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REPRESENTATIONS OF SL2(F)

GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

Let p be a prime number, F a nonarchimedean local field with residue field
kF of characteristic p, and R an algebraically closed field of characteristic
different from p. We investigate the irreducible smooth R-representations
of SL2(F). The components of an irreducible smooth R-representation 5 of
GL2(F) restricted to SL2(F) form an L-packet L(5). We use the classification
of such 5 to determine the cardinality of L(5), which is 1, 2 or 4. When
p = 2 we have to use the Langlands correspondence for GL2(F). When ` is
a prime number distinct from p and R = Qac

` , we determine the behaviour
of an integral L-packet under reduction modulo `. We prove a Langlands
correspondence for SL2(F), and an enhanced one when the characteristic
of R is not 2. Finally, pursuing a theme of Henniart and Vignéras (2024),
which studied the case of inner forms of GLn(F), we show that near identity a
nontrivial irreducible smooth R-representation ⇡ of SL2(F) is, up to a finite-
dimensional representation, isomorphic to a sum of 1, 2 or 4 representations
in an L-packet of size 4 (when p is odd there is only one such L-packet). We
show that for ⇡ in an L-packet of size r⇡ and a sufficiently large integer j ,
the dimension of the invariants of ⇡ by the j-th congruence subgroup of an
Iwahori or a pro-p Iwahori subgroup of SL2(F) is equal to a⇡ + 2r�1

⇡ |kF| j ,
with a⇡ = � 1

2 if p is odd and r⇡ = 4, otherwise a⇡ is an integer. We also study
the fixed points by the j-th congruence subgroups of the maximal compact
subgroups of SL2(F) where the answer depends on the parity of j .
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102 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

1. Introduction

1.1. Let F be a locally compact nonarchimedean field with residue characteristic p
and R an algebraically closed field of characteristic charR 6= p. We investigate the
irreducible smooth R-representations of SL2(F). Although when R = C and p is
odd the first investigations appeared in the 1960s, in work of Gelfand–Graev and
Shalika, the study of the modular case (i.e., when charR > 0) started only recently
[Cui 2023; Cui et al. 2024] when charF 6= 2 and charR 6= 2. Here we give a complete
treatment and we make no assumption on p, charF , charR , apart from charR 6= p.

As Labesse and Langlands did in the 1970s when R = C and charF = 0, we
use the restriction of smooth R-representations from G = GL2(F) to G 0 = SL2(F).
We prove that an irreducible smooth R-representation of G 0 extends to a smooth
representation of an open subgroup H of G containing ZG 0 where Z is the centre
of G, and appears in the restriction to G 0 of a smooth irreducible R-representation
of G, unique up to isomorphism and twist by smooth R-characters of G/G 0. When
charF 6= 2 we can simply take H = ZG 0, but not when charF = 2 because the
compact quotient G/ZG 0 is infinite. Those results follow from general facts about
R-representations, which appear in Section 2. They apply to more general reductive
groups over F , as we show in Section 3.

In Section 4, using Whittaker models, we show that the restriction to G 0 of an
irreducible smooth R-representation 5 of G is semisimple and has finite length and
multiplicity one. Its irreducible components form an L-packet L(5). An L-packet
L(5) is called cuspidal when5 is cuspidal, supercuspidal when5 is supercuspidal,
of level 0 if 5 can be chosen to have level 0 (that is, having nonzero fixed vectors
under 1 + M2(PF )), and of positive level otherwise.

Theorem 1.1. The size of an L-packet is 1, 2 or 4.

When p is odd that follows rather easily from |G/ZG 0| = 4, but it is also true
when p = 2, in which case the proof is completed only in Proposition 4.22, and
uses the Langlands R-correspondence for G, which we recall in Section 4.4.

Proposition 1.2 (Corollary 4.29, Proposition 4.22). The L-packets of size 4 are
cuspidal and in bijection with the biquadratic separable extensions of F.

The bijection is described in the proof. When p 6= 2 there is just one L-packet
of size 4 and it has level 0. When p = 2 the L-packets of size 4 have positive level,
their number is finite if charF = 0, but there are infinitely many if charF = 2.

Proposition 1.3 (Proposition 4.7). When p is odd, the cuspidal L-packets are not
singletons. When p = 2, the cuspidal L-packets of level 0 have size 2.

Proposition 1.4 (Proposition 4.28). There is a cuspidal nonsupercuspidal L-packet
if and only if q + 1 = 0 in R. It is unique of level 0, and size 4 when charR = 2, and
size 2 when charR 6= 2.
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REPRESENTATIONS OF SL2(F) 103

From the Langlands R-correspondence for GL2(F), we get a bijection from
the set of L-packets to the set of conjugacy classes of Deligne morphisms of WF
into PGL2(R), the dual group of SL2 over R. When charR 6= 2, we even get an
enhanced Langlands correspondence, in that we parametrize the elements in an
L-packet L(5) by the characters of the group S5 of connected components of the
centralizer C5 of the image of the corresponding Deligne morphism in PGL2(R).
When charR = 2, C5 is always connected and the supercuspidal L-packets are not
singletons. We will determine explicitly C5 for each 5.

Theorem 1.5 (Theorem 5.21). Let 5 be an irreducible smooth R-representation
of GL2(F).

When charR 6= 2, the component group S5 of C5 is isomorphic to {1}, Z/2Z or
Z/2Z ⇥ Z/2Z.

When charR = 2, C5 is connected for each 5, but the cardinality of the L-packet
L(5) is

• 1 if 5 is not cuspidal,
• 2 if 5 is supercuspidal,
• 4 if 5 is cuspidal not supercuspidal.

When L(5) is not a singleton, we take as a base point the element having a
nonzero Whittaker model with respect to a nontrivial smooth R-character of F .
When charR 6= 2, the theorem gives a bijection

◆ : L(5) ! IrrR(S5)

respecting the base points (the trivial representation in IrrR(S5)). It is unique when
|L(5)| = 2. There are partial results on the uniqueness of ◆ when |L(5)| = 4.
Under the restriction p = 2, charF = 0, for the complex L-packet of size 4 (unique,
of level 0), there is a unique bijection compatible with the endoscopic character
identities [Aubert and Plymen 2024].

When charR = 2, a “linkage” between irreducible smooth R-representations of
G and G 0 is introduced in [Treumann and Venkatesh 2016]. In §5.0.3 we interpret
this notion in terms of dual groups, thus proving their conjectures in a special case.

Let ` 6= p be a prime number, and Qac
` an algebraic closure of Q` with residue

field Fac
` . Each irreducible smooth Fac

` -representation of GL2(F) lifts to a smooth
Qac
` -representation. We show that this remains true for SL2(F).

Proposition 1.6 (Corollary 4.24, Proposition 4.30). Each irreducible smooth Fac
` -

representation ⇡ of SL2(F) is the reduction modulo ` of an integral irreducible
smooth Qac

` -representation ⇡̃ of SL2(F).

1When R = C this was already established by Gelbart and Knapp [1982, §4] assuming that it
could be done for GLn(F).
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104 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

An equivalent formulation is that each irreducible smooth Fac
` -representation 5

of GL2(F) is the reduction modulo ` of an integral irreducible smooth Qac
` -repre-

sentation e5 of GL2(F) such that

|L(5)| = |L(e5)|.

The reduction modulo ` of each integral supercuspidal Qac
` -representation of

GL2(F) is irreducible, but this is not true for SL2(F). Each supercuspidal Qac
` -

representation ⇡̃ of SL2(F) is integral and we determine all the cases of reducibility.
We choose a supercuspidal Qac

` -representation e5 of GL2(F) such that ⇡̃ 2 L(e5)

and denote by �e5 the irreducible 2-dimensional Qac
` -representation of WF image

of e5 by the local Langlands correspondence.

Proposition 1.7 (Corollary 4.24). The reduction modulo ` of ⇡̃ has length  2. The
length is 2 if and only if

p = 2, �e5 = indWF
WE
⇠̃ , ⇠̃(b) 6= 1, ⇠̃(b)`

s
= 1,

`s divides q + 1, the order of (⇠̃ ⌧/⇠̃)|1+PE is 2,

where b is a root of unity of order q + 1 in a quadratic unramified extension E/F ,
⇠̃ is a smooth Qac

` -character of E⇤ (of WE via class field theory), and ⌧ 2 Gal(E/F)

is not trivial.

Finally we study for G 0 the problem that we treated in [Henniart and Vignéras
2024] for inner forms of GLn(F). An infinite-dimensional irreducible smooth
R-representation 5 of G = GL2(F) is isomorphic near the identity to a51+ indG

B 1
where a5 is an integer (its value is given in Proposition 7.5) and indG

B 1 is the usual
principal series. For an infinite-dimensional irreducible smooth R-representation ⇡
of G 0, we show that up to finitely many trivial R-characters, ⇡ is isomorphic near
the identity to the sum of 1, 2 or 4 elements of an L-packet of size 4.

Theorem 1.8 (Theorem 6.17). Let ⇡ be an infinite-dimensional irreducible and
smooth R-representation of G 0. There are irreducible smooth R-representations
{⌧1, ⌧2, ⌧3, ⌧4} of G 0 forming an L-packet, and an integer a0, such that on a small
enough compact open subgroup K of G 0 we have

⇡ ' a01 +

4/rX

i=1

⌧i ,

where r is the size of the L-packet containing ⇡ .

For R = C and p odd, Monica Nevins has similar results which are more precise
in that the subgroup K is large. We show that her results carry over to any R
(§6.2.8).
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REPRESENTATIONS OF SL2(F) 105

As in [Henniart and Vignéras 2024] we first deal with the case where R = C,
using a germ expansion near the identity à la Harish-Chandra, in terms of nilpotent
orbital integrals. However, when charF = 2, such an expansion is not available,
so we work instead with a complex representation ⇡ of an open subgroup H of
G containing ZG 0. For such a group a germ expansion has been obtained by
Lemaire [2004]. Adapting [Mœglin and Waldspurger 1987] and [Varma 2014] (who
assumed charF = 0) we compute the germ expansion in terms of the dimensions
of the different Whittaker models of ⇡ , and express it in terms of L-packets of
size 4. Theorem 1.8 easily transfers to any R with charR = 0, in particular R = Qac

` .
From our complete classification of irreducible smooth R-representations of G 0,
and in particular that the Fac

` -representations of G 0 lift to characteristic 0 when
` 6= p (Proposition 1.6), we get Theorem 1.8 for R = Fac

` and transfer it to any R
with charR = `.

We think that Theorem 1.8 will extend in the same way to inner forms of SLn ,
using the work of [Hiraga and Saito 2012]. We expect that if charF = 0 and R = C,
a variant of the theorem is true for any connected reductive F-group H , because
of the Harish-Chandra germ expansion and of the work of Mœglin–Waldspurger
and Varma. But when ` 6= p, it is not known in general if virtual finite length
Fac
` -representations lift to characteristic 0 and it is unlikely that cuspidal irreducible

Fac
` -representations lift. The reason is that the first point has a positive answer when

G is a finite group and the answer to the second is negative in general for finite
reductive groups. When charF = p and R = C, we have to face the problem that
a germ expansion in terms of nilpotent orbital integrals might not exist. It is not
clear how to define such integrals for bad primes, and sometimes the number of
unipotent orbits in H and of nilpotent orbits in Lie(H) are not the same, even over
an algebraic closure of F . Given our investigation of the case SL2(F), which uses
L-indistinguishability, one may wonder about the role of endoscopy and stability in
analogous results for a general H .

The dimension of the invariants by the j-th congruence subgroup of a Moy–
Prasad group of an infinite-dimensional irreducible smooth R-representation of G
for j large, is the value at q j of a polynomial of degree 1 and integral coefficients.
We will prove a similar result for G 0 but the coefficients of the polynomial are not
always integral and the polynomial may depend on the parity of j .

Let 5 be an infinite-dimensional irreducible smooth R-representation of G and
⇡ be an element of L(5). Around the identity,

5' a51 + indG
B 1

for an integer a5 and the usual principal series indG
B 1. Let OF denote the ring of

integers of F , K 0 = SL2(OF ), I 0 its Iwahori subgroup, I 0

1/2 its pro-p Iwahori, and
K 0

j , I 0

j , I 0

1/2+ j their j-th congruence subgroups.
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106 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

Theorem 1.9 (Theorem 7.6). For a sufficiently large j ,

dimR ⇡
I 0

j = dimR ⇡
I 0

1/2+ j = |L(5)|�1(a5 + 2q j ),

dimR ⇡
K 0

j = |L(5)|�1(a5 + (q + 1)q j�1) if 5|Z KG 0 is irreducible.

When p is odd and |L(5)| = 4, we have |L(5)|�1a5 = �
1
2 .

When 5|Z KG 0 is reducible, it has length 2. The two irreducible components 5+

and 5� are distinguished by their Whittaker models.

Theorem 1.10 (Corollary 7.10). If 5|Z KG 0 is reducible, for a sufficiently large j ,

dimR ⇡
K 0

j

=

⇢
|L(5)|�1(a5 + 2q j ) for j odd and ⇡ ⇢5+|G 0 or j even and ⇡ ⇢5�|G 0,

|L(5)|�1(a5 + 2q j�1) otherwise.

By G-conjugation, we have similar asymptotics for all Moy–Prasad subgroups
of G 0.

The study of R-representations of G 0 has a long history, especially when R = C.
Even for odd p and R = C, there is current research on GL2 and SL2 [Luo and Chau
2024]. Inevitably some of our proofs are adapted from previous papers. However,
because we make only the assumption that charR 6= p, we have usually preferred
to give complete proofs in that general setting. We refer essentially only to papers
that we are using.

2. Generalities

2.1. Let R be a field, G a group, H a subgroup of G, V an R-representation of G.
We denote charR the characteristic of R, and V |H the restriction of V to H .

2.1.1. When H has finite index in G, any irreducible R-representation of H is
contained in the restriction to H of an irreducible R-representation of G [Henniart
2001, proposition 2.2].

2.1.2. If H is normal of finite index in G and V is irreducible, then V |H is semisim-
ple of finite length [loc. cit., proposition 2.1].

2.1.3. If H is normal in G, V is irreducible and V |H contains an irreducible
subrepresentation, then V |H is semisimple and its isotypic components are G-
conjugate with the same multiplicity.

Proof. Let W be an irreducible subrepresentation of V |H . Since H is normal in
G, for g 2 G, H acts irreducibly on gW by (h, gw) 7! hgh�1hw. The subspaceP

g2G gW is a nonzero subrepresentation of V. Since V is irreducible, it is equal
to V. Since a representation which is a sum of irreducible subrepresentations is
semisimple [Bourbaki 2012, §4.1, corollaire 1, p. 52], V |H is semisimple. The last
assertion follows in the same way. ⇤
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REPRESENTATIONS OF SL2(F) 107

2.1.4. Assume H normal of finite index in G and let ⇡ be an irreducible R-
representation of H . We saw that there is an irreducible R-representation 5 of G
whose restriction to H (which is semisimple of finite length) contains ⇡ . Clearly
if � is a R-character of G trivial on H then the restriction of5⌦� to H contains ⇡ .

Lemma 2.1. Assume R algebraically closed and G/H abelian. Any irreducible R-
representation 50 of G containing ⇡ is isomorphic to 5⌦� for some R-character
� of G trivial on H.

Proof. 2We have HomH (50|H ,5|H ) 6=0. The right adjoint of the restriction from G
to H is the induction IndG

H from H to G, therefore50 is isomorphic to an irreducible
subrepresentation of IndG

H (5|H ). We have IndG
H (5|H ) ' (IndG

H 1) ⌦5 because
G/H is finite, and the irreducible subquotients of IndG

H 1 are the characters � of
G trivial on H because R is algebraically closed. Therefore, there exists � such
that 50 '5⌦� . ⇤

2.2. We suppose that H is a closed subgroup of a locally profinite group G and V
is an R-representation of G.

If the index of H in G is finite, then H is open. Conversely, if H is open
cocompact in G, then the index of H in G is finite. If V is smooth (i.e., the G-
stabilizer of any vector is open), then V |H is smooth. Conversely, if H is open in G
and V |H is smooth (resp. admissible: smooth and the dimension of the space V K

of K -fixed vectors of V is finite, for any open compact subgroup K ⇢ H ), then V
is smooth (resp. admissible).

We suppose also from now on that H is normal in G with a compact quotient
G/H and that V is smooth (so V |H is smooth).

2.2.1. If V is finitely generated then V |H is finitely generated [Henniart 2001,
lemme 4.1].

2.2.2. If V is irreducible, any irreducible subrepresentation of V |H (when there
exists one) extends to a (smooth and irreducible) representation of an open subgroup
of G of finite index which is admissible if V is as well [loc. cit., proposition 4.4].

2.2.3. If V is irreducible and V |H contains an irreducible subrepresentation or is
noetherian (any subrepresentation is finitely generated), then V |H is semisimple of
finite length [loc. cit., théorème 4.2].

We introduce the two properties:

(2-1) Any finitely generated admissible R-representation of G has finite length.

(2-2) Any finitely generated smooth R-representation of H is noetherian.

2This proof was suggested by Peiyi Cui [2023, Proposition 2.6], and replaces a more complicated
argument of ours.
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108 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

2.2.4. Let W be an admissible irreducible R-representation of H .

(1) If (2-1) and (2-2) are true, then W is contained in some irreducible admissible
R-representation of G restricted to H [Henniart 2001, corollaire 4.6].

(2) If (2-1) is true, then W is a quotient of some irreducible admissible R-repre-
sentation of G restricted to H [loc. cit., théorème 4.5].

We give a simple proof of (2) adapted from [Tadić 1992, Proposition 2.2]. The
smooth induction IndG

H W of W to G is admissible since W is as well and G/H is
compact [Vignéras 1996, chapitre I, §5.6]. A finitely generated subrepresentation
of IndG

H W is admissible, hence of finite length by (2-1). So IndG
H W contains an

irreducible admissible representation U . The restriction to H is the left adjoint of
the induction IndG

H hence W is a quotient of U |H .

2.2.5. Let XV be the group of R-characters � of G trivial on H such that V ⌦� ' V.

The characters in XV are smooth by the following lemma.

Lemma 2.2. V ⌦� is smooth if and only if � is smooth.

Proof. Let v 2 V a nonzero element. An open subgroup K ⇢ G fixing v in V,
fixes v in V ⌦� if and only if � is trivial on K . The lemma follows because V is
smooth. ⇤
2.2.6. Assume also that V is irreducible and V |H has finite length (semisimple by
§2.2.3 and its isotypic components are G-conjugate).3

Let W be an irreducible component of V |H , ⇡ its isomorphism class, G⇡ the
G-stabilizer of ⇡ . Let V⇡ be the ⇡ -isotypic component of V |H . The G-stabilizer of
V⇡ is G⇡ . The G-stabilizer of W is open in G (because it contains the G-stabilizer
of v 2 W nonzero and V is smooth) and is contained in G⇡ . Both have finite index
in G (G/H is compact) and

V = IndG
G⇡

(V⇡ )

by Clifford’s theory. The representation of G⇡ on V⇡ is irreducible and the length
of V |H is

lg(V |H ) = [G : G⇡ ] lg(V⇡ |H ).

Lemma 2.3. Assume that G/H is abelian. Then:

(1) G⇡ is normal in G and does not depend on the choice of ⇡ in V |H . The smooth
R-characters of G trivial on G⇡ are in XV.

(2) Assume R algebraically closed.

3This subsection generalizes [Cui 2023, Corollary 3.8.3; Tadić 1992, Corollary 2.5; Bushnell and
Kutzko 1994, Corollary 1.6(iii)].
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REPRESENTATIONS OF SL2(F) 109

(a) Any irreducible subquotient of the smooth induction IndG
H 1 is a smooth R-

character � of G trivial on H.

