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Abstract. Let F be a local non archimedean field of residue field Fq. We
show that if V is a smooth Qp-representation of G = GL(2, F )/pZ

F generated

by the space V I(1) of its pro-p-Iwahori invariant vectors, then a p-adic integral
structure of the H(G, I(1))-module V I(1) generates a p-adic integral structure
of the representation V of G, under a certain condition on the Gauss sums of
the non trivial characters µ of F∗q (embedded in I/I(1) via x → diag(x, x−1))

appearing in V I(1). When q = p, the condition is equivalent to µ not quadratic
if p ≡ 1(mod 4).

1. Introduction

1.1. Let p be a prime number, F a local non archimedean field with a finite
residual field Fq of characteristic p. The complex smooth representations of
the group G of F -points of a connected reductive F -group are reasonably well
understood, but the p-adic integral structures are not. One constructs easily
a p-adic integral structure for a principal series induced from a p-adic integral
character, or for a Steinberg, or for a supercuspidal irreducible representation
of G. There are two basic open problems. The first one is that supercuspidal
representations may have p-adic integral structures which are not commensu-
rable, but we will not consider this problem here. The second problem concerns
the principal series not induced by p-adic integral characters, which are locally
p-adic integral (the non zero space of invariants by some open compact sub-
group K has a p-adic integral structure stable by the Hecke Z-algebra of K):
do they admit a p-adic integral structure ? Even when G = GL(2, F ), the
answer is not known. The absence of a p-integral Haar measure on G is the
main difficulty.

For some irreducible locally algebraic representations of GL(2,Qp), Breuil,
Berger-Breuil, Colmez constructed a p-adic integral structure, from the (φ,Γ)-
module associated by Fontaine to the associated p-adic Galois representation.
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This method is very deep but one should not need Galois (φ,Γ)-modules to
construct p-adic integral structures for G ! There should exist a theory of p-
adic integral structures in the framework of representations of reductive p-adic
groups. When ` /=p, the equivalence of categories between the complex rep-
resentations generated by their vectors invariant by the pro-p-Iwahori group
I(1) and the right complex modules of the pro-p-Iwahori Hecke complex alge-
bra H

(1)
C , can be used to transfer `-integral H(1)-structures (which poses no

problem even for ` = p) to `-integral G-structures. Can one replace ` by p ?
We concentrate here only on the simplest case GL(2, F ) which can be easily
reduced to G := GL(2, F )/pZ

F , when pF is a generator of the maximal ideal
of the integer ring OF . We will show that there is a transfer of p-integral
structure from a “part” of H

(1)
C to G.

Let (E,OE , kE) be a a finite extension of Qp which contains µp(q−1) and√
q, its ring of integers, its residue field.

For any commutative ring R, the pro-p-Iwahori R-algebra is the scalar extension
H

(1)
R = R⊗Z H(1) where H(1) = EndZG Z[G/I(1)].

We say that a commutative ring R contains µm when m is an integer ≥ 1 and
Xm − 1 has m distinct roots in R.

Let V be a smooth E-representation of G. An OE-integral structure L of V is a
G-stable free OE-submodule which contains a E-basis of V .

Let W be a right H
(1)
E -module. An OE-integral structure M of W is a H(1)-stable

free OE-submodule which contains a E-basis of W .
If L is an OE-integral structure of V , then LI(1) is an OE-integral stucture of the

right H
(1)
E -module V I(1).

The group F∗q embeds diagonally in the Iwahori group I via the Teichmüller

morphism F∗q → O∗F and x → diag(x, x−1).

We consider for y ∈ Fq, and for a complex character µ : F∗q → E∗, the
Gauss sum

(1) Gq(y, µ) :=
∑

x∈F∗q

µ(x)e(xy), e(x) := e2iπtr(x)/p.

where tr : Fq → Fp is the trace. Gq(0, µ) = 0 if µ /= id is not trivial and

G(0, id) = q − 1, G(y, id) = −1 if y /=0.

Definition 1.1. Let F be the set of characters µ of F∗q of such that

Gq(y, µ)±√q /=0

for all y ∈ F∗q if p /=2. If q = 4 we replace ± by +. If p = 2, q /=4 we fix any
sign ε and we replace ± by ε.

When p = q, the set F is equal to the set of all characters of F∗p when p = 2
or p ≡ 3 (mod 4). When q = p ≡ 1 (mod 4) only the non trivial quadratic
character is missing.
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The set F is stable by µ → µ−1 and not empty because it contains the trivial
character and the characters of order q − 1. There is a central idempotent eF
in the abelian category of E-representations V of G generated by their I(1)-
invariant vectors, such that V = eFV if and only if the eigenvalues of F∗q acting
on V I(1) belong to F . The group F∗q acts trivially if and only if V I(1) = V I .

Theorem 1.2. Let V be a smooth E-representation of G generated by its I(1)-
invariant vectors, such that eFV = V. If M is an OE-integral stucture of V I(1),
then the OEG-submodule L of V generated by M is OE-free, isomorphic to the
quotient of M ⊗

H
(1)
OE

OE [I(1)\G] by its torsion.

The only difficulty is the OE-freeness of L. The theorem is easier when V
is generated by its vectors invariant by the Iwahori group I. In this case, the
OE-module M ⊗HOE

OE [I\G] has no torsion. As we do not treat a general
open compact subgroup, why do we worry for a pro-p-Iwahori group? The
reason is that a pro-p-Iwahori group I(1) is the analogue of a pro-p-Sylow of
GL(2, F ).

1.2. The OE-freeness of L is deduced from the structure of the Iwahori uni-
versal module R[I(1)\G] over a commutative ring R as a H

(1)
R -module. This

information can be found with the tree of SL(2, F ). The tree is perfectly
adapted to the Iwahori group because the oriented edges are in bijection with
the classes I\G. The Iwahori Hecke R-algebra HR is generated by two ele-
ments T, S satisfying T 2 = 1, (S + 1)(S − q) = 0 where q is the order of the
residual field of F [9].

Theorem 1.3. Let R be a commutative ring where q + 1 is invertible. There
exists a subset X in I\G containing the trivial class eo such that the map
(hx)x∈X →

∑
hxx is an isomorphism

HR(S + 1)⊕x∈X−eo HR(S − q) ' R[I\G].

When R is also principal, this implies that the functor

? →?⊗HR
R[I\G]

from right HR-modules to RG-modules, respects R-freeness.

