

2.4 w0-twist

Let S
M

⇢ S, w0 denote the longest element of W0 and S

w0(M) = w0SM

w0 ⇢ w0Sw0 = S.
The longest element w

M,0 of W
M,0 satisfies w

M,0(⌃✏

M

) = ⌃�✏

M

, and w

M,0(⌃✏ � ⌃✏

M

) =
⌃✏ � ⌃✏

M

. The longest element w
w0(M),0 of W

w0(M),0 is w0wM,0w0.

Let w

M

0 := w0wM,0. Its inverse M

w0 := w

M,0w0 is w

w0(M)
0 and w

M

0 (⌃✏

M

) = ⌃✏

w0(M).

This implies that wM

0 (⌃aff,✏

M

) = ⌃aff,✏

w0(M). Indeed the image by w

M

0 of the simple roots of
⌃

M

is the set of simple roots of ⌃
w0(M), and this remains true for the simple a�ne roots

which are not roots. Note that the irreducible components ⌃
M,i

of ⌃
M

have a unique
highest root a

M,i

, and that the �a

M,i

+ 1 are the simple a�ne roots of ⌃ which are not
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roots. We have w

M

0 (�a

M,i

+ 1) = w0wM,0(�a

M,i

+ 1) = w0(aM,i

) + 1. The irreducible
components of ⌃

w0(M) are the w0(⌃M,i

) and �w0(aM,i

) is the highest root of w0(⌃M,i

).
We deduce:

w

M

0 S

aff

M

(wM

0 )�1 = S

aff

w0(M), w
M

0 W

aff

M,0 (w
M

0 )�1 = W

aff

w0(M,)0, w
M

0 W

M,0(w
M

0 )�1 = W

w0(M,)0.

We have ⇤ = w

M

0 ⇤(wM

0 )�1 and w

M

0 ⇤✏

M

(wM

0 )�1 = ⇤�✏

w0(M). Recalling W

M

= ⇤ o

W

M,0, W

M

✏ = ⇤
M

✏

o W

M,0 and the group ⌦
M

of elements which stabilize A
M

, we
deduce:

w

M

0 W

M

(wM

0 )�1 = W

w0(M), w

M

0 ⌦
M

(wM

0 )�1 = ⌦
w0(M), w

M

0 W

M

✏(wM

0 )�1 = W

�✏

w0(M).

(16)

Let ⌫

M

denote the action of W
M

on V

M

and A
M

the dominant alcove of (V
M

,H
M

).
The linear isomorphism

V

M

w

M

0��! V

w0(M), h↵, xi = hwM

0 (↵), wM

0 (x)i for ↵ 2 ⌃
M

,

satisfies
w

M

0 � ⌫
M

(w) = ⌫

w0(M)(w
M

0 w(wM

0 )�1) � wM

0 for w 2 W

M

.

It induces a bijection H
M

! H
w0(M) sending A

M

to A
w0(M), a bijection D

M

7! w

M

0 (D
M

)
between the Weyl chambers, a bijection o

M

7! w

M

0 (o
M

) between the orientations such
that D

w

M

0 (o
M

) = w

M

0 (D
o

M

).

Proposition 2.20. Let w̃M

0 2 W0(1) be a lift of wM

0 . The R-linear map

H
M

j�! H
w0(M), T

M

w̃

7! T

w0(M)
w̃

M

0 w̃(w̃M

0 )�1 for w̃ 2 W

M

(1),

is a R-algebra isomorphism sending H
M

✏ onto H
w0(M)�✏ and respecting the ✏

0-alcove walk
basis

j(E✏

0
o

M

(w̃)) = E

✏

0
w

M

0 (o
M

)(w̃
M

0 w̃(w̃M

0 )�1) for w̃ 2 W

M

(1),

for any orientation o

M

of (V
M

,H
M

) and ✏, ✏

0 2 {+,�}.
Proof. The proof is formal using the properties given above the proposition and the
characterization of the elements in the ✏

0-alcove walks bases given by (5), (6), (7) if
✏

0 = + and (11), (12) if ✏0 = �.

We study now the transitivity of the w0-twist. Let S

M

⇢ S

M

0 ⇢ S. We have the
subset w

M

0
,0SM

w

M

0
,0 = S

w

M

0
,0(M) of S and we associate to the conjugation by a lift

w̃

M

0
,0 of w

M

0
,0 in W (1) an isomorphism H

M

j

0
�! H

w

M

0
,0(M) similar to H

M

j�! H
w0(M) in

Proposition 2.20. We will show that j factorizes by j

0.
We have w

M

0 = w

M

0
0 w

M

M

0 , where w

M

M

0 := w

M

0
,0wM,0 (equal to w

M

0 if S = S

M

0),

W

w

M

0
,0(M) = w

M

M

0W
M

(wM

M

0)�1
, W

w0(M) = w

M

0
0 W

w

M

0
,0(M)(w

M

0
0 )�1 = w

M

0 W

M

(wM

0 )�1
.

For S

M1 ⇢ S

M

0 , let W

M

✏,M

0
1

⇢ W

M1 denote the submonoid associated to S

aff

M

0 as in

Definition 2.1 (the pair (⌃+�⌃+
M1

,⌃aff,+) is replaced by the pair (⌃+
M

0 �⌃+
M1

,⌃aff,+
M

0 )).
We note that:

W

w

M

0
,0(M)�✏,M

0 = w

M

M

0W
M

✏(wM

M

0)�1
,

W

w0(M)�✏ = w

M

0
0 W

w

M

0
,0(M)�✏,M

0 (wM

0
0 )�1 = w

M

0 W

M

✏(wM

0 )�1
.
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Let w̃M

0 , w̃

M

0
0 , w̃

M

M

0 in W0(1) lifting w

M

0 , w

M

0
0 , w

M

M

0 and satisfying w̃

M

0 = w̃

M

0
0 w̃

M

M

0 . The
algebra isomorphisms

H
M

j

0
�! H

w

M

0
,0(M), H

M

0
j

00
�! H

w0(M 0), H
M

j�! H
w0(M)

defined by w̃

M

M

0 , w̃
M

0
0 , w̃

M

0 respectively, as in Proposition 2.20, send the ✏-subalgebra to
the �✏-subalgebra and are compatible with the ✏0-Bernstein bases. We cannot compose j0

with the map j

00 defined by w̃

M

0
0 , but we can compose j

0 with the bijective R-linear map
defined by the conjugation by w̃

M

0
0 in W (1):

H
w

M

0
,0(M)

k

00
��! H

w0(M), T

w

M

0
,0(M)

w̃

7! T

w0(M)

w̃

M

0
0 w̃(w̃M

0
0 )�1

for w̃ 2 W

w

M

0
,0(M)(1).

Proposition 2.21. j = k

00 � j

0 and k

00 is an R-algebra isomorphism respecting the ✏-
subalgebras and the ✏-Bernstein bases: k00(H

w

M

0
,0(M)✏) = H

w0(M)✏ and k

00(E✏

w

M

0
,0(M)(w̃)) =

E

✏

w0(M)(w̃
M

0
0 w̃(w̃M

0
0 )�1) for ✏ 2 {+,�}, w 2 W

w

M

0
,0(M).

Proof. The relations between the groups W⇤ and W⇤✏ imply obviously that j = k

00 � j

0

and that k00 respects the ✏-subalgebras.
k

00 is an algebra isomorphism respecting the ✏0-Bernstein bases because j, j0 are algebra
isomorphisms respecting the ✏

0-Bernstein bases and k

00 = j � (j0)�1.

2.5 Distinguished representatives of W0 modulo WM,0

The classical set M

W0 of representatives on W

M,0\W0 is equal to
M

D1 =
M

D2 where
[Carter, 2.3.3]

M

D1 := {d 2 W0 | d�1(⌃+
M

) 2 ⌃+},(17)

M

D2 := {d 2 W0 | `(wd) = `(w) + `(d) for all w 2 W

M,0}.(18)

The properties of M

W0 used in this article that we are going to prove are probably well
known. Note that the classical set of representatives of W0\W is studied in [Vig3], that
+ can be replaced by ✏ 2 {+,�} in the definition of

M

D1, that
M

w0 = w

M,0w0 2 M

W0

and that M

W0 \ S = S � S

M

.
Taking inverses, we get the classical set WM

0 of representatives on W0/WM,0 equal to
D

M,1 = D

M,2, where

D

M,1 := {d 2 W0 | d(⌃+
M

) ⇢ ⌃+},(19)

D

M,2 := {d 2 W0 | `(dw) = `(d) + `(w) for all w 2 W

M,0}.(20)

The length of an element of W is equal to the length of its inverse, and [Vig1, Cor. 5.10]:
for � 2 ⇤, w 2 W0,

`(�w) =
X

�2⌃+\w(⌃+)

|� � ⌫(�)|+
X

�2�
w

|� � � ⌫(�) + 1|.(21)

where �
w

:= ⌃+ \ w(⌃�). If w = s1 . . . s
`(w) is a reduced decomposition in (W0, S),

�
w

= {↵
s1}[ s1(�s1w) and `(w) is the order of �

w

. If w 2 W

M,0, �w

⇢ ⌃+
M

. Let `
�

(�w)
denote the contribution of � 2 ⌃+ to the right side of (21).

