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Abstract. Let p be a prime number, F a local field with finite residue field of charac-
teristic p, D the quaternion division algebra with centre F , and R an algebraically closed
field, of any characteristic carR. We classify the smooth irreducible R-representations π
of the group D1 of elements of D∗ with reduced norm 1. Such a π occurs in the restriction
of a smooth irreducible R-representation Π of D∗. When the dimension of Π is > 1,
following our previous work in the case of SL2(F ), we show that the restriction of Π to
D1 is irreducible or the sum of two irreducible representations. When carR 6= p, that
restriction is the sum of two irreducible equivalent representations if and only if the R-
representation of GL2(F ) corresponding to Π via the Jacquet-Langlands correspondence
restricts to SL2(F ) as a sum of four inequivalent irreducible representations (this is never
the case if carR = 2).

Résumé. Soit p un nombre premier, F un corps local non-archimédien de corps résiduel
fini de caractéristique p, D le corps de quaternions de centre F , et R un corps algébrique-
ment clos de caractéristique carR arbitraire. Nous classons les R-représentations lisses
irréductibles π du groupe D1 des quaternions de norme réduite 1. Une telle représenta-
tion π est contenue dans la restriction à D1 d’une R-représentation lisse irréductible Π de
D∗. Lorsque la dimension de Π est > 1, nous démontrons que la restriction de Π est irré-
ductible ou somme de deux représentations irréductibles. Si carR 6= p, cette restriction est
somme de deux représentations irréductibles isomorphes si et seulement la représentation
de GL2(F ) correspondant à Π par la correspondance de Jacquet-Langlands se restreint
à SL2(F ) comme une somme de quatre représentations irréductibles non isomorphes (ce
n’est jamais le cas si carR = 2).
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1. Introduction

Les conjectures que Langlands a formulées à partir des années 1960 structurent une
partie importante de la théorie des nombres moderne. Dans le cadre où le corps de base
F est un corps local non-archimédien à corps résiduel fini, elles relient les représentations
irréductibles complexes d’un groupe réductifG(F ) à des paramètres de nature galoisienne, à
valeurs dans un groupe dual de G. Le développement des techniques de congruence impose
de remplacer les coefficients complexes par un corps algébriquement clos plus général R.
Hors le cas où G est un tore, qui se déduit de la théorie du corps de classes, le premier cas à
considérer est celui de G = SL2. Nous avons examiné ce cas en grand détail dans un article
précédent [HV25]. Le présent article traite le cas compagnon de la forme intérieure donnée
par le groupe de quaternions de norme 1 sur F . Plus précisément, nous fixons un nombre
premier p et un corps local non archimédien F de caractéristique résiduelle p. Nous fixons
également un corps algébriquement clos R. Lorsque la caractéristique carR de R n’est pas
p, dans loc.cit., nous avons classifié les R-représentations lisses irréductibles de SL2(F ), en
utilisant qu’elles apparaissent dans la restriction de R-représentations lisses irréductibles
de GL2(F ). Dans le présent article, nous considérons un corps de quaternions D de centre
F , nrd : D∗ → F ∗ la norme réduite et le groupe D1 formé des éléments dont la norme
réduite vaut 1. C’est une forme intérieure non déployée de SL2(F ), unique à isomorphisme
près. Nous classifions les R-représentations lisses irréductibles de D1, sans hypothèse sur
carR. Elles apparaissent dans la restriction des R-représentations lisses irréductibles de
D∗.

Les R-représentations lisses irréductibles de D∗ de dimension 1 (les caractères) se re-
streignent en le caractère trivial de D1.

Pour carR = p, les R-représentations lisses irréductibles de D1 sont des caractères, et
forment un groupe cyclique d’ordre q + 1 où q est le cardinal du corps résiduel de F .

Théorème 1.1 (Théorème principal). Soit Π une R-représentation lisse irréductible de
dimension > 1 de D∗. Notons dΠ la dimension de l’algèbre EndRD1 Π des endomorphismes
de Π|D1, et JL(Π) la R-représentation irréductible de GL2(F ), image de Π par la corre-
spondance de Jacquet-Langlands avec R comme corps de coefficients.
a) La restriction à D1 de Π est irréductible ou somme de deux représentations irré-

ductibles.
b) La restriction de JL(Π) à SL2(F ) est somme de dΠ représentations irréductibles non

équivalentes.

On a dΠ = 1 si Π|D1 est irréductible, dΠ = 2 si Π|D1 est réductible avec deux composants
irréductibles non équivalents, dΠ = 4 si Π|D1 est réductible avec deux composants irré-
ductibles équivalents. La différence avec le cas de SL2(F ) réside dans le fait que Π|D1 peut
ne pas être de multiplicité 1.
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Nous verrons que Π|D1 est réductible si p est impair ou si Π est tordue par un caractère
d’une représentation modérée, et donnerons un exemple où Π|D1 est irréductible si p = 2.

Pour carR 6= p, les R-caractères non triviaux de D1 sont les composants des restrictions
des R-représentations irréductibles de D∗ de dimension 2.

Au §2, nous fixons les notations et énonçons quelques rappels dont nous aurons besoin,
puis passons directement à la démonstration du Théorème. Elle se fait en deux temps, au
§3.

Si la caractéristique de R n’est ni 2 ni p, dΠ est le nombre des R-caractères lisses χ de
F ∗ tels que la torsion par χ ◦ nrd stabilise Π. On utilisera alors que la correspondance
de Langlands qui associe à Π une R-représentation irréductible lisse de dimension 2 du
groupe de Weil absolu WF de F est compatible à la torsion par les caractères, ce qui
permet d’utiliser les résultats de [HV25].

Si carR = 2 ou p, nous utiliserons la construction de Π explicitée dans [V89]. Nous
verrons en §3.3, que dΠ = 2 sauf si carR = p, p est impair et Π est induite d’un R-caractère
λ de F ∗UD (où UD est le groupe des unités de l’anneau des entiers de D) de restriction à
D1 l’unique R-caractère d’ordre 2.

Notons ` un nombre premier (` = p est admis) et Xac une clôture algébrique d’un corps
commutatif X. Toute Qac

` -représentation lisse irréductible de D1 est entière car D1 est
compact. La réduction modulo ` de ces représentations est aussi simple que possible. Nous
prouverons au §4:

Théorème 1.2. 1) La réduction modulo ` de toute Qac
` -représentation irréductible lisse de

D1 est irréductible.
2) Toute Fac

` -représentation irréductible lisse de D1 est la réduction modulo ` d’une Qac
` -

représentation irréductible lisse de D1.

Pour D∗ et si ` 6= p pour GL2(F ), SL2(F ), la propriété 2) reste vraie, mais pas la
propriété 1).

Au §5, pour carR 6= 2 nous établissons une correspondance de Langlands étendue qui à
une R-représentation irréductible lisse de D1 de dimension > 1 associe un morphisme φ
de WF dans PGL2(R) et une R-représentation du groupe des composantes connexes du
centralisateur de φ dans SL2(R). Pour carR = 2, cette méthode ne suffit pas pour donner
une correspondance de Langlands étendue.

