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Abstract. Let p be a prime number, F a finite extension of Qp or of Fp((t)). We consider
the group G = GLn(D) for a positive integer n and a central finite dimensional division
F -algebra D of F -dimension d2. For an irreducible smooth complex representation π of
G, inspired by work of R. Howe when D = F , we establish the existence and uniqueness
of integers cπ(λ), for partitions λ of n, such that for any small enough compact open
subgroup K of G the restriction of π to K is the same as that of the virtual representation∑
cπ(λ) IndGPλ 1, where the sum is over partitions λ of n and Pλ is a parabolic subgroup

of G in the associate class determined by λ. When Pλ is minimal such that cπ(λ) 6= 0
we prove that cπ(λ) is positive, equal to the dimension of a generalized Whittaker model
of π. We elucidate the behaviour of cπ under the Jacquet-Langlands correspondence LJ
of Badulescu from GLdn(F ) to G. We extend the above result on π near identity to a
representation of G over a field R with characteristic not p. For any Moy-Prasad pro-p
subgroup K of G, we determine from the integers cπ(λ) a polynomial Pπ,K with integral
coefficients and degree d(π) independent on K, such that, for large enough integers j, the
dimension of fixed points in π under the j-th congruence subgroup Kj of K is Pπ,K(qdj)
where q is the cardinality of the residue field of F .
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1. Introduction

Let p be prime number, F a finite extension of Qp or of Fp((T )). Let G be a reductive
connected group over F , and put G = G(F ). Let R be a field, and π a smooth admissible
representation of G on an R-vector space V.

Our first motivation was in the following question, when π is of finite length: Let x be
a point in the Bruhat-Tits building of G and r a positive real number. For any integer
j ≥ 0, let d(j) be the dimension of the space of fixed points in V under the Moy-Prasad
subgroup Gx,r+j of G.

Question 1.1. Is there a polynomial P with integer coefficients such that d(j) = P (pj) for
large enough j ? If so, what can we say about its degree and its leading coefficient ?

When the characteristic charR of R is p, precise knowledge of those dimensions for
irreducible π is available only for G = GL(2,Qp) (S. Morra, see §12.5). Apart for groups
G of relative rank one those dimensions seem unknown.

Our paper studies the case where charR 6= p. Then a smooth finite lengthR-representation
π of G is automatically admissible, and its restriction to a pro-p subgroup K of G is
semisimple, with finite multiplicities. We write [π]K for the image of that restriction in
the Grothendieck group of admissible R-representations of K. We ask a more ambitious
question:

Question 1.2. Is there an open pro-p subgroup K of G where we can control [π]K ?

In the case ofGL2(F ) an answer to that question was offered by Casselman [Casselman73].
In this paper we consider the case where G = GLn(D) for a central division algebra D over
F, with finite degree d2 over F . For a partition λ = (λ1, . . . , λr) of n, we let Pλ be the upper
block triangular subgroup of G with blocks of size λ1, . . . , λr down the diagonal, and put
dλ = ∑

i<j λiλj. We have dλ ≥ dµ if λ ≤ µ for the classical partial order ≤ on partitions.
We let πλ be the representation of G non-normalized parabolically induced from the trivial
representation of Pλ; it has finite length.

Let π be a finite length smooth representation of G on an R-vector space V .

Theorem 1.3. There is a unique function cπ from partitions of n to Z and an open pro-p
subgroup K = Kπ of G such that [π]K = ∑

λ cπ(λ)[πλ]K.
If λ is minimal in the support of cπ, then cπ(λ) is positive.

Theorem 1.3 has consequences to our first question. We let q be the cardinality of
the residue field of F , so the residue field of D has cardinality qd. Let x a point in the
Bruhat-Tits building of G and r a positive real number.
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Theorem 1.4. Let P = Pπ,Gx,r be the polynomial

(1.1) Pπ,Gx,r(X) =
∑
λ

|Pλ\G/Gx,r| cπ(λ)Xdλ .

Then dimR V
Gx,r+j = P (qdj) for large enough integers j. The degree of P is d(π) = max(dλ)

where the maximum is over partitions λ in the support of cπ. The leading coefficient is

(1.2) aπ,Gx,r =
∑

λ,dλ=d(π)
|Pλ\G/Gx,r| cπ(λ).

The function cπ has good properties with respect to natural operations, apart from being
additive on exact sequences, hence factoring to a function on the Grothendieck group of
finite length smooth representations of G. If χ is a character of G, cχπ = cπ. If π′ the
base change of π to an extension R′ of R, then cπ′ = cπ; in particular cπ is invariant under
automorphisms of R. When p 6= 2, G = GLn(F ) and charF = 0 the support of π contains
a single partition λ with dλ = d(π) [Moeglin-Waldspurger87]. This may be true for any
p, F and D.

Parabolic induction Let P be an upper block triangular subgroup of G, with block
diagonal Levi subgroup M a product GLn1(D)× . . .×GLnr(D). For i = 1, . . . , r let σi be
a finite length representation of GLni(D), and put σ = σ1 ⊗ . . .⊗ σr a finite length repre-
sentation of M . Given a partition λi of ni for i = 1, . . . , r, we have the induced partition λ
of n obtained by gathering all the parts of the λi’s and putting them in decreasing order.

Theorem 1.5. Let π = indGP (σ). For each partition λ of n, cπ(λ) = ∑ ∏
i=1,...,r cσi(λi),

where the sum is over r-tuples of partitions (λ1, . . . , λr) inducing to λ.

Whittaker models Assume that R contains all the roots of unity of p-power order. We
have the notion of Whittaker models, possibly degenerate. Let U be the upper triangular
subgroup of G, and θ a character of U . We let Vθ be the maximal quotient of the space V
of π on which U acts via θ. Its dimension is finite and depends on θ only up to conjugation
by the diagonal subgroup T of G. The orbits of T on the characters of U are parametrized
by the compositions of n. To each composition λ of n is attached a partition λ† obtained
by gathering the parts of λ in decreasing order. The Whittaker support of π is the set
of partitions of n of the form λ† where λ is a composition of n such that Vθ 6= 0 for θ
corresponding to the composition λ.

Theorem 1.6. The minimal elements in the support of cπ and in the Whittaker support
of π are the same. If µ is such a minimal partition, λ is a composition of n with λ† = µ
and θ a character of U corresponding to λ, then cπ(µ) = dimR Vθ.

Jacquet-Langlands correspondence I.Badulescu has extended the classical Jacquet-
Langlands correspondence to a morphism LJC from the Grothendieck group of smooth
finite length complex representations of GLdn(F ) to that of G. Let ` be a prime number
different from p. For an algebraic closure Qac

` of Q`, with a chosen square root of q,
A.Minguez and V.Sécherre have transported LJC to Qac

` -representations, and showed that



4 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

it descends to a map LJFac
`

of Fac` -representations, where Fac` is the residue field of Qac
` . We

define LJR for our field R, provided it be algebraically closed, and get:

Theorem 1.7. Assume R to be algebraically closed. Let τ be a finite length smooth R-
representation of GLdn(F ) and π = LJR(τ). For any partition λ of n, we have (−1)ncπ(λ) =
(−1)dncτ (dλ).

For R = C and a discrete series π, the result is due to D.Prasad [Prasad00].

We show in §11 how to get Theorem 1.4 from Theorem 1.3; this amounts to computing
the dimensions of fixed points for the πλ’s. Our method establishes the other results first
for R = C, and then extends them to R. Let us hasten to mention that when R = C part
of the results were known. Indeed when D = F and charF = 0, the first part of Theorem
1.3 is due to [Howe74]. We actually adapt Howe’s arguments to our setting. Similarly
when charF = 0 one can obtain Theorems 1.5, 1.6 (and the second part of Theorem 1.3)
from the much more general results of [Moeglin-Waldspurger87], and we get inspiration
from their proofs. 1

We now give more detail on our method of proof. First we take R = C. In that case,
knowing [π]K for an open compact subgroup K of G is equivalent to knowing the character
trace(π) on smooth functions on G supported in K. An expression of trace(π) on small
enough K as a linear combination of finitely many easier distributions is usually called a
germ expansion for π. When charF = 0, the theory of germ expansions has a long history.
For a reductive group G and π irreducible Harish-Chandra established a germ expansion of
trace(π) as a linear combination of Fourier transforms of nilpotent orbital integrals on the
Lie algebra g of G, with coefficients a priori only complex numbers [Harish-Chandra70].
To get from functions on G to functions on g, he used the exponential map, which is not
available to us when charF > 0. The interest of our group G = GLn(D) is that g = Mn(D),
so that nilpotent orbits of G in g are parametrized by partitions of n, and that one can
use the map e : X 7→ 1 + X from g to G as a substitute for the exponential. When
D = F , Howe proved using e that the Fourier transform of the nilpotent orbital integral
corresponding to a partition λ is proportional to trace(πλ), and got a germ expansion
trace(π) = ∑

λ cπ(λ) trace(πλ) on the i-th congruence subgroup Ki for i large enough. He
showed that the cπ(λ) are integers by constructing for any i > 0 a character ξλ of Ki

which appears with multiplicity 1 in πλ and multiplicity 0 in πµ unless λ ≥ µ [Howe74].
We show the existence of such characters for D in Lemma 6.2. For our group G and
π irreducible, B.Lemaire proved the local integrability of the distribution trace(π) (that
was new when charF = p) and adapted Howe’s arguments to get a germ expansion as a
linear combination of Fourier transforms of nilpotent integrals [Lemaire04], which by our
Proposition 5.5 translates into a germ expansion as in Theorem 1.3. Our characters ξλ
then yields the integrality statement and the positivity statement.

1While we were writing our results, the preprint [Suzuki22] reached us. When R = C, D = F and
charF = 0, Suzuki establishes Theorem 1.4 for the congruence subgroups Kj = 1 + Mn(P jF ) of GLn(F ).
He also gets a result equivalent to Theorem 1.5 and Theorem 1.7 for square integrable τ . His methods are
similar to ours.



REPRESENTATIONS OF GLn(D) NEAR THE IDENTITY 5

Theorem 1.5 follows from the known behaviour of traces with respect to parabolic in-
duction. In §7, we give a treatment valid whatever charF is.

As already said, when charF = 0, Theorem 4 can be obtained from results of C.Moeglin
and J.-L.Waldspurger for a reductive group G and π irreducible. They attach to a nilpotent
orbit O of G in g a number of generalized Whittaker spaces of π. They consider the Harish-
Chandra germ expansion of π as a linear combination ∑

cπ(O)DO over the nilpotent orbits
O, where DO is the Fourier transform of the orbital integral along O. They show that if
O is maximal in the support of cπ then the dimension of any Whittaker space attached to
O is cπ(O). The nilpotent orbits with that maximality property go by the name of wave
front set of π and there is a large literature on that subject. In our more restricted setting,
but allowing charF = p, we get Theorem 1.6 by adapting arguments of [Rodier74]2 and
[Moeglin-Waldspurger87].

Still with R = C, to prove Theorem 1.7 in §9 we use that the Jacquet-Langlands corre-
spondence LJ is expressed by character identities, where the characters are considered as
locally L1 functions on regular semisimple elements (by the result of B.Lemaire alluded to
above).

In §10 we pass from R = C to the general case. To transfer the results from a field R
to an isomorphic field R′ we use that the theory of smooth representations is essentially
algebraic. That gives the case of Qac

` which is isomorphic to C. We then get the case of
Fac` by reduction, using the results of [Minguez-Sécherre14]. To transfer the results from
an algebraically closed field R to an algebraically closed extension R′, we use the fact that
for a cuspidal R′-representation π of G, there is a character χ of G into R′∗ such that χπ
comes by base change from an R-cuspidal representation of G. To get the result for any R
we show that Theorem 1.3 over an algebraically closed extension Rac of R implies Theorem
1.3 over R essentially because base change preserves finite length.

When n = 2 andD = F , we compute in §12 the two coefficients cπ(λ) for all irreducible π.
When n = 3 or 4, D = F, charF = 0, R = C, F.Murnaghan computes the three coefficients
cπ(λ) for cuspidal representations π of G induced from F ∗GLn(OF )[Murnaghan91]. For any
split reductive group G over F , R.Meyer and M.Solleveld using the Bruhat-Tits building of
G, give an upper bound on dimR V

Cr for some special cases Cr, of Moy-Prasad subgroups
([Meyer-Solleveld12]Theorem 8.5). Their result is far less precise than ours.

Acknowledgments. We thank I.Badulescu, D.Bernardi, P.Broussous, B.Lemaire, G.McNinch,
A.Minguez, S.Morra, V.Sécherre for a number of conversations about the topic of the paper.
The second author has talked about this work at numerous conferences in 2022 (Stock-
holm, Singapore, Grenoble, Heidelberg, Bangalore), and thanks the organizers for their
invitation. A part of this work was done at the Institute for Mathematical Sciences of the
National University of Singapore. The final version of that paper was written when the
first-named author was enjoying the hospitability of the Graduate School of Mathematical
Sciences of the University of Tokyo.

2Rodier assumed charF = 0, G split and the support of cπ contains the maximal nilpotent orbit
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2. Notations

Let p be a prime number, and F a local non archimedean field of residual characteristic
p. We denote by OF the ring of integers of F , PF the maximal ideal of OF , pF a generator
of PF , kF = OF/PF the residue field of order q = pf where f = [kF : Fp] is the residual
degree, and F ac an algebraic closure of F . Let | | denote the absolute value of F ac such
that for x ∈ F ac non-zero, and NE/F the norm of a finite extension E of F containing x,
we have |x|[E:F ] = |NE/F (x)| = |OF/NE/F (x)OF | ([Cassels67] 10.Theorem). In particular
|pF | = q−1.

Let D be a central division F -algebra of finite dimension d2. We denote by OD the
maximal order of D, PD the maximal ideal of OD, pD a generator of PD, kD = OD/PD the
residue field of cardinal qd; we have pFOD = P d

D [Reiner75].

Let n be a positive integer and G = GLn(D). Put K0 = GLn(OD) and Ki = 1+Mn(P i
D)

for a positive integer i. Let Z ' F ∗ denote the center and g = Mn(D) the Lie algebra of
G. Let trd, nrd : Mn(D) → F be the reduced trace, the reduced norm. The symmetric
G-invariant bilinear form (X, Y ) 7→ trd(XY ) : Mn(D) ×Mn(D) → F is not degenerate
and G = {Z ∈Mn(D) | nrd(Z) 6= 0}.

The letter P will denote a parabolic subgroup of G, its unipotent radical is usually
written N , and M is used for a Levi subgroup so that P = MN . We write p,m, n for their
Lie algebras.

A composition λ = (λi) of n = λ1 + . . .+λr, λi ∈ N>0, is called a partition of n when the
sequence (λi) is decreasing. To a composition λ of n is associated a parabolic subgroup Pλ
of G = GLn(D) with Levi subgroup Mλ block-diagonal with blocks of size λ1, . . . , λr down
the diagonal, and unipotent radical Nλ contained in the upper triangular subgroup B. We
let P−λ = MλN

−
λ the parabolic subgroup opposite to Pλ with respect to Mλ. We have

G = P(n) and P(1,...,1) = B. We denote by T and U the group M(1,...,1) of diagonal matrices
with entries in D∗ and the strictly upper triangular group N(1,...,1). A parabolic subgroup
P of G is conjugate to Pλ for a unique composition λ of n and is associated to Pλ† for the
unique partition λ† of n deduced from λ by re-ordering its elements. Let P(n) denote the
set of partitions of n. For λ = (λ1, . . . , λr) ∈ P(n), dλ = (dλ1, . . . , dλr) ∈ P(dn).

