Remark on congruences between algebraic automorphic forms

Marie-France Vignéras

Abstract. The purpose of this paper is to present and to extend the method of [9] in order to obtain congruences between algebraic automorphic forms [7]. The congruences are "easy" to obtain; this is "soft" mathematics as Steve Rallis likes to say. However they are quite important; via the "hard" functorialities of Langlands, they allow one to get congruences between automorphic representations of GL(n) or Galois representations, as for instance in [5], [6], or in the proof of the Langlands correspondence modulo ℓ [9]. It is a pleasure to dedicate this work to Steve Rallis, congruences are related to his work via the theory of *L*-functions where his contribution is so fundamental.

Let p be a prime number, F a number field, and G a reductive connected group over F such that $\{1\}$ is an arithmetic subgroup. We denote by $G' = \operatorname{Res}_{F/\mathbf{Q}} G$ the scalar restriction of G to \mathbf{Q} [8] and by $G_A = G'_A = G_\infty \times G^\infty$ the adele group of G or of G'.

Theorem 0.1. We consider

- V, V' two absolutely irreducible algebraic representations of G',

- v a finite place of F and K_v an open compact subgroup of $G(F_v)$ of proorder prime to p,

- $K^{v,p}$ an open compact subgroup of the component $G^{\infty,v,p}$ of G^{∞} outside of v, p, and W^p a complex irreducible smooth representation of $K^p = K_v \times K^{v,p}$.

Then we have the following property:

Any irreducible automorphic representation π_A of G_A of algebraic type V which contains (K^p, W^p) is rational over a number field, its component $\pi^{\infty,p}$ outside of ∞, p is p-integral, and is congruent modulo p to an irreducible automorphic representation of G_A of algebraic type V' which contains (K^p, W^p) and has finite slope at p.

The term **finite slope** or **congruent modulo** p used in the theorem are defined as follows. An irreducible automorphic representation π_A of G_A has a **finite slope at** p, if the p-component π_p of π_A contains the trivial representation of a pro-p-Iwahori subgroup Iw_p of $G_p = G'(\mathbf{Q}_p)$.

Two irreducible automorphic representations π_A and π'_A of G_A are called **congruent modulo** p if there exists an isomorphism i_p from **C** to an algebraic closure $\overline{\mathbf{Q}}_p$ of \mathbf{Q}_p , a finite extension E/\mathbf{Q}_p contained in $\overline{\mathbf{Q}}_p$ and a finite set Sof places of F containing the places above ∞ and p, such that

- the components π^S and $\pi'^{,S}$ of π_A and π'_A outside of S are unramified,

- the values of the characters $i_p \lambda^{S}, i_p \lambda^{',S} : \mathcal{H}^S \to \mathbf{C} \to \overline{\mathbf{Q}}_p$ of the commutative Satake-Hecke algebra \mathcal{H}^S given by π^S and $\pi^{',S}$ belong to the ring of integers O_E of E and are congruent $i_p \lambda^S \equiv i_p \lambda^{',S}$ modulo the maximal ideal of O_E .

The theorem has a converse:

Let W_p be an irreducible complex representation of the pro-p-Iwahori group Iw_p . Any irreducible automorphic representation of G_A of algebraic type V', of finite slope at p, which contains (K^p, W^p) , is congruent modulo p to an irreducible automorphic representation of G_A of algebraic type V, which contains $(Iw_p \times K^p, W_p \times W^p)$.

When $p \neq 2$, we obtain a slightly stronger form of the theorem and of its converse in §20.

One gets also congruences modulo $p^n, n>1,$ between automorphic forms instead of representations, in §17.

The method of the proof is a combination of arguments given in [9] only for automorphic forms trivial at ∞ , and in the excellent introduction to algebraic automorphic forms [7].

The beautiful recent results of Buzzard, Chenevier, Emerton and Kisin on *p*-adic interpolation of automorphic forms make this paper look out of date, but their results do not imply our theorem. The interest of Barry Mazur when I sent him these congruences in July 2002, motivated me to write their proof. It is a pleasure to thank him and Steve Rallis for many friendly discussions.

Proof of the theorem (see $\S19$)

1 We consider a number field F and a reductive connected group G over F such that G(F) is discrete in the group G^{∞} of finite adeles.

Equivalent properties are given in [7]. One of them is that the arithmetic subgroups are finite. This condition is very restrictive. There are only three possibilities:

F = Q and the split centre S of G is a maximal R-split torus of G,
F is an imaginary quadratic field and G is a F-split torus,

- F is totally real and the infinite part G_{∞} of G is compact (in particular the split centre of G is trivial).