The pro-p-Iwahori universal module R[I(1)\G] as a H
(1)
R -module is not so

simple. We suppose that q is a nonzerodivisor in R, which is not a problem
when R is a p-adic ring but forbids R to be a characteristic p field. The Iwahori
group is the semi-direct product of the pro-p-Iwahori subgroup and of a finite
two dimensional torus µ2

q−1. When q = 2 we have I = I(1), hence we suppose
now q ≥ 3.
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Definition 1.4. Let Freg be the set of non trivial complex characters of F∗q .
Let d be the smallest positive integer such that

d
∏

y∈Fq,µ∈Freg

(Gq(y, µ)±√q)−1

is algebraically integral, if p /=2. If p = 2 we replace ± by + if q = 4 and by
any fixed sign ε.

d is divisible by q because Gq(0, µ) = 0 when µ is not trivial.
We say that a Z-module M is annihilated by 2d∞ if for any non zero m ∈ M we

have 2dn+1m = 0 for some integer n ≥ 0.
When R is a commutative ring R which contains µq−1, the central idempotent

eF identifies naturally to an element of R[I/I(1)] central in H
(1)
R .

In the next theorem, X is the same set of outward edges than in the theorem

1.3.

Theorem 1.5. Let R be a commutative ring which contains µp(q−1) and a
square root of q, where q2 − 1 is invertible and 2d is a nonzerodivisor. Then,
there is an injective map X → I(1)\G and two elements a, b ∈ R[I/I(1)]
central in H

(1)
R , such that such that the map (hx)x∈X →

∑
hxx

eFH
(1)
R (S + a)⊕x∈X−eo

eFH
(1)
R (S − b) → eFR[I(1)\G]

is injective and of cokernel annihilated by 2d∞.

When R is also local principal complete, this implies that the functor

? → (?⊗HR
R[I(1)\G])/torsion

from right eFH
(1)
R -modules to RG-modules, respects R-freeness.

1.3. These results where found and written while the author was a fellow
at the Radcliffe Institute of Advanced Study at Harvard University in the
fall of 2005, benefiting of excellent conditions and of enriching contacts with
fellows working in a broad range of academic disciplines or creative arts. The
key theorems 1.3, 1.5 are inspired by the results of Rachel Ollivier on the
flatness of the pro-p-Iwahori universal Fp-module over the pro-p-Iwahori Hecke
algebra. The author is very grateful to Vytautas Paskunas for preventing an
embarassing mistake, to Alberto Arabia, Jean-Pierre Serre, Don Zagier for
amical advice, to William Stein for his help with magma, to Dick Gross, Barry
Mazur, and Richard Taylor for their invitation to the Harvard mathematical
department, to the mathematicians of M.I.T., Boston University, and Brandeis
for inviting the author to give talks on this subject.
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2. Preliminaries

2.1. Let G be the group of F -points of a connected reductive group. If K
is an open compact subgroup of G, the Hecke ring of K in G is H(G, K) :=
EndZG Z[G/K)], the Hecke R-algebra of K in G is HR(G, K) := R⊗ZH(G, K),
for any commutative ring R.

Proposition 2.1. Let E be a field of characteristic different from p and K
an open compact subgroup of G, of pro-order prime to the characteristic of E.
Then the functor of K-invariants is an equivalence from the category of smooth
E-representations of G generated by their vectors K-invariants to the category
of right HE(G, K)-modules, if the equivalence is true on some extension L of
E.

Proof. When the characteristic of E is different from p, there is an E-Haar
measure on G, and a convolution Hecke algebra HE(G) of functions for an E-
Haar measure. The Hecke algebra HE(G) acts on a smooth E-representation
of G. The category of smooth E-representations of G is equivalent to the
category of HE(G)-modules V such that HE(G)V = V ; when the pro-order of
K is prime to the characteristic of E, there is an idempotent e ∈ HE(G) such
that V K = eV ([9] I.4.4); the algebra eHE(G)e is isomorphic to its opposite
and to the Hecke algebra HE(G, K) of K in G ([9] I.3.2, I.3.4); the functor
V → eV is an equivalence between the category of smooth E-representations V
of G generated by eV and the category of left modules eHE(G)e-modules M if
any subrepresentation W of V is generated by eW for any V generated by eV ;
the inverse functor is M → HE(G)e⊗eHE(G)eM ([9] I.6.6); one can replace “if”
by “if and only if” because an equivalence of category implies HomEG(W,V ) '
HomeHE(G)e(eW, eV ). When E ⊂ L is an extension of fields and V is a smooth
E-representation of G, then VL = L⊗E V is a smooth L-representation of G,
one identifies V,HE(G) with their natural images in VL,HL(G); one has eVL =
(eV )L. If W is a subrepresentation of V , then WL is a subrepresentation of VL.
Hence if the functor of K-invariants is an equivalence for L-representations, it
is an equivalence for E-representations.

Corollary 2.2. The equivalence is true when E ⊂ C and K is an Iwahori
subgroup I or a pro-p-Iwahori subgroup I(1).

In particular, the corollary applies when E is a finite extension of Qp.

Proof. The equivalence is true when E is isomorphic to a subfield of C by [1]
corollary 3.9 because an Iwahori subgroup I and its pro-p-unipotent radical
I(1) are “bons” [1] 2.1 relatively to a maximal split torus of G by the theory
of Bruhat-Tits [11] prop.1.25.
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More generally, The equivalence is true when the characteristic of E is ba-
nal (over an algebraic closure of E the only problem to extend the proof of
[BD corollary 3.9] is the generic irreducibility of representations induced from
an irreducible supercuspidal representation of a Levi subgroup; the generic
irreducibility has been proved by Dat [5] prop.3.3). In the theory of types,
one consider equivalence of categories induced by the functor V → V K,σ :=
HomK(σ, V ) where σ is an irreducible representations of K; when σ is the
trivial representation, V K,σ = V K ; there is an analogue of the proposition 2.1
for (K, σ) when σ is not trivial.

2.2. The proof of the theorems 1.3 and 1.5 uses the following elementary
lemma.

Lemma 2.3. Let A be a commutative ring, M an A-module which is a direct
sum of free A-modules Mj of finite rank nj, and J the union of subsets Jj of
M(≤ j) :=

∑
k≤j Mk with nj elements, for all j ∈ N. If for all j ∈ N,

aMj ⊂ M(≤ j − 1) +
∑
?∈Jj

A?

for some nonzerodivisor a in A, then the sum N :=
∑

?∈J A? is direct and the
A-module quotient M/N is annihilated by a∞.

An equivalent version is:

Lemma 2.4. Let A be a commutative ring, M a free A-module of finite rank
n, which is a direct factor of an A-module P ⊕M .

1) n elements (fi)1≤i≤n in M are linearly A-independent if and only if
aM ⊂

∑n
i=1 Afi for some nonzerodivisor a ∈ A.

2) Let (φi)1≤i≤nbe n elements in P ⊕M . Then the sum (with n+1 terms)
P +

∑
1≤i≤n Aφi is direct if and only if aM ⊂ P +

∑n
i=1 Aφi for some nonze-

rodivisor a ∈ A.

Proof. 1) Let c be the determinant of the matrix C ∈ M(n, A) giving the
coefficients of (fi)1≤i≤n on an A-basis (ei)1≤i≤n of M . By the Cramer formula,
cM ⊂

∑n
i=1 Afi.