(b) Any irreducible R-representation of G containing ⇡ is a twist V ⌦� of V by
some smooth R-character � of G trivial on H.

(3) When V |H has multiplicity 1, then W = V⇡ , for a smooth R-character � of G
trivial on H , V ⌦ � ' V if and only if � is trivial on G⇡ , and G⇡ is the largest
subgroup I of G containing H such that lg(V |I ) = lg(V |H ).

(4) When R is algebraically closed and V |H has multiplicity 1, then

|XV | =

⇢
[G : G⇡ ] if charR = 0,

[G : G⇡,`] if charR = `> 0,

where G⇡,` is the smallest subgroup of G containing G⇡ such that [G : G⇡,`] is
relatively prime to `.

Proof. (1) The isotypic components of 5|H are G-conjugate, their G-stabilizers
are G-conjugate and contain H hence they are equal because G/H is abelian.

Since V ⌦� ' IndG
G⇡

(� |G⇡ ⌦V⇡ ) for any smooth R-character � of G, the smooth
R-characters of G trivial on G(⇡) are in XV.

(2) (a) For any closed subgroup Q of G and a smooth R-representation X of Q,
the representation IndG

Q X is the space of functions f : G ! X with the property
f (qgk) = q f (g) for q 2 Q, g 2 G, k 2 K f for some open subgroup K f of G, with
the action of G by right translation, and where indG

Q 1 is the subrepresentation on
the subspace of functions of compact support modulo Q. When G/Q is compact,
IndG

Q X = indG
Q X .

Let V � U be G-stable subspaces with V/U irreducible. We can suppose V
generated by an element f (indeed V 0/U 0 ' V/U for the G-stable space V 0

generated by f 2 V \ U and the kernel U 0 of the map V 0 ! V/U ). There is an
open subgroup K of G which fixes f . We have U ⇢ V ⇢ indG

K 1 and one is reduced
to the case where G/H is finite.

(b) The proof of Lemma 2.1 remains valid with the smooth induction IndG
H ,

which is the smooth compact induction indG
H 1, because G/H is compact, so that

indG
H (5|H ) =5⌦ indG

H 1.

(3) Any smooth character � of G trivial on H with indG
G⇡

(V⇡ )' indG
G⇡

(V⇡⌦� |G⇡ )

is trivial on G⇡ . Indeed, restricting to G⇡ we see that V⇡⌦� |G⇡ is conjugate to V⇡ by
some g 2 G. Restricting to H gives that ⇡ '⇡ g, so g 2 G⇡ , hence V⇡⌦� |G⇡ ' V⇡ .
As Ker(�) is open in G and G/H is compact, J = Ker(�) \ G⇡ has finite index
in G⇡ . If � is not trivial on G⇡ then the action of J on V⇡ is reducible. Indeed,
indG⇡

J (1) contains subrepresentations 1 and � |G⇡ , and by Frobenius reciprocity
EndJ (V⇡ |J ) is equal to HomG⇡ (V⇡ , indG⇡

J (V⇡ |J )) = HomG⇡ (V⇡ , V⇡ ⌦ indG⇡

J (1)).
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110 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

Hence dim(EndJ⇡ (V⇡ |J )) � 2 and V⇡ |J is reducible. By the hypothesis of multi-
plicity 1, V⇡ |H is irreducible, hence V⇡ |J is irreducible as H ⇢ J . So � is trivial
on G⇡ .

The group G⇡ is a subgroup I of G containing H with lg(V |I ) = lg(V |H ).
If I has this property, the restriction to H of any irreducible component on V |I is
irreducible, hence I is contained in G⇡ .

(4) follows from (3). ⇤
Remark 2.4. Assume that V |H has multiplicity 1. The G-stabilizer of any irre-
ducible component of V is G⇡ . Denote G⇡ = GV. Let I be a subgroup of G
containing H . The number of orbits of I in the irreducible components of V |GV is
lg(V |I ). This number is the same for I and I GV, hence lg(V |I ) = lg(V |I GV ). We
deduce that GV ⇢ I if V |I is reducible and |G/I | is a prime number.

Let ✓ be a smooth R-representation of a closed subgroup U ⇢ H . We consider
the property:

(2-3) The functor HomU (�, ✓) is exact on smooth R-representations of H .

Lemma 2.5. If (2-3) is true and dim HomU (V, ✓) = 1, then V |H has multiplicity 1.

Proof. We denote by mV (⇡) the multiplicity of any irreducible smooth R-represen-
tation ⇡ of H in V |H . By (2-3),

X

⇡

mV (⇡) dim HomU (⇡, ✓) = dim HomU (V, ✓) = 1.

There is a single ⇡ with mV (⇡) = dim HomU (V, ✓) = 1. ⇤

3. p-adic reductive group

Suppose now that G is a p-adic reductive group, that is, the group of rational points
G(F) of a reductive connected F-group G. Here F is a local nonarchimedean field
of residual characteristic p, ring of integers OF , uniformizer pF , maximal ideal PF ,
residue field kF = OF/PF with q elements, and absolute value |x |F = q�val(x),
|pF |F = q�1 (we do not suppose that the characteristic of F is 0).

For an algebraic group X over F , we denote by the corresponding unadorned
letter X = X(F) the group of its F-points.

Let R be a field of characteristic charR 6= p. Any irreducible smooth R-repre-
sentation of G is admissible [Henniart and Vignéras 2019], and the properties (2-1)
and (2-2) hold for G. For (2-1) see [Vignéras 1996, chapitre II, §5.10; 2023, §5],
and for (2-2) see [Dat 2009; Dat et al. 2024].

Lemma 3.1. Let f : H ! G be an F-morphism of reductive connected F-groups.
Then the subgroup f (H) of G is closed.
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REPRESENTATIONS OF SL2(F) 111

Proof. The morphism f induces a constructible action of H on G [Bernstein and
Zelevinsky 1976, §6.15, Theorem A]; in particular the group f (H), which is the
H-orbit of the unit of G, is locally closed [loc. cit., Proposition 6.8], f (H) is equal
to its closure in G (the closure of f (H) in G is a subgroup containing f (H) as
an open, hence closed, subgroup). Note that f (H) is open in G when charF = 0
[Platonov and Rapinchuk 1994, §3.1, Corollary 1]. ⇤
Theorem 3.2. Let f : H ! G be an F-morphism of reductive connected F-groups
such that f (H) is a normal subgroup of G of compact quotient G/ f (H). Then,
the restriction to f (H) of any irreducible admissible R-representation of G is
semisimple of finite length. Any irreducible admissible R-representation of f (H) is
contained in some irreducible admissible R-representation of G restricted to f (H),
and extends to an irreducible admissible representation of some open subgroup of
G of finite index.

Proof. G satisfies (2-1) and f (H) satisfies the property (2-2) because H does.
Apply the results of Section 2.2. ⇤

We now give two examples where we can apply Theorem 3.2.

Proposition 3.3. Let f : H ! G be a surjective central F-morphism of connected
reductive F-groups. Then, the subgroup f (H) of G is normal of abelian compact
quotient G/ f (H).

Proof. There is an F-morphism  :G⇥G ! H such that ( f (x), f (y))= xhx�1 y�1

for all x, y 2 H [Borel and Tits 1972, définition 2.2]. So for all u, v 2 G we have
uvu�1v�1 = f �(u, v) 2 f (H). The subgroup f (H) of H is closed (Lemma 3.1)
and normal with abelian quotient G/ f (H) [loc. cit., proposition 2.7].

The compactness of G/H is stated in [Silberger 1979] without proof and in
[Labesse and Schwermer 2019, Proposition A.2.1] with indications for the proof.
The idea is to reduce to a connected reductive F-anisotropic modulo the centre
F-group.

Let S be a maximal F-split subtorus of G, and B a parabolic F-subgroup of
G containing S. The G-centralizer M of S is compact modulo its centre and is
a Levi component of B. Let U be the unipotent radical of B. By [Borel 1991,
Theorem 22.6], the inverse image S0 of S in H is a maximal F-split torus in H ,
and the inverse image B 0 of B is a parabolic F-subgroup of H Put M 0 for the
H-centralizer of S0 and U 0 for the unipotent radical of B 0. From [loc. cit.], f
induces a surjective central F-morphism M 0 ! M and an F-isomorphism U 0 ! U .
On the other hand, we have the Iwasawa decomposition G = K B for an open
compact subgroup K of G. The product map K ⇥ B ! G gives a surjective map
K ⇥ B/ f (B 0) ! G/ f (H). We have B/ f (B 0) = M/ f (M 0), so we just need to
prove the compactness of M/ f (M 0).
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112 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

Let X⇤(S) denote the group of algebraic characters of S, and S(pF ) denote
Hom(X⇤(S), pZ

F ). The subgroup S(pF ) of S is free abelian of finite rank with a
compact quotient S/S(pF ). On the other hand, f induces a surjective F-morphism
S0 ! S sending S0(pF ) onto a sublattice of S(pF ). Hence S/ f (S0) is finite. So
M/ f (S0) is compact since M/S is compact, a fortiori M/ f (M 0) is compact. ⇤
Remark 3.4. The condition that f is central in Proposition 3.3 is necessary. Indeed,
assume charF = 2 and f : GL2 ! SL2, f (g) = '(g)/ det g where '(x) = x2 for
x 2 F is the Frobenius.4 The F-morphism f is surjective but not central. Let
G = GL2(F), G 0 = SL2(F), T 0 the diagonal torus of G 0 and U the group of
unipotent upper triangular matrices in G 0. Then f (G) = T 0'(G 0) is closed but
not normal and not cocompact in G 0 (since '(U ) = U \ T 0'(G 0) and U/'(U )

homeomorphic to F/F2 is not compact).
Corollary 3.5. Assume R algebraically closed. Let f : H ! G be an F-morphism
of connected reductive F-groups which induces a central F-isogeny H der ! Gder

between the derived groups. Then the conclusions of Theorem 3.2 apply to f (H).
Proof. The F-isogeny H der ! Gder is surjective with finite kernel contained in the
centre of H der [Springer 1998, §12.2.6]. If Z is the connected centre of G, the
natural map Z ⇥ Gder ! G is surjective [Springer 1998, Corollary 8.1.6]. Hence
the obvious map Z ⇥ H ! G is surjective and central. Proposition 3.3 applies to
Z f (H). But R being algebraically closed, Z acts by a character in any irreducible
smooth R-representations of G, and we get the corollary. ⇤
Remark 3.6. There is a more elementary proof that the restriction to f (H) of
any irreducible admissible R-representation of G is semisimple of finite length in
[Silberger 1979].

4. Restriction to SL2(F) of representations of GL2(F)

Let F be a local nonarchimedean field of residue field kF of characteristic p as in
Section 3, and R an algebraically closed field of characteristic different from p.

Let G = GL2(F), and let B (resp. B�) denote the subgroup of upper (resp.
lower) triangular matrices, T the subgroup of diagonal matrices, U (resp. U�) the
subgroup of upper (resp. lower) triangular unipotent matrices, and Z the centre
of G.

Let G 0 = SL2(F). The subgroup H = ZG 0 of G is closed normal of compact
abelian quotient G/ZG 0 isomorphic via the determinant to F⇤/(F⇤)2, which (see
[Neukirch 1999, Chapter II, Corollary 5.8]) is a F2-vector space of dimension

(4-1) dimF2 F⇤/(F⇤)2
=

⇢
2 + e if charF 6= 2,

1 if charF 6= 2,
where 2OF = Pe

F .

4The map f will also appear in §5.0.3.
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REPRESENTATIONS OF SL2(F) 113

Note that ZG 0 is open in G if and only if charF 6= 2.
For a subset X ⇢ G, put X 0 = X \ G 0. Write x = (xi, j ) a matrix in G or

Lie G = M2(F).
We fix a separable closure F sc of F and will consider only extensions of F

contained in F sc. We write WF for the Weil group of F sc/F and GalF for the
Galois group of F sc/F . For a field k, we denote by kac an algebraic closure of k,
and if k ⇢ R we suppose kac ⇢ R.

We fix an additive R-character  of F trivial on OF but not on P�1
F .

4.1. Whittaker spaces. The smooth R-characters of U have the form

(4-2) ✓Y (u) =  � tr(Y (u � 1)) =  (Y2,1u1,2), u 2 U,

for a lower triangular nilpotent matrix Y in M2(F). The case Y = 0 gives the trivial
character of U , the cases with Y 6= 0 give the nondegenerate characters of U .

Notation 4.1. When Y2,1 = 1 we denote ✓Y = ✓ .

The normalizer of U in G is T U . By conjugation, U acts trivially on U and its
characters, and a diagonal matrix t = diag(t1, t2) acts on u 2 U by (tut�1)1,2 =

(t1/t2)u1,2. Also, t acts on a lower triangular nilpotent matrix Y by (tYt�1)2,1 =

(t2/t1)Y2,1. It follows that T acts transitively on the nondegenerate characters of U ,
the quotient T/Z acting simply transitively. By the same formulas, two nontrivial
characters ✓Y and ✓Y 0 of U are conjugate in G 0 if and only if they are conjugate by
an element of T 0 if and only if Y1,2 and Y 0

1,2 differ by a square in F⇤.
The T -normalizer of ✓Y is equal to Z if Y 6= 0 and to T if Y = 0. The ✓Y -

coinvariant functor ⌧ 7! WY (⌧ ) from the smooth R-representations ⌧ of U to
the smooth R-representations of the T -normalizer of ✓Y is exact. A smooth R-
representation ⌧ of U is called degenerate when WY (⌧ ) = 0 for all Y 6= 0, and
nondegenerate otherwise. A smooth R-representation of G or of G 0 is called
degenerate (or nondegenerate) if its restriction to U is as well.

The finite-dimensional irreducible smooth R-representations of G are of the
form � � det for a smooth R-character � of F⇤ and are degenerate. If 5 is an
infinite-dimensional irreducible smooth R-representation of G, then dim WY (5)=1
for all Y 6= 0 by the uniqueness of Whittaker models [Vignéras 1996, chapitre III,
§5.10] when charR > 0.

4.2. L-packets. We will classify the irreducible smooth R-representations of G 0 by
restricting to G 0 the irreducible smooth R-representations 5 of G. The set L(5)

of (isomorphism classes of) irreducible components of 5|G 0 is called an L-packet.
A parametrization along these lines was obtained when charF = 0 and charR = C

in [Labesse and Langlands 1979]. When charF 6= 2 and charR 6= 2, this question is
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114 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

studied for supercuspidal representations in the recent work [Cui et al. 2024, §6.2
and §6.3].

Applying Lemma 2.3, Remark 2.4, Lemma 2.5, Theorem 3.2 and Corollary 3.5,
we have:

(4-3) Any irreducible smooth R-representation of G 0 belongs to a unique L-packet.

For two irreducible smooth R-representations 51,52 of G,

(4-4) L(51) = L(52) ()51 = (� � det) ⌦52

for some R-character � � det of G.
The trivial character of G 0 is the unique finite-dimensional irreducible smooth

R-representation of G 0, it is degenerate and forms an L-packet L(1) = L(� � det)
for any smooth R-character � of F⇤.

If 5 is an irreducible smooth R-representation of G,5

(4-5) the restriction of 5 to G 0 is semisimple of finite length and multiplicity 1.

The irreducible constituents of 5|G 0 are G-conjugate (even B-conjugate as
G = BG 0), and form an L-packet L(5) whose cardinality is the length of 5|G 0 .
The G-stabilizer of ⇡ 2 L(5) does not depend on the choice of ⇡ in L(5) and
is denoted G5. By §2.2.6, G5 is an open normal subgroup of G containing
G 0Z , the subgroup det G5 of F⇤ is open and contains (F⇤)2. The order of the
quotient G/G5 ' F⇤/ det G5 is a power of 2. When charF 6= 2, |G/G5| divides
|F⇤/(F⇤)2| = 22+e with e defined in (4-1).

(4-6) G5 is the largest subgroup I of G such that lg(5|I ) = lg(5|G 0).

(4-7) 5= indG
G5

V⇡ where V⇡ is the space of ⇡ .

(4-8) L(5) is a principal homogeneous space for G/G5.

(4-9) |L(5)| is a power of 2, and |L(5)| divides 22+e when charF 6= 2.

When p is odd, since |F⇤/(F⇤)2| = 4 we deduce:

Proposition 4.2. When p is odd, the cardinality of an L-packet is 1, 2 or 4.

When p = 2 we will prove that this remains true using the local Langlands
correspondence.

By class field theory, any open subgroup of F⇤ of index 2 is equal to NE/F (E⇤)

for a unique quadratic separable extension E/F of relative norm NE/F : E⇤ ! F⇤,
and conversely. Any open subgroup of F⇤ of index 4 containing (F⇤)2 is equal
to NK/F (K ⇤) for a unique biquadratic separable extension K/F of relative norm
NK/F : K ⇤ ! F⇤, and conversely.

5For cuspidal representations this is proved in [Cui 2023, Proposition 2.37 and Corollary 2.38].
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REPRESENTATIONS OF SL2(F) 115

When p is odd, each quadratic extension of F is separable and tamely ramified,
and there is a unique biquadratic separable extension of F .

When p = 2, if charF = 0, there are finitely many quadratic separable extensions
of F and finitely many biquadratic separable extensions of F ; see (4-1). If charF =2,
there are infinitely many quadratic, resp. biquadratic, separable extensions of F .

Definition 4.3. When 5 is an irreducible smooth R-representation of G, we denote
by E5 the separable extension of F such that NE5/F (E⇤

5) = det G5.

(4-10) We denote by X5 the group of characters � � det of G such that

5⌦ (� � det) '5.

A character of X5 is smooth (Lemma 2.2) of trivial square. So X5={1} if charR =2.

Notation 4.4. When charR 6= 2, the nontrivial smooth R-characters of F⇤ of trivial
square are the R-characters ⌘E of F⇤ of kernel NE/F (E⇤), for quadratic separable
extensions E/F . The modulus q±val of F⇤ is equal to ⌘E if and only if E/F is
unramified and q + 1 = 0 in R.

By Lemma 2.3 and (4-8):

(4-11) X5 is the group of R-characters of G trivial on G5.

(4-12) When charR 6= 2, the cardinality of L(5) is |X5|.

It is known that |X5| = 1, 2 or 4 when:

(a) R = C and charF = 0 [Labesse and Langlands 1979; Shelstad 1979].

(b) charF 6= 2 and charR 6= 2 [Cui et al. 2024, Proposition 6.6].

When charR 6= 2 we will prove that |X5| = 1, 2 or 4 using the local Langlands
correspondence, therefore |L5| = 1, 2 or 4 when p = 2.

For a lower triangular matrix Y 6= 0, we have
X

⇡2L(5)

dimR WY (⇡) = dimR WY (5).

Since dimR WY (5) = 1, we have dimR WY (⇡) = 0 or 1, and there is a single
⇡ 2 L(5) with WY (⇡) 6= 0.

