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Abstract. Let F be a locally compact non-archimedean field of residue char-
acteristic p, G a connected reductive group over F , and R a field of char-
acteristic p. When R is algebraically closed, the irreducible admissible R-
representations of G = G(F ) are classified in [J. Amer. Math. Soc. 30
(2017), no. 2, 495–559] in term of supersingular R-representations of the Levi
subgroups of G and parabolic induction; there is a similar classification for
the simple modules of the pro-p Iwahori Hecke R-algebra H(G)R in [N. Abe,
DOI:10.1515/crelle-2016-0043]. In this paper, we show that both classifications
hold true when R is not algebraically closed.
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I. Introduction

I.1 In this paper, p is a prime number, F is a locally compact non-archimedean
field of residual characteristic p, G is a connected reductive group over F and finally
R is a field.

Recent applications of automorphic forms to number theory have imposed the
study of smooth representations of G = G(F ) on R-vector spaces; indeed one
expects a strong relation, à la Langlands, with R-representations of the Galois
group of F . The most intriguing case is when the characteristic of R is p - the only
established case, however, is that of GL(2, Qp).

The first focus is on irreducible representations. When R is algebraically closed
of characteristic p, the irreducible admissible R-representations of G have been
classified in terms of parabolic induction of supersingular R-representations of Levi
subgroups of G [AHHV]. But the restriction to algebraically closed R is undesir-
able: for example, in the work of Breuil and Colmez on GL(2, Qp), R is often finite.
Here we extend to any R the classification of [AHHV] and its consequences.

Let B be a minimal parabolic subgroup of G and I a compatible pro-p Iwahori
subgroup of G. If W is a smooth R-representation of G, the space W I of I-
fixed elements is a right module over the Hecke ring H(G) of I in G; it is non-
zero if W is, and finite dimensional if W is admissible. Even though W I might
not be simple over H(G) when W is irreducible, it is important to study simple
R ⊗H(G)-modules. When R is algebraically closed of characteristic p, they have
been classified ([Abe], see also [AHenV2, Cor:4.30]) in terms of supersingular R⊗
H(M)-modules, where M is a Levi subgroup of G and H(M) the Hecke ring of I∩M
in M . The classification uses a parabolic induction process from H(M)-modules to
H(G)-modules. Again we extend that classification to any R of characteristic p.

I.2 Before we state our main results more precisely, let us describe our principal
tools for reducing them to the known case where R is algebraically closed - those
tools are developed in section II.

The idea is to introduce an algebraic closure Ralg of R, and study scalar exten-
sion from R-representations of G to Ralg-representations of G, or from R ⊗H(G)-
modules to Ralg ⊗H(G)-modules. The important remark is that when W is an
irreducible admissible R-representation of G, or a simple R⊗H(G)-module, its com-
mutant has finite dimension over R. The following result examines what happens
for more general extensions R′ of R.

Theorem I.1. [Decomposition theorem] Let R be a field, A an R-algebra1, and
V a simple A-module with commutant D = EndA V of finite dimension over R. Let
E denote the center of the skew field D, δ the reduced degree of D over E, Esep/R
the maximal separable subextension of E/R.

(1) Let E′ be a finite separable extension of E splitting D, L/R the normal
closure of E′/R and R′ an extension of L. Then the scalar extension VR′ of V to
R′ has length δ[E : R] and is a direct sum

VR′ ≃ ⊕ δ ⊕ j∈HomR(Esep,R′) W ′
j

of δ copies of a direct sum of [Esep : R] modules W ′
j with commutant the local

artinian ring R′ ⊗j,Esep E which has residue field R′. For each j, the AR′-module

1all our algebras are associative with unit
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W ′
j is indecomposable of length [E : Esep], its simple subquotients are all isomorphic

to the AR′-module V ′
j = R′ ⊗(R′⊗EsepE) W ′

j which has commutant R′, and descend

to the finite extension L/R.
If R′/R is normal, the isomorphism classes of the AR′-modules W ′

j, resp. V ′
j ,

for j ∈ HomR(Esep, R′) form an AutR(R′)-orbit of cardinality [Esep : R].
(2) Let Ralg/R be an algebraic closure. The map which to V as above associates

the AutR(Ralg)-orbit of a simple subquotient V ′ of VRalg induces a bijection
- from the set of isomorphism classes [V ] of simple A-modules V with commu-

tant of finite dimension over R,
- onto the set of AutR(Ralg)-orbits of isomorphism classes [V ′] of absolutely

simple ARalg -modules V ′ descending to a finite extension of R.

We note that the AutR(Ralg)-orbit of [V ′] is finite when V ′ descends to a finite
extension of R. Part (1) of the theorem implies:

Corollary I.2. For any extension R′/R, the length of the AR′-module VR′ is
≤ δ[E : R], and the dimension over R′ of the commutant of any subquotient of VR′

is finite.

When the field R is perfect (example: R finite or of characteristic 0), every
algebraic extension of R is separable [Lang, VII §7 Cor. 7.8]. In that simple case,
the AR′-modules W ′

j , are absolutely simple in Thm. I.1; in fact, for any extension
R′/R, VR′ is semi-simple [BkiA8, §12 no 1 Prop.1].

The second theorem is a criterion, inspired by [AHenV1, Lemma 3.11], for a
functor to preserve the lattice of submodules of a module W . If W is an object in
an abelian category, we write LW for the lattice of its subobjects; if W has finite
length, that length is written lg(W ).

Theorem I.3. [Lattice isomorphism] Let F : C → D be a functor between
abelian categories having a right adjoint G; write ϵ : id → GF for the unit of the
adjunction, and η : FG → id for the counit.

(a) Let W be a finite length object in C such that
(i) F (Y ) and GF (Y ) are simple for any simple subquotient Y of W ;
(ii) F (W ) and GF (W ) have finite length lg(F (W )) = lg(GF (W )) = lg(W ).

Then for any subquotient Y of W , F (Y ) and GF (Y ) have finite length lg(F (Y )) =
lg(GF (Y )) = lg(Y ), and ϵY : Y → GF (Y ) is an isomorphism; in addition the
maps Y (→ F (Y ) : LW → LF (W ) and X (→ ϵ−1

W (G(X)) : LF (W ) → LW are lattice
isomorphisms, inverse to each other.

(b) Let V be a finite length object in D such that
(i) G(X) and FG(X) are simple for any simple subquotient X of V ;
(ii) G(V ) and FG(V ) have finite length lg(G(V )) = lg(FG(V )) = lg(V ).

Then for any subquotient X of V , G(X) and FG(X) have finite length lg(G(X)) =
lg(FG(X)) = lg(X), and ηX : FG(X) → X is an isomorphism. In addition, the
maps X (→ G(X) : LV → LG(V ) and Y (→ ηV (F (Y )) : LG(V ) → LV are lattice
isomorphisms, inverse to each other.

The present formulation and its proof in §II.4 owe much to the referee. We get
(b) from (a) by reversing the arrows.

Corollary I.4. Assume that F is fully faithful. Let W be a finite length object
in C such that

(i) F (Y ) is simple for any simple subquotient Y of W ;
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(ii) F (W ) has finite length lg(F (W )) = lg(W ).
Then Y (→ F (Y ) : LW → LF (W ) is a lattice isomorphism.

We end §II with another lattice isomorphism inspired by [Abe, Lemma 5.3].
Let R be a field, A an R-algebra, and V a simple A-module with commutant R. We
have the tensor product −⊗R V : C → D from the abelian category C of R-vector
spaces to the abelian category D of A-modules; it has a right adjoint HomA(V,−).

Theorem I.5. [Lattice isomorphism and tensor product]
(i) For any R-vector space W , W ⊗R V is an isotypic A-module of type V and

the map Y (→ Y ⊗R V : LW → LW⊗RV is a lattice isomorphism. Moreover, the
natural map

W
ϵW−−→ HomA(V, W ⊗R V ) ϵW (w) : v (→ w ⊗v

is an isomorphism of R-vector spaces.
(ii) For bW ∈ EndR(W ), bV ∈ EndR(V ) and an R-subspace Y of W , we have:
bW (Y ) ⊂ Y implies bW (Y ) ⊗R bV (V ) ⊂ Y ⊗R V and the converse is true

provided that bV ̸= 0.

In our applications, the action of A on V extends to an R-algebra A′ containing
A, and there is an R-basis B of A contained in an R-basis B′ of A′ such that no
element of B′ \ B acts by 0 on V , the action of B on W by the identity extends
to an action of A′ and the diagonal action of B′ on W ⊗R V yields an A′-module
structure. On X = V, W or W ⊗R V , b ∈ B′ acts via an endomorphism written bX .

Corollary I.6. In the above situation, in Theorem I.5:
The map Y (→ Y ⊗R V yields a lattice isomorphism L′

W → L′
W⊗RV between

the lattices of A′-submodules of W and of W ⊗R V . The A′-module structure on
HomA(V, W ⊗R V ) such that the isomorphism W

ϵW−−→ HomA(V, W ⊗R V ) is A′-
equivariant, satisfies for all f ∈ HomA(V, W ⊗R V ),

if b ∈ B then b(f) = f , and if b ∈ B′ \ B acts invertibly on V then b(f) =
bW⊗RV ◦ f ◦ b−1

V .

In that situation the natural map HomA(V, W ⊗R V )⊗R V → W ⊗R V is also
an isomorphism of A′-modules for b ∈ B′ acting diagonally.

I.3 In §III, for a field R of characteristic p, we prove the classification of the
irreducible admissible R-representations of G in terms of supersingular irreducible
admissible R-representations of Levi subgroups of G.

We always take our parabolic subgroups to contain a minimal one B = ZU in
good position with respect to I. An R-triple (P,σ, Q) of G consists of a parabolic
subgroup P = MN of G, a smooth R-representation σ of M , and a parabolic
subgroup Q of G satisfying P ⊂ Q ⊂ P (σ), where P (σ) = M(σ)N(σ) is the
maximal parabolic subgroup of G to which σ extends trivially on N ; the restriction
to MQ of that extension is denoted by eQ(σ). By definition

IG(P,σ, Q) = IndG
P (σ)(StM(σ)

Q (σ)) where(0.1)

StM(σ)
Q (σ) = IndM(σ)

Q (eQ(σ))/
∑

Q!Q′⊂P (σ)

IndM(σ)
Q′ (eQ′(σ)),(0.2)

is the generalized Steinberg R-representation of M(σ) and IndM(σ)
Q stands for the

parabolic smooth induction functor IndM(σ)
Q∩M(σ). In §III.3 we show that IG(P,−, Q)
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and scalar extension are compatible: for any R-triple (P,σ, Q) of G, we have
R′⊗R IG(P,σ, Q) ≃ IG(P, R′⊗R σ, Q) for any field extension R′/R and IG(P,σ, Q)
descends to a subfield of R if and only if σ does (Prop.III.13).

What does supersingular mean for an irreducible admissible R-representation π
of G ? We know what it means to be a supersingular H(G)R = R⊗Z H(G)-module:
for all P ̸= G containing B, a certain central element TP of the pro-p Iwahori Hecke
ring H(G) should act locally nilpotently [Vig17]. We say that π is supersingular
if the I-invariant module πI is supersingular as a right H(G)R-module (Definition
III.14 in §III.4). In §III.4, we show that supersingularity is compatible with scalar
extension (Lemma III.16) and that πI is supersingular if and only if πI contains a
non-zero supersingular element (Theorem III.17). When R is algebraically closed,
this definition is equivalent to the one in [AHHV], by [OV].

Theorem I.7. [Classification theorem for G]
For any R-triple (P,σ, Q) of G with σ irreducible admissible supersingular,

IG(P,σ, Q) is an irreducible admissible R-representation of G.
If IG(P,σ, Q) ≃ IG(P1,σ1, Q1) for two R-triples (P,σ, Q) and (P1,σ1, Q1) of

G with σ,σ1 irreducible admissible supersingular and P, P1 containing B, then P =
P1, Q = Q1 and σ ≃ σ1.

For any irreducible admissible R-representation π of G, there exists an R-triple
(P,σ, Q) of G with σ irreducible admissible supersingular and P containing B, such
that π ≃ IG(P,σ, Q).

When R is algebraically closed, this is the classification theorem of [AHHV].
In §III.5 we descend the classification theorem from Ralg to R by a formal proof
using the decomposition theorem (Thm.I.1) and a lattice isomorphism LσRalg ≃
LIG(P,σRalg ,Q) when σ is irreducible admissible supersingular and σRalg its scalar

extension to Ralg (Prop.III.10 in §III.3, Remark III.18 in §III.4).

I.4 In §IV, for a field R of characteristic p we prove a similar classification for
the simple right H(G)R-modules. As in [AHenV2] when R is algebraically closed,
this classification uses for a parabolic subgroup P = MN of G containing B, the
parabolic induction functor

IndH(G)
P : ModR(H(M)) → ModR(H(G))

from right H(M)R-modules to right H(G)R-modules, analogue of the parabolic

smooth induction: indeed (IndG
P σ)I is naturally isomorphic to IndH(G)

P (σI∩M ) for
a smooth R-representation σ of G [OV]. An R-triple (P, V , Q) of H(G) consists
of parabolic subgroups P = MN ⊂ Q of G containing B and of a right H(M)R-
module V with Q ⊂ P (V) (Definition IV.8); for an R-triple (P, V , Q) of H(G) we
define a right H(G)R-module IH(G)(P, V , Q) as for the group.

In Proposition IV.12, we prove that IH(G)(P,−, Q) and scalar extension are
compatible, as in the group case (Prop. III.13).

Theorem I.8. [Classification theorem for H(G)]
For any R-triple (P, V , Q) of H(G) with V simple supersingular, IH(G)(P, V , Q)

is a simple H(G)R-module.
If IH(G)(P, V , Q) ≃ IH(G)(P1, V1, Q1) for R-triples (P, V , Q) and (P1, V1, Q1)

of H(G) with V and V1 simple supersingular, then P = P1, Q = Q1 and V ≃ V1.
Any simple right H(G)R-module X is isomorphic to IH(G)(P, V , Q) for some

R-triple (P, V , Q) of H(G) with V simple supersingular.
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The proof follows the same pattern as for the group G, by a descent to R of
the classification over Ralg [AHenV2].

Assuming that R contains a root of unity of order the exponent of the quotient
Zk of the parahoric subgroup of Z by its pro-p Sylow subgroup, the simple super-
singular H(G)R-modules are classified [Oss], [Vig17, Thm.1.6]; in particular when
G is semisimple and simply connected, they have dimension 1. With Thm. I.8, we
have a complete classification of the H(G)R-modules.

The ring H(M) does not embed in the ring H(G) and different inductions
from ModR(H(M)) to ModR(H(G)) are possible. When R is algebraically closed,
Abe proved the classification theorem (Thm.I.8) using one of them, the parabolic
coinduction2 [Abe]. In the appendix we define and compare 8 natural induc-
tions following [Abeparind]; the classification theorem can be expressed with any
these 8 inductions instead of the parabolic induction (for the parabolic coinduction
[AHenV2, Cor. 4.24]).

I.5 In §V, still with R of characteristic p we give applications (Thm. I.9, I.10,
I.12, I.13) of the classification for G (Thm. I.7) and for H(G) (Thm. I.8); they
were already known when R is algebraically closed, except for the parts (ii),(iii) of
Theorem I.10 below.

Theorem I.9. [Vanishing of the smooth dual] The smooth dual of an infinite
dimensional irreducible admissible R-representation of G is 0.

This was proved by different methods when the characteristic of F is 0 in
[Kohl] and when R is algebraically closed in [AHenV2, Thm.6.4]. In §V.1 we
deduce easily the theorem from the theorem over Ralg using scalar extension to
Ralg (Thm. I.1).

[Description of IndG
P σ for an irreducible admissible R-representation σ of M ,

and of IndH(G)
P V for a simple H(M)R-module V ] Here P = MN is a fixed parabolic

subgroup of G.
We write Lπ for the lattice of subrepresentations of an R-representation π of

G, and LX for the lattice of submodules of an H(G)R-module X .
Recall that for a set X, an upper set in P(X) is a set Q of subsets of X,

such that if X1 ⊂ X2 ⊂ X and X1 ∈ Q then X2 ∈ Q. Write LP(X),≥ for the
lattice of upper sets in P(X). For two subsets X1, X2 of X write X1 \ X2 for the
complementary set of X1 ∩ X2 in X1.

By the classification theorems, σ ≃ IM (P1 ∩ M,σ1, Q ∩ M) with (P1,σ1, Q)
an R-triple of G, Q ⊂ P and σ1 irreducible admissible supersingular and
V ≃ IH(M)(P1 ∩ M, V1, Q ∩ M) with (P1, V1, Q) an R-triple of H(G), Q ⊂ P ,
and V1 simple supersingular.

With these notations we have:

Theorem I.10. [Lattices LIndG
P σ and L

IndH(G)
P V ]

(i) The R-representation IndG
P σ of G is multiplicity free of irreducible subquo-

tients IG(P1,σ1, Q′) for R-triples (P1,σ1, Q′) of G with Q′ ∩ P = Q.
Sending IG(P1,σ1, Q′) to ∆Q′ ∩ (∆P (σ1) \ ∆P ) gives a lattice isomorphism3

LIndG
P σ → LP(∆P(σ1)\∆P ),≥ .

