

11/2
1
2
3
4
5

PACIFIC JOURNAL OF MATHEMATICS

Vol. , No. , 2025

<https://doi.org/10.2140/pjm.2025..101>REPRESENTATIONS OF $SL_2(F)$

GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

Let p be a prime number, F a nonarchimedean local field with residue field k_F of characteristic p , and R an algebraically closed field of characteristic different from p . We investigate the irreducible smooth R -representations of $SL_2(F)$. The components of an irreducible smooth R -representation Π of $GL_2(F)$ restricted to $SL_2(F)$ form an L -packet $L(\Pi)$. We use the classification of such Π to determine the cardinality of $L(\Pi)$, which is 1, 2 or 4. When $p = 2$ we have to use the Langlands correspondence for $GL_2(F)$. When ℓ is a prime number distinct from p and $R = \mathbb{Q}_\ell^{\text{ac}}$, we determine the behaviour of an integral L -packet under reduction modulo ℓ . We prove a Langlands correspondence for $SL_2(F)$, and an enhanced one when the characteristic of R is not 2. Finally, pursuing a theme of Henniart and Vignéras (2024), which studied the case of inner forms of $GL_n(F)$, we show that near identity a nontrivial irreducible smooth R -representation π of $SL_2(F)$ is, up to a finite-dimensional representation, isomorphic to a sum of 1, 2 or 4 representations in an L -packet of size 4 (when p is odd there is only one such L -packet). We show that for π in an L -packet of size r_π and a sufficiently large integer j , the dimension of the invariants of π by the j -th congruence subgroup of an Iwahori or a pro- p Iwahori subgroup of $SL_2(F)$ is equal to $a_\pi + 2r_\pi^{-1}|k_F|^j$, with $a_\pi = -\frac{1}{2}$ if p is odd and $r_\pi = 4$, otherwise a_π is an integer. We also study the fixed points by the j -th congruence subgroups of the maximal compact subgroups of $SL_2(F)$ where the answer depends on the parity of j .

1.	Introduction	102
2.	Generalities	106
3.	p -adic reductive group	110
4.	Restriction to $SL_2(F)$ of representations of $GL_2(F)$	112
5.	Local Langlands R -correspondence for $SL_2(F)$	130
6.	Representations of $SL_2(F)$ near the identity	135
7.	Asymptotics of invariant vectors by Moy–Prasad subgroups	146
	Appendix: The finite group $SL_2(\mathbb{F}_q)$	152
	Acknowledgements	155
	References	156

38 MSC2020: primary 22E50; secondary 11F70.

39 39^{1/2} *Keywords:* modular irreducible representations, L -packets, Whittaker spaces, local Langlands correspondence.

1. Introduction

¹
² **1.1.** Let F be a locally compact nonarchimedean field with residue characteristic p
³ and R an algebraically closed field of characteristic $\text{char}_R \neq p$. We investigate the
⁴ irreducible smooth R -representations of $\text{SL}_2(F)$. Although when $R = \mathbb{C}$ and p is
⁵ odd the first investigations appeared in the 1960s, in work of Gelfand–Graev and
⁶ Shalika, the study of the modular case (i.e., when $\text{char}_R > 0$) started only recently
⁷ [Cui 2023; Cui et al. 2024] when $\text{char}_F \neq 2$ and $\text{char}_R \neq 2$. Here we give a complete
⁸ treatment and we make no assumption on p , char_F , char_R , apart from $\text{char}_R \neq p$.

⁹ As Labesse and Langlands did in the 1970s when $R = \mathbb{C}$ and $\text{char}_F = 0$, we
¹⁰ use the restriction of smooth R -representations from $G = \text{GL}_2(F)$ to $G' = \text{SL}_2(F)$.
¹¹ We prove that an irreducible smooth R -representation of G' extends to a smooth
¹² representation of an open subgroup H of G containing ZG' where Z is the centre
¹³ of G , and appears in the restriction to G' of a smooth irreducible R -representation
¹⁴ of G , unique up to isomorphism and twist by smooth R -characters of G/G' . When
¹⁵ $\text{char}_F \neq 2$ we can simply take $H = ZG'$, but not when $\text{char}_F = 2$ because the
¹⁶ compact quotient G/ZG' is infinite. Those results follow from general facts about
¹⁷ R -representations, which appear in [Section 2](#). They apply to more general reductive
¹⁸ groups over F , as we show in [Section 3](#).

¹⁹ In [Section 4](#), using Whittaker models, we show that the restriction to G' of an
²⁰ irreducible smooth R -representation Π of G is semisimple and has finite length and
²¹ multiplicity one. Its irreducible components form an L -packet $L(\Pi)$. An L -packet
²² $L(\Pi)$ is called cuspidal when Π is cuspidal, supercuspidal when Π is supercuspidal,
²³ of level 0 if Π can be chosen to have level 0 (that is, having nonzero fixed vectors
²⁴ under $1 + M_2(P_F)$), and of positive level otherwise.

Theorem 1.1. *The size of an L -packet is 1, 2 or 4.*

²⁷ When p is odd that follows rather easily from $|G/ZG'| = 4$, but it is also true
²⁸ when $p = 2$, in which case the proof is completed only in [Proposition 4.22](#), and
²⁹ uses the Langlands R -correspondence for G , which we recall in [Section 4.4](#).

Proposition 1.2 ([Corollary 4.29](#), [Proposition 4.22](#)). *The L -packets of size 4 are
³¹ cuspidal and in bijection with the biquadratic separable extensions of F .*

³² The bijection is described in the proof. When $p \neq 2$ there is just one L -packet
³³ of size 4 and it has level 0. When $p = 2$ the L -packets of size 4 have positive level,
³⁴ their number is finite if $\text{char}_F = 0$, but there are infinitely many if $\text{char}_F = 2$.

Proposition 1.3 ([Proposition 4.7](#)). *When p is odd, the cuspidal L -packets are not
³⁶ singletons. When $p = 2$, the cuspidal L -packets of level 0 have size 2.*

Proposition 1.4 ([Proposition 4.28](#)). *There is a cuspidal nonsupercuspidal L -packet
³⁸ if and only if $q + 1 = 0$ in R . It is unique of level 0, and size 4 when $\text{char}_R = 2$, and
³⁹ size 2 when $\text{char}_R \neq 2$.*

1 From the Langlands R -correspondence for $\mathrm{GL}_2(F)$, we get a bijection from
2 the set of L -packets to the set of conjugacy classes of Deligne morphisms of W_F
3 into $\mathrm{PGL}_2(R)$, the dual group of SL_2 over R . When $\mathrm{char}_R \neq 2$, we even get an
4 enhanced Langlands correspondence, in that we parametrize the elements in an
5 L -packet $L(\Pi)$ by the characters of the group S_Π of connected components of the
6 centralizer C_Π of the image of the corresponding Deligne morphism in $\mathrm{PGL}_2(R)$.
7 When $\mathrm{char}_R = 2$, C_Π is always connected and the supercuspidal L -packets are not
8 singletons. We will determine explicitly C_Π for each Π .

9 **Theorem 1.5** (Theorem 5.2¹). *Let Π be an irreducible smooth R -representation
10 of $\mathrm{GL}_2(F)$.*

11 *When $\mathrm{char}_R \neq 2$, the component group S_Π of C_Π is isomorphic to $\{1\}$, $\mathbb{Z}/2\mathbb{Z}$ or
12 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.*

13 *When $\mathrm{char}_R = 2$, C_Π is connected for each Π , but the cardinality of the L -packet
14 $L(\Pi)$ is*

- 15 • 1 if Π is not cuspidal,
- 16 • 2 if Π is supercuspidal,
- 17 • 4 if Π is cuspidal not supercuspidal.

18 When $L(\Pi)$ is not a singleton, we take as a base point the element having a
19 nonzero Whittaker model with respect to a nontrivial smooth R -character of F .

20^{1/2} When $\mathrm{char}_R \neq 2$, the theorem gives a bijection

$$\iota : L(\Pi) \rightarrow \mathrm{Irr}_R(S_\Pi)$$

21 respecting the base points (the trivial representation in $\mathrm{Irr}_R(S_\Pi)$). It is unique when
22 $|L(\Pi)| = 2$. There are partial results on the uniqueness of ι when $|L(\Pi)| = 4$.
23 Under the restriction $p = 2$, $\mathrm{char}_F = 0$, for the complex L -packet of size 4 (unique,
24 of level 0), there is a unique bijection compatible with the endoscopic character
25 identities [Aubert and Plymen 2024].

26 When $\mathrm{char}_R = 2$, a “linkage” between irreducible smooth R -representations of
27 G and G' is introduced in [Treumann and Venkatesh 2016]. In §5.0.3 we interpret
28 this notion in terms of dual groups, thus proving their conjectures in a special case.

29 Let $\ell \neq p$ be a prime number, and $\mathbb{Q}_\ell^{\mathrm{ac}}$ an algebraic closure of \mathbb{Q}_ℓ with residue
30 field $\mathbb{F}_\ell^{\mathrm{ac}}$. Each irreducible smooth $\mathbb{F}_\ell^{\mathrm{ac}}$ -representation of $\mathrm{GL}_2(F)$ lifts to a smooth
31 $\mathbb{Q}_\ell^{\mathrm{ac}}$ -representation. We show that this remains true for $\mathrm{SL}_2(F)$.

32 **Proposition 1.6** (Corollary 4.24, Proposition 4.30). *Each irreducible smooth $\mathbb{F}_\ell^{\mathrm{ac}}$ -
33 representation π of $\mathrm{SL}_2(F)$ is the reduction modulo ℓ of an integral irreducible
34 smooth $\mathbb{Q}_\ell^{\mathrm{ac}}$ -representation $\tilde{\pi}$ of $\mathrm{SL}_2(F)$.*

35³⁹ When $R = \mathbb{C}$ this was already established by Gelbart and Knapp [1982, §4] assuming that it
36 could be done for $\mathrm{GL}_n(F)$.

¹
²
³
⁴
⁵
⁶
⁷
⁸
⁹
¹⁰
¹¹
¹²
¹³
¹⁴
¹⁵
¹⁶
¹⁷
¹⁸
¹⁹
²⁰
²¹
²²
²³
²⁴
²⁵
²⁶
²⁷
²⁸
²⁹
³⁰
³¹
³²
³³
³⁴
³⁵
³⁶
³⁷
³⁸
³⁹
⁴⁰
⁴¹
⁴²
⁴³
⁴⁴
⁴⁵
⁴⁶
⁴⁷
⁴⁸
⁴⁹
⁵⁰
⁵¹
⁵²
⁵³
⁵⁴
⁵⁵
⁵⁶
⁵⁷
⁵⁸
⁵⁹
⁶⁰
⁶¹
⁶²
⁶³
⁶⁴
⁶⁵
⁶⁶
⁶⁷
⁶⁸
⁶⁹
⁷⁰
⁷¹
⁷²
⁷³
⁷⁴
⁷⁵
⁷⁶
⁷⁷
⁷⁸
⁷⁹
⁸⁰
⁸¹
⁸²
⁸³
⁸⁴
⁸⁵
⁸⁶
⁸⁷
⁸⁸
⁸⁹
⁹⁰
⁹¹
⁹²
⁹³
⁹⁴
⁹⁵
⁹⁶
⁹⁷
⁹⁸
⁹⁹
¹⁰⁰
¹⁰¹
¹⁰²
¹⁰³
¹⁰⁴
¹⁰⁵
¹⁰⁶
¹⁰⁷
¹⁰⁸
¹⁰⁹
¹¹⁰
¹¹¹
¹¹²
¹¹³
¹¹⁴
¹¹⁵
¹¹⁶
¹¹⁷
¹¹⁸
¹¹⁹
¹²⁰
¹²¹
¹²²
¹²³
¹²⁴
¹²⁵
¹²⁶
¹²⁷
¹²⁸
¹²⁹
¹³⁰
¹³¹
¹³²
¹³³
¹³⁴
¹³⁵
¹³⁶
¹³⁷
¹³⁸
¹³⁹
¹⁴⁰
¹⁴¹
¹⁴²
¹⁴³
¹⁴⁴
¹⁴⁵
¹⁴⁶
¹⁴⁷
¹⁴⁸
¹⁴⁹
¹⁵⁰
¹⁵¹
¹⁵²
¹⁵³
¹⁵⁴
¹⁵⁵
¹⁵⁶
¹⁵⁷
¹⁵⁸
¹⁵⁹
¹⁶⁰
¹⁶¹
¹⁶²
¹⁶³
¹⁶⁴
¹⁶⁵
¹⁶⁶
¹⁶⁷
¹⁶⁸
¹⁶⁹
¹⁷⁰
¹⁷¹
¹⁷²
¹⁷³
¹⁷⁴
¹⁷⁵
¹⁷⁶
¹⁷⁷
¹⁷⁸
¹⁷⁹
¹⁸⁰
¹⁸¹
¹⁸²
¹⁸³
¹⁸⁴
¹⁸⁵
¹⁸⁶
¹⁸⁷
¹⁸⁸
¹⁸⁹
¹⁹⁰
¹⁹¹
¹⁹²
¹⁹³
¹⁹⁴
¹⁹⁵
¹⁹⁶
¹⁹⁷
¹⁹⁸
¹⁹⁹
²⁰⁰
²⁰¹
²⁰²
²⁰³
²⁰⁴
²⁰⁵
²⁰⁶
²⁰⁷
²⁰⁸
²⁰⁹
²¹⁰
²¹¹
²¹²
²¹³
²¹⁴
²¹⁵
²¹⁶
²¹⁷
²¹⁸
²¹⁹
²²⁰
²²¹
²²²
²²³
²²⁴
²²⁵
²²⁶
²²⁷
²²⁸
²²⁹
²³⁰
²³¹
²³²
²³³
²³⁴
²³⁵
²³⁶
²³⁷
²³⁸
²³⁹
²⁴⁰
²⁴¹
²⁴²
²⁴³
²⁴⁴
²⁴⁵
²⁴⁶
²⁴⁷
²⁴⁸
²⁴⁹
²⁵⁰
²⁵¹
²⁵²
²⁵³
²⁵⁴
²⁵⁵
²⁵⁶
²⁵⁷
²⁵⁸
²⁵⁹
²⁶⁰
²⁶¹
²⁶²
²⁶³
²⁶⁴
²⁶⁵
²⁶⁶
²⁶⁷
²⁶⁸
²⁶⁹
²⁷⁰
²⁷¹
²⁷²
²⁷³
²⁷⁴
²⁷⁵
²⁷⁶
²⁷⁷
²⁷⁸
²⁷⁹
²⁸⁰
²⁸¹
²⁸²
²⁸³
²⁸⁴
²⁸⁵
²⁸⁶
²⁸⁷
²⁸⁸
²⁸⁹
²⁹⁰
²⁹¹
²⁹²
²⁹³
²⁹⁴
²⁹⁵
²⁹⁶
²⁹⁷
²⁹⁸
²⁹⁹
³⁰⁰
³⁰¹
³⁰²
³⁰³
³⁰⁴
³⁰⁵
³⁰⁶
³⁰⁷
³⁰⁸
³⁰⁹
³¹⁰
³¹¹
³¹²
³¹³
³¹⁴
³¹⁵
³¹⁶
³¹⁷
³¹⁸
³¹⁹
³²⁰
³²¹
³²²
³²³
³²⁴
³²⁵
³²⁶
³²⁷
³²⁸
³²⁹
³³⁰
³³¹
³³²
³³³
³³⁴
³³⁵
³³⁶
³³⁷
³³⁸
³³⁹
³⁴⁰
³⁴¹
³⁴²
³⁴³
³⁴⁴
³⁴⁵
³⁴⁶
³⁴⁷
³⁴⁸
³⁴⁹
³⁵⁰
³⁵¹
³⁵²
³⁵³
³⁵⁴
³⁵⁵
³⁵⁶
³⁵⁷
³⁵⁸
³⁵⁹
³⁶⁰
³⁶¹
³⁶²
³⁶³
³⁶⁴
³⁶⁵
³⁶⁶
³⁶⁷
³⁶⁸
³⁶⁹
³⁷⁰
³⁷¹
³⁷²
³⁷³
³⁷⁴
³⁷⁵
³⁷⁶
³⁷⁷
³⁷⁸
³⁷⁹
³⁸⁰
³⁸¹
³⁸²
³⁸³
³⁸⁴
³⁸⁵
³⁸⁶
³⁸⁷
³⁸⁸
³⁸⁹
³⁹⁰
³⁹¹
³⁹²
³⁹³
³⁹⁴
³⁹⁵
³⁹⁶
³⁹⁷
³⁹⁸
³⁹⁹
⁴⁰⁰
⁴⁰¹
⁴⁰²
⁴⁰³
⁴⁰⁴
⁴⁰⁵
⁴⁰⁶
⁴⁰⁷
⁴⁰⁸
⁴⁰⁹
⁴¹⁰
⁴¹¹
⁴¹²
⁴¹³
⁴¹⁴
⁴¹⁵
⁴¹⁶
⁴¹⁷
⁴¹⁸
⁴¹⁹
⁴²⁰
⁴²¹
⁴²²
⁴²³
⁴²⁴
⁴²⁵
⁴²⁶
⁴²⁷
⁴²⁸
⁴²⁹
⁴³⁰
⁴³¹
⁴³²
⁴³³
⁴³⁴
⁴³⁵
⁴³⁶
⁴³⁷
⁴³⁸
⁴³⁹
⁴⁴⁰
⁴⁴¹
⁴⁴²
⁴⁴³
⁴⁴⁴
⁴⁴⁵
⁴⁴⁶
⁴⁴⁷
⁴⁴⁸
⁴⁴⁹
⁴⁵⁰
⁴⁵¹
⁴⁵²
⁴⁵³
⁴⁵⁴
⁴⁵⁵
⁴⁵⁶
⁴⁵⁷
⁴⁵⁸
⁴⁵⁹
⁴⁶⁰
⁴⁶¹
⁴⁶²
⁴⁶³
⁴⁶⁴
⁴⁶⁵
⁴⁶⁶
⁴⁶⁷
⁴⁶⁸
⁴⁶⁹
⁴⁷⁰
⁴⁷¹
⁴⁷²
⁴⁷³
⁴⁷⁴
⁴⁷⁵
⁴⁷⁶
⁴⁷⁷
⁴⁷⁸
⁴⁷⁹
⁴⁸⁰
⁴⁸¹
⁴⁸²
⁴⁸³
⁴⁸⁴
⁴⁸⁵
⁴⁸⁶
⁴⁸⁷
⁴⁸⁸
⁴⁸⁹
⁴⁹⁰
⁴⁹¹
⁴⁹²
⁴⁹³
⁴⁹⁴
⁴⁹⁵
⁴⁹⁶
⁴⁹⁷
⁴⁹⁸
⁴⁹⁹
⁵⁰⁰
⁵⁰¹
⁵⁰²
⁵⁰³
⁵⁰⁴
⁵⁰⁵
⁵⁰⁶
⁵⁰⁷
⁵⁰⁸
⁵⁰⁹
⁵¹⁰
⁵¹¹
⁵¹²
⁵¹³
⁵¹⁴
⁵¹⁵
⁵¹⁶
⁵¹⁷
⁵¹⁸
⁵¹⁹
⁵²⁰
⁵²¹
⁵²²
⁵²³
⁵²⁴
⁵²⁵
⁵²⁶
⁵²⁷
⁵²⁸
⁵²⁹
⁵³⁰
⁵³¹
⁵³²
⁵³³
⁵³⁴
⁵³⁵
⁵³⁶
⁵³⁷
⁵³⁸
⁵³⁹
⁵⁴⁰
⁵⁴¹
⁵⁴²
⁵⁴³
⁵⁴⁴
⁵⁴⁵
⁵⁴⁶
⁵⁴⁷
⁵⁴⁸
⁵⁴⁹
⁵⁵⁰
⁵⁵¹
⁵⁵²
⁵⁵³
⁵⁵⁴
⁵⁵⁵
⁵⁵⁶
⁵⁵⁷
⁵⁵⁸
⁵⁵⁹
⁵⁶⁰
⁵⁶¹
⁵⁶²
⁵⁶³
⁵⁶⁴
⁵⁶⁵
⁵⁶⁶
⁵⁶⁷
⁵⁶⁸
⁵⁶⁹
⁵⁷⁰
⁵⁷¹
⁵⁷²
⁵⁷³
⁵⁷⁴
⁵⁷⁵
⁵⁷⁶
⁵⁷⁷
⁵⁷⁸
⁵⁷⁹
⁵⁸⁰
⁵⁸¹
⁵⁸²
⁵⁸³
⁵⁸⁴
⁵⁸⁵
⁵⁸⁶
⁵⁸⁷
⁵⁸⁸
⁵⁸⁹
⁵⁹⁰
⁵⁹¹
⁵⁹²
⁵⁹³
⁵⁹⁴
⁵⁹⁵
⁵⁹⁶
⁵⁹⁷
⁵⁹⁸
⁵⁹⁹
⁶⁰⁰
⁶⁰¹
⁶⁰²
⁶⁰³
⁶⁰⁴
⁶⁰⁵
⁶⁰⁶
⁶⁰⁷
⁶⁰⁸
⁶⁰⁹
⁶¹⁰
⁶¹¹
⁶¹²
⁶¹³
⁶¹⁴
⁶¹⁵
⁶¹⁶
⁶¹⁷
⁶¹⁸
⁶¹⁹
⁶²⁰
⁶²¹
⁶²²
⁶²³
⁶²⁴
⁶²⁵
⁶²⁶
⁶²⁷
⁶²⁸
⁶²⁹
⁶³⁰
⁶³¹
⁶³²
⁶³³
⁶³⁴
⁶³⁵
⁶³⁶
⁶³⁷
⁶³⁸
⁶³⁹
⁶⁴⁰
⁶⁴¹
⁶⁴²
⁶⁴³
⁶⁴⁴
⁶⁴⁵
⁶⁴⁶
⁶⁴⁷
⁶⁴⁸
⁶⁴⁹
⁶⁵⁰
⁶⁵¹
⁶⁵²
⁶⁵³
⁶⁵⁴
⁶⁵⁵
⁶⁵⁶
⁶⁵⁷
⁶⁵⁸
⁶⁵⁹
⁶⁶⁰
⁶⁶¹
⁶⁶²
⁶⁶³
⁶⁶⁴
⁶⁶⁵
⁶⁶⁶
⁶⁶⁷
⁶⁶⁸
⁶⁶⁹
⁶⁷⁰
⁶⁷¹
⁶⁷²
⁶⁷³
⁶⁷⁴
⁶⁷⁵
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁹
⁶⁸⁰
⁶⁸¹
⁶⁸²
⁶⁸³
⁶⁸⁴
⁶⁸⁵
⁶⁸⁶
⁶⁸⁷
⁶⁸⁸
⁶⁸⁹
⁶⁹⁰
⁶⁹¹
⁶⁹²
⁶⁹³
⁶⁹⁴
⁶⁹⁵
⁶⁹⁶
⁶⁹⁷
⁶⁹⁸
⁶⁹⁹
⁷⁰⁰
⁷⁰¹
⁷⁰²
⁷⁰³
⁷⁰⁴
⁷⁰⁵
⁷⁰⁶
⁷⁰⁷
⁷⁰⁸
⁷⁰⁹
⁷¹⁰
⁷¹¹
⁷¹²
⁷¹³
⁷¹⁴
⁷¹⁵
⁷¹⁶
⁷¹⁷
⁷¹⁸
⁷¹⁹
⁷²⁰
⁷²¹
⁷²²
⁷²³
⁷²⁴
⁷²⁵
⁷²⁶
⁷²⁷
⁷²⁸
⁷²⁹
⁷³⁰
⁷³¹
⁷³²
⁷³³
⁷³⁴
⁷³⁵
⁷³⁶
⁷³⁷
⁷³⁸
⁷³⁹
⁷⁴⁰
⁷⁴¹
⁷⁴²
⁷⁴³
⁷⁴⁴
⁷⁴⁵
⁷⁴⁶
⁷⁴⁷
⁷⁴⁸
⁷⁴⁹
⁷⁵⁰
⁷⁵¹
⁷⁵²
⁷⁵³
⁷⁵⁴
⁷⁵⁵
⁷⁵⁶
⁷⁵⁷
⁷⁵⁸
⁷⁵⁹
⁷⁶⁰
⁷⁶¹
⁷⁶²
⁷⁶³
⁷⁶⁴
⁷⁶⁵
⁷⁶⁶
⁷⁶⁷
⁷⁶⁸
⁷⁶⁹
⁷⁷⁰
⁷⁷¹
⁷⁷²
⁷⁷³
⁷⁷⁴
⁷⁷⁵
⁷⁷⁶
⁷⁷⁷
⁷⁷⁸
⁷⁷⁹
⁷⁸⁰
⁷⁸¹
⁷⁸²
⁷⁸³
⁷⁸⁴
⁷⁸⁵
⁷⁸⁶
⁷⁸⁷
⁷⁸⁸
⁷⁸⁹
⁷⁹⁰
⁷⁹¹
⁷⁹²
⁷⁹³
⁷⁹⁴
⁷⁹⁵
⁷⁹⁶
⁷⁹⁷
⁷⁹⁸
⁷⁹⁹
⁸⁰⁰
⁸⁰¹
⁸⁰²
⁸⁰³
⁸⁰⁴
⁸⁰⁵
⁸⁰⁶
⁸⁰⁷
⁸⁰⁸
⁸⁰⁹
⁸¹⁰
⁸¹¹
⁸¹²
⁸¹³
⁸¹⁴
⁸¹⁵
⁸¹⁶
⁸¹⁷
⁸¹⁸
⁸¹⁹
⁸²⁰
⁸²¹
⁸²²
⁸²³
⁸²⁴
⁸²⁵
⁸²⁶
⁸²⁷
⁸²⁸
⁸²⁹
⁸³⁰
⁸³¹
⁸³²
⁸³³
⁸³⁴
⁸³⁵
⁸³⁶
⁸³⁷
⁸³⁸
⁸³⁹
⁸⁴⁰
⁸⁴¹
⁸⁴²
⁸⁴³
⁸⁴⁴
⁸⁴⁵
⁸⁴⁶
⁸⁴⁷
⁸⁴⁸
⁸⁴⁹
⁸⁵⁰
⁸⁵¹
⁸⁵²
⁸⁵³
⁸⁵⁴
⁸⁵⁵
⁸⁵⁶
⁸⁵⁷
⁸⁵⁸
⁸⁵⁹
⁸⁶⁰
⁸⁶¹
⁸⁶²
⁸⁶³
⁸⁶⁴
⁸⁶⁵
⁸⁶⁶
⁸⁶⁷
⁸⁶⁸
⁸⁶⁹
⁸⁷⁰
⁸⁷¹
⁸⁷²
⁸⁷³
⁸⁷⁴
⁸⁷⁵
⁸⁷⁶
⁸⁷⁷
⁸⁷⁸
⁸⁷⁹
⁸⁸⁰
⁸⁸¹
⁸⁸²
⁸⁸³
⁸⁸⁴
⁸⁸⁵
⁸⁸⁶
⁸⁸⁷
⁸⁸⁸
⁸⁸⁹
⁸⁹⁰
⁸⁹¹
⁸⁹²
⁸⁹³
⁸⁹⁴
⁸⁹⁵
⁸⁹⁶
⁸⁹⁷
⁸⁹⁸
⁸⁹⁹
⁹⁰⁰
⁹⁰¹
⁹⁰²
⁹⁰³
⁹⁰⁴
⁹⁰⁵
⁹⁰⁶
⁹⁰⁷
⁹⁰⁸
⁹⁰⁹
⁹¹⁰
⁹¹¹
⁹¹²
⁹¹³
⁹¹⁴
⁹¹⁵
⁹¹⁶
⁹¹⁷
⁹¹⁸
⁹¹⁹
⁹²⁰
⁹²¹
⁹²²
⁹²³
⁹²⁴
⁹²⁵
⁹²⁶
⁹²⁷
⁹²⁸
⁹²⁹
⁹³⁰
⁹³¹
⁹³²
⁹³³
⁹³⁴
⁹³⁵
⁹³⁶
⁹³⁷
⁹³⁸
⁹³⁹
⁹⁴⁰
⁹⁴¹
⁹⁴²
⁹⁴³
⁹⁴⁴
⁹⁴⁵
⁹⁴⁶
⁹⁴⁷
⁹⁴⁸
⁹⁴⁹
⁹⁵⁰
⁹⁵¹
⁹⁵²
⁹⁵³
⁹⁵⁴
⁹⁵⁵
⁹⁵⁶
⁹⁵⁷
⁹⁵⁸
⁹⁵⁹
⁹⁶⁰
⁹⁶¹
⁹⁶²
⁹⁶³
⁹⁶⁴
⁹⁶⁵
⁹⁶⁶
⁹⁶⁷
⁹⁶⁸
⁹⁶⁹
⁹⁷⁰
⁹⁷¹
⁹⁷²
⁹⁷³
⁹⁷⁴
⁹⁷⁵
⁹⁷⁶
⁹⁷⁷
⁹⁷⁸
⁹⁷⁹
⁹⁸⁰
⁹⁸¹
⁹⁸²
⁹⁸³
⁹⁸⁴
⁹⁸⁵
⁹⁸⁶
⁹⁸⁷
⁹⁸⁸
⁹⁸⁹
⁹⁹⁰
⁹⁹¹
⁹⁹²
⁹⁹³
⁹⁹⁴
⁹⁹⁵
⁹⁹⁶
⁹⁹⁷
⁹⁹⁸
⁹⁹⁹
¹⁰⁰⁰

$$|L(\Pi)| = |L(\tilde{\Pi})|.$$

¹
²
³
⁴
⁵
⁶<

¹ As in [Henniart and Vignéras 2024] we first deal with the case where $R = \mathbb{C}$,
² using a germ expansion near the identity à la Harish-Chandra, in terms of nilpotent
³ orbital integrals. However, when $\mathrm{char}_F = 2$, such an expansion is not available,
⁴ so we work instead with a complex representation π of an open subgroup H of
⁵ G containing ZG' . For such a group a germ expansion has been obtained by
⁶ Lemaire [2004]. Adapting [Mœglin and Waldspurger 1987] and [Varma 2014] (who
⁷ assumed $\mathrm{char}_F = 0$) we compute the germ expansion in terms of the dimensions
⁸ of the different Whittaker models of π , and express it in terms of L -packets of
⁹ size 4. **Theorem 1.8** easily transfers to any R with $\mathrm{char}_R = 0$, in particular $R = \mathbb{Q}_\ell^{\mathrm{ac}}$.
¹⁰ From our complete classification of irreducible smooth R -representations of G' ,
¹¹ and in particular that the $\mathbb{F}_\ell^{\mathrm{ac}}$ -representations of G' lift to characteristic 0 when
¹² $\ell \neq p$ (**Proposition 1.6**), we get **Theorem 1.8** for $R = \mathbb{F}_\ell^{\mathrm{ac}}$ and transfer it to any R
¹³ with $\mathrm{char}_R = \ell$.

¹⁴ We think that **Theorem 1.8** will extend in the same way to inner forms of SL_n ,
¹⁵ using the work of [Hiraga and Saito 2012]. We expect that if $\mathrm{char}_F = 0$ and $R = \mathbb{C}$,
¹⁶ a variant of the theorem is true for any connected reductive F -group H , because
¹⁷ of the Harish-Chandra germ expansion and of the work of Mœglin–Waldspurger
¹⁸ and Varma. But when $\ell \neq p$, it is not known in general if virtual finite length
¹⁹ $\mathbb{F}_\ell^{\mathrm{ac}}$ -representations lift to characteristic 0 and it is unlikely that cuspidal irreducible
²⁰ $\mathbb{F}_\ell^{\mathrm{ac}}$ -representations lift. The reason is that the first point has a positive answer when
²¹ G is a finite group and the answer to the second is negative in general for finite
²² reductive groups. When $\mathrm{char}_F = p$ and $R = \mathbb{C}$, we have to face the problem that
²³ a germ expansion in terms of nilpotent orbital integrals might not exist. It is not
²⁴ clear how to define such integrals for bad primes, and sometimes the number of
²⁵ unipotent orbits in H and of nilpotent orbits in $\mathrm{Lie}(H)$ are not the same, even over
²⁶ an algebraic closure of F . Given our investigation of the case $\mathrm{SL}_2(F)$, which uses
²⁷ L -indistinguishability, one may wonder about the role of endoscopy and stability in
²⁸ analogous results for a general H .