4.3. Representations. We denote by Gr1R (G) the Grothendieck group of finite
length smooth R-representations of G and by [⌧ ] the image in Gr1R (G) of a finite
length smooth R-representation ⌧ of G. Similarly for G 0.
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116 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

4.3.1. Parabolic induction. The smooth parabolic induction indG
B (� ) of a smooth

R-representation (�, V ) of T is the space of functions f : G ! V such that
f (tugk) = � (t) f (g) for t 2 T , u 2 U , g 2 G and an open compact subgroup
K f ⇢ G, with the action of G by right translation. The functor indG

B is exact with
the U -coinvariant functor (�)U as left adjoint, and (�)U ⌦ � as right adjoint where
� is the homomorphism of T :

�(diag(a, d)) = q�val(a/d)
: T ! qZ (a, d 2 F⇤),

[Dat et al. 2024, Corollary 1.3]. The modulus | · |F of F⇤ is q�val and the modulus
of B is the inflation of �. We choose a square root q1/2 of q in R⇤ to define the
square root of �,

(4-13) ⌫(diag(a, d)) = (q1/2)�val(a/d)
: T ! (q1/2)Z (a, d 2 F⇤),

and the normalized parabolic induction i G
B (� ) = indG

B (�⌫). For a smooth R-
character � � det of G we have

(indG
B � )⌦(� �det) ' indG

B (�⌦(� �det)), (i G
B � )⌦(� �det) ' i G

B (�⌦(� �det)).

Similarly for G 0, we define the parabolic induction indG 0

B 0 from the smooth R-
representation � of T 0 to those of G 0 and the normalized parabolic induction i G 0

B 0 ,

i G 0

B 0 (� ) = indG 0

B 0 (⌫
0� ), ⌫ 0(diag(a, a�1)) = q�val(a)

: T 0
! qZ (a 2 F⇤).

As G = BG 0 and G/B is compact, the restriction map f 7! f |G 0 gives isomorphisms

(4-14) (indG
B (� ))|G 0 7! indG 0

B 0 (� |T 0), (i G
B (� ))|G 0 7! i G 0

B 0 (� |T 0).

4.3.2. Cuspidal representations of GL2(F). When � is a smooth R-character of T ,
indG

B (�) is called a principal series of G. An irreducible smooth R-representation
of G which is not a subquotient of a principal series, is called supercuspidal. It is
called cuspidal when its U -coinvariants are 0. A supercuspidal representation is
cuspidal (the converse is true only when q + 1 6= 0 in R). The principal series and
the cuspidal R-representations are infinite-dimensional. Similarly for G 0.

Let 5 be an irreducible smooth R-representation of G and ⇡ 2 L(5). Then

(4-15) 5 is cuspidal if and only if ⇡ is cuspidal (similarly for supercuspidal).

Indeed, L(5) is the B-orbit of ⇡ , the U -coinvariant functor is exact and commutes
with the restriction to G 0. We say that L(5) is cuspidal if 5 is. Similarly for
supercuspidal using the formula (4-14).

Let 5 be a cuspidal R-representation of G. It is the compact induction of an
extended maximal simple type (J,3),

5= indG
J (3);
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REPRESENTATIONS OF SL2(F) 117

see [Bushnell and Kutzko 1994; Bushnell and Henniart 2002] when R = C and
[Vignéras 1996, chapitre III, §3.4] for general R. The group J contains Z and a
unique maximal open compact subgroup J 0. Let J 1 be the pro-p radical of J 0.
The representation 3|J 0 is irreducible, equal to �= ⌦ �̄ where |J 1 is irreducible
and �̄ is inflated from an irreducible R-representation � of J 0/J 1. The type
(J,3) is unique modulo G-conjugacy; see [Bushnell and Henniart 2006, Chapter 4,
§15.5, Induction theorem] when R = C and [Vignéras 1996, chapitre III, §5.3] for
general R.6

The open normal subgroup J G 0 of G has index |F⇤/ det J |, and by Mackey
theory,

(4-16) 5|J G 0 =

M

g2G/J G 0

indJ G 0

J g �g.

Denote J 0, (J 0)0, (J 1)0 the intersections of J , J 0, J 1 with G 0. We have J 0 = (J 0)0

and the length of
(indJ G 0

J g �g)|G 0 ' indG 0

J 0g (�
g
|J 0g )

is independent of g. By transitivity of the restriction5|G 0 =
L

g2G/J G 0 indG 0

J 0g (�g|J 0g ),
and

(4-17) |L(5)| = |F⇤/ det J | lg(indG 0

J 0 (�|J 0)),

it follows from Lemma 2.3(3), Remark 2.4 and the formula (4-16) that:

Lemma 4.5. If |F⇤/ det J | = 2 then det G5 ⇢ det J .

Remark 4.6. We have det G5= det J () G5= J G 0. If |F⇤/ det J |= 2, the group
J determines a quadratic separable extension E/F such that det J = NE/F (E⇤).
The representation indG 0

J 0 (�|J 0) is irreducible if and only if |L(5)| = |F⇤/ det J |.

If there is a smooth R-character � of F⇤ such that 3 ' 30 ⌦ (� � det) and
(J,30) is of level 0, we say that the L-packet L(5) and its elements are of level 0.
Otherwise we say that L(5) and its elements are of positive level.

Level 0. J = Z GL2(OF ), J 0 = GL2(OF ), J 0/J 1 ' GL2(kF ),  = 1, � is a
cuspidal R-representation of GL2(kF ), �= �̄ . We have det J = val�1(2Z), and by
(4-17),

(4-18) |L(5)| = 2 lg(�|J 0) = 2 lg(� |SL2(kF )),

because �|J 0 is semisimple with length lg(� |SL2(Fq )), and for any irreducible compo-
nent �0 ⇢�|J 0 , the compact induction indG 0

J 0 (�0) is irreducible [Henniart and Vignéras
2022, Corollary 4.29].

6It is proved only that (J 0, �) is unique modulo G-conjugacy, but J is the normalizer of (J 0, �)

and 3 is the �-isotypic part of 5.
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118 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

The cardinality of the cuspidal L-packet L(5) of level 0 can be computed via
(4-17), (4-18), and Remark A.4(b) given in the Appendix on the classification of
the irreducible R-representations of GL2(k) and of SL2(k) for a finite field k with
chark 6= charR . We have two cases:

(i) |F⇤/ det G5| = 2 and E5/F is the unramified quadratic extension.

(ii) p is odd, det G5 = (F⇤)2 and E5/F is the unique biquadratic extension. This
case occurs for a unique packet L(5).

We deduce:

Proposition 4.7. When p = 2, each level 0 cuspidal L-packet has size 2.
When p is odd, there is a unique level 0 cuspidal L-packet of size 4, the other

level 0 cuspidal L-packets have size 2.

These results can be deduced from [Kutzko and Pantoja 1991, §2] and the size 4
depth zero L-packet has been obtained in [Cui 2023, Example 3.11, Method 2].

Positive Level. J = E⇤ J 0 for a quadratic separable7 extension E/F , J 0 = O⇤

E J 1,
J 0/J 1 ' k⇤

E , � is an R-character of k⇤

E , � =  ⌦ � and �|J 0 is irreducible. The
representation �1 = �|J 1 is irreducible of G-intertwining equal to J , because J
normalizes �1 and the G-intertwining of � is already J [Bushnell and Henniart 2006,
Chapter 4, §15.1]. We have NE/F (E⇤) ⇢ det J . If the quadratic extension E/F is
tamely ramified, then det J = NE/F (E⇤), because J = E⇤ J 1, J 1 = (1 + PF )(J 1)0

and 1 + PF ⇢ det E⇤ = NE/F (E⇤).
If p = 2 a tamely ramified quadratic extension of F is unramified, and E/F is

unramified if and only if det J = Ker((�1)val).
If p is odd, each quadratic extension of F is tamely ramified.

Proposition 4.8. If p is odd, each positive level cuspidal L-packet L(5) has size 2
and E = E5 (Definition 4.3).

Proof. 8The central subgroup 1 + PF of J 1 = (1 + PF )(J 1)0 acts by scalars,
the representation �0

1 = �|(J 1)0 is still irreducible of G-intertwining J , so its G 0-
intertwining is J 0. The isotypic component of 5|J 1 of type �1 is the space of �,
so the isotypic component of 5|(J 1)0 of type �0

1 is still the space of �. As in the
proof of [Henniart and Vignéras 2022, Corollary 4.29], we deduce that indG 0

J 0 (�|J 0)

is irreducible. Apply Lemma 4.5. ⇤
Remark 4.9. When p = 2 and E/F is ramified, then J 0 \ G 0 is a pro-2-group.
Indeed, the determinant induces a morphism J 0/J 1 ! k⇤

F equal via the natural

7When charF = 2 the quadratic extension appearing in the construction [Bushnell and Henniart
2006] is not necessarily separable. It is generated by an element x 2 G, determined up to some open
subgroup of G, so that modifying x slightly yields a separable extension.

8This can also be obtained using [Cui 2023].
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REPRESENTATIONS OF SL2(F) 119

isomorphism J 0/J 1 ! kE = k⇤

F to the automorphism x 7! x2 on k⇤

F . Hence
(J 0)0 = (J 1)0 is a pro-2-group. Note also that 3 is a character [Bushnell and
Henniart 2006, §15].

Corollary 4.10 (Propositions 4.7 and 4.8). When p is odd, there is a unique cuspidal
L-packet of size 4, and it is of level 0. The other cuspidal L-packets have size 2.

4.3.3. Principal series of GL2(F). We recall the description of the normalized
principal series i G

B (�) of G for a smooth R-character � of T .
Denote by �1,�2 the smooth R-characters of F⇤ such that

(4-19) �(diag(a, d)) = �1(a)�2(d) (a, d 2 F⇤),

and by �w the character �w(diag(a, d)) = �(diag(d, a)) of T . In particular in
(4-13), ⌫w = ⌫�1 and ⌫/⌫w = �.

Proposition 4.11. (i) For two smooth R-characters � , � 0 of T , [i G
B (�)] and

[i G
B (� 0)] are disjoint or equal, with equality if and only if � 0 = � or �w.

(ii) The smooth dual of i G 0

B 0 (�) is i G 0

B 0 (��1).

(iii) (i G
B (�))U has dimension 2, contains �w and has quotient � .

(iv) dim WY (i G
B (�)) = 1 when Y 6= 0 [Vignéras 1996, chapitre III, §5.10].

(v) i G
B (�) is reducible if and only if �1�

�1
2 = q±val.

(vi) indG
B (1) = i G

B (⌫�1) contains the trivial representation 1 and:
• If q + 1 6= 0 in R, lg(indG

B (1)) = 2, in particular St = (indG
B 1)/1 is

irreducible (the Steinberg R-representation). The representation indG
B 1 is

semisimple if and only if q = 1 in R (and charR 6= 2).
• If q +1 = 0 in R, lg(indG

B (1)) = 3, indG
B (1) is indecomposable of quotient

(�1)val � det, and indG
B (1)/1 contains a cuspidal representation

50 = indG
Z GL2(OF ) �̃0

where �̃0 is the inflation to Z GL(2, OF ) of the cuspidal subquotient �0 of
indGL2(kF )

B(kF ) 1 (Appendix).

This is [Vignéras 1989, théorème 3] but the proof of (i) is incomplete. What
is missing is the proof that 50 occurs only in i G

B (⌫) and i G
B (⌫�1) when q + 1 = 0

in R. This is equivalent to X50 = {1, (�1)val � det} with the notation (4-10). This
follows from Remark A.4(a) given in the Appendix.

Remark 4.12. (1) The Steinberg representation St is infinite-dimensional and not
cuspidal.

(2) When charR 6= 2, the principal series [i G
B (�)] are multiplicity free.

When charR = 2, then q is odd, indG
B (1) has length 3, of subquotients 50 and the

trivial representation 1 as a subrepresentation and a quotient.
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120 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

Corollary 4.13. The nonsupercuspidal irreducible smooth R-representations of G
are

• the characters � � det for the smooth R-characters � of F⇤,
• the principal series i G

B (�) for the smooth R-characters � of T with �1�
�1
2 6=

q±val.
• the twists (� � det) ⌦ St of the Steinberg representation for the smooth R-

characters � of F⇤ if q + 1 6= 0 in R,
• the twists (� � det) ⌦50 of the cuspidal nonsupercuspidal representation 50

for the smooth R-characters � of F⇤ if q + 1 = 0 in R.

The only isomorphisms between those representations are i G
B (�) ' i G

B (�w) for the
irreducible principal series and (� � det) ⌦50 ' ((�1)val� � det) ⌦50.

4.3.4. Let ` be a prime number different from p. An irreducible smooth Qac
` -

representation ⌧ of G or G 0 is integral if it preserves a lattice. It then gives by
reduction modulo ` and semisimplification a finite length semisimple smooth Fac

` -rep-
resentation, of isomorphism class (not depending of the lattice) which we write r`(⌧ ).
The restriction from G to G 0 from irreducible smooth Qac

` -representations e5 of G to
finite length semisimple smooth Qac

` -representations of G 0 respects integrality and
commutes with the reduction modulo `. When e5 is integral, then any irreducible
representation ⇡̃ ⇢ e5|G 0 is integral, the length of the reduction r`(⇡̃) modulo `
of ⇡̃ does not depend on the choice of ⇡̃ . If 5= r`(e5) is irreducible, we have

(4-20) |L(5)| = |L(e5)| lg(r`(⇡̃)),

and by (4-11),

(4-21) lg(r`(⇡̃)) = |X5/Xe5| when charR 6= 2.

Proposition 4.14. Each irreducible smooth Fac
` -representation 5 of G is the reduc-

tion modulo ` of some integral irreducible smooth Qac
` -representation e5 of G.

Proof. Corollary 4.13 for 5 not cuspidal, [Vignéras 2001] for 5 cuspidal. ⇤
A supercuspidal Qac

` -representation e5= indG
J
e3 of G is integral if and only if

e3 is integral. Then, its reduction modulo ` is irreducible [Vignéras 1989], equal
to 5= indG

J 3 where 3= r`(e3). The reduction modulo ` of the L-packet L(e5)

is L(5). The reduction modulo ` respects level 0 and positive level. Conversely,
any cuspidal Fac

` -representation 5= indG
J 3 of G is the reduction modulo ` of an

integral cuspidal Qac
` -representation e5= indG

J
e3 of G where 3= r`(e3) [Vignéras

2001]. By the uniqueness of the extended maximal simple type (J,3) modulo G
(see Section 4.3.2), two supercuspidal integral Qac

` -representations have isomorphic
reduction modulo ` if and only if the reduction modulo ` of their extended maximal
simple types are G-conjugate.
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REPRESENTATIONS OF SL2(F) 121

Any supercuspidal Qac
` -representation ⇡̃ of G 0 is integral, as ⇡̃ 2 L(e5) where e5

is a supercuspidal Qac
` -representation of G, and some twist of e5 by a character is

integral. Suppose that e5 has level 0. With the notations of the formula (4-18), the
formula (4-21) implies

(4-22) lg(r`(⇡̃)) = lg(� |SL2(kF ))/ lg(�̃ |SL2(kF )).

Proposition 4.15. When ⇡̃ is supercuspidal of level 0, the length of r`(⇡̃) is  2.
When ⇡̃ is supercuspidal and p is odd, r`(⇡̃) is irreducible if ⇡̃ is minimal of

positive level or if `= 2.
Any cuspidal Fac

` -representation ⇡ of G 0 is the reduction modulo ` of a supercus-
pidal Qac

` -representation of G 0, except maybe when p = 2 and ⇡ is in an L-packet
L(5) with 5 minimal of positive level with E5/F unramified (Definition 4.3).

Proof. • For e5 of level 0, we show in the Appendix the computation of the integer
lg(� |SL2(kF ))/ lg(�̃ |SL2(kF )), and one sees that it is equal to 1 or 2 and that there
exists �̃ such that it is 1.
• For p odd, if the level of ⇡̃ is positive then lg(5|G 0)= lg(e5|G 0) by Proposition 4.8,
hence r`(⇡̃) is irreducible.
• For ` = 2 (so p is odd), if the level of ⇡̃ is 0, then r`(⇡̃) is also irreducible by
(4-22) and Lemma A.3 in the Appendix.
• For p = 2 (so ` is odd), ⇡ is in a cuspidal L-packet L(5) with 5 minimal of
positive level with E5/F ramified. Let e5 a Qac

` -lift of 5. The reduction modulo `
from Xe5 onto X5 is injective. The proposition follows from the next lemma. ⇤
Lemma 4.16. The reduction modulo ` from Xe5 onto X5 is a bijection.

Proof. Let � 2 X5, � 6= 1, and �̃ the unique Qac
` lift of � of order 2. We have

e5 = indG
J
e3 where e3 is a character (Remark 4.9). We have 5 = indG

J 3 where
3 = r`(e3) and (J,�3) = (J, g3) for g 2 G normalizing J . So �̃e3 = ✏ ge3 for a
Qac
` -character ✏ of J of order a power of `. So, ✏|J1 = 1 and ✏|Z = 1. Since E5/F

is ramified, the index of Z J 1 in J is 2, hence ✏ = 1 and �̃ 2 Xe5. ⇤
When charF 6= 2 and charR 6= 2, compare with [Cui et al. 2024, Proposition 6.7].

When p = 2, we shall complete the proposition in Corollary 4.24: if ⇡̃ has positive
level then r`(⇡̃) has length  2, if ⇡ is in an L-packet L(5) of positive level with
E5/F unramified then ⇡ lifts to Qac

` .

4.4. Local Langlands R-correspondence for GL2(F).

4.4.1. By local class field theory, the smooth R-characters � of F⇤ identify with
the smooth R-characters � �↵F of WF where ↵F : WF ! F⇤ is the Artin reciprocity
map sending a arithmetic Frobenius Fr to p�1

F [Bushnell and Henniart 2002, §29].
This is the local Langlands R-correspondence for GL1(F).
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122 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

A two-dimensional Deligne R-representation of the Weil group WF is a pair
(�, N ) where � is a two-dimensional semisimple smooth R-representation of the
Weil group WF and N a nilpotent R-endomorphism of the space of � with the usual
requirement:

(4-23) � (w)N = N |↵F (w)|F � (w) for w 2 WF .

Two two-dimensional Deligne R-representations (�, N ) and (� 0, N 0) of WF are
isomorphic if there exists a linear isomorphism f : V ! V 0 from the space V of �
to the space V 0 of � 0 such that � 0(w)� f = f �� (w) for w 2 WF and N 0 � f = f � N .

For a smooth R-character � of F⇤, the twist (�, N ) ⌦ (� � ↵F ) of (�, N ) by
� �↵F is (� ⌦ (� �↵F ), N ).

When R = Qac
` , (�, N ) is called integral if � is integral.

Remark 4.17. • When � is irreducible we have N = 0.
• When � = (�1 ��2) �↵F , if �1�

�1
2 6= q±val then N = 0. When N 6= 0, we have

{�1,�2} = {�i , q�val�i } for some i and N sends the (�i � ↵F )-eigenspace to the
(q�val�i �↵F )-eigenspace or 0. Therefore when �1�

�1
2 = qval:

• If q � 1 6= 0 and q + 1 6= 0 in R, then N = 0 or the kernel of N is the (�2 �↵F )-
eigenline.
• If q � 1 6= 0 and q + 1 = 0 in R, then N = 0, or the kernel of N is the (�2 �↵F )-
eigenline, or the kernel of N is the (�1 �↵F )-eigenline.
• If q � 1 = 0, then N is any nilpotent.

The local Langlands R-correspondence for G = GL2(F) is a canonical bijection

(4-24) LLR :5 7! (�5, N5)

from the isomorphism classes of the irreducible smooth R-representations 5 of G
onto the equivalence classes of the two-dimensional Weil–Deligne R-representations
of WF .9 It identifies supercuspidal R-representations of G and irreducible two-
dimensional R-representations of WF , commutes with the automorphisms of R
respecting a chosen square root of q, with the twist by smooth R-characters �
of F⇤:

(4-25) LLR(5⌦ (� � det)) = LLR(5) ⌦ (� �↵F ).