Let R be a field. We denote by charR the characteristic of R, and by C∞c (X;R) the
R-module of locally constant functions on a locally profinite space X with compact support
and values in R. The map

ϕ 7→ f(1 +X) = ϕ(X) : C∞c (Mn(PD);R)→ C∞c (K1;R)

is a K0-equivariant isomorphism. The extension by 0 embeds C∞c (Mn(PD);R) in C∞c (g;R)
and C∞c (K1;R) in C∞c (G;R). An R-distribution on G or on g is a linear form on C∞c (G;R)
or C∞c (g;R). The group G acts on G and on g by conjugation, and by functoriality
on C∞c (G;R), C∞c (g;R) and on the distributions. A G-invariant distribution is called
invariant.
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For R = C, dg will denote the Haar measure on G such that dg gives the volume 1
to K0, et dZ the Haar measure on g giving the volume [K0 : K1]−1 = |GLn(kD)|−1 to
Mn(PD), hence the volume a = qdn

2|GLn(kD)|−1 to Mn(OD). The Haar measures dZ and
dg = a| nrdZ|−nF dZ ([Weil67] X, §1 Lemma 1) are compatible with the map x 7→ 1 + x :
Mn(PD) → K1. The modulus of P is δP (p) = | det(Ad p)n|F ([Vigneras96] I.2.8). Let dk
denote the restriction of dg toK0, dp the left Haar measure on P such that dg = δP (p)dkdp,
dn− the Haar measure on N− such that dn− dp is the restriction of dg to N−P (open in G),
dn the Haar measure on N giving the same volume to N ∩K0 as the volume of N− ∩K0
for dn−, and dm the Haar measure on M such that dp = dmdn. For each f ∈ C∞c (G;C),∫

G
f(g)dg =

∫
K0×P

f(p−1k) dk dp =
∫
K0×P

f(kp) δP (p) dk dp

=
∫
K0×M×N

f(kmn) δP (m) dk dmdn.

Let dW, dY −, dY be the Haar measures on h = p, n−, n such that dp and dW , dn− and
dY −, dn and dY are compatible with the map x 7→ 1 + x for x ∈ h(PD) = h ∩Mn(PD).
We have dZ = dWdY −.

Let π be a smooth representation of G on an R-vector space V . Each vector is fixed by
some open compact subgroup K of G,

(2.1) V = ∪KV K where V K = {vectors of V fixed by K}.

π is called admissible when the dimension dimR V
K of V K is finite for any open compact

subgroup K. The categories Rep∞R (G) of smooth R-representations of G, Rep∞,fR (G) of
finite length smooth representations are abelian. When charR 6= p, the category of ad-
missible R-representations of G is abelian and contains Rep∞,fR (G) (this is not true when
charR = p). We denote by Gr∞R (G) the Grothendieck group of Rep∞,fR (G), and

π 7→ [π] : Rep∞R (G)→ Gr∞R (G)

the natural homomorphism. The map χ 7→ χ◦nrd is a bijection from the smooth characters
F ∗ → R∗ onto the smooth characters G→ R∗.

For a set X and a function f on X with value in Z or in R, the support Supp f of f is
the set of x ∈ X with f(x) 6= 0 and 1Y will denote the characteristic function of a subset
Y of X.

3. Nilpotent orbits

3.1. An element X ∈ g is nilpotent if and only if Xr = 0 for some r ∈ N. The set N of
nilpotent elements in g is stable by G-conjugation. A G-orbit in N is called a nilpotent
orbit of G. The set G\N of nilpotent orbits of G is finite, in bijection with the set P(n)
of partitions of n ([Bushnell-Henniart-Lemaire10] §2.4-2.6).
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3.2. Let V be the right D-vector space Dn. The group G identifies with AutD(V ) and its
Lie algebra g with EndD V . Let X ∈ EndD V be nilpotent. The composition λ = (λ1, . . .)
of n,

λi = dimD KerX i − dimD KerX i−1 for i ≥ 1,(3.1)

is a partition because the multiplication by X induces an injection from KerX i/KerX i+1

to KerX i−1/KerX i. We get a canonical map N → P(n) sending 0 to (n). The map is
bijective. Let Oλ denote the nilpotent orbit of G containing X. The dual partition of λ is
λ̂ = (λ̂i = |{j | λj ≥ i}|). There is a partial order on P(n)

µ ≤ λ ⇔ λ̂ ≤ µ̂ ⇔
j∑
i=1

µi ≤
j∑
i=1

λi for all j.

There is also a partial order on G\N
O′ ≤ O ⇔ O′ ⊂ O where O is the closure of O in g.

The bijection reverses the partial order.
(3.2) Oλ = ∪µ̂≤λ̂Oµ.

The unique maximal partition (n) corresponds the null orbit {0} = O(n). The unique
minimal partition (1, . . . , 1) corresponds to the unique maximal nilpotent orbit O(1,...,1),
called regular, of closure O(1,...,1) = N. The parabolic subgroup P of AutD(V ) preserving
the flag (KerX i)i of the iterated kernels of X, is associated to Pλ. The intersection Oλ∩nλ
is open dense in nλ [Jantzen04, §13.17]. The dimension of Oλ as an F -variety is even and
equal to (loc.cit.)

dimF Oλ = 2 dimF nλ = 2d2 dimD nλ,(3.3)
dimD nλ =

∑
i<j

λiλj.(3.4)

We denote dλ = ∑
i<j λiλj and d(P(n)) = {dλ | λ ∈ P(n)},

(3.5) d(P(n)) = {d(n) = 0 < d(n−1,1) = n− 1 < . . . < d(1,...,1) = n(n− 1)/2}.
The map λ 7→ dλ : P(n)→ N is injective only when n ≤ 5.
d(P(2)) = {0 < 1}.
d(P(3)) = {0 < 2 = d(2,1) < 3}.
d(P(4)) = {0 < 3 = d(3,1) < 4 = d(2,2) < 5 = d(2,1,1) < 6}.
d(P(5)) = {0 < 4 = d(4,1) < 6 = d(3,2) < 7 = d(3,1,1) < 8 = d(2,2,1) < 9 = d(2,1,1,1) < 10}.
d(P(6)) = {0 < 5 = d(5,1) < 8 = d(4,2) < 9 = d(4,1,1) = d(3,3) < . . . < 15}.

4. Nilpotent orbital integrals

Assume R = C. The nilpotent orbital integral of the zero nilpotent orbit {0} is the value
at 0,

µ{0}(ϕ) = ϕ(0) (ϕ ∈ C∞c (g;C)).
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Let O be a non-zero nilpotent orbit of G and λ ∈ P(n) \ {(n)} such that O = Oλ. The
nilpotent orbital integral of O is a linear form sending ϕ ∈ C∞c (g;C) to

µOλ(ϕ) =
∫
nλ

ϕK0(Y ) dY(4.1)

ϕK0(Z) =
∫
K0
ϕ(kZk−1)dk for Z ∈ g(4.2)

dY and dk are the Haar measures on nλ and K0 given in §2. For (4.1), see [Howe74] when
D = F , [Lemaire04] for D general.

4.1. Homogeneity. For t ∈ F ∗, ϕ ∈ C∞c (g), write ϕt(Z) = ϕ(t−1Z) for Z ∈ g.

Proposition 4.1. The nilpotent integral orbital of O satisfies the homogeneity relation:

µO(ϕt) = |t|d(O)
F µO(ϕ), dimF (O) = 2d(O).

Proof. For λ ∈ P(n) \ {(n)}, we have d(Oλ) = dimF nλ by (3.4) and by (4.1)

µOλ(ϕ) =
∫
nλ

ϕK0(Y ) dY = |t|dimF nλ
F

∫
nλ

(ϕK0(tY ) dY = |t|dimF nλ
F µOλ(ϕt−1).

�

For a nilpotent orbit O of G and a lattice L in g, we denote by µO,L the restriction of
µO to C∞c (g/L;C) (identified to the functions on g invariant by translation by L). The
homogeneity implies ([Harish-Chandra78] Lemma 14 when the characteristic of F is 0):

Corollary 4.2. For any lattice L in g, the linear forms µO,L of C∞c (g/L;C) for the nilpotent
orbits O of G are linearly independent.

Proof. For any d ∈ N, let Nd denote the union of nilpotent orbits of dimension ≤ d. Any
nilpotent orbit O of dimension d > 1 is open in Nd and O ∪Nd−1 is closed. We choose:

a) ϕO ∈ C∞C (g;C) such that

µO(ϕO′) =

1 if O = O′

0 if O 6= O′
,

by induction on dimO.
b) a lattice L0 in g such that ϕO ∈ C∞c (g/L0;C) for each O ∈ G\N,
c) t ∈ F ∗ such that L ⊂ tL0.

Then, (ϕO)t belongs to C∞c (g/L;C) and by homogeneity.

µO((ϕO′)t) = |t|d(O)µO(ϕO′) =

|t|d(O) if O = O′

0 if O 6= O′
.

�
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4.2. Fourier transform. The bilinear map (Z, Y ) 7→ trd(ZY ) : g×g→ F is non degenerate.
Let ψ : F → C∗ be a non-trivial additive character on F . The Fourier transform in
C∞c (g;C) with respect to ψ and the Haar measure dZ (fixed in §1) is the endomorphism
of C∞c (g;C):

(4.3) ϕ 7→ ϕ̂(Y ) =
∫
g
ϕ(Z)ψ(trd(ZY )) dZ (Y ∈ g, ϕ ∈ C∞c (g;C)).

There exists a positive real number cψ > 0 such that ˆ̂ϕ(Z) = cψϕ(−Z) for Z ∈ g 3. In
particular

(4.4)
∫
g
ϕ̂(Y )dY = cψϕ(0).

For an OF -lattice L in g, the Fourier transform of 1L is vol(L, dZ) 1L∗
ψ
where

L∗ψ = {Z ∈Mn(D) | ψ(trd(ZL))) = 1} = {Z ∈Mn(D) | trd(ZL))) ⊂ Ker(ψ)}.

Example 4.3. When ψ is trivial on PF and not on OF , Mn(OD)∗ψ = Mn(PD) ([Weil67] X,
§2, Proposition 5).

For an open subset C of g, the extension by zero embeds C∞c (C;C) into C∞c (g;C).

Proposition 4.4. Let C be an open neighborhood of zero in g. The linear forms
ϕ 7→ µO(ϕ̂) : C∞c (C;C)→ C

for O ∈ G\N, are linearly independent.

Proof. This follows from the linear independence of the µO,L for any lattice L (Corollary
4.2) ([Harish-Chandra78] corollary of Lemma 14). �

4.3. Let O be a nilpotent orbit of G and ψ a non-trivial smooth character of F . We
compute the nilpotent orbital integral µO(ϕ̂) (4.1) of the Fourier transform ϕ̂ with respect
to ψ of ϕ ∈ C∞c (g;C). Let λ be the partition of n such that O = Oλ. Write (P,M,N)
for (Pλ,Mλ, Nλ). The bilinear map (Y, Y −) 7→ trd(Y Y −) : n × n− → C is non degenerate
because trd(YW ) = 0 for Y ∈ n,W ∈ p. The corresponding Fourier transform with respect
to ψ is the linear map :

ϕ2 7→ ϕ̂2(Y ) =
∫
n−
ϕ2(Y −)ψ(trd(Y Y −)) dY − : C∞c (n−;C)→ C∞c (n;C).

There exists a positive real number cψ,n such that∫
n

∫
n−
ϕ2(Y −)ψ(trd(Y Y −)) dY − dY =

∫
n
ϕ̂2(Y )dY = cψ,n ϕ2(0).

For ϕ ∈ C∞c (g;C) of Fourier transform ϕ̂ with respect to ψ, put
(4.5) µ̂O(ϕ) = µO(c−1

ψ,n ϕ̂).

Proposition 4.5. We have µ̂O(ϕ) =
∫
p ϕK0(W ) dW .

3The non-trivial additive characters F → C∗ are ψa(x) = ψ(ax), x ∈ F for a ∈ F ∗. As d(aZ) =
|a|d2n2

F dZ, we have cψa = |a|−n
2d2

F cψ
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This was proved only “for some Haar measures” when D = F and the characteristic of
F is 0 [Howe74]. The proposition follows from the next three lemmas where ϕ ∈ C∞c (g;C).

Lemma 4.6.
∫
p

∫
n

∫
n− ϕ((Y − +W ))ψ(trd(Y Y −)) dY − dY dW = cψ,n

∫
p ϕ(W ) dW.

Proof. We have C∞c (g;C) = C∞c (p;C) ⊗ C∞c (n−;C). For ϕ1 ∈ C∞c (p;C), ϕ2 ∈ C∞c (n−;C)
and ϕ ∈ C∞c (g;C) such that ϕ(Y − +W ) = ϕ1(W )ϕ2(Y −) for Y − ∈ n,W ∈ p, we have∫
p

∫
n

∫
n−
ϕ((Y −+W ))ψ(trd(Y Y −)) dY − dY dW = cψ,n

∫
p
ϕ1(W )ϕ2(0) dW = cψ,n

∫
p
ϕ(W ) dW.

�

Lemma 4.7. The integration over n of the Fourier transform is integration over p:∫
n
ϕ̂(Y ) dY = cψ,n

∫
p
ϕ(W ) dW.(4.6)

Proof. The left hand side of (4.6) is∫
n

∫
g
ϕ(Z)ψ(trd(Y Z)) dZ dY =

∫
n

∫
p

∫
n−
ϕ(Y − +W )ψ(trd(Y (Y − +W )) dY − dW dY

because dZ = dY − dW , and as trd(YW ) = 0 for Y ∈ n,W ∈ p

=
∫
n

∫
p

∫
n−
ϕ(Y − +W )ψ(trd(Y Y −)) dY − dW dY = cψ,n

∫
p
ϕ(W ) dW

because we can invert the integrals on n and on p 4 and by Lemma 4.6. �

Lemma 4.8. The Fourier transform of ϕK0 is (ϕ̂)K0 for ϕ ∈ C∞c (g;C).

Proof. Write K = K0. Then (ϕ̂)K(Y ) =
∫
K ϕ̂(kY k−1) dk for Y ∈ g is equal to∫

K

∫
g
ϕ(Z)ψ(trd(kY k−1Z)) dZ dk =

∫
K×g

ϕ(kZk−1)ψ(trd(kY k−1 kZk−1)) dZ, dk

because dZ is K-invariant. This is∫
K×g

ϕ(kZk−1)ψ(trd(kY Zk−1)) dZ dk =
∫
K×g

ϕ(kZk−1)ψ(trd(Y Z)) dZ dk

=
∫
g
ϕK(Z)ψ(trd(Y Z)) dZ.

�

4taking ϕ = ϕ1ϕ2 as above one wants to compute the integral on n then on p of ϕ1(W )ϕ̂2(Y ) and we
can exchange the integrals because both functions have compact support
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5. Trace of an admissible representation and parabolic induction

5.1. Let R be a field of characteristic charR 6= p and dg a Haar measure on G with values
in R. Let π ∈ Rep∞R (G) be an admissible representation of G on an R-vector space V . The
linear endomorphism of V

(5.1) π(f(g)dg) =
∫
G
f(g)π(g)dg

has a finite rank. Its trace is an invariant R-distribution on G

trace(π) : f 7→ trace(π(f(g)dg), f ∈ C∞c (G;R),

called the character of π.
The characters of the irreducible smooth complex representations of G are linearly in-

dependent ([Vigneras96] I.6.13 where c = 0 should be 0).
For any exact sequence 0 → π1 → π → π2 → 0 of admissible R-representations of

G, trace(π) = trace(π1) + trace(π2). Any finite length smooth R-representation of G is
admissible. By the universal property of Grothendieck groups, the character induces a
linear map from the Grothendieck group Gr∞R (G) of Rep∞,fR (G) to the space of invariant
R-distributions on G.

For any open compact subgroup K of G, the restriction to K induces a linear map

(5.2) ν 7→ ν|K : Gr∞R (G)→ Gr∞R (K)

from Gr∞R (G) to the Grothendieck group Gr∞R (K) of admissible smooth R-representations
of K. When K is a pro-p group, the category Rep∞R (K) is semi-simple.

5.2. Parabolic induction. Let R be a field and P a parabolic subgroup of G of Levi sub-
group M and unipotent radical N . The parabolic induction indGP : Rep∞R (M)→ Rep∞R (G)
sends (σ,W ) ∈ Rep∞R (M) to (indGP (σ), V ) ∈ Rep∞R (G) where V is the space of functions
f : G → W right invariant by some open subgroup of G and satisfying f(pg) = σ̃(p)f(g)
for (p, g) ∈ P × G and σ̃ is the inflation to P of σ. It is an exact functor respecting
admissibility and finite length.

Replacing P by a G-conjugate does not change the isomorphism class of indGP (σ) and a
G-conjugate of P contains B.

We suppose in this section that B ⊂ P . This implies G = K0P = PK0 = K0P
− = P−K0

where K0 = GLn(OD) and P− = MN− the opposite parabolic subgroup with respect to
M .

The parabolic induction of the trivial R-character of M

πP = indGP 1

will play an important role. As our parabolic induction is not normalized, [πP ] ∈ Gr∞R (G)
depends on the choice of P of Levi M .