We show now that W
M,0 can be replaced by W

M

+ in (18) and by W

M

� in (20) (taking
the inverses). It is also a variant of the equivalence `(�w) < `(�) + `(w) , � � ⌫(�) > 0
for some � 2 �

w

for �, w as in (21).

Lemma 2.22. (i) `(wd) = `(w) + `(d) for w 2 W

M

+ and d 2 M

W0.

`(dw) = `(d) + `(w) for w 2 W

M

� and d 2 W

M

0 .
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(ii) For � 2 ⇤, w 2 W

M,0, d 2 M

W0, then `(�wd) < `(�w) + `(d) is equivalent to

w(�) � ⌫(�) > 0 and d

�1(�) 2 ⌃� for some � 2 ⌃+ � ⌃+
M

.

Proof. [Ollivier10, Lemma 2.3], [Abe, Lemma 4.8].
Let � 2 ⇤, w 2 W

M,0, d 2 M

W0 and � 2 ⌃+.
Suppose � 2 ⌃+

M

. Then `

�

(d) = 0,�
d

= ; because d�1(⌃✏

M

) ⇢ ⌃✏ (17), and `

�

(�wd) =
`

�

(�w) because w

�1(�) 2 ⌃✏ , w

�1(�) 2 ⌃✏

M

) d

�1
w

�1(�) 2 ⌃✏ (17).
Suppose � 2 ⌃+ � ⌃+

M

. Then w

�1(�) 2 ⌃+ � ⌃+
M

and `

�

(�w) = |� � ⌫(�)|.
The number `(d) of � 2 ⌃+ � ⌃+

M

such that d

�1(�) 2 ⌃� is equal to the number of
� 2 ⌃+ � ⌃+

M

such that (wd)�1(�) 2 ⌃�.
When � 2 ⇤

M

+ and (wd)�1(�) 2 ⌃�, then � � ⌫(�)  0 and `

�

(�wd) = |� � ⌫(�)|+1.
Therefore `(�wd) = `(�w) + `(d), which gives (i).

When � 62 ⇤ � ⇤
M

+ , `(�wd) < `(�w) + `(d) if and only if there exists � 2 ⌃+ � ⌃+
M

such that � � ⌫(�) > 0 and d

�1
w

�1(�) 2 ⌃�. This gives (ii) because � 7! w

�1(�) is a
permutation map of ⌃+ � ⌃+

M

.

Lemma 2.23. (i) For � 2 ⇤, w 2 W0, we have q

�

= q

w�w

�1
, q

w

= q

w0ww0 , and
`(w0) = `(w) + `(w�1

w0) = `(w0w
�1) + `(w).

(ii) For w 2 W

M,0, we have q

w

= q

w

M

0 w(wM

0 )�1 .

Proof. (i) [Vig1, Prop. 5.13]. The length on W0 is invariant by inverse and by conjugation
by w0 because w0Sw0 = S and [Bki, VI §1 Cor. 3].

(ii) q
w

= q

w

M,0ww

�1
M,0

= q

w

M

0 w(wM

0 )�1 for w 2 W

M,0.

Lemma 2.24. W

M

0 = W

w0(M)
0 w

M

0 = w0W
M

0 w

M,0.

Proof. By (19), d 2 W

M

0 , d(⌃+
M

) ⇢ ⌃+ , d(wM

0 )�1(⌃+
w0(M)) ⇢ ⌃+ , d(wM

0 )�1 2
W

w0(M)
0 . This proves the equality W

M

0 = W

w0(M)
0 w

M

0 . The equality W

M

0 = w0W
M

0 w

M,0,
follows from d(wM

0 )�1(⌃+
w0(M)) ⇢ ⌃+ , w0dwM,0w0(⌃

+
w0(M)) ⇢ ⌃� , w0dwM,0(⌃

�
M

) ⇢
⌃� , w0dwM,0 2 W

M

0 .

Remark 2.25. W

M

= ⇤ oW

M,0 but q
�w

= q

w

M

0 �w(wM

0 )�1 could be false for � 2 ⇤, w 2
W

M,0 such that `(�w) < `(�) + `(w).

Lemma 2.26. `(wM

0 ) = `(wM

0 d

�1) + `(d) for any d 2 W

M

0 .

Proof. For d 2 W

M

0 we have `(dw
M,0) = `(d)+ `(w

M,0) by (20) and w = w

M

0 d

�1 satisfies
w0 = wdw

M,0 and `(w0) = `(w) + `(dw
M,0). We have w

M

0 = w0wM,0 = wd and `(wM

0 ) =
`(w0)� `(w

M,0) = `(w) + `(d).

The Bruhat order x  x

0 in W0 is defined by the following equivalent two conditions:

(i) There exists a reduced decomposition of x0 such that by omitting some terms one
obtains a reduced decomposition of x.

(ii) For any reduced decomposition of x0, by omitting some terms one obtains a reduced
decomposition of x.

A reduced decomposition of w 2 W0 followed by a reduced decomposition of w0 2 W0 is a
reduced decomposition of ww0 if and only `(ww0) = `(w)+`(w0). A reduced decomposition
of d 2 W

M

0 cannot end by a non trivial element w 2 W

M,0.

Lemma 2.27. For w,w

0 2 W

M,0, d, d
0 2 W

M

0 , we have dw  d

0
w

0 if and only if there
exists a factorisation w = w1w2 such that `(w) = `(w1) + `(w2), dw1  d

0 and w2  w

0.
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Proof. We prove the direction “only if” (the direction “if” is obvious). If dw  d

0
w

0,
a reduced decomposition of dw is obtained by omitting some terms of the product of a
reduced decomposition of d0 and of a reduced decomposition of w0. We have dw = d1w2

with d1  d

0
, w2  w

0 and `(d1w2) = `(d1) + `(w2). We have d1 = dw1, w1 := ww

�1
2 .

As w,w2 2 w

M,0 and d 2 W

M

0 we have `(dw1) = `(d) + `(w1) and `(dw) = `(d) + `(w).
Hence `(w1) + `(w2) = `(w).

Lemma 2.28. Let d0 2 w0(M)
W0, d 2 W

M

0 .
(i) If there exists u 2 W

M,0, u
0 2 W

M

0 such that v = w

M

0 u  w = du

0, then d = w

M

0 .
(ii) d

0
d 2 w

M

0 W

M,0 if and only if d0d = w

M

0 .

Proof. (i) As `(w) = `(d)+ `(u0), we have u = u1u2 with w

M

0 u1  d, u2  u

0 and u1, u2 2
W

M,0 (Lemma 2.27). We have `(wM

0 u1) = `(wM

0 ) + `(u1) = `(wM

0 d

�1) + `(d) + `(u1)
(Lemma 2.26). Hence d = w

M

0 , u1 = 1.
(ii) If there exists u 2 W

M,0 such that d = d

0�1
w

M

0 u we have d = d

0�1
w

M

0 because
d

0�1
w

M

0 2 W

M

0 (Lemma 2.24).

2.6 H as a left ✓(HM+)-module and a right ✓⇤(HM�)-module

We prove Theorem 1.4 (iv) on the structure of the left ✓(H
M

+)-module H and its variant
for the right ✓⇤(H

M

�)-module H. We suppose S

M

6= S.

Recalling the properties (i), (ii), (iii) of Theorem 1.4, H
M

= H
M

+ [(TM

µ̃

M

)�1] is the

localisation of the subalgebra H
M

+ at the central element TM

µ̃

M

. The algebra H
M

+ embeds

in H by ✓. Recalling (17), (18) we choose a lift d̃ 2 W (1) for any element d in the classical
set of representatives M

W0 of W
M,0\W0. We define

V
M

+ =
X

d2M

W0

✓(H
M

+)T
d̃

.(22)

Proposition 2.29. (i) V
M

+ is a free left ✓(H
M

+)-module of basis (T
d̃

)
d2M

W0

(ii) For any h 2 H, there exists r 2 N such that T r

µ̃

M

h 2 V
M

+ .

(iii) If q = 0, T
µ̃

M

is a left and right zero divisor in H.

For GL(n, F ), (ii) is proved in [Ollivier10, Prop. 4.7] for (q(s)) = (0). When the q(s)
are invertible, T

w̃

is invertible in H for w̃ 2 W (1).

