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Representations of a p-adic group in characteristic p

G. Henniart and M.-F. Vignéras
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ABSTRACT. Let F be a locally compact non-archimedean field of residue char-
acteristic p, G a connected reductive group over F, and R a field of char-
acteristic p. When R is algebraically closed, the irreducible admissible R-
representations of G = G(F) are classified in [J. Amer. Math. Soc. 30
(2017), no. 2, 495-559] in term of supersingular R-representations of the Levi
subgroups of G and parabolic induction; there is a similar classification for
the simple modules of the pro-p Iwahori Hecke R-algebra H(G)g in [N. Abe,
DOI:10.1515/crelle-2016-0043]. In this paper, we show that both classifications
hold true when R is not algebraically closed.
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I. Introduction

I.1 In this paper, p is a prime number, F' is a locally compact non-archimedean
field of residual characteristic p, G is a connected reductive group over F' and finally
R is a field.

Recent applications of automorphic forms to number theory have imposed the
study of smooth representations of G = G(F) on R-vector spaces; indeed one
expects a strong relation, & la Langlands, with R-representations of the Galois
group of F'. The most intriguing case is when the characteristic of R is p - the only
established case, however, is that of GL(2,Qy).

The first focus is on irreducible representations. When R is algebraically closed
of characteristic p, the irreducible admissible R-representations of G have been
classified in terms of parabolic induction of supersingular R-representations of Levi
subgroups of G [AHHV]. But the restriction to algebraically closed R is undesir-
able: for example, in the work of Breuil and Colmez on GL(2,Q,), R is often finite.
Here we extend to any R the classification of [AHHV] and its consequences.

Let B be a minimal parabolic subgroup of G and I a compatible pro-p Iwahori
subgroup of G. If W is a smooth R-representation of G, the space W' of I-
fixed elements is a right module over the Hecke ring H(G) of I in G; it is non-
zero if W is, and finite dimensional if W is admissible. Even though W' might
not be simple over H(G) when W is irreducible, it is important to study simple
R ® H(G)-modules. When R is algebraically closed of characteristic p, they have
been classified ([Abe], see also [AHenV2, Cor:4.30]) in terms of supersingular R®
H(M)-modules, where M is a Levi subgroup of G and H (M) the Hecke ring of INM
in M. The classification uses a parabolic induction process from H (M )-modules to
H(G)-modules. Again we extend that classification to any R of characteristic p.

1.2 Before we state our main results more precisely, let us describe our principal
tools for reducing them to the known case where R is algebraically closed - those
tools are developed in section II.

The idea is to introduce an algebraic closure R*9 of R, and study scalar exten-
sion from R-representations of G to R*9-representations of G, or from R ® H(G)-
modules to R¥ @ H(G)-modules. The important remark is that when W is an
irreducible admissible R-representation of G, or a simple R® H (G)-module, its com-
mutant has finite dimension over R. The following result examines what happens
for more general extensions R’ of R.

THEOREM I.1. [Decomposition theorem] Let R be a field, A an R-algebral, and
V' a simple A-module with commutant D = Enda V of finite dimension over R. Let
E denote the center of the skew field D, ¢ the reduced degree of D over E, Eqep,/R
the mazimal separable subextension of E/R.

(1) Let E' be a finite separable extension of E splitting D, L/R the normal
closure of E'/R and R’ an extension of L. Then the scalar extension Vg of V to
R’ has length 6[E : R] and is a direct sum

of & copies of a direct sum of [Esep @ R] modules W]’ with commutant the local
artinian ring R' ®; p,,, E which has residue field R'. For each j, the Ap/-module

s
Vi = ®° ®jcHomn (E

seps

Lall our algebras are associative with unit
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W]' is indecomposable of length [E : Es.p), its simple subquotients are all isomorphic
to the Ap/-module V; = R/ QR ®p,.,E) W which has commutant R', and descend
to the finite extension L/R.

If R'/R is normal, the isomorphism classes of the Ar/-modules W7, resp. V],
for j € Hompg(Escp, R') form an Autg(R')-orbit of cardinality [Esep : R].

(2) Let R%9 /R be an algebraic closure. The map which to V' as above associates
the Autr(R¥9)-orbit of a simple subquotient V' of Vgas induces a bijection

- from the set of isomorphism classes [V] of simple A-modules V' with commu-
tant of finite dimension over R,

- onto the set of Autr(R9)-orbits of isomorphism classes [V'] of absolutely
simple Apgeg-modules V' descending to a finite extension of R.

We note that the Autg(R®9)-orbit of [V'] is finite when V' descends to a finite
extension of R. Part (1) of the theorem implies:

COROLLARY 1.2. For any extension R'/R, the length of the Ar -module Vg is
< J[E : R], and the dimension over R' of the commutant of any subquotient of Vg
is finite.

When the field R is perfect (example: R finite or of characteristic 0), every
algebraic extension of R is separable [Lang, VII §7 Cor. 7.8]. In that simple case,
the Agr/-modules W]’ , are absolutely simple in Thm. I.1; in fact, for any extension
R'/R, Vg is semi-simple [BkiA8, §12 n° 1 Prop.1].

The second theorem is a criterion, inspired by [AHenV1, Lemma 3.11], for a
functor to preserve the lattice of submodules of a module W. If W is an object in
an abelian category, we write Ly for the lattice of its subobjects; if W has finite
length, that length is written lg(W).

THEOREM 1.3. [Lattice isomorphism] Let F : C — D be a functor between
abelian categories having a right adjoint G; write € : id — GF for the unit of the
adjunction, and n : FG — id for the counit.

(a) Let W be a finite length object in C such that

(i) F(Y) and GF(Y) are simple for any simple subquotient Y of W;

(i) F(W) and GF(W) have finite length 1g(F(W)) = lg(GF(W)) = 1g(W).
Then for any subquotient Y of W, F(Y) and GF(Y) have finite length 1g(F(Y)) =
Ilg(GF(Y)) = 1g(Y), and ey : Y — GF(Y) is an isomorphism; in addition the
maps Y — F(Y) : Lw — Lpw) and X +— ew (G(X)) : Lrpwy — Lw are lattice
isomorphisms, inverse to each other.

(b) Let V be a finite length object in D such that

(i) G(X) and FG(X) are simple for any simple subquotient X of V;

(i) G(V) and FG(V) have finite length 1g(G(V)) = 1g(FG(V)) = 1g(V).
Then for any subquotient X of V., G(X) and FG(X) have finite length 1g(G(X)) =
Ig(FG(X)) = 1g(X), and nx : FG(X) — X is an isomorphism. In addition, the
maps X — G(X) : Ly — Loy and Y = ny(F(Y)) : Loy — Ly are lattice
isomorphisms, inverse to each other.

The present formulation and its proof in §1I.4 owe much to the referee. We get
(b) from (a) by reversing the arrows.

COROLLARY 1.4. Assume that F is fully faithful. Let W be a finite length object
in C such that
(i) F(Y) is simple for any simple subquotient Y of W ;

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



174 G. HENNIART AND M.-F. VIGNERAS

(i) F(W) has finite length 1lg(F(W)) = 1g(W).
ThenY — F(Y): Lw — Lpw) i a lattice isomorphism.

We end §II with another lattice isomorphism inspired by [Abe, Lemma 5.3].
Let R be a field, A an R-algebra, and V a simple A-module with commutant R. We
have the tensor product — ®r V : C — D from the abelian category C of R-vector
spaces to the abelian category D of A-modules; it has a right adjoint Hom4 (V, —).

THEOREM L.5. [Lattice isomorphism and tensor product]

(i) For any R-vector space W, W Qg V is an isotypic A-module of type V' and
the mapY — Y ®rV : Lw — Lweg,v @S a lattice isomorphism. Moreover, the
natural map

W Y Homa(V,W@r V) ew(w):v—w®wv
is an isomorphism of R-vector spaces.

(i) For byy € Endr(W), by € Endr(V) and an R-subspace Y of W, we have:

b (Y) C Y implies bw(Y) @r by (V) C Y ®@r V and the converse is true
provided that by # 0.

In our applications, the action of A on V extends to an R-algebra A’ containing
A, and there is an R-basis B of A contained in an R-basis B’ of A’ such that no
element of B’ \ B acts by 0 on V, the action of B on W by the identity extends
to an action of A’ and the diagonal action of B’ on W ®g V yields an A’-module
structure. On X = V,W or W ®rV, b € B’ acts via an endomorphism written bx.

COROLLARY 1.6. In the above situation, in Theorem 1.5:

The map Y — Y @g V yields a lattice isomorphism Ly, — Ly, v between
the lattices of A’-submodules of W and of W @r V. The A’-module structure on
Hom(V,W ®g V) such that the isomorphism W =Y Hom(V,W @ V) is A'-
equivariant, satisfies for all f € Homa(V,W ®@g V),

if b € B then b(f) = f, and if b € B'\ B acts invertibly on V then b(f) =
bwerv © foby

In that situation the natural map Homa(V,W @ V)®@rV — W ®r V is also
an isomorphism of A’-modules for b € B’ acting diagonally.