The local Langlands complex correspondence was proved by Kutzko [Bushnell
and Henniart 2002, §33]. An isomorphism C ' Qac

` and the choice of a square
root of q in Qac

` transfers LLC to a local Langlands Qac
` -correspondence LLQac

`

respecting integrality. Any irreducible smooth Fac
` -representation 5 of G lifts to

a Qac
` -representation e5 of G (Proposition 4.14) and LLQac

`
descends to a local

9(�5, N5) is called the L-parameter of 5.
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REPRESENTATIONS OF SL2(F) 123

Langlands Fac
` -correspondence LLFac

`
compatible with reduction modulo ` in the

sense of [Vignéras 2001, §1.8.5]. The nilpotent part N5 is subtle but the semisimple
part �5 is simply the reduction modulo ` of �e5,

(4-26) �5 = r`(�e5).

The local Langlands correspondence LLR of G over R is deduced from LLQac
`

when
charR = 0 and from LLFac

`
when charR = ` [Vignéras 1997, §3.3; 2001, §1.7 and

§1.8]. We recall from the latter paper a representative (�5, N5) of LLR(5) for an
irreducible smooth R-representation 5 of G.

Proposition 4.18. (A) Let 5 be an irreducible subquotient of the unnormalized
R-principal series indG

B (1) of G. Then, �5 = ((q1/2)�val � (q1/2)val)�↵F . We have
N5 = 0 if 5= 1 (the trivial character) when q + 1 6= 0 in R, and 5=50 cuspidal
when q + 1 = 0 in R. Otherwise N5 6= 0. When q � 1 6= 0 in R, the kernel of N5 is

• the ((q1/2)�val �↵F )-eigenline if q + 1 = 0 in R and 5= 1,
• the ((q1/2)val �↵F )-eigenline if q + 1 = 0 in R and 5= qval � det,
• the ((q1/2)�val � ↵F )-eigenline if q + 1 6= 0 in R and 5 = St the Steinberg

representation.

(B) Let5 be the irreducible normalized principal series i G
B (⌘), i.e., ⌘ 6= q±val, with

the notation of (4-29). Then �5 = (⌘� 1) �↵F and N5 = 0.

(C) Let 5 be a supercuspidal R-representation of G. Then �5 is irreducible
and N5 = 0.

4.4.2. For a two-dimensional semisimple smooth R-representation � of WF , put

X� = {smooth R-characters � of F⇤ such that (� �↵F ) ⌦ � ' � }.

The square of each � 2 X� is trivial because dimR � = 2. We shall compute X�
when charR 6= 2. When charR = 2, X� = {1}.

To a pair (E, ⇠) where E is a quadratic separable extension of F and ⇠ is a
smooth R-character of E⇤ different from its conjugate ⇠⌧ by a generator ⌧ of
Gal(E/F) (i.e., ⇠ is not trivial on Ker NE/F = {x/x⌧ | x 2 E⇤}), is associated a
2-dimensional irreducible smooth R-representation of WF

� (E, ⇠) = indWF
WE

(⇠ �↵E).

The character ⇠ is unique modulo Gal(E/F)-conjugation.
When charR 6= 2, let � be a two-dimensional irreducible smooth R-representation

of WF and E/F a quadratic separable extension. By Clifford’s theory [Bushnell
and Henniart 2006, Chapter 10, §41.3, Lemma] with Notation 4.4,

⌘E 2 X� () � ' � (E, ⇠) for some ⇠ .
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124 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

Proposition 4.19. Assume charR 6= 2. For a pair (E, ⇠) as above,

X� (E,⇠) =

⇢
{1, ⌘E } if (⇠/⇠⌧ )2 6= 1,

{1, ⌘E , ⌘E 0, ⌘E⌘E 0} if (⇠/⇠⌧ )2 = 1, ⇠/⇠⌧ = ⌘E 0 � NE/F .

For each biquadratic separable extension K/F , there exists a two-dimensional
irreducible smooth R-representation � of WF , unique modulo twist by a character,
with

X� = {1, ⌘E , ⌘E 0, ⌘E 00}

for the three quadratic extensions E , E 0, E 00 of F contained in K .

Proof. • We have

� 2 X� (E,⇠) ()(��↵F )⌦indWF
WE

(⇠�↵E)' indWF
WE

(⇠�↵E)()⇠(��NE/F )=⇠ or ⇠⌧ .

• ⇠(� � NE/F ) = ⇠ () � is trivial on NE/F (E⇤), so � = 1 or ⌘E .
• ⇠(� � NE/F ) = ⇠⌧ () � = ⌘E 0 for a quadratic separable extension E 0 6= E of F ,
as �2 = 1.

If � satisfies ⇠(� � NE/F ) = ⇠⌧ , the order of ⇠⌧/⇠ is 2, ⇠⌧/⇠ is fixed by ⌧ and
determines � up to multiplication by ⌘E . Let K/F be the biquadratic extension
generated by E and E 0 and E 00/F the third quadratic extension contained in K/F .
We have ⌘E⌘E 0 = ⌘E 00 . Hence the first assertion.

The uniqueness in the second assertion follows from the fact that for two smooth
R-characters ⇠1, ⇠2 of E⇤, ⇠⌧1 /⇠1 = ⇠⌧2 /⇠2 () ⇠1 = ⇠2(� � NE/F ) for a smooth
R-character � of F⇤.

The existence in the second assertion is as follows. When p is odd, there is a
unique biquadratic extension K/F of F . Let E/F be the unramified quadratic
extension. We take � = � (E, ⇠) where ⇠ is the character of E⇤ trivial on 1+ pF OE ,
⇠(pF ) = �1 and ⇠(x) = x

1
2 (q+1) if xq2�1 = 1, satisfies ⇠⌧/⇠ 6= 1 and (⇠⌧/⇠)2 = 1

hence ⇠⌧/⇠ = ⌘E 0 � NE/F = ⌘E⌘E 0 � NE/F for E 0/F ramified. When p = 2, given
two different quadratic separable extensions E 0/F and E/F , there exists a smooth
R-character ⇠ of E⇤ such that ⇠⌧/⇠ =⌘E 0 �NE/F =⌘E⌘E 0 �NE/F , because charR 6=2,
and this is known when R = C ([Bushnell and Henniart 2006, Chapter 10, §41]
when p 6= 2, but the proof does not use p 6= 2).10,11 ⇤
Remark 4.20. Let5 be a supercuspidal R-representation of G. Then5 has level 0
(resp. L(5) has level 0), if and only if �5 = indWF

WE
(⇠ �↵E) where E/F is quadratic

unramified and ⇠ is a tame character of E⇤ (resp. ⇠⌧/⇠ is a tame character of E⇤

where ⌧ is the nontrivial element of Gal(E/F)).

10We gave a direct proof when p is odd, this was unnecessary.
11When p is odd and charR = 2, there is no ⇠ such that � (E, ⇠) is induced from a character of

WE 0 for a quadratic extension E 0/F distinct from E/F .
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REPRESENTATIONS OF SL2(F) 125

Remark 4.21. Assume charR 6= 2. Let � = �1 � ↵F � �2 � ↵F be a reducible
two-dimensional semisimple smooth R-representation of WF . Then

� �↵F 2 X� () {��1,��2} = {�1,�2} () � = 1 or ��1 = �2,��2 = �1

() � = 1 or � = �2�
�1
1 ,�2

= 1.

If �1�
�1
2 = ⌘E for a quadratic separable extension E/F , then X� = {1, ⌘E }. Other-

wise, X� = {1}.

4.4.3. Application to the cuspidal L-packets. For a two-dimensional Weil–Deligne
R-representation (�, N ) of WF , put X(�,N ) for the group of � 2 X� such that
there exists an isomorphism of � ⌦ � onto � preserving N . For any irreducible
R-representation5 of G, applying the formulas (4-24), (4-25) and (4-11) we obtain:

(4-27) X5 = {� � det | � 2 X(�5,N5)}.

(4-28) When charR 6= 2, the cardinality of the L-packet L(5) is |X�5 |.

Proposition 4.22. (1) When charR 6= 2, we have:

• The cardinality of a cuspidal L-packet is 1, 2 or 4.
• The map L(5) 7! E5 is a bijection from the cuspidal L-packets of size 4 to

the biquadratic separable extensions of F.

(2) There is a bijection from the cuspidal L-packets of size 4 to the biquadratic
separable extensions of F , sending the unique cuspidal L-packet of size 4 to the
unique biquadratic separable extension of F when charR = 2, and equal to the map
L(5) 7! E5 when charR 6= 2.

Proof. (a) Assume charR 6= 2. If5 is cuspidal and X5 6={1} then ⌘E 2 X5 for some
quadratic separable extension E/F , �5=� (E, ⇠) for some ⇠ and |X� (E,⇠)|= 2 or 4
by Proposition 4.19. When p = 2 then the map is a bijection by Proposition 4.19
via the local Langlands correspondence.

(b) Assume p is odd (and charR 6= p). There is a unique biquadratic separable
extension of F and a unique cuspidal L-packet of size 4 (Corollary 4.10).

(c) As p is odd when charR = 2, the proposition follows from (a) and (b). ⇤
When R = Fac

` and ` 6= p, it is well known that an irreducible smooth Fac
` -

representation � of WF of dimension 2 lifts to an integral irreducible smooth
Qac
` -representation �̃ of WF .12 The order of X �̃ is at most to the order of X� . We

give now all the cases where the orders are different.

Theorem 4.23. Assume ` 6= 2.

12� extends to a Fac
` -representation of the Galois group GalF . As GalF is solvable this representa-

tion lifts to a Qac
` -representation of GalF that one restricts to WF to get �̃ .
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126 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

(1) Let �̃ be a lift to Qac
` of a two-dimensional irreducible smooth Fac

` -representa-
tion � of WF . The cardinalities of X� and of X �̃ are different if and only if |X� | = 4,
|X �̃ | = 2, and this happens if and only if

p = 2, ` divides q + 1, �̃ = indWF
WE

(⇠̃ �↵E),

where E/F is a quadratic unramified extension, ⇠̃ a smooth Qac
` -character of E⇤

such that:

(i) The order of ⇠̃ ⌧/⇠̃ on 1 + PE is 2 where Gal(E/F) = {1, ⌧ }.

(ii) ⇠̃(b) 6= 1, ⇠̃(b)`
s
= 1 for a root of unity b 2 E⇤ of order q + 1, and s is a

positive integer such that `s divides q + 1.

(2) Each irreducible smooth Fac
` -representation � of WF of dimension 2 admits a

lift �̃ to Qac
` such that |X �̃ | = |X� |.

Proof. (1) Let 5 be the supercuspidal smooth Fac
` -representation of G and e5

the integral supercuspidal smooth Qac
` -representation of G lifting 5 such that

� = �5, �̃ = �e5 by the Langlands correspondence (4-24). We have |X5| = |X� |,
|Xe5| = |X �̃ | (4-27). By Proposition 4.15, |X� | = |X �̃ | or 2|X �̃ |, except maybe
when p = 2 and e5 has positive level. In this exceptional case, ⌘E 2 Xe5. By
Remark 4.21, |X� | and |X �̃ | are equal to 1, 2 or 4. Therefore, |X� | 6= |X �̃ | is
equivalent to |X� | = 4 and |X �̃ | = 2.

When |X� |=4 and |X �̃ |=2, � = indWF
WE
⇠ , �̃ = indWF

WE
⇠̃ for a quadratic unramified

extension E/F , an integral smooth Qac
` -character ⇠̃ of E⇤, of reduction ⇠ modulo `,

with ⇠/⇠⌧ 6= 1 where ⌧ is the generator ⌧ of Gal(E/F), and (⇠/⇠⌧ )2 = 1. This
implies (⇠̃/⇠̃ ⌧ )2 = 1 on pZ

F (1 + PE) because ` 6= p. We have E⇤ = pZ
F (1 + PE)µE

where µE = {x 2 E⇤ | xq2�1 = 1}. We have ⌧ (x) = xq if x 2 µE . The group
{xq�1 | x 2 µE } is generated by an arbitrary root of unity b 2 E⇤ of order q +1. So

(⇠̃/⇠̃ ⌧ )2
=1() ⇠̃(b)2

=1() |X �̃ |=4, (⇠̃/⇠̃ ⌧ )2
6=1() ⇠̃(b)2

6=1() |X �̃ |=2.

In the exceptional case, p = 2 hence ` is odd and ⇠(b)2 = 1 implies ⇠(b) = 1 (and
conversely), or equivalently, the order of ⇠̃(b) is a power of ` dividing q + 1. There
exists a lift ⇠̃ of ⇠ such that ⇠̃(b) 6= 1 if and only if ` divides q + 1.

(2) Given a positive integer s, each element x 2 (Fac
` )⇤, x 6= 1, is the reduction

modulo ` of an element x̃ 2 (Zac
` )⇤ such that x̃`

s
6= 1. ⇤

Corollary 4.24. (1) The reduction modulo ` of a supercuspidal Qac
` -representation

⇡̃ of G 0 has length  2. It has length 2 if and only if

p = 2, ` divides q + 1, �e5 = indWF
WE

(⇠̃ �↵E),

where ⇡̃ 2 L(e5), E/F is unramified, and ⇠̃ is a smooth Qac
` -character of E⇤ such

that:
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REPRESENTATIONS OF SL2(F) 127

(i) The order of ⇠̃ ⌧/⇠̃ on 1 + PE is 2 where Gal(E/F) = {1, ⌧ }.

(ii) ⇠̃(b) 6= 1, ⇠̃(b)`
s
= 1 for a root of unity b 2 E⇤ of order q +1, and `s divides

q + 1.

(2) Each cuspidal Fac
` -representation ⇡ of G 0 is the reduction modulo ` of an

integral supercuspidal Qac
` -representation of G 0.

Proof. (1) This follows from

• Theorem 4.23(1), (4-21), and the local Langlands correspondence if ` 6= 2,
• Proposition 4.15(1) if `= 2.

(2) This follows from

• the fact that ⇡ lifts to Qac
` by Theorem 4.23(2), (4-21), and the local Lang-

lands correspondence if p = 2 and ⇡ is in an L-packet L(5) with5minimal
of positive level (hence ⇡ is supercuspidal, see Corollary 4.27) with E5/F
unramified,

• Proposition 4.15(2) otherwise. ⇤
Remark 4.25. Assume p 6= 2. A pair (E, ✓) where E/F is a quadratic extension
of F and ✓ is a smooth R-character of E⇤, is called admissible [Bushnell and
Henniart 2006, Chapter 5, §18.2] if either:

(1) ✓ does not factorize through NE/F (equivalently is regular with respect to
Gal(E/F)).

(2) E/F is unramified whenever ✓ |1+PE does factorize through NE/F (equivalently
is invariant under Gal(E/F)).

To an admissible pair (E, ✓) is associated the two-dimensional irreducible
R-representation � (E, ✓) = indWF

WE
(✓ � ↵E) of WF , and when R = C an explic-

itly constructed supercuspidal representation ⇡(E, ✓) of G [loc. cit., Chapter 5,
§19]. Isomorphism classes of supercuspidal complex representations of G, are
parametrized by isomorphism classes of admissible pairs (E, ✓) [loc. cit., Chapter 5,
§20.2]. The Langlands local correspondence sends ⇡(E, ✓) to � (E, µ✓) where the
explicit “rectifier” µ is a tame character of E⇤ depending only on ✓ |1+PE . As the
Langlands correspondence is compatible with automorphisms of C preserving p

q ,
the previous classification in terms of admissible pairs transfers to R-representations
where R is an algebraically closed field of characteristic 0 (given a choice of square
root of q in R). The classification and correspondence for R = Qac

` reduce modulo
` 6= p (the integrality property for a pair (E, ✓) is that ✓ takes integral values) to get
a similar classification of supercuspidal Fac

` -representations in terms of admissible
pairs. The integral admissible pairs over Qac

` that do not reduce to admissible pairs
over Fac

` , yield under reduction cuspidal but not supercuspidal Fac
` -representations.
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128 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

4.5. Principal series. We use the notations of Section 4. We identify a smooth
R-character ⌘ of T 0 with a R-character of F⇤ and of T by

(4-29) ⌘(diag(a, d)) = ⌘(diag(a, a�1)) = ⌘(a) (a, d 2 F⇤).

Proposition 4.11 describes i G
B (⌘). The transfer of the properties (i) to (iv) to

i G 0

B 0 (⌘) = (i G
B (⌘))|G 0

is easy and gives:

(i) For smooth R-characters ⌘, ⌘0 of F⇤, [i G 0

B 0 (⌘)] and [i G 0

B 0 (⌘0)] are disjoint if
⌘0 6= ⌘±1, and equal if ⌘0 = ⌘±1.

(ii) The smooth dual of i G 0

B 0 (⌘) is i G 0

B 0 (⌘�1).

(iii) (i G 0

B 0 (⌘))U has dimension 2, contains ⌘�1 and ⌘ is a quotient.

(iv) dim WY (i G 0

B 0 (⌘)) = 1 for all Y 6= 0.

The transfer of the properties (v) and (vi) is harder.

Proposition 4.26. (i) i G 0

B 0 (⌘) is reducible if and only if ⌘ = q±val, or ⌘ 6= 1 and
⌘2 = 1.

(ii) When charR 6= 2, i G 0

B 0 (⌘E) is semisimple of length 2, when E/F is a quadratic
separable extension, which is ramified if q + 1 = 0 in R.

(iii) When charR = 2, the only reducible principal series is i G 0

B 0 (1) = indG 0

B 0 (1).

(iv) The length of i G 0

B 0 (q�val) and of i G 0

B 0 (qval) = indG 0

B 0 (1) is

lg(indG 0

B 0 1) =

8
<

:

2 if q + 1 6= 0 in R,

4 if q + 1 = 0 in R and charR 6= 2,

6 if charR = 2.

Note that charR = 2 implies q + 1 = 0 in R.

Proof. We show (i), (ii) and (iii).

If i G
B (⌘) is reducible, then its restriction i G 0

B 0(⌘) to G 0 is reducible. By Proposition 4.11,
i G

B (⌘) is reducible if and only if ⌘ = q±val.

Assume i G
B (⌘) irreducible, i.e., ⌘ 6= q±val. If charR 6= 2, we have Xi G

B (⌘) = 2 if and
only if ⌘ 6= 1 and ⌘2 = 1 by the Langlands correspondence and Remark 4.21.13 We
have ⌘ 6= 1, ⌘2 = 1 if and only if ⌘ = ⌘E for a quadratic separable extension E/F ,
which is ramified if q + 1 = 0 in R (Notation 4.4) as ⌘ 6= q±val. If charR = 2,
then p is odd, ⌘ 6= 1, and i G 0

B 0 (⌘) is irreducible. Indeed, the irreducible components
of i G 0

B 0 (⌘) are B-conjugate (§6.2.1). They give a partition of the set of irreducible

13It can also be done directly because for a smooth R-character � of F⇤, Proposition 4.11(i)
implies (� � det) ⌦ iG

B (⌘) ' iG
B (⌘) () �⌘ = ⌘ or ⌘�1 () � = 1 or � = ⌘ and ⌘2 = 1.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1

11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

391/2

40



REPRESENTATIONS OF SL2(F) 129

components of (i G 0

B 0 (⌘))|B 0 . The character ⌘ appears with multiplicity 1 as ⌘ 6= ⌘�1,
but as it is fixed by B, the partition is trivial, i.e., i G 0

B 0 (⌘) is irreducible.