Proof. (i) As M

W0 is a set of representatives of W

M

+\W , a set of representatives of
W

M

+(1)\W (1) is the set {d̃ | d 2 M

W0} of lifts of M

W0 in W (1). The canonical bases of
H

M

+ and of H are respectively (T
w̃

)(w̃)2W

M

+ (1) and (T
w̃d̃

)(w̃,d)2W

M

+ (1)⇥M

W0
, and T

w̃d̃

=
T

w̃

T

d̃

by the additivity of lengths (Lemma 2.22).
(ii) We can suppose that h runs over in a basis of H. We cannot take the Iwahori-

Matsumoto basis (T
w̃

)
w̃2W (1) and we explain why. For w̃ = w̃

M

d̃ with w̃

M

2 W

M

+(1), d 2
M

W0 we choose r 2 N such that µ̃

r

M

w̃

M

2 W

M

+(1). By the length additivity (Lemma
2.22) T

µ̃

r

M

w̃

= T

µ̃

r

M

w̃

M

T

d̃

lies in ✓(H
M

+)T
d̃

, but we cannot deduce that T

µ̃

r

M

T

w̃

lies in
✓(H

M

+)T
d̃

.
We take the Bernstein basis (2.18) and we suppose that q(s) = q

s

is indeterminate
(but not invertible) with the same arguments as in [Ollivier10, Prop. 4.8]. Then E(d̃) =
T

d̃

for d 2 M

W0. If we prove that E(µ̃r

M

w̃) lies in ✓(H
M

+)T
d̃

then E(µ̃
M

)rE
o

(w̃) =
q

µ

r

M

,w

E(µ̃r

M

w̃) lies also in ✓(H
M

+)T
d̃

. This implies T r

µ̃

M

E

o

(w̃) 2 ✓(H
M

+)T
d̃

.
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Now we prove E(µ̃r

M

w̃) 2 ✓(H
M

+)T
d̃

. We write w̃

M

= �̃w̃

M,0, �̃ 2 ⇤(1), w̃
M,0 2

W

M,0(1). Recalling E(⇤) = T⇤ for ⇤ 2 W0(1) and the additivity of the length (Lemma
2.22),

q

µ

r

M

�,w

M,0dE(µ̃r

M

w̃) = E(µ̃r

M

�̃)E(w̃
M,0d̃) = E(µ̃r

M

�̃)T
w̃

M,0d̃
= E(µ̃r

M

�̃)T
w̃

M,0T
d̃

,

= q

µ

r

M

�,w

M,0E(µ̃r

M

w̃

M

)T
d̃

The monoid W

M

✏ is a lower subset of (W
M

,
M

) (Lemma 2.6). The triangular decompo-
sition (14) implies E

M

(µ̃r

M

w̃

M

) 2 H
M

+ . By Proposition 2.19 E(µ̃r

M

w̃

M

) 2 ✓(H
M

+) and
by the additivity of the length (Lemma 2.22),

q

w

M,0d = q

w

M,0qd

, q

µ

r

M

�w

M,0d = q

µ

r

M

�w

M,0qd

,

implying q

µ

r

M

�

q

w

M,0dq
�1
µ

r

M

�w

M,0d
= q

µ

r

M

�

q

w

M,0q
�1
µ

r

M

�w

M,0
hence q

µ

r

M

�,w

M,0d = q

µ

r

M

�,w

M,0 .

(iii) We have `(µ
M

) 6= 0 and equivalently, ⌫(µ
M

) 6= 0 in V . We choose w 2 W0 with
w(⌫(µ

M

) 6= ⌫(µ
M

). Then ⌫(wµ
M

w

�1) = w(⌫(µ
M

)) and ⌫(µ
M

) belong to di↵erent Weyl
chambers. The alcove walk basis (E

o

(w̃))
w̃2W (1) of H associated to an orientation o of V

of Weyl chamber containing ⌫(µ
M

) satisfies

E

o

(µ̃
M

) = T

µ̃

M

, E

o

(µ̃
M

)E
o

(w̃µ̃
M

w̃

�1) = E

o

(w̃µ̃
M

w̃

�1)E
o

(µ̃
M

) = 0.(23)

The properties of the left ✓(H
M

+)-moduleH transfer to properties of the right ✓⇤(H
M

�)-
module H, with the involutive anti-automorphism ⇣ � ◆ of H (Remark 2.12) exchanging
T

w̃

and (�1)`(w)
T

⇤
(w̃)�1 for w̃ 2 W (1), ✓(H

M

+) and ✓

⇤(H
M

�), V
M

+ and

V⇤
M

� :=
X

d2W

M

0

T

⇤
d̃

✓

⇤(H
M

�),(24)

where W

M

0 = {d0�1 | d0 2 M

W0} is the set of classical representatives of W0/WM,0 (19),
and d̃ = (d̃0)�1 if d = d

0�1.

Corollary 2.30. (i) V⇤
M

� is a free right ✓⇤(H
M

�)-module of basis (T ⇤
d̃

)
d2W

M

0
.

(ii) For any h 2 H, there exists r 2 N such that h(T ⇤
(µ̃

M

)�1)r 2 V⇤
M

� .

(iii) If q = 0, T ⇤
µ̃

�1
M

is a left and right zero divisor in H.

3 Induction and coinduction

3.1 Almost localisation of a free module

In this chapter, all rings have unit elements.

Definition 3.1. Let A be a ring, and a 2 A a central non-zero divisor. We say that a
left A-module B is an almost a-localisation of a left A-module B

D

⇢ B of basis D when :

(i) D is a finite subset of B, and the map �
d2D

A ! B, (x
d

) ! P
x

d

d is injective,

(ii) for any b 2 B, there exists r 2 N such that arb lies in B

D

:=
P

d2D

Ad.

Example 3.2. Our basic example is (A, a,B,D) = (H
M

+
, T

µ

M

,H, (T
d̃

)
d2M

W0
) (Thm.

2.29).
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As a is central and not a zero divisor in A, the a-localisation of A is
a

A = A

a

=
[
n2NAa

�n. The left multiplication by a in A is an injective A-linear endomorphism
A ! A, x 7! ax, and the left multiplication by a in B is a A-linear endomorphism
a

B

: x 7! ax of B which may be not injective hence B may be not a flat A-module. The
ring B is the union for r 2 N, of the A-submodules

r

B

D

:= {b 2 B | arb 2 B

D

},
and looks like a localisation of B

D

at a.

Definition 3.3. Let A be a ring and a 2 A a central non-zero divisor. We say that a
right A-module B is an almost a-localisation of a right A-module

D

B of basis D if :

(i) D is a finite subset of B, and the map �
d2D

A ! B, (x
d

) ! P
d x

d

is injective,

(ii) for any b 2 B, there exists r 2 N such that bar 2
D

B :=
P

d2D

dA.

The ring B is the union for r 2 N of the A-submodules

D

B

r

= {b 2 B | bar 2
D

B}.
Example 3.4. Our basic example is (A, a,B,D) = (H

M

�
, T

µ

�1
M

,H, (T
d̃

)
d2W

M

0
) (Theorem

2.30).

We note that (A
a

, B) = (H
M

,H) in Example 3.2 and in Example 3.4.

3.2 Induction and coinduction

3.2.1

For a ring A, let Mod
A

denote the category of right A-modules, and
A

Mod the category
of left A-modules. The A-duality X 7! X

⇤ := Hom
A

(X,A) exchanges left and right
A-modules.

A functor fromMod
A

to a category admits a left adjoint if and only if it is left exact and
commutes with small direct products (small projective limits); it admits a right adjoint if
and only if it is right exact and commutes with small direct sums (small injective limits)
[Vigadjoint, Prop. 2.10].

For two rings A ⇢ B, are defined two functors:

the induction I

B

A

:= �⌦
A

B and the coinduction I

B

A

:= Hom
A

(B,�) : Mod
A

! Mod
B

,

where B is seen as a (A,B)-module for the induction, and as a (B,A)-module for the
coinduction. For M 2 Mod

A

, we have (m⌦x)b = m⌦xb, (fb)(x) = f(bx) if x, b 2 B and
m 2 M, f 2 Hom

A

(B,M).
The restriction ResB

A

: Mod
B

! Mod
A

is equal to Hom
B

(B,�) = � ⌦
B

B where
B is seen first as a (A,B)-module and then as a (B,A)-module. The induction and the
coinduction are the left and right adjoints of the restriction [Benson, 2.8.2].

For two rings A and B and an (A,B)-module J , the functor

�⌦
A

J : Mod
A

! Mod
B

is left adjoint to Hom
B

(J ,�) : Mod
B

! Mod
A

.

