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REPRESENTATIONS OF SL,(F)

GUY HENNIART AND MARIE-FRANCE VIGNERAS

Let p be a prime number, F a nonarchimedean local field with residue field
kp of characteristic p, and R an algebraically closed field of characteristic
different from p. We investigate the irreducible smooth R-representations
of SL,(F). The components of an irreducible smooth R-representation IT of
GL;,(F) restricted to SL, (F) form an L-packet L (IT). We use the classification
of such II to determine the cardinality of L(II), which is 1, 2 or 4. When
p =2 we have to use the Langlands correspondence for GL,(F). When £ is
a prime number distinct from p and R = Q}°, we determine the behaviour
of an integral L-packet under reduction modulo £. We prove a Langlands
correspondence for SL,(F), and an enhanced one when the characteristic
of R is not 2. Finally, pursuing a theme of Henniart and Vignéras (2024),
which studied the case of inner forms of GL,, (F), we show that near identity a
nontrivial irreducible smooth R-representation z of SL,(F) is, up to a finite-
dimensional representation, isomorphic to a sum of 1, 2 or 4 representations
in an L-packet of size 4 (when p is odd there is only one such L-packet). We
show that for = in an L-packet of size r, and a sufficiently large integer j,
the dimension of the invariants of & by the j-th congruence subgroup of an
Iwahori or a pro-p Iwahori subgroup of SL,(F) is equal to a, + 2r;'|kr|’,
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25 with a, = —% if p is odd and r, = 4, otherwise a, is an integer. We also study
26 the fixed points by the j-th congruence subgroups of the maximal compact
o7 subgroups of SL,(F) where the answer depends on the parity of j.
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1 1. Introduction
1Y/—
2 1.1. Let Fbea locally compact nonarchimedean field with residue characteristic p
> and R an algebraically closed field of characteristic charg # p. We investigate the
~*_irreducible smooth R-representations of SL,(F). Although when R = C and p is
> 0dd the first investigations appeared in the 1960s, in work of Gelfand—Graev and
°_ Shalika, the study of the modular case (i.e., when charg > 0) started only recently
- [Cui 2023; Cui et al. 2024] when chary 72 and charg # 2. Here we give a complete
% treatment and we make no assumption on p, charg, charg, apart from charg # p.
% As Labesse and Langlands did in the 1970s when R = C and charg = 0, we
9 use the restriction of smooth R -representations from G = GL,(F) to G’ = SLy(F).
2 We prove that an irreducible smooth R-representation of G’ extends to a smooth
= representation of an open subgroup H of G containing ZG’ where Z is the centre
2 of G, and appears in the restriction to G’ of a smooth irreducible R-representation
M of G, unique up to isomorphism and twist by smooth R-characters of G/G’. When
2 charp # 2 we can simply take H = ZG’, but not when charr = 2 because the
il compact quotient G/ZG’ is infinite. Those results follow from general facts about
s R-representations, which appear in Section 2. They apply to more general reductive
i groups over F', as we show in Section 3.
In Section 4, using Whittaker models, we show that the restriction to G’ of an
201/23 irreducible smooth R-representation IT of G is semisimple and has finite length and
2 multiplicity one. Its irreducible components form an L-packet L(IT). An L-packet
= L(T0) is called cuspidal when IT is cuspidal, supercuspidal when IT is supercuspidal,
#_of level 0 if TI can be chosen to have level 0 (that is, having nonzero fixed vectors

2 under 1 + M>(Pr)), and of positive level otherwise.
25

> Theorem 1.1. The size of an L-packet is 1,2 or 4.

27 When p is odd that follows rather easily from |G/ZG’| = 4, but it is also true
28 when p = 2, in which case the proof is completed only in Proposition 4.22, and
20 uses the Langlands R-correspondence for G, which we recall in Section 4.4.

30 Proposition 1.2 (Corollary 4.29, Proposition 4.22). The L-packets of size 4 are
31 cuspidal and in bijection with the biquadratic separable extensions of F.

% The bijection is described in the proof. When p # 2 there is just one L-packet
" of size 4 and it has level 0. When p = 2 the L-packets of size 4 have positive level,
4
o their number is finite if chary = 0, but there are infinitely many if charp = 2.
5

56 Proposition 1.3 (Proposition 4.7). When p is odd, the cuspidal L-packets are not
5, singletons. When p = 2, the cuspidal L-packets of level 0 have size 2.

g Proposition 1.4 (Proposition 4.28). There is a cuspidal nonsupercuspidal L-packet
39 ifandonlyif g +1=0in R. It is unique of level 0, and size 4 when charg = 2, and

39Y/5
40 size 2 when charg # 2.
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1 From the Langlands R-correspondence for GL,(F), we get a bijection from
~, the set of L-packets to the set of conjugacy classes of Deligne morphisms of Wg
3 into PGL,(R), the dual group of SL; over R. When charp # 2, we even get an
~, enhanced Langlands correspondence, in that we parametrize the elements in an
5 L-packet L(IT) by the characters of the group Sy of connected components of the
s centralizer Cpy of the image of the corresponding Deligne morphism in PGL,(R).
2 When charg =2, Cpy is always connected and the supercuspidal L-packets are not
g singletons. We will determine explicitly Cry for each IT.

9 Theorem 1.5 (Theorem 5.2"). Let I1 be an irreducible smooth R-representation
10 of GLy(F).

11 When charg # 2, the component group St of Cry is isomorphic to {1}, Z /27 or
12 727 x7]27.

13 When charg = 2, Cry is connected for each T1, but the cardinality of the L-packet
14 L(I) is

15

o 1 if T1 is not cuspidal,

17
E o 4 if Tl is cuspidal not supercuspidal.

o 2 if Tl is supercuspidal,

1 When L(IT) is not a singleton, we take as a base point the element having a

2’ nonzero Whittaker model with respect to a nontrivial smooth R-character of F.

2! When charg # 2, the theorem gives a bijection
22

23 t: L(IT) — Irrg (Sp)

2 respecting the base points (the trivial representation in Irrg (Sp)). It is unique when
% |L(IT)| = 2. There are partial results on the uniqueness of ¢ when |L(IT)| = 4.
% Under the restriction p =2, chary =0, for the complex L-packet of size 4 (unique,
" of level 0), there is a unique bijection compatible with the endoscopic character
8 identities [Aubert and Plymen 2024].

> When charg =2, a “linkage” between irreducible smooth R-representations of
3% G and G’ is introduced in [Treumann and Venkatesh 2016]. In §5.0.3 we interpret

3L this notion in terms of dual groups, thus proving their conjectures in a special case.
. Let £ # p be a prime number, and Q% an algebraic closure of @, with residue
3 field F¢. Each irreducible smooth Fi°-representation of GL;(F) lifts to a smooth

fall Q¥¢-representation. We show that this remains true for SL,(F).
35
. Proposition 1.6 (Corollary 4.24, Proposition 4.30). Each irreducible smooth Fy°-

5, representation 7 of SLy(F) is the reduction modulo £ of an integral irreducible

38

39 'When R = C this was already established by Gelbart and Knapp [1982, §4] assuming that it
40 could be done for GL,, (F).

smooth Qi°-representation T of SL,(F).
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1 An equivalent formulation is that each irreducible smooth F°-representation IT
5 of GL,(F) is the reduction modulo £ of an integral irreducible smooth Qj°-repre-
5 sentation IT of GL,(F') such that

: L] = [L(D).

The reduction modulo £ of each integral supercuspidal Q°-representation of
GL,(F) is irreducible, but this is not true for SLy(F). Each supercuspidal Q3°-
representation 77 of SL(F) is integral and we determine all the cases of reducibility.

9 We choose a supercuspidal Qf°-representation I of GL,(F) such that 77 € L(ﬁ)
10 and denote by o7 the irreducible 2-dimensional Q¥°-representation of Wr image
E of T by the local Langlands correspondence.

5
6
7
)

% Proposition 1.7 (Corollary 4.24). The reduction modulo € of w has length < 2. The
u length is 2 if and only if

15 p=2 of=indy &, EB)#1. EB)" =1,

© ¢ divides g +1,  the order of (E*J&)|14p, is 2,

17

E where b is a root of unity of order q + 1 in a quadratic unramified extension E/ F,
19 £ is a smooth Qi -character of E* (of Wg via class field theory), and T € Gal(E / F)
20 is not trivial.

z Finally we study for G’ the problem that we treated in [Henniart and Vignéras
Y 2024] for inner forms of GL,(F). An infinite-dimensional irreducible smooth
n R-representation IT of G = GL,(F) is isomorphic near the identity to ar 1 +indg 1
. where ar is an integer (its value is given in Proposition 7.5) and indg 1 is the usual
o principal series. For an infinite-dimensional irreducible smooth R-representation 7
e of G’, we show that up to finitely many trivial R-characters, 7 is isomorphic near
o the identity to the sum of 1, 2 or 4 elements of an L-packet of size 4.

20 Theorem 1.8 (Theorem 6.17). Let 7w be an infinite-dimensional irreducible and
30 smooth R-representation of G'. There are irreducible smooth R-representations
31 {t1, T, 13, T4} of G’ forming an L-packet, and an integer ay, such that on a small
32 enough compact open subgroup K of G' we have

33 4/r

3 ]T:aol—{—Z‘L'i,
35

36

- where r is the size of the L-packet containing .

g For R = C and p odd, Monica Nevins has similar results which are more precise
39 in that the subgroup K is large. We show that her results carry over to any R

w0 (§6.2.8).
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1 As in [Henniart and Vignéras 2024] we first deal with the case where R = C,
, using a germ expansion near the identity a la Harish-Chandra, in terms of nilpotent
5 orbital integrals. However, when chary = 2, such an expansion is not available,
4 so we work instead with a complex representation 7 of an open subgroup H of
"5 G containing ZG’. For such a group a germ expansion has been obtained by
s Lemaire [2004]. Adapting [Mceglin and Waldspurger 1987] and [Varma 2014] (who
~, assumed chary = 0) we compute the germ expansion in terms of the dimensions
g of the different Whittaker models of 7, and express it in terms of L-packets of
o size 4. Theorem 1.8 easily transfers to any R with charg =0, in particular R = Q.
10 From our complete classification of irreducible smooth R-representations of G/,
11 and in particular that the F{°-representations of G’ lift to characteristic 0 when
12 £ # p (Proposition 1.6), we get Theorem 1.8 for R = FJ° and transfer it to any R
13 with charg = £.

14 We think that Theorem 1.8 will extend in the same way to inner forms of SL,,
15 using the work of [Hiraga and Saito 2012]. We expect that if charr =0 and R =C,
16 a variant of the theorem is true for any connected reductive F-group H, because
17 of the Harish-Chandra germ expansion and of the work of Mceglin—Waldspurger
15 and Varma. But when £ # p, it is not known in general if virtual finite length
10 Fif-representations lift to characteristic 0 and it is unlikely that cuspidal irreducible
20 [Fi°-representations lift. The reason is that the first point has a positive answer when
51 G is a finite group and the answer to the second is negative in general for finite
2> reductive groups. When chary = p and R = C, we have to face the problem that
»3 a germ expansion in terms of nilpotent orbital integrals might not exist. It is not
54 clear how to define such integrals for bad primes, and sometimes the number of
»5 unipotent orbits in H and of nilpotent orbits in Lie(H) are not the same, even over
26 an algebraic closure of F. Given our investigation of the case SL,(F'), which uses
,7 L-indistinguishability, one may wonder about the role of endoscopy and stability in
.5 analogous results for a general H.

.9 The dimension of the invariants by the j-th congruence subgroup of a Moy—
30 Prasad group of an infinite-dimensional irreducible smooth R-representation of G
5, for j large, is the value at ¢/ of a polynomial of degree 1 and integral coefficients.
3> We will prove a similar result for G’ but the coefficients of the polynomial are not
33 always integral and the polynomial may depend on the parity of ;.

34 Let IT be an infinite-dimensional irreducible smooth R-representation of G and
35 7 be an element of L(IT). Around the identity,

o M ~apl+ind§ 1

3L

38 for an integer ar and the usual principal series indg 1. Let OF denote the ring of
39 integers of F, K’ =SL,(Op), I’ its Iwahori subgroup, /| /2 its pro-p Iwahori, and

w0 K I, I{ 5 ; their j-th congruence subgroups.
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1 Theorem 1.9 (Theorem 7.6). For a sufficiently large j,

11/27

dimg 77/ = dimg 712+ = L)~ (an + 297),
dimg 7% = |L(D)| Yan + (¢ + Dg’™")  if |zke is irreducible.

When p is odd and |L(I1)| = 4, we have |L(IT)|~'a = —%.

When IT|zg ¢ is reducible, it has length 2. The two irreducible components T+
" and I~ are distinguished by their Whittaker models.

[o o |ofe]»

8
e Theorem 1.10 (Corollary 7.10). If I1|zk¢' is reducible, for a sufficiently large j,

10 dimg 7%

1 |IL(I)|~Yan +2q97)  for j odd and m C TI|g or j even and w C 117 |,
“liILani an +2¢77")  otherwise.

13

12

" By G-conjugation, we have similar asymptotics for all Moy—Prasad subgroups
o of G'.

o The study of R-representations of G’ has a long history, especially when R = C.
o Even for odd p and R = C, there is current research on GL; and SL; [Luo and Chau
o 2024]. Inevitably some of our proofs are adapted from previous papers. However,
o because we make only the assumption that charg # p, we have usually preferred

o to give complete proofs in that general setting. We refer essentially only to papers

201/2; that we are using.

39Y/5

2 2. Generalities

23

24 2.1. Let R be a field, G a group, H a subgroup of G, V an R-representation of G.
25 We denote chary the characteristic of R, and V |y the restriction of V to H.

26 2.1.1. When H has finite index in G, any irreducible R-representation of H is
27 contained in the restriction to H of an irreducible R-representation of G [Henniart

282001, proposition 2.2].

% 2.1.2. If H is normal of finite index in G and V is irreducible, then V |y is semisim-
o ple of finite length [loc. cit., proposition 2.1].

3 2.1.3. If H is normal in G, V is irreducible and V|y contains an irreducible
53 subrepresentation, then Vg is semisimple and its isotypic components are G-
54 conjugate with the same multiplicity.

g Proof. Let W be an irreducible subrepresentation of V|g. Since H is normal in
36 G, for g € G, H acts irreducibly on gW by (h, gw) > hgh~'hw. The subspace
DY ¢eG 8 W is a nonzero subrepresentation of V. Since V' is irreducible, it is equal
38 to V. Since a representation which is a sum of irreducible subrepresentations is
39 semisimple [Bourbaki 2012, §4.1, corollaire 1, p. 52], V |y is semisimple. The last
40 assertion follows in the same way. (]
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1 2.1.4. Assume H normal of finite index in G and let = be an irreducible R-
, representation of H. We saw that there is an irreducible R-representation IT of G
3 whose restriction to H (which is semisimple of finite length) contains . Clearly
, if x is a R-character of G trivial on H then the restriction of [1® x to H contains 7.

5 Lemma 2.1. Assume R algebraically closed and G/H abelian. Any irreducible R-
6

1Y,

representation T1' of G containing m is isomorphic to I1 ® x for some R-character
" x of G trivial on H.

8
o Proof. *We have Homy (IT'| 7, 1| ) #0. The right adjoint of the restriction from G
o to H is the induction Indg from H to G, therefore IT’ is isomorphic to an irreducible
o subrepresentation of Indg(m ). We have Indg(m H) =~ (Indg 1) ® IT because

., G/H is finite, and the irreducible subquotients of Indg 1 are the characters x of

5 G trivial on H because R is algebraically closed. Therefore, there exists y such
;thatl'l/:n@x. O

> 2.2, We suppose that H is a closed subgroup of a locally profinite group G and V

1 . .
1% is an R-representation of G.

" If the index of H in G is finite, then H is open. Conversely, if H is open

18 cocompact in G, then the index of H in G is finite. If V is smooth (i.e., the G-

19 stabilizer of any vector is open), then V| is smooth. Conversely, if H is open in G
201/23 and V|g is smooth (resp. admissible: smooth and the dimension of the space VX
2 of K-fixed vectors of V is finite, for any open compact subgroup K C H), then V

22 is smooth (resp. admissible).

* We suppose also from now on that H is normal in G with a compact quotient

2 G/H and that V is smooth (so V |y is smooth).
25

26 2.2.1. If V is finitely generated then V|y is finitely generated [Henniart 2001,
57 lemme 4.1].

28 2.2.2. If V is irreducible, any irreducible subrepresentation of V |y (when there
29 exists one) extends to a (smooth and irreducible) representation of an open subgroup

3% of G of finite index which is admissible if V is as well [loc. cit., proposition 4.4].
31

3 2.2.3. If Vis irreducible and V |y contains an irreducible subrepresentation or is
53 hoetherian (any subrepresentation is finitely generated), then V |y is semisimple of

54 finite length [loc. cit., théoreme 4.2].

35 We introduce the two properties:
* (2-1) Any finitely generated admissible R-representation of G has finite length.
37

35 (2-2) Any finitely generated smooth R-representation of H is noetherian.

301/, 39 2This proof was suggested by Peiyi Cui [2023, Proposition 2.6], and replaces a more complicated
40 argument of ours.
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1 2.2.4. Let W be an admissible irreducible R-representation of H.

11/27

0
201/, —

39
39Y/p—

2 (1) If (2-1) and (2-2) are true, then W is contained in some irreducible admissible
3 R-representation of G restricted to H [Henniart 2001, corollaire 4.6].

% (2) If (2-1) is true, then W is a quotient of some irreducible admissible R-repre-
o sentation of G restricted to H [loc. cit., théoréme 4.5].

We give a simple proof of (2) adapted from [Tadi¢ 1992, Proposition 2.2]. The
smooth induction Ind$, W of W to G is admissible since W is as well and G/H is
9 compact [Vignéras 1996, chapitre I, §5.6]. A finitely generated subrepresentation
10 of Indg W is admissible, hence of finite length by (2-1). So Indg W contains an
11 irreducible admissible representation U. The restriction to H is the left adjoint of
12 the induction Indg hence W is a quotient of U|y.

225 LetX v be the group of R-characters x of G trivial on H suchthat V@ x ~ V.
14

15 The characters in Xy are smooth by the following lemma.

7
8

E Lemma 2.2. V ® yx is smooth if and only if x is smooth.

17

o Proof. Let v € V a nonzero element. An open subgroup K C G fixing v in V,
o fixes v in V ® x if and only if yx is trivial on K. The lemma follows because V is
o smooth. (I

21 2.2.6. Assume also that V' is irreducible and V |y has finite length (semisimple by
g §2.2.3 and its isotypic components are G-conjugate).?