If aM ⊂
∑n

i=1 Afi for a ∈ A, there exist a matrix D ∈ M(n, A) such that
the determinant of CD is an. Hence c divises an If a is a nonzerodivisor, c is
a nonzerodivisor.

(fi)1≤i≤n are linearly independent if and only if c is a nonzerodivisor in A
([3] A III.95 Cor. 2).

2) One applies 1) to the components (fi)1≤i≤n of (φi)1≤i≤n in M . If the
(fi)1≤i≤n are linearly independent, then the (φi)1≤i≤n are linearly indepen-
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dent. The sum P +
∑

1≤i≤n Aφi is direct if and only if the (fi)1≤i≤n are
linearly independent.

2.3. Another elementary lemma will be also used.

Lemma 2.5. Let R[X] be the commutative R-algebra generated by X and the
relation (X + a)(X − b) = 0 where a, b ∈ R. Let M be a left R[X]-module.
When a + b is a nonzerovisisor on M , the natural map

(X + a)M ⊕ (X − b)M → M

is injective of image containing (a + b)M . When a + b is invertible on M , it
is an isomorphism.

Proof. Let m ∈ M . The formula (a + b)m = (X + a)m − (X − b)m shows
that (a + b)M is contained in the image. If (X + a)m ∈ (X − b)M then
(a + b)m ∈ (X − b)M by the formula and (a + b)(X + a)m = 0 because
(X + a)(X − b) = 0. If a + b is a nonzerodivisor in R then (X + a)m = 0,
hence the map is injective.

2.4. Notations.
Let OF , pF ,Fq, µq−1 be the ring of integers of F , an uniformizer, the resid-

ual field of order q, the roots of unity of order prime to p in OF , K :=
GL(2, OF ), I the Iwahori group, G = GL(2, F )/pZ.

(2) I := {
(

a b
pF c d

)
, a, d ∈ O∗

F , b, c ∈ OF },

I(1) the pro-p-Iwahori,

(3) I(1) := {
(

a b
pF c d

)
∈ I, a− 1, d− 1 ∈ pF OF },

(4) s :=
(

0 1
1 0

)
, t :=

(
0 1

pF 0

)
, st =

(
pF 0
0 1

)
, ts =

(
1 0
0 pF

)
.

One identifies Fq with 0 ∪ µq−1 ⊂ OF , and for all n ≥ 1, Fn
q with a system of

representatives of OF /pn
F OF by the map

x = (xn, . . . , x1) → a(x) := x1 + pF x2 + . . . pn−1
F xn.

One identifies OF with subgroups of the pro-p-Iwahori via

(5) ux :=
(

1 x
0 1

)
, vx :=

(
1 0

pF x 1

)
.
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Any element of the Iwahori is equal to vx diag(y, y′)ux′ with unique x, x′ ∈ OF

y, y′ ∈ O∗
F . One sets for x = (xn, . . . , x1) ∈ Fn

q ,

(6) go
x := stvxn

. . . stvx2sux1 = ga(x);n :=
(

0 pn−1
F

1 a(x)

)
, tgo

x =
(

1 a(x)
0 pn

F

)
,

(7) g1
x := stvxn

. . . stvx1 = ga(x);n :=
(

pn
F 0

pF a(x) 1

)
, tg1

x =
(

pF a(x) 1
pn+1

F 0

)
.

The element t normalizes I and tvx = uxt, svx = upF xs, su1/xs = uxλ−1hxsux

if x /=0, where

(8) λx :=
(

x 0
0 1

)
, hx :=

(
x 0
0 1/x

)
.

One has the disjoint decompositions

(9) IsI = ∪x∈Fq
Isux, IstI = ∪x∈Fq

Istvx, ItsI = ∪x∈Fq
Itsux.

One has the same decomposition for I(1) [9].

2.5. The oriented edges of the tree of SL(2, F ) will appear often, because they
are in canonical bijection with the classes I\G (read this as IpZ

F \GL(2, F ));
the vertices are in canonical bijection with the classes K\G [7]. For any
commutative ring R, the Iwahori universal R-module R[I\G] identifies with
the free R-module generated by the oriented edges e of the tree

R[I\G] = ⊕eRe.

The commuting right action of G and left action of the Hecke Iwahori ring

H := EndZG Z[I\G]

on Z[I\G] on the Iwahori universal module Z[I\G], translate to a right action
of g ∈ G on ⊕e Ze, e → eg permuting the oriented edges e, and of two linear
operators T, S where T reverses the orientation, and S sends an oriented edge
e to the sum of the q oriented edges different from e but with the same origin.

We denote by eo = (vo, v1) the oriented edge corresponding to I, with
origin the vertex vo corresponding to K = GL(2, OF ) and end the vertex v1

corresponding to Kt. The image of eo by T is the opposite edge

(10) Teo = (v1, vo) = eot.

The image of eo by S is the sum σo of the outward q oriented edges eo
x = (vo, vo

x)
different from eo with origin vo,

(11) Seo = σo :=
∑

x∈Fq

eo
x, eo

x = eog
o
x, go

x = sux =
(

0 1
1 x

)
.
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The Iwahori Hecke ring H is identified with the convolution ring of double
classes modulo I, and T, S correspond to ItI, IsI. Using that the action of S
commutes with G, one sees that

(12) Sσo = qeo + (q − 1)σo.

One deduces immmediately the keys relations:

(13) (S + 1)(S − q)eo = 0, (q + 1)eo = (S + 1)eo + (q − 1)σo.

The ring H is Z-free of basis (ST )k, (ST )kS, (TS)k, (TS)kT for k ≥ 0 (this is
well known, can be deduced from (15) given later), generated by S, T satisfying
the relations

(14) T 2 = 1, (S + 1)(S − q) = 0.

2.6. Our arguments will use induction on the distance on the tree. The q +1
vertices v1, vo

x for x ∈ Fq, adjacent to vo, form the sphere S(1) of vertices
centered in vo of radius 1, and

E(0) := {eo, e
o
x, x ∈ Fq}

is the set of outward edges relating vo to S(1). The image of eo = (vo, v1) by
ST is the sum of the q outward edges e1

x = (v1, v1
x) of origin v1

(15) STeo =
∑

x∈Fq

e1
x, e1

x = eog
1
x, g1

x = stvx =
(

pF 0
pF x 1

)
.

because IsItI = IstI = ∪x∈FqIstvx by the equation (9). By transitivity of
the action of G, the image of eog by ST is the sum

∑
?∈Fq

eostv?g of the q

outward edges of origin v1g. In particular for g = sux, x ∈ Fq,

STeo
x =

∑
y∈Fq

eo
y,x, eo

y,x := (vo
x, vo

y,x) = Igo
y,x, go

y,x = stvysux, vo
x = Ktsux.