Let M 2 Mod
A

, N 2 Mod
B

. The adjunction is given by the functorial isomorphism

Hom
B

(M⌦
A

J ,N )
↵�! Hom

A

(M,Hom
B

(J ,N )), f(m⌦ x) = ↵(f)(m)(x),

for f 2 Hom
B

(M⌦
A

J ,N ),m 2 M, x 2 J [Benson, Lemma 2.8.2].
For three rings A ⇢ B,A ⇢ C, the isomorphism ↵ applied to M = C,J = B gives an

isomorphism:

Hom
B

(C ⌦
A

B,�) ' Hom
A

(C,�) : Mod
B

! Mod
C

.
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3.2.2

Let A ⇢ B be two rings and a 2 A a central non-zero divisor. Let A

a

= A[a�1] denote
the localisation of A at a. There is a natural inclusion A ⇢ A

a

. The restriction Mod
A

a

!
Mod

A

identifies Mod
A

a

with the A-modules where the action of a is invertible. ForM,M0

in Mod
A

a

, we have

Hom
A

a

(M,M0) = Hom
A

(M,M0), M⌦
A

a

M0 = M⌦
A

M0
.(25)

For f 2 Hom
A

(M,M0),m 2 M,m

0 2 M0, we have f(aa�1
m) = af(a�1

m) ) a

�1
f(m) =

f(a�1
m), and m⌦a

�1
m

0 = ma

�1
a⌦a

�1
m

0 = ma

�1⌦m

0 in M⌦
A

M0. We view Mod
A

a

as a full subcategory of Mod
A

.
The restriction followed by the induction, resp. the coinduction, Mod

A

! Mod
B

defines an induction, resp. coinduction,

I

B

A

a

= I

B

A

� ResAa

A

= �⌦
A

B, I

B

A

a

= I

B

A

� ResAa

A

= Hom
A

(B,�) : Mod
A

a

! Mod
B

,

even when A

a

is not contained in B. The induction I

B

A

a

admits a right adjoint

I

A

a

A

� ResB
A

= Hom
A

(A
a

,�) : Mod
B

! Mod
A

a

,

because the restriction ResAa

A

and the induction I

B

A

admit a right adjoint: the coinduction
I

A

a

A

and the restriction ResB
A

. The coinduction I

B

A

a

admits a left adjoint

I

A

a

A

� ResB
A

= �⌦
A

A

a

: Mod
B

! Mod
A

a

,

because the restriction ResAa

A

and the coinduction I

B

A

admit a left adjoint: the induction
I

A

a

A

and the restriction ResB
A

.
When a is invertible in B we have A

a

⇢ B and they coincide with the induction and
coinduction from A

a

to B.
The induction and the coinduction of A

a

seen as a right A
a

-module, are the (A
a

, B)-
modules

I

B

A

a

(A
a

) = A

a

⌦
A

B, I

B

A

a

(A
a

) = Hom
A

(B,A

a

).(26)

Lemma 3.5. Let M 2 Mod
A

a

. Then I

B

A

a

(M) = M⌦
A

a

I

B

A

a

(A
a

) in Mod
B

.

Proof. M⌦
A

B = (M⌦
A

a

A

a

)⌦
A

B = M⌦
A

a

(A
a

⌦
A

B).

3.2.3

Let (A, a,B,D) satisfying Definition 3.1. Let M 2 Mod
A

a

. As R-modules,

I

B

A

a

(M) = M⌦
A

B

D

(27)

because the action of a on M is invertible hence M ⌦
A r

B

D

= M ⌦
A

B

D

for r 2 N. In
particular:

Lemma 3.6. The left A
a

-module I

B

A

a

(A
a

) is free of basis (1⌦ d)
d2D

.

Remark 3.7. The A-dual (B
D

)⇤ of the left A-module B
D

is the right A-module �
d2D

d

⇤
A

of basis the dual basis D

⇤ = {d⇤ | d 2 D} of D. Let M 2 Mod
A

a

. We have canonical
isomorphisms of R-modules:

�
d2D

M '�! M⌦
A

B

D

'�! Hom
A

((B
D

)⇤,M)

(x
d

) 7!
X

d2D

x

d

⌦ d 7! (d⇤ 7! x

d

)
d2D

.
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The tensor product over A by a free A-module is exact and faithful hence the induction
is exact and faithful.

Let R ⇢ A be a subring central in B. The ring R is automatically commutative and
a central subring of the localisation A

a

of A. The modules over A

a

or B are naturally
R-modules.

Let M 2 Mod
A

a

be a finitely generated R-module. The R-module M⌦
A

a

I

B

A

a

(A
a

) is
finitely generated.

Let N 2 Mod
B

be a finitely generated R-module. The R-module Hom
A

(A
a

,N ) is
finitely generated if R is a field by the Fitting’s lemma applied to the action of a on N .
There exists a positive integer n such that N is a direct sum N = N

a

� N 0
a

where a

n

acts on N
a

as an automorphism and a

n is 0 on N 0
a

. Then, Hom
A

(A
a

,N ) ' N
a

is finite
dimensional.

We obtain:

Proposition 3.8. Let (A, a,B,D) satisfying Definition 3.1. The induction functor

I

B

A

a

= �⌦
A

B : Mod
A

a

! Mod
B

is exact, faithful and admits a right adjoint RB

A

a

:= Hom
A

(A
a

,�).
Let R ⇢ A be a subring central in B. Then I

B

A

a

respects finitely generated R-modules.
If R is a field, RB

A

a

respects finite dimension over R.

3.2.4

Let (A, a,B,D) satisfying Definition 3.3.
For M 2 Mod

A

, the set M
d

of f 2 Hom
A

(
D

B,M) vanishing on D�{d} is isomorphic
to M by the value at d. The A-dual (

D

B)⇤ of
D

B is a free left A-module of basis D

⇤.
We have

Hom
A

(
D

B,M) = �
d2D

M
d

' �
d

⇤2D

⇤M⌦ d

⇤ = M⌦
A

(
D

B)⇤.(28)

The A-modules M
d

and M⌦ d

⇤ are isomorphic by f 7! f(d)⌦ d

⇤.
For M 2 Mod

A

a

, we have linear isomorphisms

I

B

A

a

(M) = Hom
A

(B,M) ' Hom
A

(
D

B,M), M⌦
A

(
D

B)⇤ = M⌦
A

A

a

⌦
A

(
D

B)⇤.

For d 2 D, let f

d

2 Hom
A

(B,A

a

) equal to 1 on d and 0 on D � {d}. We deduce from
these arguments:

Lemma 3.9. Let (A, a,B,D) satisfying Definition 3.3. The left A
a

-module I

B

A

a

(A
a

) is
free of basis (f

d

)
d2D

and I

B

A

a

(M) ' M⌦
A

a

I

B

A

(A
a

).

Let R ⇢ A be a subring central in B. Let M 2 Mod
A

a

be a finitely generated R-
module. The R-module M ⌦

A

a

I

B

A

a

(A
a

) is finitely generated. If R is a field, and the
dimension of N 2 Mod

B

is finite over R, then N ⌦
A

A

a

= N
a

⌦
A

A

a

' N
a

has finite
dimension over R by the Fitting’s lemma, as in the proof of Proposition 3.8. We obtain:

Proposition 3.10. Let (A, a,B,D) satisfying Definition 3.3. The coinduction

I

B

A

a

= Hom
A

(B,�) : Mod
A

a

! Mod
B

is exact, faithful, and admits a left adjoint LB

A

a

= �⌦
A

A

a

.
Let R ⇢ A be a subring central in B. Then I

B

A

a

respects finitely generated R-modules.
If R is a field, LB

A

a

respects finite dimension over R.
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4 Parabolic induction and coinduction from H
M

to H
We prove Theorems 1.6, 1.8 and 1.9 giving the properties of the parabolic induction from
H

M

to H.

4.1 Basic properties of the parabolic induction and coinduction

The example 3.2 satisfies Definition 3.1 and the example 3.4 satisfies Definition 3.3. In
these two examples (A

a

, B) = (H
M

,H). The first one

(A, a,D) = (✓(H
M

+), T
µ̃

M

, (T
d̃

)
d2M

W0
),

where we identifyH
M

+ with ✓(H
M

+), defines the parabolic induction I

H
H

M

= �⌦H
M

+ ,✓

H :
ModH

M

! ModH. The second one

(A, a,D) = (✓⇤(H
M

�), T ⇤
(µ̃

M

)�1 , (T ⇤
d̃

)
d2W

M

0
),

where we identifyH
M

� with ✓

⇤(H
M

�), defines the parabolic coinduction I

H
H

M

= HomH
M

�
,✓

⇤ (H,�) :
ModH

M

! ModH. Propositions 3.8 and 3.10 imply:

Proposition 4.1. The parabolic induction I

H
H

M

and the coinduction I

H
H

M

are exact, faith-
ful and respect finitely generated R-modules. The parabolic induction admits a right adjoint

R

H
H

M

= HomH
M

+ ,✓

(H
M

,�) : ModH ! ModH
M

.

The parabolic coinduction admits a left adjoint

L

H
H

M

:= �⌦H
M

� ,✓

⇤ H
M

: ModH ! ModH
M

.

If R is a field, the adjoint functors R

H
H

M

and L

H
H

M

respect finite dimension over R.