23 Let W be an irreducible component of V|g, 7 its isomorphism class, G the
24 G-stabilizer of 7. Let V;; be the m-isotypic component of V|y. The G-stabilizer of
25 Vi is G. The G-stabilizer of W is open in G (because it contains the G-stabilizer
26 of v € W nonzero and V is smooth) and is contained in G. Both have finite index
27 in G (G/H is compact) and

2%

— V =Indg (Vy)

29

30 by Clifford’s theory. The representation of G, on V; is irreducible and the length
31 of Vg is

2 lg(Vig) =[G : G 11g(Vr|n)-

33
34 Lemma 2.3. Assume that G/H is abelian. Then:

35 (1) Gy is normal in G and does not depend on the choice of w in V|y. The smooth
3% R-characters of G trivial on G are in Xy.

37
v (2) Assume R algebraically closed.

3This subsection generalizes [Cui 2023, Corollary 3.8.3; Tadi¢ 1992, Corollary 2.5; Bushnell and
40 Kutzko 1994, Corollary 1.6(iii)].
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1 () Any irreducible subquotient of the smooth induction Indg 1 is a smooth R-
5 character x of G trivial on H.

E (b) Any irreducible R-representation of G containing 7 is a twist V Q x of V by
4 some smooth R-character x of G trivial on H.
5
6

(3) When V|g has multiplicity 1, then W = Vy, for a smooth R-character x of G
- trivialon H, V ® x =~V if and only if x is trivial on G, and G is the largest
— subgroup I of G containing H such that1g(V|;) =1g(V|g).

(4) When R is algebraically closed and V |y has multiplicity 1, then

0 [G:G,] if charg =0,
11 I Xv|= . ,
[G:Gr¢] if charp=£>0,

o]

12
13 Wwhere Gy ¢ is the smallest subgroup of G containing G such that |G : Gy ] is

1 relatively prime to (.

15 Proof. (1) The isotypic components of I1|y are G-conjugate, their G-stabilizers
16 are G-conjugate and contain H hence they are equal because G/H is abelian.

17 Since V®y ~ Indgn (xlc, ® Vy) for any smooth R-character x of G, the smooth
18  R-characters of G trivial on G (;r) are in Xy.

2 (2) (a) For any closed subgroup Q of G and a smooth R-representation X of Q,

201/23 the representation IndG X 1is the space of functions f : G — X with the property

301

— f(qgk)=qf(g) for g e 0, g € G, k € Ky for some open subgroup Ky of G, with
— the action of G by right translation, and where 1r1dG 1 is the subrepresentation on
— the subspace of functions of compact support modulo Q. When G/Q is compact,
— Indg = mdg

* Let V > U be G-stable subspaces with V /U irreducible. We can suppose V
. generated by an element f (indeed V'/U’ >~ V /U for the G-stable space V'
= generated by f € V \ U and the kernel U’ of the map V' — V/U). There is an
l open subgroup K of G which fixes f. Wehave U C V C indg 1 and one is reduced

29 . .
— to the case where G/H is finite.
30

5; (b) The proof of Lemma 2.1 remains valid with the smooth induction Ind¥,
5, Wwhich is the smooth compact induction indf, 1, because G/H is compact, so that
% ind%(M|y) = T ®ind§ 1

g (3) Any smooth character x of G trivial on H with indgTr (Vi) >~ indgn (V=®xlc,)
35 istrivial on G. Indeed, restricting to G, we see that V; ® x |, is conjugate to V by
36 some g € G. Restricting to H gives that 7 >~ ¢, s0 g € G, hence V; ® x|g, >~ V.
37 As Ker(x) is open in G and G/H is compact, J = Ker(x) N G has finite index
38 in G . If x is not trivial on G, then the action of J on V}, is reducible. Indeed,
30 ind% 77 (1) contains subrepresentations 1 and xlc,, and by Frobenius reciprocity

240 Endj(V |7) is equal to Homg,, (Vﬂ,md *(Vzly)) =Homg, (Vz, Vo ®1ndG”(1))
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1 Hence dim(End;, (Vx|;)) > 2 and V.|, is reducible. By the hypothesis of multi-
~, plicity 1, V.| is irreducible, hence V|, is irreducible as H C J. So y is trivial
3 on Gy.

", The group G, is a subgroup I of G containing H with 1g(V|;) = 1g(V|g).
5 If I has this property, the restriction to H of any irreducible component on V| is

¢ irreducible, hence I is contained in G.
7 (4) follows from (3). ([l

% Remark 2.4. Assume that V| has multiplicity 1. The G-stabilizer of any irre-
o ducible component of V is G,. Denote G, = Gy. Let I be a subgroup of G
o containing H. The number of orbits of / in the irreducible components of Vg, is
o Ig(V ). This number is the same for I and /Gy, hence 1g(V|;) =1g(Vl;c,). We
o deduce that Gy C [ if V|; is reducible and |G /| is a prime number.

z Let 6 be a smooth R-representation of a closed subgroup U C H. We consider
15 the property:

o (2-3) The functor Homy (—, 6) is exact on smooth R-representations of H.
17

15 Lemma 2.5. If (2-3) is true and dim Homy (V, 0) = 1, then V| has multiplicity 1.

19 Proof. We denote by my (7r) the multiplicity of any irreducible smooth R-represen-
20 tation 7 of H in V|y. By (2-3),

20%/2
21
» > " my () dim Homy (7, 6) = dim Homy (V. 6) = 1.
g P
24 There is a single 7 with my () = dim Homy (V, 6) = 1. [l
25
2% 3. p-adic reductive group

39Y/5

27
o Suppose now that G is a p-adic reductive group, that is, the group of rational points

o G (F) of areductive connected F-group G. Here F is a local nonarchimedean field
o of residual characteristic p, ring of integers O, uniformizer pr, maximal ideal P,
_, Tesidue field kr = Op/Pr with ¢ elements, and absolute value |x|p = q VAW,
. |prlF =¢q~! (we do not suppose that the characteristic of F is 0).

. For an algebraic group X over F, we denote by the corresponding unadorned
; letter X = X (F) the group of its F-points.

— Let R be a field of characteristic charg # p. Any irreducible smooth R-repre-
— sentation of G is admissible [Henniart and Vignéras 2019], and the properties (2-1)
— and (2-2) hold for G. For (2-1) see [Vignéras 1996, chapitre II, §5.10; 2023, §5],

- and for (2-2) see [Dat 2009; Dat et al. 2024].

39 Lemma 3.1. Let f + H— G be an F-morphism of reductive connected F-groups.

40 Then the subgroup f(H) of G is closed.
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1 Proof. The morphism f induces a constructible action of H on G [Bernstein and

v ?", Zelevinsky 1976, §6.15, Theorem A]; in particular the group f(H), which is the

3 H-orbit of the unit of G, is locally closed [loc. cit., Proposition 6.8], f(H) is equal
, toits closure in G (the closure of f(H) in G is a subgroup containing f(H) as
5 an open, hence closed, subgroup). Note that f(H) is open in G when chary =0
6 [Platonov and Rapinchuk 1994, §3.1, Corollary 1]. (]

" Theorem 3.2. Let f : H — G be an F-morphism of reductive connected F-groups
8 such that f(H) is a normal subgroup of G of compact quotient G/f(H). Then,
% the restriction to f(H) of any irreducible admissible R-representation of G is
10 semisimple of finite length. Any irreducible admissible R-representation of f(H) is
1 contained in some irreducible admissible R-representation of G restricted to f(H),
12 and extends to an irreducible admissible representation of some open subgroup of
13 G of finite index.

14

15 Proof. G satisfies (2-1) and f(H) satisfies the property (2-2) because H does.
16 Apply the results of Section 2.2. (|

17 We now give two examples where we can apply Theorem 3.2.

18
o Proposition 3.3. Let f: H — G be a surjective central F-morphism of connected

o reductive F-groups. Then, the subgroup f(H) of G is normal of abelian compact

0
2072 = quotient G/f (H).

391/

2 Proof. There is an F-morphism « : GxG — H such that« (f(x), f(y))=xhx~'y~!
g for all x, y € H [Borel and Tits 1972, définition 2.2]. So for all u, v € G we have
2 wou"'v™!'= fok(u,v) € f(H). The subgroup f(H) of H is closed (Lemma 3.1)
25 and normal with abelian quotient G/f (H) [loc. cit., proposition 2.7].
26 The compactness of G/H is stated in [Silberger 1979] without proof and in
27 [Labesse and Schwermer 2019, Proposition A.2.1] with indications for the proof.
28 The idea is to reduce to a connected reductive F-anisotropic modulo the centre
29 F-group.
30 Let § be a maximal F-split subtorus of G, and B a parabolic F-subgroup of
31 G containing S. The G-centralizer M of S is compact modulo its centre and is
3 aLevi component of B. Let U be the unipotent radical of B. By [Borel 1991,
33 Theorem 22.6], the inverse image S’ of S in H is a maximal F-split torus in H,
34 and the inverse image B’ of B is a parabolic F-subgroup of H Put M’ for the
g H-centralizer of S’ and U’ for the unipotent radical of B’. From [loc. cit.], f
36 induces a surjective central F-morphism M’ — M and an F-isomorphism U’ — U.
37 On the other hand, we have the Iwasawa decomposition G = K B for an open
38 compact subgroup K of G. The product map K x B — G gives a surjective map
39 K x B/f(B') — G/f(H). We have B/f(B') = M/f(M’), so we just need to
’ 40 prove the compactness of M/f(M').
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1 Let X*(S) denote the group of algebraic characters of S, and S(pr) denote
/27 Hom(X™*(S), plzg). The subgroup S(pr) of § is free abelian of finite rank with a
3 compact quotient S/S(pr). On the other hand, f induces a surjective F-morphism
"4 8" — S sending S’(pr) onto a sublattice of S(pr). Hence S/f(S’) is finite. So
5 M/f(S') is compact since M/S is compact, a fortiori M /f (M) is compact. [

11

6 Remark 3.4. The condition that f is central in Proposition 3.3 is necessary. Indeed,
7 assume charr =2 and [ : GL, — SL,, f(g) = ¢(g)/detg where p(x) = x? for
8 x € Fisthe Frobenius.* The F-morphism f is surjective but not central. Let
9 G =GLy(F), G' = SLy(F), T’ the diagonal torus of G’ and U the group of
10 unipotent upper triangular matrices in G’. Then f(G) = T'¢(G’) is closed but
11 not normal and not cocompact in G’ (since ¢(U) = U NT'¢(G") and U/ (U)
12 homeomorphic to F/F 2 is not compact).

13 Corollary 3.5. Assume R algebraically closed. Let f : H — G be an F-morphism
1 of connected reductive F-groups which induces a central F-isogeny H" — G
1> between the derived groups. Then the conclusions of Theorem 3.2 apply to f(H).

% Proof. The F-isogeny H%" — G is surjective with finite kernel contained in the
. centre of Hd [Springer 1998, §12.2.6]. If Z is the connected centre of G, the
o natural map Z x G%" — G is surjective [Springer 1998, Corollary 8.1.6]. Hence
o the obvious map Z x H — G is surjective and central. Proposition 3.3 applies to
201/2; Zf(H). But R being algebraically closed, Z acts by a character in any irreducible

. smooth R-representations of G, and we get the corollary. ]

»; Remark 3.6. There is a more elementary proof that the restriction to f(H) of
L, any irreducible admissible R-representation of G is semisimple of finite length in

5 [Silberger 1979].

. 4. Restriction to SL;(F) of representations of GL;(F)

27
28 Let F be a local nonarchimedean field of residue field kr of characteristic p as in
29 Section 3, and R an algebraically closed field of characteristic different from p.
30 Let G = GLy(F), and let B (resp. B™) denote the subgroup of upper (resp.
31 lower) triangular matrices, T the subgroup of diagonal matrices, U (resp. U ™) the
32 subgroup of upper (resp. lower) triangular unipotent matrices, and Z the centre
33 of G.

3¢ Let G’ =SLy(F). The subgroup H = ZG’ of G is closed normal of compact
35 abelian quotient G/ZG’ isomorphic via the determinant to F*/(F*)?, which (see
36 [Neukirch 1999, Chapter II, Corollary 5.8]) is a F,-vector space of dimension

Sl 24e if charp #2,

3 (4-1 dimg, F*/(F*)? = here 20F = PE.
® @) mg, 7/(F7) {oo if charg £2, O UFTF

391/22 -
40 4The map f will also appear in §5.0.3.
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. Note that ZG' is open in G if and only if charg # 2.

»  Forasubset X C G, put X' =X NG'. Write x = (x; ;) a matrix in G or
"3 LieG = M,(F).

4+ We fix a separable closure F*¢ of F' and will consider only extensions of F
contained in F*°. We write Wy for the Weil group of F*/F and Galy for the
Galois group of F*¢/F. For a field k, we denote by k% an algebraic closure of k,
and if K C R we suppose k* C R.

We fix an additive R-character ¢ of F trivial on Of but not on P '

1Y,

o 4.1. Whittaker spaces. The smooth R-characters of U have the form
42 Oy(w)=yotu(Y(u—1)=v21u12), uecl,
12

E for a lower triangular nilpotent matrix Y in M, (F). The case Y = 0 gives the trivial
14 character of U, the cases with Y # 0 give the nondegenerate characters of U.

15
o Notation 4.1. When Y> ; = 1 we denote 6y = 6.

17 The normalizer of U in G is TU. By conjugation, U acts trivially on U and its

18 characters, and a diagonal matrix t = diag(t,, t2) acts on u € U by (tut™") 12=
19 (#1/0)u; 2. Also, t acts on a lower triangular nilpotent matrix ¥ by (th‘l)z,l =
201 /23 (t2/t1)Y2,1. It follows that T acts transitively on the nondegenerate characters of U,
21 the quotient T/Z acting simply transitively. By the same formulas, two nontrivial
22 characters y and 0y, of U are conjugate in G’ if and only if they are conjugate by
2 an element of 7" if and only if ¥, , and Y| , differ by a square in F*.
2% The T-normalizer of Oy is eqﬁal to Zif Y #0and to T if Y = 0. The Oy-
25 coinvariant functor T — Wy (7) from the smooth R-representations T of U to
25 the smooth R-representations of the T-normalizer of 0y is exact. A smooth R-
2" representation T of U is called degenerate when Wy(t) = 0 for all Y # 0, and
28 nondegenerate otherwise. A smooth R-representation of G or of G’ is called
29 degenerate (or nondegenerate) if its restriction to U is as well.
30 The finite-dimensional irreducible smooth R-representations of G are of the
31 form x o det for a smooth R-character x of F* and are degenerate. If IT is an
32 infinite-dimensional irreducible smooth R-representation of G, then dim Wy (IT) = 1

33 for all Y # 0 by the uniqueness of Whittaker models [Vignéras 1996, chapitre II1,
34 §5.10] when charg > 0.

35

36 4.2, L-packets. We will classify the irreducible smooth R-representations of G’ by
37 restricting to G’ the irreducible smooth R-representations IT of G. The set L(IT)
38 of (isomorphism classes of) irreducible components of I1|¢- is called an L-packet.
39 A parametrization along these lines was obtained when charg = 0 and charg = C

39!
/2 40 in [Labesse and Langlands 1979]. When chary # 2 and charg # 2, this question is
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1 studied for supercuspidal representations in the recent work [Cui et al. 2024, §6.2
U2 and §6.3].
"3 Applying Lemma 2.3, Remark 2.4, Lemma 2.5, Theorem 3.2 and Corollary 3.5,
~, we have:

> (4-3) Any irreducible smooth R-representation of G’ belongs to a unique L-packet.
6
= For two irreducible smooth R-representations Iy, IT; of G,

8 449 L(IT}) = L(ITp) <= I1; = (x odet) ® I,
9
10 for some R-character x odet of G.

11 The trivial character of G’ is the unique finite-dimensional irreducible smooth
1> R-representation of G, it is degenerate and forms an L-packet L(1) = L(x o det)
13 for any smooth R-character x of F*.

14 If ITis an irreducible smooth R-representation of G}

15 (4-5) the restriction of I to G’ is semisimple of finite length and multiplicity 1.
13 The irreducible constituents of I1|s are G-conjugate (even B-conjugate as
5 G = BG’), and form an L-packet L(IT) whose cardinality is the length of IT|g.
1o The G-stabilizer of 7 € L(II) does not depend on the choice of 7 in L(IT) and
5o 1s denoted Gpni. By §2.2.6, G is an open normal subgroup of G containing
201/2; G'Z, the subgroup det Gp; of F* is open and contains (F*)2. The order of the
5, quotient G/Gp >~ F*/det Gp is a power of 2. When charr # 2, |G/Gn]| divides

~|F*/(F*)?| = 2% with e defined in (4-1).

23
24 (4-6) G is the largest subgroup I of G such that 1g(T1|;) = Ig(IT|¢).

= @4-7) = indgn Vx where V. is the space of .
26

5, (4-8) L(IT) is a principal homogeneous space for G/Gn.
g (4-9) |L(IT)] is a power of 2, and |L(IT)| divides 2>*¢ when chary # 2.

* When p is odd, since |F*/(F*)?| =4 we deduce:
30

31 Proposition 4.2. When p is odd, the cardinality of an L-packet is 1,2 or 4.

32 When p = 2 we will prove that this remains true using the local Langlands
33

2°_ correspondence.

3 By class field theory, any open subgroup of F* of index 2 is equal to Ng,r(E*)
% for a unique quadratic separable extension E/F of relative norm Ng,p : E* — F*,
36 and conversely. Any open subgroup of F* of index 4 containing (F*)? is equal
37 to Ng ,F(K™) for a unique biquadratic separable extension K /F of relative norm
% Nk,r:K*— F*, and conversely.

39
oYy —
40 SFor cuspidal representations this is proved in [Cui 2023, Proposition 2.37 and Corollary 2.38].
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1 When p is odd, each quadratic extension of F is separable and tamely ramified,
~, and there is a unique biquadratic separable extension of F.
"3 When p =2, if chary = 0, there are finitely many quadratic separable extensions
~, of F and finitely many biquadratic separable extensions of F; see (4-1). If charp =2,
5 there are infinitely many quadratic, resp. biquadratic, separable extensions of F.

% Definition 4.3. When IT is an irreducible smooth R-representation of G, we denote
o by Ep the separable extension of F' such that Ng,,r(E}) =det G.

©

9 (4-10) We denote by Xy the group of characters x odet of G such that

10

1 IM® (x odet) >~ IT.

12
13 A character of Xyy is smooth (Lemma 2.2) of trivial square. So X1y = {1} if charg =2.

% Notation 4.4. When charg # 2, the nontrivial smooth R-characters of F* of trivial
1o Square are the R-characters ng of F* of kernel Ng,r(E*), for quadratic separable
— extensions E/F. The modulus g™ of F* is equal to ng if and only if E/F is

o unramified and ¢ + 1 =0in R.

19 By Lemma 2.3 and (4-8):

o1 (4-11) Xy is the group of R-characters of G trivial on Gyj.
22 (4-12) When charg # 2, the cardinality of L(IT) is | Xp|.

23
g It is known that | X| = 1, 2 or 4 when:
25

6 @ R= C and charg = 0 [Labesse and Langlands 1979; Shelstad 1979].

27 (b) charr # 2 and charg # 2 [Cui et al. 2024, Proposition 6.6].
28
29 When charg # 2 we will prove that |X1| = 1, 2 or 4 using the local Langlands

50 correspondence, therefore |Ly| = 1,2 or 4 when p =2.
51  For alower triangular matrix Y # 0, we have

32

— > dimg Wy () = dimg Wy (ID).

33

e reL(Il)

35 Since dimg Wy (IT) = 1, we have dimg Wy (r) = 0 or 1, and there is a single
36 e L(IT) with Wy (r) #0.

37

g 4.3. Representations. We denote by Gry (G) the Grothendieck group of finite
30 length smooth R-representations of G and by [7] the image in Gr (G) of a finite

& 40 length smooth R-representation 7 of G. Similarly for G’.
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1 4.3.1. Parabolic induction. The smooth parabolic induction indg (o) of a smooth
> R-representation (o, V) of T is the space of functions f : G — V such that
5 f(tugk) =o(t)f(g) fort € T, u € U, g € G and an open compact subgroup
4 Ky C G, with the action of G by right translation. The functor indg is exact with
"5 the U-coinvariant functor (—)y as left adjoint, and (—)7 ® 8 as right adjoint where
§ is the homomorphism of T':

1Y,

s(diag(a, d)) =gV . T — ¢% (a,d € F¥),

[~ o]

o [Dat et al. 2024, Corollary 1.3]. The modulus |- | of F* is ¢~* and the modulus
10 of B is the inflation of 8. We choose a square root q'/* of g in R* to define the
11 square root of &,

S@13) vdiagla,d) = (gD T 5 ' (@,d e B,

14 and the normalized parabolic induction ig(a) = indg (ov). For a smooth R-
15 character x odet of G we have

16
- (ind§ 0)® (x odet) ~ind§ (o ® (x odet)), (i§o)®(x odet) ~if (o ®(x odet)).

18 Similarly for G’, we define the parabolic induction ind% from the smooth R-
1% representation o of 7’ to those of G’ and the normalized parabolic induction i g,/,

1 3 / ’
PR 90 =indS (Ve), Vi(diagla,a™) =¢ @ T > ¢ (ae FY).

22 . .. . . .
Y As G = BG’ and G/ B is compact, the restriction map f +— f|s’ gives isomorphisms

24 (4-14) (ind§ (0))|g' > ind§ (o),  G§@Nle i (o|r).

z% 4.3.2. Cuspidal representations of GL,(F). When x is a smooth R-character of T,
o indg (x) is called a principal series of G. An irreducible smooth R-representation
s of G which is not a subquotient of a principal series, is called supercuspidal. 1t is
o called cuspidal when its U-coinvariants are 0. A supercuspidal representation is
o cuspidal (the converse is true only when g + 1 # 0 in R). The principal series and
o, the cuspidal R-representations are infinite-dimensional. Similarly for G

- Let IT be an irreducible smooth R-representation of G and 7 € L(IT). Then

g (4-15) I is cuspidal if and only if 7 is cuspidal (similarly for supercuspidal).

* Indeed, L(IT) is the B-orbit of 7, the U-coinvariant functor is exact and commutes
* with the restriction to G'. We say that L(IT) is cuspidal if IT is. Similarly for
* supercuspidal using the formula (4-14).
—  Let IT be a cuspidal R-representation of G. It is the compact induction of an
3 extended maximal simple type (J, A),
1
o I = ind% (A);



11

201/,

39Y/p—

PROOFS - PAGE NUMBERS ARE TEMPORARY

REPRESENTATIONS OF SL;(F) 117

1 see [Bushnell and Kutzko 1994; Bushnell and Henniart 2002] when R = C and
27, [Vignéras 1996, chapitre III, §3.4] for general R. The group J contains Z and a
", unique maximal open compact subgroup J°. Let J! be the pro-p radical of J°.
4 The representation Al ;o is irreducible, equal to L = x ® 6 where «| ;1 is irreducible
", and & is inflated from an irreducible R-representation o of J°/J!. The type
s (J, A) is unique modulo G-conjugacy; see [Bushnell and Henniart 2006, Chapter 4,
~, §15.5, Induction theorem] when R = C and [Vignéras 1996, chapitre III, §5.3] for
"5 general R.°
"9 The open normal subgroup JG’ of G has index |F*/det J|, and by Mackey
1o theory,

11 c 1JG'

o416 I, = ; AS.

- (416) o= EP indy

= 9€G/IG

13

1. Denote J/, (JO), (J!) the intersections of J, J, J! with G’. We have J' = (J°)

15 and the length of

- . 1JG' ~ i qG’
s (ind 7§ 28)|r = ind 5 (A% )

s independent of g. By transitivity of the restriction I1|g =P 2€G/JG! ind% A8 ye),
2 and

19

20 (4-17) |L(IT)| = | F*/ det J| lg(ind? Ay,
o

2 it follows from Lemma 2.3(3), Remark 2.4 and the formula (4-16) that:

22

. Lemma4.5. If|F*/det J| =2 then det Gy C det J.

g Remark 4.6. We have det Gy =det J <= G =JG’. If |[F*/ det J| =2, the group
25 J determines a quadratic separable extension E/F such that detJ = Ng/p(E™).
26 The representation ind?,/ (A]y) is irreducible if and only if |L(IT)| = |F*/ det J|.

Taf there is a smooth R-character x of F* such that A >~ Ay ® (x o det) and
® (J, Ap) is of level 0, we say that the L-packet L(IT) and its elements are of level 0.

29 . . ..
— Otherwise we say that L(IT) and its elements are of positive level.
30

5 Level 0. J = ZGLy(Op), J° =GLy(0p), J°/J' = GLy(kp), k =1, o isa

o cuspidal R-representation of GLy(kr), A = o. We have det J = val™! (27), and by

o (417,
3 (4-18) IL(ID)| = 21g(Al;) = 21g(0|SLykp))

35
56 because Al is semisimple with length 1g(o|si,r,)), and for any irreducible compo-

5, hent A’ C Ay, the compact induction ind?,/ (') is irreducible [Henniart and Vignéras
5 2022, Corollary 4.29].

39 61t is proved only that (J 0.0 is unique modulo G-conjugacy, but J is the normalizer of (J 0.0

40 and A is the A-isotypic part of IT.



1Y,

201/,

39Y/p—

PROOFS - PAGE NUMBERS ARE TEMPORARY

118 GUY HENNIART AND MARIE-FRANCE VIGNERAS

1 The cardinality of the cuspidal L-packet L(IT) of level O can be computed via
, (4-17), (4-18), and Remark A.4(b) given in the Appendix on the classification of

5 the irreducible R-representations of GL;(k) and of SL;(k) for a finite field k with
, chary # charg. We have two cases:

(1) |F*/detGp| =2 and Er/F is the unramified quadratic extension.

(ii) pis odd, det G = (F*)? and Epy/F is the unique biquadratic extension. This
case occurs for a unique packet L(IT).

We deduce:

[ ||~ ]o|o]

10 Proposition 4.7. When p = 2, each level 0 cuspidal L-packet has size 2.
1 When p is odd, there is a unique level O cuspidal L-packet of size 4, the other

12 level O cuspidal L-packets have size 2.

13
17 These results can be deduced from [Kutzko and Pantoja 1991, §2] and the size 4

— depth zero L-packet has been obtained in [Cui 2023, Example 3.11, Method 2].

15 Positive Level. J = E*J % for a quadratic separable’ extension E/F, J®= 0% J!,
7 JO g~ k¥, o is an R-character of kj;, A =k ® o and A|, is irreducible. The
1g representation A; = Al is irreducible of G-intertwining equal to J, because J
10 normalizes A; and the G-intertwining of ¢ is already J [Bushnell and Henniart 2006,
20 Chapter 4, §15.1]. We have Ng,r(E*) C det J. If the quadratic extension E/F is
o1 tamely ramified, then det J = Ng,p(E™), because J = E*JY, J' =0+ Pp)(JYY
» and 1+ Pr C det E* = NE/F(E*).

23 If p =2 atamely ramified quadratic extension of F' is unramified, and E/F is
52 unramified if and only if det J = Ker((—1)"¥).

25 If p is odd, each quadratic extension of F is tamely ramified.

26 Proposition 4.8. If p is odd, each positive level cuspidal L-packet L(I1) has size 2
27 _and E = Ep (Definition 4.3).

z% Proof. ®The central subgroup 1 4+ Pr of J' = (1 4+ Pr)(J') acts by scalars,
o the representation A} = A|(;1y is still irreducible of G-intertwining J, so its G'-
o intertwining is J’. The isotypic component of I1| ;1 of type A; is the space of 2,
5 SO the isotypic component of IT| ;1) of type A} is still the space of 1. As ’in the
o proof of [Henniart and Vignéras 2022, Corollary 4.29], we deduce that indg, (Aly)
e is irreducible. Apply Lemma 4.5. U

35 Remark 4.9. When p =2 and E/F is ramified, then J° N G’ is a pro-2-group.
36 Indeed, the determinant induces a morphism J°/J! — k7. equal via the natural

37

8 TWhen char F = 2 the quadratic extension appearing in the construction [Bushnell and Henniart
— 2006] is not necessarily separable. It is generated by an element x € G, determined up to some open
39 subgroup of G, so that modifying x slightly yields a separable extension.

40 8This can also be obtained using [Cui 2023].
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1 1som0rphlsm JOy It — kp = k¥ to the automorphism x x2 on ky.. Hence
o 0y = (Y is a pro-2-group. Note also that A is a character [Bushnell and
5 Henniart 2006, §15].

Z Corollary 4.10 (Propositions 4.7 and 4.8). When p is odd, there is a unique cuspidal
5 L-packet of size 4, and it is of level 0. The other cuspidal L-packets have size 2.

° 4.3.3. Principal series of GLy(F). We recall the description of the normalized
s principal series ig (x) of G for a smooth R-character y of T.

°  Denote by x1, x2 the smooth R-characters of F* such that
9

w0 (4-19) x (diag(a, d)) = x1(@)x2(d) (a.d € F¥),

" and by x" the character " (diag(a, d)) = x(diag(d, a)) of T. In particular in
2 (4-13), v =v~!and v/v* = 3.

13
— Proposition 4.11. (i) For two smooth R-characters yx, x' of T, [ig (x)] and

14
[ig (x))] are disjoint or equal, with equality if and only if x' = x or x*.

15
16 (i) The smooth dual ofig,’(x) is ig,/(x_l).
17 (iii) (ig (x))u has dimension 2, contains x" and has quotient x.

8 (iv) dim Wy (ig (x)) = 1 when Y # 0 [Vignéras 1996, chapitre III, §5.10].
19

o Wi (X) is reducible if and only ifxl)(z_l =gt

a (vi) 1ndG(1) = lg(l) 1Y contains the trivial representation 1 and:

2 e Ifqg+1#0in R, lg(ind§(1)) = 2, in particular St = (ind$§ 1)/1 is
23 irreducible (the Steinberg R-representation). The representation indg 1is
2 semisimple if and only if ¢ =1 in R (and charg # 2).

2% e Ifg+1=0inR, lg(indg(l)) =3, indg(l) is indecomposable of quotient
g (=D)¥¥ o det, and indg(l) /1 contains a cuspidal representation

27 . 4G ~
g H() = 1ndZ GL»(0Or) (o))

29 where 6y is the inflation to Z GL(2, Of) of the cuspidal subquotient o of
0 indS2®1 1 (Appendi
30 Blkr) ppendix).

31 This is [Vignéras 1989, théoréme 3] but the proof of (i) is incomplete. What

>2_1is missing is the proof that [Ty occurs only in i (v) and ig(v_l) wheng+1=0
> in R. This is equivalent to Xp, = {1, (— Hvalo det} with the notation (4-10). This
i follows from Remark A.4(a) given in the Appendix.

32

z% Remark 4.12. (1) The Steinberg representation St is infinite-dimensional and not
o cuspidal.
g (2) When charg # 2, the principal series [iG( x)] are multiplicity free.

39 When charg = 2, then ¢ is odd, de(l) has length 3, of subquotients Iy and the
40 trivial representation 1 as a subrepresentation and a quotient.
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L1 Corollary 4.13. The nonsupercuspidal irreducible smooth R-representations of G
Y27 are
e the characters y o det for the smooth R-characters y of F*,

e the principal series iy G (x) for the smooth R-characters x of T with X1 Xy ;é
+val
g™,

o the twists (x o det) ® St of the Steinberg representation for the smooth R-
characters x of F*ifqg+1#0in R,

o the twists (x o det) ® Iy of the cuspidal nonsupercuspidal representation Tl
for the smooth R-characters x of F*ifq+1=0in R.

—
O |l || N |l |0 || W

11 The only isomorphisms between those representations are ig (x) ~ ig (x"™) for the
12 jrreducible principal series and (x o det) ® I1g =~ ((— DYy o det) ® I,.

— 4.3.4. Let £ be a prime number different from p. An irreducible smooth Q%°-
= representation T of G or G’ is integral if it preserves a lattice. It then gives by
* teduction modulo € and semisimplification a finite length semisimple smooth [F}°-rep-
3 resentation, of isomorphism class (not depending of the lattice) which we write r; (7).
— The restriction from G to G’ from irreducible smooth Q¥°-representations I of G to
— finite length semisimple smooth @ac-representatlons of G’ respects integrality and
3 commutes with the reduction modulo £. When IT is integral, then any irreducible
201/23 representation 7 C ﬁ|Gr is integral, the length of the reduction r¢(77) modulo ¢

o of 7 does not depend on the choice of 7. If IT = rg(ﬁ) is irreducible, we have

25 (4-20) L) = LD g(re (7)),
% and by (4-11),
g 4-21) lg(r¢(7)) =|Xn/ X5 when charg # 2.

27 o . . . ;

— Proposition 4.14. Each irreducible smooth Fi°-representation T1 of G is the reduc-
28 . . . . -

— tion modulo £ of some integral irreducible smooth Q%°-representation Tl of G.

29

5o Proof. Corollary 4.13 for IT not cuspidal, [Vignéras 2001] for IT cuspidal. ]

31 A supercuspidal Q°-representation M= indG A of G is integral if and only if
37 A is integral. Then, its reduction modulo £ is irreducible [Vignéras 1989], equal
33 toll= 1ndG A where A =ry (A) The reduction modulo £ of the L-packet L(H)
3 s L(IT). The reduction modulo £ respects level 0 and positive level. Conversely,
g any cuspidal Fi°-representation IT = ind? A of G is the reduction modulo £ of an
36 integral cuspidal QY°-representation M= ind? A of G where A = ry(A) [Vignéras
37 2001]. By the uniqueness of the extended maximal simple type (J, A) modulo G
38 (see Section 4.3.2), two supercuspidal integral Qj°-representations have isomorphic

301,22 reduction modulo £ if and only if the reduction modulo £ of their extended maximal
40 simple types are G-conjugate.
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1 Any supercuspidal Qj°-representation 7 of G’ is integral, as 7 € L(IT) where T1
~, is a supercuspidal Q}°-representation of G, and some twist of m by a character is
3 integral. Suppose that I has level 0. With the notations of the formula (4-18), the
, formula (4-21) implies

% (4-22) 1g(re()) =18(0 |sLy (k) / 12(F [SLy (k) -

, Proposition 4.15. When 7 is supercuspidal of level 0, the length of r¢(7) is < 2.
s When 7 is supercuspidal and p is odd, r¢(7) is irreducible if & is minimal of
g positive level or if £ = 2.

10 Any cuspidal Fi®-representation w of G' is the reduction modulo € of a supercus-
11 pidal Qi°-representation of G', except maybe when p =2 and 7 is in an L-packet
1o L(IT) with T1 minimal of positive level with Erj/F unramified (Definition 4.3).

13 Proof.  For I of level 0, we show in the Appendix the computation of the integer
1 1g(0Isykr))/ 18(6 |sLy k). and one sees that it is equal to 1 or 2 and that there
15 exists ¢ such that it is 1.

o For p odd, if the level of 7 is positive then Ig(IT|g/) = 1g(ﬁ |¢’) by Proposition 4.8,
" hence re(7) is irreducible.
18

1o ¢ For £ =2 (so p is odd), if the level of 7 is 0, then r¢(77) is also irreducible by
oo (4-22) and Lemma A.3 in the Appendix.

e For p=2(so £ is odd), w isin a cuspldal L-packet L(IT) with IT minimal of
22 positive level with Ep/F ramified. Let Ma Q¥°-lift of 1. The reduction modulo ¢
23 from Xy onto Xy is injective. The proposition follows from the next lemma. [

N
= | O

i Lemma 4.16. The reduction modulo ¢ from X; onto Xn is a bijection.

— Proof Let X €Xm X # 1, and ¥ the unique Q° lift of x of order 2. We have
7 M= 1ndG A where A is a character (Remark 4.9). We have I1 = 1ndG A where
— A= rg(A) and (J, xA) = (J, 8A) for g € G normalizing J. So XA = €A fora
g Qf°-character € of J of order a power of £. So, €|y, =1 and €|z = 1. Since Eyj/F
— is ramified, the index of ZJ'in J is 2, hence e = 1 and ¥ € X5. (I
3T When charyp # 2 and charg # 2, compare with [Cui et al. 2024, Proposition 6.7].
32 When p =2, we shall complete the proposition in Corollary 4.24: if 7 has positive
33 level then r,(7) has length <2, if r is in an L-packet L(IT) of positive level with

34 En/F unramified then 7 lifts to Q3.

35
o 4.4. Local Langlands R-correspondence for GL(F).

37 4.4.1. By local class field theory, the smooth R-characters x of F* identify with
38 the smooth R-characters x oar of Wr where a F: Wg — F* is the Artin reciprocity
30 map sending a arithmetic Frobenius Fr to p, [Bushnell and Henniart 2002, §29].
40 This is the local Langlands R-correspondence for GL (F).
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1 A two-dimensional Deligne R-representation of the Weil group Wr is a pair

>", (o, N) where o is a two-dimensional semisimple smooth R-representation of the

3 Weil group W and N a nilpotent R-endomorphism of the space of o with the usual
4, requirement:

> (4-23) o(w)N = N|ap(w)|po(w) forw e Wg.
6

11y

2 Two two-dimensional Deligne R-representations (o, N) and (¢’, N') of Wg are
g isomorphic if there exists a linear isomorphism f : V — V' from the space V of o
"o tothe space V' of ¢’ such that o’ (w)o f = foo (w) forw e Wpand N'o f = foN.
10 For a smooth R-character y of F*, the twist (o, N) ® (x oar) of (o, N) by
11 xoapis (0 ®(xoar),N).

1 When R=QF, (o, N) is called integral if o is integral.

E Remark 4.17. « When o is irreducible we have N = 0.

¥ e When o = (1 @ x2) oar, if x,x; ' # g+ then N =0. When N # 0, we have
B {x1, x2} = {xi, g~ x;} for some i and N sends the (x; o ar)-eigenspace to the

o (g™ x; o ap)-eigenspace or 0. Therefore when X1 X2 F= g
17

s *Ifg—1#0andg+1+#0in R, then N =0 or the kernel of N is the (x2 o r)-
o eigenline.

) 0 ¢ Ifg—1#0andg+1=0in R, then N =0, or the kernel of N is the (}2 oar)-
20 /ZZ eigenline, or the kernel of N is the (x| o «p)-eigenline.
22 o If g —1 =0, then N is any nilpotent.
23

~  The local Langlands R-correspondence for G = GL;(F) is a canonical bijection
24

g (4-24) LLg: [+ (o1, Nn)

*_ from the isomorphism classes of the irreducible smooth R-representations I of G
T onto the equivalence classes of the two-dimensional Weil-Deligne R-representations
% of Wr.? It identifies supercuspidal R-representations of G and irreducible two-
#_ dimensional R-representations of Wr, commutes with the automorphisms of R
o respecting a chosen square root of ¢, with the twist by smooth R-characters x

31
~— of F*:
32

33 (4-25) LLR(IT® (x odet)) = LLR(ID) & (x caF).

* " The local Langlands complex correspondence was proved by Kutzko [Bushnell

*_ and Henniart 2002, §33]. An isomorphism C >~ Qj° and the choice of a square
* root of g in Q° transfers LL¢ to a local Langlands (Qj°-correspondence LLgze
7 respecting integrality. Any irreducible smooth [Fj°-representation IT of G lifts to
¥ a Q¥°-representation Mof G (Proposition 4.14) and LLg: descends to a local

39Yp— —
40 9((71-[, Ntp) is called the L-parameter of IT.
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L1 Langlands [j°-correspondence LLgx compatible with reduction modulo ¢ in the
v 2, sense of [Vignéras 2001, § 1.8.5]. The nilpotent part Npj is subtle but the semisimple
"3 part oy is simply the reduction modulo £ of o7,

% (4-26) on = re(o).

"6 The local Langlands correspondence LLg of G over R is deduced from LLqwx when
7 charg =0 and from LL[F;C when charg = £ [Vignéras 1997, §3.3; 2001, §1.7 and
s §1.8]. We recall from the latter paper a representative (o, Nrj) of LLg(IT) for an

o irreducible smooth R-representation IT of G.

19 Proposition 4.18. (A) Let I be an irreducible subquotient of the unnormalized
11 R-principal series indg(l) of G. Then, o1 = ((q"/>) ™4 @ (¢'/*)") o . We have
12 Nn =0if 1 =1 (the trivial character) when g +1 # 0 in R, and T1 = T cuspidal
13 yhen g +1=0in R. Otherwise Ny # 0. When g —1 # 0 in R, the kernel of Ny is
14

5 the (@' oar)-eigenline ifg+1=0in R and T1 = 1,

16 o the ((q"*)™ oap)-eigenline if g +1=0in R and Tl = ¢"* o det,

7 e the (%)™ o ap)-eigenline if ¢ + 1 # 0 in R and T1 = St the Steinberg
18 representation.

19
—— (B) Let Il be the irreducible normalized principal series i ), ie,n#q

20
201/2* the notation of (4-29). Then oy = (n® 1) oap and N = 0.

vl \ith

20 (C) Let T1 be a supercuspidal R-representation of G. Then oy is irreducible
23 and N = 0.

2% 4.4.2. For a two-dimensional semisimple smooth R-representation o of W, put
25

26 X, = {smooth R-characters y of F* such that (x car) @ ~0o}.

> The square of each x € X, is trivial because dimg o0 = 2. We shall compute X,
* when charg # 2. When charg =2, X, = {1}.

? Toa pair (E, &) where E is a quadratic separable extension of F and £ is a

* smooth R-character of E* different from its conjugate &7 by a generator 7 of
i Gal(E/F) (i.e., & is not trivial on Ker Ng/r = {x/x* | x € E*}), is associated a

* 2_dimensional irreducible smooth R-representation of Wg
33

% o(E.§) =indy! (§ oap).

zi The character £ is unique modulo Gal(E/ F)-conjugation.
o When charg # 2, let o be a two-dimensional irreducible smooth R-representation
o of Wr and E/F a quadratic separable extension. By Clifford’s theory [Bushnell
o and Henniart 2006, Chapter 10, §41.3, Lemma] with Notation 4.4,
301/,
2 40 Ng € Xg <=0 ~o(E,&) forsomeé&.
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1 Proposition 4.19. Assume charg # 2. For a pair (E, §) as above,

11/27
2 {Lng} if(E/ED* #1,
(Lng,ne,nene} if E/E)? =1, £/E" =np o Ng/F.

3 XoEg) = {

n

~5 For each biquadratic separable extension K /F, there exists a two-dimensional
"o irreducible smooth R-representation o of Wr, unique modulo twist by a character,
~, with

8 XO'Z{la ne, Ne’, 77E”}

9 . . L
— for the three quadratic extensions E, E’, E” of F contained in K.
10

11 Proof. « We have

12 . .
X € Xo(re) &> (pour)®indy! (our) indy! (§oar) <= E(XoNE/F)=§ or £".

E e E(xoNg/r) =& <= x istrivial on Ng,r(E*),s0 x =1 or ng.
P e E(x o Ng/r) = &7 <= x = ng for a quadratic separable extension E’ # E of F,
16

P oasx2=1.
I If x satisfies £(x oNg,r) =&7, the order of £7 /& is 2, £7/£ is fixed by 7 and
% determines x up to multiplication by ng. Let K/F be the biquadratic extension
9 generated by E and E’ and E”/F the third quadratic extension contained in K/F.
201/2£ We have ngng = ngr. Hence the first assertion.
2L The uniqueness in the second assertion follows from the fact that for two smooth
? R-characters &, & of E*, Er/& = &5 /8 <= & = &(x o Ng/r) for a smooth
2 R-character x of F*.
2% The existence in the second assertion is as follows. When p is odd, there is a
= unique biquadratic extension K/F of F. Let E/F be the unramified quadratic
2 extension. We take 0 = o (E, &) where & is the character of E* trivial on 14 prOp,
2 g(pp) = —1and £(x) = x2@+D if x9°~1 = 1, satisfies £7 /& # 1 and (£7 /€)% = 1
% hence £/ =ng oNg/r =ngne o Ng/r for E’/F ramified. When p =2, given
2 two different quadratic separable extensions E'/F and E/F, there exists a smooth
30 R-character & of E* suchthat&® /& =ngoNg/r=ngngoNg,r, because charg #2,
! and this is known when R = C ([Bushnell and Henniart 2006, Chapter 10, §41]

* when p # 2, but the proof does not use p # 2).10:11 0
33

32 Remark 4.20. Let IT be a supercuspidal R-representation of G. Then IT has level 0
35 (resp. L(IT) has level 0), if and only if oy = indw‘; (E oag) where E/F is quadratic
36 unramified and £ is a tame character of E* (resp. £7 /£ is a tame character of E*
57 where 7 is the nontrivial element of Gal(E/F)).

38 . . .
— 10we gave a direct proof when p is odd, this was unnecessary.

301/, 39 U'When p is odd and charg = 2, there is no £ such that o (E, &) is induced from a character of
40 W for a quadratic extension E '/ F distinct from E/F.
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1 Remark 4.21. Assume charg % 2. Let 0 = xj oar @ x2 o af be a reducible
~, two-dimensional semisimple smooth R-representation of Wr. Then

xoar € Xo = {xx1, xx2} ={x1, xo2} &= x=1or xx1 = x2, xx2 = x1
<=>X=10rx=x2x1_1,x2=1.

o o]

If ), %y V=g fora quadratic separable extension E/F, then X, = {1, ng}. Other-

7 wise, Xy = {1}.
8
5 4.4.3. Application to the cuspidal L-packets. For a two-dimensional Weil-Deligne

1o R-representation (o, N) of Wr, put X, n) for the group of x € X, such that
1; there exists an isomorphism of x ® o onto o preserving N. For any irreducible
1, R-representation IT of G, applying the formulas (4-24), (4-25) and (4-11) we obtain:

13 (4-27) Xp={xodet| x € X(an,Nn)}o

* (4-28) When charg # 2, the cardinality of the L-packet L(IT) is | X4y, |-
15

16 Proposition 4.22. (1) When charg # 2, we have:

i o The cardinality of a cuspidal L-packet is 1,2 or 4.

® o The map L(I1) — Er is a bijection from the cuspidal L-packets of size 4 to
1

2 the biquadratic separable extensions of F.

20

21 (2) There is a bijection from the cuspidal L-packets of size 4 to the biquadratic
2o separable extensions of F, sending the unique cuspidal L-packet of size 4 to the

23 unique biquadratic separable extension of F when charg =2, and equal to the map
24 L(IT) — Ep when charg # 2.

25 Proof. (a) Assume charg # 2. If IT is cuspidal and Xy # {1} then ng € X1 for some
26 quadratic separable extension E/F, o =0 (E, &) for some & and | Xo(E6)|=20r4
27 by Proposition 4.19. When p = 2 then the map is a bijection by Proposition 4.19
8 via the local Langlands correspondence.

% (b) Assume p is odd (and charg # p). There is a unique biquadratic separable
. extension of F and a unique cuspidal L-packet of size 4 (Corollary 4.10).

55 () As pis odd when charg = 2, the proposition follows from (a) and (b). [l

33 When R = F¥° and £ # p, it is well known that an irreducible smooth [F5°-
34 representation o of W of dimension 2 lifts to an integral irreducible smooth
35 Qi°-representation & of Wr.12 The order of X; is at most to the order of X,. We
36 give now all the cases where the orders are different.

~ Theorem 4.23. Assume £ #2.

39 125 extends to a [!:2C -representation of the Galois group Galr. As Galp is solvable this representa-

40 tion lifts to a @;‘C—representation of Galf that one restricts to Wr to get 6.
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1 (1) Let 6 be alift to Qi of a two-dimensional irreducible smooth Fi°-representa-

11/27 tion o of Wr. The cardinalities of X, and of X5 are different if and only if | X | =4,

53 | Xs| =2, and this happens if and only if
p=2, {Ldividesq+1, &= indw;(g oug),
where E | F is a quadratic unramified extension, & a smooth Qf°-character of E*
such that:
(i) The order oféf/é on 1+ Pgis 2 where Gal(E/F) = {1, t}.

(i) EB) # 1, EB)E =1 for a root of unity b € E* of order ¢ + 1, and s is a
positive integer such that £° divides q + 1.

—
O |l || N | |0 |

—

1
12 (2) Each irreducible smooth F5¢-representation o of Wr of dimension 2 admits a
13 lift & to Q% such that |X5| = |Xs|.

' Proof. (1) Let I be the supercuspidal smooth Fi°-representation of G and n
> the integral supercuspidal smooth Qj°-representation of G lifting IT such that
1 o =op, & = of by the Langlands correspondence (4-24). We have |Xp| = | X, |,
7 | X5l = |Xs| (4-27). By Proposition 4.15, | X,| = | X5| or 2|X5|, except maybe
18 when p = 2 and I has positive level. In this exceptional case, ng € Xf. By
19 Remark 4.21, |X,| and | X;s| are equal to 1,2 or 4. Therefore, | X, | # |X5| is

201,22 equivalent to |X, | =4 and |X5| = 2.

391/

2l When|X,|=4and |X;|=2,0= indgf5 £,0= ind%‘; £ for a quadratic unramified
22

>2 extension E/F, an integral smooth @2°-character§ of E*, of reduction & modulo ¢,
2 with £/&7 # 1 where T is the generator © of Gal(E/F), and (£/&7)> = 1. This
2 implies (E/EH)2=1o0n p%(l + Pg) because £ # p. We have E* = pf(l + Pp)UE
2> where ug = {x € E* | X1 = 1}. We have t(x) = x? if x € ug. The group

2 {x97!| x € ug) is generated by an arbitrary root of unity b € E* of order ¢ 4 1. So
27

g(é/étﬂ:u:»é(b)z:l<:>|Xa|=4, E/ENV £ 1= ED) #£1 < |X5]=2.

2% In the exceptional case, p = 2 hence £ is odd and &(b)?> = 1 implies &£(b) = 1 (and
30 conversely), or equivalently, the order of & (b) is a power of ¢ dividing ¢ + 1. There
31 exists a lift £ of & such that £(b) # 1 if and only if £ divides g + 1.

= (2) Given a positive integer s, each element x € (Fi°)*, x # 1, is the reduction
w modulo £ of an element X € (Zi°)* such that 7 £ O

35 Corollary 4.24. (1) The reduction modulo £ of a supercuspidal Q°-representation
36 7 of G’ has length < 2. It has length 2 if and only if

S p=2, {dividesq+1, oj :ind%i(goag),
38
g where 7 € L(I), E /F is unramified, and & is a smooth Qi°-character of E* such

2
40 that:
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(i) The order of €7 /& on 1 + P is 2 where Gal(E/F) = {1, t}.

(i) £(b) # 1, E(b)Y =1 for a root of unity b € E* of order g + 1, and £* divides
qg+1

(2) Each cuspidal Fi°-representation w of G' is the reduction modulo £ of an
integral supercuspidal Q}°-representation of G'.

Proof. (1) This follows from

e Theorem 4.23(1), (4-21), and the local Langlands correspondence if £ # 2,
» Proposition 4.15(1) if £ =2.

12 o the fact that 7 lifts to Q}° by Theorem 4.23(2), (4-21), and the local Lang-
il lands correspondence if p =2 and 7 is in an L-packet L (IT) with IT minimal
= of positive level (hence 7 is supercuspidal, see Corollary 4.27) with Er/F
= unramified,

o  Proposition 4.15(2) otherwise. U

E Remark 4.25. Assume p # 2. A pair (E, ) where E/F is a quadratic extension
19 of F and 6 is a smooth R-character of E*, is called admissible [Bushnell and
20 Henniart 2006, Chapter 5, § 18.2] if either:

2L (1) 6 does not factorize through Ng,r (equivalently is regular with respect to

? Gal(E/F)).
23

e (2) E/F is unramified whenever 8|, p, does factorize through Ng,r (equivalently
. is invariant under Gal(E/F)).

26 To an admissible pair (£, 6) is associated the two-dimensional irreducible
27 R-representation o (E, ) = indwg (0 oag) of Wr, and when R = C an explic-
28 itly constructed supercuspidal representation 7 (E, 6) of G [loc. cit., Chapter 5,
29 §19]. Isomorphism classes of supercuspidal complex representations of G, are
30 parametrized by isomorphism classes of admissible pairs (£, 8) [loc. cit., Chapter 5,
31 §20.2]. The Langlands local correspondence sends 7 (E, 6) to o (E, 16) where the
32 explicit “rectifier” p is a tame character of E* depending only on 6|;,p,. As the
33 Langlands correspondence is compatible with automorphisms of C preserving ,/q,
g the previous classification in terms of admissible pairs transfers to R-representations
35 where R is an algebraically closed field of characteristic 0 (given a choice of square
36 root of g in R). The classification and correspondence for R = Qf° reduce modulo
37 £ # p (the integrality property for a pair (E, 0) is that 6 takes integral values) to get
38 a similar classification of supercuspidal [F;°-representations in terms of admissible
39 pairs. The integral admissible pairs over Qj° that do not reduce to admissible pairs
40 over [, yield under reduction cuspidal but not supercuspidal F}°-representations.
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1 4.5. Principal series. We use the notations of Section 4. We identify a smooth
"5 R-character n of T" with a R-character of F* and of T by

3 (4-29) n(diag(a, d)) = n(diag(a, ail)) =n(a) (a,d e F¥).

Proposition 4.11 describes i (n) The transfer of the properties (i) to (iv) to
ig ) = G§ e
is easy and gives:
E (i) For smooth R-characters n,n’ of F*, [ig,/(n)] and [ig,/(n’)] are disjoint if
10y # !, and equal if ' = n*l.
™ (i) The smooth dual of i§ () is i§ (n™").
12

; (i) (¢ B (n))U has dimension 2, contains n
14 (iv) dim Wy(lB, (m))=1forall Y #0.

~!and 7 is a quotient.

> The transfer of the properties (v) and (vi) is harder.

16
— PropOSItlon 4.26. (i) zB, (77) is reducible if and only if n = g™, or n # 1 and

18 77 =1
19 (ii) When charg # 2, ig,/(nE) is semisimple of length 2, when E |/ F is a quadratic
20 separable extension, which is ramified if g +1 =0 in R.

2L (iii) When charg = 2, the only reducible principal series is ig,/(l) = indg: (D).
22 , / ’
o5 (V) The length of i$ (g™ and of i§, (¢"™) = ind$, (1) is

% 2 ifg+1#0inR,
25 lg(ind§ 1) =314 ifg+1=0in R and charg # 2,
26 6 if charg =2

27
% Note that charg =2 implies g + 1 =0 in R.

g Proof. We show (i), (ii) and (iii).

30 If§ g(n) is reducible, then its restriction i g//(n) to G’ is reducible. By Proposition4.11,
L 'G(n) is reducible if and only if n = g*"2.

g Assume i§ () 1rredu01ble ie.,n# qiva' If charg # 2, we have X;q,, =2 if and
S onlyifn#1 and n* = 1 by the Langlands correspondence and Remark 4.21.13 We
o have n # 1, n*> = 1 if and only if n = 5 for a quadratic separable extension E/F,
-, Which is ramified if ¢ + 1 = 0 in R (Notation 4.4) as 5 # g™ If charg = 2,
o then p is odd, n # 1, and ig/ (n) is irreducible. Indeed, the irreducible components
o of ig, (n) are B-conjugate (§6.2.1). They give a partition of the set of irreducible

39 131t can also be done dlrectly because for a smooth R-character x of F*, Proposition 4.11(i)

40 1mp11es(Xodet)®zB(n)~tB(n)<:>Xn—norn le y=lory=pnandn?=1.
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1 components of (ig,/(n))l p'. The character n appears with multiplicity 1 as n # n_l,

, but as it is fixed by B, the partition is trivial, i.e., i g,/(n) is irreducible.

3 (iv) [Cui 2023, Example 3.11, Method 2] We give a proof for the convenience
4 of the reader. When ¢ + 1 # 0 in R, the restriction to G’ of the Steinberg
5 representation St of G is irreducible, otherwise it would contain a cuspidal rep-
6 resentation as dimg Sty = 1 which is impossible by (4-15). When ¢ +1 =0
7 in R, the cuspidal R-representation I1y (see Proposition 4.11) is induced from
8 the inflation to Z GL,(OF) of a cuspidal R-representation og of GL,(kr). By
9 (4-18), 1g(ITp|g’) = 21g(00lsL,kr))- The representation oglsy, ) is irreducible if
10 charg # 2, and has length 2 if charg = 2 (Appendix). (]

11
. Corollary 4.27. The nonsupercuspidal smooth R-representations of G’ are:

E e The trivial character.
™ o Ifg+1+#0in R, the Steinberg R-representation st = St|g.
15

16 * The principal series ig,/(n)for the smooth R-characters n of F* with n # q

, and n # ng for any quadratic separable extension E/F.

+val

E o If charg # 2, the two irreducible components ﬂg: of ig,/(nE) for a quadratic
19 separable extension E/F, which is ramified ifq +1=0in R.

20 o Ifcharg #2 and g +1 =0 in R, the two irreducible components of Tly|g'.

1
5 If charg = 2, the four irreducible components of Ty|g'.

23 The only isomorphisms between those representations are i g,/(n) ~j g,/(n_l) for the
24 irreducible principal series.

2 We get for nonsupercuspidal L-packets:
26

27 Proposition 4.28. When q+1=0in R, there is a unique cuspidal nonsupercuspidal
28 L-packet. Its size is 2 if charg # 2 and 4 if charg = 2.

2 o When charg = 2, every noncuspidal L-packet is a singleton.

30

31

32

33

34 This proposition and Corollary 4.10 imply:

o When charg # 2, the noncuspidal L-packets are singletons or of size 2.
Those of size 2 are in bijection with the isomorphism classes of the quadratic
separable extensions of F.

35
o Corollary 4.29. The L-packets of size 4 are cuspidal.

37 We consider now the reduction modulo a prime number £ # p. A noncuspidal
38 irreducible Qj°-representation 7 of G’ is integral except when 7 ~ ig,/(ﬁ) for a
39 nonintegral smooth Q¥°-character 7 of F*. When 7 is integral, we deduce from
40 Corollary 4.27 the length of the reduction r,(7) modulo £ of 7.



PROOFS - PAGE NUMBERS ARE TEMPORARY

130 GUY HENNIART AND MARIE-FRANCE VIGNERAS

. Proposition 4.30. (1) The reduction r¢(77) modulo £ of 7 irreducible noncuspidal
, and integral is irreducible with the exceptions:

o If € =2, then 1g(re(51)) = 5, lg(re(®5)) = 3, 1g(re(i§ (7)) = 6 for ij of
order a finite power of L.

3
I

5 !
o o If £ # 2 and ¢ divides q + 1, then lg(/rg(Et)) =3, lg(rg(ig (7)) = 4 for 7
= of order a finite power of €, lg(r@(ig, (ﬁ))) =2 if n = ngé&, for a ramified
s
2

0

1Y,

quadratic separable extension E | F and a character & of order a power of €.

(2) Each noncuspidal irreducible Fi°-representation of G' is the reduction modulo ¢
of an integral noncuspidal irreducible Q° -representation of G'.

—
=

5. Local Langlands R-correspondence for SL;(F)

=
w [N

14 5.0.1. If (0, N) is a two-dimensional Deligne R-representation of the Weil group
15 Wg (§4.4.1), a choice of a basis of the space of o gives a Deligne morphism of
16 Wr into GL,(R).'* In this way equivalence classes of two-dimensional Deligne
17 R-representations of Wr identify with Deligne morphisms of Wg into GL,(R), up
15 to GLy(R)-conjugacy.
19 By a Deligne morphism of Wg into PGL;(R), we mean a pair (o, N) where
20 0 :Wr— PGLy(R) is a smooth morphism, semisimple in the sense that if o (Wr) is
20 2, in a parabolic subgroup P then it is in a Levi of P, and N is a nilpotent!> element in
2o Lie(PGL;,(R)) with the usual requirement (4-23). We say that (o, N) is irreducible
23 if 0(Wp) is not contained in a proper parabolic subgroup (meaning that N = 0 and
54 the inverse image of o (W) in GL,(R) acts irreducibly on R?). The question arises
25 Wwhether a Deligne morphism (o, N) of Wg into PGL;,(R) lifts to a two-dimensional
26 Weil-Deligne R-representation.
o7 When (o, N) is reducible, we may assume that o takes value in the diagonal
2 torus of PGL;(R), and that N is upper triangular. The map x > diag(x, 1) modulo
2 scalars is an isomorphism from R* to this torus, so o comes from an R-character x
50 of Wp, and o lifts to the two-dimensional x @ 1. That deals with the case where
51 N =0. When N # 0, then (o, N) lifts to (g7 @ 1, N).
32 The following lemma answers the question more generally for irreducible Deligne
33 morphisms of Wy into PGL,, (R) for integers n > 2 (the definitions above for n =2
34 generalize to n > 2).

* Lemma5.1. Any irreducible smooth morphism p : Wg — PGL,,(R) has finite image
*_ and its natural extension to Galp lifts to an irreducible smooth R-representation of

37 ; .
> Galf of dimension n.
38

301/, 14We use the same notation (o, N) for the Deligne morphism of W into GLy(R).
40 15N is nilpotent in Lie(PGL; (R)) if the Zariski closure of the PGL, (R)-orbit of N contains 0.
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1 Proof. Because the inertia group Ir of Wp is profinite and p is smooth, p (/) is
27, finite. Let ¢ be a Frobenius element in Wr. If the order of p(p) is finite, then
"3 p(Wg) is finite, so p extends by continuity to a smooth R-representation p’ of Galg.
~, The proof of Tate’s theorem [Serre 1977, §6.5] applies with R instead of C and
5 that shows that p’ lifts to a smooth R-representation of Galg. Let us show that
s p(p) has finite order. Since p(¢) acts by conjugation on p(/r) which is finite, a
~ power p(¢“) for some positive d acts trivially on p(Ir). But it also acts trivially on
s p(e), hence on all of p(Wr). Let A € GL,(R) be a lift of p(¢?). For B € GL,(R),
o the commutator (A, B) depends only on the image of B in PGL,(R), and if B has
10 image p(i) for i € IF, then (A, B) is a scalar u(i). If B’ € GL,(R) has image
11 p(@i') fori’ € Ir, then A(BB')A™' = ABA™'AB'A™!, giving u(ii’) = n(i)u(’),
1o so conjugation by A induces a morphism p : Ir — R*. Since p(If) is finite, a
13 power A¢ for some positive e commutes with the inverse image J in GL, (R) of
14 p(Wp). Let V be an eigenspace of A¢. It is stable under J. If V s R", that yields
15 a proper parabolic subgroup P (the image in PGL, (R) of the stabilizer of V') of
16 PGL,(R) which contains p (W), contrary to the hypothesis. So A€ is scalar, which
17 implies that p(¢) has finite order dividing de. ([

B Two 2-dimensional Deligne R-representations of Wy in GL,(R) are twists of

*_ each other by a smooth R-character of Wr if and only if they give the same Deligne

201/23 morphism of Wr in PGL;(R). This happens if and only if the two corresponding

301

2 irreducible smooth R-representations I, IT" of G are twists of each other by a
z smooth R-character of G (4-25), that is, if and only if IT and IT’ define the same
= L-packet L(IT) = L(IT") of irreducible smooth R-representations of G’ (4-4).

24

25 5.0.2. From the above the local Langlands correspondence for G induces a bijection
26 between L-packets of irreducible smooth R-representations of G’ and Deligne mor-
27 phisms of Wr in PGL2(R) up to PGL;(R)-conjugacy. We would like to understand
28 the internal structure of a given packet in terms of an associated Deligne morphism
29 Wr — PGLy(R) (called its L-parameter).
30 Let IT be an irreducible smooth R-representation of G. The L-packet L(IT)
31 is a principal homogeneous space of G/Gp. The packet containing the trivial
32 representation of G’ is a singleton, so the parametrization is trivial. When L(IT) is a
33 packet of infinite-dimensional representations of G’ we take as a base point in L (IT)
34 the element with nonzero Whittaker model with respect to the character i of F
g (that is, 6y of U) fixed in Section 4.1. Let Cyy denote the centralizer of the image in
36 PGL,(R) of a Deligne morphism (o, Nri) of W in GL,(R) associated to IT, and
37 S the component group of Cr;. We shall compute Cry and St1, and when charg # 2
38 we shall construct a canonical isomorphism from G/ G onto the R-characters of St.
39 In this way we get an enhanced local Langlands correspondence for SLy(F') in the
? 40 sense of [Aubert et al. 2016; 2017] if charg # 2 but not if charg = 2. J.-F. Dat tells
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1 us that our results for charg = 2 should still be compatible with the stacky approach
v >, of Fargues and Scholze to the semisimple Langlands correspondence. For example,
3 for a supercuspidal R-representation IT of G, the two components of 1|5’ should
~, be indexed by the two irreducible R-representations of the group scheme 5.
5 The group of R-characters of G/Gry is X1, and X1 = {x odet | x € X (o, N}
6 (4-27). We now construct a homomorphism ¢ : X 4, ) — St Let x € X, np)-
~, By definition, there exists A € GL,(R) such that ANy = Ny and for w € Wp,
e Aon(w)A~! = y(w)on(w). The image A of A in PGL,(R) belongs to Cry and

5 we shall show that its image ¢(x) in St does not depend on the choice of A.

1% Theorem 5.2. The map ¢ : X (op.ny) —> St is a group isomorphism, and Sp = {1},
W 7/27 or2)27 x Z/27.

12 When charg =2, Si = {1} for each T1, but the length of 1|’ is
13

14
E o 2 if Tl is supercuspidal,

o 1 if Tl is not cuspidal,

16 o 4 if Tl is cuspidal not supercuspidal.

17

15 Proof. (A) Let I be a supercuspidal R-representation of G. Then oy is irreducible
7o and N = 0 (Proposition 4.18).

19
2 When charg # 2, the authors of [Cui et al. 2024, Proposition 6.4] construct an

2
201/ 2, isomorphism ¢ : X,; — Cp when charp # 2, but their proof does not use this
5, hypothesis. This implies Cry = Sp. One checks that ¢(x) = ¢(x) for x € X4y, an

3 isomorphism.

o2 When charg = 2, we have that p is odd, the cardinality of L(II) is 2 or 4
5 (Propositions 4.7 and 4.8), and oyy = ind&ﬁg (6) where E/F is a quadratic separable
¢ extension and 6 a smooth R-character of Wg (or equivalently of E*) different from
,; its conjugate 67 by a generator T of Gal(E/F). The character 67 /6 has finite odd
g order, say m, and o1 (Wr) C GL(R) is a dihedral group of order 2m, generated by
5o @ Mmatrix (8 09.) of order m and ((1) (1)) modulo conjugation in GL(R). So Cy = {1}
5, and there is no enhanced correspondence.

31 B) LetIT=1 g(n) be an irreducible normalized principal series with the notation
32 of (4-29), with 5 # ¢g*". The cardinality of L(IT) is 2if n # 1, 2 =1, and L(IT)
3 isa singleton otherwise. We have oy = (n @ 1) oap, N = 0 (Proposition 4.18)
32 and we easily see that Cry is

* e PGL,(R) when n =1, so S = {1},
36

- o the diagonal torus when n # 1, n> # 1, Sp = {1},

38 o the normalizer of the trivial torus when n # 1, n?> = 1, so charg # 2 and
391/22 Sn = Z/27Z. We have X117 = {1, n odet} (Remark 4.21) and ¢(7n) is not
40 trivial, so ¢ : X;g — S is an isomorphism.
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), s (C) If I is an irreducible subquotient of indg 1, the length of IT|s (Section 4.5) is
2 e 1 when IT = 1, ¢*¥ o det or St,
% « 2 when T = Ty if charg 2 and ¢ + 1 =0 in R,
5 e 4 when IT = I if charg = 2.
E We have o = ((¢'/2)"4@® (g ~"/%)"®) oar ((4-24), Proposition 4.18). The centralizer
" Cp of the image of o (Wr) in PGLy(R) is the image in PGL,(R) of
O
0

{A € GLy(R) | Adiag(g, )A~! € R* diag(q, 1)}

o :{A:(x y) € GLy(R) ‘ <xq y>=u(xq yq) forsomeueR*}.
- z t zq t z
%Ifx;éOort;éOthenuzl,andify;éOthenqu:l.Ifz;éOthenuzq. So,
15 ¢ PGLy(R) if g —1=0in R,

10 o the diagonal torus wheng —1#0in Randg+1#01in R,

17

. « the centralizer of the diagonal torusif g — 1 #0in Rand g+ 1=01n R.

19 We have N =0, hence Cpp = Cp; when:

201,22 e« I1=1wheng+1+#0in R, hence C; =PGLy(R) ifg+1#0, ¢g—1=0
2 in R (so charg # 2) and C is the diagonal torus if g +1#0, g —1 #0
2 in R. In both cases S| = {1}.

23
on e IT = Il cuspidal when ¢ +1 = 0 in R. Recalling Section 4.5, when

. charg # 2, 1g(Ilp|¢’) =2 and Cpy, is the normalizer of the diagonal torus

o and S = Z/2Z. We have Xgno = {1, (=1)*¥} (Corollary 4.13). As in (B),

e ©((—=1)'¥) is not trivial, so ¢ : X;; — Sp is an isomorphism.

28 But when charg =2, then ¢ — 1 =01in R and Cp, = PGL,(R). As S, = {1}
29 and 1g(ITp|g’) = 4, there is no enhanced correspondence.

30 We suppose now Np # 0. Then (Proposition 4.18) IT = St when g +1 # 0
31 in R and IT is a character when ¢ +1 = 0 in R. In both cases I|¢’ is irreducible
32 (Corollary 4.27). We can suppose that Ny is a nontrivial upper triangular matrix.
33 A similar analysis gives that Cry is

% o the diagonal torus if g — 1 # 0 in R,

% « the upper triangular subgroup if g — 1 =0 in R.
37 1In both cases S = {1}. O

38
o Remark 5.3. We computed the centralizer Cr; C PGL,(R):

39Y/p—
40

o Cy is finite if and only if IT is supercuspidal.
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* When Cp is connected, it is isomorphic to PGL,(R), the upper triangular
subgroup, the diagonal subgroup, or {1}.

e When Cp has two connected components it is isomorphic to the normalizer
of the diagonal subgroup or to Z/27.

2
3
4
% e When Cpy has four connected components, it is isomorphic to the Klein
- group Z/27 x 7/27.
8 5.0.3. Assume charg = 2. A kind of lifting has been introduced by [Treumann
9 and Venkatesh 2016] and generalized in [Feng 2023]. They consider a (connected)
10 split reductive F-group H, equipped with an involution ¢ such that the group of
11 fixed points H* is (connected) split reductive. They set up a correspondence, called
12 linkage, between t-invariant irreducible smooth R-representations IT of H = H (F)
13 and irreducible smooth R-representations of H' = H'(F). More precisely they
14 show that there is a unique isomorphism ¢y from IT to its conjugate IT* by ¢,
15 which has trivial square. They say that an irreducible smooth R-representation
16 of H'is linked with IT if the Frobenius twist of 7 occurs as a subquotient of the
17 representation 7' (IT) =Ker(1+tr)/ Im(1+:17) of H'. They ask for an interpretation
18 of linkage in terms of dual groups.
19 Let us consider the special case where H = GL, and t(g) = g/ detg.!® Then
20 H'=Sl,,s0 H=G, H" = G'. Let I be an irreducible smooth R-representation
21 of G of central character wry. It is invariant under ¢ if and only if IT >~ [1® (wp odet).
22 This implies that wp has trivial square, so is trivial because charg = 2. In other
23 words, IT is t-invariant if and only if IT factors to a representation of PGL,(F).
24 Tt follows that then (fy is the identity, and 7 (IT) is simply the restriction of Il
25 to G’, which we have thoroughly investigated. In particular 7' (IT) has finite length,
26 as expected. The dual group of H over R is GLy(R), that of H' is PGL,(R).
27 Treumann and Venkatesh ask for an interpretation of linkage in terms of a natural
28 homomorphism from PGL,(R) to GL,(R).

20 Let oy : W — GL2(R) be the semisimple L-parameter of II. The map
30 ¢~ '(om) : Wr — GLy(R), followed by the quotient map GL,(R) — PGLy(R), is
31 the semisimple L-parameter pr : Wr — PGL,(R) of the Frobenius twist of any
32 constituent 7 of I1|g.
33 The map ¥(g) = ¢(g)/ det g for g € GL,(R) where ¢ : x — x? is the Frobenius
34 map of R, is trivial on scalar matrices, hence factors through a homomorphism
35 W : PGLy(R) — GL2(R). The homomorphism W is injective of image SLy(R).
36 Now if I is t-invariant, the determinant of oy is trivial so o = W o pry and the
37 conjectures of [Treumann and Venkatesh 2016, §6.3] are indeed true in our special
38 case.
30

40 16z(g) is conjugate to the transpose of the inverse of g.
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1 6. Representations of SL,(F) near the identity

11/27

2 6.1. Assume char r=0and R =C. Let H be the group of F-points of a connected
2 reductive group over F. We denote by C2°(X; C) the space of smooth complex
~* functions with compact support on a locally profinite space X. The exponential map
2 exp from Lie(H) to H induces an H-equivariant bijection between a neighbourhood
° of 0in Lie(H) and a neighbourhood of 1 in H. So a function f € C°(H; C)
" with support small enough around 1 gives a smooth function f oexp around 0 in
Sc °(Lie(H); C). Also there are only finitely many nilpotent orbits of H in Lie(H),
° for the adjoint action. For each such orbit O, there is an H-invariant measure on £,
1 and a function @ € C°(Lie(H); C) can be integrated along O with respect to that
™ measure, yielding an orbital integral I5(¢). Choosing a nondegenerate invariant
2 bilinear form on Lie(H), a nontrivial character of Lie(H) and a Haar measure on
B Lie(H) yields a Fourier transform ¢ for a function ¢ € C2°(Lie(H); C). Fix also a

14
— Haar measure dh on H.
15

16 Theorem 6.1. Let I1 be a smooth complex representation of H with finite length.
17 Then there is an open neighbourhood V (I1) of 1 in H and for each nilpotent orbit O
1s a unique complex number co = co(I1) such that if f € C°(H; C) has compact
1o supportin V (I1) then the trace trri (f) of the linear endomorphism | y SII(h) dh
50 s equal to

201/, —

301

%(6-1) trn(f) =Y co(Io(@) where ¢ = f oexp.
- O

3 This was first proved by Roger Howe when H = GL,(F), and the general case
o is due to Harish-Chandra.

o As is usual, we say that a nilpotent orbit ©’ is smaller than a nilpotent orbit O
o if O’ is contained in the closure of . With the normalizations as in [Varma 2014]

— we have:
28

g Theorem 6.2. Let I1 be a smooth complex representation of H with finite length.
30 When O is maximal among the orbits with co (I1) # 0, then co (1) is equal to the
31 dimension of generalized Whittaker spaces for I1 attached to .

* The result when p is odd due to [Meeglin and Waldspurger 1987] is extended

* to p = 2 in [Varma 2014] in general. When © is a regular nilpotent orbit, the
fall generalized Whittaker model is the usual one, and the result then goes back to
% Rodier [1975]. Varma actually proves that with that normalization all coefficients

% ¢ (I0) are rational [2014].
37

g 6.2. Assume R = C. For any F, when H is an open normal subgroup of GL, (D)
39 where D is a finite-dimensional central division F-algebra, Theorem 6.1 still holds,
22 with the exponential map replaced by the map X — 1 + X [Lemaire 2004]. In the
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1 special case where H = GL, (D), Theorem 6.2 also holds, at least for the natural
~, generalized Whittaker space attached to each nilpotent orbit [Henniart and Vignéras
T3 2024].

3

% 6.2.1. We use the notations and definitions introduced in Section 4.1. Let H be an
°_ open normal subgroup of G = GL,(F) containing ZG’. The index of H in G is

° finite as H/ZG' is open in the compact group G/ZG’. Put
7

5 (6-2) Vy=F*/detH, dimg,Vy=d, |G/H|=2"

9
o A nilpotent matrix can be conjugated in a lower triangular nilpotent matrix Y by an
— element of G’. Two such matrices Y and Y’ are H-conjugate if and only if their
e bottom left coefficients differ by multiplication by an element of det H.

E (6-3) The number of H-orbits in the nilpotent matrices in M,(F) is 1 +2¢.

% The 0-matrix forms the smallest nilpotent H-orbit (the “trivial” one). The nontrivial
— nilpotent H-orbits are maximal, and parametrized by Vy via their bottom left
o coefficient.
e With the same arguments as those given for ZG’ in Section 4.1, any irreducible
. smooth R-representation 7w of H appears in the restriction to H of an irreducible
o smooth representation IT of G, unique modulo torsion by a smooth R-character
/2; of G. The irreducible components 7 of I1|y are G-conjugate (even B-conjugate)
o and the G-stabilizer of & does not depend on the choice of 7 in IT|y, and denoted
Y by G, . The representation IT| g is semisimple of multiplicity 1 with length

% (6-4) lg(M|n) =1G/Gny,|  dividing 1g(TT|z¢') = |G/ Gnl = |L(ID)],
25
-6 hence equal to 1, 2 or 4 by Theorem 1.1. The representation 7| is semisimple of

5, multiplicity 1 with length Ig(7|¢) =1g(I1|g")/lg(XT|g) =Gy, /Gnl.
55 For alower triangular matrix ¥ # 0, we have

l > dimg Wy () = dimg Wy (IT) = 1.
3 xCIl|y
31

5, There is a single irreducible 7 in IT| g with Wy (;r) # 0, and dimg Wy (1) # 0 <
53 dimg Wy () = 1. If Wy (;r) # 0 then Wy (1) # 0 when Y’ and Y are H-conjugate.
34 We consider dimg Wy () as a function m; on Vy. Because m extends to G,
35 My is invariant under translations by

o Wi, = det Gry,,/ det H.

37

g It follows that m; is the characteristic function of an affine subspace A, of Vg with
39 direction Wpy,, each such affine subspace being obtained exactly for one w C I|g.

22 For g € G we denote 78(x) = m(gxg™') for g € G, x € H, so n8" = (x&)"
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1 for g,h € G. We have A,: = detg A,. We have a disjoint union (the Whittaker
27, decomposition):

%(6-5) V= || Ax.

nCI|y

% If 1lg(IT| ) = 1, my is the constant function on Vg with value 1. If 1g(TT| ) = 2,
— the two irreducible components of I1|y yield the characteristic functions of two
e affine hyperplanes of Vg with the same direction. Finally for 1g(IT|y) = 4, we
-, get the characteristic functions of four affine subspaces of codimension 2 in Vg
— with the same direction. In particular when p is odd and 1g(IT|z) = 4, we have
o H = ZG’ and m,, is a nonzero delta function on Vg = F*/(F*)>.

o Let C(Vy; Z) denote the Z-module of functions f : Vg — Z. For an integer
. 0<r <d, let I, denote the Z-submodule of C (Vp; Z) generated by the characteristic
" functions of the r-dimensional affine subspaces of V. We have Iy = C(Vg; Z).

E Lemma 6.3. When O <r <d, 21,1 is included in I, and the exponent of Iy/ I,
16 s 2"
17

o Proof. Let W be a (r — 1)-dimensional vector subspace of Vi and {0, e, f, e+ f}

o 2 supplementary plane. For an affine subspace A of Vy of direction W, the affine
;subspaces A,=AUA+e, Ay=AUA+ fand B=A+eUA+ f of Vy are
/2~— r-dimensional, and x4, + xa, — X8 =2 x4 by taking their characteristic functions x.
. Thus 21,_; C I,. By induction 2"Iy C I,. The map s, : C(Vy; Z) — Z/2"Z given
o by the sum of coordinates is surjective and vanishes on 7, but not on /,_;. So the
v exponent of Iy/I, is 2". O

g 6.2.2. Let us make Theorem 6.1 more precise for an open normal subgroup H of
26 G =GLy(F) asin §6.2.1.

z% Notation 6.4. On G (hence on H) we put a Haar measure dg, and on Lie G =
o Lie H = M,(F) we put the Haar measure dX such that X +— 1+ X preserves
S, Measures near 0. The invariant bilinear map (X, X') + tr(XX’) on Lie(H) is
o nondegenerate. The Fourier transform ¢ +— ¢ on C2°(Lie(H); C) is taken with
— respect to the nontrivial character ¥ o tr on Lie(H). For each nilpotent H-orbit O
. in Lie(H), we normalize the nilpotent orbital integral /(@) [Lemaire 2005, propo-
v sition 1.5] in the same way as [Varma 2014, §3]; that normalization is Valid even
o when charp > 0. By [loc. cit., Remark 2], for large enough i, K; =1+ M>(P;) and
— a lower triangular nilpotent matrix Y, the measure of Ad(K;)(Y) is 0 if ¥ = 0 and

6 X
e g% otherwise. In particular Io(¢) = ¢(0) for the nilpotent trivial orbit 0 € Lie H.

g Theorem 6.5. Let w be a smooth complex representation of H with finite length.
30 There is an open neighbourhood V () of 1 in H and for each nilpotent H-orbit O
40 a unique complex number co = co () such that if | € CZ°(H; C) has compact
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1 supportin V (w) then

11/27

20
20Y/,—

39Y/5

~(66) ttr () =o() F (D + Y oo (@)

N D#0
o where (X)) = f(1+ X) for 1 + X € V().

We call (6-6) the germ expansion and c((77) the constant coefficient of the trace
of w around 1. A character twist of 7 does not change c((rr). For m irreducible,
co(r) =0 for all O # 0 if and only if 7 is degenerate (by Theorem 6.2) if and
only if dimg 7 = 1. In this case co(m) = 1.

10 We can determine that constant coefficient co(sr) for any irreducible smooth
11 representation 7 of H from the case of G, because 7 appears in the restriction
12 to H of an irreducible smooth complex representation IT of G. The irreducible
13 components of I1|y being G-conjugate to 77 have the same constant coefficient,!’
14 and

15

16 (6-7) co(IT) = Ig(IT| g )co ().

6
7
)
)

—

17 By [Henniart and Vignéras 2024], we have cy(1g) = 1. When IT is parabolically

% induced, for example when IT is tempered and not a discrete series,
19

co(IT) = 0.

. When IT is a discrete series representation of formal degree d(IT),

23 co(IT) = —d(T1)/d (St).

24
-5 When IT is a supercuspidal complex smooth representation of G of minimal level f1

6 (the minimal level'® of the character twists of IT),
2

s (6-8)  co(I) = {
20

30 When ffy is a half-integer (not an integer), IT has positive level (Section 4.3.2),
5 11 :ind? A where J = E*(1+ Qf“+%), where E/F is ramified, Q is the Jacobson
3, radical of an Iwahori order in M, (F), and A is trivial on 1+ Q>/m*! [Bushnell and
33 Henniart 2006, Chapter 4, § 15]. Let x € X1 \ {1}. Then x is ramified [Bushnell
34 and Henniart 2006, Chapter 5, §20.3, Lemma]. The level r, of x is the largest
35 positive integer r such that x is nontrivial on 1 + P/ when x is ramified. We have

—2¢/m if f is an integer,
—(g + l)q-f“_% if f is a half-integer (not an integer).

36
. (6-9) 1<ry < fu.

il 17By the linear independence of nilpotent orbital integrals.

39 18The level is the normalized level of [Bushnell and Henniart 2006, Chapter 4, § 12.6] and the
40 depth is in the sense of Moy—Prasad.
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. Indeed, if , > fn then x odet is nontrivial on 1+ Q% (as det(14+ Q%) = 14 P.),
", and (x odet) ® A would be nontrivial on 1 4+ Q% implying that the level of
3 (x odet)® A is at least r,. By [Bushnell and Henniart 2006, §15.6, Proposition 1],
~, this contradicts the assumption that x € Xp. So fri < ry as r, is an integer but
5 not ffr.

6 Lemma 6.6. If fr1 = % then Xn = {1}. Ifq =2 and fn = % then X1 cannot have
7 four elements.

8 Proof. If f1 = %, then Xy is trivial by the formula (6-9). If fij = %, thenr, =1,
2 and if g = 2 there are only two quadratic characters of level 1. That implies that

10
~~ Xp cannot have four elements. O
11

., Proposition 6.7. Let T1 be an irreducible complex smooth representation of G and
15 T anirreducible representation of H contained in I1|y. Then:

14 e co(m) = —% if p is odd, 11 is cuspidal of minimal level 0 and L(I1) has four
15 elements.
16 o co() is an integer otherwise.

17 Y . . e e .

— e co(m)=0ifm is a principal series, and co(r) < 0 if w is infinite-dimensional
18 . .

— and not a principal series.

19

o Proof. By formulas (6-4), (6-7), (6-8), we have:

2
201/, —
e e collg) =1, 50 co(lp) = 1.
22 e ¢o(St) = —1 so co(sty) = —1, since the restriction sty of St to H is irre-
23 ducible as st = St |- is irreducible.

391/

2 e ¢co(IT) =0 so co(r) = 0, when IT is an irreducible principal series.
25

26

2
» If p is odd, then ¢ (I1) is an even integer by (6-8), so that co(;r) is an integer if
2 L(TT) has one or two elements by (6-7); if L(IT) has four elements, then fr; = 0 by
0 Proposition 4.8 and co(IT) = —2, so co(7) = —%. If p =2, then co(I1) is a multiple

i of 4 (so co(mr) is an integer) by (6-8) except when:

32 (1) frr =0, where co(IT) = —2. But L(IT) has size 2 by Proposition 4.7, so
33
co(mr) =—1.

e co(IT) < 0 so co(r) < 0, when IT supercuspidal of level fr; (the minimal
level).

% (i) fin =4, where ¢o(IT) = —(q + 1). But L(IT) has size 1 by Lemma 6.6, 50

. co(m)=—(g+1).

5, (i) fm= % and g = 2, where co(IT) = —6. But L(I1) has size 1 or 2 by

38 Lemma 6.6, so co(r) = —6 or —3. [l

g Theorem 6.8. Let w be a finite length complex representation of H, Y # 0 a lower
22 triangular matrix in My(F) and O its H-orbit. Then co () = dime Wy (7).
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1 Proof. We use the same idea as [Rodier 1975]. Remarking that the lower triangular
~, group B~ of G acts transitively on lower triangular nilpotent matrices Y, and that for
3 g€ B~ wehave co(w) =cps(w8), dimg(Wy (7)) = dimg (Wys (7w8)), it suffices to
, consider the case where Y = (? 8). We stick to that Y (so 6y = 6 with Notation 4.1).
5 For each positive integer i, we define a character yx; of the pro-p group K; =
1 + M,(P}) by the formula

X1 X2

(1 X 2!YX _ZiX X =
Xi(l+X) =y otr(py"YX) =y (pp~ X12), <Xz,1 X22

> € My(Pl).

o The character y; is trivial on K»;. When conjugating by the diagonal matrix
L di= diag(pj,, Pr') we get a character 6; on

12 Pl P—i
—(6-10) Hy=d~ Kd_1+<P3, 5;)

= such that 6; (1+ X) = (X1,2). The limit of the groups H; as i — oo is the group U.
1

% We will prove that the 8; approximate the character y of U in the sense that

1

E (6-11) lim dim¢ Homg, (6;, ) = dim¢e Wy (7).

11— 00

18

— On the other hand we will also prove in §6.2.3, following [Varma 2014], that

20 (6 12) dim¢ Homg, (x;, m) = co(mr) for large i.

% Since dim¢ Homy;, (6;, 7) = dim¢ Homg, (;, 7r), we shall get the result. U

23 6.2.3. Let us proceed to the proof of the formulas (6-11) and (6-12), through a
24 sequence of lemmas that are rather easy compared to the analogous statements in the
; more general cases treated by [Rodier 1975; Meeglin and Waldspurger 1987; Varma
26 2014] when chary = 0, and [Henniart and Vignéras 2024] for arbitrary charp.

27 For X € M>(F), put§;(X)= Xl_l(l +X)if X e M2(P ) and §; (X) = 0 otherwise.
28 Using Notation 6.4, the Fourier transform 8; of 8 is

g ¥ vol(My(OF), dX) if X € pp2'Y + My(P;),
0 otherwise.

29 n

30 (6-13) Si(X)={
31

. Lemma 6.9. The K-normalizer of x; is (ZU~ N K1) K.

33 Proof. For a positive integer j <i, we prove that the K{-normalizer of the restriction
g of x; to Kp;—; is (ZU™ N K1)K; by induction on j. This is clear for j = 1 and
35 the case j =i gives what we want. Assume that the claim is true for j < i and
36 let us prove it for j + 1. Let g € K, normalizing the restriction of x; to Kp; ;1.
37 By induction g € (ZU™ N K1) K; and we may assume g € K;. Write g =1+X
8 with X € Ma(PJ). Then g*IYg =Y + YX — XY modulo MZ(P;+ ) and the
39 hypothesis on g means that YX — XY = 0 modulo Mz(Pg l) which gives that
40 pF’ X commutes with ¥ modulo Pr. But the commutant of ¥ modulo Pr in
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1 My (kF) is made out of lower triangular matrices with the same diagonal elements.
>, Consequently g € (ZU™ N K;)K;4 as claimed. O

3 Lemma 6.10. The K;-orbit of Y is the set of nilpotent matrices in Y + M2(P}).

- Proof. Clearly, g¥g~" is a nilpotent element in ¥ + M, (P%) for g € K;. Conversely,
~_let Y 4 p. Z nilpotent (hence of trace 0) with Z € Ma(Or). If g = 1 + pi. X with
X e My(Op), then g(Y +pi Z)g ™' =Y+ pi.(YX — XY +Z) modulo Ma(PLH). We
" choose X, as we can, so that YX — XY + Z =0 modulo Pr. So g(Y —+—p"FZ)g_1 €
Sy4 MZ(P}H). The K;-orbit of Y is closed in M,(F). We finish the proof by

9 . —
— successive approximations. O
10

.1 Let w be a smooth representation of H on a complex vector space V, and
L @ :V — Vy be the quotient map from V to the §-coinvariants Vy of V. For large

15 enough i such that H; C H let V; be the 6;-isotypic component of V.

z Lemma 6.11. For large enough i, p(V;) = V.

1> Proof. Tt is the same as that of Lemma 8.7 in [Henniart and Vignéras 2024]. O
16

—  We have

17
18 Hip1=Hi1NH) (Hiz1NU), [Hir:(Hi NH)=[(HiNU):(HiNU)1=q ",

2 and 6;11 =6, on H; | N H;. Let ¢; = fidg where dg is the Haar measure on H

201/23 giving the volume 1 to H; and f; is the function on G with support H; and value 9171

39Y/5

— on H;.
22

5; Lemma 6.12. We have e;e;ie; = q_le,- when i > 1 and H; C H. In particular,
o themap v — m(ej1)v: V; = Viyy is injective.

1

g Proof. The lemma is equivalent to 7 (eje;+1e;)v =g~ m(e;)v for all v € V and

26 (7, V) as above. The projector V — V; is 7 (e;) and

27
-1 -1
o mw(eieir1€,)v =4q E w(ei0iy1(u)” ue)v.
o ue(Hy 1N /(U

S0 U m(ejue;)v #0foru € Hyy1NU, then u intertwines 6;. To interpret that condition

51 We conjugate 0; back to x;. Then H; is sent to K; and H;, is sent to dflKi+1d|

5, Wwhich, we remark, is contained in K; ;. By Lemma 6.9, u € H;; N U conju-
3; gates to an element in (ZU™ N K)K;, so that u € H; N U. We then deduce that
2 mleieirie))v =g 'm(e;)v as claimed. O

35 Proof of formula (6-11). Fix a large integer i such that the lemmas apply. The
36 projector w(e;) : V — V; can be obtained by first projecting onto VHNB™ “and
37 then applying the projector 7 (e; ) where e; y = fi|g.nv du for the Haar measure
38 on HNU giving the volume 1 to H; NU. Since V; C VHi+10B™ " \we have that
39 m(ej+1)=m(ej+1,v)on V;. Itfollows thatforve V; and vi =m(ej+1)v=m(ej4+1,0)v

40 have the same image ¢(v1) = ¢(v) in V. Iterating the process, we get for positive
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1 integers k, vectors vy = m(ej 11 )Uk—1 = (€1, u)Vk—1 With @(vr) = @(v). As

11, . .
/2 > €ir1vueiu = eiy1,u wWe have vy = m(ej1r v)v. But ¢(v) = 0 is equivalent to

3 m(eirk,u)v =0 for large k. As vy = 0 implies vx_; = 0 by Lemma 6.12, we get
, that ¢ is injective on V;. Since it is also surjective by Lemma 6.11, we deduce that
5 it gives an isomorphism V; >~ Vj. O

5 Proof of formula (6-12). Fix an integer i such that K; C H. We have that
7 dim¢(Homg, x;, w) =trm(e;) where e, = f/ dg where dg is the Haar measure on H
8 giving the volume 1 to K; and f/ is the function on G with support K; and value Xi_]
9 on K;. We have that f/(14+X)=4;(X). To prove (6-12), it suffices to apply the germ
10 expansion (6-6) to tr, and to show that for large i, Ip (Sl-) =1, whereas Ig/(g,') =0
11 for any nilpotent orbit O’ # ©O. From the formula (6-13), §; is a multiple of the
12 characteristic function of sz’ Y+ Mz(P_’) and from Lemma 6.10 the nilpotent
13 elements there form the K;-orbit of p ~21y It follows that Iy (8;) = 0 if O’ # O.
14 That Io(8;) =1 is proved exactly as in the proof of Lemma 7 in [Varma 2014]. OJ

% 6.2.4. For a locally profinite space X, x € X, and a field C, two linear forms f, f’
- on C°(V; C) for some open neighbourhood V of x in X are called equivalent if
. their restrictions to C2°(W; C) for some open nelghbourhood W of x contained
——1in V are equal. The equivalence class of f is called its germ f at x. Denote &, (X)

% the space of the germs at x.

201/2; For a locally profinite space X', an open subset W in X and an open subset
o W’ in X’, a homeomorphism j : W — W’ gives by functoriality an isomorphism
0 CX(W';C) - C(W; C) and an isomorphism & ;)(X") — &,(X) from the
5, space of the germs of X "at j(x) to the space of the germs of X at x € W.
. The nilpotent orbital integrals Fo : ¢ > Io(@) for ¢ € C°(Lie H; C) and the

? nilpotent H-orbits O in Lie(H) are linearly independent H-equivariant linear forms

- on C(Lie H; C) [Lemaire 2005, page 79]. They form a basis of a Z-module /4

37

—— with rank 1 + 27 (6-3). For each H-equivariant open neighbourhood V of 0 in
=~ Z-submodule of Iy of basis Fp for O #£ 0.
32
-, at0 of a unique element Ty, = co(7r) Fo + T,"" where co(r) € @, and T)"" € "
5 andonly if dimg 7 = 1.
38
o atOof Iy Wh TWh

—— Lie H, the Fy remain mdependent as linear forms on C°(V; C). The germs F O
— form a basis of the Z-module Iy of germs of elements of /. Denote by I}, Wh the
31
-~ Theorems 6.5 and 6.8 say that the germ at 1 of the trace of an irreducible complex
33 smooth representation 7 of H identifies via the map X +— 1+ X with the germ
35 is determined by the nondegenerate Whittaker models of 7. Note that TWh 0 if
Denote by 7! the Z-submodule of 1))™ generated by the T¥!, for all irreducible
-~ complex smooth representations = of H. Write 1 T,_‘;V b for the space of germs
39Y/p—
40 Theorem 6.13. We have TH =1, g whend =0, 1.
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1 e Z-submodule T is a submodule of IY" of finite index. e exponent o,
. The Z-submodule T)™" bmodule of 1" dex. Th
! /27 Il\fh/T;IVh is 2972 when d > 2.

% Proof. When d =0, Iy has Z-rank 2, and the germs of the traces of tlle tgvial
o repfesentation 1 and of the Steinberg representation sty form a Z-basis {try, try,, }
— of ]H~

- When d =1, Iy has Z-rank 3, det H = Ng,p(E™) for a quadratic separable
e extension E/F, the principal series (ign E)| g 1s semisimple of length 2 and mul-
o tiplicity free (Lemma 2.3 and footnote in the proof of Proposition 4.26), and the
— germs of the traces of the trivial representation 1 and of the two components ng, T
o of (igr/E)lH form a Z-basis {tr], ff‘ng, ffng} of iH.

o When d > 2, the theorem follows from Lemma 6.3. O

 Theorem 6.13 can be equally well expressed in terms of the Grothendieck group
' Grg(H). 1t is under this form that the theorem extends to R-representations. For
™ an open compact subgroup K of H, and 7 a finite length smooth complex repre-
1% sentation 7w of H , |k is semisimple with finite multiplicities, and is determined

. by the restriction of the trace of w to C°(K, C).
18

19 Corollary 6.14. There are 2¢ virtual finite length smooth complex representations
20! /23 T, ..., of H with the following property: for any finite length smooth complex
21 representation w of H, there are unique integers aog(mw), ai(mw), ..., ar (), such
22 that on some compact open subgroup K = K () of H,
23

= 5
24

o5 T ~ay(r)l +Za,-(7r)m.

2% i=l

2 Proof. By Theorem 6.13, the Z-module leh has a basis {ijlvh, ey T;deh} where
2 71, ...,ma are virtual finite length smooth representations of H. By Theorem 6.5,
2% for any finite length smooth representation 7 of H there exist a unique rational
3% number ag () and unique integers ai (), ..., a (1), such that

31

32 2

33 tr, = ao(mw)tr; + Z a; () try,

34 i=1

35 on restriction to C2°(K (n),lC) for some compact open subgroup K () of H. As
36 gg(m) = dime 7 X0 — Z?:l a; () dimg niK(”), we see that ao(r) is an integer.
37_Equivalently, on restriction to K (i),

38

— d
39
391/2; T ~ag(m)l + E a;(m)m;. U

i=1
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1 6.2.5. This has consequences for the representations of G'.

An irreducible complex representation of G’ extends to ZG’, and we can apply
;3 Theorem 6.5 to H = ZG' when charg # 2. When p is odd, there is a unique L-
"4 packet 11, 72, T3, T4 of G’ with four elements (Proposition 4.22). One can enumerate
"5 the four nontrivial nilpotent G’-orbits O1, ..., O4 such that cp,(tj) = 1 if i = j,
s and 0if i # j. Fori =1, ..., 4 we choose a lower triangular element Y; € O;.

" Theorem 6.15 (p odd, R = C). Let 7 be a finite length smooth complex represen-
8 tation of G'. On restriction to a small enough compact open subgroup K () of G,
° we have

10
4

% (6-14) m~ag(m)l+ Y o (M), co, (1) = dime Wy, (),

. i=1

13

12 where ay(r) = dime 7K — Z?:] co, () dime ‘L'iK(ﬂ). The constant term in

15 Theorem 6.5 is

4
% co(m) =ao(n)—;<;ca(n)>.

18

19

i Remark 6.16. When chary =0, p is odd and R = C, the theorem was already
21 known; see [Assem 1994] and the last section of [Nevins 2024].

The constant term ¢y (;r) can be computed using (6-7) and (6-8).

— 6.2.6. For any p, let 7 be an irreducible smooth complex representation of G’
v and r the cardinality of the L-packet of .
—  For any L-packet {11, 12, 13, T4} Of size 4, there exist integers ag, b such that

25
oo ona small enough compact open subgroup of G’ we have

27 4 4
2 (6-15) indg,’lzbOTﬁZn and ifr=1, n:a0T1+Zr,~.
20 i=1 i=1

30 Ifr =2, thendetG, = Ng,p(E*/F) for a quadratic separable extension E/F.
31 Choose a biquadratic separable extension of F' containing E. There exist 71 and 1,
32 in the associated L-packet of size 4 (Proposition 4.22) and an integer ag such that

33 on a small enough compact open subgroup K of G’ we have
34

ol 2

35

> (6-16 7 ~agT) + 7.

w (6-16) oTh ; i

37

o Therefore, when R = C we have:

g Theorem 6.17. Let 7w be an irreducible smooth R-representation of G'. There

40 are an integer ag and irreducible smooth R-representations {11, 12, 13, T4} of G’
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1 forming an L-packet, such that on a small enough compact open subgroup K of G’
, we have

where r is the cardinality of the L-packet containing .

6.2.7. Let us prove Theorem 6.17 for any R.
Let R, be the algebraic closure in R of the prime field of R. Write R, = Q*

~ when charp =0 and R, = F}° when charg = £ > 0.
10

11 (a) We show first that Theorem 6.17 for R, extends to R. A cuspidal R-representa-
12 tion of G is the scalar extension 7g = R® r.7 to R of a cuspidal R.-representation r
13 of G’ [Vignéras 1996] and the L-packets of size 4 are cuspidal. The scalar extension
14 from R, to R respects irreducibility, identifies the L-packets of size 4 over R, with
15 those over R and sends the L-packets of size r over R. to L-packets of size r
16 over R. Theorem 6.17 for R.-representations imply Theorem 6.17 extends for
17 R-representations which are scalar extensions of R.-representations:

e |~ o] ]e]

3 4/r 4/r

19 T >~apl + Z 7; implies by scalar extension 7z ~ agl + Z Ti R-

20 , ,

— i=1 i=1

21

~,_ The only irreducible smooth R-representations ot G’ which are not scalar extensions

22
of R -representations, are principal series i g, (n). But

23

zi 6-17) i g,/(n) ~ indG,/(l) on some small open compact subgroup K of G’,
5

26 and we have (6-15) for the R -representation indg: (1.
27 Therefore, for any L-packet {11 g, T2.r, T3.r, T4,r} Of size 4, there is an integer ao

28 gsuch that
29

4
30 indg: (1) ~apl + Z 7, on some small open compact subgroup K of G’.
31

il i=1

32 I

33

34

35
36 (c) Viaanisomorphism C 2= Qj°, Theorem 6.17 for C extends to Q%°. Theorem 6.17
37 for Qf° extends to [F)°-representations. Indeed, from Proposition 4.30 an irreducible
38 smooth [Fj°-representation 77 of G" in an L-packet of size r lifts to an integral irre-
39 ducible smooth Qf°-representation 7 of G’ in an L-packet of size r (Proposition 1.6).

40 From Theorem 6.17 for Qj°, there is an L-packet {7}, T2, T3, T4} of irreducible

(b) Theorem 6.17 for C extends to Q% because the scalar extension from Q? to C
respects irreducibility, representations in an L-packet of size 4 are cuspidal, and
complex cuspidal representations of G’ are defined over Q.
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L1 smooth Q¥°-representations of G" and an integer ag, such that on a small enough
Y27 compact open subgroup K of G’, we have

4/r 4/r

b Zaol—i-Z‘E[ = 7 Zaol—l—Z‘L’i

i=1 i=1
by reduction modulo £ of {7, 75, 73, T4} to {1, T2, 73, T4}, reduction which forms
an L-packet of irreducible smooth F°-representations of G’. This ends the proof of
Theorem 6.17.

% Remark 6.18. The formulas (6-7), (6-15) and (6-16) remain valid for R.

3
4
5
6
7
)

11 6.2.8. For an irreducible infinite-dimensional complex representation I of G with
12 conductor ¢, Casselman had already described the restriction of IT to K as the
13 direct sum of the fixed points under K._; and a complement depending only on the
14 central character of 1.
15 Similarly, when p is odd, and = is an irreducible infinite-dimensional complex
16 representation of G’, Nevins [2005; 2013] described explicitly the restriction of 7
17 to K|, as a finite-dimensional part specific to 77, and a complement depending only
18 on the central character of 77. More recently, Nevins [2024] defined for any vertex x
19 of the Bruhat-Tits building of G’, admissible complex representations 7y 1, ... Ty 5
20 of the maximal open compact subgroup G’ fixing x such that the following is true.
21 Let 6, be the depth of  in the sense of Moy—Prasad. Then, there are integers
g ar.1, - .-, ars such that on restriction to G;,a,,y
23

5
24
- T~ E Ay iTxi-
25 -

i=1

1

; Now allow any R with charg # p (still assuming p odd). The representations ty ;
o of Nevins transferred to Q¢ are integral, defined over Q* and can be transferred
— to R-representations 7y ; g. The proof in §6.2.7 applies and shows that the above
o result is also valid over R with 7, 1 g, ..., Tx.5.R-

% 7. Asymptotics of invariant vectors by Moy-Prasad subgroups

33 We use notations as in Sections 3 and 4. The Moy-Prasad subgroups of G’ =SL, (F)

34 are the intersections of the Moy-Prasad subgroups of G = GL,(F) with G’ because

g the Bruhat—Tits of G’ and of PGL,(F) are the same. We write K’ = G’ N K for a

36 subgroup K of G.

37 Letred: Ko=GL,(Of) — GL,(kF) and red’: K(’) =SL,(Of) — SL,(kF) denote

38 the usual quotient maps. The parahoric subgroups of G are the G-conjugates of the

30/, 39 maximal open compact subgroup K or of its Iwahori subgroup Ip = red™ ' (B(kp)).
40 Those of G are the G’-conjugates of the maximal open compact subgroup K
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or its Iwahori subgroup ) = red "' (B'(kF)), or of the maximal open subgroup

V2 dKyd=" = (dKod™") where d = (§ ) [Abdellatif 2011, §3].

3
4
5
6

8
9
10
1
Ity
13
1
5
16
7
8
19

20
20Y/,—
21

22

23
%
25
2%
7
%
2
30
3
n
33
3

35

36
37
38
39

39Y/p—

40

The Moy-Prasad subgroups of G are the G-conjugates of the j-th congruence
subgroups K, I}, 1124 of Ko, I, the pro-p Iwahori subgroup /1 2 =red™! (U (kr))
of Iy, for any integer j > 0 [Henniart and Vignéras 2024, § 12]. The Moy—Prasad sub-
groups of G’ are the G’-conjugates of the j-th congruence subgroups K ]’ ,dK ]fd -1
Ij/, I]//2+j for j > 0.

Let j denote the Op-lattice of matrices (x; ;) € M2(Or) with x; 5 € Pr, and ji 2

the Op-lattice of matrices (x; ;) € j with x1 1, x22 € Pr. We have
D Ko = My(Op)*, Ip=j",
Lpyj=14pritp, Kipj=14prMa(Pr), ©Liyj=1+Plj

for j > 0. Note that Ip = KoNdKod ™!, and consider the decreasing sequence for
H; =Kj or dKjd’l,

HyDlhD>hpD>---DH; DI Dl DH1j D14 D
The G-normalizer Z K of the maximal compact subgroup K normalizes all sub-

groups K; for j > 0. The G-normalizer of the Iwahori group / is generated by /
and ( 0 1); it normalizes all subgroups /1,24, I; for j > 0. Let

pr 0
(01 , (0 —pEl
S_<1 O) and - p _(pp 0 ’

The Iwasawa decomposition of G with respect to (B, K¢) and the decomposition
of G in double cosets modulo (B, Ip) or (B, I1,) are

(7-2) G:BK():BI()HBS[O:Bll/zulel/z;

see [Henniart and Vignéras 2024, § 12]. Note that BsIi/, = BB'I,>. The Iwasawa
decomposition of G’ with respect to (B, K|)) or (B, d K(’)d") and the decomposi-
tion of G’ in double classes modulo (B’, 1)) or (B, I{/z) are

(7-3)  G'=B'Ky=BdKyd™' =B'I,uB'p'Iy=B'I{ ,uB'B'I ;

see [Abdellatif 2011, lemme 3.2.2, lemme 3.2.8].

Proposition 7.1. The map B’\G’/ij — B\G/H; induced by the inclusion G' C G
is bijective, for any j-th congruence subgroup H; = K;, dKjd_l, I;, 1124 and
j=0.

Proof. The map B’\G//ij — B\G/H, is surjective as G = BG'. When j =0, the
map is bijective because the two sets have the same cardinality (7-2), (7-3).

Take j > 0 and g, g” in G’ such that bg’'h = g"” with b € B, h € H;. We want
to prove that b'g’h" = g" with b’ € B’, h’ € H;. Multiplying g’ on the left by an
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, element of B’, we reduce to g’ € Hjj if Hy = Ko, dHyd~ ! and g € H)U B’ Hj

! /27 if Hy = Iy, 112 (7-3). We have detbdeth = 1. There exists c € BN H; such

20 1/

3 that detc = det by the Iwahori decomposition of the j-th congruence subgroup
4 Hy=(BNH;)(H;NU7) when j > 0. Three cases occur:

5 (1) g € Hj. Write (bc)g'(g' 'c™'g)h = g" withb' =bc € B/, g~ 'c7'g' € H;
S andh' = (g 'c7'gh e H].
% (2) g’ € B'Hy and g" € H. Apply the same argument to g".

"5 (3) g’ and g” are in ' H. Changing notations we want to prove that for g’ and g"”
1o in H{ such that bg'g’h = Bg” with b € B, h € H;, we have b’'Bg'h’ = Bg" with
L be B/, h'" € H]. Multiply on the left by . Notlng that ~'Bf = B~, we still
; need to prove that for g’, ¢” € Hj such that bg'h = ¢” with b € B~, h € H;, we
15 have b'g'h’=g" with b" € (B~)', h" € H;. The argument used before with B works
1. also for B™, because we have the Iwahori decomposition H; = (B~ N H;)(H; NU)
15 15 when j > 0. There exists ¢ € B~ N H; such that detc = deth. Proceeding as
16 in (1), we write (bc)g' (g~ le=lgYh = g” with b’ =bc € (B7), g ¢ g’ e H;
—and b = (g ¢ gHh e H;. O

17

18 Proposition 7.1 has important applications. The cardinality of B\G/H; is
19 computed in [Henniart and Vignéras 2024, Proposition 11.2] for j > 0. By
20 Proposition 7.1, |B\G/H;| = |B'\G'/Hj|.

— Corollary72 The cardinality of B'\G’ /H for H’ = K’ dK d-!, IJ’, Il//2+_] and
— j=0,is

23

. |B\G'/Kyl = |B\G'/dKjd™"| = |B\G/Ko| =1,

» |B\G'/K{ ;| =|B\G'/dK}, ;d"'|=|B\G/K11;| = (qg+1)q’,

26 .
2 |B\G'/1}| = |B\G'/I{ 5, ;| = |B\G/I;| = |B\G/I1 2+.j| = 2q’ .

27

28 Qver any coefﬁ01ent ring, the restriction to G’ of de 1is mdg, 1. The vector
29 gpaces (md A i (1ndG 1) have the same dimension by Proposition 7.1, hence
30 are equal.

31
o Corollary 7.3. Over any coefficient ring, any element in indg 1 fixed by H J’ is also
gﬁxedby H; for j > 0.

34 Itis known that any infinite-dimensional irreducible smooth R-representation IT
35 of G near the identity is isomorphic to indg 1 modulo a multiple of the trivial
36 representation [Henniart and Vignéras 2024]. There exist integers ar and jip >0
37 such that for Jj = jm

38 .
04 M~anl+ind§ 1 on ;.

391/ R

’ 40 Corollary 7.4. For j > jn, any element in I fixed by H ]’ is also fixed by H;.
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1 Proposition 7.5. ar; = 0 if Il is a principal series, ay = —1 when g+ 1#0in R
—» and I1 is the twist of the Steinberg representation by a character, and when Tl is

1Y,
cuspidal with minimal depth é11 under torsion by characters,

—24°n if 81 is an integer,
a =
f —(g+1Dgn=12 otherwise.

5 IfIL(IT)| =4, then anp = —2 for p odd and an is a multiple of 4 if p = 2.

8 Proof. When R = C, then apy is the constant term co(IT) of the germ expansion
9 for I because the constant term cg (indg 1) of the germ expansion of the trace of
10 indg 1 around 1 (6-6) is 0.

11 When R = [ and Misa Q¥°-representation lifting IT, ai = afy. When I1
12 s cuspidal, M is supercuspidal and the formula for ap follows from (6-8). If

13 |L(IT)| = 4 the assertion on ayy follows from the proof of Proposition 6.7 Il

14

o In the particular case where I1|g' = 7 is irreducible, we deduce that for j > jp,

. !
16 7 ~anl+ind$, 1 on I.

17
15 For example, an irreducible principal series 7 of G’ is the restriction to G’ of a
1o principal series IT of G, and on 11//2+j for j > j we have m ~ indg: 1.
o By (T4)ifj = jn,
20Y/,—

2 (7-5) dime M%7 = a4+ |B\G/Holq’ .

22

23 By Proposition 7.1, e = ereL(l'[) 7" for Hi =14, Kiyj, I1y+jand j > 0.

24 In particular, if 1| = 7 is irreducible, then if j > jp,
25

o dim " = ap + |B\G/Holq’.

i In general, by Corollary 7.2 [Henniart and Vignéras 2024, §12.2], for j large,'”

28 . .
S (7-6) dimc MY =dimg "2 = ap +2¢7,  dime M*% =an + (¢ + 1)g’.

30 Let 7 be an infinite-dimensional irreducible smooth R-representation of G’ con-

31 tained in I1|g'. The Moy—Prasad filtration of the Iwahori subgroup I’ of G’ is
32

33 I'=sIg> Ly DD DD DD

**_ Theorem 7.6. With an as in (7-4) and Proposition 7.5, we have for j large,”
35

I ! ! .
36 dimg 77/ = dimg 712+ = |L(ID)| ™" (an +247).

37

P LD ag = —% if IL(IT)| =4 and p is odd, otherwise |L(I1)|~'ayy is an integer.
391/22 19j2jn+1f0r1j,Hj and j > jp for Iy jn4 ;.

40 205> jg+1for Ij and j > jri for Iy o4 ).
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1 Proof. The determinant of the G-normalizer N (/) of the Iwahori group / is equal
~, to F* (first part of Section 7). Thus, Ng (1) acts transitively on L(IT) and as Ng (1)
? normalizes the Moy—Prasad filtration of I, the dimension of the invariants of 7 by

. I /24 and I}  of G’ for j > 0, does not depend on the choice of 7 in the L-packet

B "= L(IT). For these two groups Hj we have dimg 7" = |L()|~! dimg 17 for

6 J > jm, by Proposition 7.1. Apply now (7-6). The assertion on | L(IT)|~'ar follows
; from Proposition 7.5. O

° Let us now turn to the asymptotics for fixed points under congruence subgroups

i K’ of K =SL,(OF). The G-normalizer Z K¢ of Ko = GL,(Op) normalizes the K’.
The subgroup H = ZKyG’ of G has index 2 as det H = (F*)ZO* has index 2

i in F*. The restriction of IT to H has length 1 or 2. All the elements v of L(IT) in

= the same H-orbit share the same dimension dimg 7 Ki . With ar, jmo as in (7-4), we

13

—~_ deduce from (7-6):

14

1Y,

15 Theorem 7.7. When Il|y is irreducible, we have, for j > jn,

16

o dimg 7%+ = |L(D)| " (an + (g + Dg?).

18 Proposition 7.8. The representation T1|y is reducible if and only if T1 is cuspi-
19 dal induced from ZKg or charg # 2 and Tl is a principal series indg X where

201,20 XXy L= (=Y
21

2 Proof. When II|¢ is irreducible, then IT|y is irreducible. When IT = i} G(x) is
»3 a principal series of reducible restriction to G’ then charg # 2, and § i G x| is
-4 reducible if and only if (—l)Va'odet®ig(x) ~ig @ (x) if and only if X1X2 =(=1)"
-5 (notations of Section 4.3.1 and x = x1 ® x2).

26 When IT is cuspidal, if [1= ind(Z; Kot is induced from Z K, then IT| g is reducible
,7 because ZKyC H and (indg (indé’ Ko M) |m contains indg K, A butis different from it.
o5 If IT is not induced from Z K, then with the notations of Section 4.3.2, [T = ind? A
29 has positive level, E/F is ramified, and G = JH. As J I« H and the intertwining
30 of Ay = Al in G is J, then the intertwining of A; in H is J N H. The vectors A;-
31 equivariant in IT are the functions supported in J. Applying [Henniart and Vignéras
32 2022, Proposition 6.5 and Corollary 6.6], IT|g = indlj"ﬁ g Mung is irreducible. [

* Assume now that IT | is reducible. Let ITT be the component having a Whittaker

** model with respect to a character ¥ nontrivial on O but trivial on P, and I1~ the

35
= other one.
36

37 Theorem 7.9. When T1|y is reducible, we have for large j,

38 ’

o dimg(ITHK = %an —l—qz’"H when j =2m+1, 2m +2,

391/— /
/240 dimg (7)K% = %an +q°" when j =2m, 2m + 1.
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. Proof- When R = C, the constant term in the germ expansion of the trace of IT*
~, around the identity is %an by (6-7) and Remark 6.18, and dimR(H+)Kf — %an for
5 large j, which depends only on the characters of F for which ITT has a Whittaker
", model. This set does not depend on the choice of IT, as IT* has a Whittaker model
5 only with respect to the characters I//,]t;‘ for diag(#1, ) € T N H, that is, V¥, for
s a €det H where ¥,(x) = ¥ (ax) for x € F. By the usual arguments, the same is
~, true for any R. It suffices to prove the theorem for IT = ind(Z; K, A Where Al is
¢ the inflation of a cuspidal representation Ay of GL,(kr) (Proposition 7.8). In this
o special case we will show

% (7-7) dimg(ITHK = —1 4 g2+ for j=2m+1,2m+2, j>1,
o (7-8) dimg(M)K = —1 442" for j =2m, 2m+1, j > 1.

1Y,

% Note that ar; = —2 (Proposition 7.5) and that (7-7) implies (7-8) for j > jg+ 1, as

5 dimp (M5 + dimg (MY =an + (g + g/~ for j > jn+1.

16
17 The representation 1 is generic, and it follows Othat = mdg K, » [Bushnell and
18 Henniart 1998, Proposition 1.6]. Let 1 = ( 0 p! 1). The group H = ZK(G' is the
19 disjoint union

20%% H=|] ZKo'K|.

i>0

2 For i >0,j>0and k € KO, consider the representation of K " on the functions
3 in ind k, * supported on the coset ZKo1' kK ’. That it contarns nonzero K '-fixed
~—_ vectors does not depend on the choice of k e K|, and it happens if and only if
& K t~' N Z K has nonzero fixed vectors in A. For Jj<2i,t K t~' N Z K contains
= the lower unipotent subgroup of Ko and fixes no nonzero vector in Ao which is
i cusprdal For j > 2i, ¢ K t~' C K, and K acts trivially on A¢. So the space
“ of functions in ind Ko supported in ZKot' kK i and fixed by K| has dimension 0

= if j <2i and g — 1 = dimg Ao if j > 2i. The number of cosets ZKypt! kK’ in
hadl ZKot’Ko is the index in K/K of the image of ¢~ iZKot' N K} in Ko/ K. As

~ K Ct 'ZKqgt N K, this mdex does not depend on j when j > 21 It is the index
** in K’ of t7'ZKyt' N K(/) ={(¢%) € K{, c € P¥'}. One computes its value to be 1
3 ifi =0and (¢ + 1)¢% " if i > 0. Consequently for j > 0,

34

» dimg (MK = (¢ — 1)<1+ > (q+1)q2"—1>.

* O<i<3j

37

3 This is equaltog — 1 for j =1,2,to (g — 1)(q2+q+1) =-—1 +q3 for j =3, 4,
g and by induction to —1 4+ ¢?"*! for j = 2m + 1, 2m + 2, implying (7-7), hence

39Y/5
40 the theorem.



PROOFS - PAGE NUMBERS ARE TEMPORARY

152 GUY HENNIART AND MARIE-FRANCE VIGNERAS

L1 To prove (7-8) for j > 1, one can work in the same manner as above using that
1 /27 [T~ is the conjugate of TTT by (pOF ?) We find that dimg(IT7)%/ is equal to O for
S j=1,to —14¢*for j =2,3,and to —1 + ¢*" for j =2m, 2m + 1, implying
4 (7-8). O
5 Corollary 7.10. When Il|y is reducible, we have for large j,

6 ’
i K;

7 .

N L)~ an +2q7) for j odd and m C 1" |gr or j evenand m C T17 | g,
o ULaDI ™ an+2¢77")  otherwise.
0

For the maximal compact group d Kod~! of G’, the two asymptotics are inter-
11 changed.

12 We find remarkable that the regularity is obtained when increasing the index j
13 by 2, and not by 1 as was the case for the Iwahori or the pro-p Iwahori subgroups.
14 But that could have been anticipated, given the homogeneity properties of the
15 nilpotent orbital integrals in H.

* Remark 7.11. The asymptotics (Theorems 7.6 and 7.7, Corollary 7.10) are likely
" valid when 2 J = ¢ where c is the conductor of I1. When R = C and IT is cuspidal,
 thisis actually true for dime ITX/ and can be derived from the formulas in [Miyauchi
*_ and Yamauchi 2022]. When p is odd, Nevins has completely analyzed the restriction

201/23 to K, of the irreducible smooth complex representations of G’, and we presume
' that the asymptotics (and for which j it is valid) can be derived from her results
% [Nevins 2005; 2013].

24 Appendix: The finite group SL>(F,)

25

2 Let k be a finite field of characteristic p with ¢ elements. In this Appendix we
5, classify irreducible representations of G = GL;(k) and of G’ = SL,(k) over an
.5 algebraically closed field R of characteristic 0 or £ > 0, £ # p. We could use
o9 [Bonnafé 2011] for charg # 2 and [Kleshchev and Tiep 2009] for any R, but we
50 prefer using the same methods as in the main text.

51 Note that the irreducible R-representations of the finite groups G and G’ are
5, defined over the algebraic closure of the prime field, and we can freely pass from R
53 to any other algebraically closed field of the same characteristic. Thus it is enough
34 to consider the cases where R = C or R = [F}°. We also aim to prove the following
35 theorem.

g Theorem A.1. Any irreducible F)° representation o of GLy(k) is the reduction
37 modulo £ of a Qi°-representation ¢ of GLy (k) such that & |sL,k) and o|sp,«) have
38 the same length.
1, 39 Any irreducible F5°-representation of SLy(k) is the reduction modulo £ of a
39%/p— ac .
40 Qy°-representation of SL, (k).
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1 Write Z for the centre of G, B for the upper triangular subgroup of G, and U

27, for its unipotent radical. Let us first recall the known classification of the R-

3 representations of G; see [Bushnell and Henniart 2002] for R = C and [Vignéras
4 1988] for R = .

5 The parabolically induced representation indg(l) realized by the space of con-
5 stant functions on B\G contains the trivial character. It also has the trivial character
, as a quotient, given by the functional A which sums the values of functions on B\G.
g The map from the trivial subrepresentation to the trivial quotient is multiplication
9 by g+1,sois an isomorphism if £ does not divide ¢ + 1, and is 0 otherwise. In the
1o first case the quotient St = indg(l )/1 is irreducible, in the second case Ker(1)/1 is
11 a cuspidal but not supercuspidal representation o of G.

12 The irreducible (classes of) R-representations o of G are:

B (1) The characters x odet where x is an R-character of k*.

14

— (2) When g + 1 # 0 in R, the twists (x o det) ® St of St by the R-characters

15
. x odet of G.

17 (2) When g + 1 =0 in R, the twists (x o det) ® og of oy by the R-characters

18 x odet of G.

19

11

(3) The irreducible principal series indg (x1 ® x2), where x; and x, are two
20

201y distinct R-characters of k*.

21

o (4) The supercuspidal representations o (6), where 6 is an R-character of &},

o 0 # 01, where ky/ k is a quadratic extension.

24 The only isomorphisms between those representations are given by exchanging
25 x1 and x2 in (3), as well as € and 69 in (4).

26 Twisting by an R-character x o det of G has the obvious effect, for example
27 sending 0 to (x o N)0 where N(x) = x4t forx € k3 in (4).

28 Any irreducible R-representation v of G” is contained in the restriction o |/ to G’
29 of an irreducible R-representation o of G. The representation o |’ is semisimple
30 of multiplicity 1 and its irreducible components are G-conjugate. The stabilizer
31 of T contains ZG' and G/ZG' is isomorphic to k*/(k*)?. We have |k*/(k*)*| = 1
32 when p =2 and |k*/(k*)?| =2 when p is odd. Therefore o | is irreducible when
33 p=2and o|g haslength 1 or 2 when p is odd.

3¢ When charg # 2, the length Ig(o|g/) of 0| is the number of R-characters x
35 of k™ such that (x odet) ® 0 ~ o, so

36

s (AD) lg(olo) = {

38

2 incase (3) if (x1/x2)> =1 and in case (4) if (99~ 1)> =1,
1 otherwise.

39 The restrictions oy|gr, 02]g' of two irreducible representations oy, 02 of G are

39Yp— . . .
40 isomorphic if and only if o7, o7 are twists of each other by an R-character of G.
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1 Otherwise 0|/, 02| are disjoint. So, we have a classification of the (isomorphism
5 classes of) irreducible representations of G’ when charg # 2.

3 Remark A.2. The restriction to B of a cuspidal representation of G is the Kirillov
4 representation k of B (the irreducible R-representation of B induced by any non-
5 trivial R-character of U). The restriction of « to U is the direct sum of all nontrivial
6 R-characters of U. The group B acts transitively on such characters, whereas
7 B’= BN G’ acts with two orbits. It follows that the restriction of ¥ to B’ has two
8 inequivalent irreducible components. Consequently a cuspidal representation of G

9 restricts to G’ with length 1 or 2.

2 Let £ be an odd prime number different from p. Let us consider the reduction

— modulo £ of the previous irreducibles o over Q¢ (since G is finite, they are integral).
— For an integral Qj°-character x (with values in Zi°), let x denote its reduction
— modulo £. Reduction modulo £ is compatible with twisting by a Q%°-character
— x odet in the sense that the reduction of (x odet) ® o is the twist by x o det of the

15
— reduction of o.
16

17 (1) The trivial Qj°-character of G reduces to the trivial [F}°-character.
18 (2) When ¢ does not divide ¢ + 1, the Steinberg Qi°-representation reduces to the
19 Steinberg Fy°-representation.

29 (2") When ¢ divides ¢ + 1, the Steinberg Q}-representation reduces to a length 2
21 representation with subrepresentation oy and trivial quotient (for the natural integral
22 structure).

2— (3) Theirreducible principal series 1nd (x1® x2) reduces to the irreducible principal
o series ind¢ 500 ® x2) when x1 # X2, and to (1 odet) ® 1ndG(1) (of length 2 when
. £ does not divide g + 1, and length 3 otherwise) when )x; = x» (for the natural
- integral structure).

s (4) The supercuspidal Q¥°-representation o (9) reduces to the supercuspidal [F5°-
2 representation o (6) if 6 # (6)7 = 64, and otherwise (which can happen only if ¢
3 divides g +1) to (nodet) ® o where 7 is the Fy-character of [; such that no N = 6.
31 A given Fi°-character of k* or k3 has a unique lift to a Zi°-character of the same
32 order, and from the above it is clear that any irreducible F°-representation o of G
33 lifts to a Q¥°-representation. Moreover, one can choose a lift of o with the same
3 length on restriction to G, thus proving the theorem when ¢ is odd.

g Let us finally assume charg = 2. Then p is odd and ¢ + 1 = 0 in R. Write
36 g—1=2"m with a positive integer s and an odd integer m. The number of irreducible
37 R-representations of G (resp. ZG') is the number of conjugacy classes in G (resp.
38 ZG') of elements of odd order. Let g € G be of odd order. Then detg € k* has
39 odd order so det g € (k*)? and g € ZG'. The G-conjugacy class of g is equal to
40 its ZG'-conjugacy class unless the G-centralizer of g is entirely in ZG'. In that
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1 exceptional case, the G-equivalence class of g is the union of two ZG’-equivalence

~, classes. This happens only when g = zu where z € Z (of odd order) and u # 1 is
5 unipotent. That shows that m is the number of ZG’-conjugacy classes of elements
4 of odd order minus the number of G-conjugacies of such elements. Consequently
"5 m is the number of irreducible R-representations of ZG’ minus the number of
¢ irreducible R-representations of G.
7 Consider first o(6) for a Qj°-character 6 of k3 of order 25+1. Certainly 6 is
g trivial so that the reduction of o (8) modulo 2 is og. But £(c(8)|g’) = 2 by (A-1),
o from which it follows that £(op|g’) > 2. We have seen however that £(op|g) <2
10 (Remark A.2), so £(op|¢’) = 2, and each irreducible component of oy|¢ lifts to an
11 irreducible component of o (8)|g. The Fj°-characters x of k* have odd order, their
1, number is m, and the representations (x o det) ® oy are not equivalent (the order
13 of x is odd). We deduce:

1* Lemma A.3. All irreducible Fi¢-representations of G restrict irreducibly to G’

15 except the twists of oo by characters.
1 The reduction modulo 2 of any supercuspidal Qi°-representation of G' is irre-
7 ducible.

18

1o Wededuce the classification of irreducible R-representations of G’ when charg =2
50 and Theorem A.1 when £ = 2.

201/, —

391/

21 Remark A.4. For use in the main text we summarize:
22

. (a) When ¢ +1=01n R, op|sr,«) is irreducible if charg 7 2, and has length 2

ou if charg = 2.
g (b) In (4), let b € k; be an element of order ¢ + 1. We have 8 # 609 <=6 (b) # 1
26 and o (6)|s1, ) is irreducible if 02(b) # 1, and has length 2 if 02(b) = 1.

27

—  When charg =2, or when p =2, hence (2,9 + 1) = 1, we have 0(b) # 1 <=
® 0(b?) # 1, hence o (0)|sr, ) is irreducible for all 6 # 69.

" When charg # 2 and p is odd, there exists 6 such that 0(b) # 1, 6(b)> =1,
o unique modulo the twist by a character x such that y (b) = 1. The corresponding
- representations o (f) of G are twists of each other by a character of G. Their
% restrictions to SL, (k) are isomorphic and reducible of length 2.
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