Dans l’appendice §6, nous donnons des critères d’irréductibilité, utilisés au §3 mais
d’un intérêt plus général. Dans le second appendice §7, nous considérons une F -algèbre à
division centrale D de degré réduit d > 1, et le noyau D1 de la norme réduite de D∗ à F ∗.
Nous prouvons que tout élément de D1 ∩ (1 + PD) (où PD est l’idéal maximal de l’anneau
des entiers de D) est produit de deux commutateurs de D1. En particulier D1 ∩ (1 + PD)
est le groupe des commutateurs de D1, un résultat dû à C. Riehm. Enfin dans l’appendice
§8 dans le cas F = Qp nous comparons nos résultats avec ceux pour SL2(Qp) de [Abde14]
lorsque R = Fac

p , et de [BS25] pour des représentations de Banach.
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2. Notations et rappels

2.1. Dans la suite,
• F est un corps local non-archimédien, d’anneau d’entiers OF , d’idéal maximal PF

engendré par pF , de groupe des unités UF , de corps résiduel kF de caractéristique p et de
cardinal q, µF le groupe cyclique des racines de l’unité dans F ∗ d’ordre divisant q − 1, et
WF est le groupe de Weil de F .
• D est un corps de quaternions de centre F , sauf dans l’appendice §7. On notera OD

l’anneau d’entiers de D, PD l’idéal maximal de OD, ω ∈ D une racine de d’unité d’ordre
q2 − 1, pD un générateur de PD tel que p2

D = pF , pDωp
−1
D = ωq, UD le groupe des unités

de OD, kD le corps résiduel de OD (une extension quadratique de kF ), et %D : OD → kD la
surjection canonique. La conjugaison par pD induit l’élévation à la puissance q sur kD.
• La norme réduite nrd : D∗ → F ∗ de noyau D1 induit une surjection UD → UF et un

homéomorphisme D∗/F ∗D1 → F ∗/(F ∗)2. Le groupe D1 est contenu dans UD. Le groupe
F ∗D1 est ouvert et cofini dans D∗ sauf si carF = 2 où il est seulement fermé cocompact.
• R est un corps, algébriquement clos sauf dans l’appendice §6.
• [x] est la partie entière d’un nombre réel x.

2.2. La correspondance locale de Langlands pour D∗ avec R comme corps de coefficients,
fournit une bijection Π ↔ σΠ entre les classes d’isomorphisme des R-représentations irré-
ductibles lisses Π de dimension > 1 de D∗ et celles de dimension 2 du groupe de Weil WF

de F [V89].
Si carR 6= p, la correspondance locale de Jacquet-Langlands pour D∗ donne une bijection

Π ↔ JL(Π) entre les classes d’isomorphisme des R-représentations irréductibles lisses
de dimension > 1 de D∗ et celles des R-représentations supercuspidales de GL2(F ); la
correspondance locale de Langlands pour GL2(F ) donne une bijection σΠ ↔ JL(Π) entre
les classes d’isomorphisme des R-représentations irréductibles σΠ de dimension 2 de WF et
celles des R-représentations supercuspidales JL(Π) de GL2(F ) [V01], [V02]. Ces bijections
dépendent du choix d’une racine carrée de q dans R∗, mais la correspondance locale de
Jacquet-Langlands n’en dépend pas. Ces bijections sont compatibles à la torsion par les
caractères au sens suivant. Soit α : WF → F ∗ l’application de réciprocité du corps de
classes et det : GL2(F )→ F ∗ le déterminant. Pour tout R-caractère lisse χ de F ∗,
(2.1) Π⊗ χ ◦ nrd↔ σΠ ⊗ χ ◦ α↔ JL(Π)⊗ χ ◦ det .

2.3. Toute R-représentation lisse irréductible de D∗ ou de D1 est de dimension finie et
a un caractère central [H09, §2]. Soit ` un nombre premier (` = p est admis). Une Qac

` -
représentation lisse irréductible Π de D∗ est entière si et seulement si son caractère central
ωΠ est entier. Si elle est entière, la longueur de sa réduction modulo ` est ≤ 2. Quand
elle est égale à 2, la dimension de Π est 2. C’est toujours le cas si ` = p. Toute Fac

` -
représentation lisse irréductible de D∗ est la réduction modulo ` d’une Qac

` -représentation
lisse irréductible de D∗ [V89].

3. Preuve du théorème principal
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3.1. La restriction à D1 d’une R-représentation lisse irréductible de D∗ est semi-simple de
longueur finie, de composants irréductibles ayant la même multiplicité [HV25, §2.1]. UneR-
représentation lisse irréductible π de D1 apparait dans la restriction d’une R-représentation
lisse irréductible Π de D∗, car pour i assez grand, π est triviale sur D1 ∩ (1 + P i

D), donc π
s’étend à F ∗D1(1+P i

D) qui est ouvert d’indice fini dans D∗, et l’induction de F ∗D1(1+P i
D)

à D∗ est l’adjoint à gauche de la restriction.

Définition 3.1. Une R-représentation irréductible lisse Π de D∗ définit un L-paquet L(Π)
formé de l’ensemble des classes d’isomorphismes des R-représentations lisses irréductibles
de D1 contenues dans la restriction de Π à D1.

Deux L-paquets sont disjoints ou confondus [HV25, Lemma 2.3, (2) (b)] et l’union des L-
paquets deD1 est l’ensemble des classes d’isomorphisme des R-représentations irréductibles
de D1.

Comme Π a un caractère central, on a EndRD1 Π = EndRF ∗D1 Π. Comme dans la preuve
de [HV25, lemme 2.3]

EndRF ∗D1 Π ' HomRD∗(Π, indD∗

F ∗D1 Π|F ∗D1) ' HomRD∗(Π,Π⊗ indD∗

F ∗D1 1).
Notons dΠ la dimension de EndRD1 Π. Nous allons montrer que dΠ = 1, 2 ou 4.

Si dΠ = 1 alors Π|D1 est irréductible; si dΠ = 2 alors Π|D1 est somme de deux représenta-
tions irréductibles non équivalentes; si dΠ = 4 alors Π|D1 est somme de deux représentations
irréductibles équivalentes ou de quatre représentations irréductibles non équivalentes. Nous
montrerons que si dΠ = 4 le dernier cas ne se produit pas.

3.2. Le groupe des commutateurs (D∗, D∗) de D∗ est D1 [NM43], donc les R-caractères
lisses de D∗ se factorisent par la norme réduite et leur restriction à D1 est le caractère
trivial.

Mais D1 possède des caractères lisses non triviaux car (D1, D1) = D1 ∩ (1 +PD) [Rie70]
(voir l’appendice §7). La surjection canonique %D : OD → kD induit un isomorphisme de
D1/(D1 ∩ (1 + PD)) sur le noyau k1

D de la norme de kD/kF , cyclique d’ordre q + 1. Les
R-caractères lisses de D1 sont χ ◦ ρD pour les R-caractères lisses χ de k1

D.