4.2 Transitivity

Let S

M

⇢ S

M

0 ⇢ S. Let W

M

✏,M

0 = ⇤
M

✏,M

0
o W

M,0 denote the submonoid of W

M

associated to S

aff

M

0 as in Definition 2.1 (see before Proposition 2.21), and

⇤
M

✏,M

0 = ⇤ \W

M

✏,M

0 = {� 2 ⇤ | � (� � ⌫)(�) � 0 for all � 2 ⌃✏

M

0 � ⌃✏

M

},

By the property (i), (ii), (iii) of Theorem 1.4, the R-submodule H
M

✏,M

0 of H
M

of basis
(TM

w̃

)
w̃2W

M

✏,M

0 (1), is a subring of H
M

, the restriction to H
M

✏,M

0 of the injective linear
map

H
M

✓

0
�! H

M

0
, T

M

w̃

7! T

M

0
w̃

for w̃ 2 W

M

(1),

respects the product, and H
M

= H
M

✏,M

0 [(TM

µ̃

M

✏

)�1]. Obviously, the map H
M

✓�! H
satisfies ✓ = ✓

M

0 � ✓0 for the linear map H
M

0
✓

M

0��! H, T

M

0
w̃

7! T

w̃

for w̃ 2 W

M

0(1).

Lemma 4.2. We have

(i) W

M

⇢ W

M

0 , W
M

✏ = W

M

✏,M

0 \W

M

0✏ , ✓0(H
M

✏) = ✓

0(H
M

✏,M

0 ) \H
M

0✏ .

(ii) µ̃

M

✏

µ̃

M

0✏ is central in W

M

(1), satisfies �(� �⌫)(µ
M

✏

µ

M

0✏) > 0 for all � 2 ⌃✏�⌃✏

M

,
and the additivity of the lengths `(µ

M

✏

µ

M

0✏) = `(µ
M

✏) + `(µ
M

0✏).

(iii) M

W0 = M

W

M

0
,0

M

0
W0.
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Proof. (i) We have W
M,0 ⇢ W

M

0
,0 and ⇤

M

✏ = ⇤0
M

✏

\⇤
M

0✏ . Therefore W
M

= ⇤oW

M,0 ⇢
⇤ o W

M

0
,0 = W

M

0 , and W

M

✏,M

0 \ W

✏

M

0 = (⇤0
M

✏

o W

M,0) \ (⇤0
M

0✏ o W

M

0
,0) = (⇤0

M

✏

\
⇤
M

0✏)oW

M,0 = ⇤
M

✏

oW

M,0 = W

M

✏ .
(ii) µ̃

M

0✏ is central in W

M

0(1) which contains W
M

(1), µ̃
M

✏ is central in W

M

(1), hence
µ̃

M

✏

µ̃

M

0✏ is central in W

M

(1). We have
�(� � ⌫)( µ

M

0✏) > 0 for all � 2 ⌃✏ � ⌃✏

M

0 , �(� � ⌫)( µ
M

0✏) = 0 for all � 2 ⌃
M

0 ,
�(� � ⌫)( µ

M

✏) > 0 for all � 2 ⌃✏ � ⌃✏

M

, �(� � ⌫)( µ
M

✏) = 0 for all � 2 ⌃
M

.
Hence �(� � ⌫)(µ0

M

✏

µ

M

0✏) > 0 for all � 2 ⌃✏ � ⌃✏

M

and `(µ
M

✏

µ

M

0✏) = `(µ
M

✏) + `(µ
M

0✏).
(iii) Let u 2 M

W

M

0
,0, v 2 M

0
W0 and let w 2 W

M,0. We have `(wuv) = `(wu)+ `(v) =
`(w) + `(u) + `(v) = `(w) + `(uv) hence uv 2 M

W0. The injective map (u, v) 7! uv :
M

W

M

0
,0 ⇥ M

0
W0 ! M

W0 is bijective because

|MW0| = |W
M,0\W0| = |W

M,0\WM

0
,0| |WM

0
,0\W0| = |MW

M

0
,0| |M 0

W0|,
where |X| denotes the number of elements of a finite set X.

Proposition 4.3. The induction is transitive:

I

H
H

M

= I

H
H

M

0 � IHM

0
H

M

: ModH
M

! ModH
M

0 ! ModH .

The coinduction is also transitive. This is proved at the end of this paper.

Proof. By lemma 3.5, the proposition is equivalent to

H
M

⌦H
M

+ H ' H
M

⌦H
M

+,M

0 HM

0 ⌦H
M

0+ H

in ModH. As H
M

0 = H
M

0+ [(TM

0
µ̃

M

0+ )
�1] is the localisation of the ring H

M

0+ at the central

element T

M

0
µ̃

M

0+ 2 H
M

0+ , the right H-module H
M

0 ⌦H
M

0+ H is the inductive limit of

(TM

0
µ̃

M

0+ )
�r ⌦H for r 2 N with the transition maps

(TM

0
µ̃

M

0+ )
�r ⌦ x 7! (TM

0
µ̃

M

0+ )
�r�1 ⌦ T

µ̃

M

0+x, for x 2 H.

As H
M

= H
M

+,M

0 [(TM

µ̃

M

+
)�1] is the localisation of the ring H

M

+,M

0 at the central element

T

M

µ̃

M

+
2 H

M

+,M

0 , the right H-module H
M

⌦H
M

+,M

0 HM

0 ⌦H
M

0+ H is the inductive limit

of (TM

µ̃

M

+
)�s ⌦H

M

0 ⌦H
M

0+ H for s 2 N with the transition maps

(TM

µ̃

M

+
)�s ⌦ y 7! (TM

µ̃

M

+
)�s�1 ⌦ T

M

0
µ̃

M

+
y, for y 2 H

M

0 ⌦H
M

0+ H.

Using that TM

0
µ̃

M

0+ is central in H
M

0 and T

M

0
µ̃

M

+
2 H

M

0+ , we have for y = (TM

0
µ̃

M

0+ )
�r ⌦ x :

T

M

0
µ̃

M

+
y = T

M

0
µ̃

M

+
(TM

0
µ̃

M

0+ )
�r ⌦ x = (TM

0
µ̃

M

0+ )
�r

T

M

0
µ̃

M

+
⌦ x = (TM

0
µ̃

M

0+ )
�r ⌦ T

µ̃

M

+x.

Alltogether, the right H-module H
M

⌦H
M

+,M

0 H
M

0 ⌦H
M

0+ H is the inductive limit of

(TM

µ̃

M

+
)�s ⌦ (TM

0
µ̃

M

0+ )
�r ⌦H for r, s 2 N with the transition maps

(TM

µ̃

M

+
)�s ⌦ (TM

0
µ̃

M

0+ )
�r ⌦ x 7! (TM

µ̃

M

+
)�s�1 ⌦ (TM

0
µ̃

M

0+ )
�r ⌦ T

µ̃

M

+x,

(TM

µ̃

M

+
)�s ⌦ (TM

0
µ̃

M

0+ )
�r ⌦ x 7! (TM

µ̃

M

+
)�s ⌦ (TM

0
µ̃

M

0+ )
�r�1 ⌦ T

µ̃

M

0+x.

The right H-module H
M

⌦H
M

+,M

0 HM

0 ⌦H
M

0+ H is also the inductive limit of the modules

(TM

µ̃

M

+
)�r ⌦ (TM

0
µ̃

M

0+ )
�r ⌦H for r 2 N with the transition maps

(TM

µ̃

M

+
)�r ⌦ (TM

0
µ̃

M

0+ )
�r ⌦ x 7! (TM

µ̃

M

+
)�r�1 ⌦ (TM

0
µ̃

M

0+ )
�r�1 ⌦ T

µ̃

M

+Tµ̃

M

0+x.
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By Lemma 4.2 (ii), T
µ̃

M

+Tµ̃

M

0+ = T

µ̃

M

+ µ̃

M

0+ . Hence, we have in ModH

H
M

⌦H
M

+,M

0 HM

0 ⌦H
M

0+ H ' lim�!
x 7!T

µ̃

M

+ µ̃

M

0+ x

H.

On the other hand, H
M

= H
M

+ [(TM

µ̃

M

+ µ̃

M

0+ )
�1] is the localisation of H

M

+ at TM

µ̃

M

+ µ̃

M

0+

(Lemma 4.2), hence H
M

⌦H
M

+ H is the inductive limit of (TM

µ̃

M

+ µ̃

M

0+ )
�r ⌦H for r 2 N

with the transition maps

(TM

µ̃

M

+ µ̃

M

0+ )
�r ⌦ x 7! (TM

µ̃

M

+ µ̃

M

0+ )
�r�1 ⌦ T

µ̃

M

+ µ̃

M

0+x.

We deduce that
H

M

⌦H
M

+ H ' lim�!
x 7!T

µ̃

M

+ µ̃

M

0+ x

H

is isomorphic to H
M

⌦H
M

+,M

0 HM

0 ⌦H
M

0+ H in ModH.