Lemma 5.1. Assume charR 6= p and let P ′ be a parabolic subgroup of G associated to P .
The representation πP has the same restriction to K0 as πP ′.
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Proof. 5 Let Rac be an algebraic closure of R. In the group of unramified smooth Rac-
characters of M , the set of χ such that indGP χ is irreducible is Zariski dense [Dat05,
Theorem 1.2]. There exist unramified smooth Rac-characters χ and χ′ of M such that
the Rac-representations indGP χ and indGP ′ χ′ are irreducible and isomorphic [Dat09, Lemma
4.13]. Let R′ be the finite extension of R generated the values of χ and χ′. The R′-
representations indGP χ and indGP ′ χ′ are irreducible and isomorphic. We deduce that the
restriction toK0 of the R′-representations πP and πP ′ are isomorphic. As R-representations
of K0, ⊕rπP ′ ' ⊕rπP where r = [R : R′]. For any j ≥ 1, taking the invariants by Kj, the
finite dimensional representations ⊕r(πP ′)Kj and ⊕r(πP )Kj of the finite group K0/Kj are
isomorphic. By Krull-Remak-Schmidt, (πP )Kj ' (πP )Kj . As this is true for any j, we have
πP ′ ' πP . �

5.2.1. When R = C and σ ∈ Rep∞C (M) is admissible, we compute the character of indGP (σ)
in terms of the character of σ.
Lemma 5.2. For f ∈ C∞c (G,C), the function Sf(m) =

∫
N

∫
K0
f(kmnk−1)dkdn on M

belongs to C∞c (M,C).
Proof. The normal open compact subgroups K of K0 form a fundamental system of neigh-
borhoods of 1 in G and for g ∈ G the open compact sets KgK form a fundamental system
of neighborhoods of g in G. For g ∈ G and m ∈ M , m−1KgK ∩N is open in N . The set
of m ∈M such that m−1KgK ∩N 6= ∅ is open compact in M 6, S1KgK is 0 outside of this
set and S1KgK(m) = vol(m−1KgK ∩N, dn) for m−1KgK ∩N 6= ∅. �

Remark 5.3. For a normal open compact subgroup K of K0 such that K ∩ P = (K ∩
M)(K ∩ N), S1K = vol(K ∩ N, dn)1M∩K . For f ∈ C∞c (G,C) with Supp f ⊂ K, then
SuppSf ⊂ K ∩M .
Proposition 5.4. We have trace(π(f(g)dg)) = trace(σ(Sf(m)dm)) for σ ∈ Rep∞C (M)
admissible, π = indGP (σ), and (f, Sf) as in Lemma 5.2.
Proof. a) Preliminaries. As G = PK0, a function in the space V of π is determined
by its restriction to K0, and π|K0 ' indK0

P∩K0(σ|M∩K0). Denote V |K0 the restrictions
to K0 of the functions in V . Let W denote the space of σ and ρ the action of K0
on C∞(K0;W ) by right translation. We identify C∞(K0;W ) and C∞(K0;R) ⊗R W .
Then (indK0

P∩K0(σ|M∩K0), V |K0) is a subrepresentation of (ρ, C∞(K0;R) ⊗R W ). Let dx
denote the restriction to P ∩ K0 of dp (equal to the restriction of dk). The map B :
(ρ, C∞(K0;R)⊗RW )→ (indK0

P∩K0(σ|M∩K0 , V |K0)

B(h⊗w)(k) = vol(P∩K0, dx)−1
∫
P∩K0

h(x−1k)σ̃(x)(w)dx (h ∈ C∞(K0;R), w ∈ W,k ∈ K0),

is aK0-equivariant projection. The function B(h⊗w) onK0 extends to a function Fh,w ∈ V

Fh,w(pk) = vol(P ∩K0, dx)−1
∫
P∩K0

h(x−1k)σ̃(px)(w)dx ((p, k) ∈ P ×K0).

5This proof suggested by the referee simplifies our original proof using [Minguez-Sécherre14]
6P ∩KgK is compact and the quotient map P →M is continuous
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b) Choose a normal open pro-p subgroup K of K0 such that f is binvariant by K. The
endomorphism π(f(g)dg) of V restricted to V K is an endomorphism A of V K of trace
trace(A) = trace(π(f(g)dg). Choose a disjoint decomposition K0 = tiyiK. The 1yiK form
a basis of C∞(K0;R)K , the support of B(1yiK ⊗w) is in yiK, and trace(A) is the trace of
the endomorphism w 7→ ∑

iB(F1yiK ,w)(yi) of W . For y ∈ K0, B(F1yK ,w)(y) is equal to∫
G
f(g)F1yK ,w(yg)dg =

∫
G
f(y−1g)F1yK ,w(g)dg =

∫
K0×P

f(y−1p−1k)F1yK ,w(p−1k)dk dp

= vol(P ∩K0, dx)−1
∫
K0×P×P∩K0

f(y−1p−1k)hy(x−1k)σ(p−1x)(w) dk dp dx

=
∫
K0×P

f(y−1p−1k)hy(k)σ(p−1)(w) dk dp =
∫
K0×P

f(y−1pk)1yK′(k)σ̃(p)(w) dk dp

= vol(K ′, dk)
∫
P
f(y−1py)σ̃(p)(w) dp.

Therefore∑
i

B(F1yiK ,w)(yi) = vol(K, dk)
∫
P

∑
i

f(y−1
i pyi)σ̃(p)(w) dp =

∫
K0×P

f(k−1pk)σ̃(p)(w)dk dp

=
∫
K0×M×N

f(k−1mnk)σ(m)(w)dk dmdn = σ(Sf(m)dm)(w).

We deduce that the trace of π(f(g)dg) is the trace of σ(Sf(m)dm). �

The set {Pλ | λ ∈ P(n)} represents the parabolic subgroups of G modulo association.
Proposition 5.5. When P is a parabolic subgroup of G associated to Pλ, we have

trace(πP (f(g) dg)) = µ̂Oλ(ϕ).
for f ∈ C∞c (K1;C) and ϕ ∈ C∞c (Mn(PD);C) such that f(1+X) = ϕ(X) for X ∈Mn(PD),
and µ̂Oλ as in (4.5).
Proof. For (f, ϕ) as in the proposition, the functions

fK0(g) =
∫
K0
f(kgk−1) dk (g ∈ G), ϕK0(X) =

∫
K0
ϕ(kXk−1) dk (X ∈Mn(D)),(5.3)

belong also to C∞c (K1;C), C∞c (Mn(PD);C) and fK0(1 +X) = ϕK0(X) for X ∈Mn(PD),∫
P
f(p) dp =

∫
p
ϕ(W ) dW,

trace(πP (f(g) dg)) = trace(πPλ(f(g) dg)) as πP = πPλ on K0(Lemma 5.1), and

trace(πP (f(g) dg)) =
∫
M
Sf(m) dm =

∫
P
fK0(p) dp =

∫
p
ϕK0(W ) dW = µ̂O(ϕ).

for P = Pλ,O = Oλ, by Propositions 5.2 and 4.5. �

Corollary 5.6. For any non zero map c : P(n)→ C, the restriction of∑
λ∈P(n)

c(λ) [πPλ ] ∈ Gr∞C (G)

to an arbitrary open compact subgroup K of G is not 0.
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Corollary 5.7. For any non zero map c : P(n) → C, the restriction of the invariant
C-distribution on G ∑

λ∈P(n)
c(λ) trace(πPλ)

to an arbitrary open compact subgroup K of G is not 0.

Proof. By Propositions 5.5 and 4.4, the characters of πPλ are linearly independant on any
neighborhood of 1, because their values on f ∈ C∞c (K1;C) are the Fourier transforms of
the nilpotent orbital integrals of Oλ on ϕ ∈ C∞c (Mn(PD);C) when f(1 +X) = ϕ(X). �

6. Complex representations of G near the identity

6.1. By [Harish-Chandra78] when charF = 0 (for any reductive p-adic group) and ([Lemaire04]
Proposition 4.3 with E = F ), any non-zero representation π ∈ Rep∞,fC G non-zero π has a
germ expansion of map cπ on Kπ, meaning that:

There exists a map cπ : G\N → C (the coefficient map) and an open subgroup Kπ of
K1 = 1 +Mn(PD) such that

trace(π(f(g)dg)) =
∑

O∈G\N
cπ(O) µ̂O(ϕ)(6.1)

for f ∈ C∞c (Kπ;C), ϕ ∈ C∞c (Mn(PD);C) such that f(1 +X) = ϕ(X) for X ∈Mn(PD).
It is convenient to see cπ as a map on the set P(n) of partitions of n, or on the set of

parabolic subgroups P of G,

(6.2) cπ(λ) = cπ(Oλ) = cπ(P ) for λ ∈ P(n) and P associated to Pλ.

For example, cπ((n)) = cπ({0}) = cπ(G). By Proposition 5.5, we have for f ∈ C∞c (Kπ;C),

trace(π(f(g)dg)) =
∑

λ∈P(n)
cπ(λ) trace(πPλ(fdg)) =

∑
P

cπ(P ) trace(πP (fdg)).(6.3)

the last sum is over a system of representatives P of the parabolic subgroups of G modulo
association. We list some properties of the map cπ for π ∈ Rep∞,fC (G).

• The map cπ is unique by Corollary 5.7 and is not 0 because

(6.4) dimC π
K = trace(π(1K vol(K, dg)−1 dg) 6= 0 for small open subgroups K of Kπ.

• Two representations π, π′ ∈ Rep∞,fC (G) have the same coefficient map if and only if
their restrictions to some open compact subgroup of G are isomorphic, because the
linear forms µ̂O restricted to C∞c (−1+Kπ;C) are linearly independent (Proposition
4.4).
• In particular,

(6.5) cπ = cπ⊗χ

for any smooth character χ of G, because χ is trivial on some open compact
subgroup.
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• The map cπ depends only on the image [π] of π in the Grothendieck group Gr∞C (G).
It passes to a linear map ν 7→ cν on the Grothendieck group Gr∞C (G) such that
cπ = c[π] for π ∈ Rep∞,fC (G). But cν = 0 does not imply ν = 0. For example,
cν = 0 for ν = [indGPλ 1]− [indGPλ θ] when θ is any unramified character of Mλ.
• When π is finite dimensional, it is trivial on some Kπ ⊂ K1 hence

(6.6) cπ((n)) = dimC π, cπ(λ) = 0 for λ 6= (n).

Conversely, if cπ(λ) = 0 for λ 6= (n) then

(6.7) trace(π(f(g)dg)) = cπ({0}) µ̂{0}(ϕ) = cπ((n))
∫
G
f(g)dg

for (f, ϕ) as in (6.1). Hence dimC π
K = cπ((n)) for any open subgroup K of Kπ,

so π is finite dimensional.
• When D 6= F , a finite dimensional irreducible smooth representation of D∗ may
have dimension > 1, but:

Lemma 6.1. When R an algebraically closed field, D = F or n > 1, then a finite dimen-
sional irreducible R-representation of G is of the form π = χ ◦ nrd for some R-character
χ of F ∗.

Proof. This clear when G = F ∗ because F ∗ is commutative and the Schur’s lemma is valid
for G. When n > 1, then Ker(π) is an open subgroup of G, and in particular contains
an open subgroup of U . But Ker(π) is also normal in G, so it contains U , and all the
conjugates of U . Those conjugates generate Ker(nrd), so π factors through nrd implying
the lemma. �

6.2. We revert to R = C and show that the values of cπ are integers (proved in [Howe74]
when D = F has characteristic 0 and π is irreducible supercuspidal). The key of the proof
is the next lemma 6.2 inspired by Howe ([Howe74] Lemma 6).

For a partition λ = (λ1, . . . , λr) of n, let Aλ be the matrix of the endomorphism of the
right D-vector space Dn operating on the canonical basis e1, . . . , en by sending e1, . . . , eλ1

to 0, eλ1+1, . . . , eλ1+λ2 to e1, . . . , eλ2 , and eλ1+...+λi+j to eλ1+...+λi−1+j for i = 2, . . . , r−1, j =
1, . . . , λi+1. Then, KerAiλ is the D-subspace generated by e1, . . . , eλ1+...+λi . The parabolic
subgroup of G stabilizing the flag (KerAiλ)i is Pλ, and Aλ ∈ nλ. Fixing a character ψ of F
trivial on PF and not on OF , for an integer j ≥ 1, let ξλ be the character ofKj = 1+Mn(P j

D)
trivial on K2j defined by

(6.8) ξλ(1 + x) = ψ ◦ trd(Aλ p1−2j
D x) for x ∈Mn(P j

D).

Lemma 6.2. For µ ∈ P(n), the multiplicity m(ξλ, πPµ) of ξλ in πPµ is 0 unless λ ≥ µ.
We have m(ξλ, πPλ) = 1.

Proof. For µ ∈ P(n), m(ξλ, πPµ) is the cardinality of

(Pµ ∩GLn(OD))\{k ∈ GLn(OD) | ξλ(k−1(Pµ ∩Kj)k) = 1}/Kj.
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Let k ∈ K0 = GLn(OD). We have ξλ(k−1(Pµ ∩Kj)k) = 1 if and only if

(6.9) ξλ(k−1(1 + pµ(P j
D))k) = 1,

where pµ(P j
D) = pµ ∩Mn(P j

D). The weaker condition ξλ(k−1(1 + pµ(P 2j−1
D ))k) = 1 already

implies m(ξλ, πPµ) = 0 unless λ ≥ µ. Indeed, it reads ψ ◦ trd(Aλ k−1pµ(OD)k) = 1. It
depends on the images k,Aλ of k,Aλ in GLn(kD) and says that trd(k Aλ k

−1
pµ(kD)) = 0,

that is, k Aλ k
−1 ∈ nµ(kD). Let 0 ⊂ W1 ⊂ . . . be the flag of knD whose stabilizer is Pµ(kD).

Then k Aλ k
−1 ∈ nµ(kD) means k Aλ k

−1(Wi) ⊂ Wi−1 for i ≥ 1, and in particular that
Ker(k (Aλ)i k

−1) = k(Ker(Aλ)i) contains Wi. As dimDWi+1 − dimDWi = µi, one obtains
λ1 + . . .+ λi ≥ µ1 + . . .+ µi for each i, that is λ ≥ µ.

Suppose now µ = λ. We prove that (6.9) is equivalent to k ∈ Pλ(OD)Kj. By its
definition ξλ is trivial on 1 + pλ(P j

D) because Aλ ∈ nλ hence trd(Aλpλ) = 0, so Pλ(OD)Kj

does satisfy (6.9). Conversely, Bλ = Aλp
1−2j
D ∈ nλ(P 1−2j

D ). The condition (6.9) means that
trd(Bλk

−1pλ(P j
D)k) ∈ PF and implies

Bλ = k−1Xk + Y, where X ∈ nλ, Y ∈Mn(P 1−j
D ).

Indeed, writing kBλk
−1 = X + Y with X ∈ nλ, Y ∈ p−λ , we have:

trd(Bλk
−1pλ(P j

D)k) = trd(kBλk
−1pλ(P j

D)) = trd(Y pλ(P j
D)) = trd(YMn(P j

D)),
trd(YMn(P j

D)) ∈ PF ⇔ trd(P j−d
D YMn(OD)) ∈ OF ⇔ Y ∈Mn(P 1−j

D ).

See Example 4.3 for the last equivalence. One gets Bλk
−1 = k−1X+Y1 with Y1 ∈Mn(P 1−j

D ).
Note that Bλ ∈ Mn(P 1−2j

D ) hence also X. We get B2
λk
−1 = Bλk

−1X + BλY1 = k−1X2 +
Y1X+BλY1 = k−1X2+Y2 with Y2 ∈Mn(P j+2(1−2j)

D ). By induction Bi
λk
−1 = k−1X i+Yi with

Yi ∈Mn(P j+i(1−2j)
D ) for 1 ≤ i ≤ r. For a basis vector e ∈ KerAiλ, we have X ie = 0 because

X ∈ nλ, and Bi
λk
−1e = k−1X ie + Y ie = Y ie. As (Aλp1−2j

D )ik−1e ∈ Mn(P j+i(1−2j
D )e ⇔

Aiλk
−1e ∈ Mn(P j

D)e, the coefficients of k−1e on the basis vectors which are not in KerAiλ
are in P j

D. This means k−1 ∈ KjPλ(OD), what we wanted. �

We shall need more properties of ξλ in the section on Whittaker spaces.