Si carR = p, toute R-représentation irréductible lisse π de D1 est triviale sur le pro-p
sous groupe D1 ∩ (1 + PD) donc est un caractère.

Sans hypothèse sur carR, chaque R-caractère de D1 apparait dans la restriction à D1

d’une R-représentation irréductible lisse Π de D∗ triviale sur 1 + PD. Une telle représen-
tation de dimension > 1 est induite
(3.1) Π ' indD∗

F ∗UD
λ

d’un R-caractère λ de F ∗UD trivial sur 1+PD tel que λ|UD
est régulier, i.e. λ|UD

= ν◦ρD|UD

pour un caractère ν de k∗D régulier sur k∗F , i.e. νq 6= ν [V89], [H09, §3].
La régularité νq 6= ν est équivalente à la non-trivialité de ν sur k1

D, car l’image de
l’homomorphisme x→ xq−1 de noyau k∗F et d’ordre |k∗D|/|k∗F | = q + 1, est k1

D.
La restriction à D1 de λ est π(ν) = ν ◦ ρ|D1 et ρD(D1) = k1

D.
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Lemme 3.2. La restriction à D1 de Π comme en (3.1) est somme de deux caractères
Π|D1 ' π(ν)⊕ π(νq).

Preuve. Comme D∗ = F ∗UD t pDF
∗UD, la restriction de Π à D1 est la somme de la

restriction π(ν) à D1 de λ et de la restriction π(νq) à D1 du conjugué de λ par pD. �

On déduit du lemme 3.2 que la dimension dΠ de EndRD1 Π est dΠ = 4 si les caractères
π(ν) et π(νq) sont égaux et dΠ = 2 s’ils sont distincts.

Quand a-t-on l’égalité π(ν) = π(νq) ? L’application ν|k1
D
→ π(ν) est injective, donc

π(ν) = π(νq) est équivalent à νq = ν sur k1
D.

Lemme 3.3. On a ν = νq sur k1
D si et seulement si ν|k1

D
est d’ordre 2.

Preuve. Comme le R-caractère ν|k1
D
n’est pas trivial et (ν|k1

D
)q+1 = 1, on a ν|q−1

k1
D

= 1 si et
seulement si l’ordre de ν|k1

D
6= 1 divise (q − 1, q + 1) si et seulement si ν|k1

D
est d’ordre 2.

Le groupe k1
D est cyclique d’ordre q + 1. Il n’admet pas de R-caractère d’ordre 2 si p = 2

ou si carR = 2. Sinon, il admet un unique R-caractère d’ordre 2. �

On déduit du lemme 3.3 que dΠ = 4 si p est impair, la caractéristique de R n’est pas 2,
et ν|k1

D
est l’unique R-caractère d’ordre 2 de k1

D. Sinon, on a dΠ = 2.

Remarque 3.4. Pour carR 6= p et p impair, il existe un unique L-paquet de D1 avec dΠ = 4
par la correspondance de Jacquet-Langlands et [HV25, Proposition 4.22]. Les lemmes 3.2
3.3 le décrivent explicitement si carR 6= 2, p et p impair.

3.3. On suppose que la caractéristique de R n’est ni 2 ni p. Soit Π une R-représentation
lisse irréductible de D∗ de dimension > 1.

La R-représentation indD∗

F ∗D1 1 de D∗ est la somme des χ ◦ nrd où χ parcourt les R-
caractères lisses de F ∗ de carré trivial. La dimension de EndRD1 Π est (§3.1):
(3.2) dΠ = le nombre de χ tels que Π ' Π⊗ χ ◦ nrd .
Il n’y a pas de différence avec le cas de SL2(F ). La dimension de EndRSL2(F ) JL(Π) est
égale au nombre de χ tels que JL(Π) ' JL(Π)⊗ χ ◦ det [HV25, (4.12)].

Lemme 3.5. Les algèbres d’endomorphismes de Π|D1 et de JL(Π)|SL2(F ) ont la même
dimension dΠ.

Preuve. Les correspondances locales de Langlands sont compatibles avec la torsion par les
caractères (2.1), donc
(3.3) Π ' Π⊗ χ ◦ nrd⇔ σΠ ' σΠ ⊗ χ ◦ α⇔ JL(Π) ' JL(Π)⊗ χ ◦ det .

�

Le lemme 3.5 et [HV25, Theorem1.1] impliquent que dΠ = 1, 2 ou 4. La représentation
JL(Π)|SL2(F ) est sans multiplicité, somme de dΠ représentations irréductibles non équiva-
lentes [HV25, (4.5)], mais Π|D1 n’est pas de multiplicité 1 si dΠ = 4.
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Lemme 3.6. Lorsque dΠ = 4, Π|D1 est somme de deux representations irréductibles équiv-
alentes.

Preuve. Cette propriété est bien connue si R = C [L71], [LL79], [L24]. Nous montrons ici
qu’elle est vraie si carR 6= 2, p.

On commence par vérifier que si elle est vraie pour R elle est vraie pour tout R′ de
même caractéristique. Elle est vraie pour la clôture algébrique Rc du corps premier de
R si elle est vraie pour R, car les caractères complexes lisses de F ∗ de carré trivial sont
des Rc-caractères, et l’extension des scalaires de Rc à R donne une injection des classes
d’isomorphisme des représentations lisses irréductibles de D∗ sur Rc vers celles sur R.
Réciproquement la propriété pour Rc l’implique pour R, car une R-représentation lisse
irréductible tordue par un caractère lisse adéquat est définie sur Rc.

Donc, la propriété dans le cas complexe l’implique pour tout R de caractéristique 0.
On vérifie enfin que la propriété pour Qac

` ' C l’implique pour Fac
` (qui l’implique pour

tout R de caractéristique `). En effet, une Fac
` -représentation lisse irréductible Π se relève

à Qac
` en une représentation Π̃ telle que dΠ̃ = dΠ, car ce résultat est connu pour σΠ [HV25,

Theorem 4.23 2)], les correspondances de Langlands pour D∗ sont compatibles avec la
réduction modulo ` [V89] et la torsion par les caractères, la formule (3.2) pour les entiers
dΠ̃ et dΠ. �

Ceci achève la preuve du théorème principal si carR 6= 2. Nous traitons le cas restant
carR = 2 dans §3.4.

3.4. Sans hypothèse sur la caractéristique de R, nous utilisons la construction explicite de
Π [V89] pour démontrer le théorème principal. Une R-représentation lisse irréductible Π
de D∗ est tordue par un caractère d’une représentation modérée ou minimale sauvagement
ramifiée. Nous avons déja traité le cas où Π est modérée (triviale sur 1 + PD). Supposons
maintenant Π minimale sauvagement ramifiée (ceci implique carR 6= p).