4.3 w0-twisted induction = coinduction

We prove Theorem 1.8. When H = H
R

(G) is the pro-p Iwahori Hecke algebra of a
reductive p-adic group G over an algebraically closed field R of characteristic p, Theorem
1.8 is proved by Abe [Abe, Prop. 4.14]. We will extend his arguments to the general
algebra H.

Let w̃M

0 2 W0(1) lifting w

M

0 . The algebra isomorphism H
M

' H
w0(M) defined by w̃

M

0

(Proposition 2.20) induces an equivalence of categories :

ModH
M

w̃M

0��! ModH
w0(M)

(29)

called a w0-twist. Let M be a right H
M

-module. The underlying R-module of w̃M

0 (M)
and of M is the same; the right action of T

M

w̃

on M is equal to the right action of

T

w0(M)
w̃

M

0 w̃(w̃M

0 )�1 on w̃M

0 (M), for w̃ 2 W

M

(1). The inverse of w̃M

0 is the algebra isomorphism

induced by (w̃M

0 )�1 lifthing M

w0 := (wM

0 )�1 = w

M,0w0 = w0w0wM,0w0 = w

w0(M)
0 .

Remark 4.4. The lifts of w

M

0 are tw̃

M

0 = w̃

M

0 t

0 with t, t

0 2 Z

k

, the elements T

M

t

0 2
H

M

, T

w0(M)
t

2 H
w0(M) are invertible, and the conjugation by T

t

in H
M

, by T

w0(M)
t

in
H

w0(M) induce equivalence of categories

ModH
M

t0�! ModH
M

, ModH
w0(M)

t�! ModH
w0(M)

such that tw̃M

0 = t � w̃M

0 = w̃M

0 � t0 = w̃M

0 t0.

Remark 4.5. The trivial characters of H
M

and H
w0(M) correspond by w̃M

0 .

We will prove that, for all S
M

⇢ S, the coinduction ModH
M

IHH
M���! ModH is equivalent

to the w0-twist induction

ModH
M

w̃M

0��! ModH
w0(M)

I

H
H

w0(M)������! ModH .

This proves Theorem 1.8 because

I

H
H

M

' I

H
H

w0(M)
� w̃M

0 , I

H
H

M

' I

H
H

w0(M)
� w̃M

0 .(30)
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Indeed, if the left hand side is true for all S
M

⇢ S, permuting M and w0(M) we have

IH
w0(M)

' I

H
H

M

� w̃
w0(M)
0 , and composing with (w̃w0(M)

0 )�1, we get I

H
H

M

' I

H
H

w0(M)
�

(w̃w0(M)
0 )�1 ' I

H
H

w0(M)
� w̃M

0 as ww0(M)
0 = (wM

0 )�1 The arguments can be reversed to get

the equivalence.

Let M 2 ModH
M

. We will construct an explicit functorial isomorphism in ModH:

(IHH
w0(M)

� w̃M

0 )(M)
b�! I

H
H

M

(M).(31)

From Lemmas 3.5, 3.6, 3.9 and Examples 3.2, 3.4, we get:

(i) I

H
H

w0(M)
(H

w0(M)) = H
w0(M)⌦H

w0(M)+ ,✓

H is a left freeH
w0(M)-module of basis 1⌦T

d̃

0

for d0 2 w0(M)
W0, and

(IHH
w0(M)

� w̃M

0 )(M) = w̃M

0 (M)⌦H
w0(M)

I

H
H

w0(M)
(H

w0(M)).

(ii) I

H
H

M

(H
M

) = HomH
M

� ,✓

⇤(H,H
M

) where H is seen as a right ✓

⇤(H
M

�)-module, is
a left free H

M

-module of basis (f⇤
d̃

)
d2W

M

0
, where f

⇤
d̃

(T ⇤
d̃

) = 1 and f

⇤
d̃

(T ⇤
x̃

) = 0 for

x 2 W

M

0 � {d}, and
I

H
H

M

(M) = M⌦H
M

I

H
H

M

(H
M

).

It is an exercise to prove that the left H
M

-module I

H
H

M

(H
M

) admits also the basis
(f

d̃

)
d2W

M

0
, where f

d̃

(T
d̃

) = 1 and f

d̃

(T
x̃

) = 0 for x 2 W

M

0 � {d}. We will prove that
the linear map

m⌦ T

d̃

0 7! m⌦ f

w̃

M

0
T

d̃

0 : �
d

02w0(M)
W0

w̃M

0 (M)⌦ T

d̃

0
b�! �

d2W

M

0
M⌦ f

d̃

(32)

is a functorial isomorphism in ModH. The bijectivity follows from the bijectivity of the
map d

0 7! d

0�1
w

M

0 : w0(M)
W0 ! W

M

0 (Lemma 2.24) and:

Lemma 4.6.

f

w̃

M

0
T

d̃

0 � f(d0�1
w

M

0 )̃ lies in �
x2W

M

0 ,x<d

0�1
w

M

0
M⌦ f

x̃

.

Proof. For d 2 W

M

0 we have (f
w̃

M

0
T

d̃

0)(T
d̃

) = f

w̃

M

0
(T

d̃

0T
d̃

) = f

w̃

M

0
(T

d̃

0
d̃

) + x where x 2P
Rf

w̃

M

0
(T

w̃

) the sum over the w̃ 2 W0(1) with w < d

0
d and w 2 w

M

0 W

M,0. If d0d 62
w

M

0 W

M,0, there is no w 2 w

M

0 W

M,0 with w < d

0
d (Lemma 2.26). We have d0d 2 w

M

0 W

M,0

if and only if d = d

0�1
w

M

0 (part (ii) of Lemma 2.28).

The restriction ResHH
w0(M)+ ,✓

: ModH ! ModH
w0(M)+

is left adjoint to �⌦H
w0(M)+ ,✓

H
and the H

w0(M)+ -equivariance of the linear map

m 7! m⌦ f

w̃

M

0
: w̃M

0 (M) ! I

H
H

M

(M)(33)

implies the H-equivariance of (31), i.e. of (32). Let H
M

j�! H
w0(M) denote the iso-

morphism induced by w̃

M

0 (Proposition 2.20), and ✓

M

the linear map H
M

✓�! H. The
H

w0(M)+ -invariance of the map m 7! m⌦ f

w̃

M

0
is equivalent to:

f

w̃

M

0
✓

w0(M)(h) = j

�1(h)f
w̃

M

0
for h 2 H

w0(M)+ ,(34)

We can suppose that h lies in the Bernstein basis of H
w0(M)+ . Let w̃ 2 W

w0(M)+(1)
and h = E

w0(M)(w̃). As ✓

w0(M)(Ew0(M)(w̃)) = E(w̃), and j

�1(E
w0(M)(w̃)) is equal to

E

M

((w̃M

0 )�1
w̃w̃

M

0 ), (34) is equivalent to:
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Proposition 4.7. f

w̃

M

0
E(w̃) = E

M

((w̃M

0 )�1
w̃w̃

M

0 )f
w̃

M

0
for w 2 W

w0(M)+ .

Proof. By the usual reduction arguments, we suppose that the q(s) are invertible in R.
Using W

w0(M)+ = ⇤
w0(M)+ o W

w0(M),0, the product formula (8) and Lemma 2.23 we
reduce to w 2 ⇤

w0(M)+ [W

w0(M),0. By induction on the length in W

w0(M),0 with respect
to S

w0(M), we reduce to w 2 ⇤
w0(M)+ [ S

w0(M).
Let d 2 W

M

0 . We have (f
w̃

M

0
E(w̃))(T

d̃

) = f

w̃

M

0
(E(w̃)T

d̃

) in H
M

. We have to prove

f

w̃

M

0
(E(w̃)T

d̃

) =

(
0 if d 6= w

M

0 ,

E

M

((w̃M

0 )�1
w̃w̃

M

0 ) if d̃ = w̃

M

0 .

(35)

for w 2 ⇤
w0(M)+ [ S

w0(M).
(i) w = � 2 ⇤

w0(M)+ . Let A denote the subalgebra of H of basis (E(x̃))
x̃2⇤(1) [Vig1,

Cor. 2.8]. By the Bernstein relations [Vig1, Thm. 2.9], we have
E(�̃)T

d̃

= T

d̃

E((d̃)�1
�̃d̃) +

P
T

w̃

a

w̃

,
where a

w̃

2 A and the sum is over w̃ 2 W0(1), w < d. If d 6= w

M

0 , the image by f

w̃

M

0
of

the right hand side vanishes because w 2 w

M

0 W

M,0, w  d implies w = d = w

M

0 ; hence
f

w̃

M

0
(E(�̃)T

d̃

) = 0 as we want. For d̃ = w̃

M

0 , using (wM

0 )�1
�w̃

M

0 2 W

w0(M)� , we have

f

w̃

M

0
(E(�̃)T

w̃

M

0
) = f

w̃

M

0
(T

w̃

M

0
E((w̃M

0 )�1
�̃w̃

M

0 ) = ✓

⇤(E((w̃M

0 )�1
�̃w̃

M

0 )) = E

M

((w̃M

0 )�1
�̃w̃

M

0 ).