By induction for n ≥ 1, the sphere S(n + 1) centered in vo of radius n is
S(n + 1) = {vo

xn+1,...,x1
, v1

xn,...,x1
, xn, . . . , x1 ∈ Fq}, i.e.

(16) S(n + 1) = {vε
x = v1gε

x, ε ∈ {0, 1}, x ∈ Fn+1−ε
q },

and E(n) = {eo
xn+1,...,x1

, e1
xn,...,x1

, xn+1, . . . , x1 ∈ Fq} where

eo
xn+1,...,x1

= (vo
xn,...,x1

, vo
xn+1,...,x1

), e1
xn,...,x1

:= (v1
xn−1,...,x1

, v1
xn,...,x1

),

is the set of oriented edges relating the vertices of S(n) with the adjacent
vertices of S(n + 1), i.e.

(17) E(n) = {eε
x = eog

ε
x, ε ∈ {0, 1}, x ∈ Fn+1−ε

q }.



10

We will use the notations ?(≤ n) :=?(0) ∪ . . .∪?(n), and ? = ∪n≥0?(n). The
set of outward edges is E := ∪n≥0E(n).

2.7. A system of representatives of the classes I\G will be used to have a
section of the natural surjective map I(1)\G → I\G.

Lemma 2.6. A system of representatives of the classes I\G is

(18) E := {1, gε
x, t, tgε

x, for ε ∈ {0, 1}, x ∈ Fn
q , n ∈ N− {0}}.

They correspond to the outward edges eo, e
ε
x and the inward edges Teo, T eε

x.
A system of representatives of the classes K\G is

(19) 1, t, tgε
x, for ε ∈ {0, 1}, x ∈ Fn

q , n ∈ N− {0}.

They correspond to the vertices vo, v1, vε
x.

The unique oriented edge ev ending by the vertex v = vε
x is the outward

edge eε
x, and the set of outward edges of origin v is

Ev := {eε
y,x, y ∈ Fq}.

By (15), ST sends an outward edge e to the sum of the q outward edges
starting from the end of e,

(20) STev = σv :=
∑

e∈Ev

e.

2.8. We choose a set D of distinguished outward half lines in the tree having
the property: no oriented edge starting from the origin vo belongs to a dis-
tinguished line, for any vertex v /=vo there is a unique outward edge zv with
origin v belonging to a distinguished line.

Definition of D. A vertex v is the origin of a distinguished half line Dv ∈ D
if and only if v ∈ S(1), or v = vε

x and x = (xn, . . . , x1) has the property that
xn /=0. The vertex v1 on the distinguished line Dv adjacent to v is v1

o if v = v1

and vε
o,x if v = vε

x. By induction for k ≥ 1, the vertex vk+1 ∈ Dv adjacent to
vk = vε

? is vk+1 = vε
o,?.

Let X be the complementary set of D in E. We extend to X the notations
given for E, for example Xvo = X(0) = Evo = E(0), Xv = Ev − zv, X(n) =
E(n) ∩X.

By (20), we have:

Lemma 2.7. When v is not the origin, a basis of the Z-module ZEv generated
by the outward edges starting from v is (STev, Xv).
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3. Iwahori universal module

We prove the theorems on the Iwahori universal module and their applica-
tions to the integral structures of representations generated by their Iwahori
invariant vectors.

We give a basis of the Iwahori universal module, compatible with the ori-
entation, the distance to the origin and stable by T .

Proposition 3.1. 1) A basis of ⊕e∈E(≤n) Ze is (ST )kx for all x ∈ X(r), k ≥
0, r + k ≤ n.

2) A basis of ⊕e∈TE(≤n) Ze is (TS)kTx for all x ∈ X(r), k ≥ 0, k + r ≤ n

3) A basis of the Iwahori universal Z-module Z[I\G] is (ST )kx, T (ST )kx
for all x ∈ X, k ≥ 0.

Proof. 1) For Y ⊂ Z[I\G] we set ZY :=
∑

?∈Y Z?. We prove 1) by induction
on n. By definition X(0) = E(0) is a basis of ZE(0). We suppose 1) true for
n− 1. We have STE(?) ⊂ ZE(? + 1) for any integer ? ∈ N. The set E(n) is
contained in STE(≤ n− 1) +

∑
Z(n), because STev, Xv is a basis of ZEv for

any v ∈ S(n) and ev ∈ E(n− 1), by the lemma (2.7). This implies 1) for n (a
particular case of the lemma 2.3).

2) and 3) are immediate consequences of 1).

We give now a second basis of the Iwahori universal R-module, stable by S, T ,
compatible with the the distance, but not with the orientation (the stability
by S is incompatible with the comaptibility with the orientation).

Let J(0) := {(S + 1)eo, (S − q)e for e ∈ E(0) − eo}, for any integer n ≥ 1
let J(n) := {(S− q)e for e ∈ X(n)}. Set J for the union of J(n) for n ≥ 0 and
ZE(≤ −1) := {0}.

Lemma 3.2. We have (q+1)E(n) ⊂ Z[T ]E(≤ n−1)+ZJ(n) for any integer
n ≥ 0.

Proof. We have the system of q + 1 equations:

(21) (S + 1)eo = eo + σo,

(22) (S − q)e = −(q + 1)e + eo + σo

for e ∈ E(0) − eo. When n is an integer n ≥ 1 and v is a vertex in S(n), we
have the system of q equations:

(23) STev = σv

(24) (S − q)x− Tev = −(q + 1)x + σv.
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for x ∈ Xv = Ev − zv. These two systems can be inverted:

(25) (q + 1)eo = (S + 1)eo + (S − q)σo,

(26) (q + 1)e = (S + 1)eo − (S − q)e,

(27) (q + 1)zv = 2STev +
∑

x∈Xv

[(S − q)x− Tev],

(28) (q + 1)x = STev + Tev − (S − q)x

for any e ∈ E(0)− eo, x ∈ Ev − zv, v /=vo. Note that ev ∈ E(n− 1)

We apply the lemma 2.3 to deduce:

Lemma 3.3. Let R be a commutative ring where q + 1 is invertible. Then
T ε(ST )k? for all k ≥ 0, ε ∈ {0, 1}, ? ∈ J , is an R-basis of R[I\G].

The importance of this second basis is the description of the Iwahori uni-
versal R-module R[I\G] as a left module on the Iwahori Hecke R-algebra HR.
Since HR = R[T, ST ] we deduce

Proposition 3.4. Let R be a commutative ring where q + 1 is invertible.
Then R[I\G] = HR(S + 1)eo ⊕x∈X−eo HR(S − q)x.

From the lemma 2.5, when q + 1 is invertible in R, the R-module HR is a
direct sum

(29) HR = HR(S + 1)⊕HR(S − q);

the HR-modules HR(S + 1),HR(S − q) are projective. The maps h → he :
H → He are bijective for any oriented edge e; hence by the proposition, the
HR-module R[I\G] is projective [6].