²⁹ The dimension of the invariants by the j -th congruence subgroup of a Moy–
³⁰ Prasad group of an infinite-dimensional irreducible smooth R -representation of G
³¹ for j large, is the value at q^j of a polynomial of degree 1 and integral coefficients.
³² We will prove a similar result for G' but the coefficients of the polynomial are not
³³ always integral and the polynomial may depend on the parity of j .

³⁴ Let Π be an infinite-dimensional irreducible smooth R -representation of G and
³⁵ π be an element of $L(\Pi)$. Around the identity,

$$\Pi \simeq a_\Pi 1 + \mathrm{ind}_B^G 1$$

³⁶ for an integer a_Π and the usual principal series $\mathrm{ind}_B^G 1$. Let O_F denote the ring of
³⁷ integers of F , $K' = \mathrm{SL}_2(O_F)$, I' its Iwahori subgroup, $I'_{1/2}$ its pro- p Iwahori, and
³⁸ $K'_j, I'_j, I'_{1/2+j}$ their j -th congruence subgroups.
³⁹
⁴⁰

Theorem 1.9 (Theorem 7.6). *For a sufficiently large j ,*

$$\dim_R \pi^{I'_j} = \dim_R \pi^{I'_{j/2+j}} = |L(\Pi)|^{-1}(a_\Pi + 2q^j),$$

$$\dim_R \pi^{K'_j} = |L(\Pi)|^{-1}(a_\Pi + (q+1)q^{j-1}) \quad \text{if } \Pi|_{ZKG'} \text{ is irreducible.}$$

When p is odd and $|L(\Pi)| = 4$, we have $|L(\Pi)|^{-1}a_\Pi = -\frac{1}{2}$.

When $\Pi|_{ZKG'}$ is reducible, it has length 2. The two irreducible components Π^+ and Π^- are distinguished by their Whittaker models.

Theorem 1.10 (Corollary 7.10). *If $\Pi|_{ZKG'}$ is reducible, for a sufficiently large j ,*

$$\dim_R \pi^{K'_j}$$

$$= \begin{cases} |L(\Pi)|^{-1}(a_\Pi + 2q^j) & \text{for } j \text{ odd and } \pi \subset \Pi^+|_{G'} \text{ or } j \text{ even and } \pi \subset \Pi^-|_{G'}, \\ |L(\Pi)|^{-1}(a_\Pi + 2q^{j-1}) & \text{otherwise.} \end{cases}$$

By G -conjugation, we have similar asymptotics for all Moy–Prasad subgroups of G' .

The study of R -representations of G' has a long history, especially when $R = \mathbb{C}$.

Even for odd p and $R = \mathbb{C}$, there is current research on GL_2 and SL_2 [Luo and Chau 2024].

Inevitably some of our proofs are adapted from previous papers. However, because we make only the assumption that $\mathrm{char}_R \neq p$, we have usually preferred to give complete proofs in that general setting. We refer essentially only to papers

that we are using.

2. Generalities

2.1. Let R be a field, G a group, H a subgroup of G , V an R -representation of G . We denote char_R the characteristic of R , and $V|_H$ the restriction of V to H .

2.1.1. When H has *finite index* in G , any irreducible R -representation of H is contained in the restriction to H of an irreducible R -representation of G [Henniart 2001, proposition 2.2].

2.1.2. If H is *normal of finite index* in G and V is irreducible, then $V|_H$ is semisimple of finite length [loc. cit., proposition 2.1].

2.1.3. If H is *normal* in G , V is irreducible and $V|_H$ contains an irreducible subrepresentation, then $V|_H$ is semisimple and its isotypic components are G -conjugate with the same multiplicity.

Proof. Let W be an irreducible subrepresentation of $V|_H$. Since H is normal in G , for $g \in G$, H acts irreducibly on gW by $(h, gw) \mapsto hgh^{-1}hw$. The subspace $\sum_{g \in G} gW$ is a nonzero subrepresentation of V . Since V is irreducible, it is equal to V . Since a representation which is a sum of irreducible subrepresentations is semisimple [Bourbaki 2012, §4.1, corollaire 1, p. 52], $V|_H$ is semisimple. The last assertion follows in the same way. \square

2.1.4. Assume H normal of finite index in G and let π be an irreducible R -representation of H . We saw that there is an irreducible R -representation Π of G whose restriction to H (which is semisimple of finite length) contains π . Clearly if χ is a R -character of G trivial on H then the restriction of $\Pi \otimes \chi$ to H contains π .

5 Lemma 2.1. Assume R algebraically closed and G/H abelian. Any irreducible R -representation Π' of G containing π is isomorphic to $\Pi \otimes \chi$ for some R -character χ of G trivial on H .

*Proof.*² We have $\mathrm{Hom}_H(\Pi'|_H, \Pi|_H) \neq 0$. The right adjoint of the restriction from G to H is the induction Ind_H^G from H to G , therefore Π' is isomorphic to an irreducible subrepresentation of $\mathrm{Ind}_H^G(\Pi|_H)$. We have $\mathrm{Ind}_H^G(\Pi|_H) \simeq (\mathrm{Ind}_H^G 1) \otimes \Pi$ because G/H is finite, and the irreducible subquotients of $\mathrm{Ind}_H^G 1$ are the characters χ of G trivial on H because R is algebraically closed. Therefore, there exists χ such that $\Pi' \simeq \Pi \otimes \chi$. \square

15 2.2. We suppose that H is a closed subgroup of a locally profinite group G and V is an R -representation of G .

17 If the index of H in G is finite, then H is open. Conversely, if H is open cocompact in G , then the index of H in G is finite. If V is smooth (i.e., the G -stabilizer of any vector is open), then $V|_H$ is smooth. Conversely, if H is open in G and $V|_H$ is smooth (resp. admissible: smooth and the dimension of the space V^K of K -fixed vectors of V is finite, for any open compact subgroup $K \subset H$), then V is smooth (resp. admissible).

We suppose also from now on that H is normal in G with a compact quotient G/H and that V is smooth (so $V|_H$ is smooth).

26 2.2.1. If V is finitely generated then $V|_H$ is finitely generated [Henniart 2001, lemme 4.1].

28 2.2.2. If V is irreducible, any irreducible subrepresentation of $V|_H$ (when there exists one) extends to a (smooth and irreducible) representation of an open subgroup of G of finite index which is admissible if V is as well [loc. cit., proposition 4.4].

32 2.2.3. If V is irreducible and $V|_H$ contains an irreducible subrepresentation or is noetherian (any subrepresentation is finitely generated), then $V|_H$ is semisimple of finite length [loc. cit., théorème 4.2].

We introduce the two properties:

36 (2-1) Any finitely generated admissible R -representation of G has finite length.

37 (2-2) Any finitely generated smooth R -representation of H is noetherian.

³⁹_{1/2} ²This proof was suggested by Peiyi Cui [2023, Proposition 2.6], and replaces a more complicated argument of ours.

2.2.4. Let W be an admissible irreducible R -representation of H .

¹_{1/2} (1) If (2-1) and (2-2) are true, then W is contained in some irreducible admissible R -representation of G restricted to H [Henniart 2001, corollaire 4.6].
²₃ (2) If (2-1) is true, then W is a quotient of some irreducible admissible R -representation of G restricted to H [loc. cit., théorème 4.5].
⁴₅
⁶

⁷₈ We give a simple proof of (2) adapted from [Tadić 1992, Proposition 2.2]. The ⁹₁₀ smooth induction $\text{Ind}_H^G W$ of W to G is admissible since W is as well and G/H is ¹¹₁₂ compact [Vignéras 1996, chapitre I, §5.6]. A finitely generated subrepresentation ¹³₁₄ of $\text{Ind}_H^G W$ is admissible, hence of finite length by (2-1). So $\text{Ind}_H^G W$ contains an ¹⁵₁₆ irreducible admissible representation U . The restriction to H is the left adjoint of ¹⁷₁₈ the induction Ind_H^G hence W is a quotient of $U|_H$.

2.2.5. Let X_V be the group of R -characters χ of G trivial on H such that $V \otimes \chi \simeq V$.

¹⁴₁₅ The characters in X_V are smooth by the following lemma.

Lemma 2.2. $V \otimes \chi$ is smooth if and only if χ is smooth.

¹⁷₁₈ *Proof.* Let $v \in V$ a nonzero element. An open subgroup $K \subset G$ fixing v in V , ¹⁹₂₀ fixes v in $V \otimes \chi$ if and only if χ is trivial on K . The lemma follows because V is smooth. \square

²⁰₂₁ **2.2.6.** Assume also that V is irreducible and $V|_H$ has finite length (semisimple by ²²₂₃ §2.2.3 and its isotypic components are G -conjugate).³

²³₂₄ Let W be an irreducible component of $V|_H$, π its isomorphism class, G_π the ²⁵₂₆ G -stabilizer of π . Let V_π be the π -isotypic component of $V|_H$. The G -stabilizer of ²⁷₂₈ V_π is G_π . The G -stabilizer of W is open in G (because it contains the G -stabilizer ²⁹₃₀ of $v \in W$ nonzero and V is smooth) and is contained in G_π . Both have finite index ³¹₃₂ in G (G/H is compact) and

$$V = \text{Ind}_{G_\pi}^G (V_\pi)$$

³⁰₃₁ by Clifford's theory. The representation of G_π on V_π is irreducible and the length ³²₃₃ of $V|_H$ is

$$\lg(V|_H) = [G : G_\pi] \lg(V_\pi|_H).$$

Lemma 2.3. Assume that G/H is abelian. Then:

³⁵₃₆ (1) G_π is normal in G and does not depend on the choice of π in $V|_H$. The smooth R -characters of G trivial on G_π are in X_V .

³⁷₃₈ (2) Assume R algebraically closed.

³⁹₄₀³This subsection generalizes [Cui 2023, Corollary 3.8.3; Tadić 1992, Corollary 2.5; Bushnell and Kutzko 1994, Corollary 1.6(iii)].

¹ (a) Any irreducible subquotient of the smooth induction $\mathrm{Ind}_H^G 1$ is a smooth R -character χ of G trivial on H .

² (b) Any irreducible R -representation of G containing π is a twist $V \otimes \chi$ of V by some smooth R -character χ of G trivial on H .

³ (3) When $V|_H$ has multiplicity 1, then $W = V_\pi$, for a smooth R -character χ of G trivial on H , $V \otimes \chi \simeq V$ if and only if χ is trivial on G_π , and G_π is the largest subgroup I of G containing H such that $\lg(V|_I) = \lg(V|_H)$.

⁴ (4) When R is algebraically closed and $V|_H$ has multiplicity 1, then

$$|X_V| = \begin{cases} [G : G_\pi] & \text{if } \mathrm{char}_R = 0, \\ [G : G_{\pi, \ell}] & \text{if } \mathrm{char}_R = \ell > 0, \end{cases}$$

⁵ where $G_{\pi, \ell}$ is the smallest subgroup of G containing G_π such that $[G : G_{\pi, \ell}]$ is relatively prime to ℓ .

¹⁵ Proof. (1) The isotypic components of $\Pi|_H$ are G -conjugate, their G -stabilizers are G -conjugate and contain H hence they are equal because G/H is abelian.

¹⁷ Since $V \otimes \chi \simeq \mathrm{Ind}_{G_\pi}^G(\chi|_{G_\pi} \otimes V_\pi)$ for any smooth R -character χ of G , the smooth R -characters of G trivial on $G(\pi)$ are in X_V .

¹⁹ (2) (a) For any closed subgroup Q of G and a smooth R -representation X of Q ,
²⁰ the representation $\mathrm{Ind}_Q^G X$ is the space of functions $f : G \rightarrow X$ with the property
²¹ $f(qgk) = qf(g)$ for $q \in Q$, $g \in G$, $k \in K_f$ for some open subgroup K_f of G , with
²² the action of G by right translation, and where $\mathrm{ind}_Q^G 1$ is the subrepresentation on
²³ the subspace of functions of compact support modulo Q . When G/Q is compact,
²⁴ $\mathrm{Ind}_Q^G X = \mathrm{ind}_Q^G X$.

²⁵ Let $V \supset U$ be G -stable subspaces with V/U irreducible. We can suppose V generated by an element f (indeed $V'/U' \simeq V/U$ for the G -stable space V' generated by $f \in V \setminus U$ and the kernel U' of the map $V' \rightarrow V/U$). There is an open subgroup K of G which fixes f . We have $U \subset V \subset \mathrm{ind}_K^G 1$ and one is reduced to the case where G/H is finite.

³¹ (b) The proof of [Lemma 2.1](#) remains valid with the smooth induction Ind_H^G ,
³² which is the smooth compact induction $\mathrm{ind}_H^G 1$, because G/H is compact, so that
³³ $\mathrm{ind}_H^G(\Pi|_H) = \Pi \otimes \mathrm{ind}_H^G 1$.

³⁴ (3) Any smooth character χ of G trivial on H with $\mathrm{ind}_{G_\pi}^G(V_\pi) \simeq \mathrm{ind}_{G_\pi}^G(V_\pi \otimes \chi|_{G_\pi})$ is trivial on G_π . Indeed, restricting to G_π we see that $V_\pi \otimes \chi|_{G_\pi}$ is conjugate to V_π by some $g \in G$. Restricting to H gives that $\pi \simeq \pi^g$, so $g \in G_\pi$, hence $V_\pi \otimes \chi|_{G_\pi} \simeq V_\pi$.

³⁷ As $\mathrm{Ker}(\chi)$ is open in G and G/H is compact, $J = \mathrm{Ker}(\chi) \cap G_\pi$ has finite index in G_π . If χ is not trivial on G_π then the action of J on V_π is reducible. Indeed,

³⁹ ³⁹ $\mathrm{ind}_J^{G_\pi}(1)$ contains subrepresentations 1 and $\chi|_{G_\pi}$, and by Frobenius reciprocity
⁴⁰ ⁴⁰ $\mathrm{End}_J(V_\pi|_J)$ is equal to $\mathrm{Hom}_{G_\pi}(V_\pi, \mathrm{ind}_J^{G_\pi}(V_\pi|_J)) = \mathrm{Hom}_{G_\pi}(V_\pi, V_\pi \otimes \mathrm{ind}_J^{G_\pi}(1))$.

¹ Hence $\dim(\mathrm{End}_{J_\pi}(V_\pi|_J)) \geq 2$ and $V_\pi|_J$ is reducible. By the hypothesis of multiplicity 1, $V_\pi|_H$ is irreducible, hence $V_\pi|_J$ is irreducible as $H \subset J$. So χ is trivial on G_π .

⁴ The group G_π is a subgroup I of G containing H with $\lg(V|_I) = \lg(V|_H)$.
⁵ If I has this property, the restriction to H of any irreducible component on $V|_I$ is
⁶ irreducible, hence I is contained in G_π .

⁷ (4) follows from (3). \square

⁸ **Remark 2.4.** Assume that $V|_H$ has multiplicity 1. The G -stabilizer of any irreducible component of V is G_π . Denote $G_\pi = G_V$. Let I be a subgroup of G containing H . The number of orbits of I in the irreducible components of $V|_{G_V}$ is $\lg(V|_I)$. This number is the same for I and IG_V , hence $\lg(V|_I) = \lg(V|_{IG_V})$. We deduce that $G_V \subset I$ if $V|_I$ is reducible and $|G/I|$ is a prime number.

¹⁴ Let θ be a smooth R -representation of a closed subgroup $U \subset H$. We consider
¹⁵ the property:

¹⁶ (2-3) The functor $\mathrm{Hom}_U(-, \theta)$ is exact on smooth R -representations of H .

¹⁷ **Lemma 2.5.** *If (2-3) is true and $\dim \mathrm{Hom}_U(V, \theta) = 1$, then $V|_H$ has multiplicity 1.*

¹⁹ *Proof.* We denote by $m_V(\pi)$ the multiplicity of any irreducible smooth R -representation π of H in $V|_H$. By (2-3),

$$\sum_{\pi} m_V(\pi) \dim \mathrm{Hom}_U(\pi, \theta) = \dim \mathrm{Hom}_U(V, \theta) = 1.$$

²⁴ There is a single π with $m_V(\pi) = \dim \mathrm{Hom}_U(V, \theta) = 1$. \square

3. p -adic reductive group

²⁷ Suppose now that G is a p -adic reductive group, that is, the group of rational points
²⁸ $\underline{G}(F)$ of a reductive connected F -group \underline{G} . Here F is a local nonarchimedean field
²⁹ of residual characteristic p , ring of integers O_F , uniformizer p_F , maximal ideal P_F ,
³⁰ residue field $k_F = O_F/P_F$ with q elements, and absolute value $|x|_F = q^{-\mathrm{val}(x)}$,
³¹ $|p_F|_F = q^{-1}$ (we do not suppose that the characteristic of F is 0).

³² For an algebraic group \underline{X} over F , we denote by the corresponding unadorned
³³ letter $X = \underline{X}(F)$ the group of its F -points.

³⁴ Let R be a field of characteristic $\mathrm{char}_R \neq p$. Any irreducible smooth R -representation of G is admissible [Henniart and Vignéras 2019], and the properties (2-1)
³⁵ and (2-2) hold for G . For (2-1) see [Vignéras 1996, chapitre II, §5.10; 2023, §5],
³⁶ and for (2-2) see [Dat 2009; Dat et al. 2024].

³⁹ **Lemma 3.1.** *Let $f : \underline{H} \rightarrow \underline{G}$ be an F -morphism of reductive connected F -groups.
⁴⁰ Then the subgroup $f(H)$ of G is closed.*

¹ *Proof.* The morphism f induces a constructible action of H on G [Bernstein and
² Zelevinsky 1976, §6.15, Theorem A]; in particular the group $f(H)$, which is the
³ H -orbit of the unit of G , is locally closed [loc. cit., Proposition 6.8], $f(H)$ is equal
⁴ to its closure in G (the closure of $f(H)$ in G is a subgroup containing $f(H)$ as
⁵ an open, hence closed, subgroup). Note that $f(H)$ is open in G when $\mathrm{char}_F = 0$
⁶ [Platonov and Rapinchuk 1994, §3.1, Corollary 1]. \square

⁷ **Theorem 3.2.** *Let $f : \underline{H} \rightarrow \underline{G}$ be an F -morphism of reductive connected F -groups
⁸ such that $f(H)$ is a normal subgroup of G of compact quotient $G/f(H)$. Then,
⁹ the restriction to $f(H)$ of any irreducible admissible R -representation of G is
¹⁰ semisimple of finite length. Any irreducible admissible R -representation of $f(H)$ is
¹¹ contained in some irreducible admissible R -representation of G restricted to $f(H)$,
¹² and extends to an irreducible admissible representation of some open subgroup of
¹³ G of finite index.*

¹⁴ *Proof.* G satisfies (2-1) and $f(H)$ satisfies the property (2-2) because H does.
¹⁵ Apply the results of Section 2.2. \square

¹⁷ We now give two examples where we can apply Theorem 3.2.

¹⁸ **Proposition 3.3.** *Let $f : \underline{H} \rightarrow \underline{G}$ be a surjective central F -morphism of connected
¹⁹ reductive F -groups. Then, the subgroup $f(H)$ of G is normal of abelian compact
²⁰ quotient $G/f(H)$.*

²² *Proof.* There is an F -morphism $\kappa : \underline{G} \times \underline{G} \rightarrow \underline{H}$ such that $\kappa(f(x), f(y)) = xhx^{-1}y^{-1}$
²³ for all $x, y \in \underline{H}$ [Borel and Tits 1972, définition 2.2]. So for all $u, v \in G$ we have
²⁴ $uvu^{-1}v^{-1} = f \circ \kappa(u, v) \in f(H)$. The subgroup $f(H)$ of H is closed (Lemma 3.1)
²⁵ and normal with abelian quotient $G/f(H)$ [loc. cit., proposition 2.7].

²⁶ The compactness of G/H is stated in [Silberger 1979] without proof and in
²⁷ [Labesse and Schwermer 2019, Proposition A.2.1] with indications for the proof.
²⁸ The idea is to reduce to a connected reductive F -anisotropic modulo the centre
²⁹ F -group.

³⁰ Let \underline{S} be a maximal F -split subtorus of \underline{G} , and \underline{B} a parabolic F -subgroup of
³¹ \underline{G} containing \underline{S} . The G -centralizer \underline{M} of \underline{S} is compact modulo its centre and is
³² a Levi component of \underline{B} . Let \underline{U} be the unipotent radical of \underline{B} . By [Borel 1991,
³³ Theorem 22.6], the inverse image \underline{S}' of \underline{S} in \underline{H} is a maximal F -split torus in \underline{H} ,
³⁴ and the inverse image \underline{B}' of \underline{B} is a parabolic F -subgroup of \underline{H} . Put \underline{M}' for the
³⁵ \underline{H} -centralizer of \underline{S}' and \underline{U}' for the unipotent radical of \underline{B}' . From [loc. cit.], f
³⁶ induces a surjective central F -morphism $\underline{M}' \rightarrow \underline{M}$ and an F -isomorphism $\underline{U}' \rightarrow \underline{U}$.
³⁷ On the other hand, we have the Iwasawa decomposition $G = KB$ for an open
³⁸ compact subgroup K of G . The product map $K \times B \rightarrow G$ gives a surjective map
³⁹ $K \times B/f(B') \rightarrow G/f(H)$. We have $B/f(B') = M/f(M')$, so we just need to
⁴⁰ prove the compactness of $M/f(M')$.

¹ Let $X^*(\underline{S})$ denote the group of algebraic characters of \underline{S} , and $\underline{S}(p_F)$ denote
² $\text{Hom}(X^*(\underline{S}), p_F^\mathbb{Z})$. The subgroup $\underline{S}(p_F)$ of S is free abelian of finite rank with a
³ compact quotient $S/\underline{S}(p_F)$. On the other hand, f induces a surjective F -morphism
⁴ $\underline{S}' \rightarrow \underline{S}$ sending $\underline{S}'(p_F)$ onto a sublattice of $\underline{S}(p_F)$. Hence $S/f(S')$ is finite. So
⁵ $M/f(S')$ is compact since M/S is compact, a fortiori $M/f(M')$ is compact. \square

⁶ **Remark 3.4.** The condition that f is central in [Proposition 3.3](#) is necessary. Indeed,
⁷ assume $\text{char}_F = 2$ and $f : \underline{G} \rightarrow \underline{G}$, $f(g) = \varphi(g)/\det g$ where $\varphi(x) = x^2$ for
⁸ $x \in F$ is the Frobenius.⁴ The F -morphism f is surjective but not central. Let
⁹ $G = \text{GL}_2(F)$, $G' = \text{SL}_2(F)$, T' the diagonal torus of G' and U the group of
¹⁰ unipotent upper triangular matrices in G' . Then $f(G) = T'\varphi(G')$ is closed but
¹¹ not normal and not cocompact in G' (since $\varphi(U) = U \cap T'\varphi(G')$ and $U/\varphi(U)$
¹² homeomorphic to F/F^2 is not compact).

¹³ **Corollary 3.5.** Assume R algebraically closed. Let $f : \underline{H} \rightarrow \underline{G}$ be an F -morphism
¹⁴ of connected reductive F -groups which induces a central F -isogeny $\underline{H}^{\text{der}} \rightarrow \underline{G}^{\text{der}}$
¹⁵ between the derived groups. Then the conclusions of [Theorem 3.2](#) apply to $f(H)$.

¹⁶ *Proof.* The F -isogeny $\underline{H}^{\text{der}} \rightarrow \underline{G}^{\text{der}}$ is surjective with finite kernel contained in the
¹⁷ centre of $\underline{H}^{\text{der}}$ [[Springer 1998](#), §12.2.6]. If \underline{Z} is the connected centre of \underline{G} , the
¹⁸ natural map $\underline{Z} \times \underline{G}^{\text{der}} \rightarrow \underline{G}$ is surjective [[Springer 1998](#), Corollary 8.1.6]. Hence
¹⁹ the obvious map $\underline{Z} \times \underline{H} \rightarrow \underline{G}$ is surjective and central. [Proposition 3.3](#) applies to
²⁰ $\underline{Z}f(H)$. But R being algebraically closed, Z acts by a character in any irreducible
²¹ smooth R -representations of G , and we get the corollary. \square

²² **Remark 3.6.** There is a more elementary proof that the restriction to $f(H)$ of
²³ any irreducible admissible R -representation of G is semisimple of finite length in
²⁴ [[Silberger 1979](#)].

²⁶ 4. Restriction to $\text{SL}_2(F)$ of representations of $\text{GL}_2(F)$

²⁸ Let F be a local nonarchimedean field of residue field k_F of characteristic p as in
²⁹ [Section 3](#), and R an algebraically closed field of characteristic different from p .

³⁰ Let $G = \text{GL}_2(F)$, and let B (resp. B^-) denote the subgroup of upper (resp.
³¹ lower) triangular matrices, T the subgroup of diagonal matrices, U (resp. U^-) the
³² subgroup of upper (resp. lower) triangular unipotent matrices, and Z the centre
³³ of G .

³⁴ Let $G' = \text{SL}_2(F)$. The subgroup $H = ZG'$ of G is closed normal of compact
³⁵ abelian quotient G/ZG' isomorphic via the determinant to $F^*/(F^*)^2$, which (see
³⁶ [[Neukirch 1999](#), Chapter II, Corollary 5.8]) is a \mathbb{F}_2 -vector space of dimension

$$(4-1) \quad \dim_{\mathbb{F}_2} F^*/(F^*)^2 = \begin{cases} 2+e & \text{if } \text{char}_F \neq 2, \\ \infty & \text{if } \text{char}_F = 2, \end{cases} \quad \text{where } 2O_F = P_F^e.$$

³⁹^{1/2} ⁴⁰ ⁴The map f will also appear in §5.0.3.

¹ Note that ZG' is open in G if and only if $\mathrm{char}_F \neq 2$.

² For a subset $X \subset G$, put $X' = X \cap G'$. Write $x = (x_{i,j})$ a matrix in G or
³ Lie $G = M_2(F)$.

⁴ We fix a separable closure F^{sc} of F and will consider only extensions of F
⁵ contained in F^{sc} . We write W_F for the Weil group of F^{sc}/F and Gal_F for the
⁶ Galois group of F^{sc}/F . For a field k , we denote by k^{ac} an algebraic closure of k ,
⁷ and if $k \subset R$ we suppose $k^{\mathrm{ac}} \subset R$.

⁸ We fix an additive R -character ψ of F trivial on O_F but not on P_F^{-1} .

⁹ **4.1. Whittaker spaces.** The smooth R -characters of U have the form

¹⁰ (4-2)
$$\theta_Y(u) = \psi \circ \mathrm{tr}(Y(u - 1)) = \psi(Y_{2,1}u_{1,2}), \quad u \in U,$$

¹¹ for a lower triangular nilpotent matrix Y in $M_2(F)$. The case $Y = 0$ gives the trivial
¹² character of U , the cases with $Y \neq 0$ give the *nondegenerate* characters of U .

¹³ **Notation 4.1.** When $Y_{2,1} = 1$ we denote $\theta_Y = \theta$.

¹⁴ The normalizer of U in G is TU . By conjugation, U acts trivially on U and its
¹⁵ characters, and a diagonal matrix $t = \mathrm{diag}(t_1, t_2)$ acts on $u \in U$ by $(tut^{-1})_{1,2} =$
¹⁶ $(t_1/t_2)u_{1,2}$. Also, t acts on a lower triangular nilpotent matrix Y by $(tYt^{-1})_{2,1} =$
¹⁷ $(t_2/t_1)Y_{2,1}$. It follows that T acts transitively on the nondegenerate characters of U ,
¹⁸ the quotient T/Z acting simply transitively. By the same formulas, two nontrivial
¹⁹ characters θ_Y and $\theta_{Y'}$ of U are conjugate in G' if and only if they are conjugate by
²⁰ an element of T' if and only if $Y_{1,2}$ and $Y'_{1,2}$ differ by a square in F^* .

²¹ The T -normalizer of θ_Y is equal to Z if $Y \neq 0$ and to T if $Y = 0$. The θ_Y -
²² coinvariant functor $\tau \mapsto W_Y(\tau)$ from the smooth R -representations τ of U to
²³ the smooth R -representations of the T -normalizer of θ_Y is exact. A smooth R -
²⁴ representation τ of U is called *degenerate* when $W_Y(\tau) = 0$ for all $Y \neq 0$, and
²⁵ *nondegenerate* otherwise. A smooth R -representation of G or of G' is called
²⁶ degenerate (or nondegenerate) if its restriction to U is as well.

²⁷ The finite-dimensional irreducible smooth R -representations of G are of the
²⁸ form $\chi \circ \det$ for a smooth R -character χ of F^* and are degenerate. If Π is an
²⁹ infinite-dimensional irreducible smooth R -representation of G , then $\dim W_Y(\Pi) = 1$
³⁰ for all $Y \neq 0$ by the uniqueness of Whittaker models [Vignéras 1996, chapitre III,
³¹ §5.10] when $\mathrm{char}_R > 0$.

³² **4.2. L -packets.** We will classify the irreducible smooth R -representations of G' by
³³ restricting to G' the irreducible smooth R -representations Π of G . The set $L(\Pi)$
³⁴ of (isomorphism classes of) irreducible components of $\Pi|_{G'}$ is called an L -packet.
³⁵ A parametrization along these lines was obtained when $\mathrm{char}_F = 0$ and $\mathrm{char}_R = \mathbb{C}$
³⁶ in [Labesse and Langlands 1979]. When $\mathrm{char}_F \neq 2$ and $\mathrm{char}_R \neq 2$, this question is

¹ studied for supercuspidal representations in the recent work [Cui et al. 2024, §6.2
^{11/2}
² and §6.3].

³ Applying Lemma 2.3, Remark 2.4, Lemma 2.5, Theorem 3.2 and Corollary 3.5,
⁴ we have:

⁵ (4-3) Any irreducible smooth R -representation of G' belongs to a unique L -packet.

⁶ For two irreducible smooth R -representations Π_1, Π_2 of G ,

$$\begin{array}{ll} \text{8} & L(\Pi_1) = L(\Pi_2) \iff \Pi_1 = (\chi \circ \det) \otimes \Pi_2 \\ \text{9} & \end{array}$$

¹⁰ for some R -character $\chi \circ \det$ of G .

¹¹ The trivial character of G' is the unique finite-dimensional irreducible smooth
¹² R -representation of G' , it is degenerate and forms an L -packet $L(1) = L(\chi \circ \det)$
¹³ for any smooth R -character χ of F^* .

¹⁴ If Π is an irreducible smooth R -representation of G ,⁵

¹⁵ (4-5) the restriction of Π to G' is semisimple of finite length and multiplicity 1.

¹⁶ The irreducible constituents of $\Pi|_{G'}$ are G -conjugate (even B -conjugate as

¹⁷ $G = BG'$), and form an L -packet $L(\Pi)$ whose cardinality is the length of $\Pi|_{G'}$.