(ii) w = s 2 S

w0(M). We have w0sw0 2 S

M

, w0sw0wM,0 < w

M,0 and sw

M

0 =
sw0wM,0 = w0w0sw0wM,0 > w0wM,0 = w

M

0 .

Assume sd < d. We deduce d 6= w

M

0 . Assume d̃ = s̃

˜(sd). Then
E(s̃)T

d̃

= T

s̃

T

d̃

= T

2
s̃

T ˜(sd) = (q(s)(s̃)2 + c(s̃)T
s̃

)T ˜(sd) = q(s)(s̃)2T ˜(sd) + c(s̃)T
d̃

. We

deduce that f
w̃

M

0
(E(s̃)T

d̃

) = 0.

Assume sd > d. We write s̃ d̃ = d̃1ũ with d1 2 W

M

0 , u 2 W

M,0. Then T

s̃

T

d̃

= T

s̃d̃

=
T

d̃1ũ
. Therefore f

w̃

M

0
(E(s̃)T

d̃

) = f

w̃

M

0
(T

d̃1ũ
) = 0 if d1 6= w

M

0 . We suppose now d1 = w

M

0 .

We have d  w

M

0  sd hence w

M

0 = d or w

M

0 = sd. In the latter case, a reduced
decomposition of w

M

0 starts by s. But this is incompatible with s 2 S

w0(M) because

w

M

0 = w0(M)
w0. We deduce that d = w

M

0 . For d̃ = w̃

M

0 , we have f

w̃

M

0
(E(s̃)T

w̃

M

0
) =

f

w̃

M

0
(T

s̃ w̃

M

0
) = f

w̃

M

0
(T

w̃

M

0
T(wM

0 )�1
s̃w̃

M

0
) = f

w̃

M

0
(T

w̃

M

0
E(wM

0 )�1
s̃w̃

M

0
) = ✓

⇤(E(wM

0 )�1
s̃w̃

M

0
)) =

E

M

((w̃M

0 )�1
s̃w̃

M

0 ). This ends the proof of Proposition 4.7 hence of Theorem 1.8.

Corollary 4.8. The right H-modules H
M

⌦H
M

+ ,✓

H and HomH
w0(M)� ,✓

⇤(H,H
w0(M)) are

isomorphic.

4.4 Transitivity of the coinduction

Let S
M

⇢ S

M

0 ⇢ S. By Proposition 2.21, the algebra isomorphisms

H
M

j�! H
w0(M), H

M

j

0
�! H

w

M

0
,0(M)

k

00
��! H

w0(M)

corresponding to w̃

M

0 , w̃

M

M

0 , w̃
M

0
0 , w̃

M

0 = w̃

M

0
0 w̃

M

M

0 , satisfy j = k

00 � j

0. The associated
equivalences of categories, denoted by

MH
M

w̃M

0��! MH
w0(M)

, MH
M

w̃M

M

0���! MH
w

M

0
,0(M)

w̃M

0
0,k���! MH

w0(M)
,(36)

satisfy w̃M

0 = w̃M

0
0,k � w̃M

M

0 . We refer to this as the transitivity of the w0-twisting.

Lemma 4.9. The functors w̃M

0
0 � IHM

0
H

w

M

0
,0(M)

and I

H
w0(M0)

H
w0(M)

� w̃M

0
0,k from ModH

w

M

0
,0(M)

to

ModH
w0(M0) are isomorphic.
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The proof gives an explicit isomorphism.

Proof. Let M 2 ModH
w

M

0
,0(M)

. The R-module M ⌦H
w

M

0
,0(M)+ ,✓

H
M

0 with the right

action of H
w0(M 0) defined by (x ⌦ T

M

0
ũ

)Tw0(M
0)

w̃

M

0
o

ṽ(w̃M

0
o

)�1 = x ⌦ T

M

0
ũ

T

M

0
ṽ

for x 2 M, u, v 2
W

M

0 , is w̃M

0
0 � IHM

0
H

w

M

0
,0(M)

(M).

As k

00(H
w

M

0
,0(M)+) = H

w0(M)+ (Proposition 2.21), the R-linear map M ⌦
R

H
M

0 !
w̃M

0
0,k(M) ⌦H

w0(M)+ ,✓

H
w0(M 0) defined by x ⌦ T

M

0
ũ

! x ⌦ T

w0(M
0)

w̃

M

0
0 ũ(w̃M

0
0 )�1

is the composite

of the quotient map M⌦
R

H
M

0 ! w̃M

0
0 �M⌦H

w

M

0
,0(M)+

H
M

0 , and of the bijective linear
map

w̃M

0
0 � IHM

0
H

w

M

0
,0(M)

(M) ! w̃M

0
0,k(M)⌦H

w0(M)+ ,✓

H
w0(M 0).

The displayed map is clearly H
w0(M 0)-equivariant.

Proposition 4.10. The coinduction is transitive.

Proof. By the transitivity of the w0-twisting (36), Lemma 4.9, and the transitivity of the
induction (Proposition 4.3), we have:

I

H
H

M

0 � IHM

0
H

M

= I

H
H

w0(M0)
� w̃M

0
0 � IHw0(M0)M0

H
w0(M)

� w̃M

M

0 = I

H
H

w0(M0)
� IHw0(M0)

H
w0(M)

� w̃M

0
0,k � w̃M

M

0 =

I

H
H

w0(M0)
� IHw0(M0)

H
w0(M)

� w̃M

0 = I

H
H

w0(M)
� w̃M

0 = I

H
H

M

.

Proof of Theorem 1.9. The induction I

H
H

M

is equivalent to I

H
H

w0(M)
�w̃M

0 . The coinduc-

tion I

H
H

M

is the composite of the restriction ModH
M

! ModH
M

� and of HomH
M

� ,✓

⇤(H,�) :
ModH

M

� ! ModH. These functors admit left adjoints, the restriction ModH ! ModH
M

�
for HomH

M

� ,✓

⇤(H,�), the induction �⌦H
M

� H
M

: ModH
M

� ! ModH
M

for the restric-

tion ModH
M

! ModH
M

� , hence � ⌦H
M

� ,✓

⇤ H
M

: ModH ! ModH
M

for I

H
H

M

, and

(w̃M

0 )�1 � (�⌦H
w0(M)� ,✓

⇤ H
w0(M)) ' w̃

w0(M)
0 � (�⌦H

w0(M)� ,✓

⇤ H
w0(M)) for I

H
H

w0(M)
� w̃M

0 .

5

Let � = �1 [ �2 be an orthogonal decomposition, {i, j} = {1, 2} and ✏ 2 {+,�}. In
the notations, we will often replace a (lower or upper) index M

i

by a (lower or upper)
index i. The orthogonal decomposition of � corresponds to orthogonal decompositions
⌃ = ⌃1 [⌃2, S = S2 [ S2, ⌃aff = ⌃aff

1 [⌃aff

2 , Saff = S

aff

1 [ S

aff

2 and direct products

W

aff = W

aff

1 ⇥W

aff

2 ,⇤aff = ⇤aff

1 ⇥ ⇤aff

2 ,W0 = W1,0 ⇥W2,0. We have the semidirect

products W aff

j

= ⇤aff

j

oW

j,0,W
aff = ⇤aff

oW0,Wj

= W

aff

j

o⌦
j

= ⇤oW

j,0 analogous

to W = W

aff

o ⌦ = ⇤ oW0. The group W

j

acts by the identity on ⌃aff

i

. For w 2 W

we have w(⌃aff

i

) ⇢ ⌃aff

i

and `(w) = `1(w) + `2(w) where

`(w) = |⌃aff,+ \ w(⌃aff,�)|, `

i

(w) = |⌃aff,+
i

\ w(⌃aff,�
i

)|.(37)

The kernel of `
i

is W aff

j

⌦ (hence ⌦ normalizes W aff

j

). For (�, w0) 2 ⇤⇥W0 we have:

`(�w0) =
X

↵2⌃+\w0(⌃+)

|h↵, ⌫(�)i|+
X

↵2⌃+\w0(⌃�)

|h↵, ⌫(�)i � 1|,(38)

`

i

(�w0) =
X

↵2⌃+
i

\w0(⌃
+
i

)

|h↵, ⌫(�)i|+
X

↵2⌃+
i

\w0(⌃
�
i

)

|h↵, ⌫(�)i � 1|.(39)
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For `(�w0) see [Vig1, Cor. 5.10, Cor. 5.11]. For `
i

(�w0) *** Decomposing ⌃+ = ⌃+
i

t⌃+
j

and recalling that w0 2 W0,i fixes ⌃
j

, and that ⌃
i

vanishes on ⌫(⇤aff

j

). The restriction

of ` and of `
i

to W

i

is the length associated to (W aff

i

, S

aff

i

) and `

i

vanishes on W

j

.