1.3 In 8III, for a field R of characteristic p, we prove the classification of the
irreducible admissible R-representations of GG in terms of supersingular irreducible
admissible R-representations of Levi subgroups of G.

We always take our parabolic subgroups to contain a minimal one B = ZU in
good position with respect to I. An R-triple (P, 0,Q) of G consists of a parabolic
subgroup P = MN of GG, a smooth R-representation o of M, and a parabolic
subgroup @ of G satisfying P € @ C P(o), where P(c) = M(o)N (o) is the
maximal parabolic subgroup of G to which ¢ extends trivially on N; the restriction
to Mg of that extension is denoted by eg (o). By definition

0.1 I6(P,0,Q) = IndS, ., (StY ) (s)) where
P(o)\PrQ
(0.2) Sty 7 (0) = Indy) V(eq(0))/ Y. Indy 7 (eq (o)),
QCQ'CP(o)

is the generalized Steinberg R-representation of M (o) and Indg(a) stands for the

M) In §I11.3 we show that I (P, —, Q)

parabolic smooth induction functor Inde M(o)"
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and scalar extension are compatible: for any R-triple (P,0,Q) of G, we have
R' ®rlg(P,0,Q)~ Ic(P,R ®ro,Q) for any field extension R'/R and Ig(P, 0,Q)
descends to a subfield of R if and only if ¢ does (Prop.III.13).

What does supersingular mean for an irreducible admissible R-representation 7
of G 7 We know what it means to be a supersingular H(G)r = R®z H(G)-module:
for all P # G containing B, a certain central element Tp of the pro-p Iwahori Hecke
ring H(G) should act locally nilpotently [Vigl7]. We say that 7 is supersingular
if the I-invariant module 7 is supersingular as a right H(G)g-module (Definition
II1.14 in §IIL.4). In §I11.4, we show that supersingularity is compatible with scalar
extension (Lemma II1.16) and that 7 is supersingular if and only if 7! contains a
non-zero supersingular element (Theorem II1.17). When R is algebraically closed,
this definition is equivalent to the one in [AHHV], by [OV].

THEOREM L.7. [Classification theorem for G|

For any R-triple (P,0,Q) of G with o irreducible admissible supersingular,
I(P,0,Q) is an irreducible admissible R-representation of G.

If I6(P,0,Q) ~ Ig(Py,01,Q1) for two R-triples (P,0,Q) and (Py,01,Q1) of
G with 0,01 irreducible admissible supersingular and P, Py containing B, then P =
P,Q=Q; and 0 ~ 0;.

For any irreducible admissible R-representation m of G, there exists an R-triple
(P,0,Q) of G with o irreducible admissible supersingular and P containing B, such
that m ~ Ig(P,0,Q).

When R is algebraically closed, this is the classification theorem of [AHHV].
In §II1.5 we descend the classification theorem from R*9 to R by a formal proof
using the decomposition theorem (Thm.I.1) and a lattice isomorphism £, _,,,
L P.0 patg Q) when o is irreducible admissible supersingular and orais its scalar
extension to R*9 (Prop.IT1.10 in §II1.3, Remark II1.18 in §II1.4).

I.4 In §IV, for a field R of characteristic p we prove a similar classification for
the simple right H(G)z-modules. As in [AHenV2] when R is algebraically closed,
this classification uses for a parabolic subgroup P = M N of G containing B, the
parabolic induction functor

Ind?'Y : Modg(H(M)) — Modg(H(G))

from right H(M)g-modules to right H(G)g-modules, analogue of the parabolic

smooth induction: indeed (Ind% o)! is naturally isomorphic to Indg(c)(ol M) for

a smooth R-representation o of G [OV]. An R-triple (P,V,Q) of H(G) consists
of parabolic subgroups P = M N C @ of G containing B and of a right H(M)g-
module V with @ C P(V) (Definition IV.8); for an R-triple (P,V,Q) of H(G) we
define a right H(G)g-module Iy (P,V, Q) as for the group.

In Proposition IV.12, we prove that Iy g)(P,—, Q) and scalar extension are
compatible, as in the group case (Prop. 111.13).

THEOREM L.8. [Classification theorem for H(G)]

For any R-triple (P,V, Q) of H(G) with V simple supersingular, Ty (P,V,Q)
is a simple H(G)r-module.

If IH(G)(vavQ) = IH(G)(P17V17 Ql) fOT R—triples (P7V7 Q) and (P17V17 Ql)
of H(GQ) with V and V simple supersingular, then P = P;,Q = Q1 and V ~ V.

Any simple right H(G)r-module X is isomorphic to Iy (P,V,Q) for some
R-triple (P,V,Q) of H(G) with V simple supersingular.
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176 G. HENNIART AND M.-F. VIGNERAS

The proof follows the same pattern as for the group G, by a descent to R of
the classification over R%9 [AHenV2].

Assuming that R contains a root of unity of order the exponent of the quotient
Zj. of the parahoric subgroup of Z by its pro-p Sylow subgroup, the simple super-
singular H(G) g-modules are classified [m, [Vigl7, Thm.1.6]; in particular when
G is semisimple and simply connected, they have dimension 1. With Thm. 1.8, we
have a complete classification of the H(G)g-modules.

The ring H(M) does not embed in the ring H(G) and different inductions
from Modgr(H(M)) to Modr(H(G)) are possible. When R is algebraically closed,
Abe proved the classification theorem (Thm.I.8) using one of them, the parabolic
coinduction? [Abe]. In the appendix we define and compare 8 natural induc-
tions following [Abeparind]; the classification theorem can be expressed with any
these 8 inductions instead of the parabolic induction (for the parabolic coinduction
[AHenV2, Cor. 4.24]).

1.5 In §V, still with R of characteristic p we give applications (Thm. 1.9, 1.10,
1.12, 1.13) of the classification for G (Thm. 1.7) and for H(G) (Thm. 1.8); they
were already known when R is algebraically closed, except for the parts (ii),(iii) of
Theorem 1.10 below.

THEOREM 1.9. [Vanishing of the smooth dual] The smooth dual of an infinite
dimensional irreducible admissible R-representation of G is 0.

This was proved by different methods when the characteristic of F' is 0 in
[Kohl] and when R is algebraically closed in [AHenV2, Thm.6.4]. In §V.1 we
deduce easily the theorem from the theorem over R®9 using scalar extension to
R9 (Thm. 1.1).

[Description of Ind% o for an irreducible admissible R-representation o of M,
and of Indg(G) V for a simple H(M)g-module V] Here P = M N is a fixed parabolic
subgroup of G.

We write £, for the lattice of subrepresentations of an R-representation 7 of
G, and Ly for the lattice of submodules of an H(G)g-module X.

Recall that for a set X, an upper set in P(X) is a set Q of subsets of X,
such that if X1 C Xo C X and X; € Q then Xy € Q. Write Lp(x) > for the
lattice of upper sets in P(X). For two subsets X7, Xo of X write X; \ X5 for the
complementary set of X; N X5 in X;.

By the classification theorems, o ~ Ip(Py N M,01,Q N M) with (P1,01,Q)
an R-triple of G, Q@ C P and o irreducible admissible supersingular and
V >~ IH(M)(PI NMV,QnN M) with (P17V17Q) an R-triple of H(G), Q C P,
and V; simple supersingular.

With these notations we have:

THEOREM L.10. [Lattices Ly,q¢ , and Elndg(c) vl

(i) The R-representation Indg o of G is multiplicity free of irreducible subquo-
tients Iq(P1,01,Q’") for R-triples (P1,01,Q") of G with Q' NP = Q.
Sending I(P1,01,Q") to Ag N (Ap(e,) \ Ap) gives a lattice isomorphism?

Linds o = LP(Apo;)\Ap),>-

2The parabolic coinduction is the induction used by Abe
3see the discussion in [He]§11 on the lattice of submodules of a multiplicity free module
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(i) The H(G)gr-module Indg(G) V satisfies the analogue of (i).

(iii) If o'™M s simple and the natural surjective map o'™™ @y Z[(I N
M\M] — o is bijective, then the I-invariant functor (=)' and its left adjoint
— ®p () LII\G] give lattice isomorphisms between Linag (o) and Elnd;“G)(UmM) n-
verse of each other.

When R is algebraically closed (i) is proved in [AHenV1, §3.2]. In §V.2 we
prove (i) and (ii); (iii) follows from (i), (ii), Corollary 1.4 and the commutativity of
the parabolic inductions with (=)’ and — ®p () Z[I\G] [OV].

COROLLARY I.11. 1.  The socle and the cosocle of Indgo are irreducible;
IndIGD o is irreducible if and only if P contains P(oy). The same is true for Indg(@]}.

2. Let w be an irreducible admissible R-representation of G; we write m ~
I(P,0,Q) with o irreducible admissible supersingular.

If o'™M is simple and the natural map '™ @y Z[(I N M)\M] — o is
bijective, then ! is simple and © ~ 7" @) Z[I\G).