¹⁸ The G -stabilizer of $\pi \in L(\Pi)$ does not depend on the choice of π in $L(\Pi)$ and

¹⁹ is denoted G_Π . By §2.2.6, G_Π is an open normal subgroup of G containing

²⁰
²¹ $G'Z$, the subgroup $\det G_\Pi$ of F^* is open and contains $(F^*)^2$. The order of the
²² quotient $G/G_\Pi \simeq F^*/\det G_\Pi$ is a power of 2. When $\text{char}_F \neq 2$, $|G/G_\Pi|$ divides
²³ $|F^*/(F^*)^2| = 2^{2+e}$ with e defined in (4-1).

²⁴ (4-6) G_Π is the largest subgroup I of G such that $\lg(\Pi|_I) = \lg(\Pi|_{G'})$.

²⁵ (4-7) $\Pi = \text{ind}_{G_\Pi}^G V_\pi$ where V_π is the space of π .

²⁶ (4-8) $L(\Pi)$ is a principal homogeneous space for G/G_Π .

²⁷ (4-9) $|L(\Pi)|$ is a power of 2, and $|L(\Pi)|$ divides 2^{2+e} when $\text{char}_F \neq 2$.

²⁸ When p is odd, since $|F^*/(F^*)^2| = 4$ we deduce:

²⁹ **Proposition 4.2.** *When p is odd, the cardinality of an L -packet is 1, 2 or 4.*

³⁰ When $p = 2$ we will prove that this remains true using the local Langlands
³¹ correspondence.

³² By class field theory, any open subgroup of F^* of index 2 is equal to $N_{E/F}(E^*)$
³³ for a unique quadratic separable extension E/F of relative norm $N_{E/F} : E^* \rightarrow F^*$,
³⁴ and conversely. Any open subgroup of F^* of index 4 containing $(F^*)^2$ is equal
³⁵ to $N_{K/F}(K^*)$ for a unique biquadratic separable extension K/F of relative norm
³⁶ $N_{K/F} : K^* \rightarrow F^*$, and conversely.

³⁷
³⁸
³⁹
⁴⁰ ⁵For cuspidal representations this is proved in [Cui 2023, Proposition 2.37 and Corollary 2.38].

¹ When p is odd, each quadratic extension of F is separable and tamely ramified,
² and there is a unique biquadratic separable extension of F .

³ When $p = 2$, if $\mathrm{char}_F = 0$, there are finitely many quadratic separable extensions
⁴ of F and finitely many biquadratic separable extensions of F ; see (4-1). If $\mathrm{char}_F = 2$,
⁵ there are infinitely many quadratic, resp. biquadratic, separable extensions of F .

⁶ **Definition 4.3.** When Π is an irreducible smooth R -representation of G , we denote
⁷ by E_Π the separable extension of F such that $N_{E_\Pi/F}(E_\Pi^*) = \det G_\Pi$.

⁹ (4-10) We denote by X_Π the group of characters $\chi \circ \det$ of G such that

$$\Pi \otimes (\chi \circ \det) \simeq \Pi.$$

¹² A character of X_Π is smooth (Lemma 2.2) of trivial square. So $X_\Pi = \{1\}$ if $\mathrm{char}_R = 2$.

¹⁴ **Notation 4.4.** When $\mathrm{char}_R \neq 2$, the nontrivial smooth R -characters of F^* of trivial
¹⁵ square are the R -characters η_E of F^* of kernel $N_{E/F}(E^*)$, for quadratic separable
¹⁶ extensions E/F . The modulus $q^{\pm \mathrm{val}}$ of F^* is equal to η_E if and only if E/F is
¹⁷ unramified and $q + 1 = 0$ in R .

¹⁹ By Lemma 2.3 and (4-8):

²⁰ ²¹ (4-11) X_Π is the group of R -characters of G trivial on G_Π .

²² (4-12) When $\mathrm{char}_R \neq 2$, the cardinality of $L(\Pi)$ is $|X_\Pi|$.

²⁴ It is known that $|X_\Pi| = 1, 2$ or 4 when:

²⁵ (a) $R = \mathbb{C}$ and $\mathrm{char}_F = 0$ [Labesse and Langlands 1979; Shelstad 1979].

²⁷ (b) $\mathrm{char}_F \neq 2$ and $\mathrm{char}_R \neq 2$ [Cui et al. 2024, Proposition 6.6].

²⁹ When $\mathrm{char}_R \neq 2$ we will prove that $|X_\Pi| = 1, 2$ or 4 using the local Langlands
³⁰ correspondence, therefore $|L_\Pi| = 1, 2$ or 4 when $p = 2$.

³¹ For a lower triangular matrix $Y \neq 0$, we have

$$\sum_{\pi \in L(\Pi)} \dim_R W_Y(\pi) = \dim_R W_Y(\Pi).$$

³⁵ Since $\dim_R W_Y(\Pi) = 1$, we have $\dim_R W_Y(\pi) = 0$ or 1 , and there is a single
³⁶ $\pi \in L(\Pi)$ with $W_Y(\pi) \neq 0$.

³⁸ **4.3. Representations.** We denote by $\mathrm{Gr}_R^\infty(G)$ the Grothendieck group of finite
³⁹ length smooth R -representations of G and by $[\tau]$ the image in $\mathrm{Gr}_R^\infty(G)$ of a finite
⁴⁰ length smooth R -representation τ of G . Similarly for G' .

4.3.1. Parabolic induction. The smooth *parabolic induction* $\text{ind}_B^G(\sigma)$ of a smooth ¹₂ R -representation (σ, V) of T is the space of functions $f : G \rightarrow V$ such that ³₄ $f(tugk) = \sigma(t)f(g)$ for $t \in T$, $u \in U$, $g \in G$ and an open compact subgroup ⁵₆ $K_f \subset G$, with the action of G by right translation. The functor ind_B^G is exact with ⁷₈ the U -coinvariant functor $(-)_U$ as left adjoint, and $(-)_U \otimes \delta$ as right adjoint where ⁹₁₀ δ is the homomorphism of T :

$$\delta(\text{diag}(a, d)) = q^{-\text{val}(a/d)} : T \rightarrow q^{\mathbb{Z}} \quad (a, d \in F^*),$$

¹¹₁₂ [Dat et al. 2024, Corollary 1.3]. The modulus $|\cdot|_F$ of F^* is $q^{-\text{val}}$ and the modulus ¹³₁₄ of B is the inflation of δ . We choose a square root $q^{1/2}$ of q in R^* to define the ¹⁵₁₆ square root of δ ,

$$(4-13) \quad \nu(\text{diag}(a, d)) = (q^{1/2})^{-\text{val}(a/d)} : T \rightarrow (q^{1/2})^{\mathbb{Z}} \quad (a, d \in F^*),$$

¹⁷₁₈ and the *normalized parabolic induction* $i_B^G(\sigma) = \text{ind}_B^G(\sigma \nu)$. For a smooth R -¹⁹₂₀ character $\chi \circ \det$ of G we have

$$(\text{ind}_B^G \sigma) \otimes (\chi \circ \det) \cong \text{ind}_B^G(\sigma \otimes (\chi \circ \det)), \quad (i_B^G \sigma) \otimes (\chi \circ \det) \cong i_B^G(\sigma \otimes (\chi \circ \det)).$$

²¹₂₂ Similarly for G' , we define the parabolic induction $\text{ind}_{B'}^{G'}$ from the smooth R -²³₂₄ representation σ of T' to those of G' and the normalized parabolic induction $i_{B'}^{G'}$,

$$i_{B'}^{G'}(\sigma) = \text{ind}_{B'}^{G'}(\nu' \sigma), \quad \nu'(\text{diag}(a, a^{-1})) = q^{-\text{val}(a)} : T' \rightarrow q^{\mathbb{Z}} \quad (a \in F^*).$$

²⁵₂₆ As $G = BG'$ and G/B is compact, the restriction map $f \mapsto f|_{G'}$ gives isomorphisms

$$(4-14) \quad (\text{ind}_B^G(\sigma))|_{G'} \mapsto \text{ind}_{B'}^{G'}(\sigma|_{T'}), \quad (i_B^G(\sigma))|_{G'} \mapsto i_{B'}^{G'}(\sigma|_{T'}).$$

4.3.2. Cuspidal representations of $\text{GL}_2(F)$. When χ is a smooth R -character of T , ²⁷₂₈ $\text{ind}_B^G(\chi)$ is called a *principal series* of G . An irreducible smooth R -representation ²⁹₃₀ of G which is not a subquotient of a principal series, is called *supercuspidal*. It is ³¹₃₂ called *cuspidal* when its U -coinvariants are 0. A supercuspidal representation is ³³₃₄ cuspidal (the converse is true only when $q + 1 \neq 0$ in R). The principal series and ³⁵₃₆ the cuspidal R -representations are infinite-dimensional. Similarly for G' .

³⁷₃₈ Let Π be an irreducible smooth R -representation of G and $\pi \in L(\Pi)$. Then

³⁹₄₀ (4-15) Π is cuspidal if and only if π is cuspidal (similarly for supercuspidal).

⁴¹₄₂ Indeed, $L(\Pi)$ is the B -orbit of π , the U -coinvariant functor is exact and commutes ⁴³₄₄ with the restriction to G' . We say that $L(\Pi)$ is cuspidal if Π is. Similarly for ⁴⁵₄₆ supercuspidal using the formula (4-14).

⁴⁷₄₈ Let Π be a cuspidal R -representation of G . It is the compact induction of an ⁴⁹₅₀ extended maximal simple type (J, Λ) ,

$$\Pi = \text{ind}_J^G(\Lambda);$$

¹ see [Bushnell and Kutzko 1994; Bushnell and Henniart 2002] when $R = \mathbb{C}$ and ² [Vignéras 1996, chapitre III, § 3.4] for general R . The group J contains Z and a ³ unique maximal open compact subgroup J^0 . Let J^1 be the pro- p radical of J^0 . ⁴ The representation $\Lambda|_{J^0}$ is irreducible, equal to $\lambda = \kappa \otimes \bar{\sigma}$ where $\kappa|_{J^1}$ is irreducible ⁵ and $\bar{\sigma}$ is inflated from an irreducible R -representation σ of J^0/J^1 . The type ⁶ (J, Λ) is unique modulo G -conjugacy; see [Bushnell and Henniart 2006, Chapter 4, ⁷ § 15.5, Induction theorem] when $R = \mathbb{C}$ and [Vignéras 1996, chapitre III, § 5.3] for ⁸ general R .⁶

9 The open normal subgroup JG' of G has index $|F^*/\det J|$, and by Mackey theory,

$$\frac{11}{12} (4-16) \quad \Pi|_{JG'} = \bigoplus_{g \in G/JG'} \text{ind}_{Jg}^{JG'} \lambda^g.$$

14 Denote J' , $(J^0)'$, $(J^1)'$ the intersections of J , J^0 , J^1 with G' . We have $J' = (J^0)'$ and the length of

$$(\text{ind}_{J^g}^{JG'} \lambda^g)|_{G'} \cong \text{ind}_{J'^g}^{G'} (\lambda^g|_{J'^g})$$

¹⁷ is independent of g . By transitivity of the restriction $\Pi|_{G'} = \bigoplus_{g \in G/JG'} \text{ind}_{J'g}^{G'}(\lambda^g|_{J'g})$,
¹⁸ and

$$\frac{19}{20} (4-17) \quad |L(\Pi)| = |F^*/\det J| \lg(\text{ind}_{I'}^{G'}(\lambda|_{J'})),$$

it follows from Lemma 2.3(3), Remark 2.4 and the formula (4-16) that:

22 **Lemma 4.5.** *If $|F^*/\det J| = 2$ then $\det G_{\Pi} \subset \det J$*

24 **Remark 4.6.** We have $\det G_\Pi = \det J \iff G_\Pi = JG'$. If $|F^*/\det J| = 2$, the group **25** J determines a quadratic separable extension E/F such that $\det J = N_{E/F}(E^*)$.
26 The representation $\text{ind}_{\nu'}^{G'}(\lambda|_{\nu'})$ is irreducible if and only if $|L(\Pi)| = |F^*/\det J|$.

²⁷ If there is a smooth R -character χ of F^* such that $\Lambda \simeq \Lambda_0 \otimes (\chi \circ \det)$ and
²⁸ (J, Λ_0) is of level 0, we say that the L -packet $L(\Pi)$ and its elements are of level 0.
²⁹ Otherwise we say that $L(\Pi)$ and its elements are of positive level.

Level 0. $J = Z \mathrm{GL}_2(O_F)$, $J^0 = \mathrm{GL}_2(O_F)$, $J^0/J^1 \cong \mathrm{GL}_2(k_F)$, $\kappa = 1$, σ is a cuspidal R -representation of $\mathrm{GL}_2(k_F)$, $\lambda = \bar{\sigma}$. We have $\det J = \mathrm{val}^{-1}(2\mathbb{Z})$, and by (4-17),

$$\underline{34} \quad (4-18) \quad |L(\Pi)| = 2 \lg(\lambda|_{J'}) = 2 \lg(\sigma|_{\mathrm{SL}_2(k_F)}),$$

³⁵ because $\lambda|_{J'}$ is semisimple with length $\lg(\sigma|_{\mathrm{SL}_2(\mathbb{F}_q)})$, and for any irreducible component $\lambda' \subset \lambda|_{J'}$, the compact induction $\mathrm{ind}_{J'}^{G'}(\lambda')$ is irreducible [Henniart and Vignéras 2022, Corollary 4.29].

⁶It is proved only that (J^0, λ) is unique modulo G -conjugacy, but J is the normalizer of (J^0, λ) and Λ is the λ -isotypic part of Π .

¹ The cardinality of the cuspidal L -packet $L(\Pi)$ of level 0 can be computed via
² (4-17), (4-18), and Remark A.4(b) given in the Appendix on the classification of
³ the irreducible R -representations of $GL_2(k)$ and of $SL_2(k)$ for a finite field k with
⁴ $\text{char}_k \neq \text{char}_R$. We have two cases:

⁵ (i) $|F^* / \det G_\Pi| = 2$ and E_Π/F is the unramified quadratic extension.
⁶ (ii) p is odd, $\det G_\Pi = (F^*)^2$ and E_Π/F is the unique biquadratic extension. This
⁷ case occurs for a unique packet $L(\Pi)$.

⁸ We deduce:

⁹ **Proposition 4.7.** *When $p = 2$, each level 0 cuspidal L -packet has size 2.*

¹⁰ *When p is odd, there is a unique level 0 cuspidal L -packet of size 4, the other
¹¹ level 0 cuspidal L -packets have size 2.*

¹² These results can be deduced from [Kutzko and Pantoja 1991, §2] and the size 4
¹³ depth zero L -packet has been obtained in [Cui 2023, Example 3.11, Method 2].

¹⁴ **Positive Level.** $J = E^* J^0$ for a quadratic separable⁷ extension E/F , $J^0 = O_E^* J^1$,
¹⁵ $J^0/J^1 \simeq k_E^*$, σ is an R -character of k_E^* , $\lambda = \kappa \otimes \sigma$ and $\lambda|_{J^1}$ is irreducible. The
¹⁶ representation $\lambda_1 = \lambda|_{J^1}$ is irreducible of G -intertwining equal to J , because J
¹⁷ normalizes λ_1 and the G -intertwining of σ is already J [Bushnell and Henniart 2006,
¹⁸ Chapter 4, §15.1]. We have $N_{E/F}(E^*) \subset \det J$. If the quadratic extension E/F is
¹⁹ tamely ramified, then $\det J = N_{E/F}(E^*)$, because $J = E^* J^1$, $J^1 = (1 + P_F)(J^1)'$
²⁰ and $1 + P_F \subset \det E^* = N_{E/F}(E^*)$.

²¹ If $p = 2$ a tamely ramified quadratic extension of F is unramified, and E/F is
²² unramified if and only if $\det J = \text{Ker}((-1)^{\text{val}})$.

²³ If p is odd, each quadratic extension of F is tamely ramified.

²⁴ **Proposition 4.8.** *If p is odd, each positive level cuspidal L -packet $L(\Pi)$ has size 2
²⁵ and $E = E_\Pi$ (Definition 4.3).*

²⁶ **Proof.** ⁸ The central subgroup $1 + P_F$ of $J^1 = (1 + P_F)(J^1)'$ acts by scalars,
²⁷ the representation $\lambda'_1 = \lambda|_{(J^1)'}$ is still irreducible of G -intertwining J , so its G' -
²⁸ intertwining is J' . The isotypic component of $\Pi|_{J^1}$ of type λ_1 is the space of λ ,
²⁹ so the isotypic component of $\Pi|_{(J^1)'}$ of type λ'_1 is still the space of λ . As in the
³⁰ proof of [Henniart and Vignéras 2022, Corollary 4.29], we deduce that $\text{ind}_{J'}^{G'}(\lambda|_{J'})$
³¹ is irreducible. Apply Lemma 4.5. \square

³² **Remark 4.9.** When $p = 2$ and E/F is ramified, then $J^0 \cap G'$ is a pro-2-group.
³³ Indeed, the determinant induces a morphism $J^0/J^1 \rightarrow k_F^*$ equal via the natural

³⁴ ⁷When $\text{char}_F = 2$ the quadratic extension appearing in the construction [Bushnell and Henniart
³⁵ 2006] is not necessarily separable. It is generated by an element $x \in G$, determined up to some open
³⁶ subgroup of G , so that modifying x slightly yields a separable extension.

³⁷ ⁸This can also be obtained using [Cui 2023].

¹ isomorphism $J^0/J^1 \rightarrow k_E = k_F^*$ to the automorphism $x \mapsto x^2$ on k_F^* . Hence
² $(J^0)' = (J^1)'$ is a pro-2-group. Note also that Λ is a character [Bushnell and
³ Henniart 2006, §15].

⁴ **Corollary 4.10** (Propositions 4.7 and 4.8). *When p is odd, there is a unique cuspidal
⁵ L -packet of size 4, and it is of level 0. The other cuspidal L -packets have size 2.*

⁶ **4.3.3. Principal series of $\mathrm{GL}_2(F)$.** We recall the description of the normalized
⁷ principal series $i_B^G(\chi)$ of G for a smooth R -character χ of T .

⁸ Denote by χ_1, χ_2 the smooth R -characters of F^* such that

$$(4-19) \quad \chi(\mathrm{diag}(a, d)) = \chi_1(a)\chi_2(d) \quad (a, d \in F^*),$$

¹¹ and by χ^w the character $\chi^w(\mathrm{diag}(a, d)) = \chi(\mathrm{diag}(d, a))$ of T . In particular in
¹² (4-13), $\nu^w = \nu^{-1}$ and $\nu/\nu^w = \delta$.

¹³ **Proposition 4.11.** (i) *For two smooth R -characters χ, χ' of T , $[i_B^G(\chi)]$ and
¹⁴ $[i_B^G(\chi')]$ are disjoint or equal, with equality if and only if $\chi' = \chi$ or χ^w .*

¹⁶ (ii) *The smooth dual of $i_{B'}^{G'}(\chi)$ is $i_{B'}^{G'}(\chi^{-1})$.*

¹⁷ (iii) *$(i_B^G(\chi))_U$ has dimension 2, contains χ^w and has quotient χ .*

¹⁸ (iv) *$\dim W_Y(i_B^G(\chi)) = 1$ when $Y \neq 0$ [Vignéras 1996, chapitre III, §5.10].*

¹⁹ (v) *$i_B^G(\chi)$ is reducible if and only if $\chi_1\chi_2^{-1} = q^{\pm\mathrm{val}}$.*

²⁰ (vi) *$\mathrm{ind}_B^G(1) = i_B^G(\nu^{-1})$ contains the trivial representation 1 and:*

²² • *If $q + 1 \neq 0$ in R , $\lg(\mathrm{ind}_B^G(1)) = 2$, in particular $\mathrm{St} = (\mathrm{ind}_B^G 1)/1$ is
²³ irreducible (the Steinberg R -representation). The representation $\mathrm{ind}_B^G 1$ is
²⁴ semisimple if and only if $q = 1$ in R (and $\mathrm{char}_R \neq 2$).*

²⁵ • *If $q + 1 = 0$ in R , $\lg(\mathrm{ind}_B^G(1)) = 3$, $\mathrm{ind}_B^G 1$ is indecomposable of quotient
²⁶ $(-1)^{\mathrm{val}} \circ \det$, and $\mathrm{ind}_B^G 1/1$ contains a cuspidal representation*

$$\Pi_0 = \mathrm{ind}_{Z \mathrm{GL}_2(O_F)}^G \tilde{\sigma}_0$$

²⁹ where $\tilde{\sigma}_0$ is the inflation to $Z \mathrm{GL}_2(O_F)$ of the cuspidal subquotient σ_0 of
³⁰ $\mathrm{ind}_{B(k_F)}^{\mathrm{GL}_2(k_F)} 1$ (Appendix).

³¹ This is [Vignéras 1989, théorème 3] but the proof of (i) is incomplete. What
³² is missing is the proof that Π_0 occurs only in $i_B^G(\nu)$ and $i_B^G(\nu^{-1})$ when $q + 1 = 0$
³³ in R . This is equivalent to $X_{\Pi_0} = \{1, (-1)^{\mathrm{val}} \circ \det\}$ with the notation (4-10). This
³⁴ follows from Remark A.4(a) given in the Appendix.

³⁵ **Remark 4.12.** (1) The Steinberg representation St is infinite-dimensional and not
³⁶ cuspidal.

³⁷ (2) When $\mathrm{char}_R \neq 2$, the principal series $[i_B^G(\chi)]$ are multiplicity free.

³⁹ When $\mathrm{char}_R = 2$, then q is odd, $\mathrm{ind}_B^G 1$ has length 3, of subquotients Π_0 and the
⁴⁰ trivial representation 1 as a subrepresentation and a quotient.

Corollary 4.13. *The nonsupercuspidal irreducible smooth R -representations of G are*

- the characters $\chi \circ \det$ for the smooth R -characters χ of F^* ,
- the principal series $i_B^G(\chi)$ for the smooth R -characters χ of T with $\chi_1 \chi_2^{-1} \neq q^{\pm \text{val}}$.
- the twists $(\chi \circ \det) \otimes \text{St}$ of the Steinberg representation for the smooth R -characters χ of F^* if $q + 1 \neq 0$ in R ,
- the twists $(\chi \circ \det) \otimes \Pi_0$ of the cuspidal nonsupercuspidal representation Π_0 for the smooth R -characters χ of F^* if $q + 1 = 0$ in R .

The only isomorphisms between those representations are $i_B^G(\chi) \simeq i_B^G(\chi^w)$ for the irreducible principal series and $(\chi \circ \det) \otimes \Pi_0 \simeq ((-1)^{\text{val}} \chi \circ \det) \otimes \Pi_0$.

4.3.4. Let ℓ be a prime number different from p . An irreducible smooth $\mathbb{Q}_\ell^{\text{ac}}$ -representation τ of G or G' is integral if it preserves a lattice. It then gives by reduction modulo ℓ and semisimplification a finite length semisimple smooth $\mathbb{F}_\ell^{\text{ac}}$ -representation, of isomorphism class (not depending of the lattice) which we write $r_\ell(\tau)$. The restriction from G to G' from irreducible smooth $\mathbb{Q}_\ell^{\text{ac}}$ -representations $\tilde{\Pi}$ of G to finite length semisimple smooth $\mathbb{Q}_\ell^{\text{ac}}$ -representations of G' respects integrality and commutes with the reduction modulo ℓ . When $\tilde{\Pi}$ is integral, then any irreducible representation $\tilde{\pi} \subset \tilde{\Pi}|_{G'}$ is integral, the length of the reduction $r_\ell(\tilde{\pi})$ modulo ℓ of $\tilde{\pi}$ does not depend on the choice of $\tilde{\pi}$. If $\Pi = r_\ell(\tilde{\Pi})$ is irreducible, we have

$$(4-20) \quad |L(\Pi)| = |L(\tilde{\Pi})| \lg(r_\ell(\tilde{\pi})),$$

and by (4-11),

$$(4-21) \quad \lg(r_\ell(\tilde{\pi})) = |X_\Pi / X_{\tilde{\Pi}}| \quad \text{when } \text{char}_R \neq 2.$$

Proposition 4.14. *Each irreducible smooth $\mathbb{F}_\ell^{\text{ac}}$ -representation Π of G is the reduction modulo ℓ of some integral irreducible smooth $\mathbb{Q}_\ell^{\text{ac}}$ -representation $\tilde{\Pi}$ of G .*

Proof. Corollary 4.13 for Π not cuspidal, [Vignéras 2001] for Π cuspidal. \square

A supercuspidal $\mathbb{Q}_\ell^{\text{ac}}$ -representation $\tilde{\Pi} = \text{ind}_J^G \tilde{\Lambda}$ of G is integral if and only if $\tilde{\Lambda}$ is integral. Then, its reduction modulo ℓ is irreducible [Vignéras 1989], equal to $\Pi = \text{ind}_J^G \Lambda$ where $\Lambda = r_\ell(\tilde{\Lambda})$. The reduction modulo ℓ of the L -packet $L(\tilde{\Pi})$ is $L(\Pi)$. The reduction modulo ℓ respects level 0 and positive level. Conversely, any cuspidal $\mathbb{F}_\ell^{\text{ac}}$ -representation $\Pi = \text{ind}_J^G \Lambda$ of G is the reduction modulo ℓ of an integral cuspidal $\mathbb{Q}_\ell^{\text{ac}}$ -representation $\tilde{\Pi} = \text{ind}_J^G \tilde{\Lambda}$ of G where $\Lambda = r_\ell(\tilde{\Lambda})$ [Vignéras 2001]. By the uniqueness of the extended maximal simple type (J, Λ) modulo G (see Section 4.3.2), two supercuspidal integral $\mathbb{Q}_\ell^{\text{ac}}$ -representations have isomorphic reduction modulo ℓ if and only if the reduction modulo ℓ of their extended maximal simple types are G -conjugate.

¹ Any supercuspidal $\mathbb{Q}_\ell^{\mathrm{ac}}$ -representation $\tilde{\pi}$ of G' is integral, as $\tilde{\pi} \in L(\tilde{\Pi})$ where $\tilde{\Pi}$
² is a supercuspidal $\mathbb{Q}_\ell^{\mathrm{ac}}$ -representation of G , and some twist of $\tilde{\Pi}$ by a character is
³ integral. Suppose that $\tilde{\Pi}$ has level 0. With the notations of the formula (4-18), the
⁴ formula (4-21) implies

$$(4-22) \quad \lg(r_\ell(\tilde{\pi})) = \lg(\sigma|_{\mathrm{SL}_2(k_F)}) / \lg(\tilde{\sigma}|_{\mathrm{SL}_2(k_F)}).$$

Proposition 4.15. *When $\tilde{\pi}$ is supercuspidal of level 0, the length of $r_\ell(\tilde{\pi})$ is ≤ 2 .*

When $\tilde{\pi}$ is supercuspidal and p is odd, $r_\ell(\tilde{\pi})$ is irreducible if $\tilde{\pi}$ is minimal of positive level or if $\ell = 2$.

Any cuspidal $\mathbb{F}_\ell^{\mathrm{ac}}$ -representation π of G' is the reduction modulo ℓ of a supercuspidal $\mathbb{Q}_\ell^{\mathrm{ac}}$ -representation of G' , except maybe when $p = 2$ and π is in an L -packet $L(\Pi)$ with Π minimal of positive level with E_Π/F unramified (Definition 4.3).

Proof. • For $\tilde{\Pi}$ of level 0, we show in the Appendix the computation of the integer $\lg(\sigma|_{\mathrm{SL}_2(k_F)}) / \lg(\tilde{\sigma}|_{\mathrm{SL}_2(k_F)})$, and one sees that it is equal to 1 or 2 and that there exists $\tilde{\sigma}$ such that it is 1.

• For p odd, if the level of $\tilde{\pi}$ is positive then $\lg(\Pi|_{G'}) = \lg(\tilde{\Pi}|_{G'})$ by Proposition 4.8, hence $r_\ell(\tilde{\pi})$ is irreducible.

• For $\ell = 2$ (so p is odd), if the level of $\tilde{\pi}$ is 0, then $r_\ell(\tilde{\pi})$ is also irreducible by (4-22) and Lemma A.3 in the Appendix.

• For $p = 2$ (so ℓ is odd), π is in a cuspidal L -packet $L(\Pi)$ with Π minimal of positive level with E_Π/F ramified. Let $\tilde{\Pi}$ a $\mathbb{Q}_\ell^{\mathrm{ac}}$ -lift of Π . The reduction modulo ℓ from $X_{\tilde{\Pi}}$ onto X_Π is injective. The proposition follows from the next lemma. \square

Lemma 4.16. *The reduction modulo ℓ from $X_{\tilde{\Pi}}$ onto X_Π is a bijection.*

Proof. Let $\chi \in X_\Pi$, $\chi \neq 1$, and $\tilde{\chi}$ the unique $\mathbb{Q}_\ell^{\mathrm{ac}}$ lift of χ of order 2. We have $\tilde{\Pi} = \mathrm{ind}_J^G \tilde{\Lambda}$ where $\tilde{\Lambda}$ is a character (Remark 4.9). We have $\Pi = \mathrm{ind}_J^G \Lambda$ where $\Lambda = r_\ell(\tilde{\Lambda})$ and $(J, \chi \Lambda) = (J, {}^g \Lambda)$ for $g \in G$ normalizing J . So $\tilde{\chi} \tilde{\Lambda} = \epsilon {}^g \tilde{\Lambda}$ for a $\mathbb{Q}_\ell^{\mathrm{ac}}$ -character ϵ of J of order a power of ℓ . So, $\epsilon|_{J_1} = 1$ and $\epsilon|_Z = 1$. Since E_Π/F is ramified, the index of ZJ^1 in J is 2, hence $\epsilon = 1$ and $\tilde{\chi} \in X_{\tilde{\Pi}}$. \square

When $\mathrm{char}_F \neq 2$ and $\mathrm{char}_R \neq 2$, compare with [Cui et al. 2024, Proposition 6.7].

When $p = 2$, we shall complete the proposition in Corollary 4.24: if $\tilde{\pi}$ has positive level then $r_\ell(\tilde{\pi})$ has length ≤ 2 , if π is in an L -packet $L(\Pi)$ of positive level with E_Π/F unramified then π lifts to $\mathbb{Q}_\ell^{\mathrm{ac}}$.

4.4. Local Langlands R -correspondence for $\mathrm{GL}_2(F)$.

4.4.1. By local class field theory, the smooth R -characters χ of F^* identify with the smooth R -characters $\chi \circ \alpha_F$ of W_F where $\alpha_F : W_F \rightarrow F^*$ is the Artin reciprocity

map sending a arithmetic Frobenius Fr to p_F^{-1} [Bushnell and Henniart 2002, §29].

This is the local Langlands R -correspondence for $\mathrm{GL}_1(F)$.

¹ A two-dimensional Deligne R -representation of the Weil group W_F is a pair
² (σ, N) where σ is a two-dimensional semisimple smooth R -representation of the
³ Weil group W_F and N a nilpotent R -endomorphism of the space of σ with the usual
⁴ requirement:

$$\text{5 (4-23)} \quad \sigma(w)N = N|\alpha_F(w)|_F \sigma(w) \quad \text{for } w \in W_F.$$

6

⁷ Two two-dimensional Deligne R -representations (σ, N) and (σ', N') of W_F are
⁸ isomorphic if there exists a linear isomorphism $f : V \rightarrow V'$ from the space V of σ
⁹ to the space V' of σ' such that $\sigma'(w) \circ f = f \circ \sigma(w)$ for $w \in W_F$ and $N' \circ f = f \circ N$.

¹⁰ For a smooth R -character χ of F^* , the twist $(\sigma, N) \otimes (\chi \circ \alpha_F)$ of (σ, N) by
¹¹ $\chi \circ \alpha_F$ is $(\sigma \otimes (\chi \circ \alpha_F), N)$.

¹² When $R = \mathbb{Q}_\ell^{\text{ac}}$, (σ, N) is called integral if σ is integral.