On a une description explicite de Π. Soit f > 1 l’entier tel que Π est triviale sur 1 +P f
D

mais non sur 1+P f−1
D . Le groupe F ∗(1+P

[(f+1)/2]
D ) est commutatif modulo 1+P f

D et il est
distingué d’indice fini dans D∗. On choisit un R-caractère χ de F ∗(1 + P

[(f+1)/2]
D ) contenu

dans Π|
F ∗(1+P

[(f+1)/2]
D ) et l’on note J le centralisateur de χ dans D∗. La représentation Π

est induite d’une R-représentation λ de J de restriction χ-isotypique à F ∗(1 + P
[(f+1)/2]
D ),

Π ' indD∗

J λ.

Lorsque f est pair, [f/2] = f/2,

J = E∗(1 + P
f/2
D ), E/F quadratique, séparable, ramifiée

(a priori la construction ne donne pas E/F séparable, mais on peut choisir E/F séparable),
J/Ker(χ) est abélien, λ est un caractère, et la dimension de Π est

[D∗ : J ] = [UD : O∗E(1 + P
f/2
D )] = (q + 1) [1 + PD : (1 + PE)(1 + P

f/2
D )] > 2.
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Lorsque f est impair, [f/2] = (f − 1)/2,

J = E∗(1 + P
(f−1)/2
D ), E/F quadratique, séparable, non ramifiée,

et J/Ker(χ) est un groupe d’Heisenberg. Le groupe J = F ∗O∗E(1 + P
(f−1)/2
D ) contient les

sous-groupes distingués

J ′′ = F ∗(1 + PE)(1 + P
(f+1)/2
D ) ⊂ J ′ = F ∗(1 + PE)(1 + P

(f−1)/2
D ),

J/Ker(χ) est une extension centrale par le groupe commutatif J ′′/Ker(χ) du groupe fini
J ′/J ′′ d’ordre q2. La restriction de λ à J ′ est irréductible, et la dimension de λ est q, la
dimension de Π est

q[D∗ : J ] = q[D∗ : E∗(1 + P
(f−1)/2
D )] = 2q [1 + PD : (1 + PE)(1 + P

(f−1)/2
D ] > 2.

Quelle que soit la parité de f , on note que J = E∗(1 + P
[f/2]
D ). L’indice de JD1 dans

D∗ est égal à l’indice de nrd(J) dans F ∗, qui divise 2 car nrd(J) contient NE/F (E∗). On
a deux possibilités. Si D∗ = JD1 alors Π|D1 est égal à

π(J, λ) = indD1

J∩D1(λ|J∩D1).

Sinon, D∗ = JD1 t dJD1 pour d ∈ D∗ \ JD1 (c’est le cas, si l’extension E/F est non
ramifiée, car JD1 ne contient pas pD, ou si l’extension E/F est ramifiée et p est impair,
car nrd(J) ne contient pas de racine de l’unité d’ordre q − 1), alors Π|D1 est somme de
π(J, λ) et de son conjugué dπ(J, λ) par d,

(3.4) Π|D1 = π(J, λ)⊕ dπ(J, λ).

.

Lemme 3.7. Si p = 2 et Π triviale sur 1 + P 2
D mais non sur 1 + PD, alors Π|D1 est

irréductible.

Preuve. On a f = 2, χ est un caractère de F ∗(1+PD) trivial sur 1+P 2
D contenu dans Π|1+PD

de normalisateur J = E∗(1 + PD) dans D∗, l’extension E/F est quadratique séparable et
ramifiée, λ est un caractère de J étendant χ tel que Π = indD∗

J λ.
On a nrd(J) = F ∗ donc D∗ = JD1. En effet, nrd(J) = NE/F (E∗) nrd(1 + PD). Le

groupe NE/F (E∗) contient une uniformisante de F . On a nrd(µF ) = µ2
F = µF et µF ∩D1

est trivial car p = 2. On a 1 +PF = nrd(1 +PD) = nrd(1 +P 2
D) ((7.4) dans l’appendice 7).

Montrons que Π|D1 = indD1

J∩D1(λ|J∩D1) est irréductible. On a J ∩D1 = (1 + PD) ∩D1,
J ∩D1

(1 + P 2
D) ∩D1 = (1 + PD) ∩D1

(1 + P 2
D) ∩D1 '

1 + PD

1 + P 2
D

((7) dans l’appendice 7).

On en déduit que le normalisateur de λ|J∩D1 dans D1 est J ∩D1. Par la remarque 6.4 dans
l’appendice §6, la représentation indD1

J∩D1(λ|J∩D1) est irréductible. �

Lemme 3.8. Si p est impair, alors Π|D1 est somme de deux R-représentations irréductibles
non isomorphes de dimension (dimR Π)/2 > 1.
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Preuve. On a déja noté que [D∗ : JD1] = 2 et (3.4). Nous montrons que π(J, λ) est
irréductible et non isomorphe à dπ(J, λ).

Le pro-p radical de J est Jp = (1 +PE)(1 +P
[f/2]
D ). Tout élément de 1 +PF est un carré,

nrd(Jp) ⊂ 1+PF = Z∩Jp = (1+PF )2 = nrd(Z∩Jp) ⊂ nrd(Jp), donc Jp = (Z∩Jp)(D1∩Jp).
La représentation λ|Jp est irréductible. Le groupe Z∩Jp agit dans λ|Jp par un caractère,

donc λ|D1∩Jp
est irréductible.

L’entrelacement dans D∗ de λ|Jp est J , donc l’entrelacement dans D1 de λ|D1∩Jp
est

J ∩ D1. Ceci implique qu’il n’existe pas d’entrelacement de λ|J∩D1 avec son conjugué
par d, et que π(J, λ) est irréductible et non isomorphe à dπ(J, λ) (Remarque 6.4 dans
l’appendice §6). �

Si carR = 2, alors p est impair, la R-représentation JL(Π)|SL2(F ) est aussi somme de deux
R-représentations irréductibles non isomorphes (voir [HV25, Theorem 1.5]). Le théorème
principal est démontré.

4. Réduction modulo `

Toute Qac
` -représentation lisse irréductible de D1 est entière car D1 est compact. Sa

réduction modulo ` est aussi simple que possible.

Théorème 4.1. 1) La réduction modulo ` d’une Qac
` -représentation irréductible lisse de

D1 est toujours irréductible (ce n’est pas vrai pour D∗, et si ` 6= p pour GL2(F ), SL2(F )).
2) Toute Fac

` -représentation irréductible lisse de D1 est la réduction modulo ` d’une
Qac

` -représentation irréductible entière lisse de D1 (c’est vrai pour D∗, et si ` 6= p pour
GL2(F ), SL2(F )).