Corollary 3.5. Let R be a commutative ring where q + 1 is invertible and
let M be a right HR-module. Set Meo

:= M(S + 1), Mx := M(S − q) for
x ∈ X − eo.

Then the map (mx)x∈X →
∑

x∈X mx ⊗ x is an isomorphism

M(S + 1)⊕x∈X−eo
M(S − q) ' M ⊗HR

R[I\G].

The next corollary gives the freeness necessary for integral structures.

Corollary 3.6. Let R be a commutative principal ring where q+1 is invertible
and let M be an R-free right HR-module. Then M ⊗HR

R[I\G] is R-free.
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Proof. A submodule of a free module on a principal ring is free.

Let E be a finite extension of Qp which contains µp(q−1), OE its ring of
integers, kE its residue field.

Theorem 3.7. Let V be a smooth E-representation of G generated by its
I-invariant vectors. If M is an OE-integral stucture of V I , then the OEG-
submodule L of V generated by M is an OE-integral structure of V , isomorphic
to M ⊗HOE

OE [I\G].

Proof. L is the image of the composite of the two natural G-morphisms

M ⊗HOE
OE [I\G] → V I ⊗HE

E[I\G] → V.

By the corollary [?], the second morphism is an isomorphism. The natural
morphism ? →? ⊗OE

E is injective when ? is an OE-free module. Hence the
first morphism is injective by the corollary 3.6.

4. Pro-p-Iwahori universal module

We prove the theorems on the pro-p-Iwahori universal module and their ap-
plications to the integral structures of representations generated by their pro-
p-wahori invariant vectors.

4.1. We suppose from now on q ≥ 3. The Iwahori group I is the semi-direct
product of the pro-p-Iwahori I(1) and of I/I(1) ' (F∗q)

2 ' µ2
q−1 diagonally

embedded. For g, g′ ∈ GL(2, F ) and λ, λ′ ∈ µ2
q−1, the equality I(1)λg =

I(1)λ′g′ implies Ig = Ig′ and if g = g′ then λ = λ′. The geometric space
underlying the pro-p-Iwahori universal Z-module is a fibered space by the
finite torus µ2

q−1 above the tree. An element of the fiber Γe over the oriented
edge e of the tree, is an oriented edge e with a “spin” in µ2

q−1. One cannot
pick canonically in Γe, the oriented edge e with trivial spin. We decide that
I(1)g with g in the chosen system of representatives E of I\G (18) will be the
oriented edge e = Ig with trivial spin and I(1)γg for γ ∈ µ2

q−1, will be the
oriented edge e with spin γ. We identify e = Ig with (e, 1) = I(1)g for g ∈ E .
The pro-p-universal module is

Z[I(1)\G] = ⊕eZΓe,

where ZΓe is the free Z-module generated by the the elements in Γe. The
pro-p-Iwahori Hecke ring H(1) isomorphic to the convolution ring of double
classes modulo I(1) and is generated by the classes of γ ∈ µ2

q−1, t, s (4). The
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action of G ×H(1) on Z[I(1)\G] commutes with the projection Z[I(1)\G] →
Z[I\G]. This is clear for g ∈ G. For H(1) this results from the fact that
the double classes modulo I(1) of γ, t, s have the same decomposition in I(1)-
classes I(1)γI(1) = I(1)γ, I(1)tI(1) = I(1)t, I(1)sI(1) = ∪x∈Fq

I(1)sux, than
the double classes modulo I in I-classes (9).

We still denote by T : I(1)g → I(1)tg, S : I(1)g →
∑

x∈Fq
I(1)suxg their

linear extension to the universal pro-p-Iwahori module. The linear operators
Tγ : I(1)g → I(1)γg permute the spins. The element s of order 2 acts naturally
on I/I(1) ' µ2

q−1. We have

(30) T 2 = 1, TTλ = TsλT, STλ = TsλS, TλTλ′ = Tλλ′ .

The spin ring is

A := Z[Tλ (λ ∈ µ2
q−1)] ' Z[I/I(1)]

acts simply transitively on each fiber Γe = Ae. The subring As of invariants
by s is central in H(1) and contains

(31) τ :=
∑

x∈µq−1

Thx
, τ2 = (q − 1)τ.

with hx as in (8). We have

(32) Seo =
∑

x∈Fq

I(1)sux = σo

(33) Seo
y =

∑
x∈Fq

I(1)suxsuy = eo + Tλ−1

∑
x∈µq−1

Thx
eo
x+y.

We deduce

(34) Sσo = qeo + Tλ−1τσo

and using (32),

(35) S2 = q + τ Tλ−1S.

The equations (15) (??) for ST are also true in H(1). The ring H(1) is generated
by the spin ring A and the elements T, S satisfying the relations (30), (35),
and is a free A-module of basis

(ST )k, (ST )kS, T (ST )k, T (ST )kS (k ≥ 0).

We give a first basis of the pro-p-Iwahori universal module, compatible
with the orientation and the filtration given by the distance to the origin on
the tree, trivially deduced from the first basis of the Iwahori universal module
(proposition 3.1).
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Proposition 4.1. 1) An A-basis of ⊕e∈E(≤n)Ae is (ST )kx for all x ∈ X(r), k ≥
0, r + k ≤ n.

2) A basis of ⊕e∈TE(≤n) Ae is (TS)kTx for all x ∈ X(r), k ≥ 0, k + r ≤ n.
3) A basis of pro-p-Iwahori universal A-module Z[I(1)\G] is (ST )kx, T (ST )kx

for all x ∈ X, k ≥ 0.

This basis of Z[I(1)\G] is T -stable but not S-stable. We extend the scalars
to a commutative ring R and we try to decompose R[Z[I(1)\G] as a direct
product which is H(1)-stable. A central idempotent of H

(1)
R will give such a

decomposition. The lemma 2.3 is useful to find idempotents. If (q − 1) is
invertible, R[τ ] = R[τ ]τ ⊕R[τ ](τ + 1− q) ' R⊕R. As R[τ ] is central in H

(1)
R ,

the algebra ? = H
(1)
R , AR, As

R is a direct sum of two R-algebras, the Iwahori
component ?Iw :=?τ and the regular component ?reg :=?(τ + 1− q).

Lemma 4.2. When q − 1 is invertible in R, the Iwahori component H
(1),Iw
R

of the pro-p-Iwahori algebra is isomorphic to the Iwahori Hecke AIw
R -algebra

HAIw
R

.