Lemma 6.3. The normalizer of ξλ in K0 = GLn(OD) is Pλ(OD)Kj.

Proof. For k ∈ K0, the property ξλ(1 + x) = ξλ(1 + kxk−1) for all x ∈ Mn(P j
D) means

k−1Bλk − Bλ ∈ Mn(P 1−j
D ). As in the proof of Lemma 6.2 one deduces Bik − kBi ∈

Mn(P j−i(1−2j)
D ) for i ≥ 1 and one sees that k ∈ P (OD)Kj. �

Remark 6.4. There is a unique function in πPλ with support PλKj and restriction ξλ to
Kj since ξλ is trivial on 1 + pλ(P j

D). That function is a basis of the line of vectors in πPλ
transforming according to ξλ under the action of Kj.
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We prove now that the cπ(λ) are integers. By (6.3), when Kj = 1 +Mn(P j
D) ⊂ Kπ and

δ ∈ Rep∞C (Kj) irreducible, the multiplicity m(δ, π) of δ in π ∈ Rep∞C (G) satisfies

m(δ, π) =
∑

µ∈P(n)
cπ(µ)m(δ, πPµ).(6.10)

Lemma 6.2 and (6.10) imply:

cπ(λ) = m(ξλ, π)−
∑

µ∈P(n),µ<λ
cπ(µ)m(ξλ, πPµ).(6.11)

In particular when λ is minimal in Supp cπ, cπ(λ) = m(ξλ, π) is positive and independent
of the choice of j such that Kj = 1 + Mn(P j

D) ⊂ Kπ. By upwards induction on P(n)
(downwards induction on the nilpotent orbits), we obtain that the cπ(λ) are integers.

As the values of the map cπ are integers, we get more properties:
• cπ = cσ(π) when σ is an automorphism of C.
• For ν ∈ Gr∞R (G), there exists a map cν : P(n) → Z and an open subgroup Kν of
G such that ν and ∑

λ∈P(n) cν(λ) [πPλ ] ∈ Gr∞R (G) have isomorphic restrictions to
Kν .

When R = C, the first part of Theorem 1.3 is a version of the germ expansion. For
any R, when π satisfies the first part of Theorem 1.3 we say sometimes that π has a germ
expansion with map cπ on Kπ.

7. Parabolic induction

In this section R is a field and charR 6= p. We prove now that the first part of Theorem
1.3 implies Theorem 1.5. Let P,M, (ni), σi, r, σ, π as in Theorem 1.5. Write pr : P → M
for the projection of kernel N . Given partitions λi of ni for 1 ≤ i ≤ r, we have the
parabolic subgroup P(λi) of M corresponding to the parabolic subgroups Pλi of GLni(D).
Given functions ci : P(ni)→ Z for 1 ≤ i ≤ r, the function c : P(n)→ Z defined by

c(λ) =
∑ ∏

i=1,...,r
ci(λi),

where the sum is over r−tuples of partitions (λ1, . . . , λr) inducing to λ before Theorem
1.5, is called induced by (c1, . . . , cr).

Theorem 7.1. Assume that for i = 1, . . . , r, there exists a function cσi : P(ni) → Z and
an open compact subgroup Kσi of GLni(D) such that σi = ∑

λi∈P(ni) cσi(λi) indGLni (D)
Pλi

1 on
Kσi. Then

π =
∑

λ∈P(n)
cπ(λ) indGPλ 1

on Kπ, where cπ : P(n) → Z is the function induced by (cσ1 , . . . , cσr) and Kπ is any open
compact subgroup of G such that ∪g∈P\G/Kπ pr(P ∩gKπg

−1) is contained in Kσ1× . . .×Kσr .
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Proof. The theorem follows from the fact that for any field R, indGP (indMP(λi)
1) has the same

restriction to K0 than indGPλ 1 by Lemma 5.1, and for given a open compact subgroup CM
of M , there exists an open compact subgroup C of G such that
(7.1) ∪g∈P\G/C pr(P ∩ gCg−1) ⊂ CM .

The existence of Kπ follows from (7.1) applied to CM = Kσ1 × . . .×Kσr .
The restriction of a smooth R-representation σ of M to CM determines the restriction

of indGP σ to C,
(indGP σ)|C ' ⊕g∈P\G/C indCC∩g−1Pg(σg)

where σg(k) = σ(gkg−1) for g ∈ G, k ∈ g−1Pg ∩C, and σg depends only on the restriction
of σ to pr(P ∩ gCg−1). If σ′ ∈ Rep∞,fR (M) is isomorphic to σ on CM , then indGP σ′ and
indGP σ are isomorphic on C. The same holds true for virtual representations ν, ν ′ of M .
Take ν = σ1 ⊗ . . .⊗ σr and ν ′ = ν ′1 ⊗ . . .⊗ ν ′r with ν ′i = ∑

λi∈P(ni) cσi(λi) indGLni (D)
Pλi

1. �

Corollary 7.2. (Variant of Theorem 7.1) Assume that GLni(D) satisfies the first part of
Theorem 1.3 for i = 1, . . . , r. Then for σ ∈ Rep∞,fR (M), there exists an open compact
subgroup Kσ of M and a unique map cσ : P(n1) × . . . × P (nr) → Z such that σ =∑

(λi)∈(P(ni)) cσ((λ)i)πP(λi)
on Kσ, and π = indGP σ is equal to ∑

λ cπ(λ)πPλ on any open
compact subgroup Kπ of G such that Kσ ⊂ ∩g∈P\G/Kπ M ∩ gKπg

−1 and cπ : P(n) → Z is
induced by cσ.

Remark 7.3. When G = GLn(F ), given partitions λi of ni for i = 1, . . . , r, and λ ∈ P(n)
induced by the λi, the nilpotent orbit Oλ is the nilpotent orbit induced by the nilpotent
orbit O(λi) of M corresponding to the λi, in the sense of [Lusztig-Spaltenstein79] (see
[Jantzen04]). If R = C, charF = 0, p 6= 2, D = F , the formula for cπ follows from
([Moeglin-Waldspurger87] §II.1.3 where G is a classical group).

8. Whittaker spaces

Our purpose in this section is to relate the coefficient map cπ to the dimensions of the
different Whittaker spaces of π when π ∈ Rep∞C (G) is irreducible. We first introduce those
subspaces.

The commutator subgroup of the group U of upper unipotent matrices is the group
U ′ of upper unipotent matrices with coefficients ui,i+1 = 0 for i = 1, . . . , n − 1 (use the
identities Ea,bEc,d = Ea,d if b = c and 0 otherwise). The map sending (ui,j) ∈ U to
(u1,2, . . . , un−1,n) induces an isomorphism from U/U ′ to the additive group Dn−1. The
action of the group T ' (D∗)n of diagonal matrices by conjugation on U and on U ′ induces
an action on Dn−1, the diagonal matrix diag(a1, . . . , an) ∈ T sends (d1, . . . , dn−1) ∈ Dn−1

to (a1d1a
−1
2 , . . . , an−1dn−1a

−1
n ).

Let us fix a non-trivial smooth character ψ of F . Then ψD = ψ ◦ trd is a non-trivial
character of D. Sending y ∈ D to the character ψyD(x) = ψD(yx) for x ∈ D, is an
isomorphism from the additive group D to its group of smooth characters. Sending
y = (y1 . . . yn−1) ∈ Dn−1 to (ψy1

D , . . . , ψ
yn−1
D ), is an isomorphism from Dn−1 to its group
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of smooth characters. The above action of T on Dn−1 induces an action on its groups
of characters, the diagonal matrix diag(a1, . . . , an) sends y = (y1, . . . , yn−1) ∈ Dn−1 to
(a−1

2 y1a1, . . . , a
−1
n yn−1an−1).

Let y = (y1, . . . , yn−1) ∈ Dn−1, r be the number of indices i where yi = 0, and

(8.1) I = I(y) =

∅ if r = 0,
{i1 < . . . < ir} the set of indices i where yi = 0 if r 6= 0.

The smooth character of U corresponding to y is
θy(u) = ψ ◦ trd(Xyv) u = 1 + v ∈ U,

where Xy ∈Mn(D) is the nilpotent matrix with (y1, . . . , yn−1) just below the diagonal and
0 elsewhere. The character θy is called non-degenerate if I(y) = ∅, and degenerate
otherwise. The character θy is trivial if and only if I(y) = {1, . . . , n − 1}. The group
B = TU is its own normalizer in G, so the G-normalizer of θ is of the form TθyU where
Tθy is the T -normalizer of θy. It is the intersection of B with the commutant of Xy.

The element y is conjugate under T to the element δI ∈ Dn−1 with coefficient 0 in I and
1 elsewhere. The nilpotent matrix XδI is a diagonal of Jordan blocks of sizes forming a
composition λI of n,

(8.2) λI =

(n) when I = ∅,
(i1, i2 − i1, . . . , n− ir) when I 6= ∅.

Any composition λ of n is equal to λI for a unique subset I of I(y) = {1, . . . , n− 1}. Put
Xλ = XδI ,
(8.3) θλ(u) = ψ ◦ trd(Xλv) u = 1 + v ∈ U,
and Tλ the T -normalizer of θλ. The group Tλ contains the group T(n) = {diag(d, . . . , d) | d ∈
D∗} isomorphic to D∗.

We fix a representation π ∈ Rep∞C (G) of space V . Given a smooth character θ of U ,
we look at the space Vθ of θ-coinvariants of U in V , or at its dual, the (Whittaker) space
of linear forms Λ on V such that Λ(uv) = θ(u)Λ(v) for u ∈ U, v ∈ V . It is customary to
say that π has a Whittaker model with respect to θ if Vθ 6= 0. Indeed any choice of
non-zero linear form Λ on Vθ gives a non-zero intertwining from π to IndGU (θ) by sending
v ∈ V to the function taking value Λ(gv) at g ∈ G; that intertwining is an embedding if π
is irreducible, hence the name “model”. We say that π has a non-degenerate Whittaker
model, or that π is generic if Vθ 6= 0 for some (equivalently all) non-degenerate characters
θ of U . We say that π has a Whittaker model if it has a Whittaker model with respect
to some choice of θ.

Using the action of T on U by conjugation, we see that to analyse the Vθ for all choices
of θ, it is enough to consider the θλ associated to the compositions λ of n.

Remark 8.1. 1) It is known that if π is irreducible then Vθ is finite dimensional (when θ is
not degenerate [Bushnell-Henniart02], in general [Aizenbud-BS22]; these papers treat the
case of a general reductive group G). The group Tθ acts on Vθ; since Tθ is not commutative
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if D 6= F , we cannot expect Vθ to have always dimension 0 or 1 (as when D = F and θ
not degenerate).

2) Moeglin and Waldspurger [Moeglin-Waldspurger87] consider more general Whittaker
spaces, but ours are enough for our purpose (Theorem 8.2 below). Also they use the
exponential map, which is not available when F has positive characteristic. Instead we
use the map X 7→ 1 + X : Mn(PD) → 1 + Mn(PD), as in [Howe74] and [Rodier74] when
D = F .

3) If π is irreducible cuspidal, π can only have non-degenerate Whittaker models because
θI is trivial on the unipotent radical NλI of the parabolic group PλI . Hence πθI is a quotient
of the NI-coinvariant space πNλI of π. If πNλI = 0 then πθI = 0, and NλI is trivial if and
only if I = ∅.

4) It is possible to extend to GLn(D) the theory of [Bernstein-Zelevinski 77] 5.1 to 5.15
to show that a non-zero π has a Whittaker model (see [Abe-Herzig23] 3.4). But that is a
consequence of our theorem below (Corollary 8.3).

We now prove Theorem 1.6 (for R = C). We can assume that π is irreducible. We want
to relate the coefficient map cπ : P(n)→ Z of the germ expansion of π with the dimensions
of the spaces Vθλ for the compositions λ of n, following [Moeglin-Waldspurger87]. We define
the Whittaker support of π as the set of partitions µ of n such that Vθλ 6= 0 for some
composition λ of n with associated partition µ̂ (the partition dual to µ).

Theorem 8.2. The minimal elements in Supp cπ and in the Whittaker support of π are
the same.

Let µ be a partition of n minimal in Supp cπ and let λ be a composition of n with associate
partition µ̂. Then cπ(µ) = dimC Vθλ.

Since π has a non-zero germ expansion, the theorem implies:

Corollary 8.3. Any irreducible smooth complex representation π of G has a Whittaker
model.

Remark 8.4. 1) By the theorem (1, . . . , 1) is minimal in Supp cπ if and only if V has a
non-degenerate Whittaker model. This was proved when D = F [Rodier74].

2) (n) is minimal in Supp cπ if and only if dimC(V ) is finite. By the theorem that happens
if and only if V has only the trivial Whittaker model.

3) In part 2 of the theorem, dim(Vθλ) does not depend on the choice of the composition
λ with associated partition µ̂. It is the multiplicity in π of the character ξµ of Kj defined
in (6.8), if j is large enough.

We turn back to the proof of the theorem. As said at the beginning of this section, our
proof is based on the method of [Moeglin-Waldspurger87], replacing the exponential by
X → 1 + X. The starting idea is already in [Rodier74], but that paper is restricted to
the non-degenerate Whittaker models, and D = F . Compared to those works, we work
with the germ expansion of π in terms of the πPλ rather than with Fourier transforms
of nilpotent orbits. We find that it simplifies matter a bit, and it is coherent with our
approach.
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Proof. We fix a composition λ = (λ1, ..., λr) of n. We write θ for the character θλ of U
and X for the lower triangular nilpotent matrix in Jordan blocks of size λ1, ..., λr down the
diagonal (if I is the subset of {1, . . . , n − 1} such that λ = λI , then X = XδI ). For each
positive integer j we define a character ψj of Kj = 1 +Mn(P j

D) trivial on K2j,
(8.4) ψj(1 + x) = ψ ◦ trd(Xp1−2j

D x), x ∈Mn(P j
D),

where ψ is a character of F trivial on PF but not on OF . In other words, ψj is obtained,
in the formula (6.8) for ξλ by replacing the matrix Aλ there with the matrix X. We let
λ′ the partition of n obtained from λ by putting its parts in decreasing order, and C the
matrix Aλ′ˆ associated as in Lemma 6.2 to the partition λ′̂ .

Lemma 8.5. The matrices C and X are conjugate by permutation matrices (corresponding
to permutations of the canonical basis of Dn).

Proof. A suitable permutation of the canonical basis puts the blocks of X in decreasing size
order, and we get the matrix X ′ analogous to X but corresponding to λ′. Let us describe a
permutation of the basis which conjugates X ′ to C. Let d be the size of the largest blocks
of X ′. Put at the end the first vectors of the blocks of X ′ of size d. Before them, put
a bunch of vectors: the images under X ′ of the previous ones, completed with the first
vectors of the blocks of size d− 1 of X ′, if any. Once you have the vectors corresponding
to size i, put before them the images under X ′ of the already chosen vectors, completed
with the first vectors of the blocks of size i− 1. Reaching i = 1 completes the process. �

Remark 8.6. By this lemma, we can apply Lemma 6.2 to ψj. Hence, For any positive
integer j, one has m(ψj, πPλ′ )̂ = 1 and m(ψj, πPµ) = 0 unless λ′̂ ≥ µ. If λ′̂ is minimal
in Supp cπ, then we have cπ(λ′̂ ) = m(ψj, π) for any positive integer j such that the germ
expansion of π is valid on Kj.

We now turn to the Whittaker quotient Vθ, approaching it (following Rodier’s initial
idea) by a suitable conjugate ψ′j of ψj and letting j go to infinity.

The diagonal matrix t = diag(1, pD, ..., pn−1
D ) acts by conjugation onMn(D), multiplying

the (a, b)-coefficient x of a matrix by paDxp−bD . Conjugating ψj yields a character ψ′j of the
group K ′j = t2j−1Kjt

−2j+1 which satisfies also Remark 8.6. The group U is the increasing
union of U ∩K ′j over j, whereas the decreasing subgroups B−∩K ′j have trivial intersection.
The restriction of ψ′j to K ′j ∩ U is equal to that of θ, whereas its restriction to K ′j ∩B− is
trivial. The multiplication induces a bijection (an Iwahori decomposition):

(K ′j ∩ U)× (K ′j ∩B−)→ K ′j

The projector e′j : V → V (ψ′j) of V onto its ψ′j-isotypic space V (ψ′j) (which has dimension
m(ψ′j, π) = m(ψj, π)) can be obtained by first projecting onto vectors fixed by K ′j ∩ B−,
and then applying the projector fj

fj(v) =
∫
K′j∩U

θ(u)−1 π(u)v du, v ∈ V,

with respect to the Haar measure du giving measure 1 to K ′j ∩ U .
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We write p : V → Vθ for the projection of V onto Vθ and pj : V (ψ′j) → Vθ for its
restriction to V (ψ′j).
Lemma 8.7. The map pj : V (ψ′j)→ Vθ is surjective for large j.