¹³ **Remark 4.17.** • When σ is irreducible we have $N = 0$.

¹⁴ • When $\sigma = (\chi_1 \oplus \chi_2) \circ \alpha_F$, if $\chi_1 \chi_2^{-1} \neq q^{\pm \text{val}}$ then $N = 0$. When $N \neq 0$, we have
¹⁵ $\{\chi_1, \chi_2\} = \{\chi_i, q^{-\text{val}} \chi_i\}$ for some i and N sends the $(\chi_i \circ \alpha_F)$ -eigenspace to the
¹⁶ $(q^{-\text{val}} \chi_i \circ \alpha_F)$ -eigenspace or 0. Therefore when $\chi_1 \chi_2^{-1} = q^{\text{val}}$:

¹⁷ • If $q - 1 \neq 0$ and $q + 1 \neq 0$ in R , then $N = 0$ or the kernel of N is the $(\chi_2 \circ \alpha_F)$ -
¹⁸ eigenline.

¹⁹ • If $q - 1 \neq 0$ and $q + 1 = 0$ in R , then $N = 0$, or the kernel of N is the $(\chi_2 \circ \alpha_F)$ -
²⁰ eigenline, or the kernel of N is the $(\chi_1 \circ \alpha_F)$ -eigenline.

²¹ • If $q - 1 = 0$, then N is any nilpotent.

²² The local Langlands R -correspondence for $G = \text{GL}_2(F)$ is a canonical bijection

$$\text{23 (4-24)} \quad \text{LL}_R : \Pi \mapsto (\sigma_\Pi, N_\Pi)$$

²⁴ from the isomorphism classes of the irreducible smooth R -representations Π of G
²⁵ onto the equivalence classes of the two-dimensional Weil–Deligne R -representations
²⁶ of W_F .⁹ It identifies supercuspidal R -representations of G and irreducible two-
²⁷ dimensional R -representations of W_F , commutes with the automorphisms of R
²⁸ respecting a chosen square root of q , with the twist by smooth R -characters χ
²⁹ of F^* :

$$\text{30 (4-25)} \quad \text{LL}_R(\Pi \otimes (\chi \circ \det)) = \text{LL}_R(\Pi) \otimes (\chi \circ \alpha_F).$$

³¹ The local Langlands complex correspondence was proved by Kutzko [Bushnell
³² and Henniart 2002, §33]. An isomorphism $\mathbb{C} \simeq \mathbb{Q}_\ell^{\text{ac}}$ and the choice of a square
³³ root of q in $\mathbb{Q}_\ell^{\text{ac}}$ transfers $\text{LL}_\mathbb{C}$ to a local Langlands $\mathbb{Q}_\ell^{\text{ac}}$ -correspondence $\text{LL}_{\mathbb{Q}_\ell^{\text{ac}}}$
³⁴ respecting integrality. Any irreducible smooth $\mathbb{F}_\ell^{\text{ac}}$ -representation Π of G lifts to
³⁵ a $\mathbb{Q}_\ell^{\text{ac}}$ -representation $\tilde{\Pi}$ of G (Proposition 4.14) and $\text{LL}_{\mathbb{Q}_\ell^{\text{ac}}}$ descends to a local
³⁶ $\mathbb{Q}_\ell^{\text{ac}}$ -representation $\tilde{\Pi}$ of G (Proposition 4.14) and $\text{LL}_{\mathbb{Q}_\ell^{\text{ac}}}$ descends to a local
³⁷ $\mathbb{Q}_\ell^{\text{ac}}$ -representation $\tilde{\Pi}$ of G (Proposition 4.14) and $\text{LL}_{\mathbb{Q}_\ell^{\text{ac}}}$ descends to a local
³⁸ $\mathbb{Q}_\ell^{\text{ac}}$ -representation $\tilde{\Pi}$ of G (Proposition 4.14) and $\text{LL}_{\mathbb{Q}_\ell^{\text{ac}}}$ descends to a local
³⁹ $\mathbb{Q}_\ell^{\text{ac}}$ -representation $\tilde{\Pi}$ of G (Proposition 4.14) and $\text{LL}_{\mathbb{Q}_\ell^{\text{ac}}}$ descends to a local
⁴⁰ $\mathbb{Q}_\ell^{\text{ac}}$ -representation $\tilde{\Pi}$ of G (Proposition 4.14) and $\text{LL}_{\mathbb{Q}_\ell^{\text{ac}}}$ descends to a local

³⁹^{1/2} ⁴⁰ ⁹ (σ_Π, N_Π) is called the L -parameter of Π .

¹ Langlands $\mathbb{F}_\ell^{\mathrm{ac}}$ -correspondence $\mathrm{LL}_{\mathbb{F}_\ell^{\mathrm{ac}}}$ compatible with reduction modulo ℓ in the
² sense of [Vignéras 2001, §1.8.5]. The nilpotent part N_Π is subtle but the semisimple
³ part σ_Π is simply the reduction modulo ℓ of $\sigma_{\tilde{\Pi}}$,

$$(4-26) \quad \sigma_\Pi = r_\ell(\sigma_{\tilde{\Pi}}).$$

⁴ The local Langlands correspondence LL_R of G over R is deduced from $\mathrm{LL}_{\mathbb{Q}_\ell^{\mathrm{ac}}}$ when
⁵ $\mathrm{char}_R = 0$ and from $\mathrm{LL}_{\mathbb{F}_\ell^{\mathrm{ac}}}$ when $\mathrm{char}_R = \ell$ [Vignéras 1997, §3.3; 2001, §1.7 and
⁶ §1.8]. We recall from the latter paper a representative (σ_Π, N_Π) of $\mathrm{LL}_R(\Pi)$ for an
⁷ irreducible smooth R -representation Π of G .

⁸ **Proposition 4.18.** (A) *Let Π be an irreducible subquotient of the unnormalized
⁹ R -principal series $\mathrm{ind}_B^G(1)$ of G . Then, $\sigma_\Pi = ((q^{1/2})^{-\mathrm{val}} \oplus (q^{1/2})^{\mathrm{val}}) \circ \alpha_F$. We have
¹⁰ $N_\Pi = 0$ if $\Pi = 1$ (the trivial character) when $q + 1 \neq 0$ in R , and $\Pi = \Pi_0$ cuspidal
¹¹ when $q + 1 = 0$ in R . Otherwise $N_\Pi \neq 0$. When $q - 1 \neq 0$ in R , the kernel of N_Π is
¹²*

- ¹³ • the $((q^{1/2})^{-\mathrm{val}} \circ \alpha_F)$ -eigenline if $q + 1 = 0$ in R and $\Pi = 1$,
- ¹⁴ • the $((q^{1/2})^{\mathrm{val}} \circ \alpha_F)$ -eigenline if $q + 1 = 0$ in R and $\Pi = q^{\mathrm{val}} \circ \det$,
- ¹⁵ • the $((q^{1/2})^{-\mathrm{val}} \circ \alpha_F)$ -eigenline if $q + 1 \neq 0$ in R and $\Pi = \mathrm{St}$ the Steinberg
¹⁶ representation.

¹⁷ (B) *Let Π be the irreducible normalized principal series $i_B^G(\eta)$, i.e., $\eta \neq q^{\pm \mathrm{val}}$, with
¹⁸ the notation of (4-29). Then $\sigma_\Pi = (\eta \oplus 1) \circ \alpha_F$ and $N_\Pi = 0$.*

¹⁹ (C) *Let Π be a supercuspidal R -representation of G . Then σ_Π is irreducible
²⁰ and $N_\Pi = 0$.*

²¹ **4.4.2.** For a two-dimensional semisimple smooth R -representation σ of W_F , put

$$X_\sigma = \{\text{smooth } R\text{-characters } \chi \text{ of } F^* \text{ such that } (\chi \circ \alpha_F) \otimes \sigma \simeq \sigma\}.$$

²² The square of each $\chi \in X_\sigma$ is trivial because $\dim_R \sigma = 2$. We shall compute X_σ
²³ when $\mathrm{char}_R \neq 2$. When $\mathrm{char}_R = 2$, $X_\sigma = \{1\}$.

²⁴ To a pair (E, ξ) where E is a quadratic separable extension of F and ξ is a
²⁵ smooth R -character of E^* different from its conjugate ξ^τ by a generator τ of
²⁶ $\mathrm{Gal}(E/F)$ (i.e., ξ is not trivial on $\mathrm{Ker} N_{E/F} = \{x/x^\tau \mid x \in E^*\}$), is associated a
²⁷ 2-dimensional irreducible smooth R -representation of W_F

$$(34) \quad \sigma(E, \xi) = \mathrm{ind}_{W_E}^{W_F}(\xi \circ \alpha_E).$$

²⁸ The character ξ is unique modulo $\mathrm{Gal}(E/F)$ -conjugation.

²⁹ When $\mathrm{char}_R \neq 2$, let σ be a two-dimensional irreducible smooth R -representation
³⁰ of W_F and E/F a quadratic separable extension. By Clifford's theory [Bushnell
³¹ and Henniart 2006, Chapter 10, §41.3, Lemma] with Notation 4.4,

$$(39) \quad \eta_E \in X_\sigma \iff \sigma \simeq \sigma(E, \xi) \quad \text{for some } \xi.$$

Proposition 4.19. Assume $\text{char}_R \neq 2$. For a pair (E, ξ) as above,

$$X_{\sigma(E, \xi)} = \begin{cases} \{1, \eta_E\} & \text{if } (\xi/\xi^\tau)^2 \neq 1, \\ \{1, \eta_E, \eta_{E'}, \eta_E \eta_{E'}\} & \text{if } (\xi/\xi^\tau)^2 = 1, \xi/\xi^\tau = \eta_{E'} \circ N_{E/F}. \end{cases}$$

For each biquadratic separable extension K/F , there exists a two-dimensional irreducible smooth R -representation σ of W_F , unique modulo twist by a character, with

$$X_\sigma = \{1, \eta_E, \eta_{E'}, \eta_{E''}\}$$

for the three quadratic extensions E, E', E'' of F contained in K .

Proof. • We have

$$\chi \in X_{\sigma(E, \xi)} \iff (\chi \circ \alpha_F) \otimes \text{ind}_{W_E}^{W_F}(\xi \circ \alpha_E) \simeq \text{ind}_{W_E}^{W_F}(\xi \circ \alpha_E) \iff \xi(\chi \circ N_{E/F}) = \xi \text{ or } \xi^\tau.$$

• $\xi(\chi \circ N_{E/F}) = \xi \iff \chi$ is trivial on $N_{E/F}(E^*)$, so $\chi = 1$ or η_E .

• $\xi(\chi \circ N_{E/F}) = \xi^\tau \iff \chi = \eta_{E'}$ for a quadratic separable extension $E' \neq E$ of F , as $\chi^2 = 1$.

If χ satisfies $\xi(\chi \circ N_{E/F}) = \xi^\tau$, the order of ξ^τ/ξ is 2, ξ^τ/ξ is fixed by τ and determines χ up to multiplication by η_E . Let K/F be the biquadratic extension generated by E and E' and E''/F the third quadratic extension contained in K/F .

We have $\eta_E \eta_{E'} = \eta_{E''}$. Hence the first assertion.

The uniqueness in the second assertion follows from the fact that for two smooth R -characters ξ_1, ξ_2 of E^* , $\xi_1^\tau/\xi_1 = \xi_2^\tau/\xi_2 \iff \xi_1 = \xi_2(\chi \circ N_{E/F})$ for a smooth R -character χ of F^* .

The existence in the second assertion is as follows. When p is odd, there is a unique biquadratic extension K/F of F . Let E/F be the unramified quadratic extension. We take $\sigma = \sigma(E, \xi)$ where ξ is the character of E^* trivial on $1 + p_F O_E$, $\xi(p_F) = -1$ and $\xi(x) = x^{\frac{1}{2}(q+1)}$ if $x^{q^2-1} = 1$, satisfies $\xi^\tau/\xi \neq 1$ and $(\xi^\tau/\xi)^2 = 1$ hence $\xi^\tau/\xi = \eta_{E'} \circ N_{E/F} = \eta_E \eta_{E'} \circ N_{E/F}$ for E'/F ramified. When $p = 2$, given two different quadratic separable extensions E'/F and E/F , there exists a smooth R -character ξ of E^* such that $\xi^\tau/\xi = \eta_{E'} \circ N_{E/F} = \eta_E \eta_{E'} \circ N_{E/F}$, because $\text{char}_R \neq 2$, and this is known when $R = \mathbb{C}$ ([Bushnell and Henniart 2006, Chapter 10, §41]) when $p \neq 2$, but the proof does not use $p \neq 2$).^{10,11} \square

Remark 4.20. Let Π be a supercuspidal R -representation of G . Then Π has level 0 (resp. $L(\Pi)$ has level 0), if and only if $\sigma_\Pi = \text{ind}_{W_E}^{W_F}(\xi \circ \alpha_E)$ where E/F is quadratic unramified and ξ is a tame character of E^* (resp. ξ^τ/ξ is a tame character of E^* where τ is the nontrivial element of $\text{Gal}(E/F)$).

³⁸ ¹⁰We gave a direct proof when p is odd, this was unnecessary.

³⁹ ¹¹When p is odd and $\text{char}_R = 2$, there is no ξ such that $\sigma(E, \xi)$ is induced from a character of $W_{E'}$ for a quadratic extension E'/F distinct from E/F .

Remark 4.21. Assume $\text{char}_R \neq 2$. Let $\sigma = \chi_1 \circ \alpha_F \oplus \chi_2 \circ \alpha_F$ be a reducible two-dimensional semisimple smooth R -representation of W_F . Then

$$\begin{aligned} \chi \circ \alpha_F \in X_\sigma &\iff \{\chi \chi_1, \chi \chi_2\} = \{\chi_1, \chi_2\} \iff \chi = 1 \text{ or } \chi \chi_1 = \chi_2, \chi \chi_2 = \chi_1 \\ &\iff \chi = 1 \text{ or } \chi = \chi_2 \chi_1^{-1}, \chi^2 = 1. \end{aligned}$$

If $\chi_1 \chi_2^{-1} = \eta_E$ for a quadratic separable extension E/F , then $X_\sigma = \{1, \eta_E\}$. Otherwise, $X_\sigma = \{1\}$.

4.4.3. Application to the cuspidal L -packets. For a two-dimensional Weil-Deligne R -representation (σ, N) of W_F , put $X_{(\sigma, N)}$ for the group of $\chi \in X_\sigma$ such that there exists an isomorphism of $\chi \otimes \sigma$ onto σ preserving N . For any irreducible R -representation Π of G , applying the formulas (4-24), (4-25) and (4-11) we obtain:

(4-27) $X_\Pi = \{\chi \circ \det \mid \chi \in X_{(\sigma_\Pi, N_\Pi)}\}$.

(4-28) When $\text{char}_R \neq 2$, the cardinality of the L -packet $L(\Pi)$ is $|X_{\sigma_\Pi}|$.

Proposition 4.22. (1) When $\text{char}_R \neq 2$, we have:

- The cardinality of a cuspidal L -packet is 1, 2 or 4.
- The map $L(\Pi) \mapsto E_\Pi$ is a bijection from the cuspidal L -packets of size 4 to the biquadratic separable extensions of F .

(2) There is a bijection from the cuspidal L -packets of size 4 to the biquadratic separable extensions of F , sending the unique cuspidal L -packet of size 4 to the unique biquadratic separable extension of F when $\text{char}_R = 2$, and equal to the map $L(\Pi) \mapsto E_\Pi$ when $\text{char}_R \neq 2$.

Proof. (a) Assume $\text{char}_R \neq 2$. If Π is cuspidal and $X_\Pi \neq \{1\}$ then $\eta_E \in X_\Pi$ for some quadratic separable extension E/F , $\sigma_\Pi = \sigma(E, \xi)$ for some ξ and $|X_{\sigma(E, \xi)}| = 2$ or 4 by Proposition 4.19. When $p = 2$ then the map is a bijection by Proposition 4.19 via the local Langlands correspondence.

(b) Assume p is odd (and $\text{char}_R \neq p$). There is a unique biquadratic separable extension of F and a unique cuspidal L -packet of size 4 (Corollary 4.10).

(c) As p is odd when $\text{char}_R = 2$, the proposition follows from (a) and (b). \square

When $R = \mathbb{F}_\ell^{\text{ac}}$ and $\ell \neq p$, it is well known that an irreducible smooth $\mathbb{F}_\ell^{\text{ac}}$ -representation σ of W_F of dimension 2 lifts to an integral irreducible smooth $\mathbb{Q}_\ell^{\text{ac}}$ -representation $\tilde{\sigma}$ of W_F .¹² The order of $X_{\tilde{\sigma}}$ is at most to the order of X_σ . We give now all the cases where the orders are different.

Theorem 4.23. Assume $\ell \neq 2$.

³⁹₄₀ ¹² σ extends to a $\mathbb{F}_\ell^{\text{ac}}$ -representation of the Galois group Gal_F . As Gal_F is solvable this representation lifts to a $\mathbb{Q}_\ell^{\text{ac}}$ -representation of Gal_F that one restricts to W_F to get $\tilde{\sigma}$.

¹ (1) Let $\tilde{\sigma}$ be a lift to $\mathbb{Q}_\ell^{\text{ac}}$ of a two-dimensional irreducible smooth $\mathbb{F}_\ell^{\text{ac}}$ -representation σ of W_F . The cardinalities of X_σ and of $X_{\tilde{\sigma}}$ are different if and only if $|X_\sigma| = 4$, $|X_{\tilde{\sigma}}| = 2$, and this happens if and only if

$$\begin{array}{l} \text{4} \\ \text{5} \\ p = 2, \quad \ell \text{ divides } q + 1, \quad \tilde{\sigma} = \text{ind}_{W_E}^{W_F}(\tilde{\xi} \circ \alpha_E), \end{array}$$

⁶ where E/F is a quadratic unramified extension, $\tilde{\xi}$ a smooth $\mathbb{Q}_\ell^{\text{ac}}$ -character of E^* such that:

- ⁸ (i) The order of $\tilde{\xi}^\tau/\tilde{\xi}$ on $1 + P_E$ is 2 where $\text{Gal}(E/F) = \{1, \tau\}$.
- ⁹ (ii) $\tilde{\xi}(b) \neq 1$, $\tilde{\xi}(b)^{\ell^s} = 1$ for a root of unity $b \in E^*$ of order $q + 1$, and s is a positive integer such that ℓ^s divides $q + 1$.

¹² (2) Each irreducible smooth $\mathbb{F}_\ell^{\text{ac}}$ -representation σ of W_F of dimension 2 admits a lift $\tilde{\sigma}$ to $\mathbb{Q}_\ell^{\text{ac}}$ such that $|X_{\tilde{\sigma}}| = |X_\sigma|$.

¹⁴ *Proof.* (1) Let Π be the supercuspidal smooth $\mathbb{F}_\ell^{\text{ac}}$ -representation of G and $\tilde{\Pi}$ the integral supercuspidal smooth $\mathbb{Q}_\ell^{\text{ac}}$ -representation of G lifting Π such that $\sigma = \sigma_\Pi$, $\tilde{\sigma} = \sigma_{\tilde{\Pi}}$ by the Langlands correspondence (4-24). We have $|X_\Pi| = |X_\sigma|$, $|X_{\tilde{\Pi}}| = |X_{\tilde{\sigma}}|$ (4-27). By Proposition 4.15, $|X_\sigma| = |X_{\tilde{\sigma}}|$ or $2|X_{\tilde{\sigma}}|$, except maybe when $p = 2$ and $\tilde{\Pi}$ has positive level. In this exceptional case, $\eta_E \in X_{\tilde{\Pi}}$. By Remark 4.21, $|X_\sigma|$ and $|X_{\tilde{\sigma}}|$ are equal to 1, 2 or 4. Therefore, $|X_\sigma| \neq |X_{\tilde{\sigma}}|$ is equivalent to $|X_\sigma| = 4$ and $|X_{\tilde{\sigma}}| = 2$.

²¹ When $|X_\sigma| = 4$ and $|X_{\tilde{\sigma}}| = 2$, $\sigma = \text{ind}_{W_E}^{W_F} \xi$, $\tilde{\sigma} = \text{ind}_{W_E}^{W_F} \tilde{\xi}$ for a quadratic unramified extension E/F , an integral smooth $\mathbb{Q}_\ell^{\text{ac}}$ -character $\tilde{\xi}$ of E^* , of reduction ξ modulo ℓ , with $\xi/\xi^\tau \neq 1$ where τ is the generator τ of $\text{Gal}(E/F)$, and $(\xi/\xi^\tau)^2 = 1$. This implies $(\tilde{\xi}/\tilde{\xi}^\tau)^2 = 1$ on $p_F^{\mathbb{Z}}(1 + P_E)$ because $\ell \neq p$. We have $E^* = p_F^{\mathbb{Z}}(1 + P_E)\mu_E$ where $\mu_E = \{x \in E^* \mid x^{q^2-1} = 1\}$. We have $\tau(x) = x^q$ if $x \in \mu_E$. The group $\{x^{q-1} \mid x \in \mu_E\}$ is generated by an arbitrary root of unity $b \in E^*$ of order $q + 1$. So

$$\begin{array}{l} \text{27} \\ \text{28} \\ (\tilde{\xi}/\tilde{\xi}^\tau)^2 = 1 \iff \tilde{\xi}(b)^2 = 1 \iff |X_{\tilde{\sigma}}| = 4, \quad (\tilde{\xi}/\tilde{\xi}^\tau)^2 \neq 1 \iff \tilde{\xi}(b)^2 \neq 1 \iff |X_{\tilde{\sigma}}| = 2. \end{array}$$

²⁹ In the exceptional case, $p = 2$ hence ℓ is odd and $\xi(b)^2 = 1$ implies $\xi(b) = 1$ (and conversely), or equivalently, the order of $\xi(b)$ is a power of ℓ dividing $q + 1$. There exists a lift $\tilde{\xi}$ of ξ such that $\tilde{\xi}(b) \neq 1$ if and only if ℓ divides $q + 1$.

³² (2) Given a positive integer s , each element $x \in (\mathbb{F}_\ell^{\text{ac}})^*$, $x \neq 1$, is the reduction modulo ℓ of an element $\tilde{x} \in (\mathbb{Z}_\ell^{\text{ac}})^*$ such that $\tilde{x}^{\ell^s} \neq 1$. \square

³⁵ **Corollary 4.24.** (1) The reduction modulo ℓ of a supercuspidal $\mathbb{Q}_\ell^{\text{ac}}$ -representation $\tilde{\pi}$ of G' has length ≤ 2 . It has length 2 if and only if

$$\begin{array}{l} \text{37} \\ \text{38} \\ p = 2, \quad \ell \text{ divides } q + 1, \quad \sigma_{\tilde{\Pi}} = \text{ind}_{W_E}^{W_F}(\tilde{\xi} \circ \alpha_E), \end{array}$$

³⁹ ^{39^{1/2}} where $\tilde{\pi} \in L(\tilde{\Pi})$, E/F is unramified, and $\tilde{\xi}$ is a smooth $\mathbb{Q}_\ell^{\text{ac}}$ -character of E^* such that:

¹ (i) *The order of $\tilde{\xi}^\tau/\tilde{\xi}$ on $1 + P_E$ is 2 where $\mathrm{Gal}(E/F) = \{1, \tau\}$.*
² (ii) *$\tilde{\xi}(b) \neq 1$, $\tilde{\xi}(b)^{\ell^s} = 1$ for a root of unity $b \in E^*$ of order $q+1$, and ℓ^s divides $q+1$.*
⁴ (2) *Each cuspidal $\mathbb{F}_\ell^{\mathrm{ac}}$ -representation π of G' is the reduction modulo ℓ of an integral supercuspidal $\mathbb{Q}_\ell^{\mathrm{ac}}$ -representation of G' .*

⁷ *Proof.* (1) This follows from

⁸ • Theorem 4.23(1), (4-21), and the local Langlands correspondence if $\ell \neq 2$,
⁹ • Proposition 4.15(1) if $\ell = 2$.

¹¹ (2) This follows from

¹² • the fact that π lifts to $\mathbb{Q}_\ell^{\mathrm{ac}}$ by Theorem 4.23(2), (4-21), and the local Langlands correspondence if $p = 2$ and π is in an L -packet $L(\Pi)$ with Π minimal of positive level (hence π is supercuspidal, see Corollary 4.27) with E_Π/F unramified,
¹⁶ • Proposition 4.15(2) otherwise. \square

¹⁸ **Remark 4.25.** Assume $p \neq 2$. A pair (E, θ) where E/F is a quadratic extension of F and θ is a smooth R -character of E^* , is called *admissible* [Bushnell and Henniart 2006, Chapter 5, § 18.2] if either:

²¹ (1) θ does not factorize through $N_{E/F}$ (equivalently is regular with respect to $\mathrm{Gal}(E/F)$).
²⁴ (2) E/F is unramified whenever $\theta|_{1+P_E}$ does factorize through $N_{E/F}$ (equivalently is invariant under $\mathrm{Gal}(E/F)$).

²⁶ To an admissible pair (E, θ) is associated the two-dimensional irreducible R -representation $\sigma(E, \theta) = \mathrm{ind}_{W_E}^{W_F}(\theta \circ \alpha_E)$ of W_F , and when $R = \mathbb{C}$ an explicitly constructed supercuspidal representation $\pi(E, \theta)$ of G [loc. cit., Chapter 5, § 19]. Isomorphism classes of supercuspidal complex representations of G , are parametrized by isomorphism classes of admissible pairs (E, θ) [loc. cit., Chapter 5, § 20.2]. The Langlands local correspondence sends $\pi(E, \theta)$ to $\sigma(E, \mu\theta)$ where the explicit “rectifier” μ is a tame character of E^* depending only on $\theta|_{1+P_E}$. As the Langlands correspondence is compatible with automorphisms of \mathbb{C} preserving \sqrt{q} , the previous classification in terms of admissible pairs transfers to R -representations where R is an algebraically closed field of characteristic 0 (given a choice of square root of q in R). The classification and correspondence for $R = \mathbb{Q}_\ell^{\mathrm{ac}}$ reduce modulo $\ell \neq p$ (the integrality property for a pair (E, θ) is that θ takes integral values) to get a similar classification of supercuspidal $\mathbb{F}_\ell^{\mathrm{ac}}$ -representations in terms of admissible pairs. The integral admissible pairs over $\mathbb{Q}_\ell^{\mathrm{ac}}$ that do not reduce to admissible pairs over $\mathbb{F}_\ell^{\mathrm{ac}}$, yield under reduction cuspidal but not supercuspidal $\mathbb{F}_\ell^{\mathrm{ac}}$ -representations.

4.5. Principal series. We use the notations of [Section 4](#). We identify a smooth [R](#)-character η of T' with a R -character of F^* and of T by

$$(4-29) \quad \eta(\text{diag}(a, d)) = \eta(\text{diag}(a, a^{-1})) = \eta(a) \quad (a, d \in F^*).$$

[Proposition 4.11](#) describes $i_B^G(\eta)$. The transfer of the properties (i) to (iv) to

$$i_{B'}^{G'}(\eta) = (i_B^G(\eta))|_{G'}$$

is easy and gives:

(i) For smooth R -characters η, η' of F^* , $[i_{B'}^{G'}(\eta)]$ and $[i_{B'}^{G'}(\eta')]$ are disjoint if $\eta' \neq \eta^{\pm 1}$, and equal if $\eta' = \eta^{\pm 1}$.

(ii) The smooth dual of $i_{B'}^{G'}(\eta)$ is $i_{B'}^{G'}(\eta^{-1})$.

(iii) $(i_{B'}^{G'}(\eta))_U$ has dimension 2, contains η^{-1} and η is a quotient.

(iv) $\dim W_Y(i_{B'}^{G'}(\eta)) = 1$ for all $Y \neq 0$.

The transfer of the properties (v) and (vi) is harder.

Proposition 4.26. (i) $i_{B'}^{G'}(\eta)$ is reducible if and only if $\eta = q^{\pm \text{val}}$, or $\eta \neq 1$ and $\eta^2 = 1$.

(ii) When $\text{char}_R \neq 2$, $i_{B'}^{G'}(\eta_E)$ is semisimple of length 2, when E/F is a quadratic separable extension, which is ramified if $q+1=0$ in R .

(iii) When $\text{char}_R = 2$, the only reducible principal series is $i_{B'}^{G'}(1) = \text{ind}_{B'}^{G'}(1)$.

(iv) The length of $i_{B'}^{G'}(q^{-\text{val}})$ and of $i_{B'}^{G'}(q^{\text{val}}) = \text{ind}_{B'}^{G'}(1)$ is

$$\lg(\text{ind}_{B'}^{G'} 1) = \begin{cases} 2 & \text{if } q+1 \neq 0 \text{ in } R, \\ 4 & \text{if } q+1=0 \text{ in } R \text{ and } \text{char}_R \neq 2, \\ 6 & \text{if } \text{char}_R = 2. \end{cases}$$

Note that $\text{char}_R = 2$ implies $q+1=0$ in R .

Proof. We show (i), (ii) and (iii).

If $i_B^G(\eta)$ is reducible, then its restriction $i_{B'}^{G'}(\eta)$ to G' is reducible. By [Proposition 4.11](#), $i_B^G(\eta)$ is reducible if and only if $\eta = q^{\pm \text{val}}$.

Assume $i_B^G(\eta)$ irreducible, i.e., $\eta \neq q^{\pm \text{val}}$. If $\text{char}_R \neq 2$, we have $X_{i_B^G(\eta)} = 2$ if and only if $\eta \neq 1$ and $\eta^2 = 1$ by the Langlands correspondence and [Remark 4.21](#).¹³ We have $\eta \neq 1$, $\eta^2 = 1$ if and only if $\eta = \eta_E$ for a quadratic separable extension E/F , which is ramified if $q+1=0$ in R ([Notation 4.4](#)) as $\eta \neq q^{\pm \text{val}}$. If $\text{char}_R = 2$, then p is odd, $\eta \neq 1$, and $i_{B'}^{G'}(\eta)$ is irreducible. Indeed, the irreducible components of $i_{B'}^{G'}(\eta)$ are B -conjugate ([§ 6.2.1](#)). They give a partition of the set of irreducible

¹³It can also be done directly because for a smooth R -character χ of F^* , [Proposition 4.11\(i\)](#) implies $(\chi \circ \det) \otimes i_B^G(\eta) \simeq i_B^G(\eta) \iff \chi \eta = \eta \text{ or } \eta^{-1} \iff \chi = 1 \text{ or } \chi = \eta \text{ and } \eta^2 = 1$.

¹ components of $(i_{B'}^{G'}(\eta))|_{B'}$. The character η appears with multiplicity 1 as $\eta \neq \eta^{-1}$,
² but as it is fixed by B , the partition is trivial, i.e., $i_{B'}^{G'}(\eta)$ is irreducible.