Proof. Since Thx
τ = 1 for all x ∈ µq−1, the Iwahori component AIw

R of AR

is central in H
(1),Iw
R . When p = 2, Tλ−1 = 1, one sees on the relations (30),

(35) that H
(1),Iw
R is HAIw

R
. When p /=2, since 2 is invertible in R, AIw

R =

⊕ε=±1A
Iw
R (Tλ−1 +ε). The AIw

R (Tλ−1 +ε)-algebra H
(1),Iw
R,ε := H

(1),Iw
R (Tλ−1 +ε)

is generated by T, S satisfying

T 2 = 1, S2 = q + ε(q − 1)S,

isomorphic to the Iwahori Hecke algebra HAIw
R (Tλ−1+ε) by T → T, S → εS.

The R-algebra Hreg
R generated by S, T satisfying

T 2 = 1, S2 = q,

is called the regular Hecke R-algebra [8].

Lemma 4.3. When q − 1 is invertible in R, the regular component H
(1),reg
R

of the pro-p-Iwahori algebra is isomorphic to the twisted tensor product of the
As,reg algebras Areg and the regular Hecke As,reg

R -algebra.

Hence H
(1),reg
R = Areg ⊗As,reg

R
Hreg

As,reg
R

as an R-module, the product beeing
twisted by the action of Hreg

As,reg
R

on A, trivial on As,reg
R and equal to s on S, T .

Proof. In the regular component H
(1),reg
R , we have S2 = q because τ = 0.

The subalgebra of H
(1),reg
R generated by T, S and the central algebra As,reg

R is
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isomorphic to the the regular Hecke As,reg
R -algebra. The R-algebra H

(1),reg
R is

generated by Areg, T, S.

4.2. We study now the universal pro-p-Iwahori module R[I(1)\G] as a H
(1),reg
R -

module.
Suppose that q ≥ 3, q − 1 is invertible in R. When q = p2r for an integer

r ≥ 1, set
√

q = pr. When q = p2r+1 we suppose that p is a square in R and
we set

√
q = pr√p.

As in the Iwahori case, we consider the Areg
R -module Areg

R E(0) generated by
the outward edges starting from the origin. We note S instead of S(τ + 1− q)
in H

(1),reg
R to simplify. The action of S ∈ H

(1),reg
R is given by (32), (33). We

have S(S + ε
√

q) = ε
√

q(S + ε
√

q) for ε = ±1, and S stabilizes Areg
R E(0). We

consider the subset

Jε(0) = {(S + ε
√

q)eo, (S − ε
√

q)e for all e ∈ E(0)− eo}

of Areg
R E(0) and the key property:

Areg
R Jε(0) contains aE(0) for some non zero integer a.

If the key property is true for a nonzerodivisor a ∈ R, then Jε(0) is Areg
R -

free. This results from the first part of the elementary lemma 2.4 applied to
the free Areg

R -module M = Areg
R E(0) and to Jε(0) = (fi)1≤i≤n.

Lemma 4.4. The sum
∑

?∈Jε(0) H
(1),reg
R ? is direct when Areg

R Jε(0) contains
aE(0) for a nonzerodivisor a ∈ R.

Proof. H
(1)
R = AR[ST, S]. Since S? ∈ R? for any ? ∈ Jε(0) and Jε(0) is Areg

R -
free, the sum

∑
?∈Jε(0) Areg

R [S]? =
∑

?∈Jε(0) Areg
R ? is direct. By the proposition

4.1,
∑

?∈Jε(0) Areg
R [ST ]? is a direct sum because Jε(0) ⊂ ARE(0).

In general, the key property is false but we will find an idempotent e ∈
As,reg

R such that Areg
R Jε(0) contains aeE(0) for some nonzero integer a (with

an exception ε = 1, q = 4). The idempotent e is central in H
(1),reg
R and

e? = e?reg for ? = H
(1)
R , AR, As

R. The same proof than in the lemma 4.4 shows
that the sum

∑
?∈Jε(0) eH

(1)
R ? is direct if a is a nonzerodivisor R.

4.3. Suppose that q ≥ 3, q− 1 is invertible in R and
√

q ∈ R. The equations
Seo = σo =

∑
e∈E(0)−eo

e, Sσo = qeo, imply that

(36) 2qeo =
√

q(S + ε
√

q)eo + (S − ε
√

q)σo
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belongs to RJε(0). We have to suppose that 2q is a non zerodivisor in R,
which is infortunate. The q equations

(37) vo
o := Tλ−1Seo = Tλ−1

∑
x∈Fq

eo
x

(38) vo
y := Tλ−1((S − ε

√
q)eo

y − eo) = −ε
√

qTλ−1e
o
y +

∑
x∈F∗q

Thx
eo
x+y,

for y ∈ F∗q will be studied with an additive Fourier transform.
We suppose that R contains µp, i.e. there is an injective morphism x →

ζx
p : Fp → R∗ ( ζp = e2iπ/p when R = C), and we take an additive Fourier

transform:

σx :=
∑
?∈Fq

e(x?)eo
?, vx :=

∑
?∈Fq

e(x?)vo
?

for x ∈ Fq where e(x) := ζ
tr(x)
p and

tr(?) =
r−1∑
i=0

?pi

when q = pr

is the trace Fq → Fp. The additive characters ex(?) = e(x?) : Fq → R∗ for all

x ∈ F∗q are distinct and not trivial because the trace is not degenerate and ζ?
p is

injective. We compute the coefficients of (vx)x∈Fq
on (σx)x∈Fq

. The Gauss
sum

Gq(x) :=
∑

y∈F∗q

e(xy)Thy
(x ∈ Fq)

will appear naturally. We have Gq(0) = 0. We have

vo − vo
o =

∑
y∈F∗q

vo
y = −ε

√
qTλ−1σo + ε

√
qTλ−1e

o
o +

∑
x,y∈F∗q

Thx
eo
x+y

∑
x,y∈F∗q

Thxeo
x+y =

∑
t∈Fq

eo
t

∑
x/=t

Thx = −
∑
t∈F∗q

Thte
o
t .

vo = −ε
√

qTλ−1σo + vo
o + ε

√
qTλ−1e

o
o −

∑
t∈F∗q

Tht
eo
t .

For u ∈ F∗q ,

vu − vo
o =

∑
y∈F∗q

e(uy)vo
y = −ε

√
qTλ−1σu + ε

√
qTλ−1e

o
o +

∑
x,y∈F∗q

e(yu)Thxeo
x+y
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∑
x,y∈F∗q

e(yu)Thxeo
x+y =

∑
t∈Fq

e(tu)eo
t

∑
x/=t

e(−xu)Thx =

Gq(−u)σu −
∑
t∈F∗q

Th(t)e
o
t .

vu = (Gq(−u)− ε
√

qTλ−1)σu + vo
o + ε

√
qTλ−1e

o
o −

∑
t∈F∗q

Th(t)e
o
t .

We obtain:

Lemma 4.5. w := vy − (Gq(−y)− ε
√

qTλ−1)σy does not depend on y ∈ Fq.