Preuve. Le théorème est évident pour les caractères de D1, donc lorsque ` = p.
Supposons ` 6= p et considérons une représentation irréductible lisse de D1 de dimen-

sion > 1. Nous avons montré en §3.4 qu’elle est contenue dans la restriction à D1 d’une
représentation irréductible lisse Π de D∗ de dimension > 2. Si Π est `-adique (i.e. R = Qac

` )
on peut supposer que Π est entière (que son caractère central est entier). On rappelle (voir
[V89]) que r`(Π) est irréductible car la dimension de Π est > 2, que la correspondance de
Langlands Galois-Quaternions commute avec la réduction modulo `, et que toute représen-
tation irréductible lisse `-modulaire (i.e. R = Fac

` ) de D∗ est la réduction modulo ` d’une
représentation irréductible `-adique entière lisse.

Si ` 6= 2, on note X(Π) l’ensemble des caractères lisses `-adiques χ de F ∗ vérifiant
Π ' Π⊗ χ ◦ nrd et X(r`(Π)) l’ensemble des caractères lisses `-modulaires de F ∗ vérifiant
r`(Π)) ' r`(Π)⊗χ◦nrd. Par (3.3) et [HV25, Theorem 4.24], la correspondance de Langlands
Galois-Quaternions, les entiers |X(Π)| et |X(r`(Π))| ont les valeurs suivantes:
• |X(Π)| = |X(r`(Π))| = 1 alors Π|D1 et r`(Π)|D1 = r`(Π|D1) sont irréductibles.
• |X(Π)| = |X(r`(Π))| = 2, alors Π|D1 est somme de deux représentations irréductibles

non équivalentes de réductions irréductibles modulo ` non équivalentes.
• |X(Π)| = 2, |X(r`(Π))| = 4, alors Π|D1 est somme de deux représentations irréductibles

non équivalentes de réductions irréductibles modulo ` équivalentes.
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• |X(Π)| = |X(r`(Π))| = 4, alors Π|D1 est somme de deux représentations èquivalentes
de réductions irréductibles modulo `.

On en déduit le théorème si ` 6= 2.
Si ` = 2 alors p est impair. Si p est impair, le lemme 3.8 pour Qac

` et Fac
` (dim Π > 2

signifie que Π est tordue par un caractère d’une représentation minimale sauvagement
ramfiée), implique que Π|D1 est la somme de deux représentations de D1 de réduction
modulo ` irréductibles et non équivalentes. On en déduit le théorème si p est impair, donc
si ` = 2. �

5. Paramètres de Langlands étendus

Soit R un corps algébriquement clos de caractéristique carR 6= p. La correspondance
de Langlands pour D∗ (see §2.2) est une bijection qui associe à une R-représentation lisse
irréductible Π de D∗ de dimension > 1, une R-représentation lisse irréductible σΠ de WF

de dimension 2, à isomorphisme près. Cette bijection est compatible à la torsion par les
R-caractères lisses de F ∗, donc la classe de conjugaison du morphisme σΠ de WF dans
PGL2(R) déduit de σΠ ne dépend que de la restriction de Π à D1. Ce morphisme est lisse,
et elliptique au sens où il ne prend pas ses valeurs dans un tore de PGL2(R). Comme tout
tel morphisme se relève en une R-représentation lisse irréductible de WF [HV25, Lemma
5.1], on obtient ainsi une bijection entre les L-paquets non triviaux pour D1 et les classes
de conjugaison de morphismes lisses elliptiques deWF dans PGL2(R). C’est ce qu’on peut
appeler la correspondance de Langlands pour D1. La question se pose alors de savoir si l’on
peut étendre cette correspondance au sens où, pour une R-représentation lisse irréductible
Π de dimension > 1 de D∗, l’on peut indexer les classes d’isomorphismes des composants
irréductibles de Π|D1 en termes de σΠ. Pour R = C, c’est vrai pour les formes intérieures
de SLn (pour n = 2 voir [LL79] si carF = 0, [L24] en toute caractéristique pour F , et
pour n général voir [HS12] si carF = 0, [ABPS16], [AMPS17] en toute caractéristique pour
F ). Pour carR 6= p nous avons étudié la question analogue pour SL2(F ), et montré que les
résultats pour R = C sont également valables si et seulement si carR 6= 2 [HV25, paragraphe
après Theorem 1.5]. Nous analysons ici le cas de D1. Comme dans [HS12] nous considérons
non le centralisateur CΠ de σΠ dans PGL2(R), comme nous l’avons fait pour SL2(F ), mais
plutôt son centralisateur CΠ dans SL2(R), et les représentations irréductibles de CΠ dont
la restriction au centre µ de SL2(R) est fidèle (les autres représentations irréductibles de
CΠ sont triviales sur µ, et s’identifient aux représentations irréductibles du groupe fini
CΠ = CΠ/µ).
Proposition 5.1. Soit Π une R-représentation lisse irréductible de D∗, de dimension > 1,
et rappelons que carR 6= p.
A) Supposons carR 6= 2 et choisissons une racine de l’unité i ∈ R d’ordre 4.
• Si dΠ = 1, alors p = 2 et CΠ = µ.

• Si dΠ = 2, alors CΠ est conjugué au sous-groupe d’ordre 4 engendré par
(
i 0
0 −i

)
.

• Si dΠ = 4, alors CΠ est conjugué au groupe Q8 engendré par
(
i 0
0 −i

)
et
(

0 1
−1 0

)
.
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B) Si carR = 2, alors dΠ = 2 et CΠ est trivial.

Preuve. Cette proposition est une variante de [HV25, Theorem 5.2]. Soit JL(Π) la R-
représentation irréductible deGL2(F ) correspondant à Π par la correspondance de Jacquet-
Langlands (§2.2). Elle est supercuspidale, puisque dim(Π) > 1. De plus, σΠ, qui est
irréductible, correspond à JL(Π) par la correspondance de Langlands, et dΠ est le cardinal
dJL(Π) du L-paquet de SL2(F ) attaché à JL(Π). On applique à JL(Π) [HV25, Theorem
5.2 et sa preuve]. D’après la preuve A) de loc. cit. Theorem 5.2, le centralisateur CΠ de
l’image de σΠ est fini, isomorphe au groupe des R-caractères de WF qui stabilisent σΠ.

A) Supposons carR 6= 2. Alors CΠ est un 2-groupe élémentaire de cardinal dΠ. On voit
donc:
• Si dΠ = 1 (ce qui ne se produit que si p = 2), alors CΠ est trivial et CΠ = µ.
• Si dΠ = 2, alors CΠ ' Z/2Z. D’après [B10, Proposition 4.1], à conjugaison près CΠ

contient l’image de
(
i 0
0 −i

)
, auquel cas CΠ est engendré par cette matrice.

• Si dΠ = 4, alors CΠ ' Z/2Z×Z/2Z. On vérifie immédiatement que Q8 est un groupe
quaternionien d’ordre 8, d’image dans PGL2(R) isomorphe à Z/2Z × Z/2Z. Appliquant
à nouveau loc. cit., on obtient qu’à conjugaison près CΠ est l’image de H8, auquel cas
CΠ = Q8.