Lemma 5.1. The group W normalizes ⇤aff

i

. For w 2 W

i

and µ 2 ⇤aff

j

we have
`(µw) = `(µ) + `(w).

Proof. The group ⇤ is commutative and contains ⇤aff

i

, the group W

i,0 normalizes ⇤aff

i

,

and the elements of W
j,0 commute with those of ⇤aff

i

. Hence the group W = ⇤o (W
i,0⇥

W

j,0) normalizes ⇤aff

i

.
Using W

i

= ⇤ o W0,i, we write w = �w0 where (�, w0) 2 ⇤ ⇥ W0,i. We have ⌃+ \
w0(⌃+) = (⌃+

i

\w0(⌃
+
i

))t⌃+
j

and ⌃+ \w0(⌃�) = ⌃�
i

\w0(⌃
�
i

). We apply the formula
(38) to (µ�, w0) 2 ⇤⇥W0 to obtain the equality between the lengths:

`(µw) =
X

↵2⌃+
i

\w0(⌃
+
i

)

|h↵, ⌫(µ�)i|+
X

↵2⌃+
j

|h↵, ⌫(µ�)i|+
X

↵2⌃+
i

\w0(⌃
�
i

)

|h↵, ⌫(µ�)i � 1|

=
X

↵2⌃+
i

\w0(⌃
+
i

)

|h↵, ⌫(�)i|+
X

↵2⌃+
j

|h↵, ⌫(µ)i|+
X

↵2⌃+
i

\w0(⌃
�
i

)

|h↵, ⌫(�)i � 1|

= `(µ) + `(w).

Let 1W
aff = 1W

aff

1 ⇥ 1W
aff

2 ⇢ W

aff (1) be an extension of W aff . We have W (1) =

1W
aff⌦(1). Let 1Wi,0 and 1⇤

aff

i

denote the inverse images in 1W
aff

i

of W
i,0 and ⇤aff

i

.
Let H

i

the Levi algebra of H of basis (T i(w̃))
w̃2W

i

(1) associated to �
i

.

Lemma 5.2. (i) The left ideal J1 ⇢ H1 generated by T

1
µ̃

� 1 for µ̃ 2 1⇤
aff

2 is equal
to the right ideal generated by these elements, and also to the R-submodule generated by
E1(µ̃w̃)� E1(w̃) for µ̃ 2 1⇤

aff

2 , w̃ 2 W1(1).

(ii) The ideal J ⇢ H generated by T

⇤
w̃

� 1 for w̃ 2 1W
aff

2 contains E(µ̃w̃)�E(w̃) for

µ̃ 2 1⇤
aff

2 , w̃ 2 W1(1).
(iii) J = �

ṽ21W
aff\W (1)(J\P

w̃21W
aff

ṽ

T

w̃

) = �
ṽ21W

aff\W (1)(J\P
w̃21W

aff

ṽ

E(w̃)).

(iv) Let w 2 W1(1) written as w = ab, a 2 1W
aff

2 , `2(b) = 0. Then E(w) � T

b

2P
c<b

ZT

c

+ J .
(v) J \ P

b2W (1),`2(b)=0 ZTb

is contained in the ideal of H generated by T

1
µ̃

� 1 for

µ̃ 2 Z

k

\ 1W
aff

2 .

Proof. (i) Note that `1(µ) = 0, that W1 normalizes ⇤aff

2 (Lemma 5.1) and W1(1) nor-

malizes 1⇤
aff

2 ***. This implies that T

1
µ̃

= T

1,⇤
µ̃

= E1(µ̃) and we have E1(µ̃)E1(w̃) =

E1(µ̃w̃) = E1(w̃µ̃0) = E1(w̃)E1(µ̃0) where w̃ 2 W1(1), µ̃0 = (w̃)�1
µ̃w̃ 2 1⇤

aff

2 .
(ii) We have `(µw) = `(µ) + `(w) (Lemma 5.1), hence E(µ̃w̃) = E(µ̃)E(w̃). If µ is

dominant we have E(µ̃) = T

⇤
µ̃

and E(µ̃w̃)�E(w̃) 2 J . For a general µ, choose µ0 2 1⇤
aff

2

dominant such that µ0µ
�1 is dominant and write E(µ̃w̃)�E(w̃) = E(µ̃w̃)�E(µ̃0µ̃

�1
µ̃w̃)+

E(µ0w̃)� E(w̃). We get E(µ̃w̃)� E(w̃) 2 J .

Proposition 5.3. The homomorphism H�
1

✓

⇤
�! H ! H/J is surjective of kernel H�

1 \J1.

The proposition in the particular case of the pro-p Iwahori Hecke algebra of a reductive
p-adic group over an algebraically closed field of characteristic p is proved in [Abe, Prop.
4.16].
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Proof. (i) Surjectivity. Let w̃ 2 W (1). We want to prove that T ⇤
w̃

2 ✓

⇤(H�
1 ) + J . Using

the semidirect product W = W

aff

o⌦, we write w̃ = w̃2w̃1ũ with w̃

i

2 1W
0
i

and ũ 2 ⌦(1).
We suppose, as we can, w̃2 not in Z

k

� {1}. As seen above `(w̃) = `(w̃1) + `(w̃2) hence
T

⇤
w̃

= T

⇤
w̃2

T

⇤
w̃1

T

⇤
ũ

. If w̃2 6= 1 we have T

⇤
w̃

2 T

⇤
w̃1

T

⇤
ũ

+ J . Hence we can suppose w̃ = w̃1ũ.
Suppose more generally `2(w̃) = 0. As T

w̃

= E(w̃) +
P

ṽ<w̃

E(ṽ) and ṽ < w̃ imply
`2(ṽ) = 0, to prove T

⇤
w̃

2 ✓

⇤(H�
1 ) + J , it su�ces to prove E(w̃) 2 ✓

⇤(H�
1 ) + J .

Using the semidirect product W = ⇤ o W0, we write w̃ = �̃w̃2,0w̃1,0 with �̃ 2
⇤(1), w̃

i,0 2 1Wi,0. As `2(w̃) = 0, we have ↵(⌫(�) 2 {0, 1} for ↵ 2 ⌃+
2 by *** hence

�̃w̃1,0 2 W

�
M1

. We have ***

E(w̃)T ⇤
w̃

�1
2,0

= E(�̃w̃1,0).

This implies E(w̃) 2 E(�̃w̃1,0) + J 2 ✓

⇤(H�
1 ) + J . We proved that the homomorphism

H�
1

✓

⇤
�! H ! H/J is surjective.
(ii) Kernel. Let

P
w̃2W1(1)

c

w̃

E1(w̃) 2 H1 such that

By Lemma 5.2 (ii), the kernel Ker(H�
1 ! H/J ) contains H�

1 \ J1. We prove the
inverse inclusion: if

P
w̃2W1,�(1) cw̃E(w̃) 2 J then

P
w̃2W1,�(1) cw̃E1(w̃) 2 J1.

Let ṽ 2 W1,�(1) and
P

w̃21W
aff

ṽ

c

w̃

E(w̃) 2 J .

Using W1,� = ⇤1,�W1,0 we write ṽ = �̃

0
w̃

0
0, �̃

0 2 ⇤1,�(1), w̃0
0 2 W1,0(1), Let �̃ 2

⇤(1), w̃0 2 W0(1) such that w̃ = �̃w̃0 2 1W
aff

ṽ. We have �̃

0
�̃

�1 2 ⇤aff . Using 1⇤aff =

1⇤
aff

1 ⇥ 1⇤
aff

2 we write �̃

0
�̃

�1 = �̃1�̃2, �̃1 2 1⇤
aff

1 , �̃2 2 1⇤
aff

2 . As `1(�2) = 0 we have
E1(w̃)� E1(�̃2w̃) = (1� E1(�̃2))E1(w̃) 2 J1.

As �0 2 ⇤1,�, �2� 2 ⇤1,�
Using W = (W aff

2 ⇥W

aff

1 )o⌦ we write ṽ = w̃2ũ
0
2, w̃2 2 W

aff

2 (1), u0
2 2 W

aff

1 (1)⌦(1).

We have also w̃ = w̃2ũ2, u
0
2 2 W

aff

1 (1)⌦(1).
Put r = max `(w̃�1

2 w̃) |c
w̃

) 6= 0.

References

[Abe] Abe Noriyuki : Modulo p parabolic induction of pro-p Iwahori Hecke algebra.
Preprint 2014.

[AHHV2] Abe Noriyuki, Henniart Guy, Herzig Florian, Vignéras Marie-France: Parabolic
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