2The parabolic coinduction is the induction used by Abe
3 see the discussion in [He]§11 on the lattice of submodules of a multiplicity free module

Marie-France
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(ii) The H(G)R-module IndH(G)
P V satisfies the analogue of (i).

(iii) If σI∩M is simple and the natural surjective map σI∩M ⊗H(M) Z[(I ∩
M)\M ] → σ is bijective, then the I-invariant functor (−)I and its left adjoint
−⊗H(G) Z[I\G] give lattice isomorphisms between LIndG

P (σ) and L
IndH(G)

P (σI∩M )
in-

verse of each other.

When R is algebraically closed (i) is proved in [AHenV1, §3.2]. In §V.2 we
prove (i) and (ii); (iii) follows from (i), (ii), Corollary I.4 and the commutativity of
the parabolic inductions with (−)I and −⊗H(G) Z[I\G] [OV].

Corollary I.11. 1. The socle and the cosocle of IndG
P σ are irreducible;

IndG
P σ is irreducible if and only if P contains P (σ1). The same is true for IndH(G)

P V.
2. Let π be an irreducible admissible R-representation of G; we write π ≃

IG(P,σ, Q) with σ irreducible admissible supersingular.
If σI∩M is simple and the natural map σI∩M ⊗H(M) Z[(I ∩ M)\M ] → σ is

bijective, then πI is simple and π ≃ πI ⊗H(G) Z[I\G].

The first assertion for σ and R is algebraically closed is proved in [AHenV1,
Cor. 3.3 and 4.4].

[Computation of the left adjoint and the right adjoint of the parabolic induction,
of πI for an irreducible admissible R-representation π of G, and of X ⊗H(G) Z[I\G]
for a simple H(G)R-module X ]

For a parabolic subgroup P1 of G, write LG
P1

for the left adjoint of IndG
P1

, RG
P1

for its right adjoint [Vigadjoint], and LH(G)
P1

for the left adjoint of IndH(G)
P1

, RH(G)
P1

for its right adjoint [VigpIwst].

Theorem I.12. [Adjoint functors of the parabolic induction and of the I-
invariant]

(i) LG
P1

(π) and RG
P1

(π) are 0 or irreducible admissible.
LG

P1
(π) ̸= 0 ⇔ P1 ⊃P, ⟨P1, Q⟩ ⊃P (σ) ⇔ LG

P1
(π) ≃ IM1(P ∩M1,σ, Q∩M1).

RG
P1

(π) ̸= 0 ⇔ P1 ⊃Q ⇔ RG
P1

(π) ≃ IM1(P ∩ M1,σ, Q ∩ M1).

(ii) LH(G)
P1

(X ) and RH(G)
P1

(X ) satisfy (i) with the obvious modifications.

(iii) We have natural isomorphisms πI ≃ IH(G)(P,σI∩M , Q) and X ⊗H(G)R

R[I\G]
≃ IG(P, V ⊗H(M)R

R[(I ∩ M)\M ], Q).

Example: LG
P (σ)(IG(P,σ, Q)) ≃ RG

P (σ)(IG(P,σ, Q)) ≃ StM(σ)
Q (σ) and the anal-

ogous for IH(G)(P, V , Q).
Proving Theorem I.12 from the classification theorem needs no new techniques

(§V.3).
[Equivalence between supersingularity, supercuspidality and cuspidality]
An irreducible admissible R-representation π of G is said to be
- supercuspidal if it is not a subquotient of IndG

P τ with τ ∈ Mod∞
R (M)

irreducible admissible for any parabolic subgroups P = MN ! G.
- cuspidal if LG

P (π) = RG
P (π) = 0 for all parabolic subgroups P ! G.

Theorem I.13. Let π be an irreducible admissible R-representation of G. Then
π is supersingular if and only if its is supercuspidal if and only if it is cuspidal.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

178 G. HENNIART AND M.-F. VIGNÉRAS

The equivalence of supersingular with supercuspidal, resp. cuspidal, follows
from Thm. I.10, resp. Thm. I.12. When R is algebraically closed, the first equiva-
lence was proved in [AHHV, Thm. VI.2] and the second one in [AHenV1, Cor.6.9].

An irreducible admissible R-representation π admits a supercuspidal support:
the parabolic subgroup P = MN containing B and the isomorphism class of the
irreducible admissible supercuspidal R-representation of σ of M such that π is a
subquotient of IndG

P (σ) are unique; this follows from Thm. I.7 and Thm. I.13.
Acknowledgments We thank the CNRS, the IMJ Paris-Diderot University,

the Paris-Sud University, and the Weizmann Institute where part of our work was
carried out.

II. Some general algebra

II.1. Review on scalar extension. We consider a field R and an R-algebra
A (always associative with unit).

For an extension R′ of R (which we see as a field R′ containing R), the scalar
extension functor R′ ⊗R − : ModR → ModR′ from R to R′, also denoted (−)R′ , is
faithful exact and left adjoint to the restriction functor from R′ to R.

The scalar extension AR′ of A is an R′-algebra and if W a (left or right) A-
module, WR′ is an AR′-module. An AR′-module W ′ isomorphic to such a WR′ is
said to descend to R or to be defined over R, and W is called an R-structure for
W ′ (more precisely the isomorphism W ′ ≃ WR′ is an R-structure for W ′).

Remark II.1. Let Ralg be an algebraic closure of R. If A is a finitely generated
R-algebra, an ARalg -module W of finite dimension over Ralg descends to a finite
extension of R. Indeed, if (wi) is an Ralg-basis of W , (aj) a finite set of generators
of A, and ajwi =

∑
k rj,i,kwk, the extension R′/R generated by the coefficients

rj,i,k ∈ Ralg is finite and the AR′-module ⊕ iR′wi gives an R′-structure for W .

Remark II.2. If V, W are A-modules, the natural map

(1.1) (HomA(V, W ))R′ → HomAR′ (VR′ , WR′)

is injective [BkiA2, II §7 no7 Prop.16] and bijective if R′/R is finite [BkiA8, §12,
no2 Lemme 1], or if V is a finitely generated A-module (proof as in [Pask, Lemma
5.1])4.

Let V be a simple A-module; we write D for the commutant EndA(V ), so that
D is a division algebra, and E for the center of D. Since V is finitely generated, the
commutant of VR′ is DR′ and its center is ER′ , by Remark II.2. That V is simple
has further consequences:

(P1) As an A-module, VR′ is a direct sum of A-modules isomorphic to V , i.e.
V -isotypic of type V [BkiA8, §4, no4, Prop.1].

(P2) The map A (→ AVR′ is a lattice isomorphism of the lattice of right ideals
A of DR′ onto the lattice of AR′-submodules W of VR′ , with inverse W (→ {d ∈
DR′ , dVR′ ⊂ W} [BkiA8, §12, no2, Thm.2b)].

(P3) For any right ideal A of DR′ , via the isomorphism VR′ ≃ DR′ ⊗D V , AVR′

corresponds to A⊗D V . As the functor X (→ X⊗D V from right D-vector spaces to
A-modules is exact, if B ⊂ A are right ideals of DR′ , then AVR′/BVR′ is isomorphic
to (A/B) ⊗D VR′ .

4We are grateful to the referee for that reference
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(P4) If the extension R′/R is finite, VR′ has finite length as an A-module, so
also as an AR′-module; then DR′ is left and right artinian and ER′ is artinian
[BkiA8, §12, no5, Prop.5 a)]. If moreover R′/R is separable, VR′ is semisimple
[BkiA8, §12, no5, Cor.].

(P5) If dimR D is finite, then dimR′ DR′ = dimR D and the length of the AR′-
module VR′ is ≤ [D : R] by (P2); the best bound is given in Thm. I.1.

Remark II.3. A non-zero A-module W is called absolutely simple if WR′ is
simple for any extension R′/R.

A simple A-module V is absolutely simple if and only if EndA V = R. For ⇒
[BkiA8, §3,no2,Cor.2, p.44]. For ⇐ follows from (P5). If R is algebraically closed
of cardinal > dimR V , then D = R [BkiA8, §3,no2,Thm.1, p.43].

II.2. A bit of ring and module theory. We examine the tensor product
L⊗R E of two field extensions L/R and E/R. Seeing the commutative ring L⊗R E
as a module over itself, its simple subquotients are isomorphic to simple L ⊗R E-
modules, that is to simple quotients.

Lemma II.4. Let E/R be a finite extension and L/E an extension.
(1) If E/R is purely inseparable, then L ⊗R E is a commutative artinian local

ring with residue field L.
(2) If E/R is separable and L contains a Galois closure of E/R, then

L ⊗R E ≃
∏

j∈HomR(E,L)

L ⊗j,E E ≃ L[E:R],

and if F/R is a subextension of E/R, the restriction HomR(E, L) → HomR(F, L)
is surjective.

(3) If L/R is normal, then AutR(L) acts transitively on HomR(E, L).
(4) If E/R is normal, the ring homomorphism

x ⊗y (→ (xj(y))j : E ⊗R E →
∏

j∈AutR(E)

E

is surjective of kernel the Jacobson radical of E ⊗R E.

Proof. As E/R is finite, the commutative ring L ⊗R E has finite dimension
over L, hence is Artinian. Let R′ be a field quotient of L⊗R E. The quotient map
ϕ : L ⊗R E → R′,ϕ(x ⊗y) = ϕ1(x)ϕ2(y), is given by non zero R-homomorphisms
ϕ1 : L → R′,ϕ1(x) = ϕ(x ⊗1), and ϕ2 : E → R′,ϕ2(y) = ϕ(1 ⊗y).

If E/R is purely inseparable, ϕ2 is the restriction of ϕ1 to E thus we have (1).
Let J = HomR(E, L) and for j ∈ J , let fj the surjective map L ⊗R E →

L ⊗j,E E
≃−→ L. If j ̸= j′ are distinct in J , and x ∈ E with j(x) ̸= j′(x), we have

fj(j(x) ⊗1 − 1 ⊗x) = 0, fj′(j(x) ⊗1 − 1 ⊗x) = j(x) − j′(x) ̸= 0.

Hence Ker fj ̸= Ker fj′ . By the Chinese Remainder Theorem,

(2.2)
∏

fj : L ⊗R E →
∏

j∈J

L ⊗j,E E
≃−→ LJ

is surjective. It is injective if and only if [E : R] = |J |.
If E/R is separable and L contains a Galois closure of E/R, then [E : R] = |J |

(and conversely), and for any subextension F/R of E/R, F/R and E/F are sep-
arable and L contains a Galois closure of F/R and of E/F , thus the restriction
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HomR(E, L) → HomR(F, L) of kernel HomF (E, L) is surjective by a counting ar-
gument since [E : R] = [E : F ][F : R]. This gives (2).

Let Esep/R be the maximal separable subextension of E/R. The extension
E/Esep is purely inseparable and the restriction HomR(E, L) → HomR(Esep, L) is
injective.

If L/R is normal, (3) is true as HomR(E, L) → HomR(Esep, L) is injective and
(3) is true when E/R is separable by Galois theory. If L = E, for j ∈ HomR(E, E) =
AutR(E) and x, y ∈ E, we have fj(x⊗y) = xj(y). If R′ is a field quotient of E⊗RE,
the quotient map satisfies ϕ(x ⊗y) = ϕ1(x)ϕ2(y) for ϕ1,ϕ2 in HomR(E, R′). If
moreover E/R is normal, then R′ = E and ϕ = ϕ1 ◦ fj where ϕ2 = ϕ1 ◦ j in
AutR(E). This gives (4). !

Lemma II.5. Let R′/R be a normal field extension, A and R-algebra and V ′ a
simple AR′-module descending to a finite extension of R. Then V ′ is isomorphic
to a submodule of the scalar extension VR′ from R to R′ of a simple A-module
V . For any such V , dimR V is finite if dimR′ V ′ is, and dimR EndA V is finite if
dimR′ EndAR′ V ′ is.

Proof. a) Assume first that the normal extension R′/R is finite. Then AR′

is a (free) finitely generated A-module, so V ′ as an A-module is finitely generated,
and in particular has a simple quotient V : HomA(V ′, V ) ̸= 0. By Remark II.2,
HomAR′ (V

′
R′ , VR′) ̸= 0.

The AR′-module V ′
R′ admits a finite filtration of quotients V ′

j for j ∈ AutR(R′),
where V ′

j is isomorphic to V ′ with the j-twisted action (y ⊗a)v′ = j(y)av′ for
y ∈ R′, a ∈ A, v ∈ V ′. Indeed, V ′

R′ = R′ ⊗R V ′ ≃ (R′ ⊗R R′) ⊗R′ V ′, the artinian
commutative ring R′ ⊗R R′ admits a finite filtration with quotients isomorphic to
simple R′⊗RR′-modules, and the simple R′⊗RR′-modules are R′

j for j ∈ AutR(R′),
where R′

j is isomorphic to R′ with x ⊗y ∈ R′ ⊗R R′ acting by multiplication by
xj(y) by Lemma II.4 (4).

We deduce that HomAR′ (V
′
j , VR′) ̸= 0 for some j ∈ AutR(R′). But VR′ is iso-

morphic to its j-twists (VR′)j for all j ∈ AutR(R′), so we have HomAR′ (V
′, VR′) ̸= 0.

Let V be any simple A-module with HomAR′ (V
′, VR′) ̸=0. Then HomA(V ′, V ) ̸=

0 as VR′ as an A-module is V -isotypic, so dimR V is finite if dimR′ V ′ is. Put D =
EndA(V ) and D′ = EndAR′ (V

′) and let W be the maximal V ′-isotypic submodule
of VR′ . Then W is DR′-stable and we get a homomorphism DR′ → EndAR′ W
which is necessarily injective on D, since D is a division algebra. By (P4), VR′

has finite length, so W also has finite length and EndAR′ W is a matrix algebra
over D′; it follows that if dimR′ D′ is finite, so is dimR′(EndAR′ W ) hence also
dimR(EndAR′ W ), dimR′(DR′) and dimR D.

b) Let us treat the general case. By assumption there is a finite normal subex-
tension L of R in R′ and an AL-module U such that V ′ = R′ ⊗L U - then U is
necessarily simple. By a) HomAL(U, VL) ̸= 0 for some simple A-module V and by
Remark II.2, HomAR′ (V

′, VR′) ̸= 0.
Conversely, if V is some simple A-module with HomAR′ (V

′, VR′) ̸= 0 then by
Remark II.2 again HomAL(U, VL) ̸= 0, so the other assertions follow from a). !

We pursue with an easy application of Morita theory in the special case of a
matrix ring.
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Lemma II.6. Let A, B be two rings and n a positive integer.
1) Let W be an A-module. A ring isomorphism EndA W ≃ M(n, B) induces

an A-module isomorphism W ≃ ⊕nV for some A-module V with commutant B.
2) If B is a commutative artinian local ring of residue field R, then M(n, B)

is left Artinian, and as a left module over itself, all its simple subquotients are
isomorphic to Rn.

Proof. 1) If V is a B-module, then V n is naturally an M(n, B)-module, and
the functor V (→ V n is an equivalence from the category of B-modules to the
category of M(n, B)-modules; that is the elementary case of Morita theory. By that
equivalence, if V is a left (A, B) bimodule, then V n is left (A, M(n, B)) bimodule,
and any left (A, M(n, B)) bimodule structure of V n comes in that way from a left
(A, B) bimodule structure on V . As EndA(V n) identifies with M(n, EndA(V )), the
condition EndA(V n) = M(n, B) is the same as EndA(V ) = B, and 1) follows.

2) As a left module over itself, M(n, B) is isomorphic to the direct sum of n
copies of Bn (let M(n, B) act on the column vectors). By the equivalence recalled
in the proof of 1), the M(n, B)-module Bn has the same length as B over itself and
its simple subquotients are isomorphic to Rn, hence 2). !

II.3. Proof of the decomposition theorem (Thm.I.1 and Cor.I.2). Let
V be a simple A-module with commutant D = EndA V of finite dimension dimR D
over R. Let E denote the center of the skew field D, δ the reduced degree of D
over E, Esep/R the maximal separable subextension of E/R.

Two well-known properties will be used in the proof:
(P6) A finite extension E′/E splits D, i.e. E′ ⊗E D ≃ M(δ, E′), if and only

if E′ is isomorphic to a maximal subfield of a matrix algebra over D [BkiA8, §15,
no3, Prop.5]. The field D contains a maximal subfield, which a separable extension
E′/E of degree δ [CR, 7.24 Prop] or [BkiA8, loc.cit. and §14, no7].