The group G_{∞} has a unique maximal compact subgroup K_{∞} . The connected components G_{∞}^{o} and K_{∞}^{o} are related to the split and anisotropic centres S and C of G' as follows. We have $K_{\infty}^{o} = (C(G', G'))_{\infty}$ and $G_{\infty}^{o} = S_{\infty}^{o} \times K_{\infty}^{o}$. We denote by S_1 the finite algebraic \mathbf{Q} -group of $x \in S$ with $x^2 = 1$. The groups G_{∞}, K_{∞} are equal to $G_{\infty} = S_{\infty}K_{\infty} = S_{1,\infty}G_{\infty}^{o}$ and $K_{\infty} = S_{1,\infty}K_{\infty}^{o}$. They have the same group of components $\pi_{G,o} = G_{\infty}/G_{\infty}^{o} = K_{\infty}/K_{\infty}^{o}$, isomorphic to the 2-group $S_{1,\infty}/(S_{1,\infty} \cap G_{\infty}^{o})$. We have $S_{1,\infty} = S_1(\mathbf{Q})$.

2 The representations are always left representations (unless right is specified).

An irreducible automorphic representation of G_A of dimension 1 is a Hecke character, i.e. a continuous morphism $G(F) \setminus G_A \to \mathbf{C}^*$ (for any reductive connected group over F). We denote by Ω the set of Hecke characters ω of $S_A = S(\mathbf{Q}) \times S_{\infty}^o \times \prod_p S(\mathbf{Z}_p)$.

An automorphic form on G_A is a finite sum $f = \sum_{\omega \in \Omega} f_\omega$ of functions f_ω : $G(F) \setminus G_A \to \mathbb{C}$ which are smooth (continuous and K_∞ -finite) on G_∞ , locally constant on G^∞ , and $f_\omega(sg) = \omega(s) f_\omega(g)$ for all $s \in S_A, g \in G_A$. The action of G_A by right translations on the space $\mathcal{S}_{\mathbb{C}} = \bigoplus_{\omega \in \Omega} \mathcal{S}_{\mathbb{C},\omega}$ of automorphic forms is semi-simple. The irreducible constituents are the irreducible automorphic representations of G_A .

A non-degenerate bilinear symmetric form $\langle f_{\omega,1}, f_{\omega,2} \rangle$ on $\mathcal{S}_{\mathbf{C},\omega}$ is the integral of $f_{\omega,1}\overline{f}_{\omega,2}\eta^{-1}$ on the compact space $G(F)S_A \backslash G_A$, for an invariant Haar measure, where η is the positive Hecke character of G_A equal to $\overline{\omega}\omega$ on S_A .

3 Let (R, H, G, M, X) be any commutative ring R, a subgroup H of a group G, an R-module M with an action of H, and a space X with a right action of G. We denote by C(X, R) the R-module of functions $f : X \to R$ with the natural action of G and by \tilde{M} the R-module of linear forms on M with the contragredient action of H, such that $\langle \tilde{m}, m \rangle = \langle h\tilde{m}, hm \rangle$ for all $h \in H, m \in M, \tilde{m} \in \tilde{M}$. Then

$$\operatorname{Hom}_{RH}(M, C(X, R))$$

and the *R*-module $\mathcal{A}_H(X, M)$ of functions on X of type (H, M)

$$\phi: X \to \hat{M}, \quad \phi(xh) = h^{-1}\phi(x) \text{ for all } h \in H,$$

are isomorphic by the map associating to a RH-morphism $m \to f_m$ the function ϕ such that $\langle \phi(x), m \rangle = f_m(x)$. The relations $f_{hm}(x) = f_m(xh)$ and $\langle \phi(xh), m \rangle = \langle \phi(x), hm \rangle = \langle h^{-1}\phi(x), m \rangle$ are equivalent.

When the groups and spaces have a topology, the representations and the functions ϕ are supposed continuous.

4 We decompose $S_{\mathbf{C}}$ according to the set \hat{G}_{∞}^{o} of isomorphism classes of irreducible representations of G_{∞}^{o} ,

$$\mathcal{S}_{\mathbf{C}} \simeq \oplus_{\pi^o_{\infty} \in \hat{G}^o_{\infty}} \pi^o_{\infty} \otimes \rho_{\pi^o_{\infty}}.$$

For each $(\pi_{\infty}^{o}, V_{\infty}) \in \hat{G}_{\infty}^{o}$, the complex representation $\rho_{\pi_{\infty}^{o}}$ of the locally profinite group $G_{\infty}^{o} \setminus G_{A}$ is smooth, semisimple and admissible.