Proof. Let v ∈ V . For large enough j, v ∈ V K′j∩B
− hence e′j(v) = fj(v) and p(e′j(v)) = p(v).

Lifting in that way a basis of the finite-dimensional space Vθ gives the result. �

Lemma 8.8. Il Vθ 6= 0, then there is a partition µ in Supp cπ with µ ≤ λ′̂ .
Proof. Il Vθ 6= 0 is not 0, then by Lemma 8.7, V (ψ′j) 6= 0 for large j, so tr(π(e′j)) 6= 0.
Applying the germ expansion of π to e′j there is a minimal partition µ of n in Supp cπ. By
Remark 8.6, cπ(µ) = m(ψj, πPµ) and µ ≤ λ̂′. �

Lemma 8.9. Let j0 be a positive integer such that π has a germ expansion on Kj0, and
j′0 = j0+2n−2. If λ′̂ is minimal in Supp cπ and j ≥ j′0, then the endomorphism v → e′je

′
j+1v

of V (ψ′j) is a non-zero homothety.
In [Moeglin-Waldspurger87], that Lemma is given for unspecified large j by their Lemmas

I.13 and I.15. They are rather more involved than Lemme 4 in [Rodier74], which however
applies only to non-degenerate Whittaker models and D = F . The proof of Lemma 8.9
will be given later.
Proposition 8.10. If λ′̂ is minimal in Supp cπ and j ≥ j′0, then pj is an isomorphism, so
that dimC(Vθ) = dimC V (ψ′j).
Proof. We already know by Lemma 8.7 that pj is surjective for j large. We also know by
Remark 8.6 that dimC V (ψ′j) = m(ψ′j, π) is constant forj ≥ j0. The main point is Lemma
8.9 which implies that for j ≥ j′0, the linear map qj : V (ψ′j) → V (ψ′j+1), v → v1 = e′j+1v
is injective, hence is an isomorphism because the two spaces have the same dimension.
Moreover a vector v ∈ V (ψ′j) is already invariant under K ′j+1 ∩B so what was said before
Lemme 7.7 we have e′j+1v = fj+1v, and v1 = e′j+1v has the same image in Vλ as v. Iterating
the process we get for positive integers k, vectors vk = e′j+kvk−1 = fj+kvk−1. By definition
of the projector fj, we have fj+kfj+k−1 = fj+k and consequently vk = fj+kv. But p(v) = 0
if and only if fj+kv = 0 for large k (Bernstein-Zelevinsky xyz). As vk = 0 implies vk−1 = 0
by the injectivity already established, we get Ker(pj) = 0. But for large j, pj is surjective
so is an isomorphism, and dimC(V (ψ′j) = dimC(Vθ). But for j ≥ j′0, the dimension of V (ψ′j)
is constant so pj is an isomorphism and the Proposition follows. �

Proposition 8.10 implies Part 2 of Theorem 8.2 and that a partition of n which is minimal
in Supp cπ belongs to the Whittaker support of π. Conversely, let µ ∈ P(n) minimal in
the Whittaker support of π. Then by Lemma 8.8, there is a partition µ′ in Supp cπ with
µ′ ≤ µ, and we may assume that µ′ is minimal in Supp cπ. But by Proposition 8.10, that
implies that µ′ belongs to the Whittaker support of π, so µ′ = µ. Assuming Lemma 8.9,
Theorem 8.2 is proved. �

It remains to prove Lemma 8.9. We can conjugate by t1−2j to transform ψ′j back to ψj,
and even further conjugate (Lemma 8.5) by a permutation matrix σ to transform ψj into
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the character ξj attached to the matrix B. We need to prove that the endomorphism of
eV sending v to efv is a non-zero homothety, where e is the Kj-projector onto the one
dimensional space eV = V (ξj) and f is integration on the group J = σ(t2)(Kj∩U)(σ(t2)−1

against its character (1 + x) 7→ ψ ◦ trd(−B.(pD)−1−2jx). Clearly efe is an element of eHe
where H is the full Hecke algebra of G, so we may restrict the mentioned integration
to elements in the support of the Hecke algebra eHe. Also if j ≥ 2n − 2, the group J
is contained in Kj−2n+2 so it normalizes Kj, and the support of efe is contained in the
normalizer of ξj in Kj−2n+2.

By Lemma 6.3, the normalizer of ξλ inK0 = GLn(OD) is Pλ′(OD)Kj. Take j−2n+2 ≥ j0
and g = 1 + x be in the support of efe. The trace of ege in eV can be computed using
the germ expansion of π as the sum over µ ∈ P(n) of cπ(µ) times the trace of efe in πPµ .
By our choice λ′̂ is minimal in Supp cπ, so the only contribution is cπ(λ′̂ ). Applying that
to any ege in the support of efe gives Lemma 8.9, and even that the homothety is via a
positive integer.

9. Jacquet-Langlands correspondence

The Jacquet-Langlands correspondence extended by Badulescu ([Badulescu07] Théorème
3.1), is a surjective morphism LJ with a section JL

LJ : Gr∞C (GLdn(F ))→ Gr∞C (G), JL : Gr∞C (G)→ Gr∞C (GLdn(F ))
which is an injective morphism of Z-modules extending the classical Jacquet-Langlands
correspondence between essentially square integrable representations.

Theorem 9.1. For ν ∈ Gr∞C (GLdn(F )) and λ ∈ P(n), we have (−1)ncLJ(ν)(λ) = (−1)dncν(dλ).

Corollary 9.2. For ν ∈ Gr∞C (G) and λ ∈ P(n), we have (−1)ncν(λ) = (−1)dncJL(ν)(dλ).

The remainer of this section gives the proof of the theorem.

9.1. Badulescu-Jacquet-Langlands correspondence.

9.1.1. Preliminaries. Let Irr2
C(G) denote the set of isomorphism classes of essentially

square integrable irreducible smooth complex representations of G. Any irreducible smooth
complex representation of D∗ is essentially square integrable.

As in §1, Pλ = MλNλ is a parabolic subgroup of G for λ ∈ P(n). For µ ∈ P(dn), we
denote now by Pµ = PµNµ.

A basis of the Grothendieck group Gr∞C (G) is
BG = {[n. indGPλ σ] | σ ∈ Irr2

C(Mλ), λ ∈ P(n)}

where n. indGPλ the normalized parabolic induction ([Badulescu07] Proposition 2.2). As
Irr2

C(G) is stable by the twist by a smooth character of G,
B′G = {[indGPλ σ] | σ ∈ Irr2

C(Mλ), λ ∈ P(n)}.
is also a basis of Gr∞C (G)). Let Cd be the submodule of Gr∞C (GLdn(F )) of basis the set

B′d = {[indGLdn(F ))
Pµ σ] | σ ∈ Irr2

C(Mµ), µ ∈ P(dn) but µ 6∈ dP(n)}.
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The Aubert involution ι of Gr∞C (G) sends an irreducible representation π to an irreducible
representation modulo a sign [Aubert95]:
(9.1) ι(π) = (−1)n−r|ι(π)|
where |ι(π)| is irreducible and r is the number of elements of the cuspidal support of
π, meaning that π ⊂ indGPλ σ for λ = (λ1, . . . , λr) ∈ P(n) and σ ∈ Irr2

C(Mλ) cuspidal
([Badulescu07] (3.4), [Tadic90] §1).

Let λ be a partition of n and δλ the modulus of the parabolic subgroup Pλ = MλNλ

of G, δλ(g) = |(det Ad(g)|LieNλ)|F for g ∈ Pλ. For a partition µ of dn, let δ′µ denote the
modulus of the parabolic subgroup P ′µ = M ′

µN
′
µ of GLdn(F ).

Lemma 9.3. Let L/F be an extension splitting D. We have δλ = δ′dλ on Pλ(L) = P ′dλ(L).

Proof. We have G(L) = GLdn(F ) and Pλ(L) = P ′dλ(L). The modulus δλ is an algebraic
character, and can also be computed in Pλ(L). Similarly for δ′dλ. The reduced norm on G
becomes the determinant on G(L). �

Let L/F be an extension splitting D. The reduced characteristic polynomial Pa of
a ∈ Mn(D) is the characteristic polynomial of a ⊗ 1 ∈ Mn(D) ⊗F L ' Mnd(L), which
belongs to F [X], does not depend on the choice of L, and Pa(a) = 0 [BourbakiA-8, §17
page 333 Définition 1, page 336 Corollaire 2, (34)], [Badulescu18, §2 Propositions 2.1 and
2.2].

Lemma 9.4. The reduced characteristic polynomial of a matrix inMn(D) belongs to OF [X]
if and only if the matrix is GLn(D)-conjugate to an element of Mn(OD).

Proof. We haveMn(D) ' EndDDn whereDn is seen as a rightD-module. Let e1, . . . , en be
a basis of Dn over D. When Pa ∈ OF [X], the OD-module generated by the aie1, . . . , a

ien
for the positive integers i, is finitely generated because Pa(a) = 0, hence a stabilizing
an OD-lattice of Dn is GLn(D)-conjugate to an element of Mn(OD). Conversely, if a ∈
Mn(OD) then a ⊗ 1 ∈ Mnd(OL) hence its characteristic polynomial Pa belongs to OF [X];
for g ∈ GLn(D) we have Pgag−1 = Pa ∈ OF [X]. �

We identify the space S of unitary polynomials in F [T ] of degree dn with F dn by taking
the non-dominant coeffficients. The map sending X ∈ Mn(D) to its reduced character-
istic polynomial PX which belongs to S, is continuous ([BourbakiA-8] §17 Définition 1,
[Reiner75] §9a).

We recall from [Badulescu18, Chapter 2, §2 to §6]:
An element g ∈ G is called regular semi-simple when the roots of Pg in an algebraic

closure F ac of F have multiplicity 1. The set Grs of regular semi-simple elements of G
is open dense in G. The conjugacy class of g ∈ Grs is the set of elements g′ ∈ G with
Pg′ = Pg. Note that g = 1 + pjFX ∈ Grs is conjugate to an element of 1 + pjFMn(OD)
if and only if X is conjugate to an element of Mn(OD) if and only the coefficients of
PX(T ) = p−jdnF Pg(TpjF + 1) belong to OF . The set {Pg | g ∈ Grs} consists of the monic
polynomials in F [T ] of degree dn without multiple roots in F ac, with a non-zero constant
term and with all irreducible factors of degree divisible by d. Let GLdn(F )rs,d be the set of



26 GUY HENNIART AND MARIE-FRANCE VIGNÉRAS

h ∈ GLdn(F )rs such that Ph ∈ {Pg | g ∈ Grs}. We say that g ∈ Grs and h ∈ GLdn(F )rs,d
correspond and we write g ↔ h when Pg = Ph.

Let g ∈ Grs. The G-centralizer Tg of g is a maximal torus, isomorphic to the group of
units of F [T ]/(Pg). We put on G/Tg the quotient measure dx∗ of the Haar measure on G
(§1) and on the Haar measure on Tg giving the value 1 to the maximal torus. The orbital
integral of f ∈ C∞c (G;C) at g is

(9.2) Φ(f, g) =
∫
G/Tg

f(xgx−1) dx∗.

Let C∞c (GLdn(F )rs;C)(d) be the set of ϕ ∈ C∞c (GLnd(F )rs;C) with Φ(ϕ, h) = 0 when h is
not in GLnd(F )rs,d. We say that f ∈ C∞c (Grs;C) and ϕ ∈ C∞c (GLnd(F )rs;C)(d) correspond
and we write f ↔ ϕ when Φ(f, g) = Φ(ϕ, h) if g ∈ Grs and h ∈ GLnd(F )rs,d correspond.
For f ∈ C∞c (Grs;C) there exists ϕ ∈ C∞c (GLnd(F )rs;C)(d) such that f ↔ ϕ, and conversely
([Badulescu18] Proposition 5.1).

9.1.2. Jacquet-Langlands correspondence. The classical Jacquet-Langlands correspondence
([DKV84], [Badulescu02]) is the unique bijective map

JL : Irr2
C(G))→ Irr2

C(GLdn(F )) such that for π ∈ Irr2
C(G),

(−1)n trace(π(f(g)dg)) = (−1)dn trace(JL(π)(ϕ(h)dh))

when f ∈ C∞c (G);C)rs, ϕ ∈ C∞c (GLdn(F );C)rs,d, f ↔ ϕ. The image by JL of the
Steinberg representation of G is the Steinberg representation of GLdn(F ). The maps JL
extends to

1) a bijective map
JL : Irr2

C(Mλ))→ Irr2
C(M ′

dλ) for any composition λ of n.
2) an injective map

JL : BG → BGLdn(F )

(9.3) JL([n. indGPλ σ] = [n. indGLdn(F )
Pdλ

JL(σ)] for σ ∈ Irr2
C(Mλ), λ ∈ P(n),

and by linearity to an injective homomorphism
JL : Gr∞C (G)→ Gr∞C (GLdn(F )),

satisfying ([Badulescu07] Théorème 3.1):
(9.4) (−1)n trace ν(f(g)dg) = (−1)dn trace JL(ν)(ϕ(h)dh)
when ν ∈ Gr∞C (G), f ∈ C∞c (GLn(D)rs;C), ϕ ∈ C∞c (GLdn(F )rs;C)(d), f ↔ ϕ. We have

Gr∞C (GLdn(F )) = JL(Gr∞C (G))⊕ Cd.
The homomorphism JL commutes with

a) the twist by smooth characters:
JL((χ ◦ nrd)⊗ ν) = (χ ◦ det)⊗ JL(ν) when χ is a smooth character of F ∗,
b) the normalized parabolic induction ([Badulescu07] Théorème 3.6):
JL(indGPλ(δ1/2

λ ν) = indGLdn(F )
Pdλ

(δ′dλ
1/2JL(ν))).



REPRESENTATIONS OF GLn(D) NEAR THE IDENTITY 27

3) a surjective homorphism extending the inverse LJ of the classical Jacquet-Langlands
correspondence JL for the Levi subgroups :

LJ : BGLdn(F ) → BG

(9.5)

LJ([n. indGLdn(F )

Pµ σ] =

[n. indGPλ LJ(σ)] for σ ∈ Irr2
C(Mµ), µ = dλ ∈ dP(n),

0 for σ ∈ Irr2
C(Mµ), µ ∈ P(dn) but µ 6∈ dP(n)

giving by linearity a surjective homomorphism (the Badulescu-Jacquet-Langlands corre-
spondence):

LJ : Gr∞C (GLdn(F ))→ Gr∞C (G)
of kernel Cd, section JL, satisfying
(9.6) (−1)dn trace ν(f(g)dg) = (−1)n traceLJ(ν)(ϕ(h)dh)
when ν ∈ Gr∞C (GLdn(F )), f ∈ C∞c (GLdn(F )rs;C), ϕ ∈ C∞c (Grs;C)(d), f ↔ ϕ. The
homorphism LJ commutes with the twist by smooth characters: if χ is a smooth character
of F ∗ and ν ∈ Gr∞C (GLdn(F )),
(9.7) LJ((χ ◦ det)⊗ ν) = (χ ◦ nrd)⊗ LJ(ν),
the normalized parabolic induction: if δ′µ the modulus of P ′µ and ν ∈ Gr∞C (M ′

µ), still
denoting JL : Gr∞C (M ′

µ)→ Gr∞C (Mλ) the natural morphism, we have

(9.8) LJ(indGLdn(F )
P ′µ

(δ′µ
1/2
ν)) =

0 if µ 6∈ dP(n)
indGPλ(δ1/2

λ LJ(ν)) if µ = dλ, λ ∈ P(n)

and is compatible with the Aubert involution ι up to a sign ([Badulescu07] Proposition
3.16):
(9.9) (−1)nι ◦ LJ = LJ ◦ (−1)dnι.
As LJ sends the Steinberg representation of GLdn(F ) to the Steinberg representation of
G, the Aubert involution of the Steinberg representation is the trivial representation up to
a sign, and LJ commutes with the parabolic induction, we have:

(9.10) (−1)nd LJ(πP ′µ) =

(−1)n πPλ if µ = dλ,

0 otherwise.