B) Si carR = 2, alors CΠ est trivial, et son image inverse CΠ dans SL2(R) l’est aussi.
�

Soit Π comme dans la proposition. Notons |L(Π)| le cardinal de son L-paquet L(Π).
A) Si carR 6= 2, nous avons
• |L(Π)| = dΠ = 1 et CΠ = µ a un unique R-caractère fidèle.
• |L(Π)| = 1, dΠ = 4 et CΠ ' Q8 a, à isomorphisme près, une seule R-représentation

irréductible dont la restriction au centre est fidèle. Elle est de dimension 2, ce qui interprète
le fait que la multiplicité du composant irréductible de Π|D1 est 2.
• |L(Π)| = dΠ = 2 et CΠ ' Z/4Z a deux R-caractères fidèles qui devraient correspondre

aux deux éléments de L(Π). Mais contrairement au cas de SL2(F ), nous ne disposons pas
des modèles de Whittaker pour choisir une des composantes irréductibles de Π|D1 . Même
pour R = C et carF = 0, un tel choix demande certainement des données supplémentaires,
soit globales comme le mentionne [L24, dernier paragraphe], soit locales [K16, §5.4].

B) Si carR = 2, nous avons |L(Π)| = dΠ = 2 et CΠ est trivial. On n’a donc pas une
correspondance de Langlands étendue.

6. Appendice: Critères d’irréductibilité

Soit R un corps commutatif, G un groupe localement profini, J un sous-groupe ouvert
de G, et λ une R-représentation irréductible lisse de J . On s’intéresse à l’irréductibilité de
l’induite compacte indG

J λ de λ à G.

Regardons les endomorphismes de indG
J λ. L’induite compacte indG

J λ est contenue dans
l’induite IndG

J λ de λ àG. Les fonctions dans indG
J λ à support dans JgJ pour g ∈ G forment
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une sous-représentation indJgJ
J λ de (indG

J λ)|J . On définit de même IndJgJ
J λ ⊂ (IndG

J λ)|J .
L’induction compacte indG

J est l’adjointe à gauche de la restriction de G à J , tandis que
l’induction IndG

J est son adjointe à droite [V96, §5.7].
On a EndRG(indG

J λ) ⊂ HomRG(indG
J λ, IndG

J λ) et

(6.1) HomRG(indG
J λ, IndG

J λ) ' HomRJ(indG
J λ, λ) = HomRJ(⊕JgJ indJgJ

J λ, λ)

'
∏
JgJ

HomRJ(indJgJ
J λ, λ) '

∏
JgJ

HomR(J∩gJ)(gλ, λ),

(6.2) EndRG(indG
J λ) ' HomRJ(λ, indG

J λ) = HomRJ(λ,⊕JgJ indJgJ
J λ)

' ⊕JgJ HomRJ(λ, indJgJ
J λ) car λ est irréductible.

Si JgJ/J est compact, alors indJgJ
J λ = IndJgJ

J λ et par adjunction HomRJ(λ, indJgJ
J λ)

est isomorphe à HomR(J∩gJ)(λ, gλ).
La contribution de ι ∈ EndRJ λ dans EndRG(indG

J λ) est indG
J (ι).

On en déduit l’équivalence des trois propriétés suivantes:
• EndRG(indG

J λ) = EndRJ λ.
• Le composant λ-isotypique de (indG

J λ)|J est égal à λ.
• J = {g ∈ G | HomRJ(λ, indJgJ

J λ) 6= 0}.

Lemme 6.1. La représentation indG
J λ est irréductible lorsque l’on a:

a) Les propriétés équivalentes ci-dessus sont vérifiées.
b) Pour toute sous-représentation π de indG

J (λ), si λ est quotient de π|J alors λ est une
sous-représentation de π|J .

Preuve. On choisit une sous-représentation non-nulle X de indG
J (λ). Comme indG

J (λ) ⊂
IndG

J (λ), par adjunction λ est un quotient de X|J . Par b), λ est une sous-représentation de
X|J . Par adjunction, il existe un endomorphisme de indG

J λ d’image non nulle Y contenue
dansX. Par a), cet isomorphisme est de la forme indG

J (ι) pour un endomorphisme non nul ι
de λ. Comme λ est irréductible, ι ∈ EndRJ λ est inversible, donc indG

J (ι) ∈ EndRG(indG
J λ)

est inversible et indG
J λ = Y = X. Donc indG

J (λ) est irréductible. �

On rappelle que l’ensemble d’entrelacement de λ dans G est

{g ∈ G | HomR(J∩gJ)(λ, gλ) 6= 0}.

Il est égal à J si et seulement si (en conjuguant par g−1):

J = {g ∈ G | HomR(J∩gJ)(gλ, λ) 6= 0}.

Par les équivalences (6.1) cette égalité est équivalente à HomRG(indG
J λ, IndG

J λ) = EndRJ λ.
Avec les équivalences (6.2), elle implique a) du lemme 6.1.

Le critère simple d’irréductibilité [V00, Lemma 3.2] lorsque R est algébriquement clos,
est un cas particulier de la variante suivante du lemme 6.1:
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Variante 6.2. La représentation indG
J λ est irréductible lorsque l’on a:

a’) L’ensemble d’entrelacement de λ dans G est J .
b’) la propiété b) du lemme 6.1 où quotient et sous-représentation sont permutés.

Preuve. Soit Y un quotient non nul de indG
J λ. Par adjonction, λ est une sous-représentation

de Y |J . Par b’) λ est un quotient de Y |J , donc par adjonction HomRG(Y, IndG
J λ) 6= 0, et il

existe un homomorphisme non nul de indG
J λ dans IndG

J λ. Son image est dans indG
J λ car

a’) implique a). On termine comme dans la preuve du lemme 6.1. �

Soit J1 un sous-groupe compact de J de pro-ordre inversible dans R (de sorte que
toutes les R-représentations lisses de J1 sont semi-simples), et µ une R-représentation lisse
irréductible de J1. Le lemme suivant est un raffinement du critère d’irréductibilité du
lemme 6.1.

Lemme 6.3. La représentation indG
J λ est irréductible lorsque l’on a:

c) La restriction de λ à J1 est µ-isotypique de multiplicité finie m.
d) Le composant µ-isotypique de la restriction à J1 de indG

J λ est de multiplicité m.

Preuve. Si indG
J (λ) est réductible, on choisit une sous-représentation non-nulleX de indG

J (λ)
telle que le quotient Y soit non nul. Par adjonction λ est une sous-représentation de Y |J
et un quotient de X|J . Donc la multiplicité de µ dans la restriction à J1 de Y et de X est
au moins 2m. Ceci contredit d). �

Remarque 6.4. • c) et d) impliquent que le composant µ-isotypique de indG
J λ|J1 est la

sous-représentation λ de indG
J λ|J , donc c) et d) impliquent a).

• Si λ|J1 est irréductible (isomorphe à µ, m = 1) et son entrelacement dans G est égal
à J alors HomRJ1(µ, indJgJ1

J λ) = 0 si g 6∈ J donc d) est vérifié et indG
J λ est irréductible.