(P7) For a finite separable extension E′/E and E′
sep/R the maximal separable

subextension of E′/R, the natural map x ⊗y (→ xy : E′
sep ⊗Esep E → E′ is an

isomorphism (because always surjective and the dimension over E′
sep of both sides

is the same [E : Esep] by [Lang, VII §7, Cor. 7.5] applied to the finite extensions
E′

sep/Esep separable and E/Esep purely inseparable).
Proof of Thm.I.1 (1).
Let R′/R be an extension containing a normal closure of a finite separable

extension E′/E splitting D. For example, R′ can be an algebraic closure Ralg/R.
Let J = HomR(Esep, R′). By Lemma II.4 (1), we have a ring isomorphism

R′ ⊗R Esep ≃
∏

j∈J

R′ ⊗j,Esep Esep ≃ R′[Esep:R].

We denote by ej the idempotents of (Esep)R′ associated to this decomposition.
Tensoring on the right by E, D, or V over Esep and we get product decompositions

ER′ =
∏

j∈J

ejER′ , DR′ =
∏

j∈J

ejDR′ , VR′ = ⊕ j∈J ejVR′

where ejER′ ≃ R′ ⊗j,Esep E, ejDR′ ≃ R′ ⊗j,Esep D, ejVR′ ≃ R′ ⊗j,Esep V. By
Lemma II.4 and (P7), for j ∈ J there exists j′ ∈ HomR(E′

sep, R
′) of restriction

j′|Esep = j, and

R′ ⊗j,Esep E ≃ R′ ⊗j′,E′
sep

E′
sep ⊗Esep E ≃ R′ ⊗j′,E′

sep
E′
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is a commutative artinian local ring of residue field R′. We obtain ring isomorphisms

R′ ⊗j,Esep D ≃ R′ ⊗j,Esep E ⊗E D

≃ R′ ⊗j′,E′
sep

E′ ⊗E D ≃ R′ ⊗j′,E′
sep

M(δ, E′) ≃ M(δ, R′ ⊗j,Esep E).

By Lemma II.6, there exists an AR′-module W ′
j such that

R′ ⊗j,Esep V ≃ ⊕ δW ′
j , EndAR′ W ′

j ≃ R′ ⊗j,Esep E.

By Remark II.2, for j ∈ J , the commutant of the AR′-module ejVR′ = R′ ⊗j,Esep

V is ejD = R′ ⊗j,Esep D. Applying (P2) and (P3), the map A (→ AejVR′ is a
lattice isomorphism of the lattice of right ideals A of ejDR′ onto the lattice of AR′-
submodules of ejVR′ , and for two right ideals A ⊂ B of ejDR′ , the AR′-module
BejVR′/AejVR′ is isomorphic to (B/A) ⊗ejD ejVR′ . As ejDR′ ≃ M(δ, ejE) and
ejE is a commutative artinian local ring of residue field R, by Lemma II.6, the
AR′-module W ′

j is indecomposable of length [E : Esep] and its simple subquotients
are all isomorphic to the AR′-module

V ′
j = R′ ⊗(R′⊗j,Esep E) W ′

j

with commutant R′, hence absolutely simple by Remark II.3.
The group AutR(R′) of R-automorphisms of R′ acts on the AR′-modules, fixing

the isomorphism class of the scalar extension from R to R′ of an A-module. If R′/R
is normal, it acts transitively on the set J by Lemma II.4 (3), and for g ∈ AutR(R′)
we have g(ej) = eg◦j . By Krull-Remak-Schmidt’s theorem, g(W ′

j) ≃ W ′
g◦j . The

same is true for the simple subquotients: g(V ′
j ) ≃ V ′

g◦j .
The dimension over R′ of the commutant of any subquotient of the AR′-module

R′ ⊗R V = ⊕ δ ⊕ j∈J W ′
j

is finite (because the length of R′ ⊗R V is finite and R′ is the commutant of any of
its simple subquotients).

Let L be the normal closure of E′/R in R′/R. These results applied to R′/R
and to L/R, show that scalar extension from L to R′ induces a lattice isomorphism
LVL → LVR′ . This ends the proof of Thm.I.1 (1).

Proof of Thm.I.1 (2).
Thm.I.1 1) applies to R′ = Ralg an algebraic closure of R. It shows that for

any simple A-module V with dimR V finite, the simple subquotients of VRalg are
absolutely simple, descend to a finite subextension of Ralg/R and their isomorphism
classes form a finite AutR(Ralg)-orbit.

Conversely, let V ′ be an absolutely simple ARalg -module descending to a fi-
nite extension L of R. We prove that the AutR(Ralg)-orbit AutR(Ralg)[V ′] of the
isomorphism class [V ′] of V ′ is finite. Let W ′ denote an AL-module with scalar
extension WRalg = V ′ to Ralg. Necessarily, W is absolutely simple. By Lemma II.5,
W ′ is contained in the scalar extension VL from R to L of a simple A-module V with
dimR V finite. We proved that VRalg has finite length and that the isomorphism
classes of its simple subquotients form an AutR(Ralg)-orbit. Hence AutR(Ralg)[V ′]
is finite, and the map [V ] → AutR(Ralg)[V ′] in Thm.I.1 (2) is surjective. It is also
injective because VRalg is V -isotypic as an A-module (by P1), so the same is true
for V ′. This ends the proof of Thm.I.1 (2).
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Proof of Corollary I.2.
Let L/R be any extension and Lalg an algebraic closure of L. The scalar

extension from R to Lalg is the scalar extension of R to L followed by the scalar
extension from L to Lalg.

(i) The length of the ALalg -module VLalg is δ[E : R] by part 1) of Thm.I.1,
hence the length of the AL-module VL is ≤ δ[E : R].

(ii) Let W be a subquotient of VL. We show that the commutant of W
has finite dimension over L. As WLalg is a subquotient of VLalg , by part 2) of
Thm.I.1, the dimension over Lalg of the commutant of WLalg is finite. By (i) the
AL-module W has finite length hence is finitely generated and by Remark II.2,
dimLalg (EndALalg WLalg ) = dimL(EndAL W ). This ends the proof of Corollary I.2.

II.4. Proof of the lattice theorems (Thm. I.3, I.5 and Cor. I.4, I.6).
Our overall reference for abelian categories is [KS, Chapter 8].

Let C be an abelian category and W an object in C. A subobject of W is
an isomorphism class of monomorphisms f : Y → W [KS, Def. 1.2.18]. The
ordered set LW of subobjects of W is a bounded lattice: the meet of two subobjects
f : Y → W and f ′ : Y ′ → W is the kernel of (f,−f ′) : Y ⊕ Y ′ → W and their join
is its image. As in module categories5, we write Y ∩ Y ′ for the meet, Y + Y ′ for
the join [KS, 8.3.10]; we note the exact sequence

0 → (Y ∩ Y ′) → (Y ⊕ Y ′) → Y + Y ′ → 0.

We define the lattice LW of quotients of W : it is the lattice of subobjects of W in
the opposite category of C. The map which to a subobject Y of W associates its
cokernel (written W/Y ) yields a lattice isomorphism LW → LW .

If D is an abelian category and F : C → D a left exact functor, then Y (→
F (Y ) : LW → LF (W ) is an ordered preserving map; if F is not left exact, F (Y )
might not be a subobject of F (W ) if Y is a subobject of W .

Lemma II.7. Let F : C → D be a functor between abelian categories which is
left or right exact, and let W be a finite length object of C [KS, Ex. 8.20, p. 205].

(i) Assume that F (Y ) is 0 or simple (that is, lg(F (Y )) ≤ 1) for any simple
subquotient Y of W . Then, F (Y ) has finite length lg(F (Y )) ≤ lg(Y ) for any
subquotient Y of W .

(ii) If moreover lg(F (W )) = lg(W ), then for any subquotient Y of W , lg(F (Y ))
= lg(Y ) and an exact sequence 0 → Y ′ → Y → Y ′′ → 0 in C yields via F an exact
sequence 0 → F (Y ′) → F (Y ) → F (Y ′′) → 0 in D; in addition Y (→ F (Y ) gives an
injective morphism of bounded lattices LW → LF (W ).

Proof. (i) Our proof proceeds by induction on the length of lg(Y ) of a sub-
quotient Y of W . By assumption lg(F (Y )) ≤ lg(Y ) if lg(Y ) ≤ 1. If lg(Y ) ≥2, we
choose an exact sequence 0 → Y ′ → Y → Y ′′ → 0 in C with non-zero Y ′, Y ′′.
If F is left exact, 0 → F (Y ′) → F (Y ) → F (Y ′′) is exact, if F is right ex-
act, F (Y ′) → F (Y ) → F (Y ′′) → 0 is exact; in either case we get lg(F (Y )) ≤
lg(F (Y ′)) + lg(F (Y ′′)) which by induction is ≤ lg(Y ′) + lg(Y ′′) = lg(Y ).

(ii) For any subobject Y of W , the exact sequence 0 → Y → W → W/Y → 0
gives lg(F (W )) ≤ lg(F (Y ))+lg(F (W/Y )) as above; applying (i), lg(F (Y )) ≤ lg(Y ),
lg(F (W/Y )) ≤ lg(W/Y ). By assumption lg(F (W )) = lg(W ) = lg(Y ) + lg(W/Y )
so we get equalities throughout: lg(F (Y )) = lg(Y ) and lg(F (W/Y )) = lg(W/Y ).

5 In any case, all our applications are to module categories
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For any subquotient Y of W we repeat the argument to get lg(F (Y )) = lg(Y ).
An exact sequence 0 → Y ′ → Y → Y ′′ → 0 in C yields a sequence in D

0 → F (Y ′) → F (Y ) → F (Y ′′) → 0

which is exact on one side by the exactness property of F , and on the other side
by length count.

It remains to prove the last assertion; if Y is a subobject of W we already know
that F (Y ) is a subobject of F (W ) and that the map Y (→ F (Y ) : LW → LF (W )

is order preserving. It certainly sends the largest element W of LW to the largest
element F (W ) of LF (W ) and similarly for the smallest elements (the 0 elements).
Let us verify that it preserves meets and joins. So let Y, Y ′ be two objects in C.
The two natural monomorphisms Y → Y ⊕ Y ′, Y ′ → Y ⊕ Y ′, upon applying F ,
give a map F (Y ) ⊕ F (Y ′) → F (Y ⊕ Y ′). If F is right exact, it is an isomorphism
[KS, line after Prop.3.3.3]. If F is left exact, the map F (Y ×Y ′) → F (Y ) ×
F (Y ′) coming from the two maps Y ×Y ′ → Y and Y ×Y ′ → Y ′ , is also an
isomorphism [KS, Prop.3.3.3]; using the natural isomorphisms Y ⊕ Y ′ → Y ×Y ′

and F (Y ) ⊕ F (Y ′) → F (Y ) ×F (Y ′) in the abelian categories C and D, we see
that F (Y ) ⊕ F (Y ′) → F (Y ⊕ Y ′) is an isomorphism too. Applying this to W and
W , we see that lg(F (W ⊕ W )) = 2 lg(F (W )) = 2 lg(W ) = lg(W ⊕ W ). Now let
f : Y → W, f ′ : Y ′ → W be subobjects of W ; then applying the results obtained
so far to the subobject (f,−f ′) : Y ⊕ Y ′ → W ⊕ W of W ⊕ W , we see that the
sequence in D

0 → F (Y ∩ Y ′) → F (Y ⊕ Y ′) → F (Y + Y ′) → 0

is exact. But the composite F (Y ) ⊕ F (Y ′) → F (Y ⊕ Y ′) → F (Y + Y ′) → F (W )
is obtained from f, f ′ via F , and we see that F (Y ∩ Y ′) = F (Y ) ∩ F (Y ′) and
F (Y + Y ′) = F (Y ) + F (Y ′). If Y, Y ′ satisfy F (Y ) = F (Y ′) then F (Y + Y ′) =
F (Y ) = F (Y ′) so lg(Y + Y ′) = lg(Y ) = lg(Y ′), which implies Y = Y ′, hence the
injectivity. !

Remark II.8. [KS, Prop. 1.5.6]:
For any adjunction (F, G, η, ϵ) between two categories,
- F is fully faithful if and only if the unit ϵ is an isomorphism,
- G is fully faithful if and only if the counit η is an isomorphism,
- the following equivalent properties imply that F, G are quasi-inverses of each

other:
- F and G are fully faithful,
- F is an equivalence,
- G is an equivalence.

We are now ready to prove Theorem I.3 and Corollary I.4.
We prove Thm. I.3 (a). We can apply Lemma II.7 to F and W by the assump-

tions. As above any simple subquotient X of F (W ) is isomorphic to F (Y ) for some
simple subquotient Y of W ; thus we can apply Lemma II.7 to G and F (W ). Let Y
be a subquotient of W ; by induction on lg(Y ) we prove now that ϵY is an isomor-
phism. Through adjunction ϵY corresponds to the identity map F (Y ) → F (Y ), in
particular ϵY is not 0 if F (Y ) is not 0. If Y is simple then GF (Y ) is simple and
the non-zero map ϵY : Y (→ GF (Y ) is an isomorphism. If lg(Y ) ≥2, we choose an
exact sequence 0 → Y ′ → Y → Y ′′ → 0 in C with non-zero Y ′, Y ′′. Applying F
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then G gives a commutative diagram

0 !! Y ′

ϵY ′

""

!! Y

ϵY

""

!! Y ′′

ϵY ′′

""

!! 0

0 !! (G ◦ F )(Y ′) !! (G ◦ F )(Y ) !! (G ◦ F )(Y ′′) !! 0

where the lines are exact. By induction ϵY ′ , ϵY ′′ are isomorphisms, and so is
ϵY . From Lemma II.7 we obtain injective lattice morphisms LW → LF (W ) and
LF (W ) → LGF (W ) whose composite coincides with Y (→ ϵW (Y ), so they are both
bijective and consequently lattice isomorphisms. Hence Thm. I.3 (a).

To prove Theorem I.3 (b) we “reverse the arrows” i.e. consider F and G as
functors between the opposite categories to C and D. Applying (a) we get a lattice
isomorphism U (→ G(U) : LV → LG(V ); then X (→ G(X) : LV → LG(V ) is an
isomorphism because G(V/X) is isomorphic to G(V )/G(X) for a subobject X of
V .

By Remark II.8, if F is fully faithful then ϵY : Y → GF (Y ) is an isomorphism
for any object Y of C. Thus Corollary I.4 is an immediate consequence of Theorem
I.3 (a).

Remark II.9. The referee noted that if we assume, for W of finite length in C
(i) F (Y ) is simple for any simple subquotient F (Y ) of W ,
(ii) lg(F (W )) = lg(W ) and ϵW is an isomorphism, then ϵY is an isomorphism

for any subobject Y of W , and X (→ ϵ−1
W (G(X)) provides a left inverse to Y (→

F (Y ) : LW → LF (W ).

Remark II.10. Let F : C → D be a functor between abelian categories and W
a finite length object of C satisfying:

X (→ F (X) : LW → LF (W ) is a lattice isomorphism.

Then any subquotient of W satisfies the same property. Indeed, this is clear for
a subobject W ′ of W . For any exact sequence 0 → W1 → W2 → W3 → 0 in C
with W2 a subobject of W , the sequence 0 → F (W1) → F (W2) → F (W3) → 0
in D is exact by length count. Let LW2(W1) denote the lattice of subobjects Y
of W2 containing W1. The map Y (→ F (Y ) : LW2(W1) → LF (W2)(F (W1)) is a
lattice isomorphism. Taking the cokernels, it corresponds to a lattice isomorphism
Z (→ F (Z) : LW3 → LF (W3).

We now prove the second lattice theorem I.5.
(i) This is classical. See [BkiA8, §4 no4 Prop. 3 b) and no5 Def. 3 and Thm.

2 a)].
(ii) The first statement is obvious. Assume b(Y ) ⊗R b(V ) ⊂ Y ⊗R V and let

y ∈ Y and v ∈ V . Any R-linear form λ on V defines a linear map Y ⊗R V → Y
sending b(y) ⊗b(v) to λ(b(v))b(y). If bV ̸= 0 we can choose v ∈ V and λ such that
λ(b(v)) ̸= 0 and then b(y) ∈ Y .

We finally prove Corollary I.6. Clearly the lattice isomorphism Y (→ Y ⊗R V
in Thm. I.5 (i) sends an A′-submodule of W to an A′-submodule of W ⊗R V . If
an A-submodule Y ⊗R V of W ⊗R V is A′-stable, then Thm. I.5 (ii) implies that
Y is an A′-submodule of W because no element in B′ \ B acts by 0 on V , as every
element of B′ \ B acts invertibly on V .
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The structure of A′-module on W induces a structure of A′-module on
HomA(V, W ⊗R V ) such that the isomorphism ϵW of Thm. I.5 (i) is A′-equivariant.
For f ∈ HomA(V, W ⊗R V ), we have b(f) = f if b ∈ B as B acts by the identity on
W . If b ∈ B \ B′, for all w ∈ W we have b(ϵW (w)) = ϵW (b(w)), meaning that for
all v ∈ V , b(ϵW (w))(v) = b(w) ⊗v = (bW⊗RV ◦ ϵW (w) ◦ b−1

V )(v) as bV is invertible.
Therefore b(f) = bW⊗RV ◦ f ◦ b−1

V for all f ∈ HomA(V, W ⊗R V ), if b ∈ B \ B′.