(iv) [Cui 2023, Example 3.11, Method 2] We give a proof for the convenience
of the reader. When q + 1 6= 0 in R, the restriction to G 0 of the Steinberg
representation St of G is irreducible, otherwise it would contain a cuspidal rep-
resentation as dimR StU = 1 which is impossible by (4-15). When q + 1 = 0
in R, the cuspidal R-representation 50 (see Proposition 4.11) is induced from
the inflation to Z GL2(OF ) of a cuspidal R-representation �0 of GL2(kF ). By
(4-18), lg(50|G 0) = 2 lg(�0|SL2(kF )). The representation �0|SL2(kF ) is irreducible if
charR 6= 2, and has length 2 if charR = 2 (Appendix). ⇤
Corollary 4.27. The nonsupercuspidal smooth R-representations of G 0 are:

• The trivial character.

• If q + 1 6= 0 in R, the Steinberg R-representation st = St |G 0 .

• The principal series i G 0

B 0 (⌘) for the smooth R-characters ⌘ of F⇤ with ⌘ 6= q±val

and ⌘ 6= ⌘E for any quadratic separable extension E/F.

• If charR 6= 2, the two irreducible components ⇡±

E of i G 0

B 0 (⌘E) for a quadratic
separable extension E/F , which is ramified if q + 1 = 0 in R.

• If charR 6= 2 and q + 1 = 0 in R, the two irreducible components of 50|G 0 .

• If charR = 2, the four irreducible components of 50|G 0 .

The only isomorphisms between those representations are i G 0

B 0 (⌘) ' i G 0

B 0 (⌘�1) for the
irreducible principal series.

We get for nonsupercuspidal L-packets:

Proposition 4.28. When q+1 = 0 in R, there is a unique cuspidal nonsupercuspidal
L-packet. Its size is 2 if charR 6= 2 and 4 if charR = 2.

• When charR = 2, every noncuspidal L-packet is a singleton.

• When charR 6= 2, the noncuspidal L-packets are singletons or of size 2.
Those of size 2 are in bijection with the isomorphism classes of the quadratic
separable extensions of F.

This proposition and Corollary 4.10 imply:

Corollary 4.29. The L-packets of size 4 are cuspidal.

We consider now the reduction modulo a prime number ` 6= p. A noncuspidal
irreducible Qac

` -representation ⇡̃ of G 0 is integral except when ⇡̃ ' i G 0

B 0 (⌘̃) for a
nonintegral smooth Qac

` -character ⌘̃ of F⇤. When ⇡̃ is integral, we deduce from
Corollary 4.27 the length of the reduction r`(⇡̃) modulo ` of ⇡̃ .
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130 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

Proposition 4.30. (1) The reduction r`(⇡̃) modulo ` of ⇡̃ irreducible noncuspidal
and integral is irreducible with the exceptions:

• If ` = 2, then lg(r`(s̃t)) = 5, lg(r`(⇡̃±

E )) = 3, lg
�
r`(i G 0

B 0 (⌘̃))
�

= 6 for ⌘̃ of
order a finite power of `.

• If ` 6= 2 and ` divides q + 1, then lg(r`(s̃t)) = 3, lg
�
r`(i G 0

B 0 (⌘̃))
�
= 4 for ⌘̃

of order a finite power of `, lg
�
r`(i G 0

B 0 (⌘̃))
�

= 2 if ⌘̃ = ⌘̃E ⇠̃ , for a ramified
quadratic separable extension E/F and a character ⇠̃ of order a power of `.

(2) Each noncuspidal irreducible Fac
` -representation of G 0 is the reduction modulo `

of an integral noncuspidal irreducible Qac
` -representation of G 0.

5. Local Langlands R-correspondence for SL2(F)

5.0.1. If (�, N ) is a two-dimensional Deligne R-representation of the Weil group
WF (§4.4.1), a choice of a basis of the space of � gives a Deligne morphism of
WF into GL2(R).14 In this way equivalence classes of two-dimensional Deligne
R-representations of WF identify with Deligne morphisms of WF into GL2(R), up
to GL2(R)-conjugacy.

By a Deligne morphism of WF into PGL2(R), we mean a pair (�, N ) where
� : WF ! PGL2(R) is a smooth morphism, semisimple in the sense that if � (WF ) is
in a parabolic subgroup P then it is in a Levi of P , and N is a nilpotent15 element in
Lie(PGL2(R)) with the usual requirement (4-23). We say that (�, N ) is irreducible
if � (WF ) is not contained in a proper parabolic subgroup (meaning that N = 0 and
the inverse image of � (WF ) in GL2(R) acts irreducibly on R2). The question arises
whether a Deligne morphism (�, N ) of WF into PGL2(R) lifts to a two-dimensional
Weil–Deligne R-representation.

When (�, N ) is reducible, we may assume that � takes value in the diagonal
torus of PGL2(R), and that N is upper triangular. The map x 7! diag(x, 1) modulo
scalars is an isomorphism from R⇤ to this torus, so � comes from an R-character �
of WF , and � lifts to the two-dimensional � � 1. That deals with the case where
N = 0. When N 6= 0, then (�, N ) lifts to (q�val � 1, N ).

The following lemma answers the question more generally for irreducible Deligne
morphisms of WF into PGLn(R) for integers n � 2 (the definitions above for n = 2
generalize to n > 2).

Lemma 5.1. Any irreducible smooth morphism ⇢ : WF !PGLn(R) has finite image
and its natural extension to GalF lifts to an irreducible smooth R-representation of
GalF of dimension n.

14We use the same notation (�, N ) for the Deligne morphism of WF into GL2(R).
15 N is nilpotent in Lie(PGL2(R)) if the Zariski closure of the PGL2(R)-orbit of N contains 0.
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REPRESENTATIONS OF SL2(F) 131

Proof. Because the inertia group IF of WF is profinite and ⇢ is smooth, ⇢(IF ) is
finite. Let ' be a Frobenius element in WF . If the order of ⇢(') is finite, then
⇢(WF ) is finite, so ⇢ extends by continuity to a smooth R-representation ⇢ 0 of GalF .
The proof of Tate’s theorem [Serre 1977, §6.5] applies with R instead of C and
that shows that ⇢ 0 lifts to a smooth R-representation of GalF . Let us show that
⇢(') has finite order. Since ⇢(') acts by conjugation on ⇢(IF ) which is finite, a
power ⇢('d) for some positive d acts trivially on ⇢(IF ). But it also acts trivially on
⇢('), hence on all of ⇢(WF ). Let A 2 GLn(R) be a lift of ⇢('d). For B 2 GLn(R),
the commutator (A, B) depends only on the image of B in PGLn(R), and if B has
image ⇢(i) for i 2 IF , then (A, B) is a scalar µ(i). If B 0 2 GLn(R) has image
⇢(i 0) for i 0 2 IF , then A(B B 0)A�1 = AB A�1 AB 0 A�1, giving µ(i i 0) = µ(i)µ(i 0),
so conjugation by A induces a morphism µ : IF ! R⇤. Since ⇢(IF ) is finite, a
power Ae for some positive e commutes with the inverse image J in GLn(R) of
⇢(WF ). Let V be an eigenspace of Ae. It is stable under J . If V 6= Rn , that yields
a proper parabolic subgroup P (the image in PGLn(R) of the stabilizer of V ) of
PGLn(R) which contains ⇢(WF ), contrary to the hypothesis. So Ae is scalar, which
implies that ⇢(') has finite order dividing de. ⇤

Two 2-dimensional Deligne R-representations of WF in GL2(R) are twists of
each other by a smooth R-character of WF if and only if they give the same Deligne
morphism of WF in PGL2(R). This happens if and only if the two corresponding
irreducible smooth R-representations 5, 50 of G are twists of each other by a
smooth R-character of G (4-25), that is, if and only if 5 and 50 define the same
L-packet L(5) = L(50) of irreducible smooth R-representations of G 0 (4-4).

5.0.2. From the above the local Langlands correspondence for G induces a bijection
between L-packets of irreducible smooth R-representations of G 0 and Deligne mor-
phisms of WF in PGL2(R) up to PGL2(R)-conjugacy. We would like to understand
the internal structure of a given packet in terms of an associated Deligne morphism
WF ! PGL2(R) (called its L-parameter).

Let 5 be an irreducible smooth R-representation of G. The L-packet L(5)

is a principal homogeneous space of G/G5. The packet containing the trivial
representation of G 0 is a singleton, so the parametrization is trivial. When L(5) is a
packet of infinite-dimensional representations of G 0 we take as a base point in L(5)

the element with nonzero Whittaker model with respect to the character  of F
(that is, ✓0 of U ) fixed in Section 4.1. Let C5 denote the centralizer of the image in
PGL2(R) of a Deligne morphism (�5, N5) of WF in GL2(R) associated to 5, and
S5 the component group of C5. We shall compute C5 and S5, and when charR 6= 2
we shall construct a canonical isomorphism from G/G⇡ onto the R-characters of S5.
In this way we get an enhanced local Langlands correspondence for SL2(F) in the
sense of [Aubert et al. 2016; 2017] if charR 6= 2 but not if charR = 2. J.-F. Dat tells
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132 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

us that our results for charR = 2 should still be compatible with the stacky approach
of Fargues and Scholze to the semisimple Langlands correspondence. For example,
for a supercuspidal R-representation 5 of G, the two components of 5|G 0 should
be indexed by the two irreducible R-representations of the group scheme µ2.

The group of R-characters of G/G5 is X5, and X5 = {� � det | � 2 X(�5,N5)}

(4-27). We now construct a homomorphism ' : X(�5,N5) ! S5. Let � 2 X(�5,N5).
By definition, there exists A 2 GL2(R) such that AN5 = N5 and for w 2 WF ,
A�5(w)A�1 = �(w)�5(w). The image A of A in PGL2(R) belongs to C5 and
we shall show that its image '(�) in S5 does not depend on the choice of A.

Theorem 5.2. The map ' : X(�5,N5) ! S5 is a group isomorphism, and S5 = {1},
Z/2Z or Z/2Z ⇥ Z/2Z.

When charR = 2, S5 = {1} for each 5, but the length of 5|G 0 is

• 1 if 5 is not cuspidal,
• 2 if 5 is supercuspidal,
• 4 if 5 is cuspidal not supercuspidal.

Proof. (A) Let 5 be a supercuspidal R-representation of G. Then �5 is irreducible
and N5 = 0 (Proposition 4.18).

When charR 6= 2, the authors of [Cui et al. 2024, Proposition 6.4] construct an
isomorphism ' : X�5 ! C5 when charF 6= 2, but their proof does not use this
hypothesis. This implies C5 = S5. One checks that '(�) = '(�) for � 2 X�5 , an
isomorphism.

When charR = 2, we have that p is odd, the cardinality of L(5) is 2 or 4
(Propositions 4.7 and 4.8), and �5 = indWF

WE
(✓) where E/F is a quadratic separable

extension and ✓ a smooth R-character of WE (or equivalently of E⇤) different from
its conjugate ✓⌧ by a generator ⌧ of Gal(E/F). The character ✓⌧/✓ has finite odd
order, say m, and �5(WF ) ⇢ GL2(R) is a dihedral group of order 2m, generated by
a matrix

�a 0
0 a�1

�
of order m and

�
0 1
1 0

�
modulo conjugation in GL2(R). So C5 = {1}

and there is no enhanced correspondence.

(B) Let 5= i G
B (⌘) be an irreducible normalized principal series with the notation

of (4-29), with ⌘ 6= q±val. The cardinality of L(5) is 2 if ⌘ 6= 1, ⌘2 = 1, and L(5)

is a singleton otherwise. We have �5 = (⌘� 1) �↵F , N5 = 0 (Proposition 4.18)
and we easily see that C5 is

• PGL2(R) when ⌘ = 1, so S5 = {1},
• the diagonal torus when ⌘ 6= 1, ⌘2 6= 1, S5 = {1},
• the normalizer of the trivial torus when ⌘ 6= 1, ⌘2 = 1, so charR 6= 2 and

S5 = Z/2Z. We have X5 = {1, ⌘ � det} (Remark 4.21) and '(⌘) is not
trivial, so ' : X5 ! S5 is an isomorphism.
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REPRESENTATIONS OF SL2(F) 133

(C) If 5 is an irreducible subquotient of indG
B 1, the length of 5|G 0 (Section 4.5) is

• 1 when 5= 1, qval � det or St,
• 2 when 5=50 if charR 6= 2 and q + 1 = 0 in R,
• 4 when 5=50 if charR = 2.

We have �5= ((q1/2)val�(q�1/2)val)�↵F ((4-24), Proposition 4.18). The centralizer
C 0
5 of the image of �5(WF ) in PGL2(R) is the image in PGL2(R) of

{A 2 GL2(R) | A diag(q, 1)A�1
2 R⇤ diag(q, 1)}

=

⇢
A =

✓
x y
z t

◆
2 GL2(R)

���
✓

xq y
zq t

◆
= u

✓
xq yq
z t

◆
for some u 2 R⇤

�
.

If x 6= 0 or t 6= 0 then u = 1, and if y 6= 0 then qu = 1. If z 6= 0 then u = q. So,
C 0
5 is

• PGL2(R) if q � 1 = 0 in R,
• the diagonal torus when q � 1 6= 0 in R and q + 1 6= 0 in R,
• the centralizer of the diagonal torus if q � 1 6= 0 in R and q + 1 = 0 in R.

We have N5 = 0, hence C5 = C 0
5 when:

• 5= 1 when q + 1 6= 0 in R, hence C1 = PGL2(R) if q + 1 6= 0, q � 1 = 0
in R (so charR 6= 2) and C1 is the diagonal torus if q + 1 6= 0, q � 1 6= 0
in R. In both cases S1 = {1}.

• 5 = 50 cuspidal when q + 1 = 0 in R. Recalling Section 4.5, when
charR 6= 2, lg(50|G 0) = 2 and C50 is the normalizer of the diagonal torus
and S5 = Z/2Z. We have X�50

= {1, (�1)val} (Corollary 4.13). As in (B),
'((�1)val) is not trivial, so ' : X5 ! S5 is an isomorphism.

But when charR = 2, then q � 1 = 0 in R and C50 = PGL2(R). As S50 = {1}

and lg(50|G 0) = 4, there is no enhanced correspondence.
We suppose now N5 6= 0. Then (Proposition 4.18) 5 = St when q + 1 6= 0

in R and 5 is a character when q + 1 = 0 in R. In both cases 5|G 0 is irreducible
(Corollary 4.27). We can suppose that N5 is a nontrivial upper triangular matrix.
A similar analysis gives that C5 is

• the diagonal torus if q � 1 6= 0 in R,
• the upper triangular subgroup if q � 1 = 0 in R.

In both cases S5 = {1}. ⇤
Remark 5.3. We computed the centralizer C5 ⇢ PGL2(R):

• C5 is finite if and only if 5 is supercuspidal.
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134 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

• When C5 is connected, it is isomorphic to PGL2(R), the upper triangular
subgroup, the diagonal subgroup, or {1}.

• When C5 has two connected components it is isomorphic to the normalizer
of the diagonal subgroup or to Z/2Z.

• When C5 has four connected components, it is isomorphic to the Klein
group Z/2Z ⇥ Z/2Z.

5.0.3. Assume charR = 2. A kind of lifting has been introduced by [Treumann
and Venkatesh 2016] and generalized in [Feng 2023]. They consider a (connected)
split reductive F-group H , equipped with an involution ◆ such that the group of
fixed points H ◆ is (connected) split reductive. They set up a correspondence, called
linkage, between ◆-invariant irreducible smooth R-representations 5 of H = H(F)

and irreducible smooth R-representations of H ◆ = H ◆(F). More precisely they
show that there is a unique isomorphism ◆5 from 5 to its conjugate 5◆ by ◆,
which has trivial square. They say that an irreducible smooth R-representation ⇡
of H ◆ is linked with 5 if the Frobenius twist of ⇡ occurs as a subquotient of the
representation T (5)=Ker(1+◆5)/ Im(1+◆5) of H ◆. They ask for an interpretation
of linkage in terms of dual groups.

Let us consider the special case where H = GL2 and ◆(g) = g/ det g.16 Then
H ◆ = SL2, so H = G, H ◆ = G 0. Let 5 be an irreducible smooth R-representation
of G of central character !5. It is invariant under ◆ if and only if5'5⌦(!5�det).
This implies that !5 has trivial square, so is trivial because charR = 2. In other
words, 5 is ◆-invariant if and only if 5 factors to a representation of PGL2(F).
It follows that then ◆5 is the identity, and T (5) is simply the restriction of 5
to G 0, which we have thoroughly investigated. In particular T (5) has finite length,
as expected. The dual group of H over R is GL2(R), that of H ◆ is PGL2(R).
Treumann and Venkatesh ask for an interpretation of linkage in terms of a natural
homomorphism from PGL2(R) to GL2(R).

Let �5 : WF ! GL2(R) be the semisimple L-parameter of 5. The map
'�1(�5) : WF ! GL2(R), followed by the quotient map GL2(R) ! PGL2(R), is
the semisimple L-parameter ⇢5 : WF ! PGL2(R) of the Frobenius twist of any
constituent ⇡ of 5|G 0 .

The map 9(g) = '(g)/ det g for g 2 GL2(R) where ' : x ! x2 is the Frobenius
map of R, is trivial on scalar matrices, hence factors through a homomorphism
9 : PGL2(R) ! GL2(R). The homomorphism 9 is injective of image SL2(R).
Now if 5 is ◆-invariant, the determinant of �5 is trivial so �5 = 9 � ⇢5 and the
conjectures of [Treumann and Venkatesh 2016, §6.3] are indeed true in our special
case.

16◆(g) is conjugate to the transpose of the inverse of g.
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REPRESENTATIONS OF SL2(F) 135

6. Representations of SL2(F) near the identity

6.1. Assume charF = 0 and R = C. Let H be the group of F-points of a connected
reductive group over F . We denote by C1

c (X; C) the space of smooth complex
functions with compact support on a locally profinite space X . The exponential map
exp from Lie(H) to H induces an H-equivariant bijection between a neighbourhood
of 0 in Lie(H) and a neighbourhood of 1 in H . So a function f 2 C1

c (H ; C)

with support small enough around 1 gives a smooth function f � exp around 0 in
C1

c (Lie(H); C). Also there are only finitely many nilpotent orbits of H in Lie(H),
for the adjoint action. For each such orbit O, there is an H-invariant measure on O,
and a function ' 2 C1

c (Lie(H); C) can be integrated along O with respect to that
measure, yielding an orbital integral IO('). Choosing a nondegenerate invariant
bilinear form on Lie(H), a nontrivial character of Lie(H) and a Haar measure on
Lie(H) yields a Fourier transform '̂ for a function ' 2 C1

c (Lie(H); C). Fix also a
Haar measure dh on H .

Theorem 6.1. Let 5 be a smooth complex representation of H with finite length.
Then there is an open neighbourhood V (5) of 1 in H and for each nilpotent orbit O
a unique complex number cO = cO(5) such that if f 2 C1

c (H ; C) has compact
support in V (5) then the trace tr5( f ) of the linear endomorphism

R
H f (h)5(h) dh

is equal to

(6-1) tr5( f ) =

X

O

cO(5)IO('̂) where ' = f � exp.

This was first proved by Roger Howe when H = GLn(F), and the general case
is due to Harish-Chandra.

As is usual, we say that a nilpotent orbit O0 is smaller than a nilpotent orbit O
if O0 is contained in the closure of O. With the normalizations as in [Varma 2014]
we have:

Theorem 6.2. Let 5 be a smooth complex representation of H with finite length.
When O is maximal among the orbits with cO(5) 6= 0, then cO(5) is equal to the
dimension of generalized Whittaker spaces for 5 attached to O.

The result when p is odd due to [Mœglin and Waldspurger 1987] is extended
to p = 2 in [Varma 2014] in general. When O is a regular nilpotent orbit, the
generalized Whittaker model is the usual one, and the result then goes back to
Rodier [1975]. Varma actually proves that with that normalization all coefficients
cO(5) are rational [2014].