The first assertion for o and R is algebraically closed is proved in [AHenV1,
Cor. 3.3 and 4.4].

[Computation of the left adjoint and the right adjoint of the parabolic induction,
of w! for an irreducible admissible R-representation 7 of G, and of X ® () Z[I\G]
for a simple H(G)g-module X]

For a parabolic subgroup P; of G, write Lgl for the left adjoint of IndIGDI, RJ,G;1
for its right adjoint [Vigadjoint], and Lj'“ for the left adjoint of Indp @, Rjs(?)
for its right adjoint [VigpIwst].

THEOREM 1.12. [Adjoint functors of the parabolic induction and of the I-
invariant)

(i) LE (7) and RE, () are 0 or irreducible admissible.

LE () #0 & P1D P, (P,Q) D P(o) & L§ (w) ~ Iy, (PN My, 0,QNM).

RE (m)#0 & PLD>Q & RE (m)~ Iy, (PNMy,0,QNM).

(i) LI;I(G)(X) and Rgl(G)(X) satisfy (i) with the obvious modifications.

(iii) We have natural isomorphisms m! ~ Tre) (P, ™ Q) and X QH(G)r
RING]

~ Ic(P,Y ®un, R(INM)\M],Q).

Example: Lg(a) (Ia(P,0,Q)) ~ R}GD(U)(IC;(P7 7,Q)) ~ Stg((ﬂ(g) and the anal-
ogous for Tya) (P, V,Q).

Proving Theorem 1.12 from the classification theorem needs no new techniques
(§V.3).

[Equivalence between supersingularity, supercuspidality and cuspidality]

An irreducible admissible R-representation 7 of G is said to be

- supercuspidal if it is not a subquotient of Ind%7 with 7 € ModS$y (M)
irreducible admissible for any parabolic subgroups P = M N C G.

- cuspidal if LE(7) = RE(w) = 0 for all parabolic subgroups P C G.

THEOREM 1.13. Let w be an irreducible admissible R-representation of G. Then
w is supersingular if and only if its is supercuspidal if and only if it is cuspidal.
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The equivalence of supersingular with supercuspidal, resp.cuspidal, follows
from Thm.I.10, resp. Thm.I.12. When R is algebraically closed, the first equiva-
lence was proved in [AHHYV, Thm. VI.2] and the second one in [AHenV1, Cor.6.9)].

An irreducible admissible R-representation 7 admits a supercuspidal support:
the parabolic subgroup P = M N containing B and the isomorphism class of the
irreducible admissible supercuspidal R-representation of ¢ of M such that 7 is a
subquotient of Ind% (o) are unique; this follows from Thm. 1.7 and Thm.1.13.

Acknowledgments We thank the CNRS, the IMJ Paris-Diderot University,
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II. Some general algebra

I1.1. Review on scalar extension. We consider a field R and an R-algebra
A (always associative with unit).

For an extension R’ of R (which we see as a field R’ containing R), the scalar
extension functor R’ ® g — : Modg — Modpg from R to R’, also denoted (—)g/, is
faithful exact and left adjoint to the restriction functor from R’ to R.

The scalar extension Ap: of A is an R’-algebra and if W a (left or right) A-
module, Wgs is an Ag/-module. An Ag,-module W’ isomorphic to such a Wg is
said to descend to R or to be defined over R, and W is called an R-structure for
W’ (more precisely the isomorphism W’ ~ Wgs is an R-structure for W').

REMARK IL.1. Let R*9 be an algebraic closure of R. If A is a finitely generated
R-algebra, an Apgag-module W of finite dimension over R*9 descends to a finite
extension of R. Indeed, if (w;) is an R*9-basis of W, (a;) a finite set of generators
of A, and ajw; = ), rjkWk, the extension R'/R generated by the coefficients
Tk € R is finite and the Ag-module &; R'w; gives an R'-structure for W.

REMARK II1.2. If VW are A-modules, the natural map
(1.1) (HOIIIA(V, W))R/ — HOIIIAR,(VR/,WR/)

is injective [BkiA2, II §7 n°7 Prop.16] and bijective if R'/R is finite [BkiA8, §12,
n°2 Lemme 1], or if V is a finitely generated A-module (proof as in [Pask, Lemma
5.1))%.

Let V be a simple A-module; we write D for the commutant End4(V), so that
D is a division algebra, and E for the center of D. Since V is finitely generated, the
commutant of Vg is Dg/ and its center is Er/, by Remark I1.2—That V is simple
has further consequences:

(P1) As an A-module, Vg is a direct sum of A-modules isomorphic to V, i.e.
V-isotypic of type V [BkiAS8, §4, n°4, Prop.1].

(P2) The map A — AVp is a lattice isomorphism of the lattice of right ideals
A of Dg/ onto the lattice of Apg/-submodules W of Vs, with inverse W — {d €
Dpr/,dVg C W} [BkiAS, 812, n°2, Tthb)]

(P3) For any right ideal 2 of Dg/, via the isomorphism Vg ~ Dp @p V, AVE
corresponds to AR p V. As the functor X — X ® p V from right D-vector spaces to
A-modules is exact, if B C 2 are right ideals of D/, then AVg/ /B Vg is isomorphic
to (Q[/%) ®p Vg

4We are grateful to the referee for that reference
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(P4) If the extension R'/R is finite, Vr/ has finite length as an A-module, so
also as an Ag-module; then Dpg/ is left and right artinian and Eg/ is artinian
[BkiAS8, §12, n°5, Prop.5 a)]. If moreover R'/R is separable, Vg is semisimple
[BkiAS8, §12, n°5, Cor.].

(P5) If dimp D is finite, then dimp D = dimpg D and the length of the Ag/-
module Vg is < [D : R] by (P2); the best bound is given in Thm. L.1.

REMARK II.3. A non-zero A-module W is called absolutely simple if Wg/ is
simple for any extension R'/R.

A simple A-module V is absolutely simple if and only if End4 V = R. For =
[BkiAS8, §3,n°2,Cor.2, p.44]. For < follows from (P5). If R is algebraically closed
of cardinal > dimg V, then D = R [BkiAS8, §3,n°2, Thm.1, p.43].

I1.2. A bit of ring and module theory. We examine the tensor product
L®g E of two field extensions L/R and E/R. Seeing the commutative ring L®g F
as a module over itself, its simple subquotients are isomorphic to simple L ® p E-
modules, that is to simple quotients.

LEMMA I1.4. Let E/R be a finite extension and L/E an extension.

(1) If E/R is purely inseparable, then L @ E is a commutative artinian local
ring with residue field L.

(2) If E/R is separable and L contains a Galois closure of E/R, then

LerE~ [ LejpE~LPH
j€Homp(E,L)
and if F/R is a subextension of E/R, the restriction Hompg(E, L) — Hompg(F, L)
18 surjective.

(8) If L/R is normal, then Autg(L) acts transitively on Hompg(FE, L).
(4) If E/R is normal, the ring homomorphism

@y (@jly); : EerE—~ ] E
jEAutr(E)

is surjective of kernel the Jacobson radical of E ®r E.

PRrROOF. As E/R is finite, the commutative ring L ® g E has finite dimension
over L, hence is Artinian. Let R’ be a field quotient of L @z E. The quotient map
¢0: LRr E— R ¢o(x®y) = p1(x)p2(y), is given by non zero R-homomorphisms
p1: L= Ryo1(x)=p(x®1),and p2: E — R, pa2(y) = (1 ®y).

If E/R is purely inseparable, @5 is the restriction of ¢1 to E thus we have (1).

Let J = Hompg(E,L) and for j € J, let f; the surjective map L Qr E —
L®;p E = L. If j # j" are distinct in J, and = € E with j(x) # j'(z), we have

fii@lel-1x)=0, fi(i@)®l-1®)=j)-j(z)#0.
Hence Ker f; # Ker f;. By the Chinese Remainder Theorem,
(2.2) [[fi:LerE—][[L®rE =L’
jed
is surjective. It is injective if and only if [E : R] = |J|.

If E/R is separable and L contains a Galois closure of E/R, then [E : R] = |J|
(and conversely), and for any subextension F/R of E/R, F/R and E/F are sep-
arable and L contains a Galois closure of F/R and of E/F, thus the restriction
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Hompg(F, L) — Hompg(F, L) of kernel Homg(F, L) is surjective by a counting ar-
gument since [E : R] = [E : F][F : R]. This gives (2).

Let E.p/R be the maximal separable subextension of E/R. The extension
E/FE;., is purely inseparable and the restriction Hompg(E, L) — Homp(Esep, L) is
injective.