III. Classification theorem for G

III.1. Admissibility, K-invariants, and scalar extension. In this section
III, R is any field and G is a locally profinite group. An R[G]-module π is smooth
if π = ∪KπK with K running through the open compact subgroups of G, and is
admissible if it is smooth and dimR πK is finite for all K. If πK generates π then
EndR[G] π ⊂ EndR πK . Fix such a K for the rest of §III.1.

The category ModR(G) of R[G]-modules and the subcategory Mod∞
R (G) of

smooth R[G]-modules are abelian, but not the additive subcategory ModR(G)a of
admissible R[G]-modules in general (when F has characteristic p). The subcategory
ModK

R (G) of R[G]-modules π generated by πK is additive with a generator R[K\G]
but is not abelian in general 6. The commutant of R[K\G] is the Hecke R-algebra

EndR[G] R[K\G] ≃ R ⊗Z H(G, K) = H(G, K)R

(the Hecke ring H(G, K) is EndZ[G] Z[K\G]). We have the abelian category
ModR(H(G, K)) of right H(G, K)R-modules (which we also call H(G, K)-modules
over R). The functor

T := −⊗H(G,K) Z[K\G] : ModR(H(G, K)) → ModR(G)

with image ModK
R (G), is left adjoint to the K-invariant functor (−)K : ModR(G) →

ModR(H(G, K)).
The unit ϵ : idModR(H(G,K)) → (−)K ◦ T and the counit η : T ◦ (−)K →

idModK
R (G) of the adjunction correspond to the natural maps X ϵX−−→ T (X )K , ϵX (x) =

x ⊗1 for x ∈ X ∈ ModR(H(G, K)) and T (πK)
ηπ−→ π, ηπ(v ⊗Kg) = gv for

g ∈ G, v ∈ πK ,π ∈ ModR(G).

Lemma III.1. (i) If π is generated by πK and dimR πK < ∞ (in particular if
π is irreducible admissible and πK ̸= 0), then dimR EndR[G] π is finite.

(ii) Let R′/R be an extension. The adjoint functors T , (−)K , the unit ϵ and
the counit η commute with scalar extension: there are natural isomorphisms

T (X )R′ ≃ T (XR′), (πK)R′ ≃ (πR′)K , (ϵX )R′ ≃ ϵXR′ , (ηπ)R′ ≃ ηπR′ .

In particular, π is admissible if and only if πR′ is admissible.
(iii) Let R′/R be an extension and π a smooth irreducible R-representation of

G generated by πK . Then, any subquotient π′ of πR′ is generated by π′K .

Proof. (i) and (ii) are clear. We prove (iii).
Assume that π is generated by πK . It is clear that πR′ is generated by (πK)R′ ,

hence by (πR′)K = (πK)R′ (Lemma III.1). Let π′ be a subquotient of πR′ and
A ⊂ B be right ideals of DR′ = EndR′[G](πR′) such that

π′ ≃ (B/A) ⊗D πR′

6 If ModK
R (G) is abelian and G second countable, ModK

R (G) is a Grothendieck category (same
proof than for ModR(G) [Vigadjoint, lemma 3.2])
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(apply (P2) and (P3) in §II.1 to π seen as a simple R[G]-module). If v ∈ π′, then v is
a finite sum v =

∑
x∈B/A,w∈πR′ x⊗w and each w is a finite sum w =

∑
g∈G,u∈πK

R′
gu;

as x⊗gu = g(x⊗u) and x⊗u ∈ π′K , the representation π′ is generated by π′K . !

We deduce that if ϵ or η is an isomorphism of functors, then it is also true if
we replace R by a subfield. Recalling Remark II.8:

Lemma III.2. If the K-invariant functor (−)K : ModK
R (G) → ModR(H(G, K))

over R is an equivalence, then it is an equivalence over any subfield R′ of R. If
π ∈ ModK

R (G) and πK is defined over R′, then π is defined over R′.

Remark III.3. Assume that R is a field of characteristic p and K is a pro-
p-Iwahori subgroup. The functor (−)K of Lemma III.2 is an equivalence if G =
GL(2, Qp) and p ̸= 2, or if G = SL(2, Qp).

Indeed, for GL(2, Qp) this is proved under the extra-hypothesis that R contains
a (p − 1)-th root of 1 ([O] plus [K]), that we can remove with Lemma III.2. For
G = SL(2, Qp), see [OS, Prop. 3.25].

III.2. Decomposition Theorem for G. Let G be a locally profinite group,
R′/R a field extension and Ralg/R an algebraic closure. We apply Lemma II.5,
Theorem I.1 and Corollary I.2 to the group ring A = R[G] and to a smooth R-
representation π of G, seen as an A-module V .

We keep the same notations as in §II.1. If π is a smooth irreducible R-
representation of G, the scalar extension of π to R′ is a smooth R′-representation
πR′ of G. When the commutant D = EndR[G] π of π has finite dimension over
R, we denote E the center of D, δ the reduced degree of D over E, E′/E a finite
separable field extension splitting D, L/R a normal closure of E′/R.

Theorem III.4. 1) If dimR EndR[G] π is finite and R′/R is normal and contains
L, then

πR′ ≃ ⊕ δ ⊕ i∈HomR(Esep,R′) W ′
i

has length δ[E : R], W ′
i is an indecomposable smooth R′-representation of G. All

irreducible subquotients of W ′
i have commutant R′ and have the same isomorphism

class [V ′
i ]; the [V ′

i ] form a single orbit under AutR(R′).
The map [π] → AutR(Ralg)[π′] where π′ is an irreducible subquotient of πRalg ,

is a bijection from the set of isomorphism classes [π] of smooth irreducible R-
representations π of G with dimR EndR[G] π < ∞ onto the set of AutR(Ralg)-orbit
of isomorphism classes [π′] of smooth absolutely irreducible Ralg-representations π′

of G descending to some finite extension of R.
2) If dimR EndR[G] π is finite, πR′ has length ≤ δ[E : R]. For any non-zero

subquotient π′ of πR′ we have dimR′ EndR′[G] π
′ < ∞ and π′ admissible is equivalent

to π admissible.
3) If R′/R is normal, a smooth irreducible R′-representation π′ of G descend-

ing to a finite extension of R is isomorphic to a subrepresentation of πR′ for
some smooth irreducible R-representation π of G. For any such π, dimR π, resp.
dimR EndR[G] π, is finite if dimR′ π′, resp. dimR′ EndR′[G] π

′, is.

Proof. 1), 3) and the first assertion of 2) follow from Lemma II.5, Theorem
I.1 and Corollary I.2. Let us prove the claims about admissibility in 2). Take an al-
gebraic closure R′alg of R′ containing Ralg. Then πR′alg ≃ (πR′)R′alg ≃ (πRalg)R′alg
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and one of the representations π,πR′ ,πRalg ,πR′alg is admissible if and only if the
other ones are (Lemma III.1 (ii)).

Applying 1), πRalg has finite length, its irreducible subquotients are AutR(Ralg)-
conjugate, isomorphic to subrepresentations and scalar extension induces a bijection
from the isomorphism classes of irreducible subquotients of πRalg onto those of
πR′alg . So some irreducible subquotient of πRalg is admissible if and only if π is
admissible if and only if all irreducible subquotients of πRalg are admissible, if and
only if all irreducible subquotients of πR′alg are admissible.

In a finite length representation, if all irreducible subquotients are admissible,
then all subquotients are admissible. So π is admissible if and only if some non-
zero subquotient of πR′alg is admissible if and only if all subquotients of πR′alg are
admissible.

Let π′ be a non-zero subquotient of πR′ . Then π′
R′alg is a non-zero subquotient

of πR′alg . As π′ is admissible if and only if π′
R′alg is, we deduce that π′ is admissible

if and only if π is admissible. !

Let K be an open compact subgroup of G, R ⊂ R′ a field extension, Ralg an
algebraic closure of R and π an irreducible admissible R′-representation of G with
πK ̸= 0. The rationality field R[π] of π is the subfield of R′ fixed by the Aut(R′)-
stabilizer H[π] = {σ ∈ Aut(R′) | R′ ⊗σ π ≃ π} of the isomorphism class [π] of
π.

Proposition III.5. (i) Any finite dimensional Ralg-representation of H(G, K)
descends to a finite extension of R, when the Hecke ring H(G, K) is finitely gener-
ated (see Lemma III.7 below).

(ii) If the H(G, K)R′-module πK descends to R, then
a) π descends to R if the pro-order of K is invertible in R.
b) π descends to the subfield of R′ fixed by AutR[π](R

′) if the commutant of
πK is R′.

c) π descends to a finite extension of R[π] if R is finite and R′ = Ralg.

Proof. (i) follows from [Viglivre, II.4.7]: Let (ei) be a basis of M and (Tj)
a finite set of generators of the ring H(G, K). There are finitely many elements
ci,j,k ∈ Ralg such that eiTj =

∑
k ci,j,kek. Let L/R be the finite extension generated

by all the ci,j,k and ML the L-vector subspace of basis (ei). Then ML is H(G, K)-
stable and the natural map Ralg ⊗L ML → M is an Ralg[H(G, K)]-isomorphism.

(ii) We suppose that πK ̸= 0 descends to R; we choose an H(G, K)R-stable
submodule (πK)R ⊂ πK generated over R by an R′-basis of πK ; put πR for the
R-subrepresentation of π generated by (πK)R.

a) By assumption the pro-order of K is invertible in R, By [Viglivre] one can
put on the space H(G)R of locally constant compactly supported functions from
G to R a structure of convolution algebra such that the characteristic function
e = eK of K is an idempotent; then H(G, K)R appears as eH(G)Re. A smooth R-
representation π of G is naturally a H(G)R-module and H(G, K)R acts on πK = eπ
via the inclusion eH(G)Re ⊂ H(G)R. Since π is an irreducible admissible R′-
representation of G with πK ̸= 0, πK is a simple H(G, K)R′-module [Viglivre] and
π can be recovered from πK . Indeed, following [BK, 4.2.3 Prop.], if X is a simple
H(G, K)R′-module, then X ⊗Z Z[K\G] has a maximal subrepresentation killed by
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e, the corresponding quotient X is irreducible and the quotient map induces an
H(G, K)R′-isomorphism X ≃ Xe. If X = πK then X = π.

Since πK is a simple H(G, K)R′-module, (πK)R is a simple H(G, K)R-module.
Applying the above procedure over R, we consider the quotient ρ of (πK)R ⊗Z
Z[K\G] by its maximal subrepresentation W killed by e; it is an irreducible and
admissible R-representation of G. We have the exact sequence

0 → R′ ⊗R W → R′ ⊗R (πK)R ⊗Z Z[K\G] → R′ ⊗R ρ → 0.

Clearly (R′ ⊗R W )e = 0 and R′ ⊗R ρ isomorphic to a direct sum of copies of ρ
as an R[G]-module has no non-zero subrepresentation killed by e. It follows that
R′ ⊗R W is the maximal subrepresentation of R′ ⊗R (πK)R ⊗Z Z[K\G] killed by e,
hence π ≃ R′ ⊗R ρ descends to R.

b) and c) The set {gv | g ∈ G} certainly generates π as an R′-vector space, so
we can extract a basis {giv | i ∈ I}. For g ∈ G we express gv =

∑
i∈I λigiv with

unique λi ∈ R′, almost all 0. We will show:
(*) σ(λi) = λi for all i ∈ I and
- for all σ ∈ AutR[π](R

′) if EndR′[G] π
K = R′,

- for all σ ∈ AutL(R′) for some finite extension L/R[π] if R is finite and
R′ = Ralg.

This will imply that for all i ∈ I, λi lies in the subfield L of R′ fixed by
AutR[π](R

′) if EndR′[G] π
K = R′, and in a finite extension L/R[π] if R is finite and

R′ = Ralg. Thus, the L-vector subspace V of π of basis (giv)i∈I is stable by G, it is
an L-subrepresentation πL of π such that the natural isomorphism R′ ⊗L πL → π
is an R′[G]-isomorphism.

To prove (*) it suffices to find for all σ in (*) an intertwining operator Aσ :
π → R′ ⊗σ π such that Aσ(v) = 1 ⊗v. Indeed, for such an operator A = Aσ,

1 ⊗gv = A(gv) = A(
∑

i∈I

λigiv) =
∑

i∈I

λiA(giv)

=
∑

i∈I

λi(1 ⊗giv) =
∑

i∈I

1 ⊗σ(λi)giv = 1 ⊗
∑

i∈I

σ(λi)giv;

so
∑

i∈I λigiv =
∑

i∈I σ(λi)giv, that is, σ(λi) = λi for all i ∈ I.
To find Aσ, we note that for σ ∈ AutR[π](R

′), the natural map f : (πK)R →
R′ ⊗σ πK sending x to 1⊗x extends to an intertwining operator πK → R′ ⊗σ πK .

- If EndR′[G] π
K = R′, then any intertwining operator π → R′⊗σ π restricts on

(πK)R to a multiple of f , hence we can find Aσ. This ends the proof of (iii) in the
case b).

- If R is finite and R′ = Ralg, we choose a (topological) generator τ of the
(pro)cyclic group AutR[π](R

alg) and an R′-basis of πK contained in (πK)R; the re-
striction AK

τ : πK → Ralg ⊗τ πK of Aτ to πK has a matrix Mat(AK
τ ) on this basis.

The coefficients Mat(AK
τ ) are fixed by τm for some positive integer m. For any posi-

tive integer k, we have the intertwining operator Aτmk = (τm−1(Aτ ) . . . τ (Aτ )Aτ )k :
π → Ralg ⊗τmk π with restriction AK

τmk = (τm−1(AK
τ ) . . . τ (AK

τ )AK
τ )k to πK of ma-

trix Mat(AK
τm)k. As the order of Mat(AK

τm) is finite, we can choose ko such that
Mat(AK

τmko ) is the identity. Then Aτmk0(v) = 1 ⊗v. Therefore the subfield of
Ralg fixed by τmk0 is a finite extension R′/R[π] such that Aσ(v) = 1 ⊗v for all
σ ∈ AutR′(Ralg). This ends the proof of (iii) in the case c). !
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Remark III.6. If the K-invariant functor (−)K :ModK
R′(G)→ModR′(H(G, K))

over R′ is an equivalence (Lemma III.2), then πK descends to R if and only if π
does.

III.3. The representations IG(P,σ, Q). Until the end of the article G
is a p-adic reductive group (in the following sense).

The base field F is locally compact non-archimedean of residue characteristic
p. A linear algebraic group over F is written with a boldface letter like H, and
its group of F -points by the corresponding ordinary letter H = H(F ). We fix an
arbitrary connected reductive F -group G, a maximal F -split torus T in G and a
minimal F -parabolic subgroup B of G containing T ; we write Z for the centralizer
of T in G and U for the unipotent radical of B. We denote by Gis the product of
the isotropic simple components of the simply connected cover of the derived group
of G.

Let Φ+ denote the set of roots of T in U, ∆ ⊂ Φ+ the set of simple roots. We
say that P is a parabolic subgroup of G and write P = MN to mean that P
is an F -parabolic subgroup of G containing B , M the Levi subgroup containing
Z and N the unipotent radical; the parabolic subgroups P of G are in bijection
P (→ ∆P = ∆M with the subsets ∆. For J ⊂ ∆ we write PJ = MJNJ for
the corresponding parabolic subgroup; for a singleton J = {α} we rather write
Pα = MαNα. We have G = M⟨GN⟩ for the normal subgroup ⟨GN⟩ of G generated
by N .

The image of Gis in G is the normal subgroup G′ of G generated by U , and
G = ZG′. Set P is for the parabolic subgroup of Gis of image P ∩ G′ in G.

Lemma III.7. Let K be an open compact subgroup of G. The Hecke ring
H(G, K) = EndZ[G] Z[K\G] is finitely generated, if K is a normal subgroup of
a special parahoric subgroup of G and admits an Iwahori decomposition7.

Proof. It is only proved that Z[1/p] ⊗Z H(G, K) is finitely generated in
[Viglivre, II.2.13 Prop.].

When G is compact, the lemma is obvious as the set K\G/K is finite.
When G is compact modulo its centre ZG, this is also clear as the set K\G/KZG

is finite and the group ZG/(ZG ∩ K) is commutative and finitely generated. One
can choose a finite set of representatives gi such that all the double classes of G
modulo K are of the form KgizK for z ∈ ZG and representatives zj of a finite set
of generators of ZG/(ZG ∩ K). The product of KgiK and of KzjK = Kzj = zjK
is KgizjK, and the ring H(G, K) is generated by the KgizjK.

For G general, the same arguments imply that the ring H(Z+, K∩Z) is finitely
generated (Z+ is the positive monoid cf.§IV.1). When K has an Iwahori decom-
position and is a normal subgroup of a special parahoric subgroup K0 of G, the
map (K ∩ Z)z(K ∩ Z) (→ KzK : H(Z+, K ∩ Z) → H(Z+, K) is a ring embed-
ding of image the subring of H(G, K) generated by the elements KzK for z ∈ Z+

[VigSelecta, II.4], and moreover the Cartan decomposition [HV1, 6.3 Prop.] im-
plies H(G, K) = H(K0, K)H(Z+, K)H(K0, K) [Viglivre, II.2.13 Prop.]. Thus,
the ring H(G, K) is finitely generated. !

7 K is called “ bien placé par rapport à (B, Z, U)” in [Viglivre, II.1.3 (vi)]
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Remark III.8. If K is an Iwahori or a pro-p Iwahori subgroup of G, then
H(G, K) is a finite module over its centre and the centre is finitely generated
[VigpIwc].

Until the end of the article R is a field of characteristic p. We are
interested in irreducible admissible R-representations of G.

For a parabolic group P = MN of G, the smooth parabolic induction func-
tor IndG

P : Mod∞
R (M) → Mod∞

R (G) is fully faithful, and admits a left adjoint
LG

P and a right adjoint RG
P [Vigadjoint]. The right adjoint RG

P respects admis-
sibility[AHenV1, Cor. 4.13] hence is equal on admissible representation to the
Emerton’s P -ordinary part functor OrdG

P where P is the opposite of P with respect
to B [Eme, 3.1.9 Definition].

For a pair of parabolic subgroups Q ⊂ P of G, write IndM
Q for IndM

Q∩M and con-

sider the Steinberg R-representation StM
Q (R) of M , quotient of IndM

Q (R) (R stands

for the trivial R-representation TrivQ∩M of Q ∩ M) by the sum
∑

Q′ IndM
Q′(R),

Q′ running through the parabolic subgroups of G with Q ! Q′ ⊂ P . The R-
representation StM

Q (R) of M is absolutely irreducible and admissible [Ly], and

StM
Q (R) ≃ R ⊗Z StM

Q where StM
Q = StM

Q (Z).
Writing P2 = M2N2 for the parabolic subgroup corresponding to ∆P \∆Q, the

inflation to M is
2 of the restriction of StM

Q to M ′
2 is St

Mis
2

(Q∩M2)is(R) ([AHHV, II.8

Proof of Proposition and Remark] when R is algebraically closed, but the proofs
do not use this hypothesis). Therefore the action of M ′

2 on StM
Q (R) is absolutely

irreducible.
To an R-representation σ of M are associated the following parabolic subgroups

of G:
a) Pσ = MσNσ corresponding to the set ∆σ of α ∈ ∆ \ ∆M such that Z ∩ M ′

α

acts trivially on σ.
b) P (σ) = M(σ)N(σ) corresponding to ∆(σ) = ∆P ∪ ∆σ. By [AHHV, II.7

Proposition and Remark 2] which remain valid when R is not algebraically closed,
there exists an extension e(σ) to P (σ) of σ trivial on N ; we write also e(σ) for its
restriction to M(σ). For P ⊂ Q ⊂ P (σ), the generalized Steinberg representation

StM(σ)
Q (σ) of M(σ) defined in §I (0.2), is admissible and isomorphic to e(σ) ⊗Z

StM(σ)
Q .

c) Pmin = MminNmin ⊂ P the smallest parabolic subgroup of G such that σ is
extended from an R-representation σmin of Mmin trivially on Nmin∩M [AHenV1,
Lemma 2.9]. Then ∆(σmin) = ∆(σ), eQ(σ) = eQ(σmin), and ∆σmin , ∆σmin \∆Pmin

are orthogonal [AHenV1, Lemma 2.10]. This implies that M(σ) = MminM ′
σmin

,
Mmin normalizes M ′

σmin
, and that e(σ) is trivial on M ′

σmin
.

Definition III.9. An R-triple (P,σ, Q) of G consists of a parabolic subgroup
P = MN of G, a smooth R-representation σ of M , and a parabolic subgroup Q of
G with P ⊂ Q ⊂ P (σ). The smooth R-representation of G defined by an R-triple
(P,σ, Q) of G is

IG(P,σ, Q) = IndG
P (σ)(StM(σ)

Q (σ)).

The representation IG(P,σ, Q) is equal to IG(Pmin,σmin, Q) [AHenV1, Lem-
ma 2.11]; it is admissible when σ is admissible [AHenV1, Thm.4.21].
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Proposition III.10. Let (P,σ, Q) be an R-triple of G such that, σ is admissible
of finite length, P (σ) = P (τ ) and IG(P, τ, Q) is irreducible for each irreducible
subquotient τ of σ. Then P (σ) = P (σ′) for any non-zero subrepresentation σ′ of
σ, and the map σ′ (→ IG(P,σ′, Q) : Lσ → LIG(P,σ,Q) is a lattice isomorphism.

Proof. Clearly P (σ) ⊂ P (σ′). As σ′ has finite length, it contains an irre-
ducible subrepresentation τ . From P (σ) ⊂ P (σ′) ⊂ P (τ ) and P (σ) = P (τ ), we get
P (σ) = P (σ′).

We are in the situation of Corollary I.6 for A = R[M ′
σ] ⊂ A′ = R[M(σ)] and

the R[M(σ)]-modules W = e(σ) and V = StM(σ)
Q (R), with the basis B = M ′

σ of A
acting by the identity on W and the basis B′ = M(σ) of A′ acting invertibly on V .
Applying Cor.I.6, the natural maps

e(σ) → HomR[M ′
σ](StM(σ)

Q (R), StM(σ)
Q (σ)),

HomR[M ′
σ](StM(σ)

Q (R), StM(σ)
Q (σ)) ⊗R StM(σ)

Q (R) → StM(σ)
Q (σ)

are R[M(σ)]-isomorphisms and σ′ (→ StM(σ)
Q (σ′) : Lσ → L

StM(σ)
Q (σ)

is a lattice

isomorphism. In particular, StM(σ)
Q (σ) has finite length, lg(StM(σ)

Q (σ)) = lg(σ),

and the irreducible subquotients StM(σ)
Q (σ) are StM(σ)

Q (τ ) for the irreducible sub-

quotients τ of σ. As IG(P, τ, Q) is irreducible and equal to IndG
P (σ) StM(σ)

Q (τ )) for
each τ , we are in the situation of Corollary I.4 for the fully faithful exact functor
F = IndG

P (σ) : ModR(M(σ)) → ModR(G) having a right adjoint G = RG
P , and

W = StM(σ)
Q (σ). We deduce that the map σ′ (→ IG(P,σ′, Q) : Lσ → LIG(P,σ,Q) is a

lattice isomorphism. !

Remark III.11. IG(P,σ, Q) determines the isomorphism class of e(σ) because

e(σ) ≃ HomR[M ′
σ](StP (σ)

Q (R), RG
P (σ)(IG(P,σ, Q)))

(proof of Prop. III.10 and RG
P (σ)(IG(P,σ, Q)) ≃ StP (σ)

Q (σ)).

Let R′ be a field containing R. Scalar extension from R to R′ commutes with
the different steps in the construction of IG(P,σ, Q):

Proposition III.12. (i) The parabolic induction functor IndG
P commutes with

the scalar restriction from R′ to R and with the scalar extension from R to R′. The
left adjoint LG

P (resp. right adjoint RG
P ) of the parabolic induction commutes with

scalar extension (resp. restriction).
(ii) If π ∈ Mod∞

R (G) is such that πR′ ≃ IndG
P (σ′) with σ′ ∈ Mod∞

R′(M), then
σ′ is isomorphic to (LG

Pπ)R′ .

Proof. (i) Choosing a continuous section P\G → G, IndG
P σ identifies with

σ ⊗Z C∞
c (P\G, Z) as an R-module [AHenV1]; this implies the first assertions,

and the next sentence follows by adjunction. Part (ii) follows because IndG
P is fully

faithful. !



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

REPRESENTATIONS OF A p-ADIC GROUP IN CHARACTERISTIC p 193

Proposition III.13. [Strong compatibility of IG(P,−, Q) with scalar exten-
sion]

(i) Let (P,σ, Q) be an R-triple of G. Then
P (σ) = P (σR′), (P,σR′ , Q) is an R′-triple of G, and if σ is irreducible and σ′

a non-zero subquotient of σR′ , then P (σ) = P (σ′). Moreover,

(e(σ))R′ = e(σR′), (StP (σ)
Q (σ))R′ ≃StP (σR′)

Q (σR′) and IG(P,σ, Q)R′ ≃IG(P,σR′ , Q).

(ii) Let (P,σ, Q) be an R′-triple of G. If e(σ) or StP (σ)
Q (σ) or IG(P,σ, Q)

descends to R, then σ descends to R.

Precisely, if e(σ) = τR′ or StP (σ)
Q (σ) = ρR′ or IG(P,σ, Q) = πR′ for R-

representations τ of M(σ) or ρ of M(σ) or π of G,
then σ is the scalar extension of the natural R-representation of M on τ , or

HomR[M ′
σ](StP (σ)

Q (R), ρ), or HomR[M ′
σ](StP (σ)

Q (R), LG
P (σ)π).

Proof. (i) σR′ is a direct sum of R[M ]-modules isomorphic to σ. If σ is
irreducible, any subquotient σ′ of σR′ is σ-isotypic. For α ∈ ∆ − ∆P , Z ∩ M ′

α

acts trivially on an R′[M ]-module τ if and only if it acts trivially on τ seen as
an R[M ]-module. So P (σ) = P (σR′) (hence (P,σR′ , Q) is an R′-triple of G),
and if σ is irreducible P (σ) = P (σ′). It is clear from the definition that the
extension commutes with scalar extension R′ ⊗R e(σ) = e(R′ ⊗R σ). The scalar

extension of StP (σ)
Q (σ) = e(σ) ⊗Z StP (σ)

Q from R to R′ is R′ ⊗R StP (σ)
Q (σ) = R′ ⊗R

e(σ) ⊗Z StP (σ)
Q ≃ e(R′ ⊗R σ) ⊗Z StP (σ)

Q ≃ StP (σ)
Q (σR′) = StP (σR′ )

Q (σR′). The scalar

extension of IG(P,σ, Q) = IndG
P (σ)(StP (σ)

Q (σ)) from R to R′ is R′ ⊗R IG(P,σ, Q) ≃
IndG

P (σ)(StP (σ)
Q (σR′)) = IndG

P (σR′)(StP (σR′)
Q (σR′)) = IG(P,σR′ , Q).

(ii) If IG(P,σ, Q) = πR′ , we have StP (σ)
Q (σ) ≃ (LG

P (σ)π)R′ (Proposition III.12

(ii)).

If StP (σ)
Q (σ) ≃ ρR′ , then e(σ) ≃ HomR′[M ′

σ](StP (σ)
Q (R′), ρR′) (Remark III.11);

as StP (σ)
Q (R′) = StP (σ)

Q (R)R′ , is irreducible, HomR′[M ′
σ](StP (σ)

Q (R′), ρR′) ≃
HomR[M ′

σ](StP (σ)
Q (R), ρ)R′ (Remark II.2).

If e(σ) ≃ τR′ then σ ≃ (τ |M )R′ because the restriction to M commutes with
scalar extension. !

III.4. Supersingular representations.
We keep the notations of §III.3. When R is algebraically closed and π is an

irreducible admissible R-representation of G, in [AHHV] the definition of supersin-
gularity uses the Hecke algebras defined by the irreducible smooth R-representations
of the special parahoric subgroups of G. Two equivalent simpler criterions using
the pro-p Iwahori Hecke R-algebra of G are given in [OV, Thm. 5.3]. We will use
these equivalent criterions to extend the definition of supersingularity to the situa-
tion where R is not algebraically closed, and π is a non-zero smooth representation
generated by its pro-p Iwahori invariants.

Let I be a pro-p Iwahori subgroup of G compatible with B, so that I∩M is a
pro-p Iwahori subgroup of M for any parabolic subgroup P = MN (we recall that
P contains B = ZU and M contains Z). Let Z0 be the unique parahoric subgroup
of Z and Z1 the pro-p Sylow subgroup of Z0. We defined in §III.1 the pro-p Iwahori
Hecke ring H(G, I) = H(G), the pro-p Iwahori Hecke R-algebra H(G)R and the
categories ModR(H(G)) and Mod∞

R (G). The elements in H(G) with support in G′
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form a subring H(G′) normalized by a subring of H(G) isomorphic to Z[Ω] for a
commutative finitely generated subgroup Ω, H(G) is the product of H(G′) by Z[Ω]
and

H(G′) ∩ Z[Ω] ≃ Z[Z ′
k], Z ′

k = (Z0 ∩ G′)/(Z1 ∩ G′).

To M is associated a certain element TM in H(G′) which is central in H(G) [Vig17].

Definition III.14. 1. An non-zero element v in a right H(G)R-module is called
supersingular if vTn

M = 0 for all M ̸= G and some positive integer n. A non-zero
H(G)R-module is called supersingular if its non-zero elements are supersingular.

2. A non-zero smooth R-representation π of G generated by πI is called super-
singular if the right H(G)R-module πI is supersingular.

Any non-zero R-representation of G has a non-zero I-invariant vector, as the
characteristic of R is p, hence any irreducible smooth R-representation π of G is
generated by πI . As explained above, when π is irreducible admissible and R
algebraically closed, our definition of supersingularity is equivalent to the definition
given in [AHHV] by [OV, Thm. 5.3].

Remark III.15. 1. Let 0 → V ′ → V → V ′′ → 0 be an exact sequence of H(G)R-
modules. Then V is supersingular if and only if V ′ and V ′′ are supersingular.

2. When R contains a root of unity of order the exponent of Zk = Z0/(Z0 ∩ I),
the simple supersingular H(G)R-modules are classified [Vig17, Thm. 6.18]; as
H(G′)R-modules, they are sums of supersingular characters.

3. The group Aut(R) of automorphisms of R acts on ModR(G) and on
ModR(H(G)). Clearly, the action of Aut(R) commutes with the I-invariant functor,
and respects supersingularity, irreducibility, and admissibility.

Supersingularity commutes with scalar extension:

Lemma III.16. Let R′/R an extension.
1) A (right) H(G)R-module X is supersingular if and only if XR′ is; a smooth

R-representation π of G generated by πI is supersingular if and only if πR′ is.
2) Let π be a smooth irreducible R-representation π of G with dimR EndR[G] π <

∞ and π′ be a non-zero subquotient of πR′ . Then π is supersingular if and only if
π′ is supersingular.

Proof. 1) In XR′ = R′⊗RX , we have (r′⊗x)TM = r′⊗xTM for r′ ∈ R′, x ∈ X ;
clearly the non-zero elements of XR′ are supersingular if and only if the non-zero
elements of X are supersingular.

If π is generated by πI , then πR′ is generated by πI
R′ = (πI)R′ (Lemma III.1

(iii)). By the previous case, π is supersingular if and only if πR′ is.
2) Any non-zero subquotient π′ of πR′ is generated by π′I because π is (Lemma

III.1 (iii)). The proof that π is supersingular if and only if π′ is supersingular is the
same as for admissible. Applying Thm. III.4 2) and Remark III.15, we can replace
“admissible” by “supersingular” in the proof of Thm. III.4 3). !

As an application, supersingularity for an irreducible admissible R-representa-
tion of G can be detected on a weaker property, as in the case where R is alge-
braically closed:

Theorem III.17. Let π be an irreducible admissible R-representation of G.
Then π is supersingular if and only if πI contains a non-zero supersingular element.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

REPRESENTATIONS OF A p-ADIC GROUP IN CHARACTERISTIC p 195

Proof. Suppose that πI contains a non-zero supersingular element. By Lem-
ma III.1, (πI)Ralg = (πRalg)I . By Lemma III.16 and [OV, Thm. 5.3], (πI)Ralg

is supersingular. By Thm III.4, πRalg has finite length. The irreducible subrepre-
sentations of πRalg are supersingular. By Lemma III.16, π is supersingular. The
converse is obvious. !

Remark III.18. The scalar extension to Ralg of a R-triple (P,σ, Q) of G where
σ is irreducible admissible supersingular, is an Ralg-triple (P,σRalg , Q) of G satis-
fying the hypotheses of Proposition III.10: the irreducible subquotients τ of σRalg

are supersingular (Lemma III.16), P (τ ) = P (σ) = P (σRalg) (Prop.III.13 (i)), and
IG(P, τ, Q) is irreducible (Classification theorem for G over Ralg [AHHV]).

III.5. Classification of irreducible admissible R-representations of G.
We prove in this section the classification theorem for G (Thm. I.7). The arguments
are formal and rely on:

1 The decomposition theorem for G (Thm.III.4).
2 The classification theorem for G (Thm.I.7) over an algebraic closure Ralg of

R [AHHV].
3 The compatibility of scalar extension from R to Ralg with supersingularity

(Lemma III.16) and the strong compatibility with IG(P,−, Q) (Prop.III.13).
4 The lattice isomorphism LσRalg → LIG(P,σRalg ,Q) for the scalar extension

σRalg to Ralg of an irreducible admissible supersingular R-representation σ
(Prop.III.10 and Rem.III.18).

We start the proof with an R-triple (P = MN,σ, Q) be of G with σ irre-
ducible admissible supersingular. We show that IG(P,σ, Q) is irreducible. By the
decomposition theorem for M , σRalg has finite length, IG(P,σRalg , Q) also by the
lattice isomorphism LσRalg → LIG(P,σRalg ,Q), and IG(P,σ, Q)Ralg ≃ IG(P,σRalg , Q)
by compatibility of the scalar extension with IG(P,−, Q); as the scalar extension
is faithful and exact, IG(P,σ, Q) has also finite length. Let π be an irreducible R-
subrepresentation of IG(P,σ, Q). As IG(P,σ, Q) is admissible, π is admissible. The
scalar extension πRalg is isomorphic to a subrepresentation of IG(P,σ, Q)Ralg ≃
IG(P,σRalg , Q). By the lattice isomorphism LσRalg → LIG(P,σRalg ,Q), πRalg ≃
IG(P, ρ, Q) for a subrepresentation ρ of σRalg . The representation ρ descends to R
because IG(P, ρ, Q) does, by the strong compatibility of IG(P,−, Q) with scalar ex-
tension. But σRalg has no proper subrepresentation descending to R by the decom-
position theorem for G, so ρ = σRalg and πRalg = IG(P,σRalg , Q) ≃ IG(P,σ, Q)Ralg ,
or equivalently, π ≃ IG(P, ρ, Q).

Next, let (P,σ, Q) and (P1,σ1, Q1) be two R-triples of G with σ,σ1 irreducible
admissible supersingular and IG(P,σ, Q) ≃ IG(P1,σ1, Q1). By scalar extension
IG(P,σRalg , Q) ≃ IG(P1, (σ1)Ralg , Q1). The classification theorem over Ralg implies
P = P1, Q = Q1 and some irreducible subquotient σalg of σRalg is isomorphic to
some irreducible subquotient σalg

1 of (σ1)Ralg . As R-representations of G, σalg is

σ-isotypic and σalg
1 is σ1-isotypic, hence σ,σ1 are isomorphic.

Finally, let π be an arbitrary irreducible admissible R-representation of G.
By the decomposition theorem for G, its scalar extension πRalg has finite length;
we choose an irreducible subrepresentation πalg of πRalg . By the decomposition
theorem for G, πalg is admissible, descends to a finite extension of R. By the
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classification theorem over Ralg,

πalg ≃ IG(P,σalg, Q)

for an Ralg-triple (P = MN,σalg, Q) of G with σalg irreducible admissible super-
singular. By the strong compatibility of IG(P,−, Q) with scalar extension, σalg de-
scends to a finite extension of R. By the decomposition theorem for M , σalg is con-
tained in the scalar extension σRalg of an irreducible admissible R-representation σ.
By compatibility of scalar extension with supersingularity and IG(P,−, Q), (P,σ, Q)
is an R-triple of G, σ is supersingular and IG(P,σRalg , Q) ≃ IG(P,σ, Q)Ralg . By
the lattice isomorphism LσRalg → LIG(P,σRalg ,Q), IG(P,σalg, Q) is contained in

IG(P,σRalg , Q). The irreducible representation πalg is isomorphic to an irreducible
subrepresentation of IG(P,σ, Q)Ralg . The decomposition theorem for G implies
that

π ≃ IG(P,σ, Q).

This ends the proof of the classification theorem for G (Theorem I.7).

IV. Classification theorem for H(G)

Let R be a field of characteristic p and G a p-adic reductive group, as in §III.3.
Let I be a pro-p Iwahori subgroup of G compatible with B, H(G) the pro-p Iwahori
Hecke ring, H(G)R = R ⊗Z H(G), Z1 the pro-p Sylow of the unique parahoric
subgroup Z0 of Z and Zk = Z0/Z1, as in §III.4.

In this section we prove results analogous to those of Section §III but for right
H(G)R-modules. Although the I-invariant functor and its left adjoint relate R-
representations of H(G) and G, the relation in characteristic p is weaker than in
the complex case and does not permit to deduce the case of the pro-p Iwahori
Hecke algebra from the case of the group: similar results for H(G) and G have to
be proved separately.

IV.1. Pro-p Iwahori Hecke ring. The center Z(H(G)) of the pro-p Iwahori
Hecke ring H(G) is a finitely generated subring and H(G) is a finitely generated
module over its center; the same is true for the center of H(G)R [VigpIwc]. This
implies that the dimension over R of a simple H(G)R-module is finite [Hn, 2.8
Prop.].

Let P = MN be a parabolic subgroup of G. The pro-p Iwahori Hecke ring
H(M) of M for the pro-p Iwahori subgroup I ∩ M does not embed in the ring
H(G). However we are in the good situation where H(M) is a localization of
a subring H(M+) (of elements supported in the positive monoid M+ := {m ∈
M | m(I ∩ N)m−1 ⊂ I ∩ N}) which embeds in H(G). We explain this in more
detail after introducing more notations than in §III.3 and §III.4; our main reference
is [VigpIw].

An upper or lower index M indicates an object defined for M ; for G we suppress
the index. We write NM for the F -points of the normalizer of T in M, WM =
NM/Z, WM = NM/Z1, WM ′ for the image of M ′ ∩NM in WM , Λ = Z/Z1, lgM for
the length of WM , ΩM for the image in WM of the NM -normalizer of (I ∩M); ΩM

is also the set of u ∈ WM of length lgM (u) = 0 (the group Ω = ΩG was introduced
in §III.4).

The natural map WM → (I ∩ M)\M/(I ∩ M) is bijective, WM ′ is a normal
subgroup WM and a quotient of WMis (via the quotient map M is → M ′), and we
have WM = WM ′ΩM , WM ′ ∩ ΩM = WM ′ ∩ Zk.
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For m ∈ M and w = w(m) ∈ WM image of m1 ∈ NM such that (I ∩M)m(I ∩
M) = (I ∩ M)m1(I ∩ M) (denoted also (I ∩ M)w(I ∩ M)), the characteristic
function of (I ∩ M)m(I ∩ M) seen as an element of H(M) is written TM (m) or
TM (w); we have also TM,∗(m) = TM,∗(w) in H(M) defined by TM,∗(w)TM (w−1) =
[(I ∩M)w(I ∩M) : (I ∩M)] [VigpIw, Prop.4.13]. For u ∈ ΩM , TM,∗(u) = TM (u)
is invertible of inverse TM (u−1). The Z-module H(M) is free with a natural basis
(TM (w))w∈WM , and another basis (TM,∗(w))w∈WM , called the ∗-basis. The Z-
submodule of basis (TM (u) = TM,∗(u))u∈Zk is the subring H(Z0 ∩M) of elements
supported on Z0. The relations satisfied by the natural basis and the ∗-basis are
the braid relations for w1, w2 ∈ WM such that lgM (w1w2) = lgM (w1) + lgM (w2):

TM (w1)T
M (w2) = TM (w1w2), TM,∗(w1)T

M,∗(w2) = TM,∗(w1w2),

and the quadratic relations with a change of sign for s ∈ WM ′ , lgM (s) = 1:

TM (s)2 = qs + csT
M (s), TM,∗(s)2 = qs − csT

M,∗(s)

where qs = [(I∩M)s(I∩M) : (I∩M)] and cs ∈ H(Z0∩M ′) the subring of elements
supported on Z0 ∩ M ′, satisfy the congruences qs ≡ 0 modulo p and cs ≡ −1
modulo the ideal of H(Z0 ∩ M ′) generated by p and T (u) − 1 for u ∈ Zk ∩ WM ′

[VigpIw]. Both qs and cs do not depend on M but lgM depends on M . The
quotient map WMis → WM ′ respects the length and the coefficients of the quadratic
relations, the surjective natural linear map from H(M is) to the subring H(M ′) of

elements supported on M ′, is a ring homomorphism sending TMis
(w) to TM (w′)

and TMis,∗(w) to TM,∗(w′) if w′ ∈ WM ′ is the image of w ∈ WMis .
The injective linear maps associated to the bases

TM (m) (→ T (m) : H(M)
θG

M−−→ H(G), TM,∗(m) (→ T ∗(m) : H(M)
θG,∗

M−−−→ H(G),

generally do not respect the product but their restrictions to the subrings H(M+)
and H(M− ) (of elements supported on the inverse monoid M− of M+) do.

Remark IV.1. 1. For P = MN ⊂ Q = MQNQ, we have inclusions for
ϵ ∈ {+,−}:

M ϵ ⊂ M ϵ
Q, θG

M (H(M ϵ)) ⊂ θG
MQ

(H(M ϵ
Q)), θG,∗

M (H(M ϵ)) ⊂ θG,∗
MQ

(H(M ϵ
Q)).

2. When ∆M and ∆ \ ∆M are orthogonal, the situation is simpler. For P2 =
M2N2 the parabolic subgroup of G corresponding to ∆ \ ∆M :

G′ is the direct product of M ′ and of M ′
2, G = MM ′

2, W ′ = WM ′
2
WM ′ , WM ′

2
∩

WM ′Ω = WM ′
2
∩ Zk, W = WM ′WM ′

2
Ω and for w ∈ WM ′ , w2 ∈ WM ′

2
, u ∈ Ω,

lg(ww2u) = lgM (w) + lgM2
(w2). The braid and quadratic relations satisfied by

T (w) = TG(w) for w ∈ WM are the same as for TM (w), the same is true for T (w)

and for M2. Moreover, θG
M = θG,∗

M , M ′ ⊂ M+ ∩M− and H(M ′)×H(M ′
2)

θG
M× θG

M2−−−−−−→
H(G′) is a ring isomorphism.

IV.2. Parabolic induction IndH(G)
P . For a parabolic subgroup P = MN of

G, the parabolic inductions for the pro-p Iwahori Hecke rings and for the groups

IndH(G)
P := −⊗H(M+),θG

M
H(G) : ModR(H(M)) → ModR(H(G)),

IndG
P : Mod∞

R (M) → Mod∞
R (G)
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are compatible with the pro-p Iwahori invariant functor and its left adjoint: [OV,
Prop.4.4, Prop.4.6] gives natural isomorphisms:

(−)I ◦ IndG
P ≃ IndH(G)

P ◦(−)I∩M ,(2.1)

(−⊗H(G) Z[I\G]) ◦ IndH(G)
P ≃ IndG

P ◦(−⊗H(M) Z[(I ∩ M)\M ]).

The parabolic induction IndH(G)
P for the pro-p Iwahori Hecke rings has a right ad-

joint RH(G)
P and a left adjoint LH(G)

P as for the groups, [VigpIwst]. As −⊗H(M+),θG
M

H(G) ≃ HomH(M+),θG,∗
M

(H(G),−) (Proposition VI.1 in the appendix below):

LH(G)
P ≃ −⊗H(M+),θG,∗

M
H(M), RH(G)

P = HomH(M+),θG
M

(H(M),−).(2.2)

The right adjoint functors RG
P and RH(G)

P are compatible with the pro-p Iwahori
invariant functor but the left adjoint functors are not [OV, Cor.4.13].

Remark IV.2. For the pro-p Iwahori Hecke algebra, the left adjoint LH(G)
P

being a localization is exact but for the group, the left adjoint LG
P is not exact.

Proposition IV.3. Let P = MN, P1 = M1N1 be two parabolic subgroups of
G. We have:

(i) RH(G)
P1

◦ IndH(G)
P ≃ IndH(M1)

P∩P1
◦RH(M)

P∩P1
.

(ii) LH(G)
P1

◦ IndH(G)
P ≃ IndH(M1)

P∩P1
◦LH(M)

P∩P1
.

(iii) The parabolic induction functor IndH(G)
P is fully faithful.

Proof. (i) is proved for the parabolic coinduction and its right adjoint in
[Abeparind, Prop. 5.1]8. Using the relation between the parabolic induction and
coinduction given in the appendix we get (i).

(ii) follows from (i) by left adjunction and exchanging P, P1.
(iii) The isomorphism (i) is described in the proof [Abeparind, Lemma 5.2].

For P1 = P , one checks that it is given by the unit id → RH(G)
P ◦ IndH(G)

P of the

adjunction. Applying Remark II.8, the functor IndH(G)
P is fully faithful. !

IV.3. The H(G)R-module StH(G)
Q (V). The “trivial” representation of H(G)

is TrivH(G) = (TrivG)I where TrivG is the trivial Z-representation of G. Let P =

MN be a parabolic subgroup of G and StH(G)
P := (StG

P )I . Put TrivH(G)R
= R ⊗Z

TrivH(G) and StH(G)
P (R) := R ⊗Z StH(G)

P ; they are H(G)R-modules. The H(G)R-

module IndH(G)
P (TrivH(M)R

) = IndH(G)
Q (R) is isomorphic to (IndG

Q(R))I (§IV.2).

By [Ly], StH(G)
P (R) is absolutely simple and isomorphic to the cokernel of the

natural map

(3.3) ⊕P!Q⊂G(IndG
Q(R))I → (IndG

P (R))I .

One knows that T ∗(z) acts trivially on IndH(G)
P (Z) and on StH(G)

P for z ∈ Z ∩ M ′

[AHenV2, Ex.3.14].
Let V be a non-zero right H(M)R-module, and PV =MVNV , P (V)=M(V)N(V)

the parabolic subgroups of G corresponding to:

∆V = {α ∈ ∆ orthogonal to ∆M , v = vTM,∗(z) for all v ∈ V , z ∈ Z ∩ M ′
α},

8What we call parabolic coinduction is denoted by IP in [Abeparind, §4] and called para-
bolic induction
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∆(V) = ∆M ∪ ∆V [Abe] [AHenV2, Def.4.12]. Different consequences for M(V)
of the orthogonality of ∆M and ∆V are described in Remark IV.1 2.

Definition IV.4. There is a unique right H(M(V))R-module e(V) equal to V
as an R-vector space, where TM(V),∗(m) acts by TM,∗(m) for m ∈ M and by the
identity for m ∈ M ′

V [AHenV2, Def.3.8 and remark before Cor. 3.9]; we say that
e(V) is the extension of V to H(M(V)) or that V is the restriction of e(V) to H(M).

Remark IV.5. Extension to H(M(V)) gives a lattice isomorphism LV → Le(V).

For P = MN ⊂ Q = MQNQ ⊂ P (V), we define similarly the extension eQ(V)

of V to H(MQ). When P ⊂ Q = MQNQ, we write StH(Q)
P := St

H(MQ)
P∩MQ

.

Lemma IV.6. Assume that ∆M is orthogonal to ∆\∆M and that we have right
H(G)R-modules X extending an H(M)R-module and Y extending an H(M2)R-
module, where P2 = M2N2 is the parabolic subgroup of G corresponding to ∆\∆M .

Then, there is a structure of right H(G)R-module on X ⊗R Y where T ∗(w) and
T (w) for w ∈ W act diagonally, and on HomθG,∗

M2
(H(M ′

2))
(Y , X ⊗R Y), where T ∗(w)

acts by the identity for w ∈ WM ′
2

and by

(T ∗(w)X ⊗T ∗(w)Y) ◦ − ◦ (T ∗(w)Y)−1 for w ∈ WM ′Ω,

where T ∗(w)X and T ∗(w)Y are the actions of T ∗(w) on X and Y.

Proof. For X ⊗R Y see [AHenV2, Prop.3.15, Cor.3.17].
Put Z = HomθG,∗

M2
(H(M ′

2))
(Y , X ⊗R Y); we check that the action T ∗(w)Z of

T ∗(w) on Z for w ∈ W defined in the lemma, respects the braid and quadratic re-
lations (§IV.1). The braid relations follow from W = WM ′

2
WM ′Ω and T ∗(ww2u) =

T ∗(w)T ∗(w2)T ∗(u) if w ∈ WM ′ , w2 ∈ WM ′
2
, u ∈ Ω (Remark IV.1 2). For the qua-

dratic relations, let s2 ∈ WM ′
2

and s ∈ WM ′ of length 1. Then T ∗(s2)X , T ∗(s2)Z
and T ∗(s)Y are the identity. As −c(s2)Z is the identity and the characteristic of
R is p, T ∗(s2)Z verifies the quadratic relation; T ∗(s)Z(−) = (T ∗(s)X ⊗idY) ◦ −
satisfies the quadratic relation because T ∗(s)X does (§IV.1). !

Assume P ⊂ Q ⊂ P (V) = G, in particular ∆M and ∆ \ ∆M are orthogonal.
We have (StG

Q)I = (StG
Q)I∩M ′

2 [AHenV2, §4.2, proof of theorem 4.7], the right
H(G)R-modules:

e(V) ⊗R IndH(G)
Q (R), StH(G)

Q (V) = e(V) ⊗R StH(G)
Q (R),

HomH(M ′
2)R

(e(V), StH(G)
Q (V))

where T ∗(w) acts diagonally for w ∈ W on the first and second ones, and for the
third one, the map θG

M2
= θG,∗

M2
embeds H(M ′

2) in H(G) (Remark IV.1 2), T ∗(w)
acts by the identity for w ∈ WM ′

2
and by T ∗(w) ◦ − ◦ T ∗(w)−1 for w ∈ WM ′Ω

(Lemma IV.6).
From the H(G)R-isomorphism

IndH(G)
Q (eQ(V)) ≃ e(V) ⊗(IndG

Q(R))I

explicated in ([AHenV2, Prop.4.5], and the inclusion (IndG
Q1

(R))I ⊂
(IndG

Q(R))I for P ⊂ Q ⊂ Q1, we obtain an injective H(G)R-isomorphism
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IndH(G)
Q1

(eQ1(V))
ιG(Q,Q1)−−−−−−→ IndH(G)

Q (eQ(V)) and an H(G)R-map

(3.4) ⊕Q!Q1⊂G IndH(G)
Q1

(eQ1(V))
⊕ Q!Q1⊂ G ιG(Q,Q1)−−−−−−−−−−−−−→ IndH(G)

Q (eQ(V))

of cokernel isomorphic to StH(G)
Q (V) [AHenV2, Cor.4.6].

Proposition IV.7. Assume P ⊂ Q ⊂ P (V) = G.

(i) The natural maps e(V) → HomH(M ′
2)R

(StH(G)
Q (R), e(V)⊗R StH(G)

Q (R)) and

HomH(M ′
2)R

(StH(G)
Q (R), StH(G)

Q (V)) ⊗R StH(G)
Q (R) → StH(G)

Q (V) are H(G)R-
isomorphisms.

(ii) The map Y (→ Y ⊗R StH(G)
Q (R) : Le(V) → L

StH(G)
Q (V)

is a lattice isomor-

phism of inverse X → {y ∈ e(V), y ⊗Z StH(G)
Q ⊂ X}.

Proof. We are in the setting of Cor. I.6 for A = H(M ′
2)R ⊂ A′ = H(G)R (the

inclusion is via θG
M2

= θG,∗
M2

), the bases B = (T ∗(w))w∈WM′
2

and B′ = (T ∗(w))w∈W ,

the right A-module V , and the right A′-module V = StH(G)
Q (R) = e(StH(M2)

Q (R)),
absolutely simple as an A-module where T ∗

w for w ∈ W \WM ′
2

(contained in WM ′Ω)
acts invertibly. !

IV.4. The module IH(G)(P, V , Q).

Definition IV.8. An R-triple (P, V , Q) of H(G) consists of a parabolic sub-
group P = MN of G, a right H(M)R-module V , a parabolic subgroup Q of G with
P ⊂ Q ⊂ P (V). To an R-triple (P, V , Q) of H(G) is attached a right H(G)R-module

IH(G)(P, V , Q) = IndH(G)
P (V) (StH(M(V))

Q (V))

isomorphic to the cokernel of the H(G)R-homomorphism

⊕Q!Q1⊂P (V) IndH(G)
Q1

(eQ1(V))
⊕ Q!Q1⊂ P (V) ι

G(Q1,Q)
−−−−−−−−−−−−−−−→ IndH(G)

Q (eQ(V))

where ιG(Q1, Q) = IndH(G)
P (V) (ιM(V)(Q ∩ M(V), Q1 ∩ M(V))).

We can recover StH(M(V))
Q (V) and e(V) from IH(G)(P, V , Q) and P (V):

(4.5) StH(M(V))
Q (V) ≃ LH(G)

H(M(V))(IH(G)(P, V , Q)))

by Proposition IV.3(ii) and

(4.6) e(V) ≃ HomH(M ′
V)(StH(M(V))

Q (R), LH(G)
H(M(V))(IH(G)(P, V , Q)))

by Proposition IV.7(i).

Proposition IV.9. Let (P, V , Q) be an R-triple of H(G) with V of finite
length and such that for each irreducible subquotient X of V, P (V) = P (X ) and
IH(G)(P, X , Q) is simple. Then P (V) = P (V ′) for any non-zero H(M)R-submodule
V ′ of V; moreover the map V ′ (→ IH(G)(P, V ′, Q) : LV → LIH(G)(P,V,Q) is a lattice
isomorphism.

Proof. P (V) = P (V ′) is proved as in Proposition III.10. We are in the situa-

tion of Corollary I.6 (proof of Prop.IV.7 for M(V) instead of G). So StH(M(V))
Q (V)
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has finite length, and its irreducible subquotients are StH(M(V))
Q (X ) for the ir-

reducible subquotients X of V . If IG(P, X , Q) = IndG
P (V)(StM(V)

Q (X )) is irre-

ducible for all X , we are in the situation of Corollary I.4 for F = IndH(G)
P (V) and

W = StH(M(V))
Q (V) because IndH(G)

P (V) has a right adjoint and is exact fully faithful

(Proposition IV.3 (iii)) so the map V ′ (→ IG(P, V ′, Q) : LV → LIG(P,V,Q) is a lattice
isomorphism. !

Remark IV.10. The scalar extension to Ralg of a R-triple (P, V , Q) of H(G)
where V is simple supersingular, is an Ralg-triple (P,σRalg , Q) of H(G) satisfying
the hypotheses of Proposition IV.9, as for the group (Remark III.18). By the
decomposition theorem and Lemma III.16, VRalg has finite length and its irreducible
subquotients X are supersingular, P (X ) = P (V) = P (VRalg) (Prop.IV.12 (ii)),
and IH(G)(P, X , Q) is irreducible by the classification theorem for H(G) over Ralg

(Thm.I.8 [AHenV2]).

We now check the compatibility of IH(G)(P, V , Q) with scalar extension, as for
the group (Propositions III.12 and III.13). Let R′/R be a field extension.

Proposition IV.11. (i) The parabolic induction commutes with the scalar re-
striction from R′ to R and with the scalar extension from R to R′. Hence the
left (resp. right) adjoint of the parabolic induction commutes with scalar extension
(resp. restriction).

(ii) An H(M)R′-module V ′ and an H(G)R-module X such that IndH(G)
P V ′ ≃

XR′ , we have V ′ ≃ (LH(G)
P X )R′ .

Proof. As for the group (Proposition III.12). Note that (i) is valid for com-
mutative rings R ⊂ R′. !

Proposition IV.12. (i) Let (P, V , Q) be an R-triple of H(G). Then P (V) =
P (VR′); if V is simple and V ′ is a subquotient of VR′ , then P (V) = P (V ′) and

(e(V))R′ = e(VR′), StH(M(V))
Q (V)R′ ≃ StH(M(V))

Q (VR′),

IH(G)(P, V , Q)R′ ≃ IH(G)(P, VR′ , Q).

(ii) Let (P, V ′, Q) be an R′-triple of H(G) such that e(V ′), resp. StH(M(V′))
Q (V ′),

resp. IH(G)(P, V ,′ Q), descend to R. Then V ′ descends to R.

Precisely, if e(V ′), resp. StH(M(V′))
Q (V ′), resp. IH(G)(P, V ′, Q), is the scalar ex-

tension from R to R′ of X , resp. Y, resp. Z, then V ′ is the scalar extension from R

to R′ of the natural action of H(M)R on X , resp. HomH(M ′
V′)R

(StH(M(V′))
Q (R), Y),

resp. HomH(M ′
V′ )R

(StH(M(V′))
Q (R), LH(G)

P (V′)Z).

Proof. (i) As for the group (Proposition III.13).

(ii) If IH(G)(P, V ′, Q) = ZR′ then StH(M(V′))
Q (V ′)=YR′ where Y≃LH(G)

H(M(V′))(Z)

by (i) and (4.5).

If StH(M(V′))
Q (V ′) = YR′ , then e(V ′) = XR′ where

X ≃ HomH(M ′
V′)R

(StH(M(V′))
Q (R), Y)
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as e(V ′) ≃ HomH(M ′
V′)R′ (StH(M(V′))

Q (R′), YR′) (Prop. IV.7) and StH(M(V′))
Q (R′) ≃

(StH(M(V′))
Q (R))R′ .

If e(V ′) = XR′ then TM(V′),∗(m) acts trivially on XR′ for m ∈ M ′
V′ hence also

on X and V ′ is the scalar extension to R′ of X seen as a H(M)R-module. !

IV.5. Classification of simple modules over the pro-p Iwahori Hecke
algebra. As in §III.5 for the group, the classification theorem for H(G) over Ralg

(Thm.I.8) descends to R by a formal proof relying on:
1 The decomposition theorem for H(G) (Thm.I.1).
2 The classification theorem for H(G) over Ralg (Thm.I.8 [AHenV2]).
3 The strong compatibility of scalar extension with IH(G)(P,−, Q)(Prop. IV.12)

and supersingularity (Lemma III.16).
4 The lattice isomorphism LVRalg → LIH(G)(P,VRalg ,Q) for the scalar extension

VRalg to Ralg of a simple supersingular H(M)R-module V (Prop.IV.7 and Remark
IV.10).

We start the proof with an R-triple (P, V , Q) of H(G) with V simple supersin-
gular and we prove that IH(G)(P, V , Q) is simple. By the decomposition theorem,
the H(G)Ralg -module VRalg has finite length, and IH(G)(P, VRalg , Q) also by the
lattice isomorphism LVRalg → LIH(G)(P,VRalg ,Q). Scalar extension is faithful and
exact and IH(G)(P, V , Q)Ralg ≃ IH(G)(P, VRalg , Q) so IH(G)(P, V , Q) has also finite
length. We choose a simple H(G)R-submodule X of IH(G)(P, V , Q). The H(G)Ralg -
module XRalg is contained in IH(G)(P, V , Q)Ralg hence XRalg ≃ IH(G)P, V ′, Q) for
an H(M)Ralg -submodule V ′ of VRalg by (5.8) and the lattice isomorphism LVRalg →
LIH(G)(P,VRalg ,Q). As IH(G)(P, V ′, Q) descends to R, V ′ is also by the strong compat-
ibility of IH(G)(P,−, Q) with scalar extension. But no proper H(M)Ralg -submodule
of VRalg descends to R by the decomposition theorem for H(G), so V ′ = VRalg ,
XRalg = IH(G)(P, VRalg , Q) and XRalg ≃ IH(G)(P, V , Q)Ralg by compatibility of
scalar extension with IH(G)(P,−, Q). So X ≃ IH(G)(P, V , Q) and IH(G)(P, V , Q) is
simple.

Next, let (P, V , Q) and (P1, V1, Q1) be two R-triples of H(G) with V , V1 sim-
ple supersingular and IH(G)(P, V , Q) ≃ IH(G)(P1, V1, Q1). The scalar extensions to
Ralg are isomorphic (IH(G)(P, V , Q))Ralg ≃ (IH(G)(P1, (V1), Q1))Ralg . The classi-
fication theorem for H(G) over Ralg and (5.8) imply P = P1, Q = Q1 and some
simple H(M)Ralg -subquotient Valg of VRalg is isomorphic to some simple H(M)Ralg -
subquotient Valg

1 of (V1)Ralg . As Valg is V-isotypic and Valg
1 is V1-isotypic as

H(M)R-module, V and V1 are isomorphic.
Finally, let X be an arbitrary simple H(G)R-module. By the decomposition

theorem, the H(G)Ralg -module XRalg has finite length; we choose a simple submod-
ule X alg of XRalg . By the classification theorem over Ralg,

(5.7) X alg ≃ IH(G)(P, Valg, Q)

for an Ralg-triple (P = MN, Valg, Q) of H(G) where Valg is a simple supersingu-
lar H(M)Ralg -module. By the decomposition theorem, X alg descends to a finite
extension of R, and also Valg by strong compatibility of scalar extension with
IH(G)(P,−, Q). By the decomposition theorem, Valg is contained in the scalar ex-
tension VRalg to Ralg of a simple H(M)R-module V . By compatibility of scalar
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extension with IH(G)(P,−, Q) and supersingularity, V is supersingular, (P, V , Q) is
an R-triple of G and

(5.8) IH(G)(P, VRalg , Q) ≃ IH(G)(P, V , Q)Ralg .

We have IH(G)(P, Valg, Q) ⊂ IH(G)(P, VRalg , Q) by the lattice isomorphism LVRalg →
LIH(G)(P,VRalg ,Q). The decomposition theorem and X alg ⊂ IH(G)(P, V , Q)Ralg imply

X ≃ IH(G)(P, V , Q).

This ends the proof of the classification theorem for H(G) (Thm.I.8). !

V. Applications

Let R be a field of characteristic p and G a reductive p-adic group as in §III.3.

V.1. Vanishing of the smooth dual. The dual of π ∈ ModR(G) is
HomR(π, R) with the contragredient action of G, that is, (gf)(gx) = f(x) for
g ∈ G, f ∈ HomR(π, R), x ∈ π. The smooth dual of π is π∨ := ∪K HomR(π, R)K

where K runs through the open compact subgroups of G.
A finite dimensional smooth R-representation of G is fixed by an open compact

subgroup, and its smooth dual is equal to its dual.

We prove Theorem I.9. Let Ralg/R be an algebraic closure and let π be a non-
zero irreducible admissible R-representation π of G. By Remark II.2, (π∨)Ralg ⊂
(πRalg)∨. Assume that π∨ ̸= 0. Then, (π∨)Ralg ̸= 0, hence (πRalg)∨ ̸= 0. We
know that πRalg has finite length (Thm. III.4), so ρ∨ ̸= 0 for some irreducible
subquotient ρ of πRalg . By the theorem over Ralg [AHenV2, Thm.6.4], the Ralg-
dimension of ρ is finite. The Ralg-dimension is constant on the AutR(Ralg)-orbit
of ρ. By the decomposition theorem (Thm. III.4), the Ralg-dimension of πRalg is
finite. It is equal to the R-dimension of π. So we proved that π∨ ̸= 0 implies that
the R-dimension of π is finite. !

V.2. Lattice of submodules (Proof of Theorem I.10).
V.2.1. We recall some properties of the I-invariant functor and of its left ad-

joint. Let σ be a smooth R-representation of M .
1. The parabolic induction commutes with (−)I and its left adjoint −⊗H(G)

Z[I\G] (§IV.2 (2.1)).
2. If the natural surjective R[G]-map (counit of the adjunction) σI∩M ⊗

H(M,I∩M)Z[(I ∩ M)\M ] → σ is an R[M ]-isomorphism, it follows from 1 and the

full faithfulness of IndG
P that (IndG

P (σ))I ⊗H(G,I) Z[I\G] is isomorphic to IndG
P (σ)9.

3. The natural R[G]-map (TrivH(G) ⊗H(G)Z[I\G])I → TrivG where TrivG is
the trivial R-representation of G and TrivH(G) = (TrivG)I [OV, end of the proof
of Lemma 2.25].

4. IG(P,σ, Q)I ≃ IH(G)(P,σI∩M , Q) if σ = σmin (§III.3) and P (σ) = P (σI∩M )
[AHenV2, Thm. 4.17].

Lemma V.1. Let σ be an irreducible admissible supersingular R-representation
of M . Then σ = σmin, P (σ) = P (σI∩M ), so IG(P,σ, Q)I ≃ IH(G)(P,σI∩M , Q).

9One can check that the natural surjective map (counit of the adjunction) (IndG
P (σ))I⊗H(G,I)

Z[I\G] → IndG
P (σ) is an R[G]-isomorphism
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Proof. The equality σ = σmin follows from the classification (Thm.I.7) be-
cause σ is supersingular (§III.4). When σ = σmin, then ∆σ is orthogonal to
∆M (§III.3). As σ being irreducible is generated by σI∩M , P (σ) = P (σI∩M )
[AHenV2, Thm.3.13]. !

5. IH(G)(P, V , Q) ⊗H(G) Z[I\G] ≃ IG(P, V ⊗H(M) Z[(I ∩ M)\M ], Q) if V is a
simple supersingular H(M)R-module (more generally, if P (V) = P (V ⊗H(M) Z[(I ∩
M)\M ]) when V ⊗H(M) Z[(I ∩ M)\M ] ̸= 0) [AHenV2, Cor. 5.12, 5.13].

Proposition V.2. Let σ be an irreducible admissible supersingular R-represen-
tation of M such that σI∩M simple and the map σI∩M ⊗H(M) Z[(I ∩ M)\M ] → σ
is bijective. Then,

IndG
P (σ) has multiplicity 1 and irreducible subquotients IG(P,σ, Q) for P ⊂ Q ⊂

P (σ).

(IndG
P σ)I ≃ IndH(G)

P (σI∩M ) has multiplicity 1 and simple subquotients
IG(P,σ, Q)I ≃ IH(G)(P,σI∩M , Q) for P ⊂ Q ⊂ P (σ).

IndH(G)
P (σI∩M )⊗H(G)Z[I\G]≃IndG

P (σ, Q) and IH(G)(P,σI∩M , Q)⊗H(G)Z[I\G]
≃ IG(P,σ, Q) for P ⊂ Q ⊂ P (σ).

Proof. This follows from the above properties 1 to 5, Lemma V.1, the classi-
fication theorems I.7, I.8 and from [AHHV, III.24 Prop., the proof is valid for R
not algebraically closed]. !

V.2.2. IndG
P (R) and IndH(G)

P (R). By [Ly, §9], the R-representation IndG
P (TrivM)

= IndG
P (R) of G is multiplicity free of irreducible subquotients StG

Q(R) for P ⊂ Q ⊂
G. The H(G)R-module IndH(G)

P (R) = (IndG
P R)I has a filtration with subquotients

StG
Q(R)I = StH(G)

Q (R) for P ⊂ Q ⊂ G. By the classification theorem, the StH(G)
Q (R)

are simple not isomorphic. So IndH(G)
P (R) is multiplicity free of simple subquotients

StH(G)
Q (R) for P ⊂ Q ⊂ G.

Applying 1, 2 and 3 in §V.2.1, we see that IndH(G)
P (R) ⊗H(G) Z[I\G] and

IndG
P (R) are isomorphic; this implies that StH(G)

P (R)⊗H(G) Z[I\G] and StG
P (R) are

also isomorphic.
We can apply Thm. I.3 (b) to the functor F =−⊗H(G)Z[I\G] : ModR(H(G))→

ModR(G) of right adjoint G = (−)I , and the H(G)R-module V = IndH(G)
P (R). So

(−⊗H(G)Z[I\G], (−)I) give lattice isomorphisms between L
IndH(G)

P (R)
and LIndG

P (R).

For P ⊂ Q ⊂ G, the subrepresentation of IndG
P (R) with cosocle StG

Q(R) is

IndG
Q(R), and sending StG

Q(R) for P ⊂ Q to ∆Q \∆P induces a lattice isomorphism
from LIndG

P (R) onto the set of upper sets in P(∆ \ ∆P ); to an upper set in P(∆ \
∆P ) is associated the subrepresentation

∑
J IndG

PJ∪∆P
(R) for J in the upper set

[AHenV1, Prop.3.6].

V.2.3. IndG
P (StM

Q (R)) and IndH(G)
P (StH(M)

Q (R)) for Q ⊂ P . This case is a di-

rect consequence of §V.2.2 because IndG
P (StM

Q (R)) is a quotient of IndG
Q(R):

IndG
P (StM

Q (R)) = IndG
Q(R)/

∑

Q!Q1⊂P

IndG
Q1

(R).

We deduce from §V.2.2 that IndG
P (StM

Q (R)) is multiplicity free of irreducible sub-

quotients IndG
P (StG

Q′(R)) for Q ⊂ Q′ but Q′ does not contain any Q1 such that
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Q ! Q1 ⊂ P , that is, Q = Q′ ∩ P . The subrepresentation IndG
P (StM

Q′(R)) of

IndG
P (StM

Q (R)) has cosocle StG
Q′ . Sending StG

Q′(R) to ∆Q′ ∩ (∆ \ ∆P ) gives a lat-
tice isomorphism from LIndG

P (StM
Q (R)) onto the lattice of upper sets in P(∆ \ ∆P )

(which does not depend on Q). We deduce also from §V.2.2 and Remark II.10 that
−⊗H(G)Z[I\G] and (−)I give lattice isomorphisms between L

IndH(G)
P (StH(M)

Q (R))
and

LIndG
P (StM

Q (R)).

V.2.4. IndG
P σ for σ irreducible admissible supersingular and IndH(G)

P V for V
simple supersingular. IndG

P σ admits a filtration with quotients IG(P,σ, Q) =

IndG
P (σ)(StM(σ)

Q (σ)) for P ⊂ Q ⊂ P (σ), and by the classification theorem the

IG(P,σ, Q) are irreducible and not isomorphic; so IndG
P (σ) is multiplicity free of

irreducible subquotients IG(P,σ, Q) for P ⊂ Q ⊂ P (σ). The maps

X (→ e(σ)⊗RX (→ IndG
P (σ)(e(σ)⊗RX) : L

IndM(σ)
P (R)

→L
e(σ)⊗RIndM(σ)

P (R)
→LIndG

P (σ)

are lattice isomorphisms: this follows from the lattice theorems and the classifi-
cation theorem (Thm.I.3, Thm.I.5, Thm.I.7), as in Proposition III.10 (for R alge-
braically closed [AHenV1, Prop.3.8]).

The same arguments show that IndH(G)
P (V) is multiplicity free of simple sub-

quotients IH(G)(P, V , Q) for P ⊂ Q ⊂ P (V) and that the maps

Y (→ e(V) ⊗R Y (→ IndH(G)
P (V) (e(V) ⊗R Y ) : L

IndH(M(V))
P (R)

→ L
e(V)⊗RIndH(M(V))

P (R)
→ L

IndH(G)
P (V)

are lattice isomorphisms, by applying Thm.I.3, Thm.I.5, Thm.I.8, as in Proposition
IV.9.

V.2.5. IndG
P (StM

Q (σ1)) and IndH(G)
P (StH(M)

Q (V1)) for an R-triple (P1,σ1, P ) of
G, P1 ⊂ Q ⊂ P , σ1 irreducible admissible supersingular and similarly for V1. This
is a direct consequence of §V.2.4 because

IndG
P (StM

Q (σ1)) = (IndG
Q eQ(σ1))/(

∑

Q!Q1⊂P

IndG
Q1

eQ1(σ1))

is a subquotient of IndG
P1

(σ1) as eQ(σ1) ⊂ Ind
MQ

P1
(σ1) and similarly for V1. We

have IndG
Q1

eQ1(σ1) ≃ IndG
P (σ1)(e(σ1) ⊗R indM(σ1)

Q1
(R)), and a lattice isomorphism

(§V.2.4):

X (→ IndG
P (σ1)(e(σ1) ⊗R X) : L

Ind
M(σ1)
P1

(R)
→ LIndG

P1
(σ1)

inducing a lattice isomorphism (Remark II.10):

L
Ind

M(σ1)
P (StM

Q (R))
→ LIndG

P (StM
Q (σ1)).

The R-representation IndG
P (StM

Q (σ1)) is multiplicity free of irreducible subquotients
IG(P1,σ1, Q′) for the R-triples (P1,σ1, Q′) of G with Q′ ∩ P = Q (§V.2.3). And
similarly for V1 with the same arguments and references.

V.2.6. IndG
P σ for σ irreducible admissible and IndH(G)

P V for V simple. By the
classification theorem, there exists an R-triple (P1,σ1, Q) of G with Q ⊂ P , σ1

irreducible admissible supersingular such that

σ ≃ IM (P1 ∩ M,σ1, Q ∩ M) = IndM
P (σ1)∩M (StM(σ1)∩M

Q∩M (σ1)).
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The transitivity of the induction implies IndG
P σ ≃ IndG

P (σ1)∩P (StM(σ1)∩M
Q (σ1)).

This is the case §V.2.5 with P (σ1) ∩ P . The R-representation IndG
P σ of G is mul-

tiplicity free of irreducible subquotients IG(P1,σ1, Q′) for the R-triples (P1,σ1, Q′)
of G with Q′ ∩ P = Q (note that Q′ ⊂ P (σ1), Q ⊂ P ). The map

X (→ IndG
P (σ1)(e(σ1) ⊗R X) : L

Ind
M(σ1)
P (σ1)∩P

(St
M(σ1)∩M
Q (R))

→ LIndG
P (σ)

is a lattice isomorphism. And similarly for V with the same arguments and refer-
ences.

V.2.7. Invariants by the pro-p Iwahori subgroup. We start with an irreducible
admissible R-representation σ of M and we keep the notations of §V.2.6. The
classification theorem shows that

σI∩M is simple ⇔ σI∩M1
1 is simple

because σI∩M ≃ IH(M)(P1∩M,σI∩M1
1 , Q∩M) (§V.2.1) and σI∩M1

1 is supersingular
of finite length.

Put V1 = σI∩M1
1 , and assume first that P (σ1) = P (V1). In §V.2.3 we saw that

the maps

(2.1) X (→ XI∩M(σ1), Y (→ Y ⊗H(M(σ1)) Z[I ∩ M(σ1)\M(σ1)]

between L
Ind

M(σ1)
P (σ1)∩P

(St
M(σ1)∩M
Q (R))

and L
Ind

H(M(σ1))
P (σ1)∩P

(St
H(M(σ1)∩M)
Q (R))

, are lattice iso-

morphisms. They induce lattice isomorphisms between LIndG
P (σ) and L

IndH(G)
P (V)

:

IndG
P (σ1)(e(σ1) ⊗R X) (→ IndH(G)

P (V1)
(e(V1) ⊗R XI∩M(σ1)),

(2.2)

IndH(G)
P (V1)

(e(V1) ⊗R Y ) (→IndG
P (σ1)(e(σ1) ⊗R (Y ⊗H(M(σ1)) Z[(I ∩ M(σ1))\M(σ1)])).

(2.3)

by the lattice isomorphisms of §V.2.6 with LIndG
P (σ) and L

IndH(G)
P (V)

.

We assume now that σI∩M is simple and the natural map σI∩M ⊗H(M) Z[(I ∩
M)\M ] → σ bijective, and we prove that the map Y (→ Y ⊗H(G) Z[I\G] :
L

IndH(G)
P (σI∩M )

→ LIndG
P (σ) is a lattice isomorphism. By Lemma V.1, P (σ1) =

P (V1). By Remark II.10, it is enough to prove it when σ = σ1, that is, σ is super-
singular. For that, we use Thm. I.3 (b) with F = −⊗H(G)Z[I\G] : ModR(H(G)) →
ModR(G) of right adjoint (−)I and V = IndG

P σ which satisfy the hypotheses by
Prop.V.2. This ends the proof of Thm. I.10.

V.3. Proof of Theorem I.12. Proving Theorem I.12 from the classification
theorem needs no new techniques. It suffices to quote for RG

P1
(π) [AHenV1, Corol-

lary 6.5], for LG
P1

(π) [AHenV1, Cor. 6.2, 6.8], for LH(G)
P1

(X ) and RH(G)
P1

(X )
([Abeparind, Thm. 5.20] when R is algebraically closed, but this hypothesis is
not used), for πI and X ⊗H(G) Z[I\G] [AHenV2, Thm.4.17, Thm.5.11].

VI. Appendix: Eight inductions ModR(H(M)) → ModR(H(G))

For a commutative ring R and a parabolic subgroup P = MN of G, eight
different inductions ModR(H(M)) → ModR(H(G))

−⊗H(Mϵ),θη H(G) and HomH(Mϵ),θη (H(G),−) for ϵ ∈ {+,−}, η ∈ { , ∗}
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are associated to the elements of {⊗, Hom} ×{+,−} ×{θ, θ∗} where θ := θG
M

and {θη, θ∗η} = {θ, θ∗} as sets (see IV.1). The triple (⊗, +, θ) corresponds to the

parabolic induction IndH(G)
P (−) = − ⊗H(M+),θ H(G) and the triple (Hom,−, θ∗)

corresponds to HomH(M− ),θ∗(H(G),−) that we call parabolic coinduction. Before
comparing these eight inductions, we define the “ twist by nwGwM ” and the invo-
lution ιMlg− lgM

.
Twist by nwGwM . We choose an injective homomorphism w (→ nw : W → W

from the Weyl group W of ∆ to W satisfying the braid relations (there is no
canonical choice).

Put wM = wP for the longest element of the finite Weyl group WM of M
(see §IV.1), and P op = MopNop for the parabolic subgroup of G corresponding to
∆Mop = ∆P op = wGwP (∆P ) = wG(−∆P ) (it is contained in ∆ and is the image
of ∆P by the opposition involution α (→ wG(−α) [T, 1.5.1]). The conjugation
w (→ nwGwM wn−1

wGwM
: WM → WMop by nwGwM is a group isomorphism inducing

the ring isomorphism “twist by nwGwM ”:

H(M) → H(Mop), TM
w → TMop

nwGwM
wn−1

wGwM

(w ∈ WM )

sending also TM,∗
w ) to TMop,∗

nwGwM
wn−1

wGwM

[Abe, §4.3]. It restricts to an isomor-

phism H(M ϵ) → H(Mop,−ϵ) [VigpIwst, Prop.2.20], and its inverse is the twist
by nwGwMop , because nwGwP op = nwP wG = n−1

wGwP
.

We have the functor “twist by nwGwM ”:

ModR(H(M))
nwGwM

(−)
−−−−−−−→ ModR(H(Mop)),

where the spaces of V ∈ ModR(H(M)) and nwGwM (V) ∈ ModR(H(Mop)) are the
same and vTM

w = vTMop

nwGwM
wn−1

wGwM

for v ∈ V , w ∈ WM .

Involution ιMlg− lgM
[Abeparind, §4.1]. The two commuting involutions ιM

and ιlg− lgM
of the ring H(M):

(TM
w , TM,∗

w )
ιM−−→ (−1)lgM (w)(TM,∗

w , TM
w ) [VigpIw, Prop. 4.23],

(TM
w , TM,∗

w )
ιlg− lgM−−−−−→ (−1)lg(w)− lgM (w)(TM

w , TM,∗
w ) [Abeparind, Lemmas 4.2,

4.3, 4.4, 4.5].
give by composition an involution ιMlg− lgM

of H(M)

(TM
w , TM,∗

w )
ιMlg− lgM−−−−−→ (−1)lg(w)(TM,∗

w , TM
w ).

The twist by nwGwM and the involution ιMlg− lgM
commute, and the image of TM

w

for w ∈ WM by

nwGwM (−) ◦ ιMlg− lgM
= ιM

op

lg− lgMop
◦ nwGwM (−) : H(M) → H(Mop)

is

(−1)lg(nwGwM
wn−1

wGwM
)TMop,∗

nwGwM
wn−1

wGwM

= (−1)lg(w)TMop,∗
nwGwM

wn−1
wGwM

(the length lgM of WM is invariant by conjugation by wM , and lg(nwGwM wn−1
wGwM

)
= lg(nwGnwM wn−1

wM
n−1

wG
) = lg(nwM wn−1

wM
) = lg(w)). By functoriality, we get a

functor

ModR(H(M))
(−)

ιM
lg− lgM

−−−−−−−−→ ModR(H(M)).

When M = G, we write simply ιG.
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We are now ready for the comparison of the eight inductions, which follows
from different propositions in [Abeparind] and [Abeinv]. Let V be any right
H(M ϵ)R-module. .

Proposition VI.1. Exchanging +,− corresponds to the twist by nwGwM ,

V ⊗H(Mϵ),θη H(G) ≃ nwGwM (V) ⊗H(Mop,−ϵ),θη H(G),(0.1)

HomH(Mϵ),θη(H(G), V) ≃ HomH(Mop,−ϵ),θη(H(G), nwGwM (V)).(0.2)

Exchanging θ, θ∗ corresponds to the involutions ιMlg− lgM
and ιG.

(V ⊗H(Mϵ),θη H(G))ι
G

≃ VιMlg− lgM ⊗H(Mϵ),θ∗η H(G),(0.3)

HomH(Mϵ),θη (H(G), V)ι
G

≃ HomH(Mϵ),θ∗η(H(G), VιMlg− lgM ).(0.4)

Exchanging ⊗, Hom corresponds to the involutions ιMlg− lgM
and ιG,

(V ⊗H(Mϵ),θη H(G))ι
G

≃ HomH(Mϵ),θη(H(G), VιMlg− lgM ).(0.5)

Remark VI.2. By (0.3) and (0.5), exchanging (⊗, θη) and (Hom, θ∗η) respects
the isomorphism class:

(0.6) V ⊗H(Mϵ),θη H(G) ≃ HomH(Mϵ),θ∗η (H(G), V).

In Propositions ≃ mean that there are natural isomorphisms described in
[Abeparind] and [Abeinv]

Duality Put ζ for the anti-involution of H(G) defined by ζ(Tw) = Tw−1 for
w ∈ W ; we have also ζ(T ∗

w) = T ∗
w−1 [VigpIwst, Remark 2.12]. The dual of a right

H(G)R-module X is X ∗ = HomR(X , R) where h ∈ H(G)R acts on f ∈ X ∗ by
(fh)(x) = f(xζ(h)) [Abeinv, Introduction].

Proposition VI.3. The dual exchanges (⊗, +) and (Hom,−):

(V ⊗H(Mϵ),θη H(G))∗ ≃ HomH(M−ϵ),θη (H(G), V∗),(0.7)

V∗ ⊗H(Mϵ),θη H(G) ≃ (HomH(M−ϵ),θη(H(G), V))∗.(0.8)

Proof. Applying (0.6), an upper isomorphism (0.7) for any (ϵ, θη, V) is equiv-
alent to a lower isomorphism (0.8) for any (ϵ, θη, V). It suffices to prove (0.7).

An isomorphism (0.7) for (+, θ) and any V is implicit in [Abeinv, §4.1]. Using
(0.1) (0.2), we get an isomorphism (0.7) for (−, θ) and any V ; so we proved (0.7)

for θ and any ϵ, V . The image by ιG of an isomorphism (0.7) for (θ, ϵ, VιMlg− lgM )
is an isomorphism (0.7) for (ϵ, θ∗, V), because the anti-involution ζM of H(M)
commutes with the involution ιMlg− lgM

, and their composite sends (TM
w , TM,∗

w ) to

(−1)lg(w)(TM,∗
w−1, TM

w−1) for w ∈ WM , as lg(w) = lg(w−1). This ends the proof of
(0.7). !
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