³ (iv) [Cui 2023, Example 3.11, Method 2] We give a proof for the convenience
⁴ of the reader. When $q + 1 \neq 0$ in R , the restriction to G' of the Steinberg
⁵ representation St of G is irreducible, otherwise it would contain a cuspidal rep-
⁶ resentation as $\dim_R \mathrm{St}_U = 1$ which is impossible by (4-15). When $q + 1 = 0$
⁷ in R , the cuspidal R -representation Π_0 (see Proposition 4.11) is induced from
⁸ the inflation to $Z \mathrm{GL}_2(O_F)$ of a cuspidal R -representation σ_0 of $\mathrm{GL}_2(k_F)$. By
⁹ (4-18), $\lg(\Pi_0|_{G'}) = 2 \lg(\sigma_0|_{\mathrm{SL}_2(k_F)})$. The representation $\sigma_0|_{\mathrm{SL}_2(k_F)}$ is irreducible if
¹⁰ $\mathrm{char}_R \neq 2$, and has length 2 if $\mathrm{char}_R = 2$ (Appendix). \square

¹¹ **Corollary 4.27.** *The nonsupercuspidal smooth R -representations of G' are:*

- ¹² • *The trivial character.*
- ¹³ • *If $q + 1 \neq 0$ in R , the Steinberg R -representation $\mathrm{st} = \mathrm{St}|_{G'}$.*
- ¹⁴ • *The principal series $i_{B'}^{G'}(\eta)$ for the smooth R -characters η of F^* with $\eta \neq q^{\pm \mathrm{val}}$
¹⁵ and $\eta \neq \eta_E$ for any quadratic separable extension E/F .*
- ¹⁶ • *If $\mathrm{char}_R \neq 2$, the two irreducible components π_E^\pm of $i_{B'}^{G'}(\eta_E)$ for a quadratic
¹⁷ separable extension E/F , which is ramified if $q + 1 = 0$ in R .*
- ¹⁸ • *If $\mathrm{char}_R \neq 2$ and $q + 1 = 0$ in R , the two irreducible components of $\Pi_0|_{G'}$.*
- ¹⁹ • *If $\mathrm{char}_R = 2$, the four irreducible components of $\Pi_0|_{G'}$.*

²⁰ ²¹ ²² ²³ ²⁴ The only isomorphisms between those representations are $i_{B'}^{G'}(\eta) \simeq i_{B'}^{G'}(\eta^{-1})$ for the
²⁵ irreducible principal series.

²⁶ We get for nonsupercuspidal L -packets:

²⁷ **Proposition 4.28.** *When $q + 1 = 0$ in R , there is a unique cuspidal nonsupercuspidal
²⁸ L -packet. Its size is 2 if $\mathrm{char}_R \neq 2$ and 4 if $\mathrm{char}_R = 2$.*

- ²⁹ • *When $\mathrm{char}_R = 2$, every noncuspidal L -packet is a singleton.*
- ³⁰ • *When $\mathrm{char}_R \neq 2$, the noncuspidal L -packets are singletons or of size 2.
³¹ Those of size 2 are in bijection with the isomorphism classes of the quadratic
³² separable extensions of F .*

³³ This proposition and Corollary 4.10 imply:

³⁴ **Corollary 4.29.** *The L -packets of size 4 are cuspidal.*

³⁵ We consider now the reduction modulo a prime number $\ell \neq p$. A noncuspidal
³⁶ irreducible $\mathbb{Q}_\ell^{\mathrm{ac}}$ -representation $\tilde{\pi}$ of G' is integral except when $\tilde{\pi} \simeq i_{B'}^{G'}(\tilde{\eta})$ for a
³⁷ nonintegral smooth $\mathbb{Q}_\ell^{\mathrm{ac}}$ -character $\tilde{\eta}$ of F^* . When $\tilde{\pi}$ is integral, we deduce from
³⁸ Corollary 4.27 the length of the reduction $r_\ell(\tilde{\pi})$ modulo ℓ of $\tilde{\pi}$.

Proposition 4.30. (1) The reduction $r_\ell(\tilde{\pi})$ modulo ℓ of $\tilde{\pi}$ irreducible noncuspidal and integral is irreducible with the exceptions:

- If $\ell = 2$, then $\lg(r_\ell(\tilde{s}t)) = 5$, $\lg(r_\ell(\tilde{\pi}_E^\pm)) = 3$, $\lg(r_\ell(i_{B'}^{G'}(\tilde{\eta}))) = 6$ for $\tilde{\eta}$ of order a finite power of ℓ .
- If $\ell \neq 2$ and ℓ divides $q + 1$, then $\lg(r_\ell(\tilde{s}t)) = 3$, $\lg(r_\ell(i_{B'}^{G'}(\tilde{\eta}))) = 4$ for $\tilde{\eta}$ of order a finite power of ℓ , $\lg(r_\ell(i_{B'}^{G'}(\tilde{\eta}))) = 2$ if $\tilde{\eta} = \tilde{\eta}_E \tilde{\xi}$, for a ramified quadratic separable extension E/F and a character $\tilde{\xi}$ of order a power of ℓ .

9 (2) Each noncuspidal irreducible $\mathbb{F}_\ell^{\text{ac}}$ -representation of G' is the reduction modulo ℓ
10 of an integral noncuspidal irreducible $\mathbb{Q}_\ell^{\text{ac}}$ -representation of G' .

5. Local Langlands R -correspondence for $\mathrm{SL}_2(F)$

5.0.1. If (σ, N) is a two-dimensional Deligne R -representation of the Weil group W_F (§4.4.1), a choice of a basis of the space of σ gives a Deligne morphism of W_F into $\mathrm{GL}_2(R)$.¹⁴ In this way equivalence classes of two-dimensional Deligne R -representations of W_F identify with Deligne morphisms of W_F into $\mathrm{GL}_2(R)$, up to $\mathrm{GL}_2(R)$ -conjugacy.

By a Deligne morphism of W_F into $\mathrm{PGL}_2(R)$, we mean a pair (σ, N) where $\sigma : W_F \rightarrow \mathrm{PGL}_2(R)$ is a smooth morphism, semisimple in the sense that if $\sigma(W_F)$ is in a parabolic subgroup P then it is in a Levi of P , and N is a nilpotent¹⁵ element in $\mathrm{Lie}(\mathrm{PGL}_2(R))$ with the usual requirement (4-23). We say that (σ, N) is irreducible if $\sigma(W_F)$ is not contained in a proper parabolic subgroup (meaning that $N = 0$ and the inverse image of $\sigma(W_F)$ in $\mathrm{GL}_2(R)$ acts irreducibly on R^2). The question arises whether a Deligne morphism (σ, N) of W_F into $\mathrm{PGL}_2(R)$ lifts to a two-dimensional Weil-Deligne R -representation.

When (σ, N) is reducible, we may assume that σ takes value in the diagonal torus of $\mathrm{PGL}_2(R)$, and that N is upper triangular. The map $x \mapsto \mathrm{diag}(x, 1)$ modulo scalars is an isomorphism from R^* to this torus, so σ comes from an R -character χ of W_F , and σ lifts to the two-dimensional $\chi \oplus 1$. That deals with the case where $N = 0$. When $N \neq 0$, then (σ, N) lifts to $(q^{-\mathrm{val}} \oplus 1, N)$.

³² The following lemma answers the question more generally for irreducible Deligne
³³ morphisms of W_F into $\mathrm{PGL}_n(R)$ for integers $n \geq 2$ (the definitions above for $n = 2$
³⁴ generalize to $n > 2$).

³⁵ **Lemma 5.1.** Any irreducible smooth morphism $\rho : W_F \rightarrow \mathrm{PGL}_n(R)$ has finite image
³⁶ and its natural extension to Gal_F lifts to an irreducible smooth R -representation of
³⁷ Gal_F of dimension n .

³⁹ $\frac{39}{40}$ We use the same notation (σ, N) for the Deligne morphism of W_F into $\mathrm{GL}_2(R)$.
⁴⁰ N is nilpotent in $\mathrm{Lie}(\mathrm{PGL}_2(R))$ if the Zariski closure of the $\mathrm{PGL}_2(R)$ -orbit of N contains 0.

Proof. Because the inertia group I_F of W_F is profinite and ρ is smooth, $\rho(I_F)$ is finite. Let φ be a Frobenius element in W_F . If the order of $\rho(\varphi)$ is finite, then $\rho(W_F)$ is finite, so ρ extends by continuity to a smooth R -representation ρ' of Gal_F . The proof of Tate's theorem [Serre 1977, §6.5] applies with R instead of \mathbb{C} and that shows that ρ' lifts to a smooth R -representation of Gal_F . Let us show that $\rho(\varphi)$ has finite order. Since $\rho(\varphi)$ acts by conjugation on $\rho(I_F)$ which is finite, a power $\rho(\varphi^d)$ for some positive d acts trivially on $\rho(I_F)$. But it also acts trivially on $\rho(\varphi)$, hence on all of $\rho(W_F)$. Let $A \in \mathrm{GL}_n(R)$ be a lift of $\rho(\varphi^d)$. For $B \in \mathrm{GL}_n(R)$, the commutator (A, B) depends only on the image of B in $\mathrm{PGL}_n(R)$, and if B has image $\rho(i)$ for $i \in I_F$, then (A, B) is a scalar $\mu(i)$. If $B' \in \mathrm{GL}_n(R)$ has image $\rho(i')$ for $i' \in I_F$, then $A(BB')A^{-1} = ABA^{-1}AB'A^{-1}$, giving $\mu(ii') = \mu(i)\mu(i')$, so conjugation by A induces a morphism $\mu : I_F \rightarrow R^*$. Since $\rho(I_F)$ is finite, a power A^e for some positive e commutes with the inverse image J in $\mathrm{GL}_n(R)$ of $\rho(W_F)$. Let V be an eigenspace of A^e . It is stable under J . If $V \neq R^n$, that yields a proper parabolic subgroup P (the image in $\mathrm{PGL}_n(R)$ of the stabilizer of V) of $\mathrm{PGL}_n(R)$ which contains $\rho(W_F)$, contrary to the hypothesis. So A^e is scalar, which implies that $\rho(\varphi)$ has finite order dividing de . \square

Two 2-dimensional Deligne R -representations of W_F in $\mathrm{GL}_2(R)$ are twists of each other by a smooth R -character of W_F if and only if they give the same Deligne morphism of W_F in $\mathrm{PGL}_2(R)$. This happens if and only if the two corresponding irreducible smooth R -representations Π, Π' of G are twists of each other by a smooth R -character of G (4-25), that is, if and only if Π and Π' define the same L -packet $L(\Pi) = L(\Pi')$ of irreducible smooth R -representations of G' (4-4).

5.0.2. From the above the local Langlands correspondence for G induces a bijection between L -packets of irreducible smooth R -representations of G' and Deligne morphisms of W_F in $\mathrm{PGL}_2(R)$ up to $\mathrm{PGL}_2(R)$ -conjugacy. We would like to understand the internal structure of a given packet in terms of an associated Deligne morphism $W_F \rightarrow \mathrm{PGL}_2(R)$ (called its L -parameter).

Let Π be an irreducible smooth R -representation of G . The L -packet $L(\Pi)$ is a principal homogeneous space of G/G_Π . The packet containing the trivial representation of G' is a singleton, so the parametrization is trivial. When $L(\Pi)$ is a packet of infinite-dimensional representations of G' we take as a base point in $L(\Pi)$ the element with nonzero Whittaker model with respect to the character ψ of F (that is, θ_0 of U) fixed in Section 4.1. Let C_Π denote the centralizer of the image in $\mathrm{PGL}_2(R)$ of a Deligne morphism (σ_Π, N_Π) of W_F in $\mathrm{GL}_2(R)$ associated to Π , and S_Π the component group of C_Π . We shall compute C_Π and S_Π , and when $\mathrm{char}_R \neq 2$ we shall construct a canonical isomorphism from G/G_π onto the R -characters of S_Π . In this way we get an enhanced local Langlands correspondence for $\mathrm{SL}_2(F)$ in the sense of [Aubert et al. 2016; 2017] if $\mathrm{char}_R \neq 2$ but not if $\mathrm{char}_R = 2$. J.-F. Dat tells

¹ us that our results for $\text{char}_R = 2$ should still be compatible with the stacky approach
² of Fargues and Scholze to the semisimple Langlands correspondence. For example,
³ for a supercuspidal R -representation Π of G , the two components of $\Pi|_{G'}$ should
⁴ be indexed by the two irreducible R -representations of the group scheme μ_2 .

⁵ The group of R -characters of G/G_Π is X_Π , and $X_\Pi = \{\chi \circ \det \mid \chi \in X_{(\sigma_\Pi, N_\Pi)}\}$
⁶ (4-27). We now construct a homomorphism $\varphi : X_{(\sigma_\Pi, N_\Pi)} \rightarrow S_\Pi$. Let $\chi \in X_{(\sigma_\Pi, N_\Pi)}$.
⁷ By definition, there exists $A \in \text{GL}_2(R)$ such that $AN_\Pi = N_\Pi$ and for $w \in W_F$,
⁸ $A\sigma_\Pi(w)A^{-1} = \chi(w)\sigma_\Pi(w)$. The image \bar{A} of A in $\text{PGL}_2(R)$ belongs to C_Π and
⁹ we shall show that its image $\varphi(\chi)$ in S_Π does not depend on the choice of A .

¹⁰ **Theorem 5.2.** *The map $\varphi : X_{(\sigma_\Pi, N_\Pi)} \rightarrow S_\Pi$ is a group isomorphism, and $S_\Pi = \{1\}$,*
¹¹ *$\mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.*

¹² When $\text{char}_R = 2$, $S_\Pi = \{1\}$ for each Π , but the length of $\Pi|_{G'}$ is

- ¹⁴ • 1 if Π is not cuspidal,
- ¹⁵ • 2 if Π is supercuspidal,
- ¹⁶ • 4 if Π is cuspidal not supercuspidal.

¹⁷ *Proof.* (A) Let Π be a supercuspidal R -representation of G . Then σ_Π is irreducible
¹⁸ and $N_\Pi = 0$ (Proposition 4.18).

¹⁹ When $\text{char}_R \neq 2$, the authors of [Cui et al. 2024, Proposition 6.4] construct an
²⁰ isomorphism $\varphi : X_{\sigma_\Pi} \rightarrow C_\Pi$ when $\text{char}_F \neq 2$, but their proof does not use this
²¹ hypothesis. This implies $C_\Pi = S_\Pi$. One checks that $\varphi(\chi) = \varphi(\chi)$ for $\chi \in X_{\sigma_\Pi}$, an
²² isomorphism.

²³ When $\text{char}_R = 2$, we have that p is odd, the cardinality of $L(\Pi)$ is 2 or 4
²⁴ (Propositions 4.7 and 4.8), and $\sigma_\Pi = \text{ind}_{W_E}^{W_F}(\theta)$ where E/F is a quadratic separable
²⁵ extension and θ a smooth R -character of W_E (or equivalently of E^*) different from
²⁶ its conjugate θ^τ by a generator τ of $\text{Gal}(E/F)$. The character θ^τ/θ has finite odd
²⁷ order, say m , and $\sigma_\Pi(W_F) \subset \text{GL}_2(R)$ is a dihedral group of order $2m$, generated by
²⁸ a matrix $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$ of order m and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ modulo conjugation in $\text{GL}_2(R)$. So $C_\Pi = \{1\}$
²⁹ and there is no enhanced correspondence.

³⁰ (B) Let $\Pi = i_B^G(\eta)$ be an irreducible normalized principal series with the notation
³¹ of (4-29), with $\eta \neq q^{\pm\text{val}}$. The cardinality of $L(\Pi)$ is 2 if $\eta \neq 1$, $\eta^2 = 1$, and $L(\Pi)$
³² is a singleton otherwise. We have $\sigma_\Pi = (\eta \oplus 1) \circ \alpha_F$, $N_\Pi = 0$ (Proposition 4.18)
³³ and we easily see that C_Π is

- ³⁵ • $\text{PGL}_2(R)$ when $\eta = 1$, so $S_\Pi = \{1\}$,
- ³⁶ • the diagonal torus when $\eta \neq 1$, $\eta^2 \neq 1$, $S_\Pi = \{1\}$,
- ³⁷ • the normalizer of the trivial torus when $\eta \neq 1$, $\eta^2 = 1$, so $\text{char}_R \neq 2$ and
³⁸ $S_\Pi = \mathbb{Z}/2\mathbb{Z}$. We have $X_\Pi = \{1, \eta \circ \det\}$ (Remark 4.21) and $\varphi(\eta)$ is not
³⁹ trivial, so $\varphi : X_\Pi \rightarrow S_\Pi$ is an isomorphism.

¹ (C) If Π is an irreducible subquotient of $\mathrm{ind}_B^G 1$, the length of $\Pi|_{G'}$ (Section 4.5) is

- ² • 1 when $\Pi = 1, q^{\mathrm{val}} \circ \det$ or St ,
- ³ • 2 when $\Pi = \Pi_0$ if $\mathrm{char}_R \neq 2$ and $q + 1 = 0$ in R ,
- ⁴ • 4 when $\Pi = \Pi_0$ if $\mathrm{char}_R = 2$.

⁵ We have $\sigma_\Pi = ((q^{1/2})^{\mathrm{val}} \oplus (q^{-1/2})^{\mathrm{val}}) \circ \alpha_F$ ((4-24), Proposition 4.18). The centralizer C'_Π of the image of $\sigma_\Pi(W_F)$ in $\mathrm{PGL}_2(R)$ is the image in $\mathrm{PGL}_2(R)$ of

$$\{A \in \mathrm{GL}_2(R) \mid A \mathrm{diag}(q, 1) A^{-1} \in R^* \mathrm{diag}(q, 1)\}$$

$$= \left\{ A = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathrm{GL}_2(R) \mid \begin{pmatrix} xq & y \\ zq & t \end{pmatrix} = u \begin{pmatrix} xq & yq \\ z & t \end{pmatrix} \text{ for some } u \in R^* \right\}.$$

⁶ If $x \neq 0$ or $t \neq 0$ then $u = 1$, and if $y \neq 0$ then $qu = 1$. If $z \neq 0$ then $u = q$. So, C'_Π is

- ⁷ • $\mathrm{PGL}_2(R)$ if $q - 1 = 0$ in R ,
- ⁸ • the diagonal torus when $q - 1 \neq 0$ in R and $q + 1 \neq 0$ in R ,
- ⁹ • the centralizer of the diagonal torus if $q - 1 \neq 0$ in R and $q + 1 = 0$ in R .

¹⁰ We have $N_\Pi = 0$, hence $C_\Pi = C'_\Pi$ when:

- ¹¹ • $\Pi = 1$ when $q + 1 \neq 0$ in R , hence $C_1 = \mathrm{PGL}_2(R)$ if $q + 1 \neq 0, q - 1 = 0$ in R (so $\mathrm{char}_R \neq 2$) and C_1 is the diagonal torus if $q + 1 \neq 0, q - 1 \neq 0$ in R . In both cases $S_1 = \{1\}$.
- ¹² • $\Pi = \Pi_0$ cuspidal when $q + 1 = 0$ in R . Recalling Section 4.5, when $\mathrm{char}_R \neq 2$, $\mathrm{lg}(\Pi_0|_{G'}) = 2$ and C_{Π_0} is the normalizer of the diagonal torus and $S_\Pi = \mathbb{Z}/2\mathbb{Z}$. We have $X_{\sigma_{\Pi_0}} = \{1, (-1)^{\mathrm{val}}\}$ (Corollary 4.13). As in (B), $\varphi((-1)^{\mathrm{val}})$ is not trivial, so $\varphi : X_\Pi \rightarrow S_\Pi$ is an isomorphism.

¹³ But when $\mathrm{char}_R = 2$, then $q - 1 = 0$ in R and $C_{\Pi_0} = \mathrm{PGL}_2(R)$. As $S_{\Pi_0} = \{1\}$ and $\mathrm{lg}(\Pi_0|_{G'}) = 4$, there is no enhanced correspondence.

¹⁴ We suppose now $N_\Pi \neq 0$. Then (Proposition 4.18) $\Pi = \mathrm{St}$ when $q + 1 \neq 0$ in R and Π is a character when $q + 1 = 0$ in R . In both cases $\Pi|_{G'}$ is irreducible (Corollary 4.27). We can suppose that N_Π is a nontrivial upper triangular matrix.

¹⁵ A similar analysis gives that C_Π is

- ¹⁶ • the diagonal torus if $q - 1 \neq 0$ in R ,
- ¹⁷ • the upper triangular subgroup if $q - 1 = 0$ in R .

¹⁸ In both cases $S_\Pi = \{1\}$. □

¹⁹ **Remark 5.3.** We computed the centralizer $C_\Pi \subset \mathrm{PGL}_2(R)$:

- ²⁰ • C_Π is finite if and only if Π is supercuspidal.

¹_{1/2} ²
³
⁴
⁵
⁶
⁷

- When C_Π is connected, it is isomorphic to $\mathrm{PGL}_2(R)$, the upper triangular subgroup, the diagonal subgroup, or $\{1\}$.
- When C_Π has two connected components it is isomorphic to the normalizer of the diagonal subgroup or to $\mathbb{Z}/2\mathbb{Z}$.
- When C_Π has four connected components, it is isomorphic to the Klein group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

⁸ **5.0.3.** Assume $\mathrm{char}_R = 2$. A kind of lifting has been introduced by [Treumann and Venkatesh 2016] and generalized in [Feng 2023]. They consider a (connected) split reductive F -group \underline{H} , equipped with an involution ι such that the group of fixed points \underline{H}^ι is (connected) split reductive. They set up a correspondence, called linkage, between ι -invariant irreducible smooth R -representations Π of $H = \underline{H}(F)$ and irreducible smooth R -representations of $H^\iota = \underline{H}^\iota(F)$. More precisely they show that there is a unique isomorphism ι_Π from Π to its conjugate Π^ι by ι , which has trivial square. They say that an irreducible smooth R -representation π of H^ι is linked with Π if the Frobenius twist of π occurs as a subquotient of the representation $T(\Pi) = \mathrm{Ker}(1 + \iota_\Pi) / \mathrm{Im}(1 + \iota_\Pi)$ of H^ι . They ask for an interpretation of linkage in terms of dual groups.

¹⁹ Let us consider the special case where $\underline{H} = \mathrm{GL}_2$ and $\iota(g) = g / \det g$.¹⁶ Then ²⁰ $\underline{H}^\iota = \mathrm{SL}_2$, so $H = G$, $H^\iota = G'$. Let Π be an irreducible smooth R -representation of G of central character ω_Π . It is invariant under ι if and only if $\Pi \simeq \Pi \otimes (\omega_\Pi \circ \det)$.²¹ This implies that ω_Π has trivial square, so is trivial because $\mathrm{char}_R = 2$. In other words, Π is ι -invariant if and only if Π factors to a representation of $\mathrm{PGL}_2(F)$.²² It follows that then ι_Π is the identity, and $T(\Pi)$ is simply the restriction of Π to G' , which we have thoroughly investigated. In particular $T(\Pi)$ has finite length, as expected. The dual group of \underline{H} over R is $\mathrm{GL}_2(R)$, that of \underline{H}^ι is $\mathrm{PGL}_2(R)$.²³ Treumann and Venkatesh ask for an interpretation of linkage in terms of a natural homomorphism from $\mathrm{PGL}_2(R)$ to $\mathrm{GL}_2(R)$.²⁴

²⁵ Let $\sigma_\Pi : W_F \rightarrow \mathrm{GL}_2(R)$ be the semisimple L -parameter of Π . The map ²⁶ $\varphi^{-1}(\sigma_\Pi) : W_F \rightarrow \mathrm{GL}_2(R)$, followed by the quotient map $\mathrm{GL}_2(R) \rightarrow \mathrm{PGL}_2(R)$, is ²⁷ the semisimple L -parameter $\rho_\Pi : W_F \rightarrow \mathrm{PGL}_2(R)$ of the Frobenius twist of any ²⁸ constituent π of $\Pi|_{G'}$.

²⁹ The map $\Psi(g) = \varphi(g) / \det g$ for $g \in \mathrm{GL}_2(R)$ where $\varphi : x \rightarrow x^2$ is the Frobenius map of R , is trivial on scalar matrices, hence factors through a homomorphism ³⁰ $\Psi : \mathrm{PGL}_2(R) \rightarrow \mathrm{GL}_2(R)$. The homomorphism Ψ is injective of image $\mathrm{SL}_2(R)$.³¹ Now if Π is ι -invariant, the determinant of σ_Π is trivial so $\sigma_\Pi = \Psi \circ \rho_\Pi$ and the conjectures of [Treumann and Venkatesh 2016, §6.3] are indeed true in our special case.³²

³³_{39/2} ⁴⁰ ¹⁶ $\iota(g)$ is conjugate to the transpose of the inverse of g .

6. Representations of $\mathrm{SL}_2(F)$ near the identity

¹
² **6.1.** Assume $\mathrm{char}_F = 0$ and $R = \mathbb{C}$. Let H be the group of F -points of a connected
³ reductive group over F . We denote by $C_c^\infty(X; \mathbb{C})$ the space of smooth complex
⁴ functions with compact support on a locally profinite space X . The exponential map
⁵ \exp from $\mathrm{Lie}(H)$ to H induces an H -equivariant bijection between a neighbourhood
⁶ of 0 in $\mathrm{Lie}(H)$ and a neighbourhood of 1 in H . So a function $f \in C_c^\infty(H; \mathbb{C})$
⁷ with support small enough around 1 gives a smooth function $f \circ \exp$ around 0 in
⁸ $C_c^\infty(\mathrm{Lie}(H); \mathbb{C})$. Also there are only finitely many nilpotent orbits of H in $\mathrm{Lie}(H)$,
⁹ for the adjoint action. For each such orbit \mathfrak{O} , there is an H -invariant measure on \mathfrak{O} ,
¹⁰ and a function $\varphi \in C_c^\infty(\mathrm{Lie}(H); \mathbb{C})$ can be integrated along \mathfrak{O} with respect to that
¹¹ measure, yielding an orbital integral $I_{\mathfrak{O}}(\varphi)$. Choosing a nondegenerate invariant
¹² bilinear form on $\mathrm{Lie}(H)$, a nontrivial character of $\mathrm{Lie}(H)$ and a Haar measure on
¹³ $\mathrm{Lie}(H)$ yields a Fourier transform $\hat{\varphi}$ for a function $\varphi \in C_c^\infty(\mathrm{Lie}(H); \mathbb{C})$. Fix also a
¹⁴ Haar measure dh on H .

¹⁵
¹⁶ **Theorem 6.1.** *Let Π be a smooth complex representation of H with finite length.
¹⁷ Then there is an open neighbourhood $V(\Pi)$ of 1 in H and for each nilpotent orbit \mathfrak{O}
¹⁸ a unique complex number $c_{\mathfrak{O}} = c_{\mathfrak{O}}(\Pi)$ such that if $f \in C_c^\infty(H; \mathbb{C})$ has compact
¹⁹ support in $V(\Pi)$ then the trace $\mathrm{tr}_{\Pi}(f)$ of the linear endomorphism $\int_H f(h)\Pi(h) dh$
²⁰ is equal to*

$$(6-1) \quad \mathrm{tr}_{\Pi}(f) = \sum_{\mathfrak{O}} c_{\mathfrak{O}}(\Pi) I_{\mathfrak{O}}(\hat{\varphi}) \quad \text{where } \varphi = f \circ \exp.$$

²¹
²² This was first proved by Roger Howe when $H = \mathrm{GL}_n(F)$, and the general case
²³ is due to Harish-Chandra.

²⁴
²⁵ As is usual, we say that a nilpotent orbit \mathfrak{O}' is smaller than a nilpotent orbit \mathfrak{O}
²⁶ if \mathfrak{O}' is contained in the closure of \mathfrak{O} . With the normalizations as in [Varma 2014]
²⁷ we have:

²⁸
²⁹ **Theorem 6.2.** *Let Π be a smooth complex representation of H with finite length.
³⁰ When \mathfrak{O} is maximal among the orbits with $c_{\mathfrak{O}}(\Pi) \neq 0$, then $c_{\mathfrak{O}}(\Pi)$ is equal to the
³¹ dimension of generalized Whittaker spaces for Π attached to \mathfrak{O} .*

³²
³³ The result when p is odd due to [Mœglin and Waldspurger 1987] is extended
³⁴ to $p = 2$ in [Varma 2014] in general. When \mathfrak{O} is a regular nilpotent orbit, the
³⁵ generalized Whittaker model is the usual one, and the result then goes back to
³⁶ Rodier [1975]. Varma actually proves that with that normalization all coefficients
³⁷ $c_{\mathfrak{O}}(\Pi)$ are rational [2014].

³⁸
³⁹ **6.2.** Assume $R = \mathbb{C}$. For any F , when H is an open normal subgroup of $\mathrm{GL}_r(D)$
⁴⁰ where D is a finite-dimensional central division F -algebra, Theorem 6.1 still holds,
⁴¹ with the exponential map replaced by the map $X \mapsto 1 + X$ [Lemaire 2004]. In the

¹ special case where $H = \mathrm{GL}_r(D)$, [Theorem 6.2](#) also holds, at least for the natural
² generalized Whittaker space attached to each nilpotent orbit [Henniart and Vignéras
³ 2024].

⁴ **6.2.1.** We use the notations and definitions introduced in [Section 4.1](#). Let H be an
⁵ open normal subgroup of $G = \mathrm{GL}_2(F)$ containing ZG' . The index of H in G is
⁶ finite as H/ZG' is open in the compact group G/ZG' . Put
⁷

$$(6-2) \quad V_H = F^* / \det H, \quad \dim_{\mathbb{F}_2} V_H = d, \quad |G/H| = 2^d.$$

⁹ A nilpotent matrix can be conjugated in a lower triangular nilpotent matrix Y by an
¹⁰ element of G' . Two such matrices Y and Y' are H -conjugate if and only if their
¹¹ bottom left coefficients differ by multiplication by an element of $\det H$.
¹²

¹³ (6-3) The number of H -orbits in the nilpotent matrices in $M_2(F)$ is $1 + 2^d$.

¹⁴ The 0-matrix forms the smallest nilpotent H -orbit (the “trivial” one). The nontrivial
¹⁵ nilpotent H -orbits are maximal, and parametrized by V_H via their bottom left
¹⁶ coefficient.

¹⁷ With the same arguments as those given for ZG' in [Section 4.1](#), any irreducible
¹⁸ smooth R -representation π of H appears in the restriction to H of an irreducible
¹⁹ smooth representation Π of G , unique modulo torsion by a smooth R -character
²⁰ of G . The irreducible components π of $\Pi|_H$ are G -conjugate (even B -conjugate)
²¹ and the G -stabilizer of π does not depend on the choice of π in $\Pi|_H$, and denoted
²² by $G_{\Pi|_H}$. The representation $\Pi|_H$ is semisimple of multiplicity 1 with length
²³

$$(6-4) \quad \lg(\Pi|_H) = |G/G_{\Pi|_H}| \quad \text{dividing } \lg(\Pi|_{ZG'}) = |G/G_{\Pi}| = |L(\Pi)|,$$

²⁵ hence equal to 1, 2 or 4 by [Theorem 1.1](#). The representation $\pi|_{G'}$ is semisimple of
²⁶ multiplicity 1 with length $\lg(\pi|_{G'}) = \lg(\Pi|_{G'}) / \lg(\Pi|_H) = |G_{\Pi|_H}/G_{\Pi}|$.
²⁷

²⁸ For a lower triangular matrix $Y \neq 0$, we have

$$\sum_{\pi \subset \Pi|_H} \dim_R W_Y(\pi) = \dim_R W_Y(\Pi) = 1.$$

³¹ There is a single irreducible π in $\Pi|_H$ with $W_Y(\pi) \neq 0$, and $\dim_R W_Y(\pi) \neq 0 \iff$
³² $\dim_R W_Y(\pi) = 1$. If $W_Y(\pi) \neq 0$ then $W_{Y'}(\pi) \neq 0$ when Y' and Y are H -conjugate.

³⁴ We consider $\dim_R W_Y(\pi)$ as a function m_{π} on V_H . Because π extends to $G_{\Pi|_H}$,
³⁵ m_{π} is invariant under translations by

$$W_{\Pi|_H} = \det G_{\Pi|_H} / \det H.$$

³⁸ It follows that m_{π} is the characteristic function of an affine subspace A_{π} of V_H with
³⁹ direction $W_{\Pi|_H}$, each such affine subspace being obtained exactly for one $\pi \subset \Pi|_H$.

