REPRESENTATIONS DES QUATERNIONS DE NORME 1
GUY HENNIART ET MARIE-FRANCE VIGNERAS

ABSTRACT. Let p be a prime number, F' a local field with finite residue field of charac-
teristic p, D the quaternion division algebra with centre F', and R an algebraically closed
field, of any characteristic carg. We classify the smooth irreducible R-representations m
of the group D! of elements of D* with reduced norm 1. Such a 7 occurs in the restriction
of a smooth irreducible R-representation II of D*. When the dimension of II is > 1,
following our previous work in the case of SLo(F'), we show that the restriction of II to
D' is irreducible or the sum of two irreducible representations. When carg # p, that
restriction is the sum of two irreducible equivalent representations if and only if the R-
representation of GLo(F') corresponding to IT via the Jacquet-Langlands correspondence
restricts to SLo(F) as a sum of four inequivalent irreducible representations (this is never
the case if carg = 2).

Résumé. Soit p un nombre premier, F' un corps local non-archimédien de corps résiduel
fini de caractéristique p, D le corps de quaternions de centre F', et R un corps algébrique-
ment clos de caractéristique carg arbitraire. Nous classons les R-représentations lisses
irréductibles 7 du groupe D! des quaternions de norme réduite 1. Une telle représenta-
tion 7 est contenue dans la restriction & D' d’'une R-représentation lisse irréductible IT de
D*. Lorsque la dimension de II est > 1, nous démontrons que la restriction de II est irré-
ductible ou somme de deux représentations irréductibles. Si carg # p, cette restriction est
somme de deux représentations irréductibles isomorphes si et seulement la représentation
de GLy(F) correspondant & I par la correspondance de Jacquet-Langlands se restreint
a SLy(F) comme une somme de quatre représentations irréductibles non isomorphes (ce
n’est jamais le cas si carp = 2).
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1. INTRODUCTION

Les conjectures que Langlands a formulées a partir des années 1960 structurent une
partie importante de la théorie des nombres moderne. Dans le cadre ou le corps de base
F" est un corps local non-archimédien & corps résiduel fini, elles relient les représentations
irréductibles complexes d’'un groupe réductif G(F') a des parametres de nature galoisienne, a
valeurs dans un groupe dual de G. Le développement des techniques de congruence impose
de remplacer les coefficients complexes par un corps algébriquement clos plus général R.
Hors le cas ou G est un tore, qui se déduit de la théorie du corps de classes, le premier cas a
considérer est celui de G = S'Ly. Nous avons examiné ce cas en grand détail dans un article
précédent [HV25]. Le présent article traite le cas compagnon de la forme intérieure donnée
par le groupe de quaternions de norme 1 sur F'. Plus précisément, nous fixons un nombre
premier p et un corps local non archimédien F' de caractéristique résiduelle p. Nous fixons
également un corps algébriquement clos R. Lorsque la caractéristique carg de R n’est pas
p, dans loc.cit., nous avons classifié les R-représentations lisses irréductibles de SLs(F'), en
utilisant qu’elles apparaissent dans la restriction de R-représentations lisses irréductibles
de GLy(F'). Dans le présent article, nous considérons un corps de quaternions D de centre
F, nrd : D* — F* la norme réduite et le groupe D! formé des éléments dont la norme
réduite vaut 1. C’est une forme intérieure non déployée de SLs(F'), unique & isomorphisme
prés. Nous classifions les R-représentations lisses irréductibles de D!, sans hypothese sur
carg. Elles apparaissent dans la restriction des R-représentations lisses irréductibles de
D~

Les R-représentations lisses irréductibles de D* de dimension 1 (les caractéres) se re-
streignent en le caractére trivial de D?.

Pour carp = p, les R-représentations lisses irréductibles de D! sont des caractéres, et
forment un groupe cyclique d’ordre g + 1 ou q est le cardinal du corps résiduel de F'.

Théoréme 1.1 (Théoréme principal). Soit 11 une R-représentation lisse irréductible de
dimension > 1 de D*. Notons dy la dimension de [’algebre Endgpt II des endomorphismes
de I|p1, et JL(II) la R-représentation irréductible de GLo(F), image de Il par la corre-
spondance de Jacquet-Langlands avec R comme corps de coefficients.

a) La restriction a D' de TI est irréductible ou somme de deux représentations irré-
ductibles.

b) La restriction de JL(II) a SLo(F') est somme de dyy représentations irréductibles non
équivalentes.

On a dy = 1si I|pr est irréductible, diy = 2 si 11| p1 est réductible avec deux composants
irréductibles non équivalents, diy = 4 si II|p1 est réductible avec deux composants irré-
ductibles équivalents. La différence avec le cas de SLq(F') réside dans le fait que I1|p1 peut
ne pas étre de multiplicité 1.
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Nous verrons que IT|p1 est réductible si p est impair ou si IT est tordue par un caractere
d’une représentation modérée, et donnerons un exemple ou II|p1 est irréductible si p = 2.

Pour carp # p, les R-caractéres non triviaux de D! sont les composants des restrictions
des R-représentations irréductibles de D* de dimension 2.

Au §2, nous fixons les notations et énongons quelques rappels dont nous aurons besoin,
puis passons directement a la démonstration du Théoreme. Elle se fait en deux temps, au
§3.

Si la caractéristique de R n’est ni 2 ni p, dp est le nombre des R-caracteres lisses y de
F™* tels que la torsion par y o nrd stabilise II. On utilisera alors que la correspondance
de Langlands qui associe a II une R-représentation irréductible lisse de dimension 2 du
groupe de Weil absolu Wy de F' est compatible a la torsion par les caracteres, ce qui
permet d’utiliser les résultats de [HV25].

Si carg = 2 ou p, nous utiliserons la construction de II explicitée dans [V89]. Nous
verrons en §3.3, que dip = 2 sauf si carg = p, p est impair et II est induite d’'un R-caractere
A de F*Up (ou Up est le groupe des unités de 'anneau des entiers de D) de restriction a
D! I'unique R-caractére d’ordre 2.

Notons ¢ un nombre premier (¢ = p est admis) et X une cléture algébrique d’'un corps
commutatif X. Toute Q¢°-représentation lisse irréductible de D' est enti¢re car D' est
compact. La réduction modulo ¢ de ces représentations est aussi simple que possible. Nous
prouverons au §4:

Théoréme 1.2. 1) La réduction modulo ¢ de toute Q}°-représentation irréductible lisse de
D' est irréductible.

2) Toute F°-représentation irréductible lisse de D' est la réduction modulo € d'une Q%°-
représentation irréductible lisse de D*.

Pour D* et si £ # p pour GLo(F'),SLs(F'), la propriété 2) reste vraie, mais pas la
propriété 1).

Au §5, pour carg # 2 nous établissons une correspondance de Langlands étendue qui a
une R-représentation irréductible lisse de D' de dimension > 1 associe un morphisme ¢
de Wr dans PGLy(R) et une R-représentation du groupe des composantes connexes du
centralisateur de ¢ dans SLy(R). Pour carg = 2, cette méthode ne suffit pas pour donner
une correspondance de Langlands étendue.

Dans 'appendice §6, nous donnons des criteres d’irréductibilité, utilisés au §3 mais
d’un intérét plus général. Dans le second appendice §7, nous considérons une F-algebre a
division centrale D de degré réduit d > 1, et le noyau D! de la norme réduite de D* a F™*.
Nous prouvons que tout élément de D' N (1+ Pp) (ou Pp est I'idéal maximal de 'anneau
des entiers de D) est produit de deux commutateurs de D'. En particulier D' N (1 + Pp)
est le groupe des commutateurs de D!, un résultat di & C. Riehm. Enfin dans 'appendice
§8 dans le cas F' = Q, nous comparons nos résultats avec ceux pour SLy(Q,) de [Abdel4]
lorsque R = 3¢, et de [BS25] pour des représentations de Banach.
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2. NOTATIONS ET RAPPELS

2.1. Dans la suite,

e F' est un corps local non-archimédien, d’anneau d’entiers Op, d’idéal maximal Pg
engendré par pg, de groupe des unités Up, de corps résiduel kr de caractéristique p et de
cardinal ¢, ur le groupe cyclique des racines de I'unité dans F* d’ordre divisant ¢ — 1, et
W est le groupe de Weil de F.

e D est un corps de quaternions de centre F', sauf dans I'appendice §7. On notera Op
I’anneau d’entiers de D, Pp l'idéal maximal de Op, w € D une racine de d’'unité d’ordre
¢*> — 1, pp un générateur de Pp tel que p? = pp, ppwpp' = w?, Up le groupe des unités
de Op, kp le corps résiduel de Op (une extension quadratique de kr), et op : Op — kp la
surjection canonique. La conjugaison par pp induit I’élévation a la puissance ¢ sur kp.

e La norme réduite nrd : D* — F* de noyau D! induit une surjection Up — Up et un
homéomorphisme D*/F*D! — F*/(F*)?. Le groupe D! est contenu dans Up. Le groupe
F*D?' est ouvert et cofini dans D* sauf si carp = 2 ot il est seulement fermé cocompact.

e 1R est un corps, algébriquement clos sauf dans 'appendice §6.

e [x] est la partie entiére d’'un nombre réel x.

2.2. La correspondance locale de Langlands pour D* avec R comme corps de coefficients,
fournit une bijection II <+ oy entre les classes d’isomorphisme des R-représentations irré-
ductibles lisses Il de dimension > 1 de D* et celles de dimension 2 du groupe de Weil W
de F' [V89].

Si carg # p, la correspondance locale de Jacquet-Langlands pour D* donne une bijection
IT <» JL(II) entre les classes d’isomorphisme des R-représentations irréductibles lisses
de dimension > 1 de D* et celles des R-représentations supercuspidales de GLs(F); la
correspondance locale de Langlands pour G Ly(F') donne une bijection oy <+ JL(II) entre
les classes d’isomorphisme des R-représentations irréductibles op; de dimension 2 de W et
celles des R-représentations supercuspidales JL(II) de GLy(F') [VO1], [V02]. Ces bijections
dépendent du choix d'une racine carrée de ¢ dans R*, mais la correspondance locale de
Jacquet-Langlands n’en dépend pas. Ces bijections sont compatibles a la torsion par les
caracteres au sens suivant. Soit o : Wrp — F* I'application de réciprocité du corps de
classes et det : GLy(F) — F* le déterminant. Pour tout R-caractere lisse x de F™,

(2.1) II®yonrd <> o ® xoa > JL(II) ® y odet.

2.3. Toute R-représentation lisse irréductible de D* ou de D! est de dimension finie et
a un caractere central [H09, §2|. Soit ¢ un nombre premier (¢ = p est admis). Une Qf°-
représentation lisse irréductible II de D* est entiere si et seulement si son caractere central
wyy est entier. Si elle est entiére, la longueur de sa réduction modulo ¢ est < 2. Quand
elle est égale a 2, la dimension de Il est 2. C’est toujours le cas si £ = p. Toute Fj*-
représentation lisse irréductible de D* est la réduction modulo ¢ d’une Qf°représentation

lisse irréductible de D* [V89].

3. PREUVE DU THEOREME PRINCIPAL
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3.1. La restriction & D! d’une R-représentation lisse irréductible de D* est semi-simple de
longueur finie, de composants irréductibles ayant la méme multiplicité [HV25, §2.1]. Une R-
représentation lisse irréductible 7 de D! apparait dans la restriction d’'une R-représentation
lisse irréductible IT de D*, car pour i assez grand, 7 est triviale sur D* N (1 + P), donc 7
s’étend & F*D'(1+ P}) qui est ouvert d’indice fini dans D*, et I'induction de F*D(1+ P})
a D* est I'adjoint a gauche de la restriction.

Définition 3.1. Une R-représentation irréductible lisse IT de D* définit un L-paquet £(II)
formé de I’ensemble des classes d’isomorphismes des R-représentations lisses irréductibles
de D! contenues dans la restriction de IT & D!.

Deux L-paquets sont disjoints ou confondus [HV25, Lemma 2.3, (2) (b)] et I'union des L-
paquets de D! est ’ensemble des classes d’isomorphisme des R-représentations irréductibles
de D%

Comme IT a un caractere central, on a Endgzp: II = Endgp«p1 II. Comme dans la preuve
de [HV25, lemme 2.3]

Endpp-p1 II ~ Hompgp- (IT, ind 2. ), 11

Notons dpy la dimension de Endgp: II. Nous allons montrer que dip = 1,2 ou 4.

Sidp = 1 alors I1| pr est irréductible; si dp = 2 alors I1|p1 est somme de deux représenta-
tions irréductibles non équivalentes; si diy = 4 alors II| p1 est somme de deux représentations
irréductibles équivalentes ou de quatre représentations irréductibles non équivalentes. Nous
montrerons que si dif = 4 le dernier cas ne se produit pas.

F*D1> ~ HOmRD* (H, H ® lndg:Dl 1)

3.2. Le groupe des commutateurs (D*, D*) de D* est D' [NM43], donc les R-caracteres
lisses de D* se factorisent par la norme réduite et leur restriction a D! est le caractére
trivial.

Mais D' posseéde des caractéres lisses non triviaux car (D!, D) = D' N (1 + Pp) [Rie70]
(voir 'appendice §7). La surjection canonique gp : Op — kp induit un isomorphisme de
D'/(D' N (1 + Pp)) sur le noyau k} de la norme de kp/kp, cyclique d’ordre ¢ + 1. Les
R-caracteres lisses de D! sont x o pp pour les R-caracteres lisses x de k},.

Si carg = p, toute R-représentation irréductible lisse 7 de D! est triviale sur le pro-p
sous groupe D' N (1 + Pp) donc est un caractere.

Sans hypothése sur carg, chaque R-caractére de D! apparait dans la restriction a D!
d'une R-représentation irréductible lisse II de D* triviale sur 1 + Pp. Une telle représen-
tation de dimension > 1 est induite

(3.1) IT ~ indfy, A

d’un R-caractere A de F*Up trivial sur 14 Pp tel que \|y,, est régulier, i.e. Ay, = vopplu,
pour un caractere v de kj, régulier sur k., i.e. v9 % v [V89], [H09, §3].

La régularité 17 # v est équivalente & la non-trivialité de v sur ki, car l'image de
’homomorphisme x — 277! de noyau kj et d’ordre |k}h|/|k%| = q + 1, est k.

La restriction & D' de X est w(v) = v o p|p1 et pp(D!) = kL.
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Lemme 3.2. La restriction a D' de 1T comme en (3.1) est somme de deuz caractéres
|p1 ~7(v) @ m(v?).

Preuve. Comme D* = F*Up U ppF*Up, la restriction de II & D! est la somme de la
restriction 7(v) & D' de A et de la restriction 7(v?) & D' du conjugué de A par pp. O

On déduit du lemme 3.2 que la dimension diy de Endgp1 II est dip = 4 si les caracteres
m(v) et m(v?) sont égaux et di = 2 s’ils sont distincts.

Quand a-t-on I'égalité 7(v) = 7(v?) 7 L’application v[ — m(v) est injective, donc
7(v) = m(v7) est équivalent a 17 = v sur kb,

Lemme 3.3. On a v =01 sur k}, si et seulement si 1/|k1D est d’ordre 2.

Preuve. Comme le R-caractere 1/|k]13 n’est pas trivial et (1/|k113)‘1+1 =1,0na V|Zl_1 =1siet
D
seulement si 'ordre de v[;1 # 1 divise (¢ — 1,¢ + 1) si et seulement si v[;1 est d’ordre 2.

Le groupe k}, est cyclique d’ordre ¢ + 1. Il n’admet pas de R-caractére d’ordre 2 si p = 2
ou si carg = 2. Sinon, il admet un unique R-caractere d’ordre 2. U

On déduit du lemme 3.3 que dip = 4 si p est impair, la caractéristique de R n’est pas 2,
et v k1 est Punique R-caractere d’'ordre 2 de k}. Sinon, on a di = 2.

Remarque 3.4. Pour carg # p et p impair, il existe un unique L-paquet de D! avec dp = 4
par la correspondance de Jacquet-Langlands et [HV25, Proposition 4.22]. Les lemmes 3.2
3.3 le décrivent explicitement si carg # 2, p et p impair.

3.3. On suppose que la caractéristique de R n’est ni 2 ni p. Soit II une R-représentation
lisse irréductible de D* de dimension > 1.

La R-représentation indg: pr 1 de D* est la somme des y o nrd ou x parcourt les R-
caracteres lisses de F'* de carré trivial. La dimension de Endgp: IT est (§3.1):

(3.2) dr; = le nombre de x tels que IT ~ [T ® y o nrd.

Il n’y a pas de différence avec le cas de SLy(F'). La dimension de Endggr,r) JL(II) est
égale au nombre de x tels que JL(IT) ~ JL(II) ® x o det [HV25, (4.12)].

Lemme 3.5. Les algébres d’endomorphismes de l|p1 et de JL(IT)|gr,ry ont la méme
dimension dy.

Preuve. Les correspondances locales de Langlands sont compatibles avec la torsion par les
caracteres (2.1), donc

(3.3) M~TT®yonrd & og~op®yoas JLII) ~ JL(II) ® x o det .
U

Le lemme 3.5 et [HV25, Theorem1.1] impliquent que diy = 1,2 ou 4. La représentation
JL(IT)|sp,(F) est sans multiplicité, somme de diy représentations irréductibles non équiva-
lentes [HV25, (4.5)], mais II|p: n’est pas de multiplicité 1 si dy = 4.
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Lemme 3.6. Lorsque dyp = 4, |p1 est somme de deuz representations irréductibles équiv-
alentes.

Preuve. Cette propriété est bien connue si R = C [L71], [LL79], [L24]. Nous montrons ici
qu’elle est vraie si carg # 2, p.

On commence par vérifier que si elle est vraie pour R elle est vraie pour tout R’ de
méme caractéristique. Elle est vraie pour la cloture algébrique R. du corps premier de
R si elle est vraie pour R, car les caracteres complexes lisses de F* de carré trivial sont
des R.-caracteres, et I'extension des scalaires de R, a R donne une injection des classes
d’isomorphisme des représentations lisses irréductibles de D* sur R, vers celles sur R.
Réciproquement la propriété pour R. l'implique pour R, car une R-représentation lisse
irréductible tordue par un caractere lisse adéquat est définie sur R..

Donc, la propriété dans le cas complexe I'implique pour tout R de caractéristique 0.

On vérifie enfin que la propriété pour Q¢ ~ C I'implique pour F§¢ (qui 'implique pour
tout R de caractéristique ¢). En effet, une F¢¢-représentation lisse irréductible II se reléve
a Q7¢ en une représentation I telle que dg = dq, car ce résultat est connu pour oy [HV25,
Theorem 4.23 2)], les correspondances de Langlands pour D* sont compatibles avec la

réduction modulo ¢ [V89] et la torsion par les caracteres, la formule (3.2) pour les entiers
dﬁ et dn. |

Ceci acheve la preuve du théoreme principal si carg # 2. Nous traitons le cas restant
carg = 2 dans §3.4.

3.4. Sans hypothese sur la caractéristique de R, nous utilisons la construction explicite de
IT [V89] pour démontrer le théoréme principal. Une R-représentation lisse irréductible IT
de D* est tordue par un caractere d’une représentation modérée ou minimale sauvagement
ramifiée. Nous avons déja traité le cas ou II est modérée (triviale sur 1 + Pp). Supposons
maintenant [T minimale sauvagement ramifiée (ceci implique carg # p).

On a une description explicite de II. Soit f > 1 'entier tel que II est triviale sur 1+ Pl’;
mais non sur 1+ P}~ Le groupe F*(1+ ng +/ 2]) est commutatif modulo 1+ P} et il est

distingué d’indice fini dans D*. On choisit un R-caractere y de F*(1 + ng +/ 2]) contenu
dans II et 'on note J le centralisateur de y dans D*. La représentation II

F*(1+ng+1)/2])
est induite d'une R-représentation A de J de restriction y-isotypique a F*(1 + ng +0/ 2]),

IT ~ ind?" \.
Lorsque f est pair, [f/2] = f/2,
J=FE"(1+ Pg/ 2), E/F quadratique, séparable, ramifiée

(a priori la construction ne donne pas E/F séparable, mais on peut choisir £/ F' séparable),
J/Ker(x) est abélien, A est un caractere, et la dimension de IT est

[D*: J) =[Up: Op(1+ PY*)] = (¢ +1)[1+ Po: (1+ Pg)(1 + PY*)] > 2.
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Lorsque f est impair, [f/2] = (f —1)/2,
J=FE"(1+ Pjgf -/ %), E/F quadratique, séparable, non ramifiée,

et J/Ker(x) est un groupe d’Heisenberg. Le groupe J = F*Op5(1 + Pl(jf_l)/Q) contient les
sous-groupes distingués

J"=F*(1+ Pg)(1+ Py c J = F*1+ Pe)(1 + PY V),

J/Ker(x) est une extension centrale par le groupe commutatif J”/Ker(x) du groupe fini
J'/J" d’ordre ¢*. La restriction de A\ a J' est irréductible, et la dimension de \ est ¢, la
dimension de IT est

gD*: J)=q[D* : E*(1+ PY ™3 =2¢[14 Py : (14 Pp)(1+ PY V7 > 2.

Quelle que soit la parité de f, on note que J = E*(1 + Pgm). L’indice de JD! dans
D* est égal a I'indice de nrd(J) dans F*, qui divise 2 car nrd(J) contient Ng/p(E*). On
a deux possibilités. Si D* = JD*' alors II|p1 est égal a

7(J,\) = ind2 i (A o).

Sinon, D* = JD' LU dJD" pour d € D*\ JD' (c’est le cas, si 'extension E/F est non
ramifiée, car JD! ne contient pas pp, ou si Uextension E/F est ramifiée et p est impair,
car nrd(J) ne contient pas de racine de l'unité d’ordre ¢ — 1), alors II|p:1 est somme de
7(J,\) et de son conjugué m(J, \) par d,

(3.4) Mpr = 7(J,\) @7 (J,\).

Lemme 3.7. Si p = 2 et II triviale sur 1 + P} mais non sur 1 + Pp, alors Il|p: est
irréductible.

Preuve. On a f = 2, x est un caractere de F™*(1+ Pp) trivial sur 1+ P contenu dans |, p,
de normalisateur J = E*(1 + Pp) dans D*, 'extension E/F est quadratique séparable et
ramifiée, A\ est un caractere de J étendant x tel que II = imol(l]7 DY
On a nrd(J) = F* donc D* = JD'. En effet, nrd(J) = Ng/p(E*)nrd(1 + Pp). Le
groupe Ng/p(E*) contient une uniformisante de F. On a nrd(up) = pf = pp et pp N D
est trivial car p = 2. On a 1+ Pr = nrd(1+ Pp) = nrd(1+ P3) ((7.4) dans 'appendice 7).
Montrons que II|p: = ind%Dl()\]le) est irréductible. On a J N D' = (14 Pp) N D?,
J N D! (14 Pp)nD! 1+ Pp

Q1P nD  (+ P nD = 1472 ((7) dans I'appendice 7).

On en déduit que le normalisateur de A|;np1 dans D! est JN D!, Par la remarque 6.4 dans
Pappendice §6, la représentation ind>- i (Al jap1) est irréductible. O

Lemme 3.8. Sip est impair, alors I|p1 est somme de deux R-représentations irréductibles
non isomorphes de dimension (dimpgI1)/2 > 1.
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Preuve. On a déja noté que [D* : JD'] = 2 et (3.4). Nous montrons que m(J,\) est
irréductible et non isomorphe a 4m(J, \).

Le pro-p radical de J est J, = (1+ Pg)(1+ P}{/Q]). Tout élément de 1+ Py est un carré,
nrd(J,) C 1+ Pr = ZNJ, = (14 Pr)* = nrd(ZNJ,) C nrd(J,), donc J, = (ZNJ,)(D'N.J,).

La représentation A|;, est irréductible. Le groupe ZNJ, agit dans A|; par un caractere,
donc A|piny, est irréductible.

L’entrelacement dans D* de A| 7, est J, donc l'entrelacement dans D' de A|pin J, est
J N D'. Ceci implique qu'il n’existe pas d’entrelacement de A|;np1 avec son conjugué
par d, et que m(J,)\) est irréductible et non isomorphe a 47 (J,\) (Remarque 6.4 dans
I'appendice §6). O

Si carg = 2, alors p est impair, la R-représentation JL(II)|gz,(r) est aussi somme de deux
R-représentations irréductibles non isomorphes (voir [HV25, Theorem 1.5]). Le théoréme
principal est démontré.

4. REDUCTION MODULO /¢

Toute Q¢¢-représentation lisse irréductible de D' est entiére car D! est compact. Sa
réduction modulo ¢ est aussi simple que possible.

Théoréeme 4.1. 1) La réduction modulo ¢ d’une Q}°-représentation irréductible lisse de
D* est toujours irréductible (ce n’est pas vrai pour D*, et si { # p pour GLy(F),SLy(F)).
2) Toute F¢-représentation irréductible lisse de D' est la réduction modulo ¢ d’une
%e_représentation irréductible entiére lisse de D' (c’est vrai pour D*, et si { # p pour

GLy(F),SLs(F)).

Preuve. Le théoréme est évident pour les caractéres de D', donc lorsque ¢ = p.

Supposons £ # p et considérons une représentation irréductible lisse de D' de dimen-
sion > 1. Nous avons montré en §3.4 qu’elle est contenue dans la restriction & D! d’une
représentation irréductible lisse IT de D* de dimension > 2. Si Il est f-adique (i.e. R = QJ}°)
on peut supposer que II est entiere (que son caractere central est entier). On rappelle (voir
[V89]) que r¢(IT) est irréductible car la dimension de IT est > 2, que la correspondance de
Langlands Galois-Quaternions commute avec la réduction modulo /, et que toute représen-
tation irréductible lisse -modulaire (i.e. R = F§°) de D* est la réduction modulo ¢ d'une
représentation irréductible /-adique entiere lisse.

Si £ # 2, on note X(II) 'ensemble des caracteres lisses f-adiques x de F* vérifiant
II ~ I ® xonrd et X(ry(II)) 'ensemble des caracteres lisses (-modulaires de F™* vérifiant
re(I1)) ~ ro(II)@xonrd. Par (3.3) et [HV25, Theorem 4.24], la correspondance de Langlands
Galois-Quaternions, les entiers | X (IT)| et | X (r,(II))| ont les valeurs suivantes:

o | X(II)| = | X (r,(I))| = 1 alors II|p1 et r,(II)|pr = r4(II|p1) sont irréductibles.

o | X(II)| = | X (re(IT))| = 2, alors II|p1 est somme de deux représentations irréductibles
non équivalentes de réductions irréductibles modulo ¢ non équivalentes.

o | X(IT)| = 2,| X (r,(I1))| = 4, alors IT| p: est somme de deux représentations irréductibles
non équivalentes de réductions irréductibles modulo ¢ équivalentes.
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o | X(II)| = | X (re(IT))| = 4, alors II|p: est somme de deux représentations equivalentes
de réductions irréductibles modulo /.

On en déduit le théoreme si ¢ # 2.

Si ¢ = 2 alors p est impair. Si p est impair, le lemme 3.8 pour Q}¢ et F¢ (dim Il > 2
signifie que II est tordue par un caractere d’'une représentation minimale sauvagement
ramfiée), implique que II|p, est la somme de deux représentations de D; de réduction

modulo ¢ irréductibles et non équivalentes. On en déduit le théoreme si p est impair, donc
sil=2. U

5. PARAMETRES DE LANGLANDS ETENDUS

Soit R un corps algébriquement clos de caractéristique carg # p. La correspondance
de Langlands pour D* (see §2.2) est une bijection qui associe a une R-représentation lisse
irréductible II de D* de dimension > 1, une R-représentation lisse irréductible o de Wr
de dimension 2, a isomorphisme pres. Cette bijection est compatible a la torsion par les
R-caracteres lisses de F*, donc la classe de conjugaison du morphisme oy de Wr dans
PGLy(R) déduit de opy ne dépend que de la restriction de IT & D*. Ce morphisme est lisse,
et elliptique au sens ot il ne prend pas ses valeurs dans un tore de PG Lo(R). Comme tout
tel morphisme se reléve en une R-représentation lisse irréductible de Wy [HV25, Lemma
5.1], on obtient ainsi une bijection entre les L-paquets non triviaux pour D! et les classes
de conjugaison de morphismes lisses elliptiques de Wy dans PG Ly(R). C’est ce qu’on peut
appeler la correspondance de Langlands pour D!. La question se pose alors de savoir si I’on
peut étendre cette correspondance au sens ou, pour une R-représentation lisse irréductible
IT de dimension > 1 de D*, 'on peut indexer les classes d’isomorphismes des composants
irréductibles de II|p1 en termes de . Pour R = C, c¢’est vrai pour les formes intérieures
de SL, (pour n = 2 voir [LL79] si carp = 0, [L24] en toute caractéristique pour F, et
pour n général voir [HS12] si carp = 0, [ABPS16], [AMPS17] en toute caractéristique pour
F). Pour carg # p nous avons étudié la question analogue pour SLy(F'), et montré que les
résultats pour R = C sont également valables si et seulement si carg # 2 [HV25, paragraphe
apres Theorem 1.5]. Nous analysons ici le cas de D'. Comme dans [HS12] nous considérons
non le centralisateur Cy; de oy dans PG Ly(R), comme nous I'avons fait pour SLy(F), mais
plutot son centralisateur Cp dans SLy(R), et les représentations irréductibles de Cy dont
la restriction au centre p de SLo(R) est fidele (les autres représentations irréductibles de
Cr sont triviales sur p, et s’identifient aux représentations irréductibles du groupe fini

Cn = Cn/p).

Proposition 5.1. Soit [T une R-représentation lisse irréductible de D*, de dimension > 1,
et rappelons que carg # p.
A) Supposons carg # 2 et choisissons une racine de l'unité i € R d’ordre 4.
o Sidy=1, alorsp=2 et Cy = p.
o Sidy = 2, alors Cy est conjugué au sous-groupe d’ordre 4 engendré par _OZ

1
0

e Sidy =4, alors Cyy est conjugué au groupe Qg engendré par (8 —O@> et (_01 (1)>



REPRESENTATIONS DES QUATERNIONS DE NORME 1 11
B) Sicarg = 2, alors diy = 2 et Cyy est trivial.

Preuve. Cette proposition est une variante de [HV25, Theorem 5.2]. Soit JL(II) la R-
représentation irréductible de G' Ly (F') correspondant a IT par la correspondance de Jacquet-
Langlands (§2.2). Elle est supercuspidale, puisque dim(II) > 1. De plus, oy, qui est
irréductible, correspond a JL(II) par la correspondance de Langlands, et dyy est le cardinal
dyrry du L-paquet de SLy(F') attaché a JL(IT). On applique a JL(II) [HV25, Theorem
5.2 et sa preuve]. D’aprés la preuve A) de loc. cit. Theorem 5.2, le centralisateur Cy de
I'image de 7 est fini, isomorphe au groupe des R-caracteres de Wy qui stabilisent oyy.

A) Supposons carg # 2. Alors Cp; est un 2-groupe élémentaire de cardinal dy. On voit
donc:

e Si dp = 1 (ce qui ne se produit que si p = 2), alors Cy; est trivial et Cpy = p.

e Si dy = 2, alors Cpy ~ Z/27Z. D’aprés [B10, Proposition 4.1], a conjugaison prés Cpp

contient I'image de (é

e Si dyy = 4, alors Cyy ~ Z/27 x 7,/27. On vérifie immédiatement que Qg est un groupe
quaternionien d’ordre 8, d'image dans PG Ly(R) isomorphe & Z /27 x Z/27. Appliquant
a nouveau loc. cit., on obtient qu’a conjugaison pres Cp; est I'image de Hg, auquel cas
Cn = Qs.

B) Si carg = 2, alors C7y est trivial, et son image inverse Cry dans SLy(R) lest aussi.
[l

9@.), auquel cas Cpy est engendré par cette matrice.

Soit IT comme dans la proposition. Notons |£(II)] le cardinal de son L-paquet L£(II).

A) Si carg # 2, nous avons

o |[L(II)] =dn =1 et Cyp = p a un unique R-caractere fidele.

o |[L(IT)] = 1,dy = 4 et Cyp ~ Qs a, a isomorphisme pres, une seule R-représentation
irréductible dont la restriction au centre est fidele. Elle est de dimension 2, ce qui interprete
le fait que la multiplicité du composant irréductible de II|p: est 2.

o |L(II)| =dny =2 et Cyp ~ Z/47Z a deux R-caracteres fideles qui devraient correspondre
aux deux éléments de L£(II). Mais contrairement au cas de SLy(F'), nous ne disposons pas
des modeles de Whittaker pour choisir une des composantes irréductibles de II|p1. Méme
pour R = C et carp = 0, un tel choix demande certainement des données supplémentaires,
soit globales comme le mentionne [L.24, dernier paragraphe]|, soit locales [K16, §5.4].

B) Si carg = 2, nous avons |L(I)| = dy = 2 et Cpy est trivial. On n’a donc pas une
correspondance de Langlands étendue.

6. APPENDICE: CRITERES D’IRREDUCTIBILITE

Soit R un corps commutatif, G un groupe localement profini, J un sous-groupe ouvert
de G, et A une R-représentation irréductible lisse de J. On s’intéresse a 'irréductibilité de
Pinduite compacte ind§ A de A & G.

Regardons les endomorphismes de ind? A. L’induite compacte ind? A est contenue dans
I'induite Indf,; Ade X a G. Les fonctions dans ind? A a support dans Jg.J pour g € G forment
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une sous-représentation ind7?’ A de (ind§ A)|;. On définit de méme Ind7?’ X c (Ind§ \)|,.
L’induction compacte ind? est l'adjointe a gauche de la restriction de G a J, tandis que
Pinduction Ind§ est son adjointe & droite [V96, §5.7].

On a Endgg(ind§ \) € Hompe(ind§ A, Ind§ \) et

(6.1) Hompze(ind§ A, Ind§ \) ~ Homp; (ind§ A, \) = Homp, (@ 547 ind7?” A, \)
~ H HomRJ(indng M)~ H Homp(jnes) ()2, A),
JgJ JgJ
(6.2) Endge(ind§ \) ~ Homp; (X, ind§ \) = Homp; (), @ 547 ind?” \)

~ @ ;.7 Homp (A, indigj A) car \ est irréductible.

Si JgJ/J est compact, alors ind7?’ A = Ind}?’ X et par adjunction Homp; (), ind}%’ \)
est isomorphe a Homp(jne.) (A, 9).

La contribution de ¢ € Endgy A dans Endge(ind§ A) est ind§ (1).

On en déduit I'équivalence des trois propriétés suivantes:

e Endpg(ind§ \) = Endgy \.

e Le composant A-isotypique de (ind§ \)|; est égal a \.

o J={g€ G| Hompgy(\ ind}"’ \) # 0}.

Lemme 6.1. La représentation ind? A est irréductible lorsque 'on a:

a) Les propriétés équivalentes ci-dessus sont vérifiées.

b) Pour toute sous-représentation 7 de ind5(X\), si X est quotient de |y alors \ est une
sous-représentation de 7| ;.

Preuve. On choisit une sous-représentation non-nulle X de ind5(\). Comme ind§(\) C
Ind§ (), par adjunction \ est un quotient de X|;. Par b), A est une sous-représentation de
X|y. Par adjunction, il existe un endomorphisme de indf,; A d’image non nulle Y contenue
dans X. Par a), cet isomorphisme est de la forme ind§ (+) pour un endomorphisme non nul ¢
de A. Comme X est irréductible, ¢ € Endgy A est inversible, donc ind5 (1) € Endgg(ind§ \)
est inversible et ind§ A =Y = X. Donc ind§()\) est irréductible. O

On rappelle que I'ensemble d’entrelacement de \ dans G est

{9 € G| Hompg(sne s (A, 9N) # 0}.

Il est égal & J si et seulement si (en conjuguant par g~ !):
J = {g eG | HOH]R(ngJ)(g)\, /\) 7é 0}

Par les équivalences (6.1) cette égalité est équivalente & Hompg (ind§ A, Ind§ A) = Endgy A.
Avec les équivalences (6.2), elle implique a) du lemme 6.1.

Le critére simple d’irréductibilité [V00, Lemma 3.2] lorsque R est algébriquement clos,
est un cas particulier de la variante suivante du lemme 6.1:
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Variante 6.2. La représentation ind? A est irréductible lorsque l'on a:
a’) L’ensemble d’entrelacement de A dans G est J.
b’) la propiété b) du lemme 6.1 ot quotient et sous-représentation sont permutés.

Preuve. Soit Y un quotient non nul de ind? A. Par adjonction, A est une sous-représentation
de Y|;. Par b’) A est un quotient de Y|, donc par adjonction Hompe(Y, IndS A) # 0, et il
existe un homomorphisme non nul de ind§ A dans Ind§ \. Son image est dans ind§ \ car
a’) implique a). On termine comme dans la preuve du lemme 6.1. U

Soit J! un sous-groupe compact de J de pro-ordre inversible dans R (de sorte que
toutes les R-représentations lisses de J' sont semi-simples), et ;4 une R-représentation lisse
irréductible de J!. Le lemme suivant est un raffinement du critére d’irréductibilité du
lemme 6.1.

Lemme 6.3. La représentation ind? A est irréductible lorsque l'on a:
c¢) La restriction de \ a J' est p-isotypique de multiplicité finie m.
d) Le composant p-isotypique de la restriction a J* de ind? A est de multiplicité m.

Preuve. Siind§ () est réductible, on choisit une sous-représentation non-nulle X de ind5(\)
telle que le quotient Y soit non nul. Par adjonction A est une sous-représentation de Y|
et un quotient de X|;. Donc la multiplicité de u dans la restriction a J' de Y et de X est
au moins 2m. Ceci contredit d). U

Remarque 6.4. o c) et d) impliquent que le composant p-isotypique de ind?)\| g1 est la
sous-représentation A de ind§ A|;, donc ¢) et d) impliquent a).
e Si A1 est irréductible (isomorphe a p, m = 1) et son entrelacement dans G est égal

a J alors Homp i (p, imding A\) =0sig¢J donc d) est vérifié et ind§ X est irréductible.

A notre connaissance, un critére d’irréductibilité proche de celui du lemme 6.3 est util-
isé dans toutes les constructions explicites de représentations irréductibles cuspidales de
groupes réductifs p-adiques sur un corps commutatif R de caractéristique ¢ # p [HV22]. 1
est appliqué avec .J compact modulo le centre de G et J! est un pro-p sous-groupe ouvert

de J.

7. APPENDICE: COMMUTATEURS DE D!

Dans cet appendice, on considére un corps gauche D de centre F et de degré d? > 1 sur
F et d’invariant de Hasse r/d pour 1 < r < d, (r,d) = 1. On utilise les notations tradition-
nelles Op, Pp, kp, pp,Up déja utilisées quand D est un corps de quaternions (Notations
2.1). On note UY, = Up, Ul = 1+ P}, pour i > 0. On choisit une racine de l'unité w € D
d’ordre ¢¢ — 1 et un générateur pp de Pp tel que p?) = pr, ppwpp' = w?. L’extension
E = F(w) de F est non ramifiée de degré d. La norme réduite nrd : D — F' (resp. trace
réduite trd : D — F') de D sur F restreinte a E est la norme Ng/p (resp. trace Tg/p) de
E sur F. On note D! le noyau de nrd.

Théoréme 7.1. Tout élément de D' N U}, est produit de deux commutateurs de D*.
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On en déduit le résultat déja connu (see [Rie70, Corollary page 521]):
Corollaire 7.2. Le groupe (D', D') engendré par les commutateurs de D' est D* N U},.

Preuve. Par le théoreme, D' N U}, € (D', D). Par lapplication quotient op : Op — kp,
D'/(D' N U}) s’identifie au noyau k}, de la norme de k}, vers ki, et kL est commutatif.
Donc (D', DY) ¢ D' nU},. O

Remarque 7.3. Si H est un F-groupe simplement connexe et isotrope alors H(F) =
(H(F),H(F)) par [PR84, 6.15].

Nakayama et Matsushima [NM43] ont prouvé que chaque élément of D' est le produit
de trois éléments of D*. Nous démontrons maintenant le théoreme en nous inspirant de
leur preuve.

Preuve. On fixe un entier positif i > 1 et une racine de I'unité z € E d’ordre (¢?—1)/(¢g—1).
Il existe w € Uy, tel que Ng,p(w) = nrd(1+pp). Fixons w et posons t = (1+pp)w~'. Alors
t € D' NU}. Adaptant la méthode de [NM43], nous allons montrer par approximations
successives :

(7.1) Pour tout a € D' N U}, il existe b, c € D' tels que a = (2,b)(t,c).

Nous allons utiliser les deux assertions suivantes:

a) Supposons que i n’est pas un multiple de d. Alors pour tout 1+ sp%, € U}, il existe
v € D' NUY tel que (z,v) = 1 + spl, modulo U5,

b) Supposons que i > 1 est un multiple de d Alors pour tout 1+yp%, € Ut b avec pp(y) €
kp de trace nulle dans kp, il existe 1 + ap’y ' € U}D ! tel que (1 +pp, 1 +apn ) =1+ ypi,
modulo Uj™. Dans ce cas, on a aussi (t,1+ xp5') = 1 + yp’, modulo Up™.

Prouvons (7.1). Supposons trouvés b;, c; € D' NU} tels que a = (z,b; )(t ¢;) modulo Uj,.
Pour i =1 on prend b; = ¢; = 1.

Si ¢ n’est pas multiple de d et a = u(z,b;)(t,¢;) pour u € D' N UY, par a) il existe
v e D' N U} tel que (z,v) = v modulo Us™. Comme (z,vb;) = (2,v)(v, (2,b:))(2, b;) et
(v, (2,b;)) € US™, on a a = (2,vb;)(t, ¢;) modulo Up™. On pose b1 = vb;, ciy1 = ¢;.

Sii=kd k> 1, est un multiple de d non nul et a = (z, b;)(t, ¢;)u pour u € D*'NUY, alors
u=1+ yp’fm € D' avec y € Op. Admettons que la trace de pp(y) dans kp est nulle (nous
le prouvons dans la remarque 7.4). Par b) il existe v € D'N UL tel que u = (¢, v) modulo
Uptt. Donc a = (z,b;)(t, ¢;)(t,v)modulo U5, Comme (¢, c;v) = (t,¢;)(ci, (t,v))(t,v) et
(cz,( v)) € U, on a a = (2,b;)(t,c;v) modulo Up . On pose alors by = b, ¢ = civ.

Les suites (b;) et (¢;) convergent vers b et ¢ respectivement, et & la limite on obtient

= (z,0)(t,c). O

Nous avons admis dans cette preuve que la trace de pp(y) dans kr est nulle. Nous le
montrons dans la remarque suivante.

Remarque 7.4. Nous rappelons que le Og-module Op est libre de base (p%)o<i<a—1 [Rei75,
(13.3)] et que la trace Tg/p de E dans F restreinte a Op, la trace T, i, de kg dans kp,
les réductions pg de O dans kg, et pr de Op dans kg, forment un diagramme commutatif
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(les groupes de Galois de E/F et de kg/kp sont isomorphes)[Rei75, p.144]. Ceci implique
que tout étément y = Zf;ol e, ¢; € Og, de Op vérifie:
(7.2) trd(y) = Te/r(eo), pp(y) = peleo) € kp = kg, protrd(y) = Thy /iy © pp(Y).

Le polynome caractéristique réduit de y est P(X) = Zfzo a; X ol a; € Op,aq=1,a4_1 =
—trd(y),ap = (—1)%nrd(y) [Rei75, (9.21)]. Son polynoéme caractéristique est P(X)?
[Rei75, (9.14)]. Pour un entier k& > 0, le polynome caractéristique réduit de 1 + yp%
est piP((X — 1)pp"). Son terme constant est pdP((—1)pp~) = Zfzo(—l)iaipl;(d_’) =

(=) + (=1)*'ag_1p% modulo pi™. Ceci implique
(7.3) nrd(1 + ypk) = 1 + trd(y)ph modulo pi.
On déduit de (7.2) et (7.3):
nrd(1 + yph) = 1 & protrd(y) = 0 < ik © pp(y) = 0.

Il nous reste a prouver les assertions a) et b).

Preuve de a). Soit ¢ > 1 non multiple de d. Notons que z € D' et que pp(2) a le méme
ordre que z et engendre kp/kr (sinon il engendrerait une sous-extension de kp/kr de degré
e < d, mais c’est impossible car (¢ —1)(¢¢ 1 —1) < (¢ —1)¢¢ ' =¢? —¢¥ P < ¢®— 1. En
particulier pp(2)?" # pp(z) car r est premier & d. Pour x € Op, on a

2(1+aph)z =1+yp}, avecy € Op et pp(y) = pp(2)pp(2) ™" pp(x) # pp(z) dans kp.

Pour s € Op, il existe z € Op tel que le commutateur (2,1 + xp}) est 1 + spj, modulo
P car I'on a:

(z,1+aph) =1+ sp,, modulo Py < pply —x) = pp(s),

et nous venons de voir que pp(y) # pp(z).

Pour tout 1+ sp}, € Up il existe donc 1 + xp}, € Up tel que (2,14 aph) = 1+ sp)
modulo U}, ", Le lemme suivant implique qu'il existe u € D' N U} tel que u = 1 + xph,

modulo P5tt. On a (z,u) = 1 + sp%, modulo Up.

Lemme 7.5. On a pourt > 1,

(7.4) nrd(UL)) = Uk sii=dk—j avec0<j<d—1, k> 1.
L’injection de D' dans D* induit un isomorphisme

(7.5) (D' NUL)/(D'NUR™Y) = Up/Up™

st 1 n’est pas un multiple de d.

Preuve. Montrons (7.4). La norme réduite envoie Up dans Up, et UL dans U, NUp. 1l est
bien connu que Ng/r(Uf) = Ul [S68, Chapitre V Proposition 1]. On a P}, N Op = Pf et
PiNOp=PEpouri=dk—javec0<j<d—1, k>1.

On déduit de (7.4) que nrd(U%) = nrd(U5™) si i n’est pas un multiple de d. Dans ce
cas, l'injection induit I'isomorphisme . [l
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Preuve de b).

Pour z € Op, le commutateur (14pp, 1+zph?') est 1+yph avec pp(y) = pp(2)? —pp(z)
si ¢ est un multiple de d.

En effet, on calcule (1 +a)(1+b)(1+a)(1+V) aveca+a' +aa’ =b+ b0 +bb' =0, en
négligeant les termes avec deux a et un b, ou un a et deux b. Ona (1+a)(1+0b)(1+4d') =
1+(1+a)b(1+d) =1+b+ab+ba’ = 1+b+ab—ba et (1+b+ab—ba)(1+b') = 1+ab—ba.
On prend a = pp,b = xpy*.

Tout élément de kp de trace nulle dans kp est de la forme v¢9 — v pour v € kp. En
effet, 'application linéaire v — v — v : kp — kp de noyau kp car (r,d) = 1, a son image
contenue dans le noyau de la trace kp — kp qui est surjective.

Pour y € Op avec pp(y) de trace nulle dans kg, il existe donc x € Op tel que (1 +

pp, 1 +ap5t) =14 yp% modulo pit.

8. APPENDICE: LE cAs F'=Q, ET R =F}“.

Lorsque F' = Q, et R = F}°, nous donnons pour D et D! T'analogue d'une proposi-
tion démontrée pour les Fy¢-représentation irréductibles supercuspidales de GLy(Q,) et
de SLy(Q,) (appelées supersingulieres) par Breuil pour GL2(Q,) et par Abdellatif pour
SLy(Qp). Pour un entier 0 < 7 < p — 1, on note Sym"(F2) la représentation de G'Ly(Zy)

étendue a K = Q) G Ly(Z,) en envoyant p sur I'identité.

Proposition 8.1. [Abdel4, Théoréme 4.12]. I existe des Fp¢-représentations supersin-
guliéres non équivalentes Iy, ... I,y de GL2(Qy) et mo,...,m—1 de SLy(Q,) telles que:
1) 11, = (indZ*%) Sym" (F2))/T,  0<r<p-—1,
est la représentation conoyau d’un certain endomorphisme T de indgLQ(Q”) Symr(lﬁ‘g).
2) HT'SLQ(QP) =~ Ty SV Tp—1—r, 0 S r S D — 1.
3) Une représentation supersinguliére de SLy(Q),) est isomorphe a une représentation m,
pour un unique entier 0 <r < p—1.

Soit 7y un plongement de k}, dans (F5¢)* relevé a D' par la surjection canonique pp :

Up — k% restreinte & D'. Pour tout entier 0 < r < p — 1, soient 7, = 7™ et A, un
. PUNRER X 1 -
[Fp¢-caractere de QUp égal a 1 sur p et a m, sur D' On an? = 7T(()T+ - Ty = Tp—1—r
1 , .
car 5" = 1. Nous avons démontré en §3.2:

Proposition 8.2. 1) La Fgc—représentation II, = ind(ggUD A, est irréductible de dimension
2pour0<r<p-—1.

2) I, |pr ~ 7 @ Tp_1— pour 0 <r <p—1.

3) Une Fy¢-représentation irréductible lisse de D! de dimension > 1 est isomorphe da une
représentation mw, pour un unique entier 0 < r < p — 1.

Dans les deux propositions, on remarque que la restriction de II, au sous-groupe SLs(Q,)
ou D' a multiplicité 1 sauf si p est impair et r = (p — 1)/2 ou elle est 2.
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On comparera avec les résultats de [BS25]. La restriction & SLs(Q,) d’une représenta-
tion de Banach unitaire p-adique irréductible IT of GLy(Q,) sur une extension finie £/Q,,
associée par la correspondance locale de Langlands p-adique, a une représentation ga-
loisienne oy absolument irréductible continue de dimension 2, est une somme directe de
s < 2 représentations irréductibles. Elle est sans multiplicité et s est le cardinal S du
centralisateur dans PG L, de la représentation projective galoisienne associée a oy sauf si
o est triplement imprimitive auquel cas S = 4 et Il|g,(q,) est somme directe de deux
représentations irréductibles équivalentes.
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