6.2. Assume R = C. For any F , when H is an open normal subgroup of GLr (D)

where D is a finite-dimensional central division F-algebra, Theorem 6.1 still holds,
with the exponential map replaced by the map X 7! 1 + X [Lemaire 2004]. In the
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136 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

special case where H = GLr (D), Theorem 6.2 also holds, at least for the natural
generalized Whittaker space attached to each nilpotent orbit [Henniart and Vignéras
2024].

6.2.1. We use the notations and definitions introduced in Section 4.1. Let H be an
open normal subgroup of G = GL2(F) containing ZG 0. The index of H in G is
finite as H/ZG 0 is open in the compact group G/ZG 0. Put

(6-2) VH = F⇤/ det H, dimF2 VH = d, |G/H | = 2d .

A nilpotent matrix can be conjugated in a lower triangular nilpotent matrix Y by an
element of G 0. Two such matrices Y and Y 0 are H-conjugate if and only if their
bottom left coefficients differ by multiplication by an element of det H .

(6-3) The number of H-orbits in the nilpotent matrices in M2(F) is 1 + 2d .

The 0-matrix forms the smallest nilpotent H-orbit (the “trivial” one). The nontrivial
nilpotent H-orbits are maximal, and parametrized by VH via their bottom left
coefficient.

With the same arguments as those given for ZG 0 in Section 4.1, any irreducible
smooth R-representation ⇡ of H appears in the restriction to H of an irreducible
smooth representation 5 of G, unique modulo torsion by a smooth R-character
of G. The irreducible components ⇡ of 5|H are G-conjugate (even B-conjugate)
and the G-stabilizer of ⇡ does not depend on the choice of ⇡ in 5|H , and denoted
by G5|H . The representation 5|H is semisimple of multiplicity 1 with length

(6-4) lg(5|H ) = |G/G5|H | dividing lg(5|ZG 0) = |G/G5| = |L(5)|,

hence equal to 1, 2 or 4 by Theorem 1.1. The representation ⇡ |G 0 is semisimple of
multiplicity 1 with length lg(⇡ |G 0) = lg(5|G 0)/ lg(5|H ) = |G5|H /G5|.

For a lower triangular matrix Y 6= 0, we have
X

⇡⇢5|H

dimR WY (⇡) = dimR WY (5) = 1.

There is a single irreducible ⇡ in 5|H with WY (⇡) 6= 0, and dimR WY (⇡) 6= 0 ()

dimR WY (⇡) = 1. If WY (⇡) 6= 0 then WY 0(⇡) 6= 0 when Y 0 and Y are H-conjugate.
We consider dimR WY (⇡) as a function m⇡ on VH . Because ⇡ extends to G5|H ,
m⇡ is invariant under translations by

W5|H = det G5|H / det H.

It follows that m⇡ is the characteristic function of an affine subspace A⇡ of VH with
direction W5|H , each such affine subspace being obtained exactly for one ⇡ ⇢5|H .
For g 2 G we denote ⇡ g(x) = ⇡(gxg�1) for g 2 G, x 2 H , so ⇡ gh = (⇡ g)h
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REPRESENTATIONS OF SL2(F) 137

for g, h 2 G. We have A⇡ g = det g A⇡ . We have a disjoint union (the Whittaker
decomposition):

(6-5) VH =
F

⇡⇢5|H

A⇡ .

If lg(5|H ) = 1, m⇡ is the constant function on VH with value 1. If lg(5|H ) = 2,
the two irreducible components of 5|H yield the characteristic functions of two
affine hyperplanes of VH with the same direction. Finally for lg(5|H ) = 4, we
get the characteristic functions of four affine subspaces of codimension 2 in VH
with the same direction. In particular when p is odd and lg(5|H ) = 4, we have
H = ZG 0 and m⇡ is a nonzero delta function on VH = F⇤/(F⇤)2.

Let C(VH ; Z) denote the Z-module of functions f : VH ! Z. For an integer
0r <d , let Ir denote the Z-submodule of C(VH ; Z) generated by the characteristic
functions of the r -dimensional affine subspaces of VH . We have I0 = C(VH ; Z).

Lemma 6.3. When 0 < r < d , 2Ir�1 is included in Ir and the exponent of I0/Ir
is 2r .

Proof. Let W be a (r � 1)-dimensional vector subspace of VH and {0, e, f, e + f }

a supplementary plane. For an affine subspace A of VH of direction W , the affine
subspaces Ae = A [ A + e, A f = A [ A + f and B = A + e [ A + f of VH are
r -dimensional, and �Ae +�A f ��B = 2�A by taking their characteristic functions � .
Thus 2Ir�1 ⇢ Ir . By induction 2r I0 ⇢ Ir . The map sr : C(VH ; Z) ! Z/2r Z given
by the sum of coordinates is surjective and vanishes on Ir but not on Ir�1. So the
exponent of I0/Ir is 2r . ⇤

6.2.2. Let us make Theorem 6.1 more precise for an open normal subgroup H of
G = GL2(F) as in §6.2.1.

Notation 6.4. On G (hence on H ) we put a Haar measure dg, and on Lie G =

Lie H = M2(F) we put the Haar measure d X such that X 7! 1 + X preserves
measures near 0. The invariant bilinear map (X, X 0) 7! tr(X X 0) on Lie(H) is
nondegenerate. The Fourier transform ' 7! '̂ on C1

c (Lie(H); C) is taken with
respect to the nontrivial character  � tr on Lie(H). For each nilpotent H-orbit O
in Lie(H), we normalize the nilpotent orbital integral IO('̂) [Lemaire 2005, propo-
sition 1.5] in the same way as [Varma 2014, §3]; that normalization is valid even
when charF > 0. By [loc. cit., Remark 2], for large enough i , Ki = 1+ M2(Pi

F ) and
a lower triangular nilpotent matrix Y , the measure of Ad(Ki )(Y ) is 0 if Y = 0 and
q�2i otherwise. In particular I0('̂) = '(0) for the nilpotent trivial orbit 0 2 Lie H .

Theorem 6.5. Let ⇡ be a smooth complex representation of H with finite length.
There is an open neighbourhood V (⇡) of 1 in H and for each nilpotent H-orbit O
a unique complex number cO = cO(⇡) such that if f 2 C1

c (H ; C) has compact
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138 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

support in V (⇡) then

(6-6) tr⇡ ( f ) = c0(⇡) f (1) +

X

O6=0

cO(⇡)IO('̂)

where '(X) = f (1 + X) for 1 + X 2 V (⇡).

We call (6-6) the germ expansion and c0(⇡) the constant coefficient of the trace
of ⇡ around 1. A character twist of ⇡ does not change c0(⇡). For ⇡ irreducible,
cO(⇡) = 0 for all O 6= 0 if and only if ⇡ is degenerate (by Theorem 6.2) if and
only if dimC ⇡ = 1. In this case c0(⇡) = 1.

We can determine that constant coefficient c0(⇡) for any irreducible smooth
representation ⇡ of H from the case of G, because ⇡ appears in the restriction
to H of an irreducible smooth complex representation 5 of G. The irreducible
components of 5|H being G-conjugate to ⇡ have the same constant coefficient,17

and

(6-7) c0(5) = lg(5|H )c0(⇡).

By [Henniart and Vignéras 2024], we have c0(1G) = 1. When 5 is parabolically
induced, for example when 5 is tempered and not a discrete series,

c0(5) = 0.

When 5 is a discrete series representation of formal degree d(5),

c0(5) = �d(5)/d(St).

When5 is a supercuspidal complex smooth representation of G of minimal level f5
(the minimal level18 of the character twists of 5),

(6-8) c0(5) =

⇢
�2q f5 if f5 is an integer,

�(q + 1)q f5�
1
2 if f5 is a half-integer (not an integer).

When f5 is a half-integer (not an integer), 5 has positive level (Section 4.3.2),
5= indG

J 3 where J = E⇤(1+ Q f5+
1
2 ), where E/F is ramified, Q is the Jacobson

radical of an Iwahori order in M2(F), and 3 is trivial on 1+ Q2 f5+1 [Bushnell and
Henniart 2006, Chapter 4, §15]. Let � 2 X5 \ {1}. Then � is ramified [Bushnell
and Henniart 2006, Chapter 5, §20.3, Lemma]. The level r� of � is the largest
positive integer r such that � is nontrivial on 1 + Pr

F when � is ramified. We have

(6-9) 1  r� < f5.

17By the linear independence of nilpotent orbital integrals.
18The level is the normalized level of [Bushnell and Henniart 2006, Chapter 4, §12.6] and the

depth is in the sense of Moy–Prasad.
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REPRESENTATIONS OF SL2(F) 139

Indeed, if r� > f5 then � �det is nontrivial on 1+Q2r� (as det(1+Q2r� )= 1+ Pr�
F ),

and (� � det) ⌦ 3 would be nontrivial on 1 + Q2r� implying that the level of
(� �det)⌦3 is at least r� . By [Bushnell and Henniart 2006, §15.6, Proposition 1],
this contradicts the assumption that � 2 X5. So f5 < r� as r� is an integer but
not f5.

Lemma 6.6. If f5 =
1
2 then X5 = {1}. If q = 2 and f5 =

3
2 then X5 cannot have

four elements.

Proof. If f5 =
1
2 , then X5 is trivial by the formula (6-9). If f5 =

3
2 , then r� = 1,

and if q = 2 there are only two quadratic characters of level 1. That implies that
X5 cannot have four elements. ⇤
Proposition 6.7. Let 5 be an irreducible complex smooth representation of G and
⇡ an irreducible representation of H contained in 5|H . Then:

• c0(⇡) = �
1
2 if p is odd, 5 is cuspidal of minimal level 0 and L(5) has four

elements.
• c0(⇡) is an integer otherwise.
• c0(⇡)=0 if ⇡ is a principal series, and c0(⇡)<0 if ⇡ is infinite-dimensional

and not a principal series.

Proof. By formulas (6-4), (6-7), (6-8), we have:
• c0(1G) = 1, so c0(1H ) = 1.
• c0(St) = �1 so c0(stH ) = �1, since the restriction stH of St to H is irre-

ducible as st = St |G 0 is irreducible.
• c0(5) = 0 so c0(⇡) = 0, when 5 is an irreducible principal series.
• c0(5) < 0 so c0(⇡) < 0, when 5 supercuspidal of level f5 (the minimal

level).

If p is odd, then c0(5) is an even integer by (6-8), so that c0(⇡) is an integer if
L(5) has one or two elements by (6-7); if L(5) has four elements, then f5 = 0 by
Proposition 4.8 and c0(5) = �2, so c0(⇡) = �

1
2 . If p = 2, then c0(5) is a multiple

of 4 (so c0(⇡) is an integer) by (6-8) except when:

(i) f5 = 0, where c0(5) = �2. But L(5) has size 2 by Proposition 4.7, so
c0(⇡) = �1.

(ii) f5 =
1
2 , where c0(5) = �(q + 1). But L(5) has size 1 by Lemma 6.6, so

c0(⇡) = �(q + 1).

(iii) f5 =
3
2 and q = 2, where c0(5) = �6. But L(5) has size 1 or 2 by

Lemma 6.6, so c0(⇡) = �6 or �3. ⇤
Theorem 6.8. Let ⇡ be a finite length complex representation of H , Y 6= 0 a lower
triangular matrix in M2(F) and O its H-orbit. Then cO(⇡) = dimC WY (⇡).
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140 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

Proof. We use the same idea as [Rodier 1975]. Remarking that the lower triangular
group B� of G acts transitively on lower triangular nilpotent matrices Y , and that for
g 2 B� we have cO(⇡) = cOg (⇡ g), dimC(WY (⇡)) = dimC(WY g (⇡ g)), it suffices to
consider the case where Y =

�
0 0
1 0

�
. We stick to that Y (so ✓Y = ✓ with Notation 4.1).

For each positive integer i , we define a character �i of the pro-p group Ki =

1 + M2(Pi
F ) by the formula

�i (1 + X) =  � tr(p�2i
F Y X) =  (p�2i

F X1,2), X =

✓
X1,1 X1,2
X2,1 X2,2

◆
2 M2(Pi

F ).

The character �i is trivial on K2i . When conjugating by the diagonal matrix
di = diag(pi

F , p�i
F ) we get a character ✓i on

(6-10) Hi = d�1
i Ki di = 1 +

✓
Pi

F P�i
F

P3i
F Pi

F

◆

such that ✓i (1+ X) = (X1,2). The limit of the groups Hi as i ! 1 is the group U .
We will prove that the ✓i approximate the character ✓Y of U in the sense that

(6-11) lim
i!1

dimC HomHi (✓i ,⇡) = dimC WY (⇡).

On the other hand we will also prove in §6.2.3, following [Varma 2014], that

(6-12) dimC HomKi (�i ,⇡) = cO(⇡) for large i.

Since dimC HomHi (✓i ,⇡) = dimC HomKi (�i ,⇡), we shall get the result. ⇤
6.2.3. Let us proceed to the proof of the formulas (6-11) and (6-12), through a
sequence of lemmas that are rather easy compared to the analogous statements in the
more general cases treated by [Rodier 1975; Mœglin and Waldspurger 1987; Varma
2014] when charF = 0, and [Henniart and Vignéras 2024] for arbitrary charF .

For X 2 M2(F), put �i (X)=��1
i (1+X) if X 2 M2(Pi

F ) and �i (X)= 0 otherwise.
Using Notation 6.4, the Fourier transform �̂i of �i is

(6-13) �̂i (X) =

⇢
q�4i vol(M2(OF ), d X) if X 2 p�2i

F Y + M2(P�i
F ),

0 otherwise.

Lemma 6.9. The K1-normalizer of �i is (ZU� \ K1)Ki .

Proof. For a positive integer j  i , we prove that the K1-normalizer of the restriction
of �i to K2i� j is (ZU� \ K1)Kj by induction on j . This is clear for j = 1 and
the case j = i gives what we want. Assume that the claim is true for j < i and
let us prove it for j + 1. Let g 2 K1, normalizing the restriction of �i to K2i� j�1.
By induction g 2 (ZU� \ K1)Kj and we may assume g 2 Kj . Write g = 1 + X
with X 2 M2(P j

F ). Then g�1Y g ⌘ Y + Y X � XY modulo M2(P j+1
F ) and the

hypothesis on g means that Y X � XY ⌘ 0 modulo M2(P j+1
F ), which gives that

p� j
F X commutes with Y modulo PF . But the commutant of Y modulo PF in
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REPRESENTATIONS OF SL2(F) 141

M2(kF ) is made out of lower triangular matrices with the same diagonal elements.
Consequently g 2 (ZU� \ K1)Kj+1 as claimed. ⇤
Lemma 6.10. The Ki -orbit of Y is the set of nilpotent matrices in Y + M2(Pi

F ).

Proof. Clearly, gYg�1 is a nilpotent element in Y + M2(Pi
F ) for g 2 Ki . Conversely,

let Y + pi
F Z nilpotent (hence of trace 0) with Z 2 M2(OF ). If g = 1 + pi

F X with
X 2 M2(OF ), then g(Y +pi

F Z)g�1 ⌘Y +pi
F (Y X�XY +Z) modulo M2(Pi+1

F ). We
choose X , as we can, so that Y X � XY + Z ⌘ 0 modulo PF . So g(Y + pi

F Z)g�1 2

Y + M2(Pi+1
F ). The Ki -orbit of Y is closed in M2(F). We finish the proof by

successive approximations. ⇤
Let ⇡ be a smooth representation of H on a complex vector space V, and

' : V ! V✓ be the quotient map from V to the ✓-coinvariants V✓ of V. For large
enough i such that Hi ⇢ H let Vi be the ✓i -isotypic component of V.

Lemma 6.11. For large enough i , '(Vi ) = V✓ .

Proof. It is the same as that of Lemma 8.7 in [Henniart and Vignéras 2024]. ⇤
We have

Hi+1=(Hi+1\Hi )(Hi+1\U ), [Hi+1 :(Hi+1\Hi )]=[(Hi+1\U ):(Hi \U )]=q�1,

and ✓i+1 = ✓i on Hi+1 \ Hi . Let ei = fi dg where dg is the Haar measure on H
giving the volume 1 to Hi and fi is the function on G with support Hi and value ✓�1

i
on Hi .

Lemma 6.12. We have ei ei+1ei = q�1ei when i > 1 and Hi ⇢ H. In particular,
the map v ! ⇡(ei+1)v : Vi ! Vi+1 is injective.

Proof. The lemma is equivalent to ⇡(ei ei+1ei )v = q�1⇡(ei )v for all v 2 V and
(⇡, V ) as above. The projector V ! Vi is ⇡(ei ) and

⇡(ei ei+1ei )v = q�1
X

u2(Hi+1\U )/(Hi \U )

⇡(ei✓i+1(u)�1uei )v.

If ⇡(ei uei )v 6= 0 for u 2 Hi+1 \U , then u intertwines ✓i . To interpret that condition
we conjugate ✓i back to �i . Then Hi is sent to Ki and Hi+1 is sent to d�1

1 Ki+1d1
which, we remark, is contained in Ki�1. By Lemma 6.9, u 2 Hi+1 \ U conju-
gates to an element in (ZU� \ K1)Ki , so that u 2 Hi \ U . We then deduce that
⇡(ei ei+1ei )v = q�1⇡(ei )v as claimed. ⇤
Proof of formula (6-11). Fix a large integer i such that the lemmas apply. The
projector ⇡(ei ) : V ! Vi can be obtained by first projecting onto V Hi \B� , and
then applying the projector ⇡(ei,U ) where ei,U = fi |Hi \U du for the Haar measure
on H \ U giving the volume 1 to Hi \ U . Since Vi ⇢ V Hi+1\B� , we have that
⇡(ei+1)=⇡(ei+1,U ) on Vi . It follows that for v2Vi and v1 =⇡(ei+1)v=⇡(ei+1,U )v

have the same image '(v1) = '(v) in V✓ . Iterating the process, we get for positive
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142 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

integers k, vectors vk = ⇡(e j+k)vk�1 = ⇡(e j+k,U )vk�1 with '(vk) = '(v). As
ei+1,U ei,U = ei+1,U we have vk = ⇡(ei+k,U )v. But '(v) = 0 is equivalent to
⇡(ei+k,U )v = 0 for large k. As vk = 0 implies vk�1 = 0 by Lemma 6.12, we get
that ' is injective on Vi . Since it is also surjective by Lemma 6.11, we deduce that
it gives an isomorphism Vi ' V✓ . ⇤
Proof of formula (6-12). Fix an integer i such that Ki ⇢ H . We have that
dimC(HomKi �i ,⇡)= tr⇡(e0

i ) where e0

i = f 0

i dg where dg is the Haar measure on H
giving the volume 1 to Ki and f 0

i is the function on G with support Ki and value ��1
i

on Ki . We have that f 0

i (1+X)= �i (X). To prove (6-12), it suffices to apply the germ
expansion (6-6) to tr⇡ and to show that for large i , IO(�̂i ) = 1, whereas IO0(�̂i ) = 0
for any nilpotent orbit O0 6= O. From the formula (6-13), �̂i is a multiple of the
characteristic function of �p�2i

F Y + M2(P�i
F ) and from Lemma 6.10 the nilpotent

elements there form the Ki -orbit of p�2i
F Y . It follows that IO0(�̂i ) = 0 if O0 6= O.