9.2. The theorem 9.1 is an easy consequence of (9.6), (9.10), and of the linear independance
of the restrictions to K∩GLn(D)rs of the characters of the representations πPµ of GLdn(F )
for µ ∈ P(dn), for any open compact subgroup K of GLdn(F ). We give the details.

Let P = MN be a parabolic subgroup of G of Levi M , σ ∈ Irr2
C(M), π = indGP σ. Let

cπ, cJL(π) be the maps and Kπ, KJL(π) groups in the germ expansions (6.1) of [π], JL([π]),
such that for any g ∈ Kπ ∩ Grs there exists h ∈ KJL(π) ∩ GLdn(F )rs,d with g ↔ h, as
we can because for g ∈ GLn(D)rs, h ∈ GLdn(F )rs,d with the same reduced characteristic
polynomial P (T ), the coefficients of p−jdnF P (TpjF + 1) belong to OF if and only if g is
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conjugate to an element of 1 + pjFMn(OD) if and only if h is conjugate to element of
1 + pjFMdn(OF ) (Lemma 9.4).

Let f ∈ C∞c (KLJ(π) ∩ Grs;C), ϕ ∈ C∞c (Kπ ∩ GLdn(F )rs;C)(d), f ↔ ϕ. The germ
expansion (6.1) applied to (9.6) (−1)n traceLJ(π)(f(g)dg) = (−1)dn traceπ(ϕ(g)dg) gives

(−1)n
∑

λ∈P(n)
cLJ(π)(λ) trace πPλ(f(g)dg) = (−1)dn

∑
µ∈P(dn)

cπ(µ) trace πP ′µ(ϕ(g)dg),

and applying (9.6), then (9.10) to the RHS,

= (−1)n
∑

µ∈P(dn)
cπ(µ) traceLJ(πP ′µ)(f(g)dg) = (−1)dn

∑
λ∈P(n)

cπ(dλ) trace πPλ(f(g)dg).

So, (−1)n ∑
λ∈P(n) cLJ(π)(λ) trace πPλ(f(g)dg) = (−1)dn ∑

λ∈P(n) cπ(dλ) trace πPλ(f(g)dg).
The linear independence of the characters of πPλ on KLJ(π) for λ ∈ P(n) (Corollary 5.7)

and the local integrability of characters imply the 7 linear independence of the characters
of πPλ on KLJ(π) ∩Grs for λ ∈ P(n) and

(−1)dncπ(λ) = (−1)ncLJ(π)(dλ) for λ ∈ P(n).

for any [π] in the basis BG of Gr∞C (G). This ends the proof of the theorem 9.1.

9.3. Applications to cπ((n)) For π ∈ Irr2
C(G) and a division central F -algebra Ddn of

reduced degree dn, there exists a unique πdn ∈ IrrC(D∗dn) such that their images by the
classical Jacquet-Langlands correspondence in Irr2

C(GLdn(F )) are equal. The dimension of
πdn is finite and by Theorem 9.1) (−1)ncπ(n) = −cJL(πdn)(dn) = − dimC πdn. An irreducible
smooth complex representation π of G is tempered if and only if π = indGP σ for a parabolic
subgroups P = MN of G and σ ∈ Irr2

C(M) ([Lapid-Minguez-Tadic16] A.11).
For ν ∈ Gr∞C (GLdn(F )) and λ ∈ P(n), we have (−1)ncLJ(ν)(λ) = (−1)dncν(dλ).

Corollary 9.5. Let π ∈ Rep∞C (G) irreducible and tempered. Then

cπ((n)) =

(−1)n−1 dimC πdn if π ∈ Irr2
C(G)

0 if π 6∈ Irr2
C(G)

.

10. Coefficient field of characteristic different from p

Let R be a field. Our goal is to show that Theorem 1.3 proved using the Harish-Chandra
germ expansion remain valid for R-representations when the characteristic of R is not p.
There are two simple reasons:

a) For a parabolic subgroup P of G, the representation indGP 1 is defined over Z.
b) For a field extension R′/R, the scalar extension from R to R′ of smooth representations

of a profinite group H respects finite length, and is an injection at the level of Grothendieck

7Put K = KLJ(π). Any f ∈ C∞c (G;C) with support in K is a limit of (uniformly bounded) functions fn
with support inK∩Grs, so by the local integrability of characters and the Lebesgue dominated convergence
theorem, traceπPλ(f(g)dg) = limn traceπPλ(fn(g)dg).
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groups [Henniart-Vignéras19]. For an irreducible smooth R-representation π of H, the R′-
representation R′ ⊗R π considered as an R-representation is π-isotypic (a direct sum of
representations isomorphic to π).

From now on, charR 6= p. When π ∈ Rep∞,fR is equal to ∑
λ∈P(n) cπ(λ) indGPλ 1 on Kπ as

in Theorem 1.3, the map cπ is unique because:

Proposition 10.1 (Corollary 5.7). Let K be an open pro-p subgroup of G. For any non
zero map c : P(n)→ Z, the restriction to K of∑

λ∈P(n)
c(λ) [πPλ ] ∈ Gr∞R (G)

is not 0.

Proof. We can supposeR algebraically closed by b). The categories Rep∞R (K) and Rep∞C (K)
are equivalent and the Grothendieck groups Gr∞R (K) and Gr∞C (K) are isomorphic because
K is a pro-p group and charR 6= p. The proposition is true when R = C (Corollary 5.7)
and the representations πPλ correspond. Hence the proposition is true for any R. �

We list other properties which will be used in the proof of the theorem 1.3.

10.1. Twist by a character, image by an automorphism
Assume that π ∈ Rep∞,fR (G) has a germ expansion of map cπ on Kπ (the first part of

Theorem 1.3), χ is a smooth R-character of G and σ is an automorphism of R. Then
the representations π ⊗ χ and σ(π) have a germ expansion of maps cπ⊗χ = cσ(π) = cπ on
Kπ⊗χ = Kσ(π) = Kπ if χ is trivial on Kπ. The reason is a) (∑λ∈P(n) cπ(λ) [πPλ ] is defined
over Z).

10.2. Germ expansion on the Grothendieck group Assume that any π ∈ Rep∞,fR (G)
has a germ expansion of map cπ on some open compact subgroup Kπ of G. Then, the
linear map ν 7→ cν : Gr∞R (G) → {P(n) → Z} such that c[π] = cπ for π ∈ Rep∞,fR (G), has
the property that the restrictions to some open compact subgroup Kν of G of ν and of∑
λ∈P(n) cν(λ) [πPλ ] are isomorphic.
Parabolic induction: For a parabolic subgroup P of G of LeviM , the parabolic induction

indGP is exact and respects finite length and passes to a linear map between the Grothendieck
groups:

indGP : Gr∞R (M)→ Gr∞R (G), indGP [σ] = [indGP σ] for σ ∈ Rep∞,fR (M).

When ν ∈ Gr∞R (M) has a germ expansion of map cν , then indGP ν has a germ expansion of
map induced by cν (Theorem 7.1).

10.3. For j ∈ N>0 and λ is a composition of n, the values of the character ξλ of Kj =
1 +Mn(P j

D) defined by (6.8) and of the character θλ of U defined by (8.3) are roots of 1 of
order powers of p. Assume that the field R contains roots of unity of any p-power order,

we write µp∞ ⊂ R, implying charR 6= p.
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We can define ξλ and θλ over R as before, and the Whittaker support of an irreducible
smooth R-representation of G as before Theorem 8.2.

Let π ∈ Rep∞,fR (G) having a germ expansion of map cπ : P(n) 7→ Z: for a positive
integer j0 the restriction of π and of ∑

λ∈P(n) cπ(λ) indGPλ 1 to Kj0 are equal. With the same
proofs as for R = C, we have:

Theorem 10.2. 1) For any integer j ≥ j0 and any λ partition of n, we have

cπ(λ) = m(ξλ, π)−
∑

µ∈P(n),µ<λ
cπ(µ)m(ξλ, πPµ).(10.1)

In particular when λ is minimal in the support of cπ, cπ(λ) = m(ξλ, π) is positive and
independent of j ≥ j0.

2) Theorem 8.2 is valid.

An algebraically closed field R with charR 6= p contains µ∞p . To prove Theorem 1.3 for
R algebraically closed, by Theorem 10.2 and Proposition 10.1, we have only to prove that
any π ∈ Rep∞,fR (G) has a germ expansion: there exists a map cπ : P(n)→ Z such that π
and ∑

λ cπ(λ) indGPλ 1 have equal on some open compact subgroup Kπ of G.

We prove now Theorem 1.3 going from R = C to R = Qac
` to R = Fac` , ` 6= p, to an

algebraically closed field R, and finally to a not necessarily algebraically closed field R.

10.4. R ' R′. For any prime number `, the fields C and Qac
` are isomorphic. It is easy

to see that if Theorem 1.3 is true for a field R, it is also true for an isomorphic field
R′. Indeed, a field isomorphism j : R → R′ induces isomorphisms of categories jG :
Rep∞R (G)→ Rep∞R′(G) and jK : Rep∞R (K)→ Rep∞R′(K) for any open compact subgroup K
of G. The isomorphisms commute with the restriction to K and the parabolic induction
indGP . For π ∈ Rep∞R (G) and σ ∈ Rep∞R (M),

jK(π|K) = jG(π)|K , indGP (jM(σ)) = jG(indGP σ).

When the theorems are true for R they are also true for R′. For π ∈ Rep∞,fR (G), then
cπ = cjG(π) and we can take KjG(π) = Kπ.

10.5. R ' Fac` for ` 6= p.
The theorems over Qac

` imply the theorem over Fac` by reduction modulo ` for ` 6= p.
We denote by Zac` the ring of integers of Qac

` . A lattice in a Qac
` -vector space V is a free

Zac` -submodule generated by a Qac
` -basis of V .

Let π ∈ Rep∞,fQac
`

(G). One says that π is integral when the space of π contains a G-stable
lattice Lπ. Then, the reduction modulo ` of Lπ equal to Fac` ⊗Zac

`
Lπ belongs to Rep∞,fFac

`
(G)

and its image in the Grothendieck group Gr∞Fac
`

(G) does not depend on the choice of Lπ. It
is called the reduction modulo ` of π, and denoted by r`(π). The subcategory of integral
representations Rep∞,f,intQac

`
(G) in Rep∞,fQac

`
(G) is abelian [Vigneras96]; let Gr∞,intQac

`
(G) be its
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Grothendieck group. The reduction modulo ` passes to a surjective (not injective) map
between the Grothendieck groups:

r` : Gr∞,intQac
`

(G)→ Gr∞Fac
`

(G),

and there is an explicit subset E(G) of Rep∞,f,intQac
`

(G) such that the set {r`(π) | π ∈ E(G)}
is a basis of the Grothendieck group Gr∞Fac

`
(G) ([Minguez-Sécherre14] Théorème 9.35).

For a parabolic subgroup P ofG with LeviM , the parabolic induction indGP : Rep∞Qac
`

(M)→
Rep∞Qac

`
(G) is exact, respects finite length and integrality hence passes to the Grothendieck

groups and r` ◦ indGP = indGP ◦r` on Rep∞,f,intQac
`

(M).
The representation πP over Qac

` are integral, with a canonical integral structure (the
functions with values in Zac` : πP over Zac` ) of reduction modulo ` the representation πP
over Fac` .

If π ∈ Rep∞,f,intQac
`

(G) has a germ expansion of map cπ on Kπ, then r`(π) ∈ Gr∞Fac
`

(G) has
a germ expansion of map cπ on Kπ.

Lemma 10.3. Let π, π′ ∈ Rep∞,f,intQac
`

(G) with r`(π) = r`(π′). Then cπ = cπ′ .

Proof. When j is large, we have (10.1) for π and π′. As Kj is a pro-p group, m(ξλ, π) =
m(r`(ξλ), r`(π)). Therefore r`(π) = r`(π′) implies m(ξλ, π) = m(ξλ, π′). By induction on λ
we deduce cπ = cπ′ . �

As the r`(π) for π ∈ E(G) generate Gr∞Fac
`

(G), Lemma 10.3 gives the existence of a linear
map

c : Gr∞Fac
`

(G)→ {P(n)→ Z} defined by cr`(π) = cπ for π ∈ Rep∞,f,intQac
`

(G).

For π ∈ Rep∞,fFac
`

(G), the restrictions of π and of ∑
λ∈P(n) cπ(λ) r`(πPλ) to some open pro-p

group Kπ of G are isomorphic. Theorem 1.3 when R = Fac` is proved.

10.6. R′/R algebraically closed fields Given an extension R′/R of algebraically closed
fields of characteristic different from p, we prove that the germ expansion over R for all
n ≥ 1 is equivalent to the germ expansion over R′ for all n ≥ 1. Therefore we get Theorem
1.3 over any algebraically closed field R, because we already proved for R = C and R = Fac`
when ` 6= p.

The proof relies on properties, that we now recall, of the scalar extension π 7→ R′⊗R π :
Rep∞R (G)→ Rep∞R′(G) from R to R′ and of the representations of G parabolically induced
from Speh representations of the Levi subgroups of G. Fix the same square root of q = pf

in R and in R′.
The scalar extension from R to R′ respects irreducible smooth representations and cus-

pidality, is exact and passes to an injective linear map ν 7→ R′ ⊗R ν : Gr∞R (G)→ Gr∞R′(G)
between the Grothendieck groups, commutes with the parabolic induction and for any open
pro-p subgroupK ofG is an isomorphism of categories δ 7→ R′⊗Rδ : Rep∞R (K)→ Rep∞R′(K)
[Henniart-Vignéras19]. When π ∈ Rep∞,fR (G) the multiplicitym(δ, π) in π of δ ∈ Rep∞R (K)
irreducible is equal to m(R′ ⊗R δ, R′ ⊗R π). Any irreducible cuspidal R′-representation ρ′
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of G is the twist by an unramified smooth R′-character χ of G of an irreducible cuspidal
R-representation ρ of G, ρ′ = χ⊗ (R′⊗R ρ) = χ⊗R ρ [Vigneras96]. By Lemma 10.4 below,
this is also true for Speh representations.

Let m be a divisor of n = mr, r ≥ 1, and ρ an irreducible cuspidal R-representation of
GLm(D)). To (ρ, n) are attached in [Minguez-Sécherre14]:

• an unramified smooth R-character νρ of GLm(D) depending only on the inertia
class of ρ (loc.cit. §5.2).
• a cuspidal R-segment ∆ρ,n = (ρ, νρ⊗ρ, . . . , ν−1+r

ρ ⊗ρ) of length r, denoted [0,−1+
r]ρ in (loc.cit. §7.2).
• an irreducible subrepresentation Z(∆ρ,n) ∈ Rep∞R (GLn(D)) (a Speh representa-
tion) of the normalized parabolic induction ρ × . . . × (ν−1+r

ρ ⊗ ρ) of ρ ⊗ . . . ⊗
(ν−1+r
ρ ⊗ ρ) ∈ Rep∞R Mλ for λ = (m, . . . ,m) ∈ P(n) (loc.cit. §7.2).

Lemma 10.4. For each unramified smooth R′-character χ of F ∗,
(χ ◦ nrd)⊗R Z(∆ρ,n) ' Z(∆(χ◦nrd)⊗Rρ,n).

This important property is stated in [Minguez-Sécherre17][(8.1.2)] (c.f.[DS23, Lemme
5.9]).

To a composition (n1, . . . , nr) of n, a divisor mi of ni and an irreducible cuspidal R-
representation ρi of GLmi(D)) for 1 ≤ i ≤ r, are associated

• a cuspidal R-multisegment M = (∆ρ1,n1 , . . . ,∆ρr,nr),
• a Speh R-representation Z(M) = Z(∆ρ1,n1)⊗ . . . Z(∆ρr,nr) of M = M(n1,...,nr),
• the normalized parabolic induction n.I(M) = indGP (Z(M)δ1/2

P ) of Z(M) where
P = P(n1,...,nr) and δP is the module of P .

The Grothendieck group Gr∞R (G) is generated by the [n.I(M)] for the cuspidalR-multisegments
M of GLn(D) ([Minguez-Sécherre14] proof of Lemma 9.36 with Proposition 9.29).