If L/R is normal, (3) is true as Hompg(E, L) — Homp(Es.p, L) is injective and
(3) is true when E/ R is separable by Galois theory. If L = E, for j € Homp(E,E) =
Autp(F) and z,y € E, we have f;(x®y) = zj(y). If R is a field quotient of EQp E,
the quotient map satisfies p(xz ® y) = ¢1(x)p2(y) for ¢1, 2 in Homg(E, R'). If
moreover E/R is normal, then R' = E and ¢ = ¢; o f; where @9 = 107 in
Autg(F). This gives (4). O

LEMMA I1.5. Let R'/R be a normal field extension, A and-R-algebra and V' a
simple Agr/-module descending to a finite extension of R. Then V' is isomorphic
to a submodule of the scalar extension Vg from R to R’ of a simple A-module
V. For any such V, dimgV is finite if dimg V' is, and dimg Enda V' is finite if
dimR/ EndAR, V/ 18.

PROOF. a) Assume first that the normal extension R’/R is finite. Then Ap/
is a (free) finitely generated A-module, so V'’ as an A-module is finitely generated,
and in particular has a simple quotient V: Homyu(V',V) # 0. By Remark I1.2,
HOmAR, (VI/%U VR/) ?é 0.

The Ap-module Vi, admits a finite filtration of quotients V] for j € Autr(R'),
where V] is isomorphic to V' with the j-twisted action (y ® a)v’ = j(y)av’ for
ye R,ae A,ve V' Indeed, Vi =R @ V' ~ (R ®r R') @ V', the artinian
commutative ring R’ ® g R’ admits a finite filtration with quotients isomorphic to
simple '@ g R'-modules, and the simple R'©r R'-modules are R, for j € Autr(R'),
where R is isomorphic to R’ with 2 ® y € R’ ®g R’ acting by multiplication by
xj(y) by Lemma I1.4 (4).

We deduce that Homy4 , (Vj’7 Vi) # 0 for some j € Autr(R’). But Vg is iso-
morphic to its j-twists (Vr/); for all j € Autr(R'), so we have Homy,, (V', Vg/) # 0.

Let V be any simple A-module with Homy ,, (V’, Vr/) #0. Then Hom4(V',V) #
0 as Vg as an A-module is V-isotypic, so dimg V is finite if dimg V' is. Put D =
Ends (V) and D" = Enda,, (V') and let W be the maximal V'-isotypic submodule
of Vgr. Then W is Dp/-stable and we get a homomorphism Dg/ — Enda,, W
which is necessarily injective on D, since D is a division algebra. By (P4), Vg
has finite length, so W also has finite length and End4,, W is a matrix algebra
over D'; it follows that if dimp D’ is finite, so is dimp/(End4,, W) hence also
dimR(EndAR, W), dimR/(DR«) and dimR D.

b) Let us treat the general case. By assumption there is a finite normal subex-
tension L of R in R’ and an Ar-module U such that V! = R’ @, U - then U is
necessarily simple. By a) Homy, (U, VL) # 0 for some simple A-module V' and by
Remark I1.2, Hom , (V', Vi) # 0.

Conversely, if V' is some simple A-module with Hom, , (V’, Vg/) # 0 then by
Remark I1.2 again Homy, (U, VL) # 0, so the other assertions follow from a). O

We pursue with an easy application of Morita theory in the special case of a
matrix ring.
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LEMMA I1.6. Let A, B be two rings and n a positive integer.

1) Let W be an A-module. A ring isomorphism Endy W ~ M(n, B) induces
an A-module isomorphism W ~ @™V for some A-module V' with commutant B.

2) If B is a commutative artinian local ring of residue field R, then M (n, B)
is left Artinian, and as a left module over itself, all its simple subquotients are
isomorphic to R™.

PrOOF. 1) If V is a B-module, then V™ is naturally an M (n, B)-module, and
the functor V' +— V" is an equivalence from the category of B-modules to the
category of M (n, B)-modules; that is the elementary case of Morita theory. By that
equivalence, if V' is a left (A, B) bimodule, then V™ is left (A, M (n, B)) bimodule,
and any left (A, M(n, B)) bimodule structure of V™ comes in that way from a left
(A, B) bimodule structure on V. As End 4 (V") identifies with M (n,End4(V)), the
condition End 4 (V™) = M(n, B) is the same as End4 (V) = B, and 1) follows.

2) As a left module over itself, M (n, B) is isomorphic to the direct sum of n
copies of B™ (let M (n, B) act on the column vectors). By the equivalence recalled
in the proof of 1), the M (n, B)-module B" has the same length as B over itself and
its simple subquotients are isomorphic to R™, hence 2). O

I1.3. Proof of the decomposition theorem (Thm.I.1 and Cor.I.2). Let
V be a simple A-module with commutant D = End 4 V of finite dimension dimp D
over R. Let E denote the center of the skew field D, § the reduced degree of D
over E, E,.,/R the maximal separable subextension of E/R.

Two well-known properties will be used in the proof:

(P6) A finite extension E'/E splits D, i.e. E' ®g D ~ M(§,E'), if and only
if E’ is isomorphic to a maximal subfield of a matrix algebra over D [BkiA8, §15,
n°3, Prop.5]. The field D contains a maximal subfield, which a separable extension
E'/E of degree § [CR, 7.24 Prop] or [BkiAS8, loc.cit. and §14, n°7].

(P7) For a finite separable extension E'/E and Eg,,/R the maximal separable
subextension of E'/R, the natural map r ® y — xy : E{,, ®g,,, E — E'is an

isomorphism (because always surjective and the dimension over EZCP of both sides
is the same [E : E,,] by [Lang, VII §7, Cor. 7.5] applied to the finite extensions
E;.,/Escp separable and E/Eq., purely inseparable).

Proof of Thm.I.1 (1).

Let R'/R be an extension containing a normal closure of a finite separable
extension E’/F splitting D. For example, R’ can be an algebraic closure R*9/R.

Let J = Hompg(Escp, R'). By Lemma I1.4 (1), we have a ring isomorphism
R KR Esep ~ H R ®j’Ese}l Esep =~ RI[ESGP:R]~
jeJ

We denote by e; the idempotents of (Es.p)r associated to this decomposition.
Tensoring on the right by E, D, or V over E,., and we get product decompositions

FEr = H ejER/, Dpr = H ejDR/, Vg = DBjcs 6.7'VR/
jeJ jeJ
where 6jERI ~ R’ ®j7Esep E, ejDR/ ~ R’ ®j7Esep D7 ejV , ~ R/ ®j~,Esep V. By
Lemma IL.4 and (P7), for j € J there exists j € Hompg(E;,,, ') of restriction
y .
B, = J, and

7B,
R ®;p

EZR/ ®j/’Egcp E/ ®E

sep sep

~ / s !
E~R ®; Elep E

sep
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is a commutative artinian local ring of residue field R’. We obtain ring isomorphisms
R ®j,E D~R ®j,EsepE®ED
~ R/ ®j/7E;ep E/ Rp D ~ R/ ®j/’E;Gp M((S, E/) ~ M(d, Rl ®j,E

sep

E).

sep

By Lemma I1.6, there exists an Apg/-module WJ’ such that

R ®jp,.,V~&'W/, Ends, W/~R @5, E.

sep sep

By Remark II.2, for j € J, the commutant of the Ar/-module e;Vr = R’ ®3j,Eyep
Vis e;D = R ®jp,, D. Applying (P2) and (P3), the map 2l — RAe;Vp is a
lattice isomorphism of the lattice of right ideals 2 of e; D/ onto the lattice of Ap/-
submodules of e;Vpr/, and for two right ideals 2 C B of e;Dps, the Ar-module
Be; Vi [Ae; VR is isomorphic to (B/A) ®c,p e;Vr. As ejDpr ~ M(d,e;E) and
e;E is a commutative artinian local ring of residue field R, by Lemma II.6, the
Ap-module W} is indecomposable of length [E' : Egp] and its simple subquotients
are all isomorphic to the Ag/-module
Vj/ =R ®(R/®j=EsepE) WJI

with commutant R’, hence absolutely simple by Remark II.3.

The group Autg(R’) of R-automorphisms of R’ acts on the Ag/-modules, fixing
the isomorphism class of the scalar extension from R to R’ of an A-module. If R'/R
is normal, it acts transitively on the set J by Lemma I1.4 (3), and for g € Autg(R’)
we have g(ej) = egoj. By Krull-Remak-Schmidt’s theorem, g(W)) ~ W,,.. The
same is true for the simple subquotients: g(V]) ~ V..
The dimension over R’ of the commutant of any subquotient of the Ag,-module

R oprV=a’ Djecg W]/

is finite (because the length of R’ ® V' is finite and R’ is the commutant of any of
its simple subquotients).

Let L be the normal closure of E’//R in R'/R. These results applied to R'/R
and to L/R, show that scalar extension from L to R’ induces a lattice isomorphism
Ly, — Ly,,. This ends the proof of Thm.I.1 (1).

Proof of Thm.I.1 (2).

Thm.I.1 1) applies to R’ = R%9 an algebraic closure of R. It shows that for
any simple A-module V' with dimg V finite, the simple subquotients of Vzais are
absolutely simple, descend to a finite subextension of R*9/R and their isomorphism
classes form a finite Autg(R9)-orbit.