We will not use the value of

w := vo
o + ε

√
qTλ−1eo

o −
X
t∈F∗q

Th(t)e
o
t

but we mention that

qw = qvo
o + ε

√
qTλ−1(

X
x∈Fq

σx)−
X

t∈F∗q ,x∈Fq

Th(t)e(−tx)σx =

qvo
o + ε

√
qTλ−1(

X
x∈Fq

σx)−
X

x∈F∗q

Gq(−x)σx = qvo
o −

X
x∈Fq

(Gq(−x)− ε
√

qTλ−1)σx.

Lemma 4.6. 2qeo and 2q2
∏

x∈Fq
(Gq(x)− ε

√
qTλ−1)e

o
y for all y ∈ Fq, belong

to Areg
R Jε(0).

Proof. By (4.3) 2qeo and 2ε
√

qσo = ε
√

q(S + ε
√

q)eo − (S − ε
√

q)σo belong
to RJε(0), by (38) (2qvo

x)x∈Fq is contained in R[Tλ1 ]Jε(0). By Fourier trans-
form (2qvx)x∈Fq belong to Areg

R Jε(0), hence 2qw = 2qvo + ε
√

qTλ12qσo and
2q(Gq(−x) − ε

√
qTλ−1)σx = 2qvx − 2qw for all x ∈ Fq, belong to Areg

R Jε(0).
By inverse Fourier transform (qeo

x)x∈Fq
belongs to the Areg

R -module generated
by (σx)x∈Fq

.

We suppose that R contains µq−1 in order to replace Gq(x)− ε
√

qTλ−1 in
Areg

R by the elements Gq(x, µ)− ε
√

qη in R obtained by specialisation Thx
→

µ(x), Tλ−1 → η for η = 1 if p = 2 and η ∈ {±1} if p /=2, and for µ : F∗q → R∗

a non trivial character. By definition

Gq(x, µ) :=
∑

y∈F∗q

e(xy)µ(y).

One associate to µ an idempotent eµ =
∑

x∈F∗q
µ(x)−1Thx in AR (even when

µ is trivial), and an idempotent eµ±1 ∈ As
R equal to eµ + eµ−1 if µ /=µ−1 and

eµ if eµ if µ = µ−1.
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The element Gq(x) − ε
√

qTλ−1 is a nonzerodivisor in eµ±1AR, if and only
if the following elements are nonzerodivisor in R:

a) Gq(x, µ)− ε
√

q, Gq(x, µ−1)− ε
√

q if p = 2,
b) Gq(x, µ)+

√
q, Gq(x, µ−1)+

√
q, Gq(x, µ)−√q, Gq(x, µ−1)−√q if p /=2.

These elements in R are the images of their complex analogues by the mor-
phism Z[

√
q, µp(q−1)] → R.

The set Freg of complex non trivial characters µ such that the algebraic
integers a) or b) are not 0 for all x ∈ F∗q , is stable by µ → µ−1. The set Freg

depends on the choice of ε when p = 2; it is empty when q = 4, ε = 1 because
G4(µ) = 2 for the two non trivial characters of F∗4.

If Freg is not empty, then the product of the algebraic integers in a) or b)
for all x ∈ F∗q , µ ∈ Freg is a non zero element in Z[

√
q, µp(q−1)] and its norm

in Q is a non zero integer d, and ereg
F =

∑
µ±1∈Freg eµ±1 ∈ As

R is a central

idempotent in H
(1)
R .

Proposition 4.7. Suppose that q ≥ 3, q − 1 invertible and 2qd is a nonzero-
divisor in R, q is a square in R, and R contains µp(q−1).

If the set Freg is not empty, then 2q2d ereg
F E(0) ⊂ Areg

R Jε(0) and the sum∑
e∈Jε(0) ereg

F H
(1)
R ? is direct.

4.4. Gauss sums We prove that Freg is not empty.
We recall some properties of the complex Gauss sums Gq(x, µ) for x ∈

F∗q , µ : F∗q → C∗ non trivial ([2] 1.1.3, 1.1.4). Set q = pr.
a) Set Gq(µ) := Gq(1, µ). Then

Gq(x, µ) = µ(x)−1Gq(µ), Gq(µ) = µ(−1)Gq(µ−1) = Gq(µp) = ηµ
√

q

where |ηµ| = 1.
b) By a theorem of Chowla ([2] 1.6.1), Gp(µ) does not equal

√
p times a

root of unity when q = p is odd and µ is not a quadratic character.
c) When q is odd and µ quadratic, we have ([2] 11.5.4):
Gq(µ) = (−1)r−1√q if p ≡ 1 (mod 4),
Gq(µ) = (−1)r−1ir

√
q if p ≡ 3 (mod 4).

d) The Gauss sum Gq(µ) belongs to the ring of integers OE of the cyclo-
tomic field E := Q(e2iπ/p(q−1)). The decomposition in prime ideals of the
ideal OEGq(µ) is known ([2] 11.2.2). For 1 ≤ h ≤ q − 1, set

s(h) := ao + . . . + ar−1

for 0 ≤ ai ≤ p−1 and h = ao+pa1+. . .+ar−1p
r−1. Let T be a set of φ(q−1)/r

integers 1 ≤ h ≤ q − 1 which represent the quotient of (Z/(q − 1)Z)∗ by the
cyclic subgroup generated by the image of p. There are distinct φ(q − 1)/r
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primes ideals Ph of OE for h ∈ T such that

OEp =
∏
h∈T

Pp−1
h , OEGq(µ−1) =

∏
h∈T

Ps(h)
h , OEGq(µ) =

∏
h∈T

Pr(p−1)−s(h)
h

when the order of µ is q − 1.

Lemma 4.8. When the order of µ is q − 1, the Gauss sum Gq(µ) does not
equal ε

√
q times a root of unity ζ with ζq−1 = 1, with the only exception:

q = 4, ε = 1 where G4(µ) = G4(µ−1) = 2.

Proof. When ηµ is a root of 1, the relation Gq(µ) = ηµ
√

q implies s(?) =
r(p − 1)/2 for all ? ∈ T . Since s(1) = 1, this means r(p − 1) = 2, i.e.
p = 2, r = 2, q = 4 or p = 3, r = 1, q = 3. Since G4(µ) = 2, G3(µ) = i

√
3 and

i is not of order 3 when q = 3, we deduce the lemma.

For ε = ±1, let Freg
ε be the set of non trivial characters µ : F∗q → C∗ such

that the complex Gauss sum Gq(x, µ)− ε
√

q /=0 for all x ∈ F∗q .

Lemma 4.9. 1) We have Freg := Freg
1 ∩ Freg

−1 if p /=2.
2) The set Freg contains the characters µ of order q− 1 with an exception:

q = 4, ε = 1.
3) When q = p, Freg is equal to the set of non trivial characters of F∗q

p ≡ 3 (mod 4) or q = p = 2. When p ≡ 1 (mod 4), only the quadratic
character is missing.