But Z(M)δ1/2
P is also a Speh representation Z(M′) = Z(∆ρ′1,n1)⊗ . . . Z(∆ρ′r,nr) where ρ′i

is the twist of ρi by an unramified character. Therefore Gr∞R (G) is also generated by the
images of the parabolic induction I(M) = indGP (Z(M)) for the cuspidal R-multisegments
M. If the Speh R-representations Z(M) of G have a germ expansion then the I(M) have
a germ expansion (Theorem 7.1) and any π ∈ Rep∞,fR (G) has a germ expansion.

We are now ready to prove that the existence of a germ expansion over R is equivalent
to the existence of a germ expansion over R′. Let M′ = (∆ρ′1,n1 , . . . ,∆ρ′r,nr) be a cuspidal
R′-multisegment of GLn(D). For i = 1 . . . , r, ρ′i is an irreducible smooth cuspidal R′-
representation of GLmi(D) for a divisor mi of ni; there exists an unramified smooth R′-
character χ′i and an irreducible smooth cuspidal R′-representation of GLmi(D) such that
ρ′i = ρiχi and Z(∆ρ′i,ni

) = χ′iZ(∆ρi,ni). Let M = (∆ρ1,n1 , . . . ,∆ρr,nr) and χ′ the unramified
R′-character of Mn1,...,nr corresponding to the χ′i. Then Z(M′) = χ′Z(M). The Speh R′-
representation Z(M′) has a germ expansion if and only if the Speh R-representation Z(M)
has a germ expansion.
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10.7. R not necessarily algebraically closed Let R be a field of characteristic different
from p. We prove that there is a germ expansion over R when there is a germ expansion
over an algebraic closure Rac of R, using the following properties of the scalar extension
from R to Rac [Henniart-Vignéras19]:

For π ∈ Rep∞R (G) irreducible, the Rac-representaton Rac ⊗R π has finite length because
π is admissible as the characteristic of R is different from p. Assume that there is a map
c : P(n)→ Z such that Rac ⊗R π = Rac ⊗R (∑

λ c(λ)πPλ on an open compact subgroup K
of G. The scalar extension Gr∞R (K)→ Gr∞Rac(K) from R to Rac is injective.

Therefore π = ∑
λ c(λ)πPλ on K. The representation π has a germ expansion with the

same map cπ = cRac⊗Rπ = c. The above properties of the scalar extension from R to Rac

imply:
For any irreducible subquotient π′ of Rac ⊗R π, we have

(10.2) cπ = `πcπ′ where `π is the length of Rac ⊗R π.

Therefore cπ and cπ′ have the same support. As cπ′(λ) > 0 when λ is minimal in the
support of cπ′ (Theorem 10.2), cπ(λ) > 0. This ends the proof of Theorem 1.3.

10.8. The Jacquet-Langlands correspondence
The classical Jacquet-Langlands correspondence JL between essentially square inte-

grable representations on both sides, is compatible with character twists and equivariant
under the action of Aut(C). Transported to Qac

`
8,

JL : Irr2
Qac
`

(G)→ Irr2
Qac
`

(GLdn(F ))

preserves the property of being integral, and two integrals representations of G are congru-
ent modulo ` if and only if their images under JL are congruent modulo ` ([Minguez-Sécherre17]
Theorem 1.1). Once a square root of q = pf in Qac

` has been chosen when f is odd to
normalize parabolic induction, the Jacquet-Langlands correspondence LJ transported to
the Grothendieck groups of Qac

` -representations does reduce modulo ` thus yielding a map
for Fac` -representations ([Minguez-Sécherre17] Theorem 1.16)

LJ : Gr∞Fac
`

(GLdn(F ))→ Gr∞Fac
`

(G).

By our argument of reduction modulo ` in §10.5 we see that Theorem 9.1 is valid for Fac` -
representations. When R is an algebraically closed field of characteristic different from p,
the reasoning of §10.6 then gives a map

LJ : Gr∞R (GLdn(F ))→ Gr∞R (G)

satisfying Theorem 9.1 for R-representations.

Theorem 10.5. (Theorem 9.1). When R is an algebraically closed field of characteris-
tic different from p, for ν ∈ Gr∞R (GLdn(F )) and λ ∈ P(n), we have (−1)ncLJ(ν)(λ) =
(−1)dncν(dλ).

8(for the root of q in Qac` image of √q ∈ C via the isomorphism)
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Remark 10.6. WhenD 6= F , there are cuspidal complex representations ofGLn(D) that are
isomorphic to their complex conjugate, and not the scalar extension of a real representation.
So the Jacquet-Langlands correspondence does not descend to an arbitrary fied R.

A counter-example occurs already for D∗ and D is a quaternion field over F with q ≡ 3
mod 4. Take a regular complex character χ of k∗D of order 4, seen as a character of O∗D
and extended by −1 on a uniformizer pF of F . The induced representation indD∗F ∗O∗D χ has
dimension 2 and its image is the quaternion group of order 8 which is not defined over
R. The irreducible representation π0 = JL(indD∗F ∗O∗D χ) of GL2(F ) is cuspidal of level 0
and can be explicited. For example for F = Q3, the irreducible cuspidal representation
σ0 of GL2(F3) corresponding to π0 has dimension 2 and is defined over R. As the central
character of π0 is trivial on O∗F , σ0 factorizes by PGL2(F3) = S4 which has all its irreducible
representations defined over R and even over Q.

11. Invariant vectors by Moy-Prasad subgroups

We prove in this section Theorem 1.4. Let R be a field, P a parabolic subgroup of G of
Levi M and K an open compact subgroup of G. The positive integer

dimR(πP )K = |P\G/K|
depends only on [πP ], hence only on the conjugacy class of M and of K. We can suppose
that P = Pλ for λ ∈ P(n) and K ⊂ K0. We have G = PλK0 and Pλ\G/K ' (Pλ ∩
K0)\K0/K.

Example 11.1. We have (Pλ∩K0)\K0/1+Mn(PD) ' Pλ(kD)\GLn(kD) where kD = OD/PD
is the residue field of D, qD its cardinality. We deduce

|Pλ\G/1 +Mn(PD)| = [n!]qD/
∏
i

[λi!]qD ,

where [n!]q = ∏n
m=1[m]q, [m]q = (qm − 1)/(q − 1) ([Suzuki22] Lemma 1.13).

Proposition 11.2. Let Gx,r denote the a Moy-Prasad subgroup of G fixing an element x
of the building of the adjoint group BT of G, and r is a positive real number, and j ∈ N.
We have
(11.1) |P\G/Gx,r+j/d| = |P\G/Gx,r| qd dλj.

When K ′ is a normal open subgroup of K,

|P\G/K ′| =
∑

g∈P\G/K
|P\PgK/K ′|, |P\PgK/K ′| = [K : K ′]

[(K ∩ g−1Pg) : (K ′ ∩ g−1Pg)] .

The group Gx,r+j/d is normal in Gx,r, and (11.1) follows from :

Proposition 11.3. We have [Gx,r ∩ P : Gx,r+1/d ∩ P ] = qd (n2−dλ).

Note that the index is the same for all (x, r). The D-dimension of the Lie algebra p of
P is n2 − dλ where λ ∈ P(n) is the partition such that P is associated to Pλ.
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Example 11.4. When P = G, then λ = (n), d(n) = 0, [Gx,r : Gx,r+1/d] = qdn
2 .

When P = B, then λ = (1, . . . , 1), d(1,...,1) = n(n − 1)/2, [Gx,r ∩ B : Gx,r+1/d ∩ B] =
qd (n(n+1)/2).

Proof. It is more convenient to use lattice functions rather than points in the Bruhat-Tits
building BT . For that we follow [Broussous-Lemaire02] denoted here by [BL]. Recall that
a lattice function is a map Φ from R to OD-lattices in Dn satisfying the conditions of ([BL]
Definition 2.1); in particular

(11.2) Φ(s+ 1/d) = PD Φ(s) for any s ∈ R.

The group R acts on lattice functions by translations, and to a lattice function is associated
a point in BT . That point is the same for a translate, and one gets in that way a G-
equivariant bijection from the set of lattice functions up to translation onto BT . For any
lattice function Φ and any r ∈ R, one defines a lattice in Mn(D)

gΦ,r = {A ∈Mn(D) | A(Φ(s)) = Φ(r + s) for any s ∈ R}.

In their introduction [BL] indicate that gΦ,r = gx,r where x ∈ BT corresponds to Φ and
gx,r is the lattice in Mn(D) defined by Moy and Prasad. They also say that the subgroup
Gx,r for r ≥ 0, of G defined by Moy and Prasad satisfies:

Gx,0 = (gΦ,0)∗, Gx,r = 1 + gΦ,r if r > 0.

They refer to their Appendix A, written by B.Lemaire; the relevant comments are in the
lines before their Proposition A.3.6.

An immediate consequence of condition (11.2) is that gΦ,r+1/d = PD gΦ,r. That implies
in particular that

[gΦ,r : gΦ,r+1/d] = qdn
2 for any r > 0.

More generally, if W is a sub-D-vector space of Mn(D), gΦ,r+1/d ∩W = PD (gΦ,r ∩W ).
Applying that to p, we get

[gΦ,r ∩ p : gΦ,r+1/d ∩ p] = qd dimD(p) for any r > 0.

This proves the proposition because [Gx,r ∩ P : Gx,r+1/d ∩ P ] = [gΦ,r ∩ p : gΦ,r+1/d ∩ p] for
r > 0 and dimD(p) = n2 − dλ. �

We deduce:

Corollary 11.5. Let P be a parabolic subgroup of G associated to Pλ for λ ∈ P(n), and
Gx,r+j/d a Moy-Prasad subgroup for x ∈ BT , r ∈ R, r > 0 and j ∈ N. We have for g ∈ G,

|P\PgGx,r/Gx,r+1/d| =
[Gx,r : Gx,r+1/d]

[(Gx,r ∩ P ) : (Gx,r+1/d ∩ P )] = qd dλ .(11.3)

Clearly, (11.1) follows from (11.3).
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Example 11.6. 1) For a vertex x of BT , the Moy-Prasad group Gx,0 is conjugate to K0 =
GLn(OD) and Gx,r is conjugate to K1 = 1 + pDMn(OD) for 0 < r ≤ 1/d. Hence

|Pλ\G/Gx,r| =

|Pλ\G/K0| = 1 if r = 0,
|Pλ\G/K1| =

[n]
qd

!∏
k
[λk]

qd
! if 0 < r ≤ 1/d.

where [n]q! = q−1
q−1 . . .

qn−1
q−1 . Indeed |Pλ\G/K0| = 1 because G = PλK0, and |Pλ\G/K1| =

[GLn(Fqd) : Pλ(Fqd)].
2) For the barycenter x of an alcove, Gx,0 is conjugate to the Iwahori group I, inverse

image in K0 of the upper triangular group of GLn(kD), and Gx,r is conjugate to the pro-
Iwahori group I1/d, inverse image of the strictly upper triangular group of GLn(kD), for
0 < r ≤ 1/d. Write J for the lattice of (xi,j) ∈ Mn(OD) with xi,j ∈ PD when i > j, and
J1/d for the lattice of (xi,j) ∈Mn(OD) with xi,j ∈ PD when i ≥ j. Then,

I = I∗, I1/d = 1 + J1/d for 0 < r ≤ 1/d.
We have Pλ\G/I ' Pλ\G/I1/d ' (Sλ1 × . . .× Sλr)\Sn hence

|Pλ\G/Gx,r| = |Pλ\G/I| = |Pλ\G/I1/d| =
n!∏
k λk!

.

Remark 11.7. Proposition 11.3 reduces the computation of |Pλ\G/Gx,r| for r > 0 to the
case 0 < r < 1/d. For g ∈ G, x ∈ BT , r ≥ 0, we have gGx,rg

−1 = Gg(x),r; this reduces
the computation of |Pλ\G/Gx,r| for x ∈ BT to the case where x belongs to the the closed
alcove A of BT determined by B.

Theorem 1.3 implies for π ∈ Rep∞,fR (G),
(11.4) dimR π

Gx,r+j/d =
∑

λ∈P(n)
cπ(λ) |Pλ\G/Gx,r+j/d|.

and the integer cπ(λ) is positive if dλ = d(π) then λ is minimal in the support of cπ.
Applying (11.1), we deduce Theorem 1.4.
Remark 11.8. (i) The polynomial Pπ,Gx,r(X) is determined by those where x is in a

closed alcove of BT and 0 < r < 1/d because
Pπ,Gx,r+j/d(X) = Pπ,Gx,r(qdjX) for 0 < r < 1/d, j ∈ N.

Pπ,Gx,r(X) = Pπ,Gg(x),r(X) for 0 ≤ r, g ∈ G.
(ii) For π ∈ Rep∞,fR (G), and any Moy-Prasad pro-p group Gx,r of G

dimR π
Gx,r+j/d ∼ aπ,Gx,r q

d(π)dj when j ∈ N goes to infinity.
The integer d(π) can be called the Gelfand-Kirillov dimension of π.

12. G = GL2(D)

In this section we assume that G = GL2(D), R is a field of characteristic different from
p except in §12.5 where its characteristic is p, and we give more details on the polynomial
Pπ,K(X) attached to π ∈ Rep∞,fR (G) and a Moy-Prasad subgroup K.
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12.1. The Moy-Prasad open compact subgroups of G are conjugate to the open compact
subgroups

K0 ⊃ I0 ⊃ I1/2 ⊃ K1 ⊃ I1 ⊃ I3/2 ⊃ K2 ⊃ I2 ⊃ . . . ,

where K0 = GL2(OD), I0 = j∗ = red−1B(kD) an Iwahori subgroup, I1/2 = 1 + j1/2 =
red−1 U(kD) a pro-p Iwahori subgroup, for j ∈ N,

Ij+1/2 = 1 + pjDj1/2, Kj+1 = 1 + pj+1
D M2(OD), Ij+1 = 1 + pj+1

D j,

where j is the lattice of (xi,j) ∈M2(OD) with x2,1 ∈ PD, j1/2 is the lattice of (xi,j) ∈ j with
x1,1, x2,2 ∈ PD, and red : GL2(OD)→ GL2(kD) is the reduction modulo pD.

The parahoric subgroups of G are conjugate to K0 and I0. The Moy-Prasad subgroups
of G which are pro-p groups are conjugate of Ij+1/2, Kj+1, Ij+1 for j ∈ N 9.

To justify the preceding assertions, it is convenient to use of lattice functions Φ from
R to in D ⊕ D, as in the proof of Proposition 11.3. The lattice function Φ0 with value
L0 = OD ⊕ OD at 0 and PDL0 at s for 0 < s < 1/d gives a vertex x0 in the Bruhat-Tits
tree BT of G, and Gx0,0 = g∗Φ0,0 is the stabilizer K0 of L0, whereas Gx0,r = 1 + gΦ0,r for
r > 0 so that Gx0,r = Kj+1 if dr = j + s with 0 < s ≤ 1. This gives the groups Kj in the
list and accounts for all Moy-Prasad subgroups associated to the vertices of BT .

Any point in BT is sent by G to a point in the segment with ends x0 and the vertex x1
corresponding to L1 = OD ⊕ PD so it suffices to look at the Moy-Prasad subgroups Gxα,r

when xα is a barycenter αx0 + (1 − α)x1 with 0 < α < 1. Since there is an element of
G exchanging x0 and x1, we need only look at 0 < α < 1/2 which we now assume. A
lattice function Φα giving xα takes value L0 at 0, L1 at s if 0 < s ≤ α/d and PDL0 if
α/d < s ≤ 1/d. Then Gxα,0 is the intersection of the stabilizers of L0 and L1, that is I0.
For 0 < dr ≤ α, Gxα,r+j/d = Ij+1/2 for any j ∈ N, as gΦα,r is the set of X ∈M2(D) sending
L0 in L1, and L1 in PDL0.
For α < dr ≤ 1− α (which cannot happen if α = 1/2), Gx?,r+j/d = Kj+1 for any j ∈ N, as
gΦα,r is the set of X ∈M2(D) sending L0 and L1 in PDL0.
When 1− α < dr < 1 we find similarly that Gxα,r+j/d = Ij+1 for any j ∈ N.

The indices between two consecutive groups are
[K : I] = q+1, [I : I1/2] = (q−1)2, [I1/2 : K1] = q, [K1 : I1] = q, [I1 : I3/2] = q2, [I3/2 : K2] = q,

and so on. Proposition 11.3, Corollary 11.3 and Remark 11.7 give the integers
• |B\G/K0| = 1 as G = BK0,
• |B\G/I0| = |B\G/I1/2| = 2 as G = BI t BsI = BI1/2 t BsI1/2, where s is the
antidiagonal matrix with coefficients 1.
• |B\G/K1| = (q2d − 1)(q2d − qd)/qd(qd − 1)2 = qd + 1.
• |B\G/I1| = 2qd because B\G/I1 = B\BI/I1 tB\BsI/I1 and

B\BI/I1 ' (B ∩ I)\I/I1 ' ((B ∩ I)/(B ∩ I)1)\(I/I1),
B\BsI/I1 ' B−\G/I1 ' ((B− ∩ I)/(B− ∩ I)1)\(I/I1),
|(I1∩B)\(I∩B)| = |(I1∩B−)\(I∩B−)| = (qd−1)2qd and [I : I1] = (qd−1)2q2d.

9The indices of the preceding section have been multiplied by d
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• |B\G/Ij+1/2| = 2qdj.
• |B\G/Kj+1| = (qd + 1)qdj.
• |B\G/Ij+1| = 2qd(j+1).

12.2. There are only two nilpotent orbits {0} and O 6= {0} corresponding to the partitions
(2) and (1, 1) of 2. By the germ expansion for π ∈ Rep∞,fR (G) (Theorem 1.3), there exists
aπ, bπ ∈ Z and an integer jπ ≥ 0 such that for any integer j ≥ jπ

• dimC π
I1/2+j = aπ + 2 bπ qdj,

• dimC π
K1+j = aπ + (qd + 1) bπ qdj,

• dimC π
I1+j = aπ + 2qd bπ qdj.

12.3. The maps π 7→ aπ and π 7→ bπ are additive hence determined by their values on
irreducible representations. For π ∈ Rep∞R (G) irreducible,

• aπ = dimR π, bπ = 0 if the dimension of π is finite ( dimR π = 1 if R is algebraically
closed),
• bπ > 0 if the dimension of π is infinite.

The dimension of σ ∈ Rep∞,fC (T ) is finite and by Theorem 7.1 for π = indGB σ,
• aπ = 0, bπ = dimR σ.

The R-representation indGB 1 contains the trivial representation 1 of G and the quotient St
is called the Steinberg representation. By additivity, a1 + aSt = aindGB 1, b1 + bSt = bindGB 1
hence

• aSt = −1, bSt = 1.
For g ∈ G, let vD(g) be the integer such that | nrd(g)| = qvD(g).

Proposition 12.1. The Steinberg R-representation St of G is reducible if and only if St
is indecomposable of length 2, with a cuspidal subrepresentation c St and the character
(−1)vD(g) as a quotient, if and only if charR = ` > 0 divides qd + 1.
The representation indGB 1 is indecomposable except when charR = ` is odd and divides

qd − 1.

Proof. This is proved in [Vigneras96] if D = F , and follows from [Minguez-Sécherre14] in
general. We indicate how to get the result using techniques of [Vigneras96]. The restriction
of indGB(1) to B is the direct sum indGB 1 = 1 ⊕ τ of the trivial representation 1 on the
line of constant functions and of the representation τ on the space of functions vanishing
at 1, i.e. with support in BsN , isomorphic to the representation of B by conjugation
on C∞c (N ;R). Integrating such functions on N against a Haar measure (that is taking
coinvariants) gives that the modulus δB of B is a quotient of τ . Moreover δB does not split
as a subrepresentation of τ since δB is trivial on N and obviously the restriction of τ to
N has no trivial subrepresentation. One proves as in ([Bushnell-Henniart06] 8.2) that the
corresponding subrepresentation τ 0 of B is irreducible, so τ is indecomposable of length 2
with quotient δB.

Thus indGB(1) has length ≤ 3, and it can have length 3 only if δB extends to an R-
character G. This latter property is equivalent to q2d = 1 in R because δB is the inflation
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of the character νd⊗ν−d of T where ν is the character ν(x) = | nrd(x)| of D∗. If charR = 0
or charR = ` > 0 not dividing q2d − 1, then St is irreducible. Otherwise, δB extends to the
the character νd of G where ν(g) = | nrd(g)| for g ∈ G, the contragredient indGB(δB) = νd⊗
indGB 1 of indGB(1) has a unique one-dimensional subrepresentation νd, which is consequently
a quotient of indGB(1). If ` divides qd + 1 but not qd− 1, the character νd = (−1)valD is not
trivial, then indGB(1) is indecomposable of length 3 and StG is indecomposable of length 2
with quotient (−1)valD .

If ` divides qd − 1, δB is trivial and B\G admits a G-invariant measure giving volume
0 to B\G if ` divides also qd + 1 (which means ` = 2) and 1 otherwise. Integration on
B\G implements the duality between indGB(1) and itself. The integration on B\G is 0 on
the constant functions if ` divides qd + 1 and the identity otherwise. Therefore if ` divides
qd + 1, the space of constant functions is isotropic, so its orthogonal has codimension 1,
and again indGB(1) is indecomposable of length 3 and St is indecomposable of length 2 with
quotient the trivial representation. But if ` does not divides qd + 1, indGB(1) = 1⊕ St and
St is irreducible otherwise it would have a cuspidal subquotient which would be contained
in indGB 1 (autodual) which is impossible by Frobenius. �

By additivity,
• acSt = −2, bcSt = 1.

When µp∞ ⊂ R, there are two kinds of Whittaker spaces for π: the trivial one, dual of
the U -coinvariants πU of π, and the non-degenerate one, dual of the coinvariants πU,θ of π
by a non trivial character θ of U . By Theorem 8.2 we have for π irreducible

• bπ = dimR(πU,θ),
This equality is valid when π has finite length because the θ-coinvariant functor is exact.
In particular for σ ∈ Rep∞,fC (T )

• dimR(indGB σ)U,θ = dimR σ

12.4. Assume R = C and σ ∈ Rep∞C (T ) irreducible. The normalized parabolic induction
indGB(δ1/2

B ⊗ σ) of σ is reducible if and only if σ = ρ ⊗ (χρ ⊗ ρ) where ρ is an irreducible
representation of D∗, and χρ the unramified character of D∗ giving the cuspidal segment
∆ρ,2 = {ρ, χρ ⊗ ρ} ([Lapid-Minguez-Tadic16] for a proof which does not use the Jacquet-
Langlands correspondence). In this case, indGB(δ1/2

B ⊗σ) is indecomposable of length 2, one
irreducible subquotient is the Speh representation Z(∆ρ,2) and the other subquotient is an
essentially square integrable representation L(∆ρ,2).

The Speh subrepresentation Z(∆ρ,2) is a character if and only if dimC ρ = 1. In that
case, L(∆ρ,2) is the twist of the Steinberg representation St by this character. The twist
of π by a character does not change the value of the aπ, bπ. Hence

• aL(∆ρ,2) = −1, bL(∆ρ,2) = 1 if dimC ρ = 1,
by unicity of the Whittaker model as bL(∆ρ,2) = dimC(L(∆ρ,2)U,θ > 0.

When D 6= F , there are irreducible complex representations ρ of D∗ of dimension > 1.
In that case, the Speh representation Z(∆ρ,2) is infinite dimensional hence is generic.
The essentially square integrable representation L(∆ρ,2) is also infinite dimensional hence
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generic; it corresponds by Jacquet-Langlands to an irreducible representation πρ,2 of the
multiplicative group D∗2d of a central division F -algebra of reduced dimension 2d. Recalling
Corollary 9.5, we have when dimC ρ > 1:

• aZ(ρ,2) = −aL(ρ,2) = dimC πρ,2,
• bZ(ρ,2) + bL(ρ,2) = dimC(indGB σ)U,θ = dimC σ,
bZ(ρ,2) = dimC Z(∆ρ,2)U,θ > 0, bL(ρ,2) = dimC L(∆ρ,2)U,θ > 0.

The T -stabilizer of the non-trivial character θ(u) = ψ ◦ trd(v) for u = 1 + v in U ,
Tθ = {diag(d, d) | d ∈ D∗},

acts naturally on the θ-coinvariants of a representation of G. How does one identify the
two factors of (indGB σ)U,θ = Z(ρ, 2)U,θ ⊕ L(ρ, 2)U,θ ? We shall come back to that question
in future work.10

When π ∈ Rep∞C (G) irreducible is not isomorphic to a subquotient of indGB σ for σ ∈
Rep∞C (T ) irreducible, it is called supercuspidal. Its dimension is infinite, it is essentially
square integrable and corresponds by Jacquet-Langlands to an irreducible representation
π2 of D∗2d. We have for π ∈ Rep∞C (G) irreducible supercuspidal (Corollary 9.5):

• aπ = − dimC π2, bπ = dimC(π)U,θ > 0.
For some supercuspidal representation π, D. Prasad and A. Raghuram computed dimC(π)U,θ
[Prasad-Raghuram00]. When D = F , bπ = 1 by the unicity of the non-degenerate
Whittaker model. The explicit classification of the irreducible cuspidal representations
of GL2(F ) or the explicit Jacquet-Langlands correspondence alllows to compute explicitely
aπ. The normalized level `(π) of π ∈ Rep∞C (GL2(F )) irreducible defined in ([Bushnell-Henniart06]
12.6) is the minimum of two half-integers: the smallest integer j such that πKj+1 6= 0 and
the smallest element j ∈ 1/2Z such that πIj+1/2 6= 0. It is equal to the depth of π defined
in [Moy-Prasad96]. Since aπ stays the same if we twist π by a character, we may assume
that π is minimal in the sense that `(π) ≤ `(π ⊗ χ) for any character χ of GL2(F ).

Proposition 12.2. For π ∈ Rep∞C (GL2(F )) irreducible cuspidal and minimal, we have
aπ = −2q`(π) if `(π) is an integer, and aπ = −(q + 1)q`(π)−1/2 otherwise.

Proof. It is easier to use the Jacquet-Langlands correspondence. We compute dimC π2,
where π2 is the irreducible smooth representation of D∗2 corresponding to π. The level `(π2)
of π2 is the smallest integer j such that π2 is trivial on 1+P j+1

D2 , and shows that `(π2) = 2`(π)
([Bushnell-Henniart06] 56.1). Since the Jacquet-Langlands correspondence is compatible
with character twists, π2 is minimal. By ([Bushnell-Henniart06] 56.4 Proposition) π2 is
induced from a representation Λ of a subgroup J of D∗2 described in ([Bushnell-Henniart06]
56.5 Lemmas 1 and 2). If `(π2) = 2j + 1 is odd, then J = E∗(1 + P j+1

D2 ) where E/F is a
ramified quadratic extension in the quaternion division algebra D2, and Λ is a character,
so that dimC π2 = (q + 1)qj, confirming the second case in the proposition. If `(π2) = 2j
is a multiple of 4, then J = E∗(1 + P j+1

D2 ) where E/F is now unramified and Λ is again
10After this paper was written, we received a paper of S. Nadimpalli and M. Sheth [Nadimpalli-Sheth23]

calculating the dimensions of the two factors for certain ρ
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a character, so that dimC π2 = 2qj. Finally if `(π2) = 2j is not a multiple of 4, then J
contains E∗(1 +P j+1

D2 ) with index q2, where again E/F is unramified, but Λ has dimension
q, so that dimC π2 = 2q.q2j/qj−1q2 = 2qj as expected. �

Remark 12.3. 1) If π is cuspidal and minimal, and πIj = 0 for an integer j > 0 then
πKj = 0, so that the exponent of q in the proposition is the smallest integer such that
πKj+1 6= 0.

2) As pointed out in ([Bushnell-Henniart06] Chapter 13, 56.9: Comments), the Jacquet-
Langlands correspondence there is characterized by its compatibility with character twists
and preservation of the ε-factors. But since the Jacquet-Langlands characterized by equal-
ity of characters possesses those properties, both correspondences are the same.

3) Instead of using the Jacquet-Langlands correspondence in the proof we could have
used the known fact that the character of π is constant, equal to −δ(π)/δ(StG), on elliptic
regular elements close to identity, where δ denotes the formal degree ([Howe74] when
charF = 0, [Bushnell-Henniart-Lemaire10] when charF = p). The quotient δ(π)/δ(StG)
has been computed for GLn(F ) when n is prime in ([Carayol84] Section 5).

12.5. Coefficient field of characteristic p Up to now the characteristic of the coefficient
field R was p. But some results may remain true for a field R of characteristic p, for
example the dimension of the invariants of an irreducible admissible non-supersingular R-
representation of G = GL2(D), by congruence subgroups of Moy-Prasad subgroups of G
(Theorem 1.4).

Let R be a field of characteristic p and σ = ρ ⊗ ρ′ ∈ Rep∞R (T ) irreducible, ρ, ρ′ ∈
Rep∞R D∗. If the inflation σ̃ of σ to B does not extend to G, the parabolically induced
representation indGB σ is irreducible. Otherwise, ρ ' ρ′, indGB σ is indecomposable of length
2, contains the (unique) finite dimensional representation σG extending σ̃, of quotient σG⊗
St where St = indGB 1/1 is the Steimberg representation. Those are the not supersingular
irreducible representations ([AbeHenniartHerzigVignéras17] when R is algebraically closed
and [Henniart-Vignéras19] in general).

Lemma 12.4. When σ̃ extends to a representation σG of G, we have σG = τ ⊗ nrdG/F ∗,
and σ ' ρ⊗ ρ with ρ ' τ ⊗ nrdD∗/F ∗ for τ ∈ Rep∞R F ∗ irreducible.

Proof. When R is algebraically closed, this follows from Lemma 6.1. In general, let
Rac/R be an an algebraic closure. There exists a character χ ∈ Rep∞Rac F ∗ such that
χ ⊗ nrdG/F ∗ , χ ⊗ nrdD∗/F ∗ is a subquotient to Rac ⊗R σG, Rac ⊗R ρ ' Rac ⊗R ρ′. Let
τ ∈ Rep∞R F ∗ irreducible such that χ is a subquotient to Rac⊗R τ . Then σG = τ ⊗nrdG/F ∗ ,
ρ ' ρ′ ' τ ⊗ nrdD∗/F ∗ . �

Proposition 12.5. Let π ∈ Rep∞R (G) irreducible not supersingular. For j ≥ 0, we have

• dimR π
I1/2+j = aπ + 2 bπ qdj,

• dimR π
K1+j = aπ + (qd + 1) bπ qdj,

• dimR π
I1+j = aπ + 2qd bπ qdj,
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where

(aπ, bπ) =


(0, dimR σ) if π = indGB σ
(dimR σ, 0) if π = σG

(− dimR σ, 1) if π = σG ⊗ St
,

and σ ∈ Rep∞R (T ∗).

Proof. The formulas for a finite dimensional representation and for indGB σ are clear. They
imply the formula for the twisted Steinberg representations by the next proposition. �

Proposition 12.6. Let R be a field, and K a Moy-Prasad pro-p subgroup of G. The
natural map (indGB 1)K → StK is surjective.

Proof. When charR 6= p, the K-invariant functor is exact and the surjectivity is clear.
When charR = p, one can argue as follows.

The image of f ∈ indGB 1 in St is K-invariant if and only if there exists a map cf : K → R
such that f(gk) = f(g) + cf (k) for any g ∈ G, k ∈ K. As f(gkk′) = f(g) + cf (kk′) =
f(gk) + cf (k′) = f(g) + cf (k) + cf (k′) for k, k′ ∈ K, the map cf is an homomorphism.
For k ∈ K ∩ B we have f(k) = f(1) hence cf (k) = 0. For k ∈ K ∩ sBs we have
f(sk) = f(skss) = f(s) because sks ∈ B, hence cf (k) = 0. As K ∩ B and K ∩ sBs
generate K, we deduce that cf = 0. �

Let G = GL(2,Qp) and π ∈ RepFacp (G) irreducible supersingular. By ([Morra13] Propo-
sition 4.9, Corollary 4.15), for p odd and j ≥ 0, we have:

• dimC π
I1/2+j = aπ + 2bπ pj, where (aπ, bπ) = (−2, 2),

• dimC π
K1+j = a′π + (p+ 1) bπ pj, where

a′π =

−3 if π = π0 ⊗ (χ ◦ det) for a character χ ∈ Rep∞Facp F
∗

−4 otherwise
.

Here π0 denote the supersingular irreducible quotient of Facp [GL(2,Zp)Z\G], Z the center
of G.
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