That IO(�̂i ) = 1 is proved exactly as in the proof of Lemma 7 in [Varma 2014]. ⇤
6.2.4. For a locally profinite space X , x 2 X , and a field C , two linear forms f, f 0

on C1
c (V ; C) for some open neighbourhood V of x in X are called equivalent if

their restrictions to C1
c (W ; C) for some open neighbourhood W of x contained

in V are equal. The equivalence class of f is called its germ f̃ at x . Denote Gx(X)

the space of the germs at x .
For a locally profinite space X 0, an open subset W in X and an open subset

W 0 in X 0, a homeomorphism j : W ! W 0 gives by functoriality an isomorphism
C1

c (W 0; C) ! C1
c (W ; C) and an isomorphism G j (x)(X 0) ! Gx(X) from the

space of the germs of X 0 at j (x) to the space of the germs of X at x 2 W .
The nilpotent orbital integrals FO : ' 7! IO('̂) for ' 2 C1

c (Lie H ; C) and the
nilpotent H-orbits O in Lie(H) are linearly independent H-equivariant linear forms
on C1

c (Lie H ; C) [Lemaire 2005, page 79]. They form a basis of a Z-module IH
with rank 1 + 2d (6-3). For each H-equivariant open neighbourhood V of 0 in
Lie H , the FO remain independent as linear forms on C1

c (V ; C). The germs eFO

form a basis of the Z-module ĨH of germs of elements of IH . Denote by I Wh
H the

Z-submodule of IH of basis FO for O 6= 0.
Theorems 6.5 and 6.8 say that the germ at 1 of the trace of an irreducible complex

smooth representation ⇡ of H identifies via the map X 7! 1 + X with the germ
at 0 of a unique element T⇡ = c0(⇡)F0 + T Wh

⇡ where c0(⇡) 2 Q, and T Wh
⇡ 2 I Wh

H
is determined by the nondegenerate Whittaker models of ⇡ . Note that T Wh

⇡ = 0 if
and only if dimC ⇡ = 1.

Denote by T Wh
H the Z-submodule of I Wh

H generated by the T Wh
⇡ , for all irreducible

complex smooth representations ⇡ of H . Write Ĩ Wh
H , T̃ Wh

H for the space of germs
at 0 of I Wh

H , T Wh
H .

Theorem 6.13. We have T̃H = ĨH when d = 0, 1.
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REPRESENTATIONS OF SL2(F) 143

The Z-submodule T̃ Wh
H is a submodule of Ĩ Wh

H of finite index. The exponent of
Ĩ Wh

H /T̃ Wh
H is 2d�2 when d � 2.

Proof. When d = 0, IH has Z-rank 2, and the germs of the traces of the trivial
representation 1 and of the Steinberg representation stH form a Z-basis {etr1,etrstH }

of ĨH .
When d = 1, IH has Z-rank 3, det H = NE/F (E⇤) for a quadratic separable

extension E/F , the principal series (i G
B ⌘E)|H is semisimple of length 2 and mul-

tiplicity free (Lemma 2.3 and footnote in the proof of Proposition 4.26), and the
germs of the traces of the trivial representation 1 and of the two components ⇡+

E ,⇡�

E
of (i G

B ⌘E)|H form a Z-basis {etr1,etr⇡+

E
,etr⇡�

E
} of ĨH .

When d � 2, the theorem follows from Lemma 6.3. ⇤

Theorem 6.13 can be equally well expressed in terms of the Grothendieck group
GrR(H). It is under this form that the theorem extends to R-representations. For
an open compact subgroup K of H , and ⇡ a finite length smooth complex repre-
sentation ⇡ of H , ⇡ |K is semisimple with finite multiplicities, and is determined
by the restriction of the trace of ⇡ to C1

c (K , C).

Corollary 6.14. There are 2d virtual finite length smooth complex representations
⇡1, . . . ,⇡2d of H with the following property: for any finite length smooth complex
representation ⇡ of H , there are unique integers a0(⇡), a1(⇡), . . . , a2d (⇡), such
that on some compact open subgroup K = K (⇡) of H ,

⇡ ' a0(⇡)1 +

2dX

i=1

ai (⇡)⇡i .

Proof. By Theorem 6.13, the Z-module T̃ Wh
H has a basis {T̃ Wh

⇡1
, . . . , T̃ Wh

⇡2d
} where

⇡1, . . . ,⇡2d are virtual finite length smooth representations of H . By Theorem 6.5,
for any finite length smooth representation ⇡ of H there exist a unique rational
number a0(⇡) and unique integers a1(⇡), . . . , a2d (⇡), such that

tr⇡ = a0(⇡) tr1 +

2dX

i=1

ai (⇡) tr⇡i

on restriction to C1
c (K (⇡), C) for some compact open subgroup K (⇡) of H . As

a0(⇡) = dimC ⇡
K (⇡) �

P2d

i=1 ai (⇡) dimC ⇡
K (⇡)
i , we see that a0(⇡) is an integer.

Equivalently, on restriction to K (⇡),

⇡ ' a0(⇡)1 +

2dX

i=1

ai (⇡)⇡i . ⇤
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144 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

6.2.5. This has consequences for the representations of G 0.
An irreducible complex representation of G 0 extends to ZG 0, and we can apply

Theorem 6.5 to H = ZG 0 when charF 6= 2. When p is odd, there is a unique L-
packet ⌧1, ⌧2, ⌧3, ⌧4 of G 0 with four elements (Proposition 4.22). One can enumerate
the four nontrivial nilpotent G 0-orbits O1, . . . ,O4 such that cOi (⌧ j ) = 1 if i = j ,
and 0 if i 6= j . For i = 1, . . . , 4 we choose a lower triangular element Yi 2 Oi .

Theorem 6.15 (p odd, R = C). Let ⇡ be a finite length smooth complex represen-
tation of G 0. On restriction to a small enough compact open subgroup K (⇡) of G 0,
we have

(6-14) ⇡ ' a0(⇡)1 +

4X

i=1

cOi (⇡)⌧i , cOi (⇡) = dimC WYi (⇡),

where a0(⇡) = dimC ⇡
K (⇡) �

P4
i=1 cOi (⇡) dimC ⌧

K (⇡)
i . The constant term in

Theorem 6.5 is

c0(⇡) = a0(⇡) �
1
2

✓ 4X

i=1

cOi (⇡)

◆
.

The constant term c0(⇡) can be computed using (6-7) and (6-8).

Remark 6.16. When charF = 0, p is odd and R = C, the theorem was already
known; see [Assem 1994] and the last section of [Nevins 2024].

6.2.6. For any p, let ⇡ be an irreducible smooth complex representation of G 0

and r the cardinality of the L-packet of ⇡ .
For any L-packet {⌧1, ⌧2, ⌧3, ⌧4} of size 4, there exist integers a0, b0 such that

on a small enough compact open subgroup of G 0 we have

(6-15) indG 0

B 0 1 ' b0T1 +

4X

i=1

⌧i and if r = 1, ⇡ ' a0T1 +

4X

i=1

⌧i .

If r = 2, then det G⇡ = NE/F (E⇤/F) for a quadratic separable extension E/F .
Choose a biquadratic separable extension of F containing E . There exist ⌧1 and ⌧2
in the associated L-packet of size 4 (Proposition 4.22) and an integer a0 such that
on a small enough compact open subgroup K of G 0 we have

(6-16) ⇡ ' a0T1 +

2X

i=1

⌧i .

Therefore, when R = C we have:

Theorem 6.17. Let ⇡ be an irreducible smooth R-representation of G 0. There
are an integer a0 and irreducible smooth R-representations {⌧1, ⌧2, ⌧3, ⌧4} of G 0
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REPRESENTATIONS OF SL2(F) 145

forming an L-packet, such that on a small enough compact open subgroup K of G 0

we have

⇡ ' a01 +

4/rX

i=1

⌧i ,

where r is the cardinality of the L-packet containing ⇡ .

6.2.7. Let us prove Theorem 6.17 for any R.
Let Rc be the algebraic closure in R of the prime field of R. Write Rc = Qac

when charR = 0 and Rc = Fac
` when charR = `> 0.

(a) We show first that Theorem 6.17 for Rc extends to R. A cuspidal R-representa-
tion of G 0 is the scalar extension ⇡R = R⌦Rc⇡ to R of a cuspidal Rc-representation ⇡
of G 0 [Vignéras 1996] and the L-packets of size 4 are cuspidal. The scalar extension
from Rc to R respects irreducibility, identifies the L-packets of size 4 over Rc with
those over R and sends the L-packets of size r over Rc to L-packets of size r
over R. Theorem 6.17 for Rc-representations imply Theorem 6.17 extends for
R-representations which are scalar extensions of Rc-representations:

⇡ ' a01 +

4/rX

i=1

⌧i implies by scalar extension ⇡R ' a01 +

4/rX

i=1

⌧i,R.

The only irreducible smooth R-representations ot G 0 which are not scalar extensions
of Rc-representations, are principal series i G 0

B 0 (⌘). But

(6-17) i G 0

B 0 (⌘) ' indG 0

B 0 (1) on some small open compact subgroup K of G 0,

and we have (6-15) for the Rc-representation indG 0

B 0 (1).
Therefore, for any L-packet {⌧1,R, ⌧2,R, ⌧3,R, ⌧4,R} of size 4, there is an integer a0

such that

indG 0

B 0 (1) ' a01 +

4X

i=1

⌧i,R on some small open compact subgroup K of G 0.

(b) Theorem 6.17 for C extends to Qac because the scalar extension from Qac to C

respects irreducibility, representations in an L-packet of size 4 are cuspidal, and
complex cuspidal representations of G 0 are defined over Qac.

(c) Via an isomorphism C ' Qac
` , Theorem 6.17 for C extends to Qac

` . Theorem 6.17
for Qac

` extends to Fac
` -representations. Indeed, from Proposition 4.30 an irreducible

smooth Fac
` -representation ⇡ of G 0 in an L-packet of size r lifts to an integral irre-

ducible smooth Qac
` -representation ⇡̃ of G 0 in an L-packet of size r (Proposition 1.6).

From Theorem 6.17 for Qac
` , there is an L-packet {⌧̃1, ⌧̃2, ⌧̃3, ⌧̃4} of irreducible
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146 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

smooth Qac
` -representations of G 0 and an integer a0, such that on a small enough

compact open subgroup K of G 0, we have

⇡̃ ' a01 +

4/rX

i=1

⌧̃i =) ⇡ ' a01 +

4/rX

i=1

⌧i

by reduction modulo ` of {⌧̃1, ⌧̃2, ⌧̃3, ⌧̃4} to {⌧1, ⌧2, ⌧3, ⌧4}, reduction which forms
an L-packet of irreducible smooth Fac

` -representations of G 0. This ends the proof of
Theorem 6.17.

Remark 6.18. The formulas (6-7), (6-15) and (6-16) remain valid for R.

6.2.8. For an irreducible infinite-dimensional complex representation 5 of G with
conductor c, Casselman had already described the restriction of 5 to K0 as the
direct sum of the fixed points under Kc�1 and a complement depending only on the
central character of 5.

Similarly, when p is odd, and ⇡ is an irreducible infinite-dimensional complex
representation of G 0, Nevins [2005; 2013] described explicitly the restriction of ⇡
to K 0

0 as a finite-dimensional part specific to ⇡ , and a complement depending only
on the central character of ⇡ . More recently, Nevins [2024] defined for any vertex x
of the Bruhat–Tits building of G 0, admissible complex representations ⌧x,1, . . . ⌧x,5
of the maximal open compact subgroup G 0

x fixing x such that the following is true.
Let �⇡ be the depth of ⇡ in the sense of Moy–Prasad. Then, there are integers
a⇡,1, . . . , a⇡,5 such that on restriction to G 0

x,�⇡+
,

⇡ '

5X

i=1

a⇡,i⌧x,i .

Now allow any R with charR 6= p (still assuming p odd). The representations ⌧x,i
of Nevins transferred to Qac

` are integral, defined over Qac and can be transferred
to R-representations ⌧x,i,R . The proof in §6.2.7 applies and shows that the above
result is also valid over R with ⌧x,1,R, . . . , ⌧x,5,R .

7. Asymptotics of invariant vectors by Moy–Prasad subgroups

We use notations as in Sections 3 and 4. The Moy–Prasad subgroups of G 0 =SL2(F)

are the intersections of the Moy–Prasad subgroups of G = GL2(F) with G 0 because
the Bruhat–Tits of G 0 and of PGL2(F) are the same. We write K 0 = G 0 \ K for a
subgroup K of G.

Let red : K0 =GL2(OF )!GL2(kF ) and red0
: K 0

0 =SL2(OF )!SL2(kF ) denote
the usual quotient maps. The parahoric subgroups of G are the G-conjugates of the
maximal open compact subgroup K0 or of its Iwahori subgroup I0 = red�1(B(kF )).
Those of G 0 are the G 0-conjugates of the maximal open compact subgroup K 0

0
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REPRESENTATIONS OF SL2(F) 147

or its Iwahori subgroup I 0

0 = red0�1(B 0(kF )), or of the maximal open subgroup
d K 0

0 d�1 = (d K0 d�1)0 where d =
�1 0

0 pF

�
[Abdellatif 2011, §3].

The Moy–Prasad subgroups of G are the G-conjugates of the j-th congruence
subgroups Kj , Ij , I1/2+ j of K0, I0, the pro-p Iwahori subgroup I1/2 = red�1(U (kF ))

of I0, for any integer j �0 [Henniart and Vignéras 2024, §12]. The Moy–Prasad sub-
groups of G 0 are the G 0-conjugates of the j-th congruence subgroups K 0

j , d K 0

j d
�1,

I 0

j , I 0

1/2+ j for j � 0.
Let j denote the OF -lattice of matrices (xi, j ) 2 M2(OF ) with x1,2 2 PF , and j1/2

the OF -lattice of matrices (xi, j ) 2 j with x1,1, x2,2 2 PF . We have

(7-1)
K0 = M2(OF )⇤, I0 = j

⇤,

I1/2+ j = 1 + p j
F j1/2, K1+ j = 1 + p j

F M2(PF ), I1+ j = 1 + P j
F j

for j � 0. Note that I0 = K0 \ d K0 d�1, and consider the decreasing sequence for
Hj = Kj or d Kj d�1,

H0 � I0 � I1/2 � · · · � Hj � Ij � I1/2+ j � H1+ j � I1+ j � · · · .

The G-normalizer Z K0 of the maximal compact subgroup K0 normalizes all sub-
groups Kj for j � 0. The G-normalizer of the Iwahori group I is generated by I
and

� 0 1
pF 0

�
; it normalizes all subgroups I1/2+ j , Ij for j � 0. Let

s =

✓
0 1
1 0

◆
and � 0

=

✓
0 �p�1

F
pF 0

◆
.

The Iwasawa decomposition of G with respect to (B, K0) and the decomposition
of G in double cosets modulo (B, I0) or (B, I1/2) are

(7-2) G = BK0 = B I0 t Bs I0 = B I1/2 t Bs I1/2;

see [Henniart and Vignéras 2024, §12]. Note that Bs I1/2 = B� 0 I1/2. The Iwasawa
decomposition of G 0 with respect to (B 0, K 0

0) or (B 0, d K 0

0 d�1) and the decomposi-
tion of G 0 in double classes modulo (B 0, I 0

0) or (B 0, I 0

1/2) are

(7-3) G 0
= B 0K 0

0 = B 0d K 0

0 d�1
= B 0 I 0

0 t B 0� 0 I 0

0 = B 0 I 0

1/2 t B 0� 0 I 0

1/2;

see [Abdellatif 2011, lemme 3.2.2, lemme 3.2.8].

Proposition 7.1. The map B 0\G 0/H 0

j ! B\G/Hj induced by the inclusion G 0 ⇢ G
is bijective, for any j-th congruence subgroup Hj = Kj , d Kj d�1, Ij , I1/2+ j and
j � 0.

Proof. The map B 0\G 0/H 0

j ! B\G/Hj is surjective as G = BG 0. When j = 0, the
map is bijective because the two sets have the same cardinality (7-2), (7-3).

Take j > 0 and g0, g00 in G 0 such that bg0h = g00 with b 2 B, h 2 Hj . We want
to prove that b0g0h0 = g00 with b0 2 B 0, h0 2 H 0

j . Multiplying g0 on the left by an
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148 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

element of B 0, we reduce to g0 2 H 0

0 if H0 = K0, d H 0

0 d�1, and g 2 H 0

0 [ � 0H 0

0
if H0 = I0, I1/2 (7-3). We have det b det h = 1. There exists c 2 B \ Hj such
that det c = det h by the Iwahori decomposition of the j-th congruence subgroup
Hj = (B \ Hj )(Hj \ U�) when j > 0. Three cases occur:

(1) g0 2 H 0

0. Write (bc)g0(g0�1c�1g0)h = g00 with b0 = bc 2 B 0, g0�1c�1g0 2 Hj
and h0 = (g0�1c�1g0)h 2 H 0

j .

(2) g0 2 � 0H 0

0 and g00 2 H 0

0. Apply the same argument to g00.

(3) g0 and g00 are in � 0H 0

0. Changing notations we want to prove that for g0 and g00

in H 0

0 such that b� 0g0h = �g00 with b 2 B, h 2 Hj , we have b0�g0h0 = �g00 with
b0 2 B 0, h0 2 H 0

j . Multiply on the left by ��1. Noting that ��1 B� = B�, we still
need to prove that for g0, g00 2 H 0

0 such that bg0h = g00 with b 2 B�, h 2 Hj , we
have b0g0h0 = g00 with b0 2 (B�)0, h0 2 H 0

j . The argument used before with B works
also for B�, because we have the Iwahori decomposition Hj = (B� \ Hj )(Hj \U )

when j > 0. There exists c 2 B� \ Hj such that det c = det h. Proceeding as
in (1), we write (bc)g0(g0�1c�1g0)h = g00 with b0 = bc 2 (B�)0, g0�1c�1g0 2 Hj
and h0 = (g0�1c�1g0)h 2 H 0

j . ⇤
Proposition 7.1 has important applications. The cardinality of B\G/Hj is

computed in [Henniart and Vignéras 2024, Proposition 11.2] for j � 0. By
Proposition 7.1, |B\G/Hj | = |B 0\G 0/Hj |.

Corollary 7.2. The cardinality of B 0\G 0/H 0

j for H 0

j = K 0

j , d K 0

j d
�1, I 0

j , I 0

1/2+ j and
j � 0, is

|B 0
\G 0/K 0

0| = |B 0
\G 0/d K 0

0 d�1
| = |B\G/K0| = 1,

|B 0
\G 0/K 0

1+ j | = |B 0
\G 0/d K 0

1+ j d
�1

| = |B\G/K1+ j | = (q + 1)q j ,

|B 0
\G 0/I 0

j | = |B 0
\G 0/I 0

1/2+ j | = |B\G/Ij | = |B\G/I1/2+ j | = 2q j .

Over any coefficient ring, the restriction to G 0 of indG
B 1 is indG 0

B 0 1. The vector
spaces (indG 0

B 0 1)H 0
j � (indG

B 1)Hj have the same dimension by Proposition 7.1, hence
are equal.

Corollary 7.3. Over any coefficient ring, any element in indG
B 1 fixed by H 0

j is also
fixed by Hj for j � 0.

It is known that any infinite-dimensional irreducible smooth R-representation 5
of G near the identity is isomorphic to indG

B 1 modulo a multiple of the trivial
representation [Henniart and Vignéras 2024]. There exist integers a5 and j5 � 0
such that for j � j5,

(7-4) 5' a51 + indG
B 1 on Ij .

Corollary 7.4. For j � j5, any element in 5 fixed by H 0

j is also fixed by Hj .
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REPRESENTATIONS OF SL2(F) 149

Proposition 7.5. a5 = 0 if 5 is a principal series, a5 = �1 when q + 1 6= 0 in R
and 5 is the twist of the Steinberg representation by a character, and when 5 is
cuspidal with minimal depth �5 under torsion by characters,

a5 =

⇢
�2q�5 if �5 is an integer,

�(q + 1)q�5�1/2 otherwise.