Conversely, let V’ be an absolutely simple A gaig-module descending to a fi-
nite extension L of R. We prove that the Autg(R9)-orbit Autr(R*9)[V’] of the
isomorphism class [V'] of V' is finite. Let W’ denote an Ar-module with scalar
extension Wxats = V'’ to R¥9. Necessarily, W is absolutely simple. By Lemma I1.5,
W' is contained in the scalar extension V7, from R to L of a simple A-module V with
dimp V finite. We proved that Vxa, has finite length and that the isomorphism
classes of its simple subquotients form an Autr(R9)-orbit. Hence Autz(R9)[V]
is finite, and the map [V] — Autg(R*9)[V’] in Thm.L.1 (2) is surjective. It is also
injective because Vxay is V-isotypic as an A-module (by P1), so the same is true
for V', This ends the proof of Thm.I.1 (2).
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Proof of Corollary I.2.

Let L/R be any extension and L9 an algebraic closure of L. The scalar
extension from R to L9 is the scalar extension of R to L followed by the scalar
extension from L to L9,

(i) The length of the Ajpa,-module Vyay, is 0[E : R] by part 1) of Thm.I.1,
hence the length of the Ar-module V, is < §[F : R].

(ii) Let W be a subquotient of Vz. We show that the commutant of W
has finite dimension over L. As Wyay, is a subquotient of Vyag, by part 2) of
Thm.I.1, the dimension over L9 of the commutant of Wya, is finite. By (i) the
Ap-module W has finite length hence is finitely generated and by Remark II.2,
dimpag (Enda ,,, Wraie) = dimp (End 4, W). This ends the proof of Corollary I.2.

Lalg

II.4. Proof of the lattice theorems (Thm. 1.3, I.5 and Cor. 1.4, 1.6).
Our overall reference for abelian categories is [KS, Chapter 8].

Let C be an abelian category and W an object in C. A subobject of W is
an isomorphism class of monomorphisms f : ¥ — W [KS, Def. 1.2.18]. The
ordered set Ly of subobjects of W is a bounded lattice: the meet of two subobjects
f:Y—>Wand f/: Y — W is the kernel of (f,—f"): Y @Y’ — W and their join
is its image. As in module categories®, we write Y MY’ for the meet, Y + Y’ for
the join [KS, 8.3.10]; we note the exact sequence

0= (YNY)=(YoY)=Y+Y —0.

We define the lattice Ly of quotients of W: it is the lattice of subobjects of W in
the opposite category of C. The map which to a subobject Y of W associates its
cokernel (written W/Y') yields a lattice isomorphism Ly — Ly .

If D is an abelian category and F' : C — D a left exact functor, then Y —
F(Y): Lw — Lpaw) is an ordered preserving map; if F' is not left exact, F'(Y)
might not be a subobject of F(W) if Y is a subobject of W.

LEMMA IL.7. Let F : C — D be a functor between abelian categories which is
left or right exact, and let W be a finite length object of C [KS, Ex. 8.20, p. 205].

(i) Assume that F(Y) is 0 or simple (that is, 1g(F(Y)) < 1) for any simple
subquotient Y of W. Then, F(Y) has finite length 1g(F(Y)) < lg(Y) for any
subquotient Y of W.

(i) If moreover 1g(F(W)) = 1g(W), then for any subgquotient Y of W, 1g(F(Y))
=1g(Y) and an exact sequence 0 Y’ =Y =YY" — 0 in C yields via F an ezact
sequence 0 — F(Y') —» F(Y) — F(Y") — 0 in D; in addition Y — F(Y) gives an
injective morphism of bounded lattices Ly — Lp ).

PROOF. (i) Our proof proceeds by induction on the length of 1g(Y) of a sub-
quotient Y of W. By assumption Ig(F(Y)) <lg(Y) if lg(Y) < 1. If Ig(Y) > 2, we
choose an exact sequence 0 - Y’ — Y — Y” — 0 in C with non-zero Y’',Y".
If Fis left exact, 0 — F(Y') - F(Y) — F(Y") is exact, if F is right ex-
act, F(Y') - F(Y) —» F(Y") — 0 is exact; in either case we get lg(F(Y)) <
Ig(F(Y")) +1g(F(Y")) which by induction is < 1g(Y”) +1g(Y") = 1g(Y).

(i) For any subobject Y of W, the exact sequence 0 - Y - W — W/Y — 0
gives Ig(F'(W)) < 1g(F'(Y))+1g(F(W/Y)) as above; applying (i), Ig(F(Y)) < 1g(Y),
lg(F(W/Y)) < 1g(W/Y). By assumption lg(F(W)) = lg(W) = Ig(Y) + 1g(W/Y)
so we get equalities throughout: lg(F(Y)) =1g(V) and lg(F(W/Y)) = 1g(W/Y).

5In any case, all our applications are to module categories
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For any subquotient Y of W we repeat the argument to get 1lg(F(Y)) = 1g(Y).
An exact sequence 0 - Y’ —Y — Y” — 0 in C yields a sequence in D

0= FY)Y=FY)—=FY")—0

which is exact on one side by the exactness property of F', and on the other side
by length count.

It remains to prove the last assertion; if Y is a subobject of W we already know
that F(Y) is a subobject of F'(W) and that the map Y — F(Y) : Lw — Lpw)
is order preserving. It certainly sends the largest element W of Ly to the largest
element F(W) of Lpwy and similarly for the smallest elements (the 0 elements).
Let us verify that it preserves meets and joins. So let Y,Y’ be two objects in C.
The two natural monomorphisms ¥ — Y @ Y'Y’ — Y @ Y’, upon applying F,
give amap F(Y)® F(Y') = F(Y @Y’). If F is right exact, it is an isomorphism
[KS, line after Prop.3.3.3]. If F is left exact, the map F(Y x Y’) — F(Y) x
F(Y') coming from the two maps ¥ x Y’ — Y and Y x Y/ — Y’ | is also an
isomorphism [KS, Prop.3.3.3]; using the natural isomorphisms Y &Y’ — Y x Y’
and F(Y)® F(Y') — F(Y) x F(Y’') in the abelian categories C and D, we see
that F(Y) ® F(Y’) — F(Y @ Y’) is an isomorphism too. Applying this to W and
W, we see that 1g(F(W @ W)) = 21g(F(W)) = 21g(W) = Ig(W @ W). Now let
f:Y - W, f': Y — W be subobjects of W; then applying the results obtained
so far to the subobject (f,—f) : Y ®Y' — W & W of W & W, we see that the
sequence in D

0 FYNY)=FYaY)->FY+Y')=0

is exact. But the composite F(Y)® F(Y') - F(Y @Y') - F(Y +Y') - F(W)
is obtained from f, f’ via F, and we see that F(Y NY’) = F(Y) N F(Y’') and
FY +Y') = F(Y) + F(Y'). TfY,Y’ satisfy F(Y) = F(Y") then F(Y +Y’) =
F(Y)=FY’) solg(Y +Y’) =1g(Y) = 1g(Y’), which implies Y = Y’, hence the
injectivity. (|

REMARK I1.8. [KS, Prop. 1.5.6]:
For any adjunction (F, G, 1, €) between two categories,
- F is fully faithful if and only if the unit € is an isomorphism,
- G is fully faithful if and only if the counit 7 is an isomorphism,
- the following equivalent properties imply that F, G are quasi-inverses of each
other:
- F and G are fully faithful,
- I is an equivalence,
- (G is an equivalence.

We are now ready to prove Theorem 1.3 and Corollary I.4.

We prove Thm. 1.3 (a). We can apply Lemma I1.7 to F and W by the assump-
tions. As above any simple subquotient X of F'(W) is isomorphic to F'(Y") for some
simple subquotient Y of W; thus we can apply Lemma I1.7 to G and F(W). Let Y
be a subquotient of W; by induction on lg(Y) we prove now that ey is an isomor-
phism. Through adjunction ey corresponds to the identity map F(Y) — F(Y), in
particular ey is not 0 if F(Y') is not 0. If Y is simple then GF(Y) is simple and
the non-zero map ey : Y +— GF(Y) is an isomorphism. If 1g(Y) > 2, we choose an
exact sequence 0 - Y’ — Y — Y” — 0 in C with non-zero Y',Y”. Applying F'
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then G gives a commutative diagram

0 Y’ Y Y” 0

€y 1 l €y l Ey 11 l

0——=(GoF)(Y) —= (GoF)(Y) —= (Go F)(Y") —0

where the lines are exact. By induction ey, ey~ are isomorphisms, and so is
ey. From Lemma II.7 we obtain injective lattice morphisms Ly — Lpw) and
Lpwy = Larw) whose composite coincides with Y +— ey (Y), so they are both
bijective and consequently lattice isomorphisms. Hence Thm. 1.3 (a).

To prove Theorem 1.3 (b) we “reverse the arrows” i.e. consider F' and G as
functors between the opposite categories to C and D. Applying (a) we get a lattice
isomorphism U +— G(U) : Ly — Zg(v); then X — G(X) : Ly — Lgv) is an
isomorphism because G(V/X) is isomorphic to G(V)/G(X) for a subobject X of
V.