^{39 1/2} For $g \in G$ we denote $\pi^g(x) = \pi(gxg^{-1})$ for $g \in G$, $x \in H$, so $\pi^{gh} = (\pi^g)^h$

¹ for $g, h \in G$. We have $A_{\pi^g} = \det g A_\pi$. We have a disjoint union (the Whittaker
^{11/2}
² decomposition):

$$\stackrel{3}{(6-5)} \qquad \qquad V_H = \bigsqcup_{\pi \subset \Pi|_H} A_\pi.$$

⁵ If $\lg(\Pi|_H) = 1$, m_π is the constant function on V_H with value 1. If $\lg(\Pi|_H) = 2$,
⁶ the two irreducible components of $\Pi|_H$ yield the characteristic functions of two
⁷ affine hyperplanes of V_H with the same direction. Finally for $\lg(\Pi|_H) = 4$, we
⁸ get the characteristic functions of four affine subspaces of codimension 2 in V_H
⁹ with the same direction. In particular when p is odd and $\lg(\Pi|_H) = 4$, we have
¹⁰ $H = ZG'$ and m_π is a nonzero delta function on $V_H = F^*/(F^*)^2$.

¹¹ Let $C(V_H; \mathbb{Z})$ denote the \mathbb{Z} -module of functions $f : V_H \rightarrow \mathbb{Z}$. For an integer
¹² $0 \leq r < d$, let I_r denote the \mathbb{Z} -submodule of $C(V_H; \mathbb{Z})$ generated by the characteristic
¹³ functions of the r -dimensional affine subspaces of V_H . We have $I_0 = C(V_H; \mathbb{Z})$.

¹⁵ **Lemma 6.3.** *When $0 < r < d$, $2I_{r-1}$ is included in I_r and the exponent of I_0/I_r
¹⁶ is 2^r .*

¹⁷ *Proof.* Let W be a $(r-1)$ -dimensional vector subspace of V_H and $\{0, e, f, e+f\}$
¹⁸ a supplementary plane. For an affine subspace A of V_H of direction W , the affine
¹⁹ subspaces $A_e = A \cup A + e$, $A_f = A \cup A + f$ and $B = A + e \cup A + f$ of V_H are
²⁰ r -dimensional, and $\chi_{A_e} + \chi_{A_f} - \chi_B = 2\chi_A$ by taking their characteristic functions χ .
²¹ Thus $2I_{r-1} \subset I_r$. By induction $2^r I_0 \subset I_r$. The map $s_r : C(V_H; \mathbb{Z}) \rightarrow \mathbb{Z}/2^r \mathbb{Z}$ given
²² by the sum of coordinates is surjective and vanishes on I_r but not on I_{r-1} . So the
²³ exponent of I_0/I_r is 2^r . \square

²⁵ **6.2.2.** Let us make [Theorem 6.1](#) more precise for an open normal subgroup H of
²⁶ $G = \mathrm{GL}_2(F)$ as in [§6.2.1](#).

²⁷ **Notation 6.4.** On G (hence on H) we put a Haar measure dg , and on $\mathrm{Lie} G =$
²⁸ $\mathrm{Lie} H = M_2(F)$ we put the Haar measure dX such that $X \mapsto 1 + X$ preserves
²⁹ measures near 0. The invariant bilinear map $(X, X') \mapsto \mathrm{tr}(XX')$ on $\mathrm{Lie}(H)$ is
³⁰ nondegenerate. The Fourier transform $\varphi \mapsto \hat{\varphi}$ on $C_c^\infty(\mathrm{Lie}(H); \mathbb{C})$ is taken with
³¹ respect to the nontrivial character $\psi \circ \mathrm{tr}$ on $\mathrm{Lie}(H)$. For each nilpotent H -orbit \mathfrak{O}
³² in $\mathrm{Lie}(H)$, we normalize the nilpotent orbital integral $I_{\mathfrak{O}}(\hat{\varphi})$ [[Lemaire 2005](#), propo-
³³ sition 1.5] in the same way as [[Varma 2014](#), §3]; that normalization is valid even
³⁴ when $\mathrm{char}_F > 0$. By [[loc. cit.](#), Remark 2], for large enough i , $K_i = 1 + M_2(P_F^i)$ and
³⁵ a lower triangular nilpotent matrix Y , the measure of $\mathrm{Ad}(K_i)(Y)$ is 0 if $Y = 0$ and
³⁶ q^{-2i} otherwise. In particular $I_0(\hat{\varphi}) = \varphi(0)$ for the nilpotent trivial orbit $0 \in \mathrm{Lie} H$.

³⁷ **Theorem 6.5.** *Let π be a smooth complex representation of H with finite length.
³⁸ There is an open neighbourhood $V(\pi)$ of 1 in H and for each nilpotent H -orbit \mathfrak{O}
³⁹ ^{39 1/2}
⁴⁰ a unique complex number $c_{\mathfrak{O}} = c_{\mathfrak{O}}(\pi)$ such that if $f \in C_c^\infty(H; \mathbb{C})$ has compact*

¹ support in $V(\pi)$ then

$$\frac{2}{1/2} \quad (6-6) \quad \text{tr}_\pi(f) = c_0(\pi)f(1) + \sum_{\mathfrak{D} \neq 0} c_{\mathfrak{D}}(\pi)I_{\mathfrak{D}}(\hat{\varphi})$$

³
⁴ where $\varphi(X) = f(1+X)$ for $1+X \in V(\pi)$.
⁵

⁶ We call (6-6) the germ expansion and $c_0(\pi)$ the constant coefficient of the trace
⁷ of π around 1. A character twist of π does not change $c_0(\pi)$. For π irreducible,
⁸ $c_{\mathfrak{D}}(\pi) = 0$ for all $\mathfrak{D} \neq 0$ if and only if π is degenerate (by [Theorem 6.2](#)) if and
⁹ only if $\dim_{\mathbb{C}} \pi = 1$. In this case $c_0(\pi) = 1$.

¹⁰ We can determine that constant coefficient $c_0(\pi)$ for any irreducible smooth
¹¹ representation π of H from the case of G , because π appears in the restriction
¹² to H of an irreducible smooth complex representation Π of G . The irreducible
¹³ components of $\Pi|_H$ being G -conjugate to π have the same constant coefficient,¹⁷
¹⁴ and

$$\frac{15}{16} \quad (6-7) \quad c_0(\Pi) = \lg(\Pi|_H)c_0(\pi).$$

¹⁷ By [\[Henniart and Vignéras 2024\]](#), we have $c_0(1_G) = 1$. When Π is parabolically
¹⁸ induced, for example when Π is tempered and not a discrete series,

$$\frac{19}{20} \quad c_0(\Pi) = 0.$$

²¹ When Π is a discrete series representation of formal degree $d(\Pi)$,

$$\frac{23}{24} \quad c_0(\Pi) = -d(\Pi)/d(\text{St}).$$

²⁵ When Π is a supercuspidal complex smooth representation of G of minimal level f_Π
²⁶ (the minimal level¹⁸ of the character twists of Π),

$$\frac{27}{28} \quad (6-8) \quad c_0(\Pi) = \begin{cases} -2q^{f_\Pi} & \text{if } f_\Pi \text{ is an integer,} \\ -(q+1)q^{f_\Pi - \frac{1}{2}} & \text{if } f_\Pi \text{ is a half-integer (not an integer).} \end{cases}$$

³⁰ When f_Π is a half-integer (not an integer), Π has positive level ([Section 4.3.2](#)),
³¹ $\Pi = \text{ind}_J^G \Lambda$ where $J = E^*(1+Q^{f_\Pi + \frac{1}{2}})$, where E/F is ramified, Q is the Jacobson
³² radical of an Iwahori order in $M_2(F)$, and Λ is trivial on $1+Q^{2f_\Pi+1}$ [\[Bushnell and](#)
³³ [Henniart 2006, Chapter 4, §15\]](#). Let $\chi \in X_\Pi \setminus \{1\}$. Then χ is ramified [\[Bushnell](#)
³⁴ [and Henniart 2006, Chapter 5, §20.3, Lemma\]](#). The level r_χ of χ is the largest
³⁵ positive integer r such that χ is nontrivial on $1+P_F^r$ when χ is ramified. We have

$$\frac{36}{37} \quad (6-9) \quad 1 \leq r_\chi < f_\Pi.$$

³⁸
³⁹ ¹⁷By the linear independence of nilpotent orbital integrals.
⁴⁰ The level is the normalized level of [\[Bushnell and Henniart 2006, Chapter 4, §12.6\]](#) and the
depth is in the sense of Moy–Prasad.

¹ Indeed, if $r_\chi > f_\Pi$ then $\chi \circ \det$ is nontrivial on $1 + Q^{2r_\chi}$ (as $\det(1 + Q^{2r_\chi}) = 1 + P_F^{r_\chi}$),
² and $(\chi \circ \det) \otimes \Lambda$ would be nontrivial on $1 + Q^{2r_\chi}$ implying that the level of
³ $(\chi \circ \det) \otimes \Lambda$ is at least r_χ . By [Bushnell and Henniart 2006, §15.6, Proposition 1],
⁴ this contradicts the assumption that $\chi \in X_\Pi$. So $f_\Pi < r_\chi$ as r_χ is an integer but
⁵ not f_Π .

⁶ **Lemma 6.6.** *If $f_\Pi = \frac{1}{2}$ then $X_\Pi = \{1\}$. If $q = 2$ and $f_\Pi = \frac{3}{2}$ then X_Π cannot have
⁷ four elements.*

⁸ *Proof.* If $f_\Pi = \frac{1}{2}$, then X_Π is trivial by the formula (6-9). If $f_\Pi = \frac{3}{2}$, then $r_\chi = 1$,
⁹ and if $q = 2$ there are only two quadratic characters of level 1. That implies that
¹⁰ X_Π cannot have four elements. \square

¹¹ **Proposition 6.7.** *Let Π be an irreducible complex smooth representation of G and
¹² π an irreducible representation of H contained in $\Pi|_H$. Then:*

- ¹⁴ • $c_0(\pi) = -\frac{1}{2}$ if p is odd, Π is cuspidal of minimal level 0 and $L(\Pi)$ has four
¹⁵ elements.
- ¹⁶ • $c_0(\pi)$ is an integer otherwise.
- ¹⁷ • $c_0(\pi) = 0$ if π is a principal series, and $c_0(\pi) < 0$ if π is infinite-dimensional
¹⁸ and not a principal series.

¹⁹ *Proof.* By formulas (6-4), (6-7), (6-8), we have:

- ²⁰ • $c_0(1_G) = 1$, so $c_0(1_H) = 1$.
- ²² • $c_0(\mathrm{St}) = -1$ so $c_0(\mathrm{st}_H) = -1$, since the restriction st_H of St to H is irre-
²³ducible as $\mathrm{st} = \mathrm{St}|_{G'}$ is irreducible.
- ²⁴ • $c_0(\Pi) = 0$ so $c_0(\pi) = 0$, when Π is an irreducible principal series.
- ²⁶ • $c_0(\Pi) < 0$ so $c_0(\pi) < 0$, when Π supercuspidal of level f_Π (the minimal
²⁷ level).

²⁸ If p is odd, then $c_0(\Pi)$ is an even integer by (6-8), so that $c_0(\pi)$ is an integer if
²⁹ $L(\Pi)$ has one or two elements by (6-7); if $L(\Pi)$ has four elements, then $f_\Pi = 0$ by
³⁰ Proposition 4.8 and $c_0(\Pi) = -2$, so $c_0(\pi) = -\frac{1}{2}$. If $p = 2$, then $c_0(\Pi)$ is a multiple
³¹ of 4 (so $c_0(\pi)$ is an integer) by (6-8) except when:

- ³² (i) $f_\Pi = 0$, where $c_0(\Pi) = -2$. But $L(\Pi)$ has size 2 by Proposition 4.7, so
³³ $c_0(\pi) = -1$.
- ³⁴ (ii) $f_\Pi = \frac{1}{2}$, where $c_0(\Pi) = -(q + 1)$. But $L(\Pi)$ has size 1 by Lemma 6.6, so
³⁵ $c_0(\pi) = -(q + 1)$.
- ³⁶ (iii) $f_\Pi = \frac{3}{2}$ and $q = 2$, where $c_0(\Pi) = -6$. But $L(\Pi)$ has size 1 or 2 by
³⁷ Lemma 6.6, so $c_0(\pi) = -6$ or -3 . \square

³⁹ **Theorem 6.8.** *Let π be a finite length complex representation of H , $Y \neq 0$ a lower
⁴⁰ triangular matrix in $M_2(F)$ and \mathfrak{D} its H -orbit. Then $c_{\mathfrak{D}}(\pi) = \dim_{\mathbb{C}} W_Y(\pi)$.*

Proof. We use the same idea as [Rodier 1975]. Remarking that the lower triangular group B^- of G acts transitively on lower triangular nilpotent matrices Y , and that for $g \in B^-$ we have $c_{\mathfrak{D}}(\pi) = c_{\mathfrak{D}^g}(\pi^g)$, $\dim_{\mathbb{C}}(W_Y(\pi)) = \dim_{\mathbb{C}}(W_{Y^g}(\pi^g))$, it suffices to consider the case where $Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. We stick to that Y (so $\theta_Y = \theta$ with Notation 4.1).

For each positive integer i , we define a character χ_i of the pro- p group $K_i = 1 + M_2(P_F^i)$ by the formula

$$\chi_i(1+X) = \psi \circ \text{tr}(p_F^{-2i} Y X) = \psi(p_F^{-2i} X_{1,2}), \quad X = \begin{pmatrix} X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2} \end{pmatrix} \in M_2(P_F^i).$$

The character χ_i is trivial on K_{2i} . When conjugating by the diagonal matrix $d_i = \text{diag}(p_F^i, p_F^{-i})$ we get a character θ_i on

$$(6-10) \quad H_i = d_i^{-1} K_i d_i = 1 + \begin{pmatrix} P_F^i & P_F^{-i} \\ P_F^{3i} & P_F^i \end{pmatrix}$$

such that $\theta_i(1+X) = \psi(X_{1,2})$. The limit of the groups H_i as $i \rightarrow \infty$ is the group U . We will prove that the θ_i approximate the character θ_Y of U in the sense that

$$(6-11) \quad \lim_{i \rightarrow \infty} \dim_{\mathbb{C}} \text{Hom}_{H_i}(\theta_i, \pi) = \dim_{\mathbb{C}} W_Y(\pi).$$

On the other hand we will also prove in §6.2.3, following [Varma 2014], that

$$(6-12) \quad \dim_{\mathbb{C}} \text{Hom}_{K_i}(\chi_i, \pi) = c_{\mathfrak{D}}(\pi) \quad \text{for large } i.$$

Since $\dim_{\mathbb{C}} \text{Hom}_{H_i}(\theta_i, \pi) = \dim_{\mathbb{C}} \text{Hom}_{K_i}(\chi_i, \pi)$, we shall get the result. \square

6.2.3. Let us proceed to the proof of the formulas (6-11) and (6-12), through a sequence of lemmas that are rather easy compared to the analogous statements in the more general cases treated by [Rodier 1975; Mœglin and Waldspurger 1987; Varma 2014] when $\text{char}_F = 0$, and [Henniart and Vignéras 2024] for arbitrary char_F .

For $X \in M_2(F)$, put $\delta_i(X) = \chi_i^{-1}(1+X)$ if $X \in M_2(P_F^i)$ and $\delta_i(X) = 0$ otherwise.

Using Notation 6.4, the Fourier transform $\hat{\delta}_i$ of δ_i is

$$(6-13) \quad \hat{\delta}_i(X) = \begin{cases} q^{-4i} \text{vol}(M_2(O_F), dX) & \text{if } X \in p_F^{-2i} Y + M_2(P_F^{-i}), \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 6.9. *The K_1 -normalizer of χ_i is $(ZU^- \cap K_1)K_i$.*

Proof. For a positive integer $j \leq i$, we prove that the K_1 -normalizer of the restriction of χ_i to K_{2i-j} is $(ZU^- \cap K_1)K_j$ by induction on j . This is clear for $j = 1$ and the case $j = i$ gives what we want. Assume that the claim is true for $j < i$ and let us prove it for $j + 1$. Let $g \in K_1$, normalizing the restriction of χ_i to K_{2i-j-1} . By induction $g \in (ZU^- \cap K_1)K_j$ and we may assume $g \in K_j$. Write $g = 1 + X$ with $X \in M_2(P_F^j)$. Then $g^{-1}Yg \equiv Y + YX - XY \pmod{M_2(P_F^{j+1})}$ and the hypothesis on g means that $YX - XY \equiv 0 \pmod{M_2(P_F^{j+1})}$, which gives that $p_F^{-j}X$ commutes with Y modulo P_F . But the commutant of Y modulo P_F in

¹ $M_2(k_F)$ is made out of lower triangular matrices with the same diagonal elements.
^{11/2} Consequently $g \in (ZU^- \cap K_1)K_{j+1}$ as claimed. \square

³ **Lemma 6.10.** *The K_i -orbit of Y is the set of nilpotent matrices in $Y + M_2(P_F^i)$.*

⁴ *Proof.* Clearly, gYg^{-1} is a nilpotent element in $Y + M_2(P_F^i)$ for $g \in K_i$. Conversely,
⁵ let $Y + p_F^i Z$ nilpotent (hence of trace 0) with $Z \in M_2(O_F)$. If $g = 1 + p_F^i X$ with
⁶ $X \in M_2(O_F)$, then $g(Y + p_F^i Z)g^{-1} \equiv Y + p_F^i(YX - XY + Z)$ modulo $M_2(P_F^{i+1})$. We
⁷ choose X , as we can, so that $YX - XY + Z \equiv 0$ modulo P_F . So $g(Y + p_F^i Z)g^{-1} \in$
⁸ $Y + M_2(P_F^{i+1})$. The K_i -orbit of Y is closed in $M_2(F)$. We finish the proof by
⁹ successive approximations. \square

¹⁰ Let π be a smooth representation of H on a complex vector space V , and
¹¹ $\varphi : V \rightarrow V_\theta$ be the quotient map from V to the θ -coinvariants V_θ of V . For large
¹² enough i such that $H_i \subset H$ let V_i be the θ_i -isotypic component of V .

¹⁴ **Lemma 6.11.** *For large enough i , $\varphi(V_i) = V_\theta$.*

¹⁵ *Proof.* It is the same as that of Lemma 8.7 in [Henniart and Vignéras 2024]. \square

¹⁶ We have

$$\text{¹⁷ } H_{i+1} = (H_{i+1} \cap H_i)(H_{i+1} \cap U), \quad [H_{i+1} : (H_{i+1} \cap H_i)] = [(H_{i+1} \cap U) : (H_i \cap U)] = q^{-1},$$

¹⁹ and $\theta_{i+1} = \theta_i$ on $H_{i+1} \cap H_i$. Let $e_i = f_i dg$ where dg is the Haar measure on H
²⁰ giving the volume 1 to H_i and f_i is the function on G with support H_i and value θ_i^{-1}
²¹ on H_i .

²² **Lemma 6.12.** *We have $e_i e_{i+1} e_i = q^{-1} e_i$ when $i > 1$ and $H_i \subset H$. In particular,
²³ the map $v \mapsto \pi(e_{i+1})v : V_i \rightarrow V_{i+1}$ is injective.*

²⁵ *Proof.* The lemma is equivalent to $\pi(e_i e_{i+1} e_i)v = q^{-1} \pi(e_i)v$ for all $v \in V$ and
²⁶ (π, V) as above. The projector $V \rightarrow V_i$ is $\pi(e_i)$ and

$$\text{²⁷ } \pi(e_i e_{i+1} e_i)v = q^{-1} \sum_{u \in (H_{i+1} \cap U)/(H_i \cap U)} \pi(e_i \theta_{i+1}(u)^{-1} u e_i)v.$$

³⁰ If $\pi(e_i u e_i)v \neq 0$ for $u \in H_{i+1} \cap U$, then u intertwines θ_i . To interpret that condition
³¹ we conjugate θ_i back to χ_i . Then H_i is sent to K_i and H_{i+1} is sent to $d_1^{-1} K_{i+1} d_1$
³² which, we remark, is contained in K_{i-1} . By Lemma 6.9, $u \in H_{i+1} \cap U$ conju-
³³ gates to an element in $(ZU^- \cap K_1)K_i$, so that $u \in H_i \cap U$. We then deduce that
³⁴ $\pi(e_i e_{i+1} e_i)v = q^{-1} \pi(e_i)v$ as claimed. \square

³⁵ *Proof of formula (6-11).* Fix a large integer i such that the lemmas apply. The
³⁶ projector $\pi(e_i) : V \rightarrow V_i$ can be obtained by first projecting onto $V^{H_i \cap B^-}$, and
³⁷ then applying the projector $\pi(e_{i,U})$ where $e_{i,U} = f_i|_{H_i \cap U} du$ for the Haar measure
³⁸ on $H \cap U$ giving the volume 1 to $H_i \cap U$. Since $V_i \subset V^{H_{i+1} \cap B^-}$, we have that

³⁹ $\pi(e_{i+1}) = \pi(e_{i+1,U})$ on V_i . It follows that for $v \in V_i$ and $v_1 = \pi(e_{i+1})v = \pi(e_{i+1,U})v$
⁴⁰ have the same image $\varphi(v_1) = \varphi(v)$ in V_θ . Iterating the process, we get for positive

¹ integers k , vectors $v_k = \pi(e_{j+k})v_{k-1} = \pi(e_{j+k,U})v_{k-1}$ with $\varphi(v_k) = \varphi(v)$. As ² $e_{i+1,U}e_{i,U} = e_{i+1,U}$ we have $v_k = \pi(e_{i+k,U})v$. But $\varphi(v) = 0$ is equivalent to ³ $\pi(e_{i+k,U})v = 0$ for large k . As $v_k = 0$ implies $v_{k-1} = 0$ by [Lemma 6.12](#), we get ⁴ that φ is injective on V_i . Since it is also surjective by [Lemma 6.11](#), we deduce that ⁵ it gives an isomorphism $V_i \simeq V_\theta$. \square

⁶ *Proof of formula (6-12).* Fix an integer i such that $K_i \subset H$. We have that ⁷ $\dim_{\mathbb{C}}(\text{Hom}_{K_i} \chi_i, \pi) = \text{tr } \pi(e'_i)$ where $e'_i = f'_i dg$ where dg is the Haar measure on H ⁸ giving the volume 1 to K_i and f'_i is the function on G with support K_i and value χ_i^{-1} ⁹ on K_i . We have that $f'_i(1+X) = \delta_i(X)$. To prove (6-12), it suffices to apply the germ ¹⁰ expansion (6-6) to tr_π and to show that for large i , $I_{\mathfrak{D}}(\hat{\delta}_i) = 1$, whereas $I_{\mathfrak{D}'}(\hat{\delta}_i) = 0$ ¹¹ for any nilpotent orbit $\mathfrak{D}' \neq \mathfrak{D}$. From the formula (6-13), $\hat{\delta}_i$ is a multiple of the ¹² characteristic function of $-p_F^{-2i}Y + M_2(P_F^{-i})$ and from [Lemma 6.10](#) the nilpotent ¹³ elements there form the K_i -orbit of $p_F^{-2i}Y$. It follows that $I_{\mathfrak{D}'}(\hat{\delta}_i) = 0$ if $\mathfrak{D}' \neq \mathfrak{D}$. ¹⁴ That $I_{\mathfrak{D}}(\hat{\delta}_i) = 1$ is proved exactly as in the proof of Lemma 7 in [\[Varma 2014\]](#). \square

¹⁵ **6.2.4.** For a locally profinite space X , $x \in X$, and a field C , two linear forms f, f' ¹⁶ on $C_c^\infty(V; C)$ for some open neighbourhood V of x in X are called equivalent if ¹⁷ their restrictions to $C_c^\infty(W; C)$ for some open neighbourhood W of x contained ¹⁸ in V are equal. The equivalence class of f is called its germ \tilde{f} at x . Denote $\mathfrak{G}_x(X)$ ¹⁹ the space of the germs at x .

²⁰ ²¹ For a locally profinite space X' , an open subset W in X and an open subset ²² W' in X' , a homeomorphism $j : W \rightarrow W'$ gives by functoriality an isomorphism ²³ $C_c^\infty(W'; C) \rightarrow C_c^\infty(W; C)$ and an isomorphism $\mathfrak{G}_{j(x)}(X') \rightarrow \mathfrak{G}_x(X)$ from the ²⁴ space of the germs of X' at $j(x)$ to the space of the germs of X at $x \in W$.

²⁵ The nilpotent orbital integrals $\mathcal{F}_{\mathfrak{D}} : \varphi \mapsto I_{\mathfrak{D}}(\hat{\varphi})$ for $\varphi \in C_c^\infty(\text{Lie } H; \mathbb{C})$ and the ²⁶ nilpotent H -orbits \mathfrak{D} in $\text{Lie}(H)$ are linearly independent H -equivariant linear forms ²⁷ on $C_c^\infty(\text{Lie } H; \mathbb{C})$ [\[Lemaire 2005, page 79\]](#). They form a basis of a \mathbb{Z} -module I_H ²⁸ with rank $1 + 2^d$ (6-3). For each H -equivariant open neighbourhood V of 0 in ²⁹ $\text{Lie } H$, the $\mathcal{F}_{\mathfrak{D}}$ remain independent as linear forms on $C_c^\infty(V; \mathbb{C})$. The germs $\tilde{\mathcal{F}}_{\mathfrak{D}}$ ³⁰ form a basis of the \mathbb{Z} -module \tilde{I}_H of germs of elements of I_H . Denote by I_H^{Wh} the ³¹ \mathbb{Z} -submodule of I_H of basis $\mathcal{F}_{\mathfrak{D}}$ for $\mathfrak{D} \neq 0$.

³² Theorems 6.5 and 6.8 say that the germ at 1 of the trace of an irreducible complex ³³ smooth representation π of H identifies via the map $X \mapsto 1 + X$ with the germ ³⁴ at 0 of a unique element $T_\pi = c_0(\pi)\mathcal{F}_0 + T_\pi^{\text{Wh}}$ where $c_0(\pi) \in \mathbb{Q}$, and $T_\pi^{\text{Wh}} \in I_H^{\text{Wh}}$ ³⁵ is determined by the nondegenerate Whittaker models of π . Note that $T_\pi^{\text{Wh}} = 0$ if ³⁶ and only if $\dim_{\mathbb{C}} \pi = 1$.

³⁷ Denote by T_H^{Wh} the \mathbb{Z} -submodule of I_H^{Wh} generated by the T_π^{Wh} , for all irreducible ³⁸ complex smooth representations π of H . Write \tilde{I}_H^{Wh} , \tilde{T}_H^{Wh} for the space of germs ³⁹ at 0 of I_H^{Wh} , T_H^{Wh} .

³⁹ ⁴⁰ **Theorem 6.13.** We have $\tilde{T}_H = \tilde{I}_H$ when $d = 0, 1$.

¹ The \mathbb{Z} -submodule $\tilde{I}_H^{\mathrm{Wh}}$ is a submodule of $\tilde{I}_H^{\mathrm{Wh}}$ of finite index. The exponent of
² $\tilde{I}_H^{\mathrm{Wh}}/\tilde{I}_H^{\mathrm{Wh}}$ is 2^{d-2} when $d \geq 2$.

³ *Proof.* When $d = 0$, I_H has \mathbb{Z} -rank 2, and the germs of the traces of the trivial
⁴ representation 1 and of the Steinberg representation st_H form a \mathbb{Z} -basis $\{\tilde{\mathrm{tr}}_1, \tilde{\mathrm{tr}}_{\mathrm{st}_H}\}$
⁵ of \tilde{I}_H .

⁶ When $d = 1$, I_H has \mathbb{Z} -rank 3, $\det H = N_{E/F}(E^*)$ for a quadratic separable
⁷ extension E/F , the principal series $(i_B^G \eta_E)|_H$ is semisimple of length 2 and mul-
⁸ tiplicity free (Lemma 2.3 and footnote in the proof of Proposition 4.26), and the
⁹ germs of the traces of the trivial representation 1 and of the two components π_E^+, π_E^-
¹⁰ of $(i_B^G \eta_E)|_H$ form a \mathbb{Z} -basis $\{\tilde{\mathrm{tr}}_1, \tilde{\mathrm{tr}}_{\pi_E^+}, \tilde{\mathrm{tr}}_{\pi_E^-}\}$ of \tilde{I}_H .

¹¹ When $d \geq 2$, the theorem follows from Lemma 6.3. \square

¹³ Theorem 6.13 can be equally well expressed in terms of the Grothendieck group
¹⁴ $\mathrm{Gr}_R(H)$. It is under this form that the theorem extends to R -representations. For
¹⁵ an open compact subgroup K of H , and π a finite length smooth complex repre-
¹⁶ sentation π of H , $\pi|_K$ is semisimple with finite multiplicities, and is determined
¹⁷ by the restriction of the trace of π to $C_c^\infty(K, \mathbb{C})$.

¹⁹ **Corollary 6.14.** *There are 2^d virtual finite length smooth complex representations
²⁰ π_1, \dots, π_{2^d} of H with the following property: for any finite length smooth complex
²¹ representation π of H , there are unique integers $a_0(\pi), a_1(\pi), \dots, a_{2^d}(\pi)$, such
²² that on some compact open subgroup $K = K(\pi)$ of H ,*

$$\pi \simeq a_0(\pi)1 + \sum_{i=1}^{2^d} a_i(\pi)\pi_i.$$

²⁷ *Proof.* By Theorem 6.13, the \mathbb{Z} -module $\tilde{I}_H^{\mathrm{Wh}}$ has a basis $\{\tilde{I}_{\pi_1}^{\mathrm{Wh}}, \dots, \tilde{I}_{\pi_{2^d}}^{\mathrm{Wh}}\}$ where
²⁸ π_1, \dots, π_{2^d} are virtual finite length smooth representations of H . By Theorem 6.5,
²⁹ for any finite length smooth representation π of H there exist a unique rational
³⁰ number $a_0(\pi)$ and unique integers $a_1(\pi), \dots, a_{2^d}(\pi)$, such that

$$\mathrm{tr}_\pi = a_0(\pi) \mathrm{tr}_1 + \sum_{i=1}^{2^d} a_i(\pi) \mathrm{tr}_{\pi_i}$$

³⁵ on restriction to $C_c^\infty(K(\pi), \mathbb{C})$ for some compact open subgroup $K(\pi)$ of H . As
³⁶ $a_0(\pi) = \dim_{\mathbb{C}} \pi^{K(\pi)} - \sum_{i=1}^{2^d} a_i(\pi) \dim_{\mathbb{C}} \pi_i^{K(\pi)}$, we see that $a_0(\pi)$ is an integer.
³⁷ Equivalently, on restriction to $K(\pi)$,

$$\pi \simeq a_0(\pi)1 + \sum_{i=1}^{2^d} a_i(\pi)\pi_i.$$

\square

6.2.5. This has consequences for the representations of G' .

¹₂ An irreducible complex representation of G' extends to ZG' , and we can apply
³₄ **Theorem 6.5** to $H = ZG'$ when $\text{char}_F \neq 2$. When p is odd, there is a unique L -
⁵₆ packet $\tau_1, \tau_2, \tau_3, \tau_4$ of G' with four elements (**Proposition 4.22**). One can enumerate
⁷₈ the four nontrivial nilpotent G' -orbits $\mathfrak{O}_1, \dots, \mathfrak{O}_4$ such that $c_{\mathfrak{O}_i}(\tau_j) = 1$ if $i = j$,
⁹₁₀ and 0 if $i \neq j$. For $i = 1, \dots, 4$ we choose a lower triangular element $Y_i \in \mathfrak{O}_i$.