À notre connaissance, un critère d’irréductibilité proche de celui du lemme 6.3 est util-
isé dans toutes les constructions explicites de représentations irréductibles cuspidales de
groupes réductifs p-adiques sur un corps commutatif R de caractéristique ` 6= p [HV22]. Il
est appliqué avec J compact modulo le centre de G et J1 est un pro-p sous-groupe ouvert
de J .

7. Appendice: Commutateurs de D1

Dans cet appendice, on considère un corps gauche D de centre F et de degré d2 > 1 sur
F et d’invariant de Hasse r/d pour 1 ≤ r ≤ d, (r, d) = 1. On utilise les notations tradition-
nelles OD, PD, kD, ρD, UD déjà utilisées quand D est un corps de quaternions (Notations
2.1). On note U0

D = UD, U
i
D = 1 + P i

D pour i > 0. On choisit une racine de l’unité ω ∈ D
d’ordre qd − 1 et un générateur pD de PD tel que pd

D = pF , pDωp
−1
D = ωqr . L’extension

E = F (ω) de F est non ramifiée de degré d. La norme réduite nrd : D → F (resp. trace
réduite trd : D → F ) de D sur F restreinte à E est la norme NE/F (resp. trace TE/F ) de
E sur F . On note D1 le noyau de nrd.

Théorème 7.1. Tout élément de D1 ∩ U1
D est produit de deux commutateurs de D1.
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On en déduit le résultat déjà connu (see [Rie70, Corollary page 521]):

Corollaire 7.2. Le groupe (D1, D1) engendré par les commutateurs de D1 est D1 ∩ U1
D.

Preuve. Par le théorème, D1 ∩ U1
D ⊂ (D1, D1). Par l’application quotient %D : OD → kD,

D1/(D1 ∩ U1
D) s’identifie au noyau k1

D de la norme de k∗D vers k∗F , et k1
D est commutatif.

Donc (D1, D1) ⊂ D1 ∩ U1
D. �

Remarque 7.3. Si H est un F -groupe simplement connexe et isotrope alors H(F ) =
(H(F ), H(F )) par [PR84, 6.15].

Nakayama et Matsushima [NM43] ont prouvé que chaque élément of D1 est le produit
de trois éléments of D∗. Nous démontrons maintenant le théorème en nous inspirant de
leur preuve.

Preuve. On fixe un entier positif i ≥ 1 et une racine de l’unité z ∈ E d’ordre (qd−1)/(q−1).
Il existe w ∈ U1

E tel que NE/F (w) = nrd(1+pD). Fixons w et posons t = (1+pD)w−1. Alors
t ∈ D1 ∩ U1

D. Adaptant la méthode de [NM43], nous allons montrer par approximations
successives :
(7.1) Pour tout a ∈ D1 ∩ U1

D, il existe b, c ∈ D1 tels que a = (z, b)(t, c).
Nous allons utiliser les deux assertions suivantes:

a) Supposons que i n’est pas un multiple de d. Alors pour tout 1 + spi
D ∈ U i

D il existe
v ∈ D1 ∩ U i

D tel que (z, v) ≡ 1 + spi
D modulo U i+1

D .
b) Supposons que i ≥ 1 est un multiple de d. Alors pour tout 1+ypi

D ∈ U i
D avec ρD(y) ∈

kD de trace nulle dans kF , il existe 1 + xpi−1
D ∈ U i−1

D tel que (1 + pD, 1 + xpi−1
D ) ≡ 1 + ypi

D

modulo U i+1
D . Dans ce cas, on a aussi (t, 1 + xpi−1

D ) ≡ 1 + ypi
D modulo U i+1

D .
Prouvons (7.1). Supposons trouvés bi, ci ∈ D1∩U1

D tels que a ≡ (z, bi)(t, ci) modulo U i
D.

Pour i = 1 on prend bi = ci = 1.
Si i n’est pas multiple de d et a = u(z, bi)(t, ci) pour u ∈ D1 ∩ U i

D, par a) il existe
v ∈ D1 ∩ U i

D tel que (z, v) ≡ u modulo U i+1
D . Comme (z, vbi) = (z, v)(v, (z, bi))(z, bi) et

(v, (z, bi)) ∈ U i+1
D , on a a ≡ (z, vbi)(t, ci) modulo U i+1

D . On pose bi+1 = vbi, ci+1 = ci.
Si i = kd, k ≥ 1, est un multiple de d non nul et a = (z, bi)(t, ci)u pour u ∈ D1∩U i

D, alors
u = 1 + ypk

F ∈ D1 avec y ∈ OD. Admettons que la trace de ρD(y) dans kF est nulle (nous
le prouvons dans la remarque 7.4). Par b) il existe v ∈ D1∩U i−1

D tel que u ≡ (t, v) modulo
U i+1

D . Donc a ≡ (z, bi)(t, ci)(t, v)modulo U i+1
D . Comme (t, civ) = (t, ci)(ci, (t, v))(t, v) et

(ci, (t, v)) ∈ U i+1
D , on a a ≡ (z, bi)(t, civ) modulo U i+1

D . On pose alors bi+1 = bi, ci+1 = civ.
Les suites (bi) et (ci) convergent vers b et c respectivement, et à la limite on obtient

a = (z, b)(t, c). �

Nous avons admis dans cette preuve que la trace de ρD(y) dans kF est nulle. Nous le
montrons dans la remarque suivante.

Remarque 7.4. Nous rappelons que le OE-module OD est libre de base (pi
D)0≤i≤d−1 [Rei75,

(13.3)] et que la trace TE/F de E dans F restreinte à OE, la trace TkE/kF
de kE dans kF ,

les réductions ρE de OE dans kE, et ρF de OF dans kF , forment un diagramme commutatif
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(les groupes de Galois de E/F et de kE/kF sont isomorphes)[Rei75, p.144]. Ceci implique
que tout éłément y = ∑d−1

i=0 eip
i
D, ei ∈ OE, de OD vérifie:

(7.2) trd(y) = TE/F (e0), ρD(y) = ρE(e0) ∈ kD = kE, ρF ◦ trd(y) = TkE/kF
◦ ρD(y).

Le polynome caractéristique réduit de y est P (X) = ∑d
i=0 aiX

i où ai ∈ OF , ad = 1, ad−1 =
− trd(y), a0 = (−1)d nrd(y) [Rei75, (9.21)]. Son polynôme caractéristique est P (X)d

[Rei75, (9.14)]. Pour un entier k > 0, le polynome caractéristique réduit de 1 + ypk
F

est pkd
F P ((X − 1)p−k

F ). Son terme constant est pkd
F P ((−1)p−k

F ) = ∑d
i=0(−1)iaip

k(d−i)
F =

(−1)d + (−1)d−1ad−1p
k
F modulo pk+1

F . Ceci implique

(7.3) nrd(1 + ypk
F ) = 1 + trd(y)pk

F modulo pk+1
F .

On déduit de (7.2) et (7.3):

nrd(1 + ypk
F ) = 1⇔ ρF ◦ trd(y) = 0⇔ TkE/kF

◦ ρD(y) = 0.

