REPRESENTATIONS OF GL,(D) NEAR THE IDENTITY

GUY HENNIART AND MARIE-FRANCE VIGNERAS

ABSTRACT. Let p be a prime number, F' a finite extension of Q, or of F,,((¢)). We consider
the group G = GL,, (D) for a positive integer n and a central finite dimensional division
F-algebra D of F-dimension d2. For an irreducible smooth complex representation 7 of
G, inspired by work of R. Howe when D = F', we establish the existence and uniqueness
of integers ¢, (), for partitions A of n, such that for any small enough compact open
subgroup K of G the restriction of 7 to K is the same as that of the virtual representation
>er(N) Ind% 1, where the sum is over partitions A of n and Pj is a parabolic subgroup
of G in the associate class determined by A. When P, is minimal such that ¢;(\) # 0
we prove that ¢, (\) is positive, equal to the dimension of a generalized Whittaker model
of m. We elucidate the behaviour of ¢, under the Jacquet-Langlands correspondence L.J
of Badulescu from GLg,(F) to G. We extend the above result on 7 near identity to a
representation of G over a field R with characteristic not p. For any Moy-Prasad pro-p
subgroup K of G, we determine from the integers ¢ (A) a polynomial P x with integral
coefficients and degree d(m) independent on K, such that, for large enough integers j, the
dimension of fixed points in 7 under the j-th congruence subgroup K; of K is Py r(q%¥)
where ¢ is the cardinality of the residue field of F'.
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1. INTRODUCTION

Let p be prime number, F a finite extension of Q, or of F,((7")). Let G be a reductive
connected group over F', and put G = G(F). Let R be a field, and 7 a smooth admissible
representation of G' on an R-vector space V.

Our first motivation was in the following question, when 7 is of finite length: Let x be
a point in the Bruhat-Tits building of G and r a positive real number. For any integer
j >0, let d(j) be the dimension of the space of fixed points in V' under the Moy-Prasad
subgroup G ,4; of G.

Question 1.1. Is there a polynomial P with integer coefficients such that d(j) = P(p’) for
large enough j 7 If so, what can we say about its degree and its leading coefficient ?

When the characteristic charg of R is p, precise knowledge of those dimensions for
irreducible 7 is available only for G = GL(2,Q,) (S. Morra, see §12.5). Apart for groups
G of relative rank one those dimensions seem unknown.

Our paper studies the case where charg # p. Then a smooth finite length R-representation
m of G is automatically admissible, and its restriction to a pro-p subgroup K of G is
semisimple, with finite multiplicities. We write [r|x for the image of that restriction in
the Grothendieck group of admissible R-representations of K. We ask a more ambitious
question:

Question 1.2. Is there an open pro-p subgroup K of G where we can control [r]x ¢

In the case of G Ly(F') an answer to that question was offered by Casselman [Casselman73].
In this paper we consider the case where G = G L, (D) for a central division algebra D over
F, with finite degree d? over F. For a partition A = (A, ..., ) of n, we let Py be the upper
block triangular subgroup of G with blocks of size A, ..., A, down the diagonal, and put
dy = Yic; Aidj. We have dy > d,, if A < p for the classical partial order < on partitions.
We let my be the representation of G non-normalized parabolically induced from the trivial
representation of P; it has finite length.

Let 7 be a finite length smooth representation of G on an R-vector space V.

Theorem 1.3. There is a unique function c, from partitions of n to Z and an open pro-p
subgroup K = K, of G such that [7]x = > cx(N)[m] k-
If X is minimal in the support of c,, then c.(\) is positive.

Theorem 1.3 has consequences to our first question. We let ¢ be the cardinality of
the residue field of F, so the residue field of D has cardinality ¢?. Let = a point in the
Bruhat-Tits building of G and r a positive real number.
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Theorem 1.4. Let P = P g, be the polynomial

(1.1) Prc, (X)) =D |P\G/Gyp] cr(N) XD

A
Then dimpg V &+ = P(q¥) for large enough integers j. The degree of P is d(7) = max(d,)
where the maximum is over partitions X\ in the support of c,.. The leading coefficient is

(12) Ar Gyr = Z |P>\\G/Gx,r| Cw(/\)'

A dy=d(r)

The function ¢, has good properties with respect to natural operations, apart from being
additive on exact sequences, hence factoring to a function on the Grothendieck group of
finite length smooth representations of G. If x is a character of G, ¢y = ¢,. If 7’ the
base change of 7 to an extension R’ of R, then ¢, = ¢,; in particular ¢, is invariant under
automorphisms of R. When p # 2, G = GL,(F) and charp = 0 the support of 7 contains
a single partition A with dy = d(m) [Moeglin-Waldspurger87]. This may be true for any
p, F and D.

Parabolic induction Let P be an upper block triangular subgroup of G, with block
diagonal Levi subgroup M a product GL,,(D) X ... x GL,, (D). For i =1,...,r let o; be
a finite length representation of GL,, (D), and put 0 = 01 ® ... ® o, a finite length repre-
sentation of M. Given a partition \; of n; for 2 = 1, ... r, we have the induced partition A
of n obtained by gathering all the parts of the \;’s and putting them in decreasing order.

Theorem 1.5. Let 7 = ind%(c). For each partition X of n, cx(\) = X Izt .y Cos(N),
where the sum is over r-tuples of partitions (A1, ..., \.) inducing to \.

Whittaker models Assume that R contains all the roots of unity of p-power order. We
have the notion of Whittaker models, possibly degenerate. Let U be the upper triangular
subgroup of GG, and 0 a character of U. We let Vj be the maximal quotient of the space V'
of m on which U acts via #. Its dimension is finite and depends on ¢ only up to conjugation
by the diagonal subgroup 1" of G. The orbits of T" on the characters of U are parametrized
by the compositions of n. To each composition A of n is attached a partition A" obtained
by gathering the parts of A in decreasing order. The Whittaker support of 7 is the set
of partitions of n of the form AT where A is a composition of n such that Vj # 0 for 6
corresponding to the composition .

Theorem 1.6. The minimal elements in the support of ¢, and in the Whittaker support
of m are the same. If u is such a minimal partition, X is a composition of n with \I = p
and 0 a character of U corresponding to A, then c;(u) = dimpg Vj.

Jacquet-Langlands correspondence [.Badulescu has extended the classical Jacquet-
Langlands correspondence to a morphism LJ¢ from the Grothendieck group of smooth
finite length complex representations of G L4, (F') to that of G. Let ¢ be a prime number
different from p. For an algebraic closure Q§° of Q;, with a chosen square root of ¢,
A .Minguez and V.Sécherre have transported LJc to Qf°-representations, and showed that
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it descends to a map LJpge of Fy“-representations, where [7¢ is the residue field of Q7°. We
define LJg for our field R, provided it be algebraically closed, and get:

Theorem 1.7. Assume R to be algebraically closed. Let T be a finite length smooth R-
representation of GLgn(F) and ™ = LJgr(T). For any partition X of n, we have (—1)"c,(\) =
(=1)4c,(dN).

For R = C and a discrete series 7, the result is due to D.Prasad [Prasad00].

We show in §11 how to get Theorem 1.4 from Theorem 1.3; this amounts to computing
the dimensions of fixed points for the 7)’s. Our method establishes the other results first
for R = C, and then extends them to R. Let us hasten to mention that when R = C part
of the results were known. Indeed when D = F' and charp = 0, the first part of Theorem
1.3 is due to [Howe74]. We actually adapt Howe’s arguments to our setting. Similarly
when charp = 0 one can obtain Theorems 1.5, 1.6 (and the second part of Theorem 1.3)
from the much more general results of [Moeglin-Waldspurger87], and we get inspiration
from their proofs. *

We now give more detail on our method of proof. First we take R = C. In that case,
knowing |7 for an open compact subgroup K of G is equivalent to knowing the character
trace(m) on smooth functions on G supported in K. An expression of trace(m) on small
enough K as a linear combination of finitely many easier distributions is usually called a
germ expansion for 7. When charp = 0, the theory of germ expansions has a long history.
For a reductive group GG and 7 irreducible Harish-Chandra established a germ expansion of
trace(m) as a linear combination of Fourier transforms of nilpotent orbital integrals on the
Lie algebra g of G, with coefficients a priori only complex numbers [Harish-Chandra70].
To get from functions on G to functions on g, he used the exponential map, which is not
available to us when charp > 0. The interest of our group G = G L, (D) is that g = M, (D),
so that nilpotent orbits of G in g are parametrized by partitions of n, and that one can
use the map e : X — 1+ X from g to G as a substitute for the exponential. When
D = F, Howe proved using e that the Fourier transform of the nilpotent orbital integral
corresponding to a partition A is proportional to trace(w,), and got a germ expansion
trace(m) = Y.\ ¢x () trace(my) on the i-th congruence subgroup K; for i large enough. He
showed that the c,(\) are integers by constructing for any ¢ > 0 a character &, of K;
which appears with multiplicity 1 in 7, and multiplicity 0 in 7, unless A > p [Howe74].
We show the existence of such characters for D in Lemma 6.2. For our group G and
7 irreducible, B.Lemaire proved the local integrability of the distribution trace(w) (that
was new when charp = p) and adapted Howe’s arguments to get a germ expansion as a
linear combination of Fourier transforms of nilpotent integrals [Lemaire04], which by our
Proposition 5.5 translates into a germ expansion as in Theorem 1.3. Our characters &)
then yields the integrality statement and the positivity statement.

IWhile we were writing our results, the preprint [Suzuki22] reached us. When R = C,D = F and
charp = 0, Suzuki establishes Theorem 1.4 for the congruence subgroups K; = 1+ M, (Pf) of GL,(F).
He also gets a result equivalent to Theorem 1.5 and Theorem 1.7 for square integrable 7. His methods are
similar to ours.
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Theorem 1.5 follows from the known behaviour of traces with respect to parabolic in-
duction. In §7, we give a treatment valid whatever charp is.

As already said, when charp = 0, Theorem 4 can be obtained from results of C.Moeglin
and J.-L.Waldspurger for a reductive group GG and 7 irreducible. They attach to a nilpotent
orbit O of G in g a number of generalized Whittaker spaces of . They consider the Harish-
Chandra germ expansion of 7 as a linear combination Y- ¢, (£)Dg over the nilpotent orbits
9, where Dy is the Fourier transform of the orbital integral along 9. They show that if
9 is maximal in the support of ¢, then the dimension of any Whittaker space attached to
9 is ¢ (D). The nilpotent orbits with that maximality property go by the name of wave
front set of m and there is a large literature on that subject. In our more restricted setting,
but allowing charp = p, we get Theorem 1.6 by adapting arguments of [Rodier74]* and
[Moeglin-Waldspurger87].

Still with R = C, to prove Theorem 1.7 in §9 we use that the Jacquet-Langlands corre-
spondence LJ is expressed by character identities, where the characters are considered as
locally L' functions on regular semisimple elements (by the result of B.Lemaire alluded to
above).

In §10 we pass from R = C to the general case. To transfer the results from a field R
to an isomorphic field R’ we use that the theory of smooth representations is essentially
algebraic. That gives the case of Q7¢ which is isomorphic to C. We then get the case of
F?¢ by reduction, using the results of [Minguez-Sécherrel4]. To transfer the results from
an algebraically closed field R to an algebraically closed extension R, we use the fact that
for a cuspidal R’-representation 7 of (G, there is a character y of GG into R™ such that y=«
comes by base change from an R-cuspidal representation of G. To get the result for any R
we show that Theorem 1.3 over an algebraically closed extension R* of R implies Theorem
1.3 over R essentially because base change preserves finite length.

Whenn = 2and D = F, we compute in §12 the two coefficients ¢, () for all irreducible 7.
Whenn =3 or 4, D = F,charp =0, R = C, F.Murnaghan computes the three coefficients
¢ (A) for cuspidal representations 7 of G induced from F*G L, (Op)[Murnaghan91]. For any
split reductive group G over F, R.Meyer and M.Solleveld using the Bruhat-Tits building of
G, give an upper bound on dimp V¢ for some special cases C,, of Moy-Prasad subgroups
([Meyer-Solleveld12] Theorem 8.5). Their result is far less precise than ours.

Acknowledgments. We thank I.Badulescu, D.Bernardi, P.Broussous, B.Lemaire, G.McNinch,
A.Minguez, S.Morra, V.Sécherre for a number of conversations about the topic of the paper.
The second author has talked about this work at numerous conferences in 2022 (Stock-
holm, Singapore, Grenoble, Heidelberg, Bangalore), and thanks the organizers for their
invitation. A part of this work was done at the Institute for Mathematical Sciences of the
National University of Singapore. The final version of that paper was written when the
first-named author was enjoying the hospitability of the Graduate School of Mathematical
Sciences of the University of Tokyo.

2Rodier assumed charp = 0, G split and the support of ¢, contains the maximal nilpotent orbit
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2. NOTATIONS

Let p be a prime number, and F' a local non archimedean field of residual characteristic
p. We denote by Op the ring of integers of F', Pr the maximal ideal of Op, pr a generator
of Pr, kr = Op/Pr the residue field of order ¢ = p/ where f = [kr : F,] is the residual
degree, and F* an algebraic closure of F. Let | | denote the absolute value of F'* such
that for x € F'* non-zero, and Ng/p the norm of a finite extension F of F' containing =,
we have |z|FF) = |Ng/p(2)| = |Op/Ng/r(2)Or| ([Cassels67] 10.Theorem). In particular
prl=q".

Let D be a central division F-algebra of finite dimension d?>. We denote by Op the
maximal order of D, Pp the maximal ideal of Op, pp a generator of Pp, kp = Op/Pp the
residue field of cardinal ¢%; we have prOp = P3 [Reiner75].

Let n be a positive integer and G = GL, (D). Put Ky = GL,(Op) and K; = 1+ M, (P})
for a positive integer i. Let Z ~ F* denote the center and g = M, (D) the Lie algebra of
G. Let trd,nrd : M, (D) — F be the reduced trace, the reduced norm. The symmetric
G-invariant bilinear form (X,Y) — trd(XY) : M,(D) x M, (D) — F is not degenerate
and G ={Z € M, (D) | nrd(Z) # 0}.

The letter P will denote a parabolic subgroup of G, its unipotent radical is usually
written N, and M is used for a Levi subgroup so that P = M N. We write p, m, n for their
Lie algebras.

A composition A = (N\;) of n = A\ +...+ A, A\; € Nog, is called a partition of n when the
sequence ()\;) is decreasing. To a composition \ of n is associated a parabolic subgroup P
of G = GL,(D) with Levi subgroup M, block-diagonal with blocks of size Ay, ..., A\, down
the diagonal, and unipotent radical N, contained in the upper triangular subgroup B. We
let P, = M)N, the parabolic subgroup opposite to P with respect to M. We have
G = Py and P, 1) = B. We denote by T" and U the group M. 1) of diagonal matrices
with entries in D* and the strictly upper triangular group N, 1). A parabolic subgroup
P of GG is conjugate to P, for a unique composition A of n and is associated to P,: for the
unique partition AT of n deduced from X by re-ordering its elements. Let 9B (n) denote the
set of partitions of n. For A = (Ay,...,\.) € B(n), dA = (dAq,...,d\.) € B(dn).

Let R be a field. We denote by charg the characteristic of R, and by C°(X; R) the
R-module of locally constant functions on a locally profinite space X with compact support
and values in R. The map

p = f(1+X) = o(X) : CF(Mn(Pp); R) — CF(K1; R)

is a Ky-equivariant isomorphism. The extension by 0 embeds C°(M,,(Pp); R) in C°(g; R)
and C*(K1; R) in C°(G; R). An R-distribution on G or on g is a linear form on C°(G; R)
or C®(g; R). The group G acts on G and on g by conjugation, and by functoriality
on C*(G;R), CX(g; R) and on the distributions. A G-invariant distribution is called
invariant.
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For R = C, dg will denote the Haar measure on G such that dg gives the volume 1
to Ky, et dZ the Haar measure on g giving the volume [Ky : K;|™' = |GL,(kp)|™! to
M, (Pp), hence the volume a = ¢%*|GL,(kp)|" to M,(Op). The Haar measures dZ and
dg = a|nrd Z|z"dZ ([Weil67] X, §1 Lemma 1) are compatible with the map z — 1+ x :
M, (Pp) — K;. The modulus of P is dp(p) = |det(Ad p)s|r ([Vigneras96] 1.2.8). Let dk
denote the restriction of dg to Ky, dp the left Haar measure on P such that dg = dp(p)dkdp,
dn~ the Haar measure on N~ such that dn~ dp is the restriction of dg to N~ P (open in G),
dn the Haar measure on N giving the same volume to N N Ky as the volume of N~ N K|
for dn~, and dm the Haar measure on M such that dp = dmdn. For each f € C°(G;C),

L f@dg=[ s k) dkdp= [ fkp)de(p) didp

KQXP

= f(kmn) dp(m) dk dm dn.

KoxMxN

Let dW,dY~,dY be the Haar measures on h = p,n~,n such that dp and dW, dn~ and
dY~, dn and dY are compatible with the map = +— 1+ z for x € h(Pp) = h N M, (Pp).
We have dZ = dWdY .

Let 7w be a smooth representation of G on an R-vector space V. Each vector is fixed by
some open compact subgroup K of G,

(2.1) V =UVE  where V¥ = {vectors of V fixed by K}.

7 is called admissible when the dimension dimpz V& of VX is finite for any open compact
subgroup K. The categories Rep3(G) of smooth R-representations of G, Rep (G) of
finite length smooth representations are abelian. When charyp # p, the category of ad-
missible R-representations of G is abelian and contains Rep?’f (G) (this is not true when
charp = p). We denote by Gr3¥(G) the Grothendieck group of Rep3/ (@), and

7 [7] : RepR (G) = Gry (G)

the natural homomorphism. The map x + yonrd is a bijection from the smooth characters
F* — R* onto the smooth characters G — R*.

For a set X and a function f on X with value in Z or in R, the support Supp f of f is
the set of x € X with f(z) # 0 and 1y will denote the characteristic function of a subset
Y of X.

3. NILPOTENT ORBITS

3.1. An element X € g is nilpotent if and only if X" = 0 for some r € N. The set 91 of
nilpotent elements in g is stable by G-conjugation. A G-orbit in 9 is called a nilpotent
orbit of G. The set G\N of nilpotent orbits of G is finite, in bijection with the set P(n)
of partitions of n ([Bushnell-Henniart-Lemairel0] §2.4-2.6).
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3.2. Let V be the right D-vector space D™. The group G identifies with Autp(V') and its
Lie algebra g with Endp V. Let X € Endp V' be nilpotent. The composition A = (Aq,...)
of n,

3.1 \; = dimp Ker X* — dimp Ker X*™' for i > 1,
(

is a partition because the multiplication by X induces an injection from Ker X¢/ Ker X+
to Ker X~/ Ker X*. We get a canonical map 91 — B(n) sending 0 to (n). The map is
bijective. Let O, denote the nilpotent orbit of G' containing X. The dual partition of A is
A= (N =|{j| A >i}|). There is a partial order on PB(n)

J J
p<A & A<A & > p <> N forall j.
i=1 i=1
There is also a partial order on G\
O' <O & O C O where O is the closure of O in g.
The bijection reverses the partial order.
(3.2) Ox = U530,

The unique maximal partition (n) corresponds the null orbit {0} = O,). The unique
minimal partition (1,...,1) corresponds to the unique maximal nilpotent orbit O 1),
called regular, of closure 5(1 ..... 1) = M. The parabolic subgroup P of Autp(V) preserving
the flag (Ker X Z)l of the iterated kernels of X, is associated to Py. The intersection O, Nn,
is open dense in ny [Jantzen04, §13.17]. The dimension of O, as an F-variety is even and
equal to (loc.cit.)

(33) dlIIlF D)\ = 2d1mF n, = 2d2 dlIIlD Ny,
(3.4) dimpny = > N\
1<j

We denote dy = 3;; \iA; and d(PB(n)) = {d\ | A € B(n)},
(3.5) d(‘B(n)) = {d(n) =0< d(nfl,l) =n—-1<...< d(1 77777 1) = n(n — 1)/2}.

d(B(2))

d(B(3)) = {0 <2 =dpy) <3}

d(m(‘i)) {O <3 = d(g n < 4 = d(22 <H= d(271,1) < 6}

d(m(5)) {O <4 = d(4 n < 6= d(32 <T7= d(371,1) < 8= d(272,1) <9= d(271,171) < 10}
d(fp(ﬁ)) = {O < 5= d(5 n < 8= d(42 <9= d(471,1) = d(373) < ... < 15}

4. NILPOTENT ORBITAL INTEGRALS

Assume R = C. The nilpotent orbital integral of the zero nilpotent orbit {0} is the value
at 0,

oy (p) = ¢(0) (v € CZ(g;C)).
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Let O be a non-zero nilpotent orbit of G and A € PB(n) \ {(n)} such that O = O,. The
nilpotent orbital integral of O is a linear form sending ¢ € C'°(g; C) to

(4.1) pou(9) = [ er(¥)dY
(4.2) o, (7) = /K o(kZkNYdk for Z € g

dY and dk are the Haar measures on ny and K, given in §2. For (4.1), see [Howe74] when
D = F, [Lemaire04] for D general.

4.1. Homogeneity. For t € F*,p € C>(g), write ¢y(Z) = o(t71Z) for Z € g.

Proposition 4.1. The nilpotent integral orbital of O satisfies the homogeneity relation:

polr) = [t polp),  dimp(D) = 2d(D).
Proof. For A € B(n) \ {(n)}, we have d(O,) = dimpn, by (3.4) and by (4.1)

() = [ ora¥)dY = [E [ (o (1Y) 4Y = 27 o, (1)
ny nx
U

For a nilpotent orbit O of G and a lattice £ in g, we denote by ug ¢ the restriction of
o to C°(g/L;C) (identified to the functions on g invariant by translation by £). The
homogeneity implies ([Harish-Chandra78] Lemma 14 when the characteristic of F is 0):

Corollary 4.2. For any lattice £ in g, the linear forms o ¢ of C2°(g/£; C) for the nilpotent
orbits O of G are linearly independent.

Proof. For any d € N, let 91; denote the union of nilpotent orbits of dimension < d. Any
nilpotent orbit O of dimension d > 1 is open in 91y and O U N, is closed. We choose:
a) po € C(g;C) such that

lif O =9’

Holpor) = {0 O 4O

by induction on dim O.
b) a lattice £y in g such that po € C(g/Ly; C) for each O € G\M,
c) t € F* such that £ C tL,.

Then, (po): belongs to C°(g/£;C) and by homogeneity.

|19 if O = O

MD((@D')O = ’t|d(o)lu9((p9/) = {0 it O 7£ 'e 4 :
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4.2. Fourier transform. The bilinear map (Z,Y) + trd(ZY) : gxg — F is non degenerate.
Let v : F — C* be a non-trivial additive character on F. The Fourier transform in
C(g; C) with respect to ¢ and the Haar measure dZ (fixed in §1) is the endomorphism
of C2%(g; C):

(4.3) wH¢03=AM@¢WMﬂWMZ(Y€&¢€Qﬂm©)

There exists a positive real number c¢;, > 0 such that o(Z) = cpp(—Z) for Z € g *. In
particular

(4.4) | 6)ay = cpe(0).
For an Og-lattice £ in g, the Fourier transform of 1¢ is vol(£,dZ) 1 < where
£, ={Z € M, (D) | Y(trd(ZL))) =1} ={Z € M, (D) | trd(Z£))) C Ker(y))}.

Ezample 4.3. When 9 is trivial on Pr and not on O, M,(Op);, = M,(Pp) ([Weil67] X,
§2, Proposition 5).

For an open subset € of g, the extension by zero embeds C°(€; C) into C°(g; C).
Proposition 4.4. Let € be an open neighborhood of zero in g. The linear forms

p = ho(p) 1 (G C) = C

for © € G\M, are linearly independent.

Proof. This follows from the linear independence of the ug ¢ for any lattice £ (Corollary
4.2) ([Harish-Chandra78] corollary of Lemma 14). O

4.3. Let O be a nilpotent orbit of G and 1 a non-trivial smooth character of F. We
compute the nilpotent orbital integral uo(p) (4.1) of the Fourier transform ¢ with respect
to ¥ of p € C(g;C). Let X\ be the partition of n such that O = O,. Write (P, M, N)
for (Py, My, Ny). The bilinear map (Y,Y ") — trd(YY ™) : n x n= — C is non degenerate
because trd(YW) = 0 for Y € n, W € p. The corresponding Fourier transform with respect
to 1 is the linear map :

03 > Ga(Y) = / oY )(trd(YY 7)) dY ™ : O%(n~;C) — C=(n; C).

There exists a positive real number ¢y, such that

/ (Y )(trd(YY ™)) dY ~ dY = /g02 )AY = ¢y p2(0).
For ¢ € C°(g; C) of Fourier transform ¢ with respect to ¢, put
(4.5) fio () = polcyy @)

Proposition 4.5. We have fio(p) = [, ox,(W)dW .

3The non-trivial additive characters F — C* are ¢%(z) = ¢(az),z € F for a € F*. As d(aZ) =

|a|§:”2dZ, we have cye = |a|z" K 2%
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This was proved only “for some Haar measures” when D = F' and the characteristic of
F is 0 [HoweT74]. The proposition follows from the next three lemmas where ¢ € C2°(g; C).

Lemma 4.6. [, [, [i- (Y™ + W))Y(trd(YY ™)) dY = dY dW = cyn [, o(W) dW.

Proof. We have C*(g; C) = C2°(p; C) ® Cg°(n~; C). For 1 € C2°(p; C), 2 € C°(n7;C)
and ¢ € C(g; C) such that (Y~ + W) = o1 (W)pa(Y ) for Y~ € n, W € p, we have

/p// (Y +W)(trd(YY 7)) dY ~ dY dW = ¢y /pgol(wm(()) AW = cyn /pgp(W) AW

U
Lemma 4.7. The integration over n of the Fourier transform is integration over p:
(4.6) / P(Y)dY = ¢y /,, o(W) dW.
Proof. The left hand side of (4.6) is
/ﬂ/ggo(Z)zb(trd(YZ)) dZ dY = //p/ P(Y™ + W)(trd(Y (Y™ + W) dY~ dW dY
because dZ = dY~dW, and as trd(YW) =0for Y e n,W € p
_ //p/ (Y™ + W)e(trd(YY ™)) dY~ dW dY = ¢y /pgo(W) AW
because we can invert the integrals on n and on p  and by Lemma 4.6. U
Lemma 4.8. The Fourier transform of ¢r, is (9)k, for ¢ € C(g;C).
Proof. Write K = Ky. Then (@) (Y) = [ @(kYk™1)dk for Y € g is equal to
/K /g P(ZyLrd(RY R 2)) dZ dk = [ o(kZkylird(kY k™ KZE)) dZ, db
because dZ is K-invariant. This is
/. L P(RZE ys(trd(kY Zk) dZ dk = /. | PRZI y(ird(Y 2)) dZ d
= [[ex(Zp(r(y 2)) iz
U

dtaking ¢ = @15 as above one wants to compute the integral on n then on p of @1 (W)@2(Y) and we
can exchange the integrals because both functions have compact support
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5. TRACE OF AN ADMISSIBLE REPRESENTATION AND PARABOLIC INDUCTION

5.1. Let R be a field of characteristic charg # p and dg a Haar measure on G with values
in R. Let m € Rep% (G) be an admissible representation of G on an R-vector space V. The
linear endomorphism of V'

(5.1) n(flg)dg) = [ f(g)n(9)dg
has a finite rank. Its trace is an invariant R-distribution on G
trace(m) : f +— trace(n(f(g)dg), f € CX(G;R),

called the character of 7.

The characters of the irreducible smooth complex representations of G are linearly in-
dependent ([Vigneras96] 1.6.13 where ¢ = 0 should be 0).

For any exact sequence 0 — m — ® — w9 — 0 of admissible R-representations of
G, trace(m) = trace(m;) + trace(mz). Any finite length smooth R-representation of G is
admissible. By the universal property of Grothendieck groups, the character induces a
linear map from the Grothendieck group Gr3¥ (@) of Rep” (G) to the space of invariant
R-distributions on G.

For any open compact subgroup K of G, the restriction to K induces a linear map

(5.2) v vk Gy (G) = Gry (K)

from Gr (G) to the Grothendieck group Gry (K) of admissible smooth R-representations
of K. When K is a pro-p group, the category Repy (K) is semi-simple.

5.2. Parabolic induction. Let R be a field and P a parabolic subgroup of GG of Levi sub-
group M and unipotent radical N. The parabolic induction ind% : Rep (M) — Rep% (G)
sends (o, W) € Repy (M) to (ind% (), V) € Repy (G) where V is the space of functions
f : G — W right invariant by some open subgroup of G and satisfying f(pg) = (p)f(9)
for (p,g) € P x G and & is the inflation to P of o. It is an exact functor respecting
admissibility and finite length.

Replacing P by a G-conjugate does not change the isomorphism class of indg(a) and a
G-conjugate of P contains B.

We suppose in this section that B C P. This implies G = KoP = PKq = KoP~ = P™ K,
where Ky = GL,(Op) and P~ = M N~ the opposite parabolic subgroup with respect to
M.

The parabolic induction of the trivial R-character of M

7p =ind$ 1

will play an important role. As our parabolic induction is not normalized, [7p] € Gry (G)
depends on the choice of P of Levi M.

Lemma 5.1. Assume charg # p and let P’ be a parabolic subgroup of G associated to P.
The representation wp has the same restriction to Ky as wpr.
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Proof. ® Let R* be an algebraic closure of R. In the group of unramified smooth R%-
characters of M, the set of x such that indgx is irreducible is Zariski dense [Dat05,
Theorem 1.2]. There exist unramified smooth R%-characters x and x’ of M such that
the R*-representations indg x and indJGD, X' are irreducible and isomorphic [Dat09, Lemma
4.13]. Let R’ be the finite extension of R generated the values of y and x’. The R'-
representations indg x and ind%, v are irreducible and isomorphic. We deduce that the
restriction to K of the R'-representations mp and 7ps are isomorphic. As R-representations
of Ko, @ mpr >~ @"np where r = [R : R']. For any j > 1, taking the invariants by K, the
finite dimensional representations &"(mp/)®7 and & (7p)™s of the finite group Ky/K; are
isomorphic. By Krull-Remak-Schmidt, (7p)%i ~ (7p)%i. As this is true for any j, we have
Tpr =X Tp. [l

5.2.1. When R = C and o € RepX (M) is admissible, we compute the character of ind% (o)
in terms of the character of o.

Lemma 5.2. For f € C*(G,C), the function Sf(m) = [y [k, f(kmnk™")dkdn on M
belongs to C°(M,C).

Proof. The normal open compact subgroups K of K form a fundamental system of neigh-
borhoods of 1 in GG and for g € GG the open compact sets KgK form a fundamental system
of neighborhoods of g in G. For g € G and m € M, m *KgK N N is open in N. The set
of m € M such that m~'KgK NN # ) is open compact in M ® S1k,f is 0 outside of this
set and Sl x(m) = vol(m'KgK N N,dn) form'KgK NN # 0. O

Remark 5.3. For a normal open compact subgroup K of Ky such that K N P = (K N
M)(K N N), Slg = vol(K N N,dn)1ynk. For f € C*(G,C) with Supp f C K, then
SuppSf C KN M.

Proposition 5.4. We have trace(m(f(g)dg)) = trace(a(Sf(m)dm)) for o € Repg (M)
admissible, 7 = ind$%(c), and (f,Sf) as in Lemma 5.2.

Proof. a) Preliminaries. As G = PKj, a function in the space V of 7 is determined
by its restriction to Ko, and 7|k, =~ indp, (0|amnx,). Denote V|, the restrictions
to Ky of the functions in V. Let W denote the space of o and p the action of K|
on C®(Ko; W) by right translation. We identify C°(Ko; W) and C(Ky; R) @r W.
Then (ind§%K0(0|MmK0),V|KO) is a subrepresentation of (p, C*°(Ky; R) @ W). Let dx
denote the restriction to P N Ky of dp (equal to the restriction of dk). The map B :
(p, C(Ko; R) @r W) — (indpf, (0 minio, Vi)

B(h@w)(k) = vol(PNKy, dz) ™! /PQK h(z7'k)6(z)(w)dz (h € C®(Ky; R),w € W,k € Ky),

0

is a Ky-equivariant projection. The function B(h®w) on Kj extends to a function F},,, € V

Fru(pk) = vol(P N Ko, dz) ™! / h(z~k)e (pr)(w)dz  ((p, k) € P x Ko).

PNKy

5This proof suggested by the referee simplifies our original proof using [Minguez-Sécherrel4]
SpPNK gK is compact and the quotient map P — M is continuous
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b) Choose a normal open pro-p subgroup K of Ky such that f is binvariant by K. The
endomorphism 7(f(g)dg) of V restricted to VE is an endomorphism A of VE of trace
trace(A) = trace(m(f(g)dg). Choose a disjoint decomposition Ky = L;y; /. The 1, x form
a basis of C*(Ky; R)¥, the support of B(1,,x ® w) is in y; K, and trace(A) is the trace of
the endomorphism w — 3=; B(Fi, w)(yi) of W. For y € Ko, B(F1,,w)(y) is equal to

L@ P enlva)dg = [ 670 Prnladdg = [ PG R) Py (o Rk dp

K0><P

/ fly o k)b, (2 K)o (p~ a) (w) dk dp dx
KoxPxPNKy

= [ TG R Ro () w) dkdp= [ J(7 k)L (W3 () () didp

Ko x P
= vol(K,dk) [ fly™ py)(p)(w) dp.
Therefore

5 B(Fy ) () = vol(K, k) [ 5 (o oy () (w) dp = [ 0 pk)3 (o) (w)k di

K()XP

= vol(P N Ky, dz)™*

= f(E™*mnk)o(m)(w)dk dm dn = o(Sf(m)dm)(w).

KoxMxN

We deduce that the trace of w(f(g)dg) is the trace of o(Sf(m)dm). O
The set {Py | A € PB(n)} represents the parabolic subgroups of G modulo association.

Proposition 5.5. When P is a parabolic subgroup of G associated to Py, we have

trace(mp(f(g) dg)) = fio, (¢)-
for f € CX(K1;C) and p € C°(M,(Pp); C) such that f(1+X) = p(X) for X € M,(Pp),
and fio, as in (4.5).

Proof. For (f,¢) as in the proposition, the functions
(6:3) frolo) = [ Slkak™)dk (9 G). g (X) = [ o(hXK)dk (X € M,(D))
belong also to C°(K;C), C®(M,(Pp); C) and fx,(1+ X) = ¢k, (X) for X € M, (Pp),

[ f@ydp = [ o) aw,

trace(mp(f(g) dg)) = trace(mp, (f(g9) dg)) as mp = wp, on Ky(Lemma 5.1), and

trace(np(f(9)dg)) = [ Sf(m)dm = [ fi(p)dp = [ preo(W) AW = fin().
M P p
for P = Py, = 9,, by Propositions 5.2 and 4.5. O

Corollary 5.6. For any non zero map c : B(n) — C, the restriction of

> N [rr] € GiE(G)
AEP(n)

to an arbitrary open compact subgroup K of G is not 0.
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Corollary 5.7. For any non zero map c : P(n) — C, the restriction of the invariant
C-distribution on G

> () trace(mp,)
AEB(n)
to an arbitrary open compact subgroup K of G is not 0.

Proof. By Propositions 5.5 and 4.4, the characters of 7mp, are linearly independant on any
neighborhood of 1, because their values on f € C°(K;;C) are the Fourier transforms of
the nilpotent orbltal integrals of O, on ¢ € C°(M,(Pp);C) when f(14+ X) =p(X). O

6. COMPLEX REPRESENTATIONS OF (G NEAR THE IDENTITY

6.1. By [Harish-Chandra78] when charp = 0 (for any reductive p-adic group) and ([Lemaire04]
Proposition 4.3 with £ = F'), any non-zero representation = € Repg /@ non-zero 7 has a
germ expansion of map ¢, on K, meaning that:

There exists a map ¢, : G\ — C (the coefficient map) and an open subgroup K, of
K, =1+ M, (Pp) such that

(6.1) trace(m(f(g)dg)) = D (D) fo(p)

ODeG\N

for f € C®(K,;C), o € CX(M,(Pp);C) such that f(1+ X) = p(X) for X € M, (Pp).
It is convenient to see ¢, as a map on the set B(n) of partitions of n, or on the set of
parabolic subgroups P of G,

(6.2) cr(A) = ez (D)) = ¢ (P) for A € P(n) and P associated to Pj.

For example, ¢;((n)) = ¢;({0}) = ¢x(G). By Proposition 5.5, we have for f € C*(K,;C),
(6.3) trace(m(f(g)dg)) = > cx(N) trace(mp, (fdg)) Z:c7T ) trace(mp(fdg)).
AEB(n)

the last sum is over a system of representatives P of the parabolic subgroups of G modulo
association. We list some properties of the map ¢, for 7 € Repg o (G).

e The map ¢, is unique by Corollary 5.7 and is not 0 because
(6.4) dime ™ = trace(r(1x vol(K,dg) " dg) # 0 for small open subgroups K of K.

e Two representations m, 7’ € Repg f (G) have the same coefficient map if and only if
their restrictions to some open compact subgroup of G are isomorphic, because the
linear forms fig restricted to C2°(—1+ K,; €) are linearly independent (Proposition
4.4).

e In particular,

(65) Cr = Creyx

for any smooth character x of G, because y is trivial on some open compact
subgroup.



16 GUY HENNIART AND MARIE-FRANCE VIGNERAS

e The map ¢, depends only on the image [7] of 7 in the Grothendieck group Grg’ (G).
It passes to a linear map v — ¢, on the Grothendieck group GrZ (G) such that
Cx = Cpp for m € Rep (G). But ¢, = 0 does not imply v = 0. For example,

¢, =0forv= [imdgA 1] — [ind% 0] when 6 is any unramified character of M,.
e When 7 is finite dimensional, it is trivial on some K, C K; hence
(6.6) cr((n)) =dimecm, ¢ (N) =0 for A # (n).
Conversely, if ¢;(A) = 0 for A # (n) then
(6.7) trace(m(f(9)dg)) = ex({0}) oy () = ex((m) [ f(g

for (f,¢) as in (6.1). Hence dimc 7% = ¢,((n)) for any open subgroup K of K,
so m is finite dimensional.

e When D # F, a finite dimensional irreducible smooth representation of D* may
have dimension > 1, but:

Lemma 6.1. When R an algebraically closed field, D = F or n > 1, then a finite dimen-
sional irreducible R-representation of G is of the form m = x o nrd for some R-character

x of F*.

Proof. This clear when G = F* because F™* is commutative and the Schur’s lemma is valid
for G. When n > 1, then Ker(m) is an open subgroup of GG, and in particular contains
an open subgroup of U. But Ker(w) is also normal in G, so it contains U, and all the
conjugates of U. Those conjugates generate Ker(nrd), so 7 factors through nrd implying
the lemma. O

6.2. We revert to R = C and show that the values of ¢, are integers (proved in [Howe74]
when D = F has characteristic 0 and  is irreducible supercuspidal). The key of the proof
is the next lemma 6.2 inspired by Howe ([Howe74] Lemma 6).

For a partition A = (Aq,..., ) of n, let A, be the matrix of the endomorphism of the
right D-vector space D" operating on the canonical basis ey, ..., e, by sending ey, ..., ey,
to 07 YRR PRIIPEC) PR to ela e B and S VRIS PR to ExitoHXim1+) for i = 27 s T 17] =
1,..., Ai+1. Then, Ker A} is the D-subspace generated by ey,...,ex +. 1y, The parabolic
subgroup of G stabilizing the flag (Ker A}); is Py, and A, € ny. Fixing a character ¢ of F'
trivial on Pp and not on Op, for an integer j > 1, let £, be the character of K; = 1+Mn(P£)
trivial on Ky; defined by

(6.8) E(142z) =votrd(Aypp x) for x € M,(Ph).

Lemma 6.2. For p € P(n), the multiplicity m(§x,7p,) of &x in wp, is 0 unless X > pu.
We have m(&x, p, ) = 1.

Proof. For i € P(n), m(&x, mp,) is the cardinality of
(P,NGL,(Op)\{k € GL,(Op) | &Ex(K™HP, N K))k) = 1}/K;.
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Let k € Ko = GL,(Op). We have &, (k~(P, N K;)k) = 1 if and only if
(6.9) E(kH 1+ pu(Ph))K) = 1,

where p,(P},) = p, N M, (P},). The weaker condition & (k= (1 4 p,(PF~")k) = 1 already
implies m(&y, mp,) = 0 unless A > p. Indeed, it reads ¢ o trd(Axk~'p,(Op)k) = 1. It
depends on the images &, A, of k, Ay in GLy,(kp) and says that trd(k Ay & p,(kp)) = 0,
that is, K A\ k= € n,(kp). Let 0 C Wy C ... be the flag of k};, whose stabilizer is P,(kp).
Then kA k€ n,(kp) means kA, E'(Wi) € Wi, for i > 1, and in particular that
Ker(k (Ay)'k ') = k(Ker(A,)?) contains Wi. As dimp Wis; — dimp W; = s, one obtains
A+ .o+ AN >+ ..+ py for each 4, that is A > pu.

Suppose now g = A. We prove that (6.9) is equivalent to k& € P\(Op)K;. By its
definition &y is trivial on 1 + pA(P,%) because Ay € ny hence trd(Axp,) = 0, so PA\(Op)K;
does satisfy (6.9). Conversely, By = Axpp, 2 € ny(Pp ). The condition (6.9) means that
trd(Byk~'pa(Ph)k) € Pp and implies

By = k7 'Xk+Y, where X € ny,Y € M, (P)7).
Indeed, writing kBy\k™' = X +Y with X € ny,Y € p;, we have:

trd(Bak ™ pA(Ph)k) = trd(kBak™'pa(Pp)) = trd(Ypa(Pp)) = trd(Y Ma(Pp)),
trd(Y M, (P))) € Pp < trd(PL Y M,(Op)) € Op < Y € M, (P)).

See Example 4.3 for the last equivalence. One gets Byk™" = k1 X +Y; with Y} € M, (P, ™).
Note that By € M,(P}, *) hence also X. We get B3k™' = B\k™'X + B\Y; = k71X2 +
YiX+ByY; = k1 X24Y; with Y3 € M, (P52}, By induction Bik~! = k=1 Xi+Y; with
Y; € Mn(Pgri(l_?j)) for 1 < < r. For a basis vector e € Ker A%, we have X’e = (0 because
X € ny, and Bikle = k7' Xe 4+ Yie = Yie. As (Awph @)k le € M,(PLT0 e &
Alk—'e € M,(P})e, the coefficients of k~'e on the basis vectors which are not in Ker A}
are in P}. This means k= € K;P\(Op), what we wanted. O

We shall need more properties of &, in the section on Whittaker spaces.
Lemma 6.3. The normalizer of {\ in Ko = GL,(Op) is P\(Op)K;.

Proof. For k € Ky, the property {x(1 + 2) = (1 + kak™") for all € M, (P}) means
k™'Byk — By € M,(P57). As in the proof of Lemma 6.2 one deduces B'k — kB’ €
M, (P37 7)) for i > 1 and one sees that k € P(Op)K;. O

Remark 6.4. There is a unique function in 7p, with support PyK; and restriction £, to
K; since &, is trivial on 1+ px(P}). That function is a basis of the line of vectors in 7p,
transforming according to §, under the action of Kj.
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We prove now that the ¢;()\) are integers. By (6.3), when K; = 1+ M, (P}) C K, and
d € Repg (K;) irreducible, the multiplicity m(d, 7) of § in 7 € Repg (G) satisfies

(6.10) m(6,m) = Y. cx(p)m(s,mp,).
HEP(n)

Lemma 6.2 and (6.10) imply:
(6.11) cx(A) = m(&y, ) — cx(p) m(&x, mp, ).

HEP(n),pn<A

In particular when A is minimal in Supp ¢,, ¢x(A) = m(§y, 7) is positive and independent

of the choice of j such that K; = 1 + M,(P},) C K,. By upwards induction on JB(n)
(downwards induction on the nilpotent orbits), we obtain that the c,(\) are integers.

As the values of the map ¢, are integers, we get more properties:
® Cr = Cy(x) When o is an automorphism of C.
e For v € Gry(G), there exists a map ¢, : P(n) — Z and an open subgroup K, of

G such that v and Y \cqm) e (N) [7p] € Gry (G) have isomorphic restrictions to
K,.

When R = C, the first part of Theorem 1.3 is a version of the germ expansion. For
any R, when 7 satisfies the first part of Theorem 1.3 we say sometimes that 7 has a germ
expansion with map ¢, on K.

7. PARABOLIC INDUCTION

In this section R is a field and chargr # p. We prove now that the first part of Theorem
1.3 implies Theorem 1.5. Let P, M, (n;),0;, 7, 0,7 as in Theorem 1.5. Write pr : P — M
for the projection of kernel N. Given partitions \; of n; for 1 < ¢ < r, we have the
parabolic subgroup P,y of M corresponding to the parabolic subgroups Py, of GL,, (D).
Given functions ¢; : B (n;) — Z for 1 < i < r, the function ¢ : B(n) — Z defined by

cN)=> II alv),
i=1,...,7

where the sum is over r—tuples of partitions (Aq,...,\,) inducing to A before Theorem
1.5, is called induced by (cq, ..., ¢;).
Theorem 7.1. Assume that for i =1,...,r, there ezists a function c,, : P(n;) — Z and
an open compact subgroup Ko, of GLy, (D) such that o; = 35, eq(n,) Coi (M) indp,
K,,. Then

=Y (N ind%l

AEP(n)

on K, where ¢, : PB(n) — Z is the function induced by (¢4, ..., ¢C5.) and Ky is any open
compact subgroup of G such that Ugep\a/rc, pr(PNgKrg™") is contained in K, x... X K,, .
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Proof. The theorem follows from the fact that for any field R, indg(indgx) 1) has the same

restriction to Ky than indgA 1 by Lemma 5.1, and for given a open compact subgroup C,
of M, there exists an open compact subgroup C' of GG such that

(7.1) Ugerayepr(PNgCg~') € Cur.
The existence of K follows from (7.1) applied to Cpy = K, X ... X K, .

The restriction of a smooth R-representation o of M to C); determines the restriction
of indg o to C,

(ind% 0)|c ~ @yep\a/c indgn, -1 p,(0?)

where 09(k) = o(gkg™!) for g € G,k € g7'PgN C, and 9 depends only on the restriction
of o to pr(PNgCg™t). If o’ € Rep?’f(]\/[) is isomorphic to ¢ on C)y, then ind% ¢’ and
indga are isomorphic on C. The same holds true for virtual representations v, v of M.
Take v =01 ®...®0, and V' = 1} ® ... @ v, with v; = 35 cqyns) Cor (M) indgfi""(D) 1. O
Corollary 7.2. (Variant of Theorem 7.1) Assume that GL,,(D) satisfies the first part of
Theorem 1.3 for v = 1,...,r. Then for o € Rep%o’f(M), there exists an open compact
subgroup K, of M and a unique map ¢, : P(ny) X ... X P(n,) — Z such that o =
2 0em®m) Co((N)i)Tp,, on Ky, and © = ind% o is equal to Y5 cx(N\)7p, on any open
compact subgroup K, of G such that K, C Ngep\a/x, M N gKzg™" and ¢, : P(n) — Z is
induced by c,.

Remark 7.3. When G = GL,(F), given partitions A; of n; for i = 1,...,r, and X\ € P(n)
induced by the \;, the nilpotent orbit ), is the nilpotent orbit induced by the nilpotent
orbit Oy, of M corresponding to the \;, in the sense of [Lusztig-Spaltenstein79] (see
[Jantzen04]). If R = C, charp = 0, p # 2, D = F, the formula for ¢, follows from
([Moeglin-Waldspurger87] §11.1.3 where G is a classical group).

8. WHITTAKER SPACES

Our purpose in this section is to relate the coefficient map ¢, to the dimensions of the
different Whittaker spaces of m when 7 € Repg (G) is irreducible. We first introduce those
subspaces.

The commutator subgroup of the group U of upper unipotent matrices is the group
U’ of upper unipotent matrices with coefficients u; ;11 = 0 for i = 1,...,n — 1 (use the
identities E,FE.q = E,q if b = ¢ and 0 otherwise). The map sending (u;;) € U to
(412, ... Un_1,) induces an isomorphism from U/U’ to the additive group D""'. The
action of the group T' ~ (D*)" of diagonal matrices by conjugation on U and on U’ induces
an action on D""! the diagonal matrix diag(as,...,a,) € T sends (dy,...,d, 1) € D"
to (aidyay’, . .. yn1dp_1a;t).

Let us fix a non-trivial smooth character ) of F. Then ©¥p = 1 o trd is a non-trivial
character of D. Sending y € D to the character % (x) = ¢p(yx) for x € D, is an
isomorphism from the additive group D to its group of smooth characters. Sending
Y= (Y1 -Yn_1) € D"t to (¥},...,0}"), is an isomorphism from D"~! to its group
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of smooth characters. The above action of 7' on D"~ ! induces an action on its groups
of characters, the diagonal matrix diag(ay,...,a,) sends y = (yi,...,yn_1) € D" to
(a5191a1, s 7a1:1yn—1an—1)-

Let y = (y1,...,Yn_1) € D", r be the number of indices i where y; = 0, and

0 ifr=0,
{iy < ... <.} the set of indices ¢ where y; = 0 if r #£ 0.

(81)  I=1I@) = {

The smooth character of U corresponding to y is
0,(u) =¢otrd(Xyv) u=14veUl,

where X, € M, (D) is the nilpotent matrix with (yi,...,y,—1) just below the diagonal and
0 elsewhere. The character 6, is called non-degenerate if I(y) = ), and degenerate
otherwise. The character 6, is trivial if and only if I(y) = {1,...,n — 1}. The group
B = TU is its own normalizer in G, so the G-normalizer of ¢ is of the form 7y U where
Ty, is the T-normalizer of 0. It is the intersection of B with the commutant of X,,.

The element y is conjugate under T to the element §; € D"~ with coefficient 0 in I and
1 elsewhere. The nilpotent matrix X5, is a diagonal of Jordan blocks of sizes forming a
composition A\; of n,

~ J(n) when I=0,
(8.2) Ar = {(@'172'2 —i1,...,n—1i,) when I # (.

Any composition A of n is equal to A; for a unique subset I of I(y) = {1,...,n—1}. Put
X)\ = X§17

(8.3) Ory(u) =otrd(Xyw) u=14+veU,

and T the T-normalizer of #5. The group T contains the group 1,y = {diag(d,...,d)|d €
D*} isomorphic to D*.

We fix a representation m € Repg (G) of space V. Given a smooth character 6 of U,
we look at the space Vj of #-coinvariants of U in V| or at its dual, the (Whittaker) space
of linear forms A on V such that A(uv) = 6(u)A(v) for u € U,v € V. It is customary to
say that m has a Whittaker model with respect to 6 if V # 0. Indeed any choice of
non-zero linear form A on Vj gives a non-zero intertwining from 7 to Ind(G](H) by sending
v € V to the function taking value A(gv) at g € G; that intertwining is an embedding if 7
is irreducible, hence the name “model”. We say that 7 has a non-degenerate Whittaker
model, or that 7 is generic if Vj # 0 for some (equivalently all) non-degenerate characters
6 of U. We say that m has a Whittaker model if it has a Whittaker model with respect
to some choice of 6.

Using the action of T" on U by conjugation, we see that to analyse the Vj for all choices
of 6, it is enough to consider the 6, associated to the compositions A of n.

Remark 8.1. 1) It is known that if 7 is irreducible then Vj is finite dimensional (when 6 is
not degenerate [Bushnell-Henniart02], in general [Aizenbud-BS22]; these papers treat the
case of a general reductive group GG). The group Ty acts on Vjp; since Ty is not commutative
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if D # F, we cannot expect Vp to have always dimension 0 or 1 (as when D = F and 6
not degenerate).

2) Moeglin and Waldspurger [Moeglin-Waldspurger87] consider more general Whittaker
spaces, but ours are enough for our purpose (Theorem 8.2 below). Also they use the
exponential map, which is not available when F' has positive characteristic. Instead we
use the map X — 1+ X : M,,(Pp) — 1+ M, (Pp), as in [Howe74] and [Rodier74] when
D=F.

3) If 7 is irreducible cuspidal, 7 can only have non-degenerate Whittaker models because
0; is trivial on the unipotent radical N}, of the parabolic group Py,. Hence 7y, is a quotient
of the Nj-coinvariant space 7y, of m. If my, =0 then m, = 0, and N, is trivial if and
only if I = ().

4) Tt is possible to extend to GL, (D) the theory of [Bernstein-Zelevinski 77| 5.1 to 5.15
to show that a non-zero m has a Whittaker model (see [Abe-Herzig23| 3.4). But that is a
consequence of our theorem below (Corollary 8.3).

We now prove Theorem 1.6 (for R = C). We can assume that 7 is irreducible. We want
to relate the coefficient map ¢, : P(n) — Z of the germ expansion of 7 with the dimensions
of the spaces Vp, for the compositions A of n, following [Moeglin-Waldspurger87]. We define
the Whittaker support of 7 as the set of partitions p of n such that Vj, # 0 for some
composition A of n with associated partition fi (the partition dual to ).

Theorem 8.2. The minimal elements in Supp ¢, and in the Whittaker support of m are
the same.

Let i be a partition of n minimal in Supp ¢, and let X be a composition of n with associate
partition fi. Then c,(pn) = dimg Vp, .

Since 7 has a non-zero germ expansion, the theorem implies:

Corollary 8.3. Any irreducible smooth complex representation m of G has a Whittaker
model.

Remark 8.4. 1) By the theorem (1,...,1) is minimal in Suppec, if and only if V' has a
non-degenerate Whittaker model. This was proved when D = F' [Rodier74].

2) (n) is minimal in Supp ¢, if and only if dim¢ (V) is finite. By the theorem that happens
if and only if V' has only the trivial Whittaker model.

3) In part 2 of the theorem, dim(Vp,) does not depend on the choice of the composition
A with associated partition fi. It is the multiplicity in 7 of the character £, of K defined
in (6.8), if j is large enough.

We turn back to the proof of the theorem. As said at the beginning of this section, our
proof is based on the method of [Moeglin-Waldspurger87], replacing the exponential by
X — 1+ X. The starting idea is already in [Rodier74], but that paper is restricted to
the non-degenerate Whittaker models, and D = F. Compared to those works, we work
with the germ expansion of 7 in terms of the mp, rather than with Fourier transforms
of nilpotent orbits. We find that it simplifies matter a bit, and it is coherent with our
approach.
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Proof. We fix a composition A = (Aq,...,A\,) of n. We write 6 for the character 6, of U
and X for the lower triangular nilpotent matrix in Jordan blocks of size Ay, ..., A\, down the
diagonal (if I is the subset of {1,...,n — 1} such that A = A7, then X = X;,). For each

positive integer j we define a character ¢; of K; = 1+ M, (P},) trivial on Koj,
(8.4) ;(1+2) = otrd(Xpp Yx), =€ M,(P}),

where 1) is a character of F' trivial on Pp but not on Op. In other words, 1); is obtained,
in the formula (6.8) for &, by replacing the matrix A, there with the matrix X. We let

A\ the partition of n obtained from A by putting its parts in decreasing order, and C' the
matrix Ay associated as in Lemma 6.2 to the partition A"

Lemma 8.5. The matrices C and X are conjugate by permutation matrices (corresponding
to permutations of the canonical basis of D™ ).

Proof. A suitable permutation of the canonical basis puts the blocks of X in decreasing size
order, and we get the matrix X’ analogous to X but corresponding to \'. Let us describe a
permutation of the basis which conjugates X’ to C. Let d be the size of the largest blocks
of X’. Put at the end the first vectors of the blocks of X’ of size d. Before them, put
a bunch of vectors: the images under X’ of the previous ones, completed with the first
vectors of the blocks of size d — 1 of X', if any. Once you have the vectors corresponding
to size i, put before them the images under X’ of the already chosen vectors, completed
with the first vectors of the blocks of size © — 1. Reaching ¢ = 1 completes the process. [J

Remark 8.6. By this lemma, we can apply Lemma 6.2 to 1);. Hence, For any positive
integer j, one has m(v;,mp, ) = 1 and m(¢;,mp,) = 0 unless N> > p. If X' is minimal
in Supp ¢, then we have c;(\") = m(¢;, 7) for any positive integer j such that the germ
expansion of 7 is valid on K.

We now turn to the Whittaker quotient Vj, approaching it (following Rodier’s initial
idea) by a suitable conjugate 1} of 1; and letting j go to infinity.

The diagonal matrix t = diag(1, pp, ..., py ') acts by conjugation on M, (D), multiplying
the (a, b)-coefficient = of a matrix by p%zpy’. Conjugating 1; yields a character ¢; of the
group K = t*~1K;t*/*! which satisfies also Remark 8.6. The group U is the increasing
union of UN K over j, whereas the decreasing subgroups B~ N K7 have trivial intersection.
The restriction of ¢} to K N U is equal to that of 6, whereas its restriction to KN B~ is
trivial. The multiplication induces a bijection (an Iwahori decomposition):

(K;NU) x (K;NB") = Kj
The projector €} : V — V(¢}) of V onto its ¢-isotypic space V(%) (which has dimension
m(y}, ) = m(1;, 7)) can be obtained by first projecting onto vectors fixed by K; N B,

and then applying the projector f;
fi(v) = / O(u) ' m(u)vdu, veYV,
KinU

with respect to the Haar measure du giving measure 1 to K; N U.
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We write p : V' — Vj for the projection of V' onto Vp and p; : V(¢5) — Vj for its
restriction to V (¢}).

Lemma 8.7. The map p; : V(¢;) — Vj is surjective for large j.

Proof. Let v € V. For large enough j, v € VEi"8™ hence ei(v) = fij(v) and p(e(v)) = p(v).
Lifting in that way a basis of the finite-dimensional space Vj gives the result. U

Lemma 8.8. [l Vy # 0, then there is a partition p in Supp ¢, with u < \".

Proof. 1 V4 # 0 is not 0, then by Lemma 8.7, V(¢7) # 0 for large j, so tr(w(e})) # 0.
Applying the germ expansion of 7 to e;- there is a minimal partition p of n in Suppc,. By

Remark 8.6, cx (1) = m(¢;, 7p,) and p < N O

Lemma 8.9. Let jo be a positive integer such that m has a germ expansion on Kj,, and

Jo = Jot2n=2. If N"is minimal in Supp ¢, and j > jy, then the endomorphism v — e} v

J
of V(1}) is a non-zero homothety.

In [Moeglin-Waldspurger87], that Lemma is given for unspecified large j by their Lemmas
[.13 and 1.15. They are rather more involved than Lemme 4 in [Rodier74], which however
applies only to non-degenerate Whittaker models and D = F. The proof of Lemma 8.9
will be given later.

Proposition 8.10. If X' is minimal in Supp ¢, and j > j, then p; is an isomorphism, so
that dime(Vy) = dime V/(4).

Proof. We already know by Lemma 8.7 that p; is surjective for j large. We also know by
Remark 8.6 that dime V' (¥;) = m(¢)}, 7) is constant forj > jo. The main point is Lemma
8.9 which implies that for j > jj, the linear map ¢; : V(¢) — V(¢¥),,),v — vy = €}, v
is injective, hence is an isomorphism because the two spaces have the same dimension.
Moreover a vector v € V (¢}) is already invariant under K’,, N B so what was said before
Lemme 7.7 we have €/, v = f;,10, and v; = €}, ;v has the same image in V) as v. Iterating
the process we get for positive integers k, vectors vy = 6§-+kvk_1 = fj+kVk—1. By definition
of the projector f;, we have fjirfjtr—1 = fj+r and consequently v, = f;xv. But p(v) =0
if and only if f;1,v = 0 for large k (Bernstein-Zelevinsky xyz). As vy = 0 implies vy_1 =0
by the injectivity already established, we get Ker(p;) = 0. But for large j, p; is surjective
so is an isomorphism, and dime (V' (¢}) = dime(Vp). But for j > jj, the dimension of V(%)
is constant so p; is an isomorphism and the Proposition follows. Il

Proposition 8.10 implies Part 2 of Theorem 8.2 and that a partition of n which is minimal
in Supp ¢, belongs to the Whittaker support of w. Conversely, let p € J(n) minimal in
the Whittaker support of 7. Then by Lemma 8.8, there is a partition p' in Supp ¢, with
1 < p, and we may assume that p’ is minimal in Supp ¢,. But by Proposition 8.10, that
implies that p' belongs to the Whittaker support of 7, so ¢/ = pu. Assuming Lemma 8.9,
Theorem 8.2 is proved. U

It remains to prove Lemma 8.9. We can conjugate by t'~* to transform ¢} back to v;,
and even further conjugate (Lemma 8.5) by a permutation matrix ¢ to transform ¢; into
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the character {; attached to the matrix B. We need to prove that the endomorphism of
eV sending v to efv is a non-zero homothety, where e is the Kj-projector onto the one
dimensional space eV = V(§;) and f is integration on the group J = o(t?)(K;NU)(c(¢*)~*
against its character (1 4 ) + 1 o trd(—B.(pp) ™% x). Clearly efe is an element of eHe
where H is the full Hecke algebra of GG, so we may restrict the mentioned integration
to elements in the support of the Hecke algebra eHe. Also if j > 2n — 2, the group J
is contained in K;_s,42 so it normalizes K, and the support of efe is contained in the
normalizer of &; in Kj_gp, 0.

By Lemma 6.3, the normalizer of £, in Ky = GL,(Op) is Py (Op)K;. Take j—2n+2 > j,
and ¢ = 1 + x be in the support of efe. The trace of ege in eV can be computed using
the germ expansion of 7 as the sum over 1 € B(n) of c;(u) times the trace of efe in 7p,.
By our choice A" is minimal in Supp ¢, so the only contribution is ¢,(\"). Applying that
to any ege in the support of efe gives Lemma 8.9, and even that the homothety is via a
positive integer.

9. JACQUET-LANGLANDS CORRESPONDENCE

The Jacquet-Langlands correspondence extended by Badulescu ([Badulescu07] Théoreme
3.1), is a surjective morphism L.J with a section JL

LJ : Gr2(GLan(F)) = GIX(G), JL : Gr¥(G) = Gr¥(GLan(F))

which is an injective morphism of Z-modules extending the classical Jacquet-Langlands
correspondence between essentially square integrable representations.

Theorem 9.1. Forv € Grg (GLg, (F)) and X € P(n), we have (—1)"cr0)(A) = (—=1)%¢, (dN).

Corollary 9.2. For v € Gi¥(G) and X € P(n), we have (—1)"¢, () = (=1)™c; 1) (dN).
The remainer of this section gives the proof of the theorem.

9.1. Badulescu-Jacquet-Langlands correspondence.

9.1.1. Preliminaries. Let IrrZ(G) denote the set of isomorphism classes of essentially
square integrable irreducible smooth complex representations of G. Any irreducible smooth
complex representation of D* is essentially square integrable.
As in §1, P, = M) N, is a parabolic subgroup of G for A\ € P(n). For u € P(dn), we
denote now by P, = P,N,,.
A basis of the Grothendieck group Grgr (G) is
Bo = {[n.ind% o] | o € Irrg(My), A € B(n)}

where n. ind% the normalized parabolic induction ([Badulescu07] Proposition 2.2). As
Irr? (@) is stable by the twist by a smooth character of G,

o= {[ind% o] | o € Irrg(My), A € B(n)}.
is also a basis of Grg’ (G)). Let Cy be the submodule of Grg’ (G Lg, (F')) of basis the set
B} = {[md5 " 0] | ¢ € Ind(M,.), i € PB(dn) but u & dP(n)}.
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The Aubert involution ¢ of Gr’(G) sends an irreducible representation 7 to an irreducible
representation modulo a sign [Aubert95]:

(9.1) u(m) = (=1)""|u(m)|
where |¢(7)| is irreducible and r is the number of elements of the cuspidal support of
7, meaning that © C ind%a for A = (A,...,\) € B(n) and ¢ € Trrp(M,) cuspidal
([Badulescu07] (3.4), [Tadic90] §1).

Let A be a partition of n and d, the modulus of the parabolic subgroup Py, = M, N,
of G, dx(g9) = |(det Ad(g)|Lie n,)|F for g € Py. For a partition p of dn, let 9, denote the
modulus of the parabolic subgroup P, = M/, N;, of G'Lan(F).

Lemma 9.3. Let L/F be an extension splitting D. We have 65 = 8/, on P\(L) = P}, (L).

Proof. We have G(L) = GLg,(F) and Py(L) = Pj,(L). The modulus 0, is an algebraic
character, and can also be computed in Py(L). Similarly for 6/,. The reduced norm on G
becomes the determinant on G(L). O

Let L/F be an extension splitting D. The reduced characteristic polynomial P, of
a € M,(D) is the characteristic polynomial of a ® 1 € M, (D) ®p L ~ M,4(L), which
belongs to F[X], does not depend on the choice of L, and P,(a) = 0 [BourbakiA-8, §17
page 333 Définition 1, page 336 Corollaire 2, (34)], [Badulescul8, §2 Propositions 2.1 and
2.2].

Lemma 9.4. The reduced characteristic polynomial of a matriz in M, (D) belongs to Op[X]
if and only if the matriz is GL,(D)-conjugate to an element of M,(Op).

Proof. We have M, (D) ~ Endp D" where D" is seen as a right D-module. Let ey, ..., e, be
a basis of D" over D. When P, € Or[X], the Op-module generated by the da'ey, ..., a'e,
for the positive integers 7, is finitely generated because P,(a) = 0, hence a stabilizing
an Op-lattice of D" is GL,(D)-conjugate to an element of M,(Op). Conversely, if a €
M,(Op) then a ® 1 € M,4(Opr) hence its characteristic polynomial P, belongs to Op[X];
for g € GL,(D) we have P,,,—1 = P, € Op[X]. O

We identify the space S of unitary polynomials in F[T)] of degree dn with F'%" by taking
the non-dominant coeffficients. The map sending X € M, (D) to its reduced character-
istic polynomial Px which belongs to S, is continuous ([BourbakiA-8] §17 Définition 1,
[Reiner75] §9a).

We recall from [Badulescul8, Chapter 2, §2 to §6]:

An element g € G is called regular semi-simple when the roots of P, in an algebraic
closure F'* of F' have multiplicity 1. The set G™ of regular semi-simple elements of G
is open dense in GG. The conjugacy class of g € G™ is the set of elements ¢’ € G with
P, = P,. Note that ¢ = 1+ p1X € G" is conjugate to an element of 1 + p}M,(Op)
if and only if X is conjugate to an element of M, (Op) if and only the coefficients of
Px(T) = p7™P,(Tp}- + 1) belong to Op. The set {P, | g € G’} consists of the monic
polynomials in F[T] of degree dn without multiple roots in F°, with a non-zero constant
term and with all irreducible factors of degree divisible by d. Let GLg,(F)™? be the set of
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h € GL4,(F)™ such that P, € {P, | g € G™}. We say that g € G" and h € GLg,(F)™*
correspond and we write g <+ h when P, = P,.

Let g € G™. The G-centralizer T, of g is a maximal torus, isomorphic to the group of
units of F[T]/(F,). We put on G/T, the quotient measure dz* of the Haar measure on G
(§1) and on the Haar measure on T, giving the value 1 to the maximal torus. The orbital
integral of f € C2°(G;C) at g is

(9.2) 2(L9)= ., fzga™)da*.

Let C®(G Lgn(F)™;C)@ be the set of p € C®°(G Lyq(F)"™; C) with ®(p, h) = 0 when h is
not in G L,q(F)™?. We say that f € C®°(G™;C) and ¢ € C(G L,q(F)"; C)¥ correspond
and we write f <> ¢ when ®(f,g) = ®(p,h) if g € G™ and h € GL,q(F)™** correspond.
For f € C°(G™; C) there exists ¢ € C2°(GLna(F)™; €)' such that f «+ ¢, and conversely
([Badulescul8] Proposition 5.1).

9.1.2. Jacquet-Langlands correspondence. The classical Jacquet-Langlands correspondence
([DKV84], [Badulescu02]) is the unique bijective map

JL : Trrg(G)) — Irrg(GLgy(F))  such that for 7 € Itz (G),
(—1)" trace((f(g)dg)) = (—1)"" trace(JL(r)(p(h)dh))

when f € C®(G);C)*, ¢ € C®(GLgn(F);C)*% f < ¢. The image by JL of the
Steinberg representation of G is the Steinberg representation of G Ly, (F'). The maps JL
extends to

1) a bijective map

JL : Trrg(My)) — Trr(M),) for any composition A of n.
2) an injective map
JL :Bg — Bar,,(r)
(9.3) JL([n.ind%, o] = [n.indg- " JL(0)] for o € T2 (M), A € B(n),
and by linearity to an injective homomorphism
JL : Gr&(G) — GrZ (G Lgn(F)),
satisfying ([Badulescu07] Théoreme 3.1):
(9.4) (—=1)" trace v(f(g)dg) = (—1)™ trace JL(v)(¢(h)dh)
when v € Gr¥(G), f € C*(GL,(D)™*;C), ¢ € CX(GLgp(F)™*;C) D, f <+ ¢. We have
Gr¥ (GLgy(F)) = JL(GrE (G)) @ Cy.

The homomorphism JL commutes with
a) the twist by smooth characters:
JL((xonrd) ® v) = (x o det) ® JL(r) when x is a smooth character of F*,
b) the normalized parabolic induction ([Badulescu07] Théoreme 3.6):

JL(ind§, (6, %) = indg (55,2 TL(w))).
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3) a surjective homorphism extending the inverse L.J of the classical Jacquet-Langlands
correspondence JL for the Levi subgroups :

LJ: %GLdn(F) — ‘BG
(9.5)
.G 2 _
LI(In. ind]GDLdn(F) o] = [n.indp, LJ(0)] for o € Irrg(]\/[#), p=dx € dB(n),

" 0 for o € It (M,,), 1€ P(dn) but p & dPB(n)
giving by linearity a surjective homomorphism (the Badulescu-Jacquet-Langlands corre-
spondence):

LJ : GrZ(GLan(F)) — G (G)
of kernel Cy, section JL, satisfying
(9.6) (—1)" tracev(f(g)dg) = (—1)" trace LJ(v)(¢(h)dh)

when v € Gr¥(GLyg(F)), f € CP(GLyu(F)™;C), p € CX(G™;C) D, f < . The
homorphism L.J commutes with the twist by smooth characters: if x is a smooth character
of F* and v € GrgZ’ (G Ly, (F)),

(9.7) LJ((xodet) ®v) = (xonrd) ® LJ(v),

the normalized parabolic induction: if &), the modulus of P, and v € Grg(M,), still
denoting JL : Grg’(M,,) — Grg' (M) the natural morphism, we have

0 if d
(9.8) LJ(indJGafd"(F)(%lmV)) = {mdg (62LI() ifz i dcf(ri\) € P(n)

and is compatible with the Aubert involution ¢ up to a sign ([Badulescu07] Proposition
3.16):

(9.9) (=1)"to LJ = LJ o (—1)%.

As LJ sends the Steinberg representation of G'Lg,(F') to the Steinberg representation of
G, the Aubert involution of the Steinberg representation is the trivial representation up to
a sign, and L.J commutes with the parabolic induction, we have:

if = d),

otherwise.

(9.10) (—1)™ L (np,) = {é_l)n””*

9.2. The theorem 9.1 is an easy consequence of (9.6), (9.10), and of the linear independance
of the restrictions to K NG L, (D)™ of the characters of the representations 7p, of G'Lg,(F)
for p € PB(dn), for any open compact subgroup K of GLg,(F). We give the details.

Let P = MN be a parabolic subgroup of G of Levi M, o € Irtg.(M), 7 = ind% 0. Let
Crs CyL(r) be the maps and K, Kjr(x) groups in the germ expansions (6.1) of [n], JL([]),
such that for any g € K; N G" there exists h € K N GLgn(F)™>4 with g <+ h, as
we can because for g € GL,(D)™, h € GLg,(F)"? with the same reduced characteristic
polynomial P(T), the coefficients of p?*"P(Tp} 4 1) belong to Op if and only if ¢ is
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conjugate to an element of 1 + p‘}}Mn(OD) if and only if h is conjugate to element of
1+ phMy,(Op) (Lemma 9.4).

Let f € C®(Kpjm NG%C),p € CX(Ky N GLyp(F)*;C) D, f « . The germ
expansion (6.1) applied to (9.6) (—1)" trace LJ(m)(f(g)dg) = (—1)™ trace m(¢(g)dg) gives

(=)™ > cramN) tracemp (f(g)dg) = (—1)™ Y cxlp) tracemp, (0(g)dg),
AEP(n) prEP(dn)

and applying (9.6), then (9.10) to the RHS,

= (=1)" > ex(p) trace LI (mp,)(f(g)dg) = (=1)™ > cx(dN) tracemp, (f(g)dg).
HEP(dn) AEP(n)

So, (=1)" Xrepm) cram(A) tracemp, (f(g)dg) = (=1)" Yrepm) cx(dA) trace 7p, (f(g)dg).

The linear independence of the characters of 7p, on Ky () for A € PB(n) (Corollary 5.7)
and the local integrability of characters imply the * linear independence of the characters
of mp, on Kz NG™ for A € P(n) and

(=)™ e (A) = (=1)"crym(dN) for X € P(n).
for any [r] in the basis B¢ of Gr’(G). This ends the proof of the theorem 9.1.

9.3. Applications to c.((n)) For 7 € Irt(G) and a division central F-algebra Dy, of
reduced degree dn, there exists a unique 7y, € Irre(Dj,) such that their images by the
classical Jacquet-Langlands correspondence in Irra(G L, (F)) are equal. The dimension of
Tan is finite and by Theorem 9.1) (=1)"c(n) = —Cjr(n,,)(dn) = — dim¢ Tgn. An irreducible
smooth complex representation 7 of GG is tempered if and only if 7 = indg o for a parabolic
subgroups P = MN of G and ¢ € Irrg.(M) ([Lapid-Minguez-Tadic16] A.11).

For v € Gr&¥(GLgn(F)) and A € P(n), we have (—1)"cr)(A) = (—1)%c, (dN).

Corollary 9.5. Let m € Repg (G) irreducible and tempered. Then

e (n) = (=1)" ' dimg 7, if 7 € Trre(G)
" 0 if T & Irrde(G)

10. COEFFICIENT FIELD OF CHARACTERISTIC DIFFERENT FROM p

Let R be a field. Our goal is to show that Theorem 1.3 proved using the Harish-Chandra
germ expansion remain valid for R-representations when the characteristic of R is not p.
There are two simple reasons:

a) For a parabolic subgroup P of G, the representation indIGp 1 is defined over Z.

b) For a field extension R’/ R, the scalar extension from R to R’ of smooth representations
of a profinite group H respects finite length, and is an injection at the level of Grothendieck

Put K = Krjx)- Any f € C°(G; C) with support in K is a limit of (uniformly bounded) functions f,
with support in KNG", so by the local integrability of characters and the Lebesgue dominated convergence
theorem, trace wp, (f(g)dg) = lim,, trace wp, (fn(g)dg).
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groups [Henniart-Vignéras19]. For an irreducible smooth R-representation 7 of H, the R'-
representation R’ @z 7 considered as an R-representation is m-isotypic (a direct sum of
representations isomorphic to 7).

From now on, charg # p. When 7 € Rep% is equal to S aep(n) Cr(A) ind% 1 on K, as
in Theorem 1.3, the map ¢, is unique because:

Proposition 10.1 (Corollary 5.7). Let K be an open pro-p subgroup of G. For any non
zero map ¢ : B(n) — 7Z, the restriction to K of

> N [rp] € GrF(G)
AEP(n)

1s not 0.

Proof. We can suppose R algebraically closed by b). The categories Repf (K) and Repg (K)
are equivalent and the Grothendieck groups Gry (K) and Grg (K) are isomorphic because
K is a pro-p group and charg # p. The proposition is true when R = C (Corollary 5.7)
and the representations mp, correspond. Hence the proposition is true for any R. Il

We list other properties which will be used in the proof of the theorem 1.3.

10.1. Twist by a character, image by an automorphism

Assume that m € Rep%™/ (@) has a germ expansion of map ¢, on K (the first part of
Theorem 1.3), x is a smooth R-character of G and o is an automorphism of R. Then
the representations 7 ® x and o(7) have a germ expansion of maps crgy = Cy(r) = Cx OD
Kroy = Koy = Ky if x is trivial on K. The reason is a) (Xreqp(n) cx(A) [7p,] is defined
over Z).

10.2. Germ expansion on the Grothendieck group Assume that any 7 € RepoRo’f (G)
has a germ expansion of map ¢, on some open compact subgroup K, of G. Then, the
linear map v — ¢, : Grg(G) — {PB(n) — Z} such that cj = ¢, for 7 € Repy/ (G), has
the property that the restrictions to some open compact subgroup K, of G of v and of
Yaep(n) &v(A) [Tp,] are isomorphic.

Parabolic induction: For a parabolic subgroup P of G of Levi M, the parabolic induction
indg is exact and respects finite length and passes to a linear map between the Grothendieck
groups:

ind$ : Gr¥ (M) — Gr¥(G), ind$%[o] = [indS o] for o € Repy™ (M).

When v € Gry¥(M) has a germ expansion of map c,, then ind$ v has a germ expansion of
map induced by ¢, (Theorem 7.1).

10.3. For j € N and A is a composition of n, the values of the character &, of K; =
1+ M, (P}) defined by (6.8) and of the character 6, of U defined by (8.3) are roots of 1 of
order powers of p. Assume that the field R contains roots of unity of any p-power order,

we write ppye C R, implying charp # p.
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We can define &, and 6, over R as before, and the Whittaker support of an irreducible
smooth R-representation of G as before Theorem 8.2.

Let m € Rep/(G) having a germ expansion of map ¢, : P(n) — Z: for a positive
integer jo the restriction of 7 and of 3=, cq(n) cr () ind% 1 to Kj, are equal. With the same
proofs as for R = C, we have:

Theorem 10.2. 1) For any integer j > jo and any A partition of n, we have
(10.1) (A =m(&m) = Y exlp)m(én mh,).

HEP(n),u<A

In particular when X is minimal in the support of ¢, cx(A) = m(&\, m) is positive and
independent of j > jo.
2) Theorem 8.2 is valid.

An algebraically closed field R with charg # p contains p;°. To prove Theorem 1.3 for
R algebraically closed, by Theorem 10.2 and Proposition 10.1, we have only to prove that
any ™ € Repy™ (G) has a germ expansion: there exists a map ¢, : B(n) — Z such that =
and >, ¢ () ind}GDA 1 have equal on some open compact subgroup K, of G.

We prove now Theorem 1.3 going from R = C to R = Q}° to R = F¢°, £ # p, to an
algebraically closed field R, and finally to a not necessarily algebraically closed field R.

10.4. R ~ R’. For any prime number ¢, the fields C and QJ° are isomorphic. It is easy
to see that if Theorem 1.3 is true for a field R, it is also true for an isomorphic field
R'. Indeed, a field isomorphism j : R — R’ induces isomorphisms of categories jg :
Rep% (G) — Repr (G) and ji : Repx (K) — RepZ (K) for any open compact subgroup K
of G. The isomorphisms commute with the restriction to K and the parabolic induction
indG. For 7 € Rep¥(G) and o € Rep% (M),

Jr(lK) = je(m)lx, ndE(ju(0)) = je(indg o).

When the theorems are true for R they are also true for R'. For 7 € Rep%/(G), then
Cr = Cjo(m) and we can take Kj ) = Kr.

10.5. R ~ F§¢ for ¢ # p.

The theorems over Qf¢ imply the theorem over ¢ by reduction modulo ¢ for ¢ # p.
We denote by Zj¢ the ring of integers of Qf¢. A lattice in a Qf°vector space V is a free
Zj°-submodule generated by a Qj°-basis of V.

Let m € Rep@’f (G). One says that 7 is integral when the space of 7 contains a G-stable
lattice £;. Then, the reduction modulo ¢ of £; equal to Fy® ®@zg- £, belongs to Repﬁ-}’cf (G)
and its image in the Grothendieck group GIEC(G) does not depend on the choice of £,. It
is called the reduction modulo ¢ of 7, and denoted by 7,(7). The subcategory of integral

representations Rep@f (@) in Rep@f (G) is abelian [Vigneras96]; let Gr@int(G) be its
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Grothendieck group. The reduction modulo ¢ passes to a surjective (not injective) map
between the Grothendieck groups:

re: Grgge™ (G) — Grise (@),

and there is an explicit subset E(G) of Rep&%’f (@) such that the set {r(r) | 7 € E(G)}
is a basis of the Grothendieck group Gr%féc(G) ([Minguez-Sécherrel4] Théoreme 9.35).

For a parabolic subgroup P of GG with Levi M, the parabolic induction indg ; Rep@c (M) —
Rep@c(G) is exact, respects finite length and integrality hence passes to the Grothendieck
groups and 7, o ind$ = ind$ or, on Rep@’f a0s)

The representation 7p over Q¢ are integral, with a canonical integral structure (the
functions with values in ZJ¢: mp over Z$¢) of reduction modulo ¢ the representation 7p
over [Fj°. '

Ifre Rep@’f’mt(G) has a germ expansion of map ¢; on Ky, then ry(m) € Grga(G) has
a germ expansion of map ¢, on K.

Lemma 10.3. Let w, 7’ € Rep@’f’mt(G) with ro(m) = ro(n'). Then c; = Cqr.

Proof. When j is large, we have (10.1) for m and 7n’. As K is a pro-p group, m(&,m) =
m(re(€x), re(m)). Therefore ro(m) = ro(7’) implies m(&y, 7) = m(&y, 7’). By induction on A
we deduce ¢; = cpr. OJ

As the ry(m) for 7 € E(G) generate Grya.(G), Lemma 10.3 gives the existence of a linear
map

¢: Grgae(G) = {PB(n) = Z} defined by ¢;,(n) = ¢r for m € Rep@f’mt((}).

For 7 € Rep%%’cf(G), the restrictions of m and of 3°\cq(n) ¢r(A) 7e(7p,) to some open pro-p
group K, of G are isomorphic. Theorem 1.3 when R = F§¢ is proved.

10.6. R'/R algebraically closed fields Given an extension R'/R of algebraically closed
fields of characteristic different from p, we prove that the germ expansion over R for all
n > 1 is equivalent to the germ expansion over R’ for all n > 1. Therefore we get Theorem
1.3 over any algebraically closed field R, because we already proved for R = C and R = [F}°
when ¢ # p.

The proof relies on properties, that we now recall, of the scalar extension m — R Qg7 :
Rep% (G) — Repw (G) from R to R’ and of the representations of G' parabolically induced
from Speh representations of the Levi subgroups of G. Fix the same square root of ¢ = p/
in R and in R'.

The scalar extension from R to R’ respects irreducible smooth representations and cus-
pidality, is exact and passes to an injective linear map v — R @z v : Gry (G) — Gry/(G)
between the Grothendieck groups, commutes with the parabolic induction and for any open
pro-p subgroup K of G is an isomorphism of categories § — R'®gd : Repy (K) — Repr (K)
[Henniart-Vignéras19]. When 7 € Repy/ (G) the multiplicity m(d, 7) in 7 of § € Rep% (K)
irreducible is equal to m(R' ®g 0, R’ ®g 7). Any irreducible cuspidal R'-representation p’
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of G is the twist by an unramified smooth R’-character x of G of an irreducible cuspidal
R-representation p of G, p/ = x® (R' ®r p) = x ®r p [Vigneras96|. By Lemma 10.4 below,
this is also true for Speh representations.

Let m be a divisor of n = mr,r > 1, and p an irreducible cuspidal R-representation of
GL,,(D)). To (p,n) are attached in [Minguez-Sécherrel4]:

e an unramified smooth R-character v, of GL,,(D) depending only on the inertia
class of p (loc.cit. §5.2).

e a cuspidal R-segment A,,, = (p,,®p, ..., yp_”r ®p) of length r, denoted [0, —1+
r], in (loc.cit. §7.2).

e an irreducible subrepresentation Z(A,,) € Repy (GL,(D)) (a Speh representa-
tion) of the normalized parabolic induction p x ... x (v, ® p) of p® ... ®
(v, " @ p) € Repy My for X = (m,...,m) € P(n) (loc.cit. §7.2).

Lemma 10.4. For each unramified smooth R'-character x of F*,

(X o nrd) QR Z(Amn) = Z(A(Xonrd)®Rp,n)-

This important property is stated in [Minguez-Sécherrel7][(8.1.2)] (c.f.[DS23, Lemme
5.9]).

To a composition (ny,...,n,) of n, a divisor m; of n; and an irreducible cuspidal R-
representation p; of GL,,, (D)) for 1 < i < r, are associated

e a cuspidal R-multisegment 9 = (A, 5.+ Q)0 ),
e a Speh R-representation Z(IM) = Z(Apn,) @ ... Z(Ap, n,) of M = M, .0,
e the normalized parabolic induction n.I(9M) = ind%(Z (91()5113/ ®) of Z(9M) where
P = Pp,,..n,) and dp is the module of P.
The Grothendieck group Gr (G) is generated by the [n.I(90t)] for the cuspidal R-multisegments
M of GL,(D) ([Minguez-Sécherrel4] proof of Lemma 9.36 with Proposition 9.29).

But Z(,‘Jﬁ)élla/2 is also a Speh representation Z(9M') = Z(Ay n,) ® ... Z(Ap n,) where p]
is the twist of p; by an unramified character. Therefore Gry (G) is also generated by the
images of the parabolic induction I(9M) = ind%(Z(M)) for the cuspidal R-multisegments
M. If the Speh R-representations Z (M) of G have a germ expansion then the I(91) have

a germ expansion (Theorem 7.1) and any © € Repy*/ (G) has a germ expansion.

We are now ready to prove that the existence of a germ expansion over R is equivalent
to the existence of a germ expansion over R'. Let M’ = (A, ;. .., Ay 5,) be a cuspidal
R'-multisegment of GL, (D). For i = 1...,r, p; is an irreducible smooth cuspidal R'-
representation of GL,,, (D) for a divisor m; of n;; there exists an unramified smooth R’-
character x; and an irreducible smooth cuspidal R'-representation of GL,,,(D) such that
pi = pixi and Z(Ap ) = XiZ(Dp,n;)- Let M= (Ap, nys -, Ay, 0, ) and X’ the unramified
R'-character of M, .. corresponding to the x;. Then Z(9M') = x'Z(M). The Speh R'-
representation Z(9') has a germ expansion if and only if the Speh R-representation Z(91)
has a germ expansion.
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10.7. R not necessarily algebraically closed Let R be a field of characteristic different
from p. We prove that there is a germ expansion over R when there is a germ expansion
over an algebraic closure R of R, using the following properties of the scalar extension
from R to R* [Henniart-Vignéras19]:

For m € Repy (G) irreducible, the R*-representaton R* ®@p 7 has finite length because
7 is admissible as the characteristic of R is different from p. Assume that there is a map
¢ :P(n) — Z such that R* @z m = R* @ (X c(\)mp, on an open compact subgroup K
of G. The scalar extension Gry (K) — Gry.(K) from R to R* is injective.

Therefore m = 3, ¢(A)mp, on K. The representation 7w has a germ expansion with the
same map ¢ = Cracg,r = €. The above properties of the scalar extension from R to R
imply:

For any irreducible subquotient 7’ of R* ®p 7, we have

(10.2) ¢x = Uyc where £, is the length of R* ®p 7.

Therefore ¢, and ¢, have the same support. As ¢ (\) > 0 when A is minimal in the
support of ¢, (Theorem 10.2), ¢,(A) > 0. This ends the proof of Theorem 1.3.

10.8. The Jacquet-Langlands correspondence

The classical Jacquet-Langlands correspondence JL between essentially square inte-
grable representations on both sides, is compatible with character twists and equivariant
under the action of Aut(C). Transported to Q¢ &,

JL - Trrge(G) = Trigyge (GLan(F))

preserves the property of being integral, and two integrals representations of G are congru-
ent modulo ¢ if and only if their images under J L are congruent modulo ¢ ([Minguez-Sécherrel7]
Theorem 1.1). Once a square root of ¢ = p/ in Q% has been chosen when f is odd to
normalize parabolic induction, the Jacquet-Langlands correspondence L.J transported to
the Grothendieck groups of Q7°-representations does reduce modulo ¢ thus yielding a map
for F¢°-representations ([Minguez-Sécherrel7] Theorem 1.16)

LJ : G135e(GLaa(F)) = Grg5e(G).

By our argument of reduction modulo ¢ in §10.5 we see that Theorem 9.1 is valid for Fj*-
representations. When R is an algebraically closed field of characteristic different from p,
the reasoning of §10.6 then gives a map

LJ : Gr3(GLg(F)) — Gry(G)
satisfying Theorem 9.1 for R-representations.

Theorem 10.5. (Theorem 9.1). When R is an algebraically closed field of characteris-
tic different from p, for v € Grg(GLg(F)) and X € P(n), we have (=1)"criu)(N) =
(—1)%c,(dN).

8(for the root of ¢ in QF° image of /g € C via the isomorphism)
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Remark 10.6. When D # F'| there are cuspidal complex representations of G L, (D) that are
isomorphic to their complex conjugate, and not the scalar extension of a real representation.
So the Jacquet-Langlands correspondence does not descend to an arbitrary fied R.

A counter-example occurs already for D* and D is a quaternion field over F' with ¢ = 3
mod 4. Take a regular complex character y of k}, of order 4, seen as a character of O},
and extended by —1 on a uniformizer pr of F. The induced representation indg:OE X has
dimension 2 and its image is the quaternion group of order 8 which is not defined over
R. The irreducible representation 7° = J L(ind?:OB X) of GLo(F') is cuspidal of level 0
and can be explicited. For example for F' = Qj3, the irreducible cuspidal representation
00 of GLy(F3) corresponding to 7° has dimension 2 and is defined over R. As the central
character of 7¥ is trivial on O}, 0¥ factorizes by PG Lo(F3) = S, which has all its irreducible
representations defined over R and even over Q.

11. INVARIANT VECTORS BY MOY-PRASAD SUBGROUPS

We prove in this section Theorem 1.4. Let R be a field, P a parabolic subgroup of G of
Levi M and K an open compact subgroup of GG. The positive integer

dimp(7p)* = |P\G/K|

depends only on [7p], hence only on the conjugacy class of M and of K. We can suppose
that P = Py for A € P(n) and K C Ky. We have G = P Ky and P\\G/K ~ (P, N
Ko\ Ky/K.

Ezample 11.1. We have (P\NKy)\Ko/1+ M, (Pp) ~ Py\(kp)\GL,(kp) where kp = Op/Pp
is the residue field of D, qp its cardinality. We deduce

|PA\G/1+ My (Pp)| = [nl]g,/ [TAiYgs

where [n!], =T} _1[m]qg, [Mm]y = (g™ —1)/(¢ — 1) ([Suzuki22] Lemma 1.13).

m=1

Proposition 11.2. Let G, denote the a Moy-Prasad subgroup of G fizing an element x
of the building of the adjoint group BT of G, and r is a positive real number, and j € N.
We have

(11.1) [P\G/Gasjjal = |P\G/Gurl "™
When K’ is a normal open subgroup of K,
K : K'|
P\G/K'| = P\PgK/K'|, |P\PgK/K'| = [ :
P\GIK| = 3 IP\POR/K| [PPSR = (e e

The group Gy ,+j/q is normal in G, ,, and (11.1) follows from :
Proposition 11.3. We have [G,, N P : Gypi1/4N P) = ¢* (n?=dy),

Note that the index is the same for all (z,7). The D-dimension of the Lie algebra p of
P is n? — d, where A € P(n) is the partition such that P is associated to Pj.
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Example 11.4. When P = G, then A = (n),d) =0, [Gay : Gory1/a] = g,

When P = B, then A = (1,...,1),dn,.1) = n(n —1)/2, [Go, N B : Gypri1/a N B] =
g 1)/2)
Proof. 1t is more convenient to use lattice functions rather than points in the Bruhat-Tits
building BT . For that we follow [Broussous-Lemaire02] denoted here by [BL]. Recall that
a lattice function is a map ® from R to Op-lattices in D" satisfying the conditions of ([BL]
Definition 2.1); in particular

(11.2) ®(s+1/d) = Pp ®(s) for any s € R.

The group R acts on lattice functions by translations, and to a lattice function is associated
a point in B7. That point is the same for a translate, and one gets in that way a G-
equivariant bijection from the set of lattice functions up to translation onto B7. For any
lattice function ® and any r € R, one defines a lattice in M, (D)

gor ={A € M,(D) | A(®(s)) = (r+s) for any s € R}.

In their introduction [BL] indicate that g¢, = g., where z € BT corresponds to ¢ and
9. is the lattice in M, (D) defined by Moy and Prasad. They also say that the subgroup
Gy, for r > 0, of G defined by Moy and Prasad satisfies:

Goo = (900)", Gop=1+gs, ifr>0.

They refer to their Appendix A, written by B.Lemaire; the relevant comments are in the
lines before their Proposition A.3.6.
An immediate consequence of condition (11.2) is that go,41/¢ = Pp ge,. That implies

in particular that

n2
[9@,7« : ch,r+1/d] = qd for any r > 0.

More generally, if W is a sub-D-vector space of M,(D), gorr1a "W = Pp (go, N W).
Applying that to p, we get

ddimp(p)

(9o NP Garr1/a NP =g for any r > 0.

This proves the proposition because (G, NP : Gyri1/a NPl = [go, NP & gorr1/qa NP for
r > 0 and dimp(p) = n? — d,. O

We deduce:

Corollary 11.5. Let P be a parabolic subgroup of G associated to Py for A € B(n), and
Gartjja o Moy-Prasad subgroup for x € BT, r € R,r >0 and j € N. We have for g € G,

[G:r,r : Gm,r+1/d] _ qddA
(Gzr N P): (Ggrir/aN P)] '

(11.3) |P\PgGy,/Gori1/a| =

Clearly, (11.1) follows from (11.3).
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FEzample 11.6. 1) For a vertex x of BT, the Moy-Prasad group G, is conjugate to Ky =
GL,(Op) and G, is conjugate to K; = 1+ ppM,(Op) for 0 <r < 1/d. Hence

aic |IP\\G/Ky| =1 if r=0,
P er| = n gl
PG/ Gl =4 /5y | = H[]i it 0<r<1/d.

k[)‘k]qd'

where [n],! = g%} . q;:ll. Indeed |P\\G/Ky| = 1 because G = P,y Ky, and |P\\G/K,| =
(GL,(Fua) : P\(F )]

2) For the barycenter = of an alcove, G, is conjugate to the Iwahori group I, inverse
image in K of the upper triangular group of GL,(kp), and G, , is conjugate to the pro-
Iwahori group I;,4, inverse image of the strictly upper triangular group of GL,(kp), for
0 <r <1/d. Write J for the lattice of (z;;) € M, (Op) with z;; € Pp when i > j, and
J1/q4 for the lattice of (z;;) € M, (Op) with x; ; € Pp when ¢ > j. Then,

I=7" Ljg=1+314 for 0<r <1/d.
We have P\\G/I ~ P\\G/I ;4 ~ (S), x ... x Sy )\S, hence
|
[B\G/Gor| = [BAG/T = |PAG/Tal = .
[T Ax!

Remark 11.7. Proposition 11.3 reduces the computation of |P\\G/G, | for r > 0 to the
case 0 < r < 1/d. For g € G,z € BT,r > 0, we have gG,,9~' = Gy),; this reduces
the computation of |[P\\G /G| for x € BT to the case where x belongs to the the closed
alcove A of BT determined by B.

Theorem 1.3 implies for © € Rep%™/ (@),

(11.4) dimp 7o+t = N~ e (A) |[PA\G/Grtjyal-

AEP(n)
and the integer c,()\) is positive if dy = d(7) then A is minimal in the support of ¢,.
Applying (11.1), we deduce Theorem 1.4.

Remark 11.8. (i) The polynomial Py ¢, (X) is determined by those where x is in a
closed alcove of BT and 0 < r < 1/d because

Pﬂ-vGI,'r“rj/d (X) = Pﬂ',Gz,r (qde) for 0 <r< 1/d7 ] E N
Pra,. (X) =P (X) for 0<r, geG.

(ii) For 7 € Repy (G), and any Moy-Prasad pro-p group Gy of G
d(m)

7Gg(ac),'r

dimp wwr+i/d ~ Qr G q 4 when j € N goes to infinity.

The integer d(m) can be called the Gelfand-Kirillov dimension of 7.
12. G =GLy(D)

In this section we assume that G = G Ly(D), R is a field of characteristic different from
p except in §12.5 where its characteristic is p, and we give more details on the polynomial
P, x(X) attached to 7 € Repy™” (G) and a Moy-Prasad subgroup K.
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12.1. The Moy-Prasad open compact subgroups of GG are conjugate to the open compact
subgroups
KQD[(]D[UQDKlDllng/gDKQDIQD...,
where Ky = GLy(Op), Iy = j* = red ' B(kp) an Iwahori subgroup, Lijp=1+j12 =
red ' U(kp) a pro-p Iwahori subgroup, for j € N,
Liyija = 1+ pping, Kjpn =1+ pp Ma(Op), Ly =1+pp i,

where j is the lattice of (z;;) € M2(Op) with 221 € Pp, j1/2 is the lattice of (z;;) € j with
T11,T22 € Pp, and red : GLy(Op) — GLy(kp) is the reduction modulo pp.

The parahoric subgroups of G are conjugate to Ky and I,. The Moy-Prasad subgroups
of G which are pro-p groups are conjugate of I /2, Kj 1, ;4 for j € N 9,

To justify the preceding assertions, it is convenient to use of lattice functions ¢ from
R to in D & D, as in the proof of Proposition 11.3. The lattice function &, with value
Ly =0p ®Op at 0 and PpLg at s for 0 < s < 1/d gives a vertex z, in the Bruhat-Tits
tree BT of G, and Gy, 0 = 03,0 is the stabilizer Ky of Ly, whereas Gy, = 1 + g4, for
r > 0 so that G, = Kj;41 if dr = j 4+ s with 0 < s <1. This gives the groups K, in the
list and accounts for all Moy-Prasad subgroups associated to the vertices of BT

Any point in BT is sent by G to a point in the segment with ends xy and the vertex x;
corresponding to Ly = Op @ Pp so it suffices to look at the Moy-Prasad subgroups G, »
when z, is a barycenter axy + (1 — a)x; with 0 < o < 1. Since there is an element of
G exchanging xy and x1, we need only look at 0 < o < 1/2 which we now assume. A
lattice function @, giving z, takes value Lo at 0, L; at s if 0 < s < «/d and PpLyg if
a/d < s <1/d. Then G, o is the intersection of the stabilizers of Ly and Ly, that is Iy.
For 0 < dr < a, Gy, ryj/a = Ij11/2 for any j € N, as go, , is the set of X € My(D) sending
L(] in Ll, and L1 in PDL().

For o < dr <1 — a (which cannot happen if o = 1/2), Gy, ,4j/a = Kj41 for any j € N, as
ga, . is the set of X € My(D) sending Lo and Ly in Pp Ly.
When 1 — a < dr <1 we find similarly that G, 4/ = Ij41 for any j € N.

The indices between two consecutive groups are
[K . I] - q+1, [I . Il/g] = (q—1>2, []1/2 . Kl] =q, [Kl : ]1] =4q, [[1 . ]3/2] = q2, [13/2 . KQ] =4q,
and so on. Proposition 11.3, Corollary 11.3 and Remark 11.7 give the integers
L4 |B\G/Kg| =lasG = BK(),
® |B\G/Io| = |B\G/[1/2| =2as G = BIUBsI = B]1/2 L BS]l/Q, where s is the
antidiagonal matrix with coefficients 1.
o |[B\G/K:i| = (¢* = 1)(¢*" — ¢V /q"(¢" = 1)> = ¢’ + L.
e |B\G/I| = 2¢% because B\G/I, = B\BI/I, U B\BsI /I, and
B\BI/I, = (BN IN/T = (BN 1)/(BAD)\I/TL),
B\BsI/I; ~ B \G/I, ~ (B~ NI)/(B-NI))\({/),
(LNB\UINB)| = [(LLNB\INB7)| = (¢¢—1)%¢* and [I : I] = (¢%—1)%¢**.

9The indices of the preceding section have been multiplied by d
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o |B\G/Ij1p2| =2¢%.
o IB\G/K;4| = (g + 1)q¥.
® ’B\G/[J+1’ = 2qd(J+1).

12.2. There are only two nilpotent orbits {0} and O # {0} corresponding to the partitions
(2) and (1,1) of 2. By the germ expansion for 7 € Rep%*/ (@) (Theorem 1.3), there exists
ar,b, € Z and an integer j, > 0 such that for any integer j > j

o dime /24 = a, + 2b, q¥,

o dime 784 = a; + (¢ + 1) by q¥,

o dime 7+ = a, + 2¢%b, Y.

12.3. The maps m — a, and 7m — b, are additive hence determined by their values on
irreducible representations. For m € Repy (G) irreducible,
e a, =dimgm, b, =0 if the dimension of 7 is finite ( dimr 7 = 1 if R is algebraically
closed),

e b, > 0 if the dimension of 7 is infinite.
The dimension of o € Repg)’f (T) is finite and by Theorem 7.1 for 7 = ind$ o,

e a, =0, b, =dimgo.
The R-representation indg 1 contains the trivial representation 1 of G' and the quotient St
is called the Steinberg representation. By additivity, a1 + ast = @ya61, b1 + bst = binagy
hence

e agi = —1, bgy = 1.
For g € G, let vp(g) be the integer such that |nrd(g)| = ¢*»9).

Proposition 12.1. The Steinberg R-representation St of G is reducible if and only if St
is indecomposable of length 2, with a cuspidal subrepresentation ¢St and the character
(—1)*29) as a quotient, if and only if charg = £ > 0 divides q* + 1.

The representation indgl is indecomposable except when charg = ¢ is odd and divides
¢ —1.

Proof. This is proved in [Vigneras96] if D = F', and follows from [Minguez-Sécherrel4] in
general. We indicate how to get the result using techniques of [Vigneras96]. The restriction
of ind%(1) to B is the direct sum ind%1 = 1 @ 7 of the trivial representation 1 on the
line of constant functions and of the representation 7 on the space of functions vanishing
at 1, i.e. with support in BsN, isomorphic to the representation of B by conjugation
on CP(N; R). Integrating such functions on N against a Haar measure (that is taking
coinvariants) gives that the modulus 05 of B is a quotient of 7. Moreover §g does not split
as a subrepresentation of 7 since dp is trivial on N and obviously the restriction of 7 to
N has no trivial subrepresentation. One proves as in ([Bushnell-Henniart06] 8.2) that the
corresponding subrepresentation 7° of B is irreducible, so 7 is indecomposable of length 2
with quotient 0.

Thus ind%(1) has length < 3, and it can have length 3 only if 65 extends to an R-
character G. This latter property is equivalent to ¢>* = 1 in R because 5z is the inflation
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of the character v?®@v~? of T where v is the character v(x) = | nrd(z)| of D*. If charg = 0
or charg = £ > 0 not dividing ¢?? — 1, then St is irreducible. Otherwise, 65 extends to the
the character % of G where v(g) = | nrd(g)| for g € G, the contragredient ind%(6p) = 14 ®
indg 1 of indg(l) has a unique one-dimensional subrepresentation v, which is consequently
a quotient of ind§(1). If £ divides ¢% + 1 but not ¢? — 1, the character v¢ = (—1)"'? is not
trivial, then ind(1) is indecomposable of length 3 and St is indecomposable of length 2
with quotient (—1)vlp,

If ¢ divides ¢ — 1, §p is trivial and B\G admits a G-invariant measure giving volume
0 to B\G if ¢ divides also ¢? + 1 (which means ¢ = 2) and 1 otherwise. Integration on
B\G implements the duality between ind%(1) and itself. The integration on B\G is 0 on
the constant functions if ¢ divides ¢? + 1 and the identity otherwise. Therefore if ¢ divides
q® + 1, the space of constant functions is isotropic, so its orthogonal has codimension 1,
and again ind%(1) is indecomposable of length 3 and St is indecomposable of length 2 with
quotient the trivial representation. But if ¢ does not divides ¢? + 1, indg(l) =16 St and
St is irreducible otherwise it would have a cuspidal subquotient which would be contained

in ind 1 (autodual) which is impossible by Frobenius. O
By additivity,
® st = —2, besy = 1.

When pi, C R, there are two kinds of Whittaker spaces for m: the trivial one, dual of
the U-coinvariants 7y of 7, and the non-degenerate one, dual of the coinvariants my ¢ of 7
by a non trivial character 6 of U. By Theorem 8.2 we have for 7 irreducible

[ ] b7r = dimR(wUﬁ),
This equality is valid when 7 has finite length because the #-coinvariant functor is exact.
In particular for o € Repa™/ (7))

L dlmR(lndg O')U,g = dimRO'

12.4. Assume R = C and o € Repd (T') irreducible. The normalized parabolic induction
indg(é}g/ > ® o) of o is reducible if and only if ¢ = p ® (x, ® p) where p is an irreducible
representation of D*, and x, the unramified character of D* giving the cuspidal segment
A, ={p,x, ® p} ([Lapid-Minguez-Tadic16] for a proof which does not use the Jacquet-
Langlands correspondence). In this case, indg((ﬁ_}/ ’® o) is indecomposable of length 2, one
irreducible subquotient is the Speh representation Z(A, ) and the other subquotient is an
essentially square integrable representation L(A,>).

The Speh subrepresentation Z(A,2) is a character if and only if dim¢ p = 1. In that
case, L(A, ) is the twist of the Steinberg representation St by this character. The twist
of m by a character does not change the value of the a,, b,. Hence

® aL(Ap,g) = —1, bL(Ap,g) =1 if dim(cp = 1,
by unicity of the Whittaker model as by, ,) = dimc(L(A,2)ve > 0.
When D # F, there are irreducible complex representations p of D* of dimension > 1.
In that case, the Speh representation Z(A,-) is infinite dimensional hence is generic.
The essentially square integrable representation L(A, ) is also infinite dimensional hence
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generic; it corresponds by Jacquet-Langlands to an irreducible representation ,9 of the
multiplicative group D3, of a central division F-algebra of reduced dimension 2d. Recalling
Corollary 9.5, we have when dim¢ p > 1:

® az(p2) = —ar(p2) = dimc my2,
) bZ(p’Q) + bL(p,g) = dimc(indg U)Uﬂ = dim¢ o,
bZ(p,Q) = dim¢ Z(Apz)ag > 0, bL(pg) = dim¢ L(AP,Q)U,Q > 0.
The T-stabilizer of the non-trivial character 6(u) = ¢ o trd(v) for u =1+ v in U,
Ty = {dlag<d7 d) ’ de D*}a

acts naturally on the #-coinvariants of a representation of G. How does one identify the
two factors of (ind% o)y = Z(p,2)ve ® L(p,2)ve ? We shall come back to that question
in future work.!"

When 7 € Rep®(G) irreducible is not isomorphic to a subquotient of ind o for o €
Repg (T) irreducible, it is called supercuspidal. Its dimension is infinite, it is essentially
square integrable and corresponds by Jacquet-Langlands to an irreducible representation
m of D3, We have for m € Repd (G) irreducible supercuspidal (Corollary 9.5):

o a, = —dimcm, by =dimc(m)ye > 0.

For some supercuspidal representation 7, D. Prasad and A. Raghuram computed dime(7)p0
[Prasad-Raghuram00]. When D = F, b, = 1 by the unicity of the non-degenerate
Whittaker model. The explicit classification of the irreducible cuspidal representations

of GLy(F) or the explicit Jacquet-Langlands correspondence alllows to compute explicitely

a,. The normalized level £(7) of m € Repg (G Lo (F)) irreducible defined in ([Bushnell-Henniart06]
12.6) is the minimum of two half-integers: the smallest integer j such that 7%+ # 0 and

the smallest element j € 1/2Z such that w/+1/2 £ 0. It is equal to the depth of 7 defined

in [Moy-Prasad96]. Since a, stays the same if we twist 7 by a character, we may assume

that 7 is minimal in the sense that ¢(7) < {(7 ® x) for any character x of GLy(F).

Proposition 12.2. For m € Repd (GLo(F)) irreducible cuspidal and minimal, we have
ar = —2¢"™ if ((7) is an integer, and ay = —(q + 1)¢"™ Y2 otherwise.

Proof. 1t is easier to use the Jacquet-Langlands correspondence. We compute dimg 7o,
where 75 is the irreducible smooth representation of D} corresponding to 7. The level £(y)
of m, is the smallest integer j such that 7, is trivial on 1+P§;1, and shows that ¢(my) = 20(7)
([Bushnell-Henniart06] 56.1). Since the Jacquet-Langlands correspondence is compatible
with character twists, 7y is minimal. By ([Bushnell-Henniart06] 56.4 Proposition) my is
induced from a representation A of a subgroup J of D} described in ([Bushnell-Henniart06]
56.5 Lemmas 1 and 2). If ¢(my) = 2j + 1 is odd, then J = E*(1 + Péjl) where E/F is a
ramified quadratic extension in the quaternion division algebra Ds, and A is a character,
so that dim¢ 7 = (¢ + 1)¢’, confirming the second case in the proposition. If () = 2j
is a multiple of 4, then J = E*(1 + ngl) where E'/F is now unramified and A is again

10After this paper was written, we received a paper of S. Nadimpalli and M. Sheth [Nadimpalli-Sheth23]
calculating the dimensions of the two factors for certain p
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a character, so that dimcm = 2¢’. Finally if ¢(m3) = 27 is not a multiple of 4, then J
contains E*(1+ ngl) with index ¢, where again F/F is unramified, but A has dimension
q, so that dim¢ 7 = 2¢.¢%¥ /¢ "1¢* = 2¢’ as expected. O

Remark 12.3. 1) If 7 is cuspidal and minimal, and 7% = 0 for an integer 5 > 0 then
7% = 0, so that the exponent of ¢ in the proposition is the smallest integer such that
it £ Q.

2) As pointed out in ([Bushnell-Henniart06] Chapter 13, 56.9: Comments), the Jacquet-
Langlands correspondence there is characterized by its compatibility with character twists
and preservation of the e-factors. But since the Jacquet-Langlands characterized by equal-
ity of characters possesses those properties, both correspondences are the same.

3) Instead of using the Jacquet-Langlands correspondence in the proof we could have
used the known fact that the character of 7 is constant, equal to —d(7)/d(St¢), on elliptic
regular elements close to identity, where § denotes the formal degree ([Howe74] when
charp = 0, [Bushnell-Henniart-Lemairel0] when charp = p). The quotient 6(m)/d(Ste)
has been computed for GL,,(F') when n is prime in ([Carayol84] Section 5).

12.5. Coefficient field of characteristic p Up to now the characteristic of the coefficient
field R was p. But some results may remain true for a field R of characteristic p, for
example the dimension of the invariants of an irreducible admissible non-supersingular R-
representation of G = GLy(D), by congruence subgroups of Moy-Prasad subgroups of G
(Theorem 1.4).

Let R be a field of characteristic p and ¢ = p ® p' € Repy(T) irreducible, p,p €
Repy D*. If the inflation & of o to B does not extend to G, the parabolically induced
representation indg o is irreducible. Otherwise, p ~ p/, indg o is indecomposable of length
2, contains the (unique) finite dimensional representation og extending &, of quotient o ®
St where St = indg 1/1 is the Steimberg representation. Those are the not supersingular
irreducible representations ([AbeHenniartHerzigVignéras17] when R is algebraically closed
and [Henniart-Vignéras19] in general).

Lemma 12.4. When ¢ extends to a representation og of G, we have o = 7 ® nrdg/p-,
and o ~ p ® p with p ~ 7 @ nrdp«,p+ for T € Repy F* irreducible.

Proof. When R is algebraically closed, this follows from Lemma 6.1. In general, let
R*/R be an an algebraic closure. There exists a character x € Reppu. F* such that
X ® nrdg/p+, X ® nrdp-/p- is a subquotient to R* ®pr o¢, R ®p p ~ R* Qg p'. Let
7 € Repy F* irreducible such that y is a subquotient to R*®p7. Then 0¢ = 7 ®nrdg,/p-,
p~p ~7@nrdp p-. U

Proposition 12.5. Let m € RepR (G) irreducible not supersingular. For j > 0, we have

o dimp /2t = a, + 20, q¥,
o dimp 751+ = a, + (¢? + 1) by q¥,
o dimp 7'+ = a, + 2¢%b, q¥,
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where
(0,dimpg o) if = ind$ o
(ar,br) = < (dimp 0,0) if m=o0¢ ;
(—dimgpo,1)  if m =05 ® St
and o € Repy (T7).

Proof. The formulas for a finite dimensional representation and for ind$ o are clear. They
imply the formula for the twisted Steinberg representations by the next proposition. [

Proposition 12.6. Let R be a field, and K a Moy-Prasad pro-p subgroup of G. The
natural map (ind$ 1)K — St* is surjective.

Proof. When charg # p, the K-invariant functor is exact and the surjectivity is clear.
When chargp = p, one can argue as follows.

The image of f € indg 1 in St is K-invariant if and only if there exists amap ¢y : K — R
such that f(gk) = f(g) + cs(k) for any g € G,k € K. As f(gkk') = f(g) + cs(kK') =
flgk) + cp(K') = f(g) + cp(k) + cp(K') for k, k' € K, the map ¢; is an homomorphism.
For k € KN B we have f(k) = f(1) hence ¢f(k) = 0. For k € K N sBs we have
f(sk) = f(skss) = f(s) because sks € B, hence ¢f(k) = 0. As K N B and K N sBs
generate K, we deduce that ¢y = 0. U

Let G = GL(2,Q,) and 7 € Rep]Fgc(G) irreducible supersingular. By ([Morral3] Propo-
sition 4.9, Corollary 4.15), for p odd and j > 0, we have:

o dimc 7l/2+ = a, + 2b, p?, where (ar,by) = (—2,2),
o dimc 751+ =al + (p+ 1) b, p?, where

CLTr:

, {—3 if m=my® (xodet) for a character x € Reppa. F*

—4 otherwise

Here my denote the supersingular irreducible quotient of Fi¢({G'L(2, Z,)Z\G], Z the center
of G.
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