¹¹₁₂ **Theorem 6.15** (p odd, $R = \mathbb{C}$). *Let π be a finite length smooth complex representation of G' . On restriction to a small enough compact open subgroup $K(\pi)$ of G' , we have*

$$(6-14) \quad \pi \simeq a_0(\pi)1 + \sum_{i=1}^4 c_{\mathfrak{O}_i}(\pi)\tau_i, \quad c_{\mathfrak{O}_i}(\pi) = \dim_{\mathbb{C}} W_{Y_i}(\pi),$$

¹³₁₄ where $a_0(\pi) = \dim_{\mathbb{C}} \pi^{K(\pi)} - \sum_{i=1}^4 c_{\mathfrak{O}_i}(\pi) \dim_{\mathbb{C}} \tau_i^{K(\pi)}$. The constant term in
¹⁵₁₆ **Theorem 6.5** is

$$c_0(\pi) = a_0(\pi) - \frac{1}{2} \left(\sum_{i=1}^4 c_{\mathfrak{O}_i}(\pi) \right).$$

¹⁷₁₈ The constant term $c_0(\pi)$ can be computed using (6-7) and (6-8).

¹⁹₂₀ **Remark 6.16.** When $\text{char}_F = 0$, p is odd and $R = \mathbb{C}$, the theorem was already
²¹₂₂ known; see [[Assem 1994](#)] and the last section of [[Nevins 2024](#)].

²³₂₄ **6.2.6.** For any p , let π be an irreducible smooth complex representation of G' and r the cardinality of the L -packet of π .

²⁵₂₆ For any L -packet $\{\tau_1, \tau_2, \tau_3, \tau_4\}$ of size 4, there exist integers a_0, b_0 such that on a small enough compact open subgroup of G' we have

$$(6-15) \quad \text{ind}_{B'}^{G'} 1 \simeq b_0 T_1 + \sum_{i=1}^4 \tau_i \quad \text{and} \quad \text{if } r = 1, \quad \pi \simeq a_0 T_1 + \sum_{i=1}^4 \tau_i.$$

³⁰₃₁ If $r = 2$, then $\det G_\pi = N_{E/F}(E^*/F)$ for a quadratic separable extension E/F .

³²₃₃ Choose a biquadratic separable extension of F containing E . There exist τ_1 and τ_2 in the associated L -packet of size 4 (**Proposition 4.22**) and an integer a_0 such that on a small enough compact open subgroup K of G' we have

$$(6-16) \quad \pi \simeq a_0 T_1 + \sum_{i=1}^2 \tau_i.$$

³⁴₃₅ Therefore, when $R = \mathbb{C}$ we have:

³⁶₃₇ **Theorem 6.17.** *Let π be an irreducible smooth R -representation of G' . There are an integer a_0 and irreducible smooth R -representations $\{\tau_1, \tau_2, \tau_3, \tau_4\}$ of G'*

¹ forming an L -packet, such that on a small enough compact open subgroup K of G'
² we have

$$\pi \simeq a_0 1 + \sum_{i=1}^{4/r} \tau_i,$$

³ where r is the cardinality of the L -packet containing π .
⁴

⁵ **6.2.7.** Let us prove **Theorem 6.17** for any R .

⁶ Let R_c be the algebraic closure in R of the prime field of R . Write $R_c = \mathbb{Q}^{\mathrm{ac}}$
⁷ when $\mathrm{char}_R = 0$ and $R_c = \mathbb{F}_\ell^{\mathrm{ac}}$ when $\mathrm{char}_R = \ell > 0$.
⁸

⁹ (a) We show first that **Theorem 6.17** for R_c extends to R . A cuspidal R -representa-
¹⁰ tion of G' is the scalar extension $\pi_R = R \otimes_{R_c} \pi$ to R of a cuspidal R_c -representation π
¹¹ of G' [Vignéras 1996] and the L -packets of size 4 are cuspidal. The scalar extension
¹² from R_c to R respects irreducibility, identifies the L -packets of size 4 over R_c with
¹³ those over R and sends the L -packets of size r over R_c to L -packets of size r
¹⁴ over R . **Theorem 6.17** for R_c -representations imply **Theorem 6.17** extends for
¹⁵ R -representations which are scalar extensions of R_c -representations:
¹⁶

$$\pi \simeq a_0 1 + \sum_{i=1}^{4/r} \tau_i \quad \text{implies by scalar extension } \pi_R \simeq a_0 1 + \sum_{i=1}^{4/r} \tau_{i,R}.$$

²⁰ The only irreducible smooth R -representations of G' which are not scalar extensions
²¹ of R_c -representations, are principal series $i_{B'}^{G'}(\eta)$. But
²²

²³ (6-17) $i_{B'}^{G'}(\eta) \simeq \mathrm{ind}_{B'}^{G'}(1)$ on some small open compact subgroup K of G' ,
²⁴

²⁵ and we have (6-15) for the R_c -representation $\mathrm{ind}_{B'}^{G'}(1)$.
²⁶

²⁷ Therefore, for any L -packet $\{\tau_{1,R}, \tau_{2,R}, \tau_{3,R}, \tau_{4,R}\}$ of size 4, there is an integer a_0
²⁸ such that

$$\mathrm{ind}_{B'}^{G'}(1) \simeq a_0 1 + \sum_{i=1}^4 \tau_{i,R} \quad \text{on some small open compact subgroup } K \text{ of } G'.$$

²⁹ (b) **Theorem 6.17** for \mathbb{C} extends to \mathbb{Q}^{ac} because the scalar extension from \mathbb{Q}^{ac} to \mathbb{C}
³⁰ respects irreducibility, representations in an L -packet of size 4 are cuspidal, and
³¹ complex cuspidal representations of G' are defined over \mathbb{Q}^{ac} .
³²

³³ (c) Via an isomorphism $\mathbb{C} \simeq \mathbb{Q}_\ell^{\mathrm{ac}}$, **Theorem 6.17** for \mathbb{C} extends to $\mathbb{Q}_\ell^{\mathrm{ac}}$. **Theorem 6.17**
³⁴ for $\mathbb{Q}_\ell^{\mathrm{ac}}$ extends to $\mathbb{F}_\ell^{\mathrm{ac}}$ -representations. Indeed, from **Proposition 4.30** an irreducible
³⁵ smooth $\mathbb{F}_\ell^{\mathrm{ac}}$ -representation π of G' in an L -packet of size r lifts to an integral irre-
³⁶ducible smooth $\mathbb{Q}_\ell^{\mathrm{ac}}$ -representation $\tilde{\pi}$ of G' in an L -packet of size r (**Proposition 1.6**).
³⁷

³⁸ (39^{1/2}) From **Theorem 6.17** for $\mathbb{Q}_\ell^{\mathrm{ac}}$, there is an L -packet $\{\tilde{\tau}_1, \tilde{\tau}_2, \tilde{\tau}_3, \tilde{\tau}_4\}$ of irreducible
⁴⁰

¹ smooth $\mathbb{Q}_\ell^{\text{ac}}$ -representations of G' and an integer a_0 , such that on a small enough
^{11/2}
² compact open subgroup K of G' , we have

$$\begin{aligned} \tilde{\pi} &\simeq a_0 1 + \sum_{i=1}^{4/r} \tilde{\tau}_i \implies \pi \simeq a_0 1 + \sum_{i=1}^{4/r} \tau_i \end{aligned}$$

⁶ by reduction modulo ℓ of $\{\tilde{\tau}_1, \tilde{\tau}_2, \tilde{\tau}_3, \tilde{\tau}_4\}$ to $\{\tau_1, \tau_2, \tau_3, \tau_4\}$, reduction which forms
⁷ an L -packet of irreducible smooth $\mathbb{F}_\ell^{\text{ac}}$ -representations of G' . This ends the proof of
⁸ **Theorem 6.17.**

⁹ **Remark 6.18.** The formulas (6-7), (6-15) and (6-16) remain valid for R .
¹⁰

¹¹ **6.2.8.** For an irreducible infinite-dimensional complex representation Π of G with
¹² conductor c , Casselman had already described the restriction of Π to K_0 as the
¹³ direct sum of the fixed points under K_{c-1} and a complement depending only on the
¹⁴ central character of Π .

¹⁵ Similarly, when p is odd, and π is an irreducible infinite-dimensional complex
¹⁶ representation of G' , Nevins [2005; 2013] described explicitly the restriction of π
¹⁷ to K'_0 as a finite-dimensional part specific to π , and a complement depending only
¹⁸ on the central character of π . More recently, Nevins [2024] defined for any vertex x
¹⁹ of the Bruhat–Tits building of G' , admissible complex representations $\tau_{x,1}, \dots, \tau_{x,5}$
²⁰ of the maximal open compact subgroup G'_x fixing x such that the following is true.

^{20 1/2} Let δ_π be the depth of π in the sense of Moy–Prasad. Then, there are integers
²¹ $a_{\pi,1}, \dots, a_{\pi,5}$ such that on restriction to $G'_{x,\delta_\pi+}$,

$$\pi \simeq \sum_{i=1}^5 a_{\pi,i} \tau_{x,i}.$$

²⁶ Now allow any R with $\text{char}_R \neq p$ (still assuming p odd). The representations $\tau_{x,i}$
²⁷ of Nevins transferred to $\mathbb{Q}_\ell^{\text{ac}}$ are integral, defined over \mathbb{Q}^{ac} and can be transferred
²⁸ to R -representations $\tau_{x,i,R}$. The proof in §6.2.7 applies and shows that the above
²⁹ result is also valid over R with $\tau_{x,1,R}, \dots, \tau_{x,5,R}$.
³⁰

³¹ 7. Asymptotics of invariant vectors by Moy–Prasad subgroups

³³ We use notations as in Sections 3 and 4. The Moy–Prasad subgroups of $G' = \text{SL}_2(F)$
³⁴ are the intersections of the Moy–Prasad subgroups of $G = \text{GL}_2(F)$ with G' because
³⁵ the Bruhat–Tits of G' and of $\text{PGL}_2(F)$ are the same. We write $K' = G' \cap K$ for a
³⁶ subgroup K of G .

³⁷ Let $\text{red} : K_0 = \text{GL}_2(O_F) \rightarrow \text{GL}_2(k_F)$ and $\text{red}' : K'_0 = \text{SL}_2(O_F) \rightarrow \text{SL}_2(k_F)$ denote
³⁸ the usual quotient maps. The parahoric subgroups of G are the G -conjugates of the
³⁹ maximal open compact subgroup K_0 or of its Iwahori subgroup $I_0 = \text{red}^{-1}(B(k_F))$.
^{39 1/2}
⁴⁰ Those of G' are the G' -conjugates of the maximal open compact subgroup K'_0

¹ or its Iwahori subgroup $I'_0 = \mathrm{red}'^{-1}(B'(k_F))$, or of the maximal open subgroup
² $dK'_0d^{-1} = (dK_0d^{-1})'$ where $d = \begin{pmatrix} 1 & 0 \\ 0 & p_F \end{pmatrix}$ [Abdellatif 2011, §3].

³ The Moy–Prasad subgroups of G are the G -conjugates of the j -th congruence
⁴ subgroups $K_j, I_j, I_{1/2+j}$ of K_0, I_0 , the pro- p Iwahori subgroup $I_{1/2} = \mathrm{red}^{-1}(U(k_F))$
⁵ of I_0 , for any integer $j \geq 0$ [Henniart and Vignéras 2024, §12]. The Moy–Prasad sub-
⁶ groups of G' are the G' -conjugates of the j -th congruence subgroups $K'_j, dK'_j d^{-1},$
⁷ $I'_j, I'_{1/2+j}$ for $j \geq 0$.

⁸ Let \mathbf{j} denote the O_F -lattice of matrices $(x_{i,j}) \in M_2(O_F)$ with $x_{1,2} \in P_F$, and $\mathbf{j}_{1/2}$
⁹ the O_F -lattice of matrices $(x_{i,j}) \in \mathbf{j}$ with $x_{1,1}, x_{2,2} \in P_F$. We have

$$\begin{aligned} K_0 &= M_2(O_F)^*, & I_0 &= \mathbf{j}^*, \\ (7-1) \quad I_{1/2+j} &= 1 + p_F^j \mathbf{j}_{1/2}, & K_{1+j} &= 1 + p_F^j M_2(P_F), & I_{1+j} &= 1 + P_F^j \mathbf{j} \end{aligned}$$

¹³ for $j \geq 0$. Note that $I_0 = K_0 \cap dK_0d^{-1}$, and consider the decreasing sequence for
¹⁴ $H_j = K_j$ or dK_jd^{-1} ,

$$H_0 \supset I_0 \supset I_{1/2} \supset \cdots \supset H_j \supset I_j \supset I_{1/2+j} \supset H_{1+j} \supset I_{1+j} \supset \cdots.$$

¹⁷ The G -normalizer ZK_0 of the maximal compact subgroup K_0 normalizes all sub-
¹⁸ groups K_j for $j \geq 0$. The G -normalizer of the Iwahori group I is generated by I
¹⁹ and $\begin{pmatrix} 0 & 1 \\ p_F & 0 \end{pmatrix}$; it normalizes all subgroups $I_{1/2+j}, I_j$ for $j \geq 0$. Let

$$s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad \beta' = \begin{pmatrix} 0 & -p_F^{-1} \\ p_F & 0 \end{pmatrix}.$$

²³ The Iwasawa decomposition of G with respect to (B, K_0) and the decomposition
²⁴ of G in double cosets modulo (B, I_0) or $(B, I_{1/2})$ are

$$(7-2) \quad G = BK_0 = BI_0 \sqcup BsI_0 = BI_{1/2} \sqcup BsI_{1/2};$$

²⁷ see [Henniart and Vignéras 2024, §12]. Note that $BsI_{1/2} = B\beta'I_{1/2}$. The Iwasawa
²⁸ decomposition of G' with respect to (B', K'_0) or (B', dK'_0d^{-1}) and the decomposi-
²⁹ tion of G' in double classes modulo (B', I'_0) or $(B', I'_{1/2})$ are

$$(7-3) \quad G' = B'K'_0 = B'dK'_0d^{-1} = B'I'_0 \sqcup B'\beta'I'_0 = B'I'_{1/2} \sqcup B'\beta'I'_{1/2};$$

³² see [Abdellatif 2011, lemme 3.2.2, lemme 3.2.8].

³³ **Proposition 7.1.** *The map $B' \setminus G' / H'_j \rightarrow B \setminus G / H_j$ induced by the inclusion $G' \subset G$
³⁴ is bijective, for any j -th congruence subgroup $H_j = K_j, dK_jd^{-1}, I_j, I_{1/2+j}$ and
³⁵ $j \geq 0$.*

³⁷ *Proof.* The map $B' \setminus G' / H'_j \rightarrow B \setminus G / H_j$ is surjective as $G = BG'$. When $j = 0$, the
³⁸ map is bijective because the two sets have the same cardinality (7-2), (7-3).

³⁹ Take $j > 0$ and g', g'' in G' such that $bg'h = g''$ with $b \in B, h \in H_j$. We want
⁴⁰ to prove that $b'g'h' = g''$ with $b' \in B', h' \in H'_j$. Multiplying g' on the left by an

¹ element of B' , we reduce to $g' \in H'_0$ if $H_0 = K_0, dH'_0d^{-1}$, and $g \in H'_0 \cup \beta'H'_0$
² if $H_0 = I_0, I_{1/2}$ (7-3). We have $\det b \det h = 1$. There exists $c \in B \cap H_j$ such
³ that $\det c = \det h$ by the Iwahori decomposition of the j -th congruence subgroup
⁴ $H_j = (B \cap H_j)(H_j \cap U^-)$ when $j > 0$. Three cases occur:

⁵ (1) $g' \in H'_0$. Write $(bc)g'(g'^{-1}c^{-1}g')h = g''$ with $b' = bc \in B', g'^{-1}c^{-1}g' \in H_j$
⁶ and $h' = (g'^{-1}c^{-1}g')h \in H'_j$.

⁷ (2) $g' \in \beta'H'_0$ and $g'' \in H'_0$. Apply the same argument to g'' .

⁸ (3) g' and g'' are in $\beta'H'_0$. Changing notations we want to prove that for g' and g''
⁹ in H'_0 such that $b\beta'g'h = \beta g''$ with $b \in B, h \in H_j$, we have $b'\beta g'h' = \beta g''$ with
¹⁰ $b' \in B', h' \in H'_j$. Multiply on the left by β^{-1} . Noting that $\beta^{-1}B\beta = B^-$, we still
¹¹ need to prove that for $g', g'' \in H'_0$ such that $bg'h = g''$ with $b \in B^-, h \in H_j$, we
¹² have $b'g'h' = g''$ with $b' \in (B^-)', h' \in H'_j$. The argument used before with B works
¹³ also for B^- , because we have the Iwahori decomposition $H_j = (B^- \cap H_j)(H_j \cap U)$
¹⁴ when $j > 0$. There exists $c \in B^- \cap H_j$ such that $\det c = \det h$. Proceeding as
¹⁵ in (1), we write $(bc)g'(g'^{-1}c^{-1}g')h = g''$ with $b' = bc \in (B^-)', g'^{-1}c^{-1}g' \in H_j$
¹⁶ and $h' = (g'^{-1}c^{-1}g')h \in H'_j$. \square

¹⁸ Proposition 7.1 has important applications. The cardinality of $B \setminus G/H_j$ is
¹⁹ computed in [Henniart and Vignéras 2024, Proposition 11.2] for $j \geq 0$. By
²⁰ Proposition 7.1, $|B \setminus G/H_j| = |B' \setminus G'/H_j|$.

²¹ **Corollary 7.2.** *The cardinality of $B' \setminus G'/H'_j$ for $H'_j = K'_j, dK'_j d^{-1}, I'_j, I'_{1/2+j}$ and
²² $j \geq 0$, is*

$$|B' \setminus G'/K'_0| = |B' \setminus G'/dK'_0 d^{-1}| = |B \setminus G/K_0| = 1,$$

$$|B' \setminus G'/K'_{1+j}| = |B' \setminus G'/dK'_{1+j} d^{-1}| = |B \setminus G/K_{1+j}| = (q+1)q^j,$$

$$|B' \setminus G'/I'_j| = |B' \setminus G'/I'_{1/2+j}| = |B \setminus G/I_j| = |B \setminus G/I_{1/2+j}| = 2q^j.$$

²⁸ Over any coefficient ring, the restriction to G' of $\text{ind}_B^G 1$ is $\text{ind}_{B'}^{G'} 1$. The vector
²⁹ spaces $(\text{ind}_{B'}^{G'} 1)^{H'_j} \supset (\text{ind}_B^G 1)^{H_j}$ have the same dimension by Proposition 7.1, hence
³⁰ are equal.

³¹ **Corollary 7.3.** *Over any coefficient ring, any element in $\text{ind}_B^G 1$ fixed by H'_j is also
³² fixed by H_j for $j \geq 0$.*

³⁴ It is known that any infinite-dimensional irreducible smooth R -representation Π
³⁵ of G near the identity is isomorphic to $\text{ind}_B^G 1$ modulo a multiple of the trivial
³⁶ representation [Henniart and Vignéras 2024]. There exist integers a_Π and $j_\Pi \geq 0$
³⁷ such that for $j \geq j_\Pi$,

$$(7-4) \quad \Pi \simeq a_\Pi 1 + \text{ind}_B^G 1 \quad \text{on } I_j.$$

³⁹ **Corollary 7.4.** *For $j \geq j_\Pi$, any element in Π fixed by H'_j is also fixed by H_j .*

Proposition 7.5. $a_\Pi = 0$ if Π is a principal series, $a_\Pi = -1$ when $q + 1 \neq 0$ in R and Π is the twist of the Steinberg representation by a character, and when Π is cuspidal with minimal depth δ_Π under torsion by characters,

$$a_\Pi = \begin{cases} -2q^{\delta_\Pi} & \text{if } \delta_\Pi \text{ is an integer,} \\ -(q+1)q^{\delta_\Pi-1/2} & \text{otherwise.} \end{cases}$$

If $|L(\Pi)| = 4$, then $a_\Pi = -2$ for p odd and a_Π is a multiple of 4 if $p = 2$.

Proof. When $R = \mathbb{C}$, then a_Π is the constant term $c_0(\Pi)$ of the germ expansion for Π because the constant term $c_0(\mathrm{ind}_B^G 1)$ of the germ expansion of the trace of $\mathrm{ind}_B^G 1$ around 1 (6-6) is 0.

When $R = \mathbb{F}_\ell^{\mathrm{ac}}$ and $\tilde{\Pi}$ is a $\mathbb{Q}_\ell^{\mathrm{ac}}$ -representation lifting Π , $a_\Pi = a_{\tilde{\Pi}}$. When Π is cuspidal, $\tilde{\Pi}$ is supercuspidal and the formula for a_Π follows from (6-8). If $|L(\Pi)| = 4$ the assertion on a_Π follows from the proof of Proposition 6.7 \square

In the particular case where $\Pi|_{G'} = \pi$ is irreducible, we deduce that for $j \geq j_\Pi$,

$$\pi \simeq a_\Pi 1 + \mathrm{ind}_{B'}^{G'} 1 \quad \text{on } I'_j.$$

For example, an irreducible principal series π of G' is the restriction to G' of a principal series Π of G , and on $I'_{1/2+j}$ for $j \geq j_\Pi$ we have $\pi \simeq \mathrm{ind}_{B'}^{G'} 1$.

By (7-4) if $j \geq j_\Pi$,

$$(7-5) \quad \dim_{\mathbb{C}} \Pi^{H_j} = a_\Pi + |B \backslash G / H_0| q^j.$$

By Proposition 7.1, $\Pi^{H_j} = \sum_{\pi \in L(\Pi)} \pi^{H'_j}$ for $H_j = I_{1/2+j}, K_{1+j}, I_{1+j}$ and $j \geq 0$.

In particular, if $\Pi|_{G'} = \pi$ is irreducible, then if $j \geq j_\Pi$,

$$\dim \pi^{H'_j} = a_\Pi + |B \backslash G / H_0| q^j.$$

In general, by Corollary 7.2 [Henniart and Vignéras 2024, §12.2], for j large,¹⁹

$$(7-6) \quad \dim_{\mathbb{C}} \Pi^{I_j} = \dim_{\mathbb{C}} \Pi^{I_{1/2+j}} = a_\Pi + 2q^j, \quad \dim_{\mathbb{C}} \Pi^{K_{1+j}} = a_\Pi + (q+1)q^j.$$

Let π be an infinite-dimensional irreducible smooth R -representation of G' contained in $\Pi|_{G'}$. The Moy–Prasad filtration of the Iwahori subgroup I' of G' is

$$I' = I'_0 \supset I'_{1/2} \supset I'_1 \supset \cdots \supset I'_j \supset I'_{1/2+j} \supset I_{j+1} \supset \cdots.$$

Theorem 7.6. With a_Π as in (7-4) and Proposition 7.5, we have for j large,²⁰

$$\dim_R \pi^{I'_j} = \dim_R \pi^{I'_{1/2+j}} = |L(\Pi)|^{-1} (a_\Pi + 2q^j).$$

$|L(\Pi)|^{-1} a_\Pi = -\frac{1}{2}$ if $|L(\Pi)| = 4$ and p is odd, otherwise $|L(\Pi)|^{-1} a_\Pi$ is an integer.

³⁹_{1/2} ³⁹ ¹⁹ $j \geq j_\Pi + 1$ for I_j, H_j and $j \geq j_\Pi$ for $I_{1/2+j}$.
⁴⁰ ²⁰ $j \geq j_\Pi + 1$ for I_j and $j \geq j_\Pi$ for $I_{1/2+j}$.

1 *Proof.* The determinant of the G -normalizer $N_G(I)$ of the Iwahori group I is equal
2 to F^* (first part of [Section 7](#)). Thus, $N_G(I)$ acts transitively on $L(\Pi)$ and as $N_G(I)$
3 normalizes the Moy–Prasad filtration of I , the dimension of the invariants of π by
4 $I'_{1/2+j}$ and I'_j of G' for $j \geq 0$, does not depend on the choice of π in the L -packet
5 $L(\Pi)$. For these two groups H'_j we have $\dim_R \pi^{H'_j} = |L(\Pi)|^{-1} \dim_R \Pi^{H_j}$ for
6 $j \geq j_\Pi$, by [Proposition 7.1](#). Apply now [\(7-6\)](#). The assertion on $|L(\Pi)|^{-1} a_\Pi$ follows
7 from [Proposition 7.5](#). \square

8 Let us now turn to the asymptotics for fixed points under congruence subgroups
9 K'_j of $K'_0 = \mathrm{SL}_2(O_F)$. The G -normalizer ZK_0 of $K_0 = \mathrm{GL}_2(O_F)$ normalizes the K'_j .
10 The subgroup $H = ZK_0 G'$ of G has index 2 as $\det H = (F^*)^2 O_F^*$ has index 2
11 in F^* . The restriction of Π to H has length 1 or 2. All the elements π of $L(\Pi)$ in
12 the same H -orbit share the same dimension $\dim_R \pi^{K'_j}$. With a_Π , j_Π as in [\(7-4\)](#), we
13 deduce from [\(7-6\)](#):

14 **Theorem 7.7.** *When $\Pi|_H$ is irreducible, we have, for $j \geq j_\Pi$,*

$$\dim_R \pi^{K'_{j+1}} = |L(\Pi)|^{-1} (a_\Pi + (q+1)q^j).$$

18 **Proposition 7.8.** *The representation $\Pi|_H$ is reducible if and only if Π is cuspi-*
19 *dal induced from ZK_0 or $\mathrm{char}_R \neq 2$ and Π is a principal series $\mathrm{ind}_B^G \chi$ where*
20 $\chi_1 \chi_2^{-1} = (-1)^{\mathrm{val}}$.

22 *Proof.* When $\Pi|_{G'}$ is irreducible, then $\Pi|_H$ is irreducible. When $\Pi = i_B^G(\chi)$ is
23 a principal series of reducible restriction to G' , then $\mathrm{char}_R \neq 2$, and $i_B^G(\chi)|_H$ is
24 reducible if and only if $(-1)^{\mathrm{val}} \circ \det \otimes i_B^G(\chi) \simeq i_B^G(\chi)$ if and only if $\chi_1 \chi_2^{-1} = (-1)^{\mathrm{val}}$
25 (notations of [Section 4.3.1](#) and $\chi = \chi_1 \otimes \chi_2$).

26 When Π is cuspidal, if $\Pi = \mathrm{ind}_{ZK_0}^G \lambda$ is induced from ZK_0 , then $\Pi|_H$ is reducible
27 because $ZK_0 \subset H$ and $(\mathrm{ind}_H^G(\mathrm{ind}_{ZK_0}^H \lambda))|_H$ contains $\mathrm{ind}_{ZK_0}^G \lambda$ but is different from it.
28 If Π is not induced from ZK_0 , then with the notations of [Section 4.3.2](#), $\Pi = \mathrm{ind}_J^G \lambda$
29 has positive level, E/F is ramified, and $G = JH$. As $J^1 \subset H$ and the intertwining
30 of $\lambda_1 = \lambda|_{J^1}$ in G is J , then the intertwining of λ_1 in H is $J \cap H$. The vectors λ_1 -
31 equivariant in Π are the functions supported in J . Applying [[Henniart and Vignéras](#)
32 [2022](#), Proposition 6.5 and Corollary 6.6], $\Pi|_H = \mathrm{ind}_{J \cap H}^H \lambda|_{J \cap H}$ is irreducible. \square

33 Assume now that $\Pi|_H$ is reducible. Let Π^+ be the component having a Whittaker
34 model with respect to a character ψ nontrivial on O_F but trivial on P_F , and Π^- the
35 other one.

36 **Theorem 7.9.** *When $\Pi|_H$ is reducible, we have for large j ,*

$$\dim_R (\Pi^+)^{K'_j} = \frac{1}{2} a_\Pi + q^{2m+1} \quad \text{when } j = 2m+1, 2m+2,$$

$$\dim_R (\Pi^-)^{K'_j} = \frac{1}{2} a_\Pi + q^{2m} \quad \text{when } j = 2m, 2m+1.$$

Proof. When $R = \mathbb{C}$, the constant term in the germ expansion of the trace of Π^+ around the identity is $\frac{1}{2}a_\Pi$ by (6-7) and Remark 6.18, and $\dim_R(\Pi^+)^{K'_j} = \frac{1}{2}a_\Pi$ for large j , which depends only on the characters of F for which Π^+ has a Whittaker model. This set does not depend on the choice of Π , as Π^+ has a Whittaker model only with respect to the characters $\psi_{t_1 t_2^{-1}}$ for $\mathrm{diag}(t_1, t_2) \in T \cap H$, that is, ψ_a for $a \in \det H$ where $\psi_a(x) = \psi(ax)$ for $x \in F$. By the usual arguments, the same is true for any R . It suffices to prove the theorem for $\Pi = \mathrm{ind}_{ZK_0}^G \lambda$ where $\lambda|_{K_0}$ is the inflation of a cuspidal representation λ_0 of $\mathrm{GL}_2(k_F)$ (Proposition 7.8). In this special case we will show

$$(7-7) \quad \dim_R(\Pi^+)^{K'_j} = -1 + q^{2m+1} \quad \text{for } j = 2m+1, 2m+2, j \geq 1,$$

$$(7-8) \quad \dim_R(\Pi^-)^{K'_j} = -1 + q^{2m} \quad \text{for } j = 2m, 2m+1, j \geq 1.$$

Note that $a_\Pi = -2$ (Proposition 7.5) and that (7-7) implies (7-8) for $j \geq j_\Pi + 1$, as

$$\dim_R(\Pi^+)^{K'_j} + \dim_R(\Pi^-)^{K'_j} = a_\Pi + (q+1)q^{j-1} \quad \text{for } j \geq j_\Pi + 1.$$

The representation λ_0 is generic, and it follows that $\Pi^+ = \mathrm{ind}_{ZK_0}^H \lambda$ [Bushnell and Henniart 1998, Proposition 1.6]. Let $t = \begin{pmatrix} p_F & 0 \\ 0 & p_F^{-1} \end{pmatrix}$. The group $H = ZK_0G'$ is the disjoint union

$$H = \bigsqcup_{i \geq 0} ZK_0 t^i K'_0.$$

For $i \geq 0$, $j > 0$ and $k \in K'_0$, consider the representation of K'_j on the functions in $\mathrm{ind}_{ZK_0}^H \lambda$ supported on the coset $ZK_0 t^i k K'_j$. That it contains nonzero K'_j -fixed vectors does not depend on the choice of $k \in K'_0$, and it happens if and only if $t^i K'_j t^{-i} \cap ZK_0$ has nonzero fixed vectors in λ . For $j \leq 2i$, $t^i K'_j t^{-i} \cap ZK_0$ contains the lower unipotent subgroup of K_0 and fixes no nonzero vector in λ_0 which is cuspidal. For $j > 2i$, $t^i K'_j t^{-i} \subset K_1$ and K_1 acts trivially on λ_0 . So the space of functions in $\mathrm{ind}_{ZK_0}^H \lambda$ supported in $ZK_0 t^i k K'_j$ and fixed by K'_j has dimension 0 if $j \leq 2i$ and $q-1 = \dim_R \lambda_0$ if $j > 2i$. The number of cosets $ZK_0 t^i k K'_j$ in $ZK_0 t^i K_0$ is the index in K'_0/K'_j of the image of $t^{-i} ZK_0 t^i \cap K'_0$ in K'_0/K'_j . As $K'_{2i} \subset t^{-i} ZK_0 t^i \cap K'_0$, this index does not depend on j when $j > 2i$. It is the index in K'_0 of $t^{-i} ZK_0 t^i \cap K'_0 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K'_0, c \in P_F^{2i} \right\}$. One computes its value to be 1 if $i = 0$ and $(q+1)q^{2i-1}$ if $i > 0$. Consequently for $j > 0$,

$$\dim_R(\Pi^+)^{K'_j} = (q-1) \left(1 + \sum_{0 < i < \frac{1}{2}j} (q+1)q^{2i-1} \right).$$

This is equal to $q-1$ for $j = 1, 2$, to $(q-1)(q^2+q+1) = -1 + q^3$ for $j = 3, 4$, and by induction to $-1 + q^{2m+1}$ for $j = 2m+1, 2m+2$, implying (7-7), hence the theorem.

¹ To prove (7-8) for $j \geq 1$, one can work in the same manner as above using that
² Π^- is the conjugate of Π^+ by $\begin{pmatrix} p_F & 0 \\ 0 & 1 \end{pmatrix}$. We find that $\dim_R(\Pi^-)^{K'_j}$ is equal to 0 for
³ $j = 1$, to $-1 + q^2$ for $j = 2, 3$, and to $-1 + q^{2m}$ for $j = 2m, 2m + 1$, implying
⁴ (7-8). \square

⁵ **Corollary 7.10.** *When $\Pi|_H$ is reducible, we have for large j ,*

$$\dim_R \pi^{K'_j} = \begin{cases} |L(\Pi)|^{-1}(a_\Pi + 2q^j) & \text{for } j \text{ odd and } \pi \subset \Pi^+|_{G'} \text{ or } j \text{ even and } \pi \subset \Pi^-|_{G'}, \\ |L(\Pi)|^{-1}(a_\Pi + 2q^{j-1}) & \text{otherwise.} \end{cases}$$

¹⁰ For the maximal compact group dK_0d^{-1} of G' , the two asymptotics are inter-
¹¹ changed.

¹² We find remarkable that the regularity is obtained when increasing the index j
¹³ by 2, and not by 1 as was the case for the Iwahori or the pro- p Iwahori subgroups.
¹⁴ But that could have been anticipated, given the homogeneity properties of the
¹⁵ nilpotent orbital integrals in H .

¹⁶ **Remark 7.11.** The asymptotics (Theorems 7.6 and 7.7, Corollary 7.10) are likely
¹⁷ valid when $2j \geq c$ where c is the conductor of Π . When $R = \mathbb{C}$ and Π is cuspidal,
¹⁸ this is actually true for $\dim_{\mathbb{C}} \Pi^{K_j}$ and can be derived from the formulas in [Miyauchi
¹⁹ and Yamauchi 2022]. When p is odd, Nevins has completely analyzed the restriction
²⁰ to K'_0 of the irreducible smooth complex representations of G' , and we presume
²¹ that the asymptotics (and for which j it is valid) can be derived from her results
²² [Nevins 2005; 2013].
²³

²⁴ Appendix: The finite group $\mathrm{SL}_2(\mathbb{F}_q)$

²⁵ Let k be a finite field of characteristic p with q elements. In this Appendix we
²⁶ classify irreducible representations of $G = \mathrm{GL}_2(k)$ and of $G' = \mathrm{SL}_2(k)$ over an
²⁷ algebraically closed field R of characteristic 0 or $\ell > 0$, $\ell \neq p$. We could use
²⁸ [Bonnaf   2011] for $\mathrm{char}_R \neq 2$ and [Kleshchev and Tiep 2009] for any R , but we
²⁹ prefer using the same methods as in the main text.
³⁰

³¹ Note that the irreducible R -representations of the finite groups G and G' are
³² defined over the algebraic closure of the prime field, and we can freely pass from R
³³ to any other algebraically closed field of the same characteristic. Thus it is enough
³⁴ to consider the cases where $R = \mathbb{C}$ or $R = \mathbb{F}_\ell^{\mathrm{ac}}$. We also aim to prove the following
³⁵ theorem.

³⁶ **Theorem A.1.** *Any irreducible $\mathbb{F}_\ell^{\mathrm{ac}}$ representation σ of $\mathrm{GL}_2(k)$ is the reduction
³⁷ modulo ℓ of a $\mathbb{Q}_\ell^{\mathrm{ac}}$ -representation $\tilde{\sigma}$ of $\mathrm{GL}_2(k)$ such that $\tilde{\sigma}|_{\mathrm{SL}_2(k)}$ and $\sigma|_{\mathrm{SL}_2(k)}$ have
³⁸ the same length.*

³⁹ ³⁹ *Any irreducible $\mathbb{F}_\ell^{\mathrm{ac}}$ -representation of $\mathrm{SL}_2(k)$ is the reduction modulo ℓ of a
⁴⁰ $\mathbb{Q}_\ell^{\mathrm{ac}}$ -representation of $\mathrm{SL}_2(k)$.*

¹_{11/2} Write Z for the centre of G , B for the upper triangular subgroup of G , and U for its unipotent radical. Let us first recall the known classification of the R -representations of G ; see [Bushnell and Henniart 2002] for $R = \mathbb{C}$ and [Vignéras 1988] for $R = \mathbb{F}_\ell^{\mathrm{ac}}$.

⁵₁₂ The parabolically induced representation $\mathrm{ind}_B^G(1)$ realized by the space of constant functions on $B \backslash G$ contains the trivial character. It also has the trivial character as a quotient, given by the functional λ which sums the values of functions on $B \backslash G$.
⁶₁₃ The map from the trivial subrepresentation to the trivial quotient is multiplication by $q + 1$, so is an isomorphism if ℓ does not divide $q + 1$, and is 0 otherwise. In the first case the quotient $\mathrm{St} = \mathrm{ind}_B^G(1)/1$ is irreducible, in the second case $\mathrm{Ker}(\lambda)/1$ is a cuspidal but not supercuspidal representation σ_0 of G .

¹²₁₄ The irreducible (classes of) R -representations σ of G are:

- ¹³₁₅ (1) The characters $\chi \circ \det$ where χ is an R -character of k^* .
- ¹⁴₁₆ (2) When $q + 1 \neq 0$ in R , the twists $(\chi \circ \det) \otimes \mathrm{St}$ of St by the R -characters $\chi \circ \det$ of G .
- ¹⁷₁₈ (2') When $q + 1 = 0$ in R , the twists $(\chi \circ \det) \otimes \sigma_0$ of σ_0 by the R -characters $\chi \circ \det$ of G .
- ¹⁹₂₀ (3) The irreducible principal series $\mathrm{ind}_B^G(\chi_1 \otimes \chi_2)$, where χ_1 and χ_2 are two distinct R -characters of k^* .
- ²¹₂₃ (4) The supercuspidal representations $\sigma(\theta)$, where θ is an R -character of k_2^* , $\theta \neq \theta^q$, where k_2/k is a quadratic extension.

²⁴₂₅ The only isomorphisms between those representations are given by exchanging χ_1 and χ_2 in (3), as well as θ and θ^q in (4).

²⁶₂₇ Twisting by an R -character $\chi \circ \det$ of G has the obvious effect, for example sending θ to $(\chi \circ N)\theta$ where $N(x) = x^{q+1}$ for $x \in k_2^*$ in (4).

²⁸₂₉ Any irreducible R -representation τ of G' is contained in the restriction $\sigma|_{G'}$ to G' of an irreducible R -representation σ of G . The representation $\sigma|_{G'}$ is semisimple of multiplicity 1 and its irreducible components are G -conjugate. The stabilizer of τ contains ZG' and G/ZG' is isomorphic to $k^*/(k^*)^2$. We have $|k^*/(k^*)^2| = 1$ when $p = 2$ and $|k^*/(k^*)^2| = 2$ when p is odd. Therefore $\sigma|_{G'}$ is irreducible when $p = 2$ and $\sigma|_{G'}$ has length 1 or 2 when p is odd.

³⁴₃₅ When $\mathrm{char}_R \neq 2$, the length $\lg(\sigma|_{G'})$ of $\sigma|_{G'}$ is the number of R -characters χ of k^* such that $(\chi \circ \det) \otimes \sigma \simeq \sigma$, so

$$(A-1) \quad \lg(\sigma|_{G'}) = \begin{cases} 2 & \text{in case (3) if } (\chi_1/\chi_2)^2 = 1 \text{ and in case (4) if } (\theta^{q-1})^2 = 1, \\ 1 & \text{otherwise.} \end{cases}$$

³⁹_{39 1/2} The restrictions $\sigma_1|_{G'}$, $\sigma_2|_{G'}$ of two irreducible representations σ_1 , σ_2 of G are isomorphic if and only if σ_1 , σ_2 are twists of each other by an R -character of G .

¹ Otherwise $\sigma|_{G'}$, $\sigma_2|_{G'}$ are disjoint. So, we have a classification of the (isomorphism
² classes of) irreducible representations of G' when $\text{char}_R \neq 2$.

³ **Remark A.2.** The restriction to B of a cuspidal representation of G is the Kirillov
⁴ representation κ of B (the irreducible R -representation of B induced by any non-
⁵ trivial R -character of U). The restriction of κ to U is the direct sum of all nontrivial
⁶ R -characters of U . The group B acts transitively on such characters, whereas
⁷ $B' = B \cap G'$ acts with two orbits. It follows that the restriction of κ to B' has two
⁸ inequivalent irreducible components. Consequently a cuspidal representation of G
⁹ restricts to G' with length 1 or 2.

¹⁰ Let ℓ be an odd prime number different from p . Let us consider the reduction
¹¹ modulo ℓ of the previous irreducibles σ over $\mathbb{Q}_\ell^{\text{ac}}$ (since G is finite, they are integral).
¹² For an integral $\mathbb{Q}_\ell^{\text{ac}}$ -character χ (with values in $\mathbb{Z}_\ell^{\text{ac}}$), let $\bar{\chi}$ denote its reduction
¹³ modulo ℓ . Reduction modulo ℓ is compatible with twisting by a $\mathbb{Q}_\ell^{\text{ac}}$ -character
¹⁴ $\chi \circ \det$ in the sense that the reduction of $(\chi \circ \det) \otimes \sigma$ is the twist by $\bar{\chi} \circ \det$ of the
¹⁵ reduction of σ .

¹⁶ (1) The trivial $\mathbb{Q}_\ell^{\text{ac}}$ -character of G reduces to the trivial $\mathbb{F}_\ell^{\text{ac}}$ -character.
¹⁷ (2) When ℓ does not divide $q + 1$, the Steinberg $\mathbb{Q}_\ell^{\text{ac}}$ -representation reduces to the
¹⁸ Steinberg $\mathbb{F}_\ell^{\text{ac}}$ -representation.
¹⁹ (2') When ℓ divides $q + 1$, the Steinberg $\mathbb{Q}_\ell^{\text{ac}}$ -representation reduces to a length 2
²⁰ representation with subrepresentation σ_0 and trivial quotient (for the natural integral
²¹ structure).

²² (3) The irreducible principal series $\text{ind}_B^G(\chi_1 \otimes \chi_2)$ reduces to the irreducible principal
²³ series $\text{ind}_B^G(\bar{\chi}_1 \otimes \bar{\chi}_2)$ when $\bar{\chi}_1 \neq \bar{\chi}_2$, and to $(\bar{\chi}_1 \circ \det) \otimes \text{ind}_B^G(1)$ (of length 2 when
²⁴ ℓ does not divide $q + 1$, and length 3 otherwise) when $\bar{\chi}_1 = \bar{\chi}_2$ (for the natural
²⁵ integral structure).
²⁶ (4) The supercuspidal $\mathbb{Q}_\ell^{\text{ac}}$ -representation $\sigma(\theta)$ reduces to the supercuspidal $\mathbb{F}_\ell^{\text{ac}}$ -
²⁷ representation $\sigma(\bar{\theta})$ if $\bar{\theta} \neq (\bar{\theta})^q = \bar{\theta}^q$, and otherwise (which can happen only if ℓ
²⁸ divides $q + 1$) to $(\eta \circ \det) \otimes \sigma_0$ where η is the $\mathbb{F}_\ell^{\text{ac}}$ -character of \mathbb{F}_q^* such that $\eta \circ N = \bar{\theta}$.

²⁹ A given $\mathbb{F}_\ell^{\text{ac}}$ -character of k^* or k_2^* has a unique lift to a $\mathbb{Z}_\ell^{\text{ac}}$ -character of the same
³⁰ order, and from the above it is clear that any irreducible $\mathbb{F}_\ell^{\text{ac}}$ -representation σ of G
³¹ lifts to a $\mathbb{Q}_\ell^{\text{ac}}$ -representation. Moreover, one can choose a lift of σ with the same
³² length on restriction to G' , thus proving the theorem when ℓ is odd.

³³ Let us finally assume $\text{char}_R = 2$. Then p is odd and $q + 1 = 0$ in R . Write
³⁴ $q - 1 = 2^s m$ with a positive integer s and an odd integer m . The number of irreducible
³⁵ R -representations of G (resp. ZG') is the number of conjugacy classes in G (resp.
³⁶ ZG') of elements of odd order. Let $g \in G$ be of odd order. Then $\det g \in k^*$ has
³⁷ odd order so $\det g \in (k^*)^2$ and $g \in ZG'$. The G -conjugacy class of g is equal to
³⁸ its ZG' -conjugacy class unless the G -centralizer of g is entirely in ZG' . In that
³⁹
⁴⁰

¹_{1/2}²₂³₃⁴₄⁵₅⁶₆ exceptional case, the G -equivalence class of g is the union of two ZG' -equivalence classes. This happens only when $g = zu$ where $z \in Z$ (of odd order) and $u \neq 1$ is unipotent. That shows that m is the number of ZG' -conjugacy classes of elements of odd order minus the number of G -conjugacies of such elements. Consequently m is the number of irreducible R -representations of ZG' minus the number of irreducible R -representations of G .

⁷₇⁸₈⁹₉¹⁰₁₀¹¹₁₁¹²₁₂¹³₁₃ Consider first $\sigma(\theta)$ for a $\mathbb{Q}_2^{\mathrm{ac}}$ -character θ of k_2^* of order 2^{s+1} . Certainly $\bar{\theta}$ is trivial so that the reduction of $\sigma(\theta)$ modulo 2 is σ_0 . But $\ell(\sigma(\theta)|_{G'}) = 2$ by (A-1), from which it follows that $\ell(\sigma_0|_{G'}) \geq 2$. We have seen however that $\ell(\sigma_0|_{G'}) \leq 2$ (Remark A.2), so $\ell(\sigma_0|_{G'}) = 2$, and each irreducible component of $\sigma_0|_{G'}$ lifts to an irreducible component of $\sigma(\theta)|_{G'}$. The $\mathbb{F}_2^{\mathrm{ac}}$ -characters χ of k^* have odd order, their number is m , and the representations $(\chi \circ \det) \otimes \sigma_0$ are not equivalent (the order of χ is odd). We deduce:

¹⁴₁₄¹⁵₁₅ **Lemma A.3.** *All irreducible $\mathbb{F}_2^{\mathrm{ac}}$ -representations of G restrict irreducibly to G' except the twists of σ_0 by characters.*

¹⁶₁₆¹⁷₁₇ *The reduction modulo 2 of any supercuspidal $\mathbb{Q}_2^{\mathrm{ac}}$ -representation of G' is irreducible.*

¹⁸₁₈¹⁹₁₉²⁰₂₀ We deduce the classification of irreducible R -representations of G' when $\mathrm{char}_R = 2$ and Theorem A.1 when $\ell = 2$.

^{20^{1/2}}_{20^{1/2}}²¹₂₁ **Remark A.4.** For use in the main text we summarize:

²²₂₂²³₂₃²⁴₂₄ (a) When $q + 1 = 0$ in R , $\sigma_0|_{\mathrm{SL}_2(k)}$ is irreducible if $\mathrm{char}_R \neq 2$, and has length 2 if $\mathrm{char}_R = 2$.

²⁵₂₅²⁶₂₆ (b) In (4), let $b \in k_2$ be an element of order $q + 1$. We have $\theta \neq \theta^q \iff \theta(b) \neq 1$ and $\sigma(\theta)|_{\mathrm{SL}_2(k)}$ is irreducible if $\theta^2(b) \neq 1$, and has length 2 if $\theta^2(b) = 1$.

²⁷₂₇²⁸₂₈ When $\mathrm{char}_R = 2$, or when $p = 2$, hence $(2, q + 1) = 1$, we have $\theta(b) \neq 1 \iff \theta(b^2) \neq 1$, hence $\sigma(\theta)|_{\mathrm{SL}_2(k)}$ is irreducible for all $\theta \neq \theta^q$.

²⁹₂₉³⁰₃₀³¹₃₁³²₃₂ When $\mathrm{char}_R \neq 2$ and p is odd, there exists θ such that $\theta(b) \neq 1$, $\theta(b)^2 = 1$, unique modulo the twist by a character χ such that $\chi(b) = 1$. The corresponding representations $\sigma(\theta)$ of G are twists of each other by a character of G . Their restrictions to $\mathrm{SL}_2(k)$ are isomorphic and reducible of length 2.

Acknowledgements

³⁶₃₆³⁷₃₇³⁸₃₈³⁹₃₉⁴⁰₄₀ We thank Anne-Marie Aubert, Don Blasius, Cédric Bonnafé, Jean-François Dat, Jean-Pierre Labesse, Bertrand Lemaire, Monica Nevins, Dipendra Prasad, and Akshay Venkatesh, for helpful communications. Special thanks are due to Peiyi Cui, for conversations and correspondences. Some arguments using types in Section 4.3.2 are due to her, she called our attention to the study of the quotient in (4-21), and

¹ shared her results on principal series. She also kindly gave us references to her
^{11/2} works [Cui 2023; Cui et al. 2024].

References

- ³ [Abdellatif 2011] R. Abdellatif, *Autour des représentations modulo p des groupes réductifs p -adiques de rang 1*, Ph.D. Thesis, Université Paris-Sud XI, 2011, available at <https://theses.hal.science/tel-00651063>.
- ⁸ [Assem 1994] M. Assem, “The Fourier transform and some character formulae for p -adic SL_ℓ , ℓ a prime”, *Amer. J. Math.* **116**:6 (1994), 1433–1467. [MR](#) [Zbl](#)
- ¹⁰ [Aubert and Plymen 2024] A.-M. Aubert and R. Plymen, “Endoscopic character identities for depth-zero supercuspidal representations of SL_2 ”, preprint, 2024. [arXiv 2410.20183v2](#)
- ¹² [Aubert et al. 2016] A.-M. Aubert, P. Baum, R. Plymen, and M. Solleveld, “The local Langlands correspondence for inner forms of SL_n ”, *Res. Math. Sci.* **3** (2016), art. id. 32. [MR](#) [Zbl](#)
- ¹³ [Aubert et al. 2017] A.-M. Aubert, S. Mendes, R. Plymen, and M. Solleveld, “On L -packets and depth for $\mathrm{SL}_2(K)$ and its inner form”, *Int. J. Number Theory* **13**:10 (2017), 2545–2568. [MR](#) [Zbl](#)
- ¹⁵ [Bernstein and Zelevinsky 1976] I. N. Bernstein and A. V. Zelevinsky, “Representations of the group $\mathrm{GL}(n, F)$, where F is a local non-Archimedean field”, *Uspehi Mat. Nauk* **31**:3(189) (1976), 5–70. In Russian; translated in *Russ. Math. Surv.* **31**:3 (1976), 1–68. [MR](#) [Zbl](#)
- ¹⁸ [Bonnafé 2011] C. Bonnafé, *Representations of $\mathrm{SL}_2(\mathbb{F}_q)$* , Algebra and Applications **13**, Springer, London, 2011. [MR](#) [Zbl](#)
- ²⁰ [Borel 1991] A. Borel, *Linear algebraic groups*, 2nd ed., Graduate Texts in Mathematics **126**, Springer, New York, 1991. [MR](#) [Zbl](#)
- ²² [Borel and Tits 1972] A. Borel and J. Tits, “Compléments à l’article “Groupes réductifs””, *Inst. Hautes Études Sci. Publ. Math.* **41** (1972), 253–276. [MR](#) [Zbl](#)
- ²⁴ [Bourbaki 2012] N. Bourbaki, *Algèbre, chapitre 8: modules et anneaux semi-simples*, revised 2nd ed., Springer, Berlin, 2012. [MR](#) [Zbl](#)
- ²⁶ [Bushnell and Henniart 1998] C. J. Bushnell and G. Henniart, “Supercuspidal representations of GL_n : explicit Whittaker functions”, *J. Algebra* **209**:1 (1998), 270–287. [MR](#) [Zbl](#)
- ²⁷ [Bushnell and Henniart 2002] C. J. Bushnell and G. Henniart, “On the derived subgroups of certain unipotent subgroups of reductive groups over infinite fields”, *Transform. Groups* **7**:3 (2002), 211–230. [MR](#) [Zbl](#)
- ³⁰ [Bushnell and Henniart 2006] C. J. Bushnell and G. Henniart, *The local Langlands conjecture for $\mathrm{GL}(2)$* , Grundlehren Math. Wissen. **335**, Springer, Berlin, 2006. [MR](#) [Zbl](#)
- ³² [Bushnell and Kutzko 1994] C. J. Bushnell and P. C. Kutzko, “The admissible dual of $\mathrm{SL}(N)$, II”, *Proc. London Math. Soc.* (3) **68**:2 (1994), 317–379. [MR](#) [Zbl](#)
- ³⁴ [Cui 2023] P. Cui, “ ℓ -modular representations of p -adic groups $\mathrm{SL}_n(F)$: maximal simple k -types”, preprint, 2023. [arXiv 2012.07492v2](#)
- ³⁶ [Cui et al. 2024] P. Cui, T. Lanard, and H. Lu, “Modulo ℓ distinction problems”, *Compos. Math.* **160**:10 (2024), 2285–2321. [MR](#) [Zbl](#)
- ³⁷ [Dat 2009] J.-F. Dat, “Finitude pour les représentations lisses de groupes p -adiques”, *J. Inst. Math. Jussieu* **8**:2 (2009), 261–333. [MR](#) [Zbl](#)
- ³⁹ [Dat et al. 2024] J.-F. Dat, D. Helm, R. Kurinczuk, and G. Moss, “Finiteness for Hecke algebras of p -adic groups”, *J. Amer. Math. Soc.* **37**:3 (2024), 929–949. [MR](#) [Zbl](#)

¹ [Feng 2023] T. Feng, “Modular functoriality in the Local Langlands Correspondence”, preprint, 2023. [arXiv 2312.12542](#)

² [Gelbart and Knapp 1982] S. S. Gelbart and A. W. Knapp, “ L -indistinguishability and R groups for the special linear group”, *Adv. in Math.* **43**:2 (1982), 101–121. [MR](#) [Zbl](#)

³ [Henniart 2001] G. Henniart, “Représentations des groupes réductifs p -adiques et de leurs sous-groupes distingués cocompacts”, *J. Algebra* **236**:1 (2001), 236–245. [MR](#) [Zbl](#)

⁴ [Henniart and Vignéras 2019] G. Henniart and M.-F. Vignéras, “Representations of a p -adic group in characteristic p ”, pp. 171–210 in *Representations of reductive groups*, edited by M. Nevin and P. E. Trapa, Proc. Sympos. Pure Math. **101**, Amer. Math. Soc., Providence, RI, 2019. [MR](#) [Zbl](#)

⁵ [Henniart and Vignéras 2022] G. Henniart and M.-F. Vignéras, “Representations of a reductive p -adic group in characteristic distinct from p ”, *Tunis. J. Math.* **4**:2 (2022), 249–305. [MR](#) [Zbl](#)

⁶ [Henniart and Vignéras 2024] G. Henniart and M.-F. Vignéras, “Representations of $\mathrm{GL}_n(D)$ near the identity”, *Proc. Lond. Math. Soc.* (3) **129**:6 (2024), art. id. e70000. [MR](#) [Zbl](#)

⁷ [Hiraga and Saito 2012] K. Hiraga and H. Saito, *On L -packets for inner forms of SL_n* , Mem. Amer. Math. Soc. **1013**, Amer. Math. Soc., Providence, RI, 2012. [MR](#) [Zbl](#)

⁸ [Kleshchev and Tiep 2009] A. S. Kleshchev and P. H. Tiep, “Representations of finite special linear groups in non-defining characteristic”, *Adv. Math.* **220**:2 (2009), 478–504. [MR](#) [Zbl](#)

⁹ [Kutzko and Pantoja 1991] P. Kutzko and J. Pantoja, “The restriction to SL_2 of a supercuspidal representation of GL_2 ”, *Compositio Math.* **79**:2 (1991), 139–155. [MR](#) [Zbl](#)

¹⁰ [Labesse and Langlands 1979] J.-P. Labesse and R. P. Langlands, “ L -indistinguishability for $\mathrm{SL}(2)$ ”, *Canadian J. Math.* **31**:4 (1979), 726–785. [MR](#) [Zbl](#)

¹¹ [Labesse and Schwermer 2019] J.-P. Labesse and J. Schwermer, “Central morphisms and cuspidal automorphic representations”, *J. Number Theory* **205** (2019), 170–193. [MR](#) [Zbl](#)

¹² [Lemaire 2004] B. Lemaire, “Intégrabilité locale des caractères tordus de $\mathrm{GL}_n(D)$ ”, *J. Reine Angew. Math.* **566** (2004), 1–39. [MR](#) [Zbl](#)

¹³ [Lemaire 2005] B. Lemaire, “Intégrabilité locale des caractères de $\mathrm{SL}_n(D)$ ”, *Pacific J. Math.* **222**:1 (2005), 69–131. [MR](#) [Zbl](#)

¹⁴ [Luo and Chau 2024] Z. Luo and N. B. Chau, “Nonabelian Fourier kernels on SL_2 and GL_2 ”, preprint, 2024. [arXiv 2409.14696](#)

¹⁵ [Miyauchi and Yamauchi 2022] M. Miyauchi and T. Yamauchi, “A remark on conductor, depth and principal congruence subgroups”, *J. Algebra* **592** (2022), 424–434. [MR](#) [Zbl](#)

¹⁶ [Mœglin and Waldspurger 1987] C. Mœglin and J.-L. Waldspurger, “Modèles de Whittaker dégénérés pour des groupes p -adiques”, *Math. Z.* **196**:3 (1987), 427–452. [MR](#) [Zbl](#)

¹⁷ [Neukirch 1999] J. Neukirch, *Algebraic number theory*, Grundlehren Math. Wissen. **322**, Springer, Berlin, 1999. [MR](#) [Zbl](#)

¹⁸ [Nevins 2005] M. Nevins, “Branching rules for principal series representations of $\mathrm{SL}(2)$ over a p -adic field”, *Canad. J. Math.* **57**:3 (2005), 648–672. [MR](#) [Zbl](#)

¹⁹ [Nevins 2013] M. Nevins, “Branching rules for supercuspidal representations of $\mathrm{SL}_2(k)$, for k a p -adic field”, *J. Algebra* **377** (2013), 204–231. [MR](#) [Zbl](#)

²⁰ [Nevins 2024] M. Nevins, “The local character expansion as branching rules: nilpotent cones and the case of $\mathrm{SL}(2)$ ”, *Pacific J. Math.* **329**:2 (2024), 259–301. [MR](#) [Zbl](#)

²¹ [Platonov and Rapinchuk 1994] V. Platonov and A. Rapinchuk, *Algebraic groups and number theory*, Pure and Applied Mathematics **139**, Academic Press, Boston, MA, 1994. [MR](#) [Zbl](#)

¹ [Rodier 1975] F. Rodier, “Modèle de Whittaker et caractères de représentations”, pp. 151–171 in ² *Non-commutative harmonic analysis*, edited by J. Carmona et al., Lecture Notes in Mathematics **466**, Springer, 1975. [Zbl](#)

³ [Serre 1977] J.-P. Serre, “Modular forms of weight one and Galois representations”, pp. 193–268 in ⁴ *Algebraic number fields: L-functions and Galois properties* (Durham, 1975), edited by A. Fröhlich, ⁵ Academic Press, 1977. [MR](#) [Zbl](#)

⁶ [Shelstad 1979] D. Shelstad, “Notes on L -indistinguishability”, pp. 193–203 in *Automorphic forms, representations and L-functions* (Corvallis, OR, 1977), edited by A. Borel and W. Casselman, Proc. Sympos. Pure Math. **XXXIII**, Amer. Math. Soc., Providence, RI, 1979. [MR](#) [Zbl](#)

⁷ [Silberger 1979] A. J. Silberger, “Isogeny restrictions of irreducible admissible representations are ⁸ finite direct sums of irreducible admissible representations”, *Proc. Amer. Math. Soc.* **73**:2 (1979), ⁹ 263–264. [MR](#) [Zbl](#)

¹⁰ [Springer 1998] T. A. Springer, *Linear algebraic groups*, 2nd ed., Progress in Mathematics **9**, Birkhäuser, Boston, MA, 1998. [MR](#) [Zbl](#)

¹¹ [Tadić 1992] M. Tadić, “Notes on representations of non-archimedean $SL(n)$ ”, *Pacific J. Math.* **152**:2 (1992), 375–396. [MR](#) [Zbl](#)

¹² [Treumann and Venkatesh 2016] D. Treumann and A. Venkatesh, “ Functoriality, Smith theory, and ¹³ the Brauer homomorphism”, *Ann. of Math.* (2) **183**:1 (2016), 177–228. [MR](#) [Zbl](#)

¹⁴ [Varma 2014] S. Varma, “On a result of Moeglin and Waldspurger in residual characteristic 2”, *Math. Z.* **277**:3–4 (2014), 1027–1048. [MR](#) [Zbl](#)

¹⁵ [Vignéras 1988] M.-F. Vignéras, “Représentations modulaires de $GL(2, \mathbb{F})$ en caractéristique ℓ , ¹⁶ \mathbb{F} corps fini de caractéristique $p \neq \ell$ ”, *C. R. Acad. Sci. Paris Sér. I Math.* **306**:11 (1988), 451–454. [MR](#) [Zbl](#)

¹⁷ [Vignéras 1989] M.-F. Vignéras, “Représentations modulaires de $GL(2, F)$ en caractéristique ℓ , ¹⁸ F corps p -adique, $p \neq \ell$ ”, *Compositio Math.* **72**:1 (1989), 33–66. [MR](#) [Zbl](#)

¹⁹ [Vignéras 1996] M.-F. Vignéras, *Représentations ℓ -modulaires d'un groupe réductif p -adique avec ²⁰ $\ell \neq p$* , Progress in Mathematics **137**, Birkhäuser, Boston, MA, 1996. [MR](#) [Zbl](#)

²¹ [Vignéras 1997] M.-F. Vignéras, “À propos d'une conjecture de Langlands modulaire”, pp. 415–452 ²² in *Finite reductive groups: related structures and representations* (Luminy, 1994), edited by M. Cabanes, Progr. Math. **141**, Birkhäuser, Boston, MA, 1997. [MR](#) [Zbl](#)

²³ [Vignéras 2001] M.-F. Vignéras, “Correspondance de Langlands semi-simple pour $GL(n, F)$ modulo ²⁴ $\ell \neq p$ ”, *Invent. Math.* **144**:1 (2001), 177–223. [MR](#) [Zbl](#)

²⁵ [Vignéras 2023] M.-F. Vignéras, “Representations of p -adic groups over commutative rings”, pp. ²⁶ 332–374 in *International Congress of Mathematicians, Vol. 1: Prize lectures*, edited by D. Beliaev ²⁷ and S. Smirnov, EMS Press, Berlin, 2023. [MR](#) [Zbl](#)

²⁸ Received April 9, 2024. Revised January 3, 2025.

²⁹ ³⁰ ³¹ ³² ³³ ³⁴ GUY HENNIART ³⁵ LABORATOIRE DE MATHÉMATIQUES D'ORSAY ³⁶ UNIVERSITÉ PARIS-SACLAY ³⁷ ORSAY ³⁸ FRANCE ³⁹ ⁴⁰ guy.henniart@math.u-psud.fr ³⁴ MARIE-FRANCE VIGNÉRAS ³⁵ INSTITUT DE MATHÉMATIQUES DE JUSSIEU ³⁶ UNIVERSITÉ PARIS CITÉ ³⁷ PARIS ³⁸ FRANCE ³⁹ ⁴⁰ marie-france.vigneras@imj-prg.fr