If |L(5)| = 4, then a5 = �2 for p odd and a5 is a multiple of 4 if p = 2.

Proof. When R = C, then a5 is the constant term c0(5) of the germ expansion
for 5 because the constant term c0(indG

B 1) of the germ expansion of the trace of
indG

B 1 around 1 (6-6) is 0.
When R = Fac

` and e5 is a Qac
` -representation lifting 5, a5 = ae5. When 5

is cuspidal, e5 is supercuspidal and the formula for a5 follows from (6-8). If
|L(5)| = 4 the assertion on a5 follows from the proof of Proposition 6.7 ⇤

In the particular case where 5|G 0 = ⇡ is irreducible, we deduce that for j � j5,

⇡ ' a51 + indG 0

B 0 1 on I 0

j .

For example, an irreducible principal series ⇡ of G 0 is the restriction to G 0 of a
principal series 5 of G, and on I 0

1/2+ j for j � j5 we have ⇡ ' indG 0

B 0 1.
By (7-4) if j � j5,

(7-5) dimC5
Hj = a5 + |B\G/H0|q j .

By Proposition 7.1, 5Hj =
P

⇡2L(5) ⇡
H 0

j for Hj = I1/2+ j , K1+ j , I1+ j and j � 0.
In particular, if 5|G 0 = ⇡ is irreducible, then if j � j5,

dim⇡H 0
j = a5 + |B\G/H0|q j .

In general, by Corollary 7.2 [Henniart and Vignéras 2024, §12.2], for j large,19

(7-6) dimC5
Ij = dimC5

I1/2+ j = a5 + 2q j , dimC5
K1+ j = a5 + (q + 1)q j .

Let ⇡ be an infinite-dimensional irreducible smooth R-representation of G 0 con-
tained in 5|G 0 . The Moy–Prasad filtration of the Iwahori subgroup I 0 of G 0 is

I 0
= I 0

0 � I 0

1/2 � I 0

1 � · · · � I 0

j � I 0

1/2+ j � Ij+1 � · · · .

Theorem 7.6. With a5 as in (7-4) and Proposition 7.5, we have for j large,20

dimR ⇡
I 0

j = dimR ⇡
I 0

1/2+ j = |L(5)|�1 (a5 + 2q j ).

|L(5)|�1a5 = �
1
2 if |L(5)| = 4 and p is odd, otherwise |L(5)|�1a5 is an integer.

19 j � j5+ 1 for Ij , Hj and j � j5 for I1/2+ j .
20 j � j5+ 1 for Ij and j � j5 for I1/2+ j .
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150 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

Proof. The determinant of the G-normalizer NG(I ) of the Iwahori group I is equal
to F⇤ (first part of Section 7). Thus, NG(I ) acts transitively on L(5) and as NG(I )
normalizes the Moy–Prasad filtration of I , the dimension of the invariants of ⇡ by
I 0

1/2+ j and I 0
j of G 0 for j � 0, does not depend on the choice of ⇡ in the L-packet

L(5). For these two groups H 0
j we have dimR ⇡

H 0
j = |L(5)|�1 dimR 5

Hj for
j � j5, by Proposition 7.1. Apply now (7-6). The assertion on |L(5)|�1a5 follows
from Proposition 7.5. ⇤

Let us now turn to the asymptotics for fixed points under congruence subgroups
K 0

j of K 0

0 = SL2(OF ). The G-normalizer Z K0 of K0 = GL2(OF ) normalizes the K 0

j .
The subgroup H = Z K0G 0 of G has index 2 as det H = (F⇤)2O⇤

F has index 2
in F⇤. The restriction of 5 to H has length 1 or 2. All the elements ⇡ of L(5) in
the same H-orbit share the same dimension dimR ⇡

K 0
j . With a5, j5 as in (7-4), we

deduce from (7-6):

Theorem 7.7. When 5|H is irreducible, we have, for j � j5,

dimR ⇡
K 0

j+1 = |L(5)|�1(a5 + (q + 1)q j ).

Proposition 7.8. The representation 5|H is reducible if and only if 5 is cuspi-
dal induced from Z K0 or charR 6= 2 and 5 is a principal series indG

B � where
�1�

�1
2 = (�1)val.

Proof. When 5|G 0 is irreducible, then 5|H is irreducible. When 5 = i G
B (�) is

a principal series of reducible restriction to G 0, then charR 6= 2, and i G
B (�)|H is

reducible if and only if (�1)val�det⌦i G
B (�)' i G

B (�) if and only if �1�
�1
2 = (�1)val

(notations of Section 4.3.1 and � = �1 ⌦�2).
When5 is cuspidal, if5= indG

Z K0
� is induced from Z K0, then5|H is reducible

because Z K0 ⇢ H and (indG
H (indH

Z K0
�))|H contains indG

Z K0
� but is different from it.

If 5 is not induced from Z K0, then with the notations of Section 4.3.2, 5= indG
J �

has positive level, E/F is ramified, and G = J H . As J 1 ⇢ H and the intertwining
of �1 = �|J 1 in G is J , then the intertwining of �1 in H is J \ H . The vectors �1-
equivariant in 5 are the functions supported in J . Applying [Henniart and Vignéras
2022, Proposition 6.5 and Corollary 6.6], 5|H = indH

J\H �|J\H is irreducible. ⇤

Assume now that5|H is reducible. Let5+ be the component having a Whittaker
model with respect to a character  nontrivial on OF but trivial on PF , and 5� the
other one.

Theorem 7.9. When 5|H is reducible, we have for large j ,

dimR(5+)K 0
j =

1
2a5 + q2m+1 when j = 2m + 1, 2m + 2,

dimR(5�)K 0
j =

1
2a5 + q2m when j = 2m, 2m + 1.
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REPRESENTATIONS OF SL2(F) 151

Proof. When R = C, the constant term in the germ expansion of the trace of 5+

around the identity is 1
2a5 by (6-7) and Remark 6.18, and dimR(5+)K 0

j �
1
2a5 for

large j , which depends only on the characters of F for which 5+ has a Whittaker
model. This set does not depend on the choice of 5, as 5+ has a Whittaker model
only with respect to the characters  t1t�1

2
for diag(t1, t2) 2 T \ H , that is,  a for

a 2 det H where  a(x) =  (ax) for x 2 F . By the usual arguments, the same is
true for any R. It suffices to prove the theorem for 5 = indG

Z K0
� where �|K0 is

the inflation of a cuspidal representation �0 of GL2(kF ) (Proposition 7.8). In this
special case we will show

dimR(5+)K 0
j = �1 + q2m+1 for j = 2m + 1, 2m + 2, j � 1,(7-7)

dimR(5�)K 0
j = �1 + q2m for j = 2m, 2m + 1, j � 1.(7-8)

Note that a5 = �2 (Proposition 7.5) and that (7-7) implies (7-8) for j � j5+ 1, as

dimR(5+)K 0
j + dimR(5�)K 0

j = a5 + (q + 1)q j�1 for j � j5 + 1.

The representation �0 is generic, and it follows that 5+ = indH
Z K0

� [Bushnell and
Henniart 1998, Proposition 1.6]. Let t =

� pF 0
0 p�1

F

�
. The group H = Z K0G 0 is the

disjoint union
H =

F
i�0

Z K0 t i K 0

0.

For i � 0, j > 0 and k 2 K 0

0, consider the representation of K 0

j on the functions
in indH

Z K0
� supported on the coset Z K0 t i kK 0

j . That it contains nonzero K 0

j -fixed
vectors does not depend on the choice of k 2 K 0

0, and it happens if and only if
t i K 0

j t
�i \ Z K0 has nonzero fixed vectors in �. For j  2i , t i K 0

j t
�i \ Z K0 contains

the lower unipotent subgroup of K0 and fixes no nonzero vector in �0 which is
cuspidal. For j > 2i , t i K 0

j t
�i ⇢ K1 and K1 acts trivially on �0. So the space

of functions in indH
Z K0

supported in Z K0 t i kK 0

j and fixed by K 0

j has dimension 0
if j  2i and q � 1 = dimR �0 if j > 2i . The number of cosets Z K0 t i kK 0

j in
Z K0 t i K0 is the index in K 0

0/K 0

j of the image of t�i Z K0 t i \ K 0

0 in K 0

0/K 0

j . As
K 0

2i ⇢ t�i Z K0 t i \ K 0

0, this index does not depend on j when j > 2i . It is the index
in K 0

0 of t�i Z K0 t i \ K 0

0 =
��

a b
c d

�
2 K 0

0, c 2 P2i
F
 
. One computes its value to be 1

if i = 0 and (q + 1)q2i�1 if i > 0. Consequently for j > 0,

dimR(5+)K 0
j = (q � 1)

✓
1 +

X

0<i< 1
2 j

(q + 1)q2i�1
◆

.

This is equal to q � 1 for j = 1, 2, to (q � 1)(q2 + q + 1) = �1 + q3 for j = 3, 4,
and by induction to �1 + q2m+1 for j = 2m + 1, 2m + 2, implying (7-7), hence
the theorem.
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152 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

To prove (7-8) for j � 1, one can work in the same manner as above using that
5� is the conjugate of 5+ by

� pF 0
0 1

�
. We find that dimR(5�)K 0

j is equal to 0 for
j = 1, to �1 + q2 for j = 2, 3, and to �1 + q2m for j = 2m, 2m + 1, implying
(7-8). ⇤
Corollary 7.10. When 5|H is reducible, we have for large j ,

dimR ⇡
K 0

j

=

⇢
|L(5)|�1(a5 + 2q j ) for j odd and ⇡ ⇢5+|G 0 or j even and ⇡ ⇢5�|G 0,

|L(5)|�1(a5 + 2q j�1) otherwise.

For the maximal compact group d K0 d�1 of G 0, the two asymptotics are inter-
changed.

We find remarkable that the regularity is obtained when increasing the index j
by 2, and not by 1 as was the case for the Iwahori or the pro-p Iwahori subgroups.
But that could have been anticipated, given the homogeneity properties of the
nilpotent orbital integrals in H .
Remark 7.11. The asymptotics (Theorems 7.6 and 7.7, Corollary 7.10) are likely
valid when 2 j � c where c is the conductor of 5. When R = C and 5 is cuspidal,
this is actually true for dimC5

Kj and can be derived from the formulas in [Miyauchi
and Yamauchi 2022]. When p is odd, Nevins has completely analyzed the restriction
to K 0

0 of the irreducible smooth complex representations of G 0, and we presume
that the asymptotics (and for which j it is valid) can be derived from her results
[Nevins 2005; 2013].

Appendix: The finite group SL2(Fq)

Let k be a finite field of characteristic p with q elements. In this Appendix we
classify irreducible representations of G = GL2(k) and of G 0 = SL2(k) over an
algebraically closed field R of characteristic 0 or ` > 0, ` 6= p. We could use
[Bonnafé 2011] for charR 6= 2 and [Kleshchev and Tiep 2009] for any R, but we
prefer using the same methods as in the main text.

Note that the irreducible R-representations of the finite groups G and G 0 are
defined over the algebraic closure of the prime field, and we can freely pass from R
to any other algebraically closed field of the same characteristic. Thus it is enough
to consider the cases where R = C or R = Fac

` . We also aim to prove the following
theorem.
Theorem A.1. Any irreducible Fac

` representation � of GL2(k) is the reduction
modulo ` of a Qac

` -representation �̃ of GL2(k) such that �̃ |SL2(k) and � |SL2(k) have
the same length.

Any irreducible Fac
` -representation of SL2(k) is the reduction modulo ` of a

Qac
` -representation of SL2(k).
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REPRESENTATIONS OF SL2(F) 153

Write Z for the centre of G, B for the upper triangular subgroup of G, and U
for its unipotent radical. Let us first recall the known classification of the R-
representations of G; see [Bushnell and Henniart 2002] for R = C and [Vignéras
1988] for R = Fac

` .
The parabolically induced representation indG

B (1) realized by the space of con-
stant functions on B\G contains the trivial character. It also has the trivial character
as a quotient, given by the functional � which sums the values of functions on B\G.
The map from the trivial subrepresentation to the trivial quotient is multiplication
by q +1, so is an isomorphism if ` does not divide q +1, and is 0 otherwise. In the
first case the quotient St = indG

B (1)/1 is irreducible, in the second case Ker(�)/1 is
a cuspidal but not supercuspidal representation �0 of G.

The irreducible (classes of) R-representations � of G are:

(1) The characters � � det where � is an R-character of k⇤.

(2) When q + 1 6= 0 in R, the twists (� � det) ⌦ St of St by the R-characters
� � det of G.

(20) When q + 1 = 0 in R, the twists (� � det) ⌦ �0 of �0 by the R-characters
� � det of G.

(3) The irreducible principal series indG
B (�1 ⌦ �2), where �1 and �2 are two

distinct R-characters of k⇤.

(4) The supercuspidal representations � (✓), where ✓ is an R-character of k⇤

2 ,
✓ 6= ✓q , where k2/k is a quadratic extension.

The only isomorphisms between those representations are given by exchanging
�1 and �2 in (3), as well as ✓ and ✓q in (4).

Twisting by an R-character � � det of G has the obvious effect, for example
sending ✓ to (� � N )✓ where N (x) = xq+1 for x 2 k⇤

2 in (4).
Any irreducible R-representation ⌧ of G 0 is contained in the restriction � |G 0 to G 0

of an irreducible R-representation � of G. The representation � |G 0 is semisimple
of multiplicity 1 and its irreducible components are G-conjugate. The stabilizer
of ⌧ contains ZG 0 and G/ZG 0 is isomorphic to k⇤/(k⇤)2. We have |k⇤/(k⇤)2| = 1
when p = 2 and |k⇤/(k⇤)2| = 2 when p is odd. Therefore � |G 0 is irreducible when
p = 2 and � |G 0 has length 1 or 2 when p is odd.

When charR 6= 2, the length lg(� |G 0) of � |G 0 is the number of R-characters �
of k⇤ such that (� � det) ⌦ � ' � , so

(A-1) lg(� |G 0) =

⇢
2 in case (3) if (�1/�2)

2 = 1 and in case (4) if (✓q�1)2 = 1,

1 otherwise.

The restrictions �1|G 0, �2|G 0 of two irreducible representations �1, �2 of G are
isomorphic if and only if �1, �2 are twists of each other by an R-character of G.
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Otherwise � |G 0, �2|G 0 are disjoint. So, we have a classification of the (isomorphism
classes of) irreducible representations of G 0 when charR 6= 2.

Remark A.2. The restriction to B of a cuspidal representation of G is the Kirillov
representation  of B (the irreducible R-representation of B induced by any non-
trivial R-character of U ). The restriction of  to U is the direct sum of all nontrivial
R-characters of U . The group B acts transitively on such characters, whereas
B 0 = B \ G 0 acts with two orbits. It follows that the restriction of  to B 0 has two
inequivalent irreducible components. Consequently a cuspidal representation of G
restricts to G 0 with length 1 or 2.

Let ` be an odd prime number different from p. Let us consider the reduction
modulo ` of the previous irreducibles � over Qac

` (since G is finite, they are integral).
For an integral Qac

` -character � (with values in Zac
` ), let �̄ denote its reduction

modulo `. Reduction modulo ` is compatible with twisting by a Qac
` -character

� � det in the sense that the reduction of (� � det)⌦ � is the twist by �̄ � det of the
reduction of � .

(1) The trivial Qac
` -character of G reduces to the trivial Fac

` -character.

(2) When ` does not divide q + 1, the Steinberg Qac
` -representation reduces to the

Steinberg Fac
` -representation.

(20) When ` divides q + 1, the Steinberg Qac
` -representation reduces to a length 2

representation with subrepresentation �0 and trivial quotient (for the natural integral
structure).

(3) The irreducible principal series indG
B (�1⌦�2) reduces to the irreducible principal

series indG
B (�̄1 ⌦ �̄2) when �̄1 6= �̄2, and to (�̄1 � det) ⌦ indG

B (1) (of length 2 when
` does not divide q + 1, and length 3 otherwise) when �̄1 = �̄2 (for the natural
integral structure).

(4) The supercuspidal Qac
` -representation � (✓) reduces to the supercuspidal Fac

` -
representation � (✓̄) if ✓̄ 6= (✓̄)q = ✓q , and otherwise (which can happen only if `
divides q +1) to (⌘�det)⌦�0 where ⌘ is the Fac

` -character of F⇤
q such that ⌘� N = ✓̄ .

A given Fac
` -character of k⇤ or k⇤

2 has a unique lift to a Zac
` -character of the same

order, and from the above it is clear that any irreducible Fac
` -representation � of G

lifts to a Qac
` -representation. Moreover, one can choose a lift of � with the same

length on restriction to G 0, thus proving the theorem when ` is odd.
Let us finally assume charR = 2. Then p is odd and q + 1 = 0 in R. Write

q�1=2sm with a positive integer s and an odd integer m. The number of irreducible
R-representations of G (resp. ZG 0) is the number of conjugacy classes in G (resp.
ZG 0) of elements of odd order. Let g 2 G be of odd order. Then det g 2 k⇤ has
odd order so det g 2 (k⇤)2 and g 2 ZG 0. The G-conjugacy class of g is equal to
its ZG 0-conjugacy class unless the G-centralizer of g is entirely in ZG 0. In that
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exceptional case, the G-equivalence class of g is the union of two ZG 0-equivalence
classes. This happens only when g = zu where z 2 Z (of odd order) and u 6= 1 is
unipotent. That shows that m is the number of ZG 0-conjugacy classes of elements
of odd order minus the number of G-conjugacies of such elements. Consequently
m is the number of irreducible R-representations of ZG 0 minus the number of
irreducible R-representations of G.

Consider first � (✓) for a Qac
2 -character ✓ of k⇤

2 of order 2s+1. Certainly ✓̄ is
trivial so that the reduction of � (✓) modulo 2 is �0. But `(� (✓)|G 0) = 2 by (A-1),
from which it follows that `(�0|G 0) � 2. We have seen however that `(�0|G 0)  2
(Remark A.2), so `(�0|G 0) = 2, and each irreducible component of �0|G 0 lifts to an
irreducible component of � (✓)|G 0 . The Fac

2 -characters � of k⇤ have odd order, their
number is m, and the representations (� � det) ⌦ �0 are not equivalent (the order
of � is odd). We deduce:

Lemma A.3. All irreducible Fac
2 -representations of G restrict irreducibly to G 0

except the twists of �0 by characters.
The reduction modulo 2 of any supercuspidal Qac

2 -representation of G 0 is irre-
ducible.

We deduce the classification of irreducible R-representations of G 0 when charR =2
and Theorem A.1 when `= 2.

Remark A.4. For use in the main text we summarize:

(a) When q +1 = 0 in R, �0|SL2(k) is irreducible if charR 6= 2, and has length 2
if charR = 2.

(b) In (4), let b 2 k2 be an element of order q +1. We have ✓ 6= ✓q () ✓(b) 6= 1
and � (✓)|SL2(k) is irreducible if ✓2(b) 6= 1, and has length 2 if ✓2(b) = 1.

When charR = 2, or when p = 2, hence (2, q + 1) = 1, we have ✓(b) 6= 1 ()

✓(b2) 6= 1, hence � (✓)|SL2(k) is irreducible for all ✓ 6= ✓q .
When charR 6= 2 and p is odd, there exists ✓ such that ✓(b) 6= 1, ✓(b)2 = 1,

unique modulo the twist by a character � such that �(b) = 1. The corresponding
representations � (✓) of G are twists of each other by a character of G. Their
restrictions to SL2(k) are isomorphic and reducible of length 2.
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