The semisimplicity results from §2 because $G_{\infty}/G_{\infty}^{o}$ is finite, the admissibility results from the finiteness of $G(F)G_{\infty}\backslash G_A/K$ for any open compact subgroup K of G^{∞} , for any reductive connected group over F [2] 5.1.

The model $\mathcal{A}_{G_{\infty}^{o}}(G(F)\backslash G_{A}, V_{\infty})$ of $\rho_{\pi_{\infty}^{o}} \simeq \operatorname{Hom}_{\mathbb{C}G_{\infty}^{o}}(V_{\infty}, \mathcal{S}_{\mathbb{C}})$ obtained by applying §3, is the complex space of functions

$$\phi: G(F) \setminus G_A \to V_{\infty, -} \phi(gg_{\infty}) = g_{\infty}^{-1} \phi(g) \text{ for all } g_{\infty} \in G_{\infty}^o,$$

locally constant on G^{∞} , with $G^o_{\infty} \setminus G_A$ acting by right translations.

We can extend the representation π_{∞}^{o} of G_{∞}^{o} to G_{∞} because $\pi_{G,o}$ is a finite 2-group. We choose an extension π_{∞} . Then we set

$$\phi(g) = g_{\infty}^{-1} \psi(g),$$

where g_{∞} is the infinite component of $g \in G_A$. Now ψ is invariant by right translation by G_{∞}^o and we have, for $\gamma \in G(F)$,

$$\psi(\gamma g) = \gamma g_{\infty} \phi(\gamma g) = \gamma \psi(g).$$

The natural action of $G_{\infty}^{o} \setminus G_{A}$ by right translations on the space $\mathcal{A}(V_{\infty})$ of locally constant functions

$$\psi: G_{\infty}^{o} \backslash G_{A} \to \tilde{V}_{\infty}, \quad \psi(\gamma g) = \gamma \psi(g) \quad \text{for all} \quad \gamma \in G(F),$$

is a new model of $\rho_{\pi_{\infty}^o}$, depending on the choice of π_{∞} . We could replace $G_{\infty}^o \backslash G_A$ by $\pi_{G,o} \times G^{\infty}$ of course.

5 When π_{∞}^{o} is trivial, we deduce that $\rho_{\pi_{\infty}^{o}}$ is isomorphic to the natural representation of $G_{\infty}^{o} \backslash G_{A}$ on the space of locally constant complex functions on $G(F)G_{\infty}^{o} \backslash G_{A}$. The functions with values in **Z** form a $G_{\infty}^{o} \backslash G_{A}$ -stable **Z**-lattice. An irreducible automorphic representation of G_{A} trivial on G_{∞}^{o} is defined over the ring of integers of a number field [9].

6 We consider- a number field L,

- a place $\lambda_{\infty} \in \operatorname{Hom}(L, \mathbf{C})$,

- a finite dimensional L-vector space V with an absolutely irreducible algebraic action of G'.

In §4, we fix π_{∞} , resp. π_{∞}^{o} , to be the representation of G_{∞} , resp. G_{∞}^{o} , equal to the restriction of the algebraic action of $G'(\mathbf{C})$ on $V_{\infty} = V \otimes_{L,\lambda_{\infty}} \mathbf{C}$.

The representation $\pi_{\infty} \otimes \varepsilon$ of G_{∞} , twist of π_{∞} by a character ε of the component group $\pi_{G,o}$, is called of **algebraic type** (V,ε) or V. An irreducible automorphic representation of G_A of infinite component $\pi_{\infty} \otimes \varepsilon$ is also called of algebraic type (V,ε) or V.

The irreducible complex representations of G_{∞} of algebraic type are characterized by the property that their restriction to the component G_{∞}^{o} is algebraic.

Any continuous irreducible complex representation to K_{∞}^{o} is algebraic, and any continuous irreducible complex representation of G_{∞}^{o} is the twist by a character of an algebraic representation because $G_{\infty}^{o} = S_{\infty}^{o} \times K_{\infty}^{o}$ (see §1).

The *L*-vector space $\mathcal{A}(V)$ is a $G_{\infty}^{o} \setminus G_{A}$ -stable *L*-structure of the semi-simple admissible representation $\mathcal{A}(V_{\infty})$. The finite part of an irreducible automorphic representation of G_{A} of algebraic type is **defined over a number field**.

7 In order to obtain an integral structure when V is not trivial (§5), we will work p-adically. We choose

- an isomorphism
$$i_p : \mathbf{C} \to \mathbf{Q}_p$$
.

The place λ_{∞} and i_p give a *p*-adic place $\lambda_p = i_p \lambda_{\infty} \in \text{Hom}(L, \overline{\mathbf{Q}}_p)$ which allows to identify the complex space V_{∞} defined in §6 with the $\overline{\mathbf{Q}}_p$ -vector space $V_p = V \otimes_{L,\lambda_p} \overline{\mathbf{Q}}_p$.

The interest is that there is a natural action of the *p*-adic group $G_p = G'(\mathbf{Q}_p) \subset G'(\overline{\mathbf{Q}}_p)$ on V_p , such that the actions of G(F) on V_p as a subgroup of G_p and on V_{∞} as a subgroup of G_{∞} coincide via the isomorphism $V_{\infty} \to V_p$. One identifies $\mathcal{A}_{G_{\infty}^o}(G(F) \setminus G_A, V_{\infty})$ and $\mathcal{A}_{G_{\infty}^o}(G(F) \setminus G_A, V_p)$ and the trick is to set

$$f(g) = g_p^{-1}\psi(g) = (g_{\infty}, g_p^{-1})\phi(g)$$

where $\phi \in \mathcal{A}_{G_{\infty}^{o}}(G(F) \setminus G_{A}, V_{\infty})$ and (g_{∞}, g_{p}) is the (∞, p) -component of $g \in G_{A}$. There exists an open compact subgroup $K = K_{p} \times K^{p}$ of $G^{\infty} = G_{p} \times G^{\infty,p}$ (depending on ϕ) such that ϕ, ψ are right invariant by K. The relation $\psi(\gamma gk) = \gamma \psi(g)$ for $(\gamma, k) \in G(F) \times K$ is equivalent to

$$f(\gamma gk) = (\gamma g_p k_p)^{-1} \psi(\gamma gk) = (\gamma g_p k_p)^{-1} \gamma \psi(g) = k_p^{-1} f(g).$$

These are the functions studied in $\S3$ when

$$(R, H, G, M, X) = (\overline{\mathbf{Q}}_p, K, G^{\infty}, V_p, G(F)G^o_{\infty} \backslash G_A).$$

the action of K on V_p is the inflation of the action of K_p (trivial on K^p).

8 The $\overline{\mathbf{Q}}_p$ -vector space $\mathcal{A}_K(G(F)G_\infty^o \setminus G_A, V_p)$ of *p*-adic automorphic forms on G_A of locally algebraic type (K, V_p) is

$$\{f: G(F)G_{\infty}^{o} \setminus G_{A} \to \tilde{V}_{p}, \quad f(gk) = k_{p}^{-1}f(g) \text{ for all } k \in K\}$$

with $G^o_{\infty} \setminus G^p_A$ acting by right translations.

The inductive limit

$$\mathcal{A}(G(F)G_{\infty}^{o} \setminus G_{A}, V_{p}) = \lim_{K} \mathcal{A}_{K}(G(F)G_{\infty}^{o} \setminus G_{A}, V_{p})$$

over all open compact subgroups $K = K_p \times K^p$ of G^{∞} , is the space of *p*-adic automorphic forms on G_A of locally algebraic type V_p . The complex and *p*-adic spaces

$$\mathcal{A}_{G^o_{\infty}}(G(F)\backslash G_A, V_{\infty}), \quad \mathcal{A}(G(F)G^o_{\infty}\backslash G_A, V_p)$$

are isomorphic via i_p . The isomorphism is $\pi_{G,o} \times G^{\infty,p}$ -equivariant only. The action of G_p is locally algebraic on $\mathcal{A}(G(F)G_{\infty}^o \setminus G_A, V_p)$ and is smooth on $\mathcal{A}_{G_{\infty}^o}(G(F) \setminus G_A, V_{\infty})$.

9 We denote by $E = L_{\lambda_p}$, O_E the ring of integers, p_E an uniformizer, k_E the residual field. We choose:

- an open compact subgroup K_p^o of G_p , - an O_E -structure $\mathcal{L}(V_p)$ of V_p stable by K_p^o .

The linear O_E -dual $\tilde{\mathcal{L}}(V_p) = \mathcal{L}(\tilde{V}_p)$ is an O_E -structure of the contragredient \tilde{V}_p . In §8, we can suppose that the groups K_p are contained in K_p^o .

The O_E -module $\mathcal{A}(G(F)G_{\infty}^o \setminus G_A^p, \mathcal{L}(V_p))$ is free, $G_{\infty}^o \setminus G_A$ -stable, and generates the $\overline{\mathbf{Q}}_p$ -vector space $\mathcal{A}(G(F)G_{\infty}^o \setminus G_A, V_p)$. The finite part outside of p of an irreducible automorphic representation of G_A of algebraic type is **defined** over the ring of integers of a finite extension of \mathbf{Q}_p .

We could not do this in the complex realization of §4, because the representation V_{∞} of G_{∞} , when it is not trivial, has no integral structure stable by G(F), by density.

10 We return to the generalities of §3. We suppose that G is a locally profinite group acting continuously on a locally profinite space X, and that H = K is an open subgroup of G acting smoothly on an R-module M. We

consider the compact induction from the R-representations of K to the R-representations of G

$$\operatorname{ind}_{K}^{G} M = \{ f : G \to M, f(kg) = kf(g), (k,g) \in K \times G, \}$$

f with compact support},

the restriction res_K^G in the other direction, and the Hecke *R*-algebra

$$\mathcal{H}(G, K, M) = \operatorname{End}_{RG} \operatorname{ind}_{K}^{G} M.$$

These functors respect smoothness. In the abelian category of smooth R-representations, the induction from K to G is left adjoint to the restriction from G to K [10],

$$\operatorname{Hom}_{RG}(\operatorname{ind}_{K}^{G} M, V) \simeq \operatorname{Hom}_{RK}(M, \operatorname{res}_{K}^{G} V).$$

Hence $\operatorname{Hom}_{RK}(M, \operatorname{res}_{K}^{G} \cdot)$ simply denoted by $\operatorname{Hom}_{RK}(M, \cdot)$ is a functor from the smooth *R*-representations of *K* to the right $\mathcal{H}(G, K, M)$ -modules.

The sum V^{sm} of the smooth subrepresentations of an R-representation V of G is a smooth subrepresentation of V and for any smooth representation M of K

$$Hom_{RK}(M,V) = Hom_{RK}(M,V^{sm})$$

because K is open. One then deduces that $\mathcal{A}_K(X, M)$ is naturally a right $\mathcal{H}(G, K, M)$ -module.

This remains true when the action of K on M is locally algebraic. The proof follows the same pattern.

11 We can add to the machine:

- a finite dimensional L-vector space W with an absolutely irreducible smooth action of an open compact subgroup K of G^{∞} .

The functor $V \to \operatorname{Hom}_{RK}(W, V)$ (see §10) gives a bijection from the isomorphism classes of the irreducible smooth representations of G^{∞} which contain (K, W) onto the isomorphism classes of the simple right modules of the Hecke algebra $\mathcal{H}(G^{\infty}, K, W)$ (consider the idempotent of the global Hecke algebra of G^{∞} associated to (K, W)).

The representation $\rho_{\pi_{\infty}^{o}}$ of $\pi_{G,o} \times G^{\infty}$ is admissible and semisimple. The isomorphism class of the subrepresentation of $\rho_{\pi_{\infty}^{o}}$ generated by the irreducible subrepresentations which contain (K, W), is identified with (see §3, §4):

The right $\mathcal{H}(G^{\infty}, K, W)$ -module $\mathcal{A}_{G^{o}_{\infty} \times K}(G(F) \setminus G_A, V_{\infty} \otimes_{L, \lambda_{\infty}} W)$ of automorphic forms on G^{∞} of algebraic type V and smooth type (K, W).

This semi-simple module is isomorphic to

$$\mathcal{A}(V_{\infty} \otimes_{L,\lambda_{\infty}} W) = \{ \psi : G_{\infty}^{o} \backslash G_{A} \to \tilde{V}_{\infty} \otimes_{L,\lambda_{\infty}} W, \\ \psi(\gamma g k) = (\gamma, k^{-1}) \psi(g), \text{ for all } (\gamma, k) \in G(F) \times K \}.$$

The finite set $G(F)G_{\infty}^{o} \setminus G_{A}/K$ has a system of representatives g_{1}, \ldots, g_{n} in G^{∞} because G(F) is dense in G_{∞} (for any reductive connected group) [2]. The values $\psi(g_{i})$ are invariant by the finite arithmetic group $\Gamma_{i} = G(F) \cap (G_{\infty}^{o} \times g_{i}Kg_{i}^{-1})$. As a complex vector space,

$$\mathcal{A}(V_{\infty} \otimes_{L,\lambda_{\infty}} W) \simeq \oplus_{i=1}^{n} (\tilde{V}_{\infty} \otimes_{L,\lambda_{\infty}} \tilde{W})^{\Gamma_{i}}, \quad \psi \mapsto (\psi(g_{i}))_{1 \leq i \leq n}$$

It is easy to choose K such that $G(F) \cap K$ is trivial, or even such that all the finite groups Γ_i are trivial, noting that if $K = \prod_v K_v$ is factorizable, then the order of Γ_i divides the pro-order of K_v for any finite place v of F.

 $12\,$ One deduces from $\S11$ a formula for the finite dimension of the space of automorphic representations with given algebraic and smooth types. In particular:

For any algebraic absolutely irreducible representation V of G', there exists an irreducible automorphic representation of algebraic type V. If K is an open compact subgroup K of G^{∞} such that $K \cap G(F) = \{1\}$, for any irreducible complex representation W of K, there exists an irreducible automorphic representation of algebraic type V which contains (K, W).

13 There exists a finite set S of places of F which contains the infinite places, such that $K = K_S \times K^S$ (see §11) where $K_S \subset G_S$ and outside of S, K^S is a good maximal open compact subgroup of G^S , and W^S is trivial.

The Hecke **Z**-algebra $\mathcal{H}^S = \mathcal{H}(G^S, K^S)$ is commutative and acts semisimply on $\mathcal{A}(V_{\infty} \otimes_{L,\lambda_{\infty}} W)$ with eigenvalues λ_{π^S} where λ_{π^S} is the character of \mathcal{H}^S acting on the one dimensional space of K^S -invariants of π^S , for all irreducible automorphic representations $\pi_A = \pi_S \otimes \pi^S$ of G_A of algebraic type V which contain (K, W).

14 We suppose in §11 that $K = K_p \times K^p$ with $K_p \subset K_p^o$ (see §9) and $W = W_p \otimes_L W^p$ has a factorization compatible with the factorization of $G^{\infty} = G_p \times G^{\infty,p}$. The group K acts on $V_p \otimes_{L,\lambda_p} W$ by the diagonal locally algebraic irreducible action of K_p and by the smooth action of K^p natural on W and trivial on V_p . We choose

- a K-stable O_L -structure $\mathcal{L}(W) = \mathcal{L}(W_p) \otimes_{O_L} \mathcal{L}(W^p)$ of W over the ring of integers O_L of L (see §11).

The linear O_L -dual $\tilde{\mathcal{L}}(W) = \mathcal{L}(\tilde{W})$ is an O_L -structure of the contragredient \tilde{W} . As in §8,

15 The $\overline{\mathbf{Q}}_p$ -space of *p*-adic automorphic forms of locally algebraic type $(K, V_p \otimes_{L, \lambda_p} W)$ is

$$\mathcal{A}_{K}(G(F)G_{\infty}^{o}\backslash G_{A}, V_{p}\otimes_{L,\lambda_{p}}W) = \{f: G(F)G_{\infty}^{o}\backslash G_{A} \to \tilde{V}_{p}\otimes_{L}\tilde{W}, f(gk) = k^{-1}f(g) \text{ for all } k \in K\}$$

This is a right $\pi_{G,o} \times \mathcal{H}(G^{\infty}, K, V_p \otimes_{L,\lambda_p} W)$ -module as in §10, but the proof of the theorem uses only its $\pi_{G,o} \times \mathcal{H}(G^{\infty,p}, K^p, W^p)$ -module structure. The natural isomorphism

 $\mathcal{A}_{G_{\infty}^{o} \times K}(G(F) \backslash G_{A}, V_{\infty} \otimes_{L, \lambda_{\infty}} W) \to \mathcal{A}_{K}(G(F)G_{\infty}^{o} \backslash G_{A}, V_{p} \otimes_{L, \lambda_{p}} W)$

is $\pi_{G,o} \times \mathcal{H}(G^{\infty,p}, K^p, W^p)$ -equivariant.

16 The integral structures chosen in §9 and in §14, give an O_E -structure $\mathcal{L} = \mathcal{L}(V_p) \otimes_{O_L} \mathcal{L}(W)$ of the locally algebraic representation of K on $V_p \otimes_L W$. As in §11, the O_E -module $\mathcal{A}_K(G(F)G_{\infty}^o \setminus G_A, \mathcal{L})$ is isomorphic to

 $\oplus_{i=1}^{n} \tilde{\mathcal{L}}^{\Gamma_{i}},$

is O_E -free, stable by $\pi_{G,o} \times \mathcal{H}(G^{\infty,p}, K^p, \mathcal{L})$, and generates the $\overline{\mathbf{Q}}_p$ -vector space $\mathcal{A}_K(G(F)G^o_{\infty} \setminus G_A, V_p \otimes_{L,\lambda_p} W)$.

17 We suppose that the orders of the finite arithmetic groups Γ_i in §11, are prime to p. The congruences between automorphic forms rely on the fact that the natural $\pi_{G,o} \times \mathcal{H}(G^{\infty,p}, K^p, \mathcal{L})$ -equivariant map between

$$\mathcal{A}_K(G(F)G^o_\infty \setminus G_A, \mathcal{L}) / p^n_E \mathcal{A}_K(G(F)G^o_\infty \setminus G_A, \mathcal{L})$$

and

$$\mathcal{A}_K(G(F)G^o_\infty \setminus G_A, \mathcal{L}/p^n_E \mathcal{L})$$

is an isomorphism for any integer $n \ge 1$.

The congruences between automorphic representations when n = 1, rely on the Deligne-Serre lemma [4]. Let \mathcal{X} be any commutative subalgebra of $\pi_{G,o} \times \mathcal{H}(G^{\infty,p}, K^p, \mathcal{L})$. For any eigenvalue μ of \mathcal{X} on the reduction

$$\mathcal{A}_K(G(F)G^o_\infty \setminus G_A, \mathcal{L}/p_E \mathcal{L})$$

there exists a finite extension E'/E and an eigenvalue λ of \mathcal{X} acting on

$$\mathcal{A}_K(G(F)G^o_{\infty} \setminus G_A, \mathcal{L} \otimes_{O_E} O_{E'}) = \mathcal{A}_K(G(F)G^o_{\infty} \setminus G_A, \mathcal{L}) \otimes_{O_E} O_{E'},$$

congruent modulo p to μ , i.e. $\lambda \equiv \mu \mod p_{E'}$.

18 The pro-*p*-radical Iw_p of an Iwahori subgroup Iw of G_p , called a **pro***p*-Iwahori subgroup of G_p , should be considered as the pro-*p*-Sylow of G_p

because it is a pro-*p*-group, uniquely defined modulo conjugation, which contains the pro-*p*-radical of any parahoric subgroup of G_p containing Iw. As Iw_p is a pro-*p*-group, it satisfies the following properties:

1) An irreducible locally algebraic representation of a pro-p-group over a field of characteristic p is trivial.

2) For any locally algebraic *E*-representation *W* of a pro-*p*-group I_p , there exists a finite extension E'/E and an $O_{E'}$ -structure of $W \otimes_E E'$ with trivial reduction modulo $p_{E'}$ (for the action of I_p) [3].

19 We are now ready to prove the theorem and its converse. Let π_A be an irreducible automorphic representation of G_A of algebraic type V and containing $(K^p = K_v \times K^{p,v}, W^p)$, let V' be as in the theorem, and let W_p be an irreducible smooth complex representation of Iw_p .

In §11, we take $K = Iw_p \times K^p$. The orders of the arithmetic groups Γ_i in §11 are trivial because the pro-orders of K_v and of Iw_p are relatively prime. We choose the number field L and the place λ_{∞} in §6, and the isomorphism i_p in §7, such that:

a) The algebraic representations V, V' of G' and the smooth representation $W_p \otimes_{\mathbf{C}} W^p$ of K are defined over L embedded in \mathbf{C} via λ_{∞} .

b) The finite dimensional $\overline{\mathbf{Q}}_p$ -vector spaces $U_p = V_p, V'_p, W_p \otimes_{\mathbf{C}, i_p} \overline{\mathbf{Q}}_p$ have Iw_p -stable O_E -structures $\mathcal{L}(U_p)$ of trivial reduction modulo p_E (for the action of Iw_p), using §18 2).

c) The finite components prime to p in the finite set of irreducible automorphic representations of G_A

- of algebraic type V and containing $(K, W_p \otimes_{\mathbf{C}} W^p)$, or

- of algebraic type V' and containing $(K, \operatorname{id}_p \otimes_{\mathbf{C}} W^p)$ (trivial on Iw_p), are defined over O_E .

In §11, the *L*-representation of *K* is either W' equal to a K^p -stable *L*-structure of W^p with *K* acting by inflation (trivial on Iw_p), or $W = W_{p,L} \otimes_L W'$ for a K_p -stable *L*-structure $W_{p,L}$ of W_p .

We choose a K^p -stable O_E -structure $\mathcal{L}(W^p)$ of $W^p \otimes_{\mathbf{C}, i_p} \overline{\mathbf{Q}}_p$. With b), we obtain the O_E -structures in §9, §14 and in §16, \mathcal{L} for $V_p \otimes_{L, \lambda_p} W$ and \mathcal{L}' for $V'_p \otimes_{L, \lambda_p} W'$. We denote by d the complex dimension of W_p .

There is a K-isomorphism

$$\mathcal{L}/p_E \mathcal{L} \simeq \oplus^d \mathcal{L}'/p_E \mathcal{L}'.$$

The same is true for the contrag redients. We deduce as in §17 that the reduction modulo p_E of

$$\mathcal{A}_K(G(F)G^o_\infty \backslash G_A, \mathcal{L}) \text{ and } \oplus^d \mathcal{A}_K(G(F)G^o_\infty \backslash G_A, \mathcal{L}')$$

are $\pi_{G,o} \times \mathcal{H}(G^{\infty,p}, K^p, \mathcal{L}(W^p))$ -isomorphic.

We suppose in §13 that S contains p. Then $\pi_{G,o} \times \mathcal{H}^S$ has the same eigenvalues on the reduction modulo p_E of

$$\mathcal{A}_K(G(F)G^o_\infty \backslash G_A, \mathcal{L})$$
 and $\oplus^d \mathcal{A}_K(G(F)G^o_\infty \backslash G_A, \mathcal{L}').$

For $* = \mathcal{L}$ or \mathcal{L}' , we deduce from c) that for any finite extension E'/E, the eigenvalues of \mathcal{H}^S on

$$\mathcal{A}_K(G(F)G^o_\infty \setminus G_A, *)$$
 or on $\mathcal{A}_K(G(F)G^o_\infty \setminus G_A, * \otimes_{O_E} O_{E'})$

are the same. Remembering from §1 that $\pi_{G,o}$ is a finite 2-group, we deduce as in §17:

When $p \neq 2$, the reduction modulo p_E of the eigenvalues of $\pi_{G,o} \times \mathcal{H}^S$ on

$$\mathcal{A}_K(G(F)G^o_\infty \setminus G_A, \mathcal{L})$$
 and on $\mathcal{A}_K(G(F)G^o_\infty \setminus G_A, \mathcal{L}')$

are the same. If p = 2, this remains true without $\pi_{G,o}$.

 ${\bf 20}~$ Using §13, we obtain a slightly stronger version of the theorem and of its converse.

With the notations of the theorem and of its converse, let ε be a character of $\pi_{G,o}$. If $p \neq 2$, any automorphic irreducible representation of G_A of algebraic type (V, ε) , and containing $(Iw_p \times K^p, W_p \otimes W^p)$, is congruent to an automorphic irreducible representation of G_A of algebraic type (V', ε) and containing $(Iw_p \times K^p, \mathrm{id}_p \otimes W^p)$, and conversely.

If p = 2, this remains true without the character ε .

References

- [1] Nicolas Bourbaki, Algèbre I. Hermann (1970).
- [2] Armand Borel, Some finiteness properties of adele groups over number fields. Publ. Math., Inst. Hautes Etud. Sci. 16 (1963) 5-30.
- [3] Jean-Francois Dat, ν -tempered representations of p-adic groups. I : ℓ -adic case. Preprint 2003.
- [4] Pierre Deligne et Jean-Pierre Serre, Formes modulaires de poids 1. Ann. Sci. E.N.S. (iv) 7 (1974), 507-530.
- [5] Fred Diamond and Richard Taylor, Lifting modular mod ℓ representations. Duke Math. J., Vol. 74, No 2, (1994), 253-269.

- 430 Marie-France Vignéras
- [6] Chandrasekhar Khare, On the local correspondence mod l. J. Number Theory 88 (2001), no. 2, 357–365.
- [7] Benedict H. Gross, Algebraic Modular Forms. Israel Journal of Mathematics 113 (1999), 61-93.
- [8] T.A. Springer, Linear algebraic groups. Second Edition. Birkhäuser. PM 9 (1998).
- [9] Marie-France Vignéras, Correspondance de Langlands semi-simple pour GL(n, F) modulo $\ell \neq p$. Invent. math. 144, 177-223 (2001).
- [10] Marie-France Vignéras, Représentations ℓ -modulaires d'un groupe réductif *p*-adique avec $\ell \neq p$. Birkhaüser PM 137 (1996).

Marie-France Vignéras Institut de Mathematiques de Jussieu 175 rue du Chevaleret Paris 75013, France vigneras@math.jussieu.fr