Il nous reste à prouver les assertions a) et b).
Preuve de a). Soit i ≥ 1 non multiple de d. Notons que z ∈ D1 et que ρD(z) a le même

ordre que z et engendre kD/kF (sinon il engendrerait une sous-extension de kD/kF de degré
e < d, mais c’est impossible car (q − 1)(qd−1 − 1) < (q − 1)qd−1 = qd − qd−1 < qd − 1. En
particulier ρD(z)qri 6= ρD(z) car r est premier à d. Pour x ∈ OD, on a

z(1+xpi
D)z−1 = 1+ypi

D avec y ∈ OD et ρD(y) = ρD(z)ρD(z)−qri

ρD(x) 6= ρD(x) dans kD.

Pour s ∈ OD, iI existe x ∈ OD tel que le commutateur (z, 1 + xpi
D) est 1 + spi

D modulo
P i+1

D , car l’on a:

(z, 1 + xpi
D) ≡ 1 + spi

D modulo P i+1
D ⇔ ρD(y − x) = ρD(s),

et nous venons de voir que ρD(y) 6= ρD(x).
Pour tout 1 + spi

D ∈ U i
D il existe donc 1 + xpi

D ∈ U i
D tel que (z, 1 + xpi

D) ≡ 1 + spi
D

modulo U i+1
D . Le lemme suivant implique qu’il existe u ∈ D1 ∩ U i

D tel que u ≡ 1 + xpi
D

modulo P i+1
D . On a (z, u) ≡ 1 + spi

D modulo U i+1
D .

Lemme 7.5. On a pour i ≥ 1,

(7.4) nrd(U i
D) = Uk

F si i = dk − j avec 0 ≤ j ≤ d− 1, k ≥ 1.

L’injection de D1 dans D∗ induit un isomorphisme

(7.5) (D1 ∩ U i
D)/(D1 ∩ U i+1

D )→ U i
D/U

i+1
D

si i n’est pas un multiple de d.

Preuve. Montrons (7.4). La norme réduite envoie UD dans UF , et U i
D dans U i

D ∩UF . Il est
bien connu que NE/F (U i

E) = U i
F [S68, Chapitre V Proposition 1]. On a P i

D ∩ OF = P k
F et

P i
D ∩OE = P k

D pour i = dk − j avec 0 ≤ j ≤ d− 1, k ≥ 1.
On déduit de (7.4) que nrd(U i

D) = nrd(U i+1
D ) si i n’est pas un multiple de d. Dans ce

cas, l’injection induit l’isomorphisme . �
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Preuve de b).
Pour x ∈ OD, le commutateur (1+pD, 1+xpi−1

D ) est 1+ypi
D avec ρD(y) = ρD(x)qr−ρD(x)

si i est un multiple de d.
En effet, on calcule (1 + a)(1 + b)(1 + a′)(1 + b′) avec a+ a′ + aa′ = b+ b′ + bb′ = 0, en

négligeant les termes avec deux a et un b, ou un a et deux b. On a (1 + a)(1 + b)(1 + a′) =
1+(1+a)b(1+a′) = 1+b+ab+ba′ = 1+b+ab−ba et (1+b+ab−ba)(1+b′) = 1+ab−ba.
On prend a = pD, b = xpi−1

D .
Tout élément de kD de trace nulle dans kF est de la forme vqr − v pour v ∈ kD. En

effet, l’application linéaire v 7→ vqr − v : kD → kD de noyau kF car (r, d) = 1, a son image
contenue dans le noyau de la trace kD → kF qui est surjective.

Pour y ∈ OD avec ρD(y) de trace nulle dans kF , il existe donc x ∈ OD tel que (1 +
pD, 1 + xpi−1

D ) ≡ 1 + ypi
D modulo pi+1

D .

8. Appendice: Le cas F = Qp et R = Fac
p .

Lorsque F = Qp et R = Fac
p , nous donnons pour D et D1 l’analogue d’une proposi-

tion démontrée pour les Fac
p -représentation irréductibles supercuspidales de GL2(Qp) et

de SL2(Qp) (appelées supersingulières) par Breuil pour GL2(Qp) et par Abdellatif pour
SL2(Qp). Pour un entier 0 ≤ r ≤ p − 1, on note Symr(F2

p) la représentation de GL2(Zp)
étendue à K = Q∗p GL2(Zp) en envoyant p sur l’identité.

Proposition 8.1. [Abde14, Théorème 4.12]. Il existe des Fac
p -représentations supersin-

gulières non équivalentes Π0, . . . ,Πp−1 de GL2(Qp) et π0, . . . , πp−1 de SL2(Qp) telles que:
1) Πr = (indGL2(Qp)

K Symr(F2
p))/T, 0 ≤ r ≤ p− 1,

est la représentation conoyau d’un certain endomorphisme T de indGL2(Qp)
K Symr(F2

p).
2) Πr|SL2(Qp) ' πr ⊕ πp−1−r, 0 ≤ r ≤ p− 1.
3) Une représentation supersingulière de SL2(Qp) est isomorphe à une représentation πr

pour un unique entier 0 ≤ r ≤ p− 1.

Soit π0 un plongement de k1
D dans (Fac

p )∗ relevé à D1 par la surjection canonique ρD :
UD → k∗D restreinte à D1. Pour tout entier 0 ≤ r ≤ p − 1, soient πr = πr+1

0 et λr un
Fac

p -caractère de Q∗pUD égal à 1 sur p et à πr sur D1. On a πp
r = π

(r+1)p
0 = πp−r

0 = πp−1−r

car πp+1
0 = 1. Nous avons démontré en §3.2:

Proposition 8.2. 1) La Fac
p -représentation Πr = indD∗

Q∗
pUD

λr est irréductible de dimension
2 pour 0 ≤ r ≤ p− 1.

2) Πr|D1 ' πr ⊕ πp−1−r pour 0 ≤ r ≤ p− 1.
3) Une Fac

p -représentation irréductible lisse de D1 de dimension > 1 est isomorphe à une
représentation πr pour un unique entier 0 ≤ r ≤ p− 1.

Dans les deux propositions, on remarque que la restriction de Πr au sous-groupe SL2(Qp)
ou D1 a multiplicité 1 sauf si p est impair et r = (p− 1)/2 où elle est 2.
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On comparera avec les résultats de [BS25]. La restriction à SL2(Qp) d’une représenta-
tion de Banach unitaire p-adique irréductible Π of GL2(Qp) sur une extension finie E/Qp,
associée par la correspondance locale de Langlands p-adique, à une représentation ga-
loisienne σΠ absolument irréductible continue de dimension 2, est une somme directe de
s ≤ 2 représentations irréductibles. Elle est sans multiplicité et s est le cardinal S du
centralisateur dans PGL2 de la représentation projective galoisienne associée à σΠ sauf si
σΠ est triplement imprimitive auquel cas S = 4 et Π|SL2(Qp) est somme directe de deux
représentations irréductibles équivalentes.
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