By Remark I1.8, if F is fully faithful then ey : Y — GF(Y') is an isomorphism
for any object Y of C. Thus Corollary 1.4 is an immediate consequence of Theorem
1.3 (a).

REMARK I1.9. The referee noted that if we assume, for W of finite length in C

(i) F(Y) is simple for any simple subquotient F(Y) of W,

(ii) lg(F(W)) = lg(W) and e is an isomorphism, then ey is an isomorphism
for any subobject Y of W, and X ~ e/ (G(X)) provides a left inverse to ¥

REMARK II.10. Let F': C — D be a functor between abelian categories and W
a finite length object of C satisfying:

X = F(X): Lw — Lpaw) s a lattice isomorphism.

Then any subquotient of W satisfies the same property. Indeed, this is clear for
a subobject W’ of W. For any exact sequence 0 — W7 — Wy — W3 — 0 in C
with Wa a subobject of W, the sequence 0 — F(Wy) — F(Wa) — F(W3) — 0
in D is exact by length count. Let Ly, (W7) denote the lattice of subobjects Y
of Wy containing Wi. The map Y — F(Y) : Lw,(W1) = Lpww,)(F(W1)) is a
lattice isomorphism. Taking the cokernels, it corresponds to a lattice isomorphism

We now prove the second lattice theorem I.5.

(i) This is classical. See [BkiAS8, §4 n°4 Prop. 3 b) and n°5 Def. 3 and Thm.
2 a)].

(ii) The first statement is obvious. Assume b(Y) @z b(V) C Y ®r V and let
y €Y and v € V. Any R-linear form A on V defines a linear map ¥ g V — Y
sending b(y) ® b(v) to A(b(v))b(y). If by # 0 we can choose v € V and X such that
A(b(v)) # 0 and then b(y) € Y.

We finally prove Corollary 1.6. Clearly the lattice isomorphism Y — Y ®r V'
in Thm. I.5 (i) sends an A’-submodule of W to an A’-submodule of W @ V. If
an A-submodule Y ®r V of W ®pg V is A’-stable, then Thm. L5 (ii) implies that
Y is an A’-submodule of W because no element in B’ \ B acts by 0 on V, as every
element of B’ \ B acts invertibly on V.
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The structure of A’-module on W induces a structure of A’-module on
Homu (V, W ®@g V') such that the isomorphism ey of Thm. L.5 (i) is A’-equivariant.
For f € Homa(V,W ®gr V), we have b(f) = f if b € B as B acts by the identity on
W. Itbe B\ B/, for all w € W we have b(ew (w)) = ew (b(w)), meaning that for
all v € V, b(ew (w))(v) = b(w) @ v = (bwg,v o ew(w) o by,')(v) as by is invertible.
Therefore b(f) = by o f o by for all f € Homa(V,W @z V), ifbe B\ B'.

ITI. Classification theorem for G

ITI.1. Admissibility, K-invariants, and scalar extension. In this section
III, R is any field and G is a locally profinite group. An R[G]-module 7 is smooth
if 1 = Ugn® with K running through the open compact subgroups of G, and is
admissible if it is smooth and dimp 7 is finite for all K. If 7% generates 7 then
Endgjg;m C Endg 7% Fix such a K for the rest of §III.1.

The category Modg(G) of R[G]-modules and the subcategory Mod% (G) of
smooth R[G]-modules are abelian, but not the additive subcategory Mod(G)® of
admissible R[G]-modules in general (when F has characteristic p). The subcategory
Mod% (G) of R[G]-modules 7 generated by m¥ is additive with a generator R[K\G]
but is not abelian in general 8. The commutant of R[K\G] is the Hecke R-algebra

EndR[G] R[K\G] ~ R®z H(G, K) = H(G, K)R
(the Hecke ring H(G, K) is Endyq Z[K\G]). We have the abelian category

Modgr(H(G, K)) of right H(G, K) g-modules (which we also call H(G, K)-modules
over R). The functor

T = — ®u(c k) ZIK\G] : Modr(H(G, K)) — Modg(G)

with image Mod% (G), is left adjoint to the K-invariant functor (=)¥ : Modz(G) —
Modgr(H (G, K)).

The unit € : idyodp(m(c, k) — (—)% o T and the counit 5 : 7 o (=)% —

idygeas () of the adjunction correspond to the natural maps X 5 T(X)K Jex(x) =
t®1for x € X € Modg(H(G,K)) and T(x%) = 7. n.(v @ Kg) = gv for
g € G,v ek meModr(G).

LeMmMA II1.1. (i) If 7 is generated by 7% and dimp 7% < oo (in particular if
7 is irreducible admissible and % #0), then dimp Endgjg 7 is finite.

(ii) Let R'/R be an estension. The adjoint functors T, (=), the unit ¢ and
the counit n commute with scalar extension: there are natural isomorphisms

T(X)r =~ T(Xr), () r = (7r)", (ex)r ~exy, ()R =~ Ny
In particular, ™ is admissible if and only if mr is admissible.
(#i) Let R'/R be an extension and 7 a smooth irreducible R-representation of
G generated by w%. Then, any subquotient ' of wgs is generated by 7' .
PROOF. (i) and (ii) are clear. We prove (iii).
Assume that 7 is generated by 7¥. It is clear that mp/ is generated by (%) g/,

hence by (7g)% = (7%)r (Lemma IIL.1). Let 7’ be a subquotient of 7, and

2 C B be right ideals of Drs = Endg/g)(7r/) such that
7'~ (B/A) @p TR

61f Mod¥ (G) is abelian and G second countable, Mod (G) is a Grothendieck category (same
proof than for Modg(G) [Vigadjoint, lemma 3.2])
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apply (P2) and (P3) in §II.1 to 7 seen as a simple R[G]-module). If v € 7/, then v is
(apply

a finite sum v = Zze%/%wem{/ z®w and each w is a finite sum w = degyuewg gu;

as r®gu = g(r®u) and x@u € 'K the representation 7’ is generated by 7#'%. O

We deduce that if € or n is an isomorphism of functors, then it is also true if
we replace R by a subfield. Recalling Remark II.8:

LEMMA II1.2. If the K -invariant functor ()X : Mod® (G) — Modg(H(G, K))
over R is an equivalence, then it is an equivalence over any subfield R’ of R. If
7 € Mod® (G) and 7 is defined over R', then 7 is defined over R'.

REMARK II1.3. Assume that R is a field of characteristic p and K is a pro-
p-Iwahori subgroup. The functor (—)¥ of Lemma IIL.2 is an equivalence if G =
GL(2,Qp) and p # 2, or if G = SL(2,Q,).

Indeed, for GL(2,Q)) this is proved under the extra-hypothesis that R contains
a (p — 1)-th root of 1 ([O] plus [K]), that we can remove with Lemma II1.2. For
G = SL(2,Qy), see [0S, Prop. 3.25].

IT1.2. Decomposition Theorem for G. Let G be a locally profinite group,
R'/R a field extension and R*9/R an algebraic closure. We apply Lemma IL5,
Theorem I.1 and Corollary 1.2 to the group ring A = R[G] and to a smooth R-
representation 7w of GG, seen as an A-module V.

We keep the same notations as in §II.1. If 7 is a smooth irreducible R-
representation of G, the scalar extension of m to R’ is a smooth R’-representation
g of G. When the commutant D = Endpg|g 7 of 7 has finite dimension over
R, we denote E the center of D, § the reduced degree of D over E, E’/E a finite
separable field extension splitting D, L/R a normal closure of E’'/R.

THEOREM II1.4. 1) If dimp End gg) 7 is finite and R’/ R is normal and contains
L, then

TR~ @ DicHomp (Esep,R') Wy
has length 0[E : R], W/ is an indecomposable smooth R'-representation of G. All

3
irreducible subquotients of W/ have commutant R’ and have the same isomorphism
class [V/]; the [V/] form a single orbit under Autr(R’).

The map [7] — Autg(RY9)[r'] where 7' is an irreducible subquotient of Tgats,
is a bijection from the set of isomorphism classes [r] of smooth irreducible R-
representations m of G with dimg Endgjg)m < 0o onto the set of Autp(R¥9)-orbit
of isomorphism classes [1'] of smooth absolutely irreducible R*9-representations 7'
of G descending to some finite extension of R.

2) If dimg Endgg 7 is finite, nr: has length < §[E : R]. For any non-zero
subquotient ™' of T we have dimp End /gy 7' < oo and ' admissible is equivalent
to m admissible.

3) If R'/R is normal, a smooth irreducible R'-representation ©' of G descend-
ing to a finite extension of R is isomorphic to a subrepresentation of mgr for
some smooth irreducible R-representation m of G. For any such w, dimgm, resp.
dimpg End g 7, is finite if dimps 7, resp. dimp End gy 7', is.

PROOF. 1), 3) and the first assertion of 2) follow from Lemma II.5, Theorem
I.1 and Corollary 1.2. Let us prove the claims about admissibility in 2). Take an al-
gebraic closure R'*9 of R’ containing R*9. Then 7 grats = (T ) graty = (T gats) grats
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and one of the representations 7, g/, TRatg, Trrats is admissible if and only if the
other ones are (Lemma I11.1 (ii)).

Applying 1), 7gats has finite length, its irreducible subquotients are Aut g (R*9)-
conjugate, isomorphic to subrepresentations and scalar extension induces a bijection
from the isomorphism classes of irreducible subquotients of mgas onto those of
Trratg. S0 some irreducible subquotient of mrat, is admissible if and only if 7 is
admissible if and only if all irreducible subquotients of mrats are admissible, if and
only if all irreducible subquotients of 7/, are admissible.

In a finite length representation, if all irreducible subquotients are admissible,
then all subquotients are admissible. So 7 is admissible if and only if some non-
zero subquotient of mgii, is admissible if and only if all subquotients of mgsais are
admissible.

Let m’ be a non-zero subquotient of mz,. Then w}z,alg is a non-zero subquotient
of TRaty. As 7' is admissible if and only if 7/ is, we deduce that 7’ is admissible

R’alg
if and only if 7 is admissible. ]

Let K be an open compact subgroup of G, R C R’ a field extension, R*9 an
algebraic closure of R and 7 an irreducible admissible R’-representation of G with
7K 2 0. The rationality field R[r] of 7 is the subfield of R’ fixed by the Aut(R')-
stabilizer H[r] = {c € Aut(R’) | R’ ®, m =~ w} of the isomorphism class [r] of
.

PROPOSITION IIL5. (i) Any finite dimensional RY9 -representation of H(G, K)
descends to a finite extension of R, when the Hecke ring H(G, K) is finitely gener-
ated (see Lemma IIL7 below).

(ii) If the H(G, K)r/-module 7% descends to R, then

a) 7 descends to R if the pro-order of K is invertible in R.

b) m descends to the subfield of R’ fired by Autp(R') if the commutant of
K s R

¢) 7 descends to a finite extension of R[x] if R is finite and R’ = R9.

PRrOOF. (i) follows from [Viglivre, I1.4.7]: Let (e;) be a basis of M and (7})
a finite set of generators of the ring H(G, K). There are finitely many elements
Cijk € R such that eiT; = cijrek- Let L/R be the finite extension generated
by all the ¢; j  and My, the L-vector subspace of basis (e;). Then My, is H(G, K)-
stable and the natural map R* @ My — M is an R¥[H (G, K)]-isomorphism.

(ii) We suppose that 7% # 0 descends to R; we choose an H(G, K)g-stable
submodule (7%)z C 7% generated over R by an R'-basis of 7¥; put 7g for the
R-subrepresentation of m generated by (7%)x.

a) By assumption the pro-order of K is invertible in R, By [Viglivre] one can
put on the space H(G)g of locally constant compactly supported functions from
G to R a structure of convolution algebra such that the characteristic function
e = ex of K is an idempotent; then H(G, K)g appears as eH(G)ge. A smooth R-
representation 7 of G is naturally a H(G)g-module and H(G, K)g acts on 7% = er
via the inclusion eH(G)gre C H(G)g. Since 7 is an irreducible admissible R’-
representation of G with 7% # 0, 7% is a simple H(G, K) g-module [Viglivre] and
7 can be recovered from 7%. Indeed, following [BK, 4.2.3 Prop.], if X is a simple
H(G, K)g-module, then X ®z Z[K\G] has a maximal subrepresentation killed by
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e, the corresponding quotient X is irreducible and the quotient map induces an
H(G, K) p/-isomorphism X ~ Xe. If ¥ = 7¥ then X = 7.

Since 7¥ is a simple H(G, K)g--module, (75) is a simple H (G, K)p-module.
Applying the above procedure over R, we consider the quotient p of (7%)p ®z
Z|K\G] by its maximal subrepresentation W killed by e; it is an irreducible and
admissible R-representation of G. We have the exact sequence

0+ R @rW — R ®r (n%)r @2 Z|[K\G] = R ®r p — 0.

Clearly (R’ ®g W)e = 0 and R’ ®p p isomorphic to a direct sum of copies of p
as an R[G]-module has no non-zero subrepresentation killed by e. It follows that
R' ®r W is the maximal subrepresentation of R’ ® g (7%) g ®z Z[K\G] killed by e,
hence 7 >~ R’ ® p descends to R.

b) and c) The set {gv | g € G} certainly generates m as an R’-vector space, so
we can extract a basis {g;v | i € I'}. For g € G we express gv = Ziel Aigiv with
unique A\; € R’, almost all 0. We will show:

(*) o(\i) =X\ forall i € T and

- for all o € Autppy)(R') if Endp/ g o = R/,

- for all 0 € Autp(R’) for some finite extension L/R[r] if R is finite and
R' = RY9,

This will imply that for all ¢ € I, A\; lies in the subfield L of R’ fixed by
Autpr(R') if Endg/g 7% = R', and in a finite extension L/R[x] if R is finite and
R' = R™. Thus, the L-vector subspace V of 7 of basis (g;v);c; is stable by G, it is
an L-subrepresentation 77, of m such that the natural isomorphism R’ ® 77, — 7
is an R’[G]-isomorphism.

To prove (*) it suffices to find for all o in (*) an intertwining operator A, :
7 — R’ ®, 7 such that A,(v) =1 ® v. Indeed, for such an operator A = A,,

1@ gv = A(gv) = AY_ Nigiv) = Y MiA(giv)

icl iel
= Z Ai(l® gv) = Z 1@o(N)gv=1& Z o(X;)giv;
icl icl iel

80 D ser Migiv = >, 0(Ai)giv, that is, o(X;) = A; for all i € T.

To find A,, we note that for o € Autg(R’'), the natural map f : (7%)p —
R ®, 7% sending x to 1 ® x extends to an intertwining operator 7% — R’ @, 7¥.

- If Endg/ (g 7% = R’, then any intertwining operator 7 — R’ ®, 7 restricts on
(7%)r to a multiple of f, hence we can find A,. This ends the proof of (iii) in the
case b).

- If R is finite and R’ = R®9, we choose a (topological) generator 7 of the
(pro)cyclic group Autp((R™9) and an R'-basis of 7% contained in (7%)g; the re-
striction AX : 7K — RY9 @, 7K of A, to 7¥ has a matrix Mat(AX) on this basis.
The coefficients Mat(AX) are fixed by 7™ for some positive integer m. For any posi-
tive integer k, we have the intertwining operator A,me = (7™ 1(A4,)...7(A;)A;)* :
T — R @ i m with restriction AX,, = (™ HAK) .. 7(AF)AE)* to 7K of ma-
trix Mat(AX,)*. As the order of Mat(AZX,) is finite, we can choose k, such that
Mat(AX,, ) is the identity. Then A mr,(v) = 1 ® v. Therefore the subfield of

Fmko
R™9 fixed by 770 is a finite extension R'/R[r] such that A,(v) = 1 ® v for all
o € Autp (R9). This ends the proof of (iii) in the case c). O
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REMARK ITL.6. If the K-invariant functor (—)% : ModX%, (G) —Modg (H (G, K))
over R’ is an equivalence (Lemma I11.2), then 7% descends to R if and only if 7
does.

II1.3. The representations I (P,0,Q). Until the end of the article G
is a p-adic reductive group (in the following sense).

The base field F is locally compact non-archimedean of residue characteristic
p. A linear algebraic group over F' is written with a boldface letter like H, and
its group of F-points by the corresponding ordinary letter H = H(F'). We fix an
arbitrary connected reductive F-group G, a maximal F-split torus T in G and a
minimal F-parabolic subgroup B of G containing T ; we write Z for the centralizer
of T in G and U for the unipotent radical of B. We denote by G** the product of
the isotropic simple components of the simply connected cover of the derived group
of G.

Let ®T denote the set of roots of T in U, A C & the set of simple roots. We
say that P is a parabolic subgroup of G and write P = M N to mean that P
is an F-parabolic subgroup of G containing B ; M the Levi subgroup containing
Z and N the unipotent radical; the parabolic subgroups P of G are in bijection
P — Ap = Ay, with the subsets A. For J C A we write P; = M;N; for
the corresponding parabolic subgroup; for a singleton J = {a} we rather write
P, = M,N,. We have G = M(®N) for the normal subgroup (¥ N) of G generated
by N.

The image of G** in G is the normal subgroup G’ of G generated by U, and
G = ZG'. Set P for the parabolic subgroup of G* of image P NG’ in G.

LeMMA II1.7. Let K be an open compact subgroup of G. The Hecke ring
H(G,K) = Endyg Z[K\G] is finitely generated, if K is a normal subgroup of
a special parahoric subgroup of G and admits an Twahori decomposition” .

PRrROOF. It is only proved that Z[1/p] ®z H(G, K) is finitely generated in
[Viglivre, 11.2.13 Prop.].

When G is compact, the lemma is obvious as the set K\G/K is finite.

When G is compact modulo its centre Z¢, this is also clear as the set K\G/K Z¢
is finite and the group Zg/(Z¢ N K) is commutative and finitely generated. One
can choose a finite set of representatives g; such that all the double classes of G
modulo K are of the form Kg;2K for z € Zg and representatives z; of a finite set
of generators of Z¢/(Za N K). The product of K¢, K and of Kz; K = Kz; = z; K
is Kg;z; K, and the ring H(G, K) is generated by the Kg;z; K.

For G general, the same arguments imply that the ring H(Z*, KNZ) is finitely
generated (ZV is the positive monoid cf.§IV.1). When K has an Iwahori decom-
position and is a normal subgroup of a special parahoric subgroup Kg of G, the
map (KNZ)2(KNZ)w— KK : HZY,KNZ) - H(Z*,K) is a ring embed-
ding of image the subring of H(G, K) generated by the elements KzK for 2 € Z+
[VigSelecta, I1.4], and moreover the Cartan decomposition [HV1, 6.3 Prop.] im-
plies H(G,K) = H(Ky,K)H(Z*,K)H(Ky, K) [Viglivre, 11.2.13 Prop.]. Thus,
the ring H(G, K) is finitely generated. O

7K is called “ bien placé par rapport a (B, Z,U)” in [Viglivre, 11.1.3 (vi)]
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REMARK II1.8. If K is an Iwahori or a pro-p Iwahori subgroup of G, then
H(G,K) is a finite module over its centre and the centre is finitely generated
[VigpIwc].

Until the end of the article R is a field of characteristic p. We are
interested in irreducible admissible R-representations of G.

For a parabolic group P = M N of G, the smooth parabolic induction func-
tor Ind% : Mod$y (M) — Mod$S(G) is fully faithful, and admits a left adjoint
LE and a right adjoint RS [Vigadjoint]. The right adjoint RS respects admis-
sibility]AHenV1, Cor. 4.13] hence is equal on admissible representation to the
Emerton’s P-ordinary part functor Ord% where P is the opposite of P with respect
to B [Eme, 3.1.9 Definition].

For a pair of parabolic subgroups @ C P of G, write Indgf for Indgm a and con-
sider the Steinberg R-representation Stg (R) of M, quotient of Ind]\Q/[ (R) (R stands
for the trivial R-representation Trivgnas of @ N M) by the sum ZQ, Indgf, (R),
@’ running through the parabolic subgroups of G with Q C Q' C P. The R-
representation Sty (R) of M is absolutely irreducible and admissible [Ly], and
Stg(R) ~ R®z Stg where Stg = Stg(Z).

Writing P, = My N, for the parabolic subgroup corresponding to Ap\ Ag, the

inflation to M32* of the restriction of Stg to MJ is Stf\g;Mz)“ (R) ([AHHV, IL8

Proof of Proposition and Remark] when R is algebraically closed, but the proofs
do not use this hypothesis). Therefore the action of M} on StAQ/[ (R) is absolutely
irreducible.

To an R-representation o of M are associated the following parabolic subgroups
of G:

a) P, = M, N, corresponding to the set A, of & € A\ Ay such that Z N M/,
acts trivially on o.

b) P(o) = M(o)N(o) corresponding to A(c) = Ap UA,. By [AHHV, IL.7
Proposition and Remark 2] which remain valid when R is not algebraically closed,
there exists an extension e(o) to P(o) of ¢ trivial on N; we write also e(o) for its
restriction to M (o). For P C @Q C P(o), the generalized Steinberg representation
Stgl(a)(a) of M(o) defined in §I (0.2), is admissible and isomorphic to e(o) ®z
Sty 7).

Q

¢) Prin = MpinNpmin C P the smallest parabolic subgroup of G such that o is
extended from an R-representation oy, of My, trivially on Ny "M [AHenV1,
Lemma 2.9]. Then A(0pin) = A(0), eq(0) = eq(omin), and Ay .., Ao \Ap,...
are orthogonal [AHenV1, Lemma 2.10]. This implies that M (c) = Mpnin M, .,
M in, normalizes M/ | and that e(o) is trivial on M/,

Omin Omin

DEFINITION III.9. An R-triple (P, 0,Q) of G consists of a parabolic subgroup
P = MN of G, a smooth R-representation o of M, and a parabolic subgroup @ of
G with P C Q C P(c). The smooth R-representation of G defined by an R-triple
(P,0,Q) of G is

IG(P> g, Q) = Indg(o’) (Stg(d) (U))

The representation I (P, 0, Q) is equal to Ig(Pmin, Omin, @) [AHenV1, Lem-
ma 2.11]; it is admissible when ¢ is admissible [AHenV1, Thm.4.21].
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PROPOSITION I11.10. Let (P, 0,Q) be an R-triple of G such that, o is admissible
of finite length, P(0) = P(7) and Ig(P,T,Q) is irreducible for each irreducible
subquotient 7 of o. Then P(c) = P(d’) for any non-zero subrepresentation o’ of
o, and the map o' — Iqg(P,0',Q) : Lo — Li,(po,0) 5 a lattice isomorphism.

Proor. Clearly P(o) C P(o’). As o’ has finite length, it contains an irre-
ducible subrepresentation 7. From P(c) C P(¢’) C P(r) and P(o) = P(1), we get
P(o) = P(d").

We are in the situation of Corollary 1.6 for A = R[M/] C A’ = R[M(o)] and
the R[M (o)]-modules W = ¢(o) and V = Stg(”)(R), with the basis B = M of A
acting by the identity on W and the basis B’ = M (o) of A’ acting invertibly on V.
Applying Cor.1.6, the natural maps

e(0) = Homppy, ) (Stey 7 (R), Stgy ™) (),
Hom g (Stgy 7 (R), St 7 (0)) @r Sty 7 (R) = Sty 7 (o)

are R[M (o)]-isomorphisms and o’ +— Stg(o)(a’) Ly — CStM(a)(o_) is a lattice
Q
isomorphism. In particular, Stg(a)(a) has finite length, lg(Stg(a)(U)) = lg(o),

and the irreducible subquotients Stg(a)(a) are Stg(a)(T) for the irreducible sub-

quotients 7 of 0. As Ig(P,7,Q) is irreducible and equal to Indg(g) Stg(o)(T)) for
each 7, we are in the situation of Corollary 1.4 for the fully faithful exact functor
F = Indg(g) : Modg(M (o)) — Modg(G) having a right adjoint G = RE, and
W = Stgj((’)(a). We deduce that the map o’ = Ig(P,0',Q) : Lo = L1 (po,0) is a
lattice isomorphism. O

REMARK II1.11. I5(P,0,Q) determines the isomorphism class of e(o) because
~H P(o) G
e(o) = Hompar (St " (R), RP (o) (Ia (P, 0,Q)))
(proof of Prop. II1.10 and Rg(g)(I(;(P, 0,Q)) ~ Stg(a)(a)).

Let R’ be a field containing R. Scalar extension from R to R’ commutes with
the different steps in the construction of I¢ (P, 0, Q):

PROPOSITION II1.12. (i) The parabolic induction functor IndS commutes with
the scalar restriction from R’ to R and with the scalar extension from R to R'. The
left adjoint LG (resp. right adjoint RS) of the parabolic induction commutes with
scalar extension (resp. restriction,).

(i) If © € Mod% (G) is such that g, ~ Ind%(o") with o' € ModSs (M), then
o' is isomorphic to (LS g

PROOF. (i) Choosing a continuous section P\G — G, Ind$ o identifies with
o ®z C*(P\G,Z) as an R-module [AHenV1]; this implies the first assertions,
and the next sentence follows by adjunction. Part (i) follows because Ind$ is fully
faithful. 0
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PROPOSITION II1.13. [Strong compatibility of I (P, —, Q) with scalar exten-
sion]

(i) Let (P,0,Q) be an R-triple of G. Then

P(o) = P(or), (P,or,Q) is an R'-triple of G, and if o is irreducible and o’
a non-zero subquotient of og:, then P(o) = P(c’). Moreover,
() = e(on), (Stg” (@) p=Stg "™ (ow) and Ia(P,0, Q) w~Ic(P.ow, Q).

(ii) Let (P,0,Q) be an R'-triple of G. If e(o) or StP(U)( ) or Ig(P,0,Q)
descends to R, then o descends to R.

Precisely, if e(o) = Tr or Stg(a)(or) = pp or Ig(P,0,Q) = 7mr for R-
representations T of M (o) or p of M(o) or 7 of G,

then o is the scalar extension of the natural R-representation of M on T, or
HomR[Mé](Stg(”)(R),p), or Hom gy (StP(U)( R), Lg(o)ﬂ).

PRrROOF. (i) op is a direct sum of R[M]-modules isomorphic to o. If o is
irreducible, any subquotient o’ of ogs is o-isotypic. For « € A — Ap, Z N M,
acts trivially