Proof. Gq(x, µ) = ε
√

q is equivalent by a) to Gq(µ) = ε
√

qµ(x). Apply the
lemma 4.8 to see that Freg

ε contains the characters µ of order q − 1 with an
exception: q = 4, ε = 1.

If p = 2, then Gq(µ) = Gq(µ−1) by a). If Gq(µ) +
√

q /=0 then Gq(µ) +√
q /=0.
If p /=2, then Gq(µ) = ±Gq(µ−1) by a). If Gq(µ) +

√
q /=0 and Gq(µ) −

√
q /=0 then the same is true for Gq(µ) and for Gq(µ−1).
One deduces 1) and 2). Clearly 3) results from b) and c).

4.5. We consider now the upper branches of the tree. Notations as in the
sections 2.6, 2.8. Let n ≥ 1 and let v /=vo be a vertex of S(n)ε where ε = 0, 1,
with zv = eε

o,w. We have the q equations

(39) ve
o,w := Tλ−1STev = Tλ−1

∑
x∈Fq

eε
x,w,

(40) ve
y,w := Tλ−1((S − ε

√
q)eε

y,w − Tev) = −ε
√

qTλ−1e
ε
y,w +

∑
x∈F∗q

Thxeε
x+y,w.
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for y ∈ F∗q , using (8) and (9). There are similar to the q equations (37), (38)
and ev ∈ E(n− 1). We define the set

Jε(n) := {(S − ε
√

q)e for e ∈ X(n)}.

We choose ε = −1 when q = 4. In the next proposition, d is as in the
proposition 4.7.

Proposition 4.10. H
(1)
R E(≤ n − 1) + ARJε(n) contains qd ereg

F E(n) for all
n ≥ 1.

Proof. Set N := H
(1)
R E(≤ n− 1) + ARJε(n). Then vε

x,w and its Fourier trans-
form

∑
?∈Fq

e(x?)vε
?,w belongs to N , for all x ∈ Fq. The Fourier transform

of eε
o,w times Gq(0) − ε

√
qTλ1 beeing − ε

√
qve

o,w belongs to N . The Fourier
transform of vε

x,w minus the Fourier transform
∑

?∈Fq
e(x?)eε

?,w of eε
x,w times

(Gq(−x) − ε
√

qTλ1) is an element which does not depend on the choice of
x ∈ Fq by the proof of the lemma 4.5. Looking at x = 0, this element belongs
to N . Hence the Fourier transform of eε

x,w times (Gq(−x)− ε
√

qTλ1) belongs
to N for all x ∈ Fq. Apply the proposition 4.7. By inverse Fourier transform
qdereg

F eε
x,w belongs to N for all x ∈ Fq, where d is the same positive integer

than in the proposition 4.7.

Recall that q|d. The second part of the lemma 2.4 implies:

Proposition 4.11. The sum (with q terms)

ereg
F H

(1)
R E(≤ n− 1) +

∑
?∈Jε(n)

ereg
F H

(1)
R ?

is direct when d is a nonzerodivisor in R.

4.6. Suppose that q2 − 1 is invertible, 2d is a nonzerodivisor, q is a square in
R, and R contains µp(q−1). We put together the Iwahori and the regular case.
Set eF = eid + ereg

F ∈ As
R for the central idempotent of H

(1)
R associated to the

set F = id∪Freg of characters of F∗q . We fix a sign ε with ε = −1 if q = 4.
We define two elements a, b ∈ eFAs

R,

eida = 1, eidb = q, ereg
F a = ε

√
q, ereg

F b = −ε
√

q.

We have (eFS + a)(eFS − b) = 0. For n ≥ 0, let

J(≤ n) := {(S + a)eo, (S − b)e for e ∈ X(≤ n)− eo}

the union of J(i) for 0 ≤ i ≤ n, and J the union of all J(i) for i ≥ 0.
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Theorem 4.12. We have 2q2dn+1eFE(≤ n) ⊂ H
(1)
R J(≤ n) for any n ≥ 0,

and eFH
(1)
R J =

∑
?∈J eFH

(1)
R ? is a direct sum isomorphic to

eFH
(1)
R (S + a)⊕x∈X−eo

eFH
(1)
R (S − b).

Proof. Corollary 3.4 and Proposition 4.11. The isomorphism uses that h →
he : H(1) → H(1)e is injective for any oriented edge e.

Application. Let M be a right H
(1)
R -module such that MeF = M . For an

outward edge x ∈ X we set

Meo := M(S + a), Mx := M(S − b) if x /=eo.

Corollary 4.13. Let M be a right H
(1)
R -module such that MeF = M and 2d

is a nonzerodivisor in M . Then the map

(mx) →
∑

x

mx ⊗ x : ⊕x∈XMx → M ⊗
H

(1)
R

R[I(1)\G]

is injective, of cokernel annilated by 2d∞.

Proof. The natural H
(1)
R -morphism ⊕x∈X eFH

(1)
R,x → eFR[I(1)\G] is injective,

with cokernel annihilated by 2d∞. This implies that the kernel and the cokernel
of the R-morphism ⊕x∈X Mx → M⊗

H
(1)
R

R[I(1)\G] is annihilated by d∞. But
2d is a nonzerodivisor in Mx ⊂ M for all x ∈ X. Hence the kernel is 0.

We deduce the freeness necessary for integral structures.

Proposition 4.14. Suppose that R is a local principal complete ring which
contains µp(q−1), where q2 − 1 is invertible, 2d is a nonzerodivisor, q is a
square. Let M be a R-free right H

(1)
R -module such that MeF = M . Then

M ⊗
H

(1)
R

R[I(1)\G] modulo its torsion is R-free.

Proof. Let K be the fraction field of R and let L be the quotient of the R-
module M ⊗

H
(1)
R

R[I(1)\G] by its torsion. The R-modules R[I(1)\G] and
M are R-free of countable rank, hence L is contained in a K-vector space
of countable dimension. The natural R-linear map ⊕x∈X Mx → L remains
injective because ⊕x∈X Mx is R-free, and its cokernel is annhilated by 2d∞.
This implies that L does not contain a one dimensional K-vector space.

Let E be a finite extension of Qp which contains µp(q−1), OE its ring of
integers, kE its residue field.
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Theorem 4.15. Let V be a smooth E-representation of G generated by its
I(1)-invariant vectors such that V I(1) = eFV I(1). If M is an OE-integral
stucture of V I(1), then the OEG-submodule L of V generated by M is an OE-
integral structure of V .

Proof. L is the image of the composite of the two natural G-morphisms

M ⊗
H

(1)
OE

OE [I(1)\G] → V I(1) ⊗
H

(1)
E

E[I\G] → V.

By the corollary 2.2, the second morphism is an isomorphism. The kernel of
the natural morphism ? →?⊗OE

E is the torsion of ? when ? is an OE-module.
By the proposition 4.14 the image of the first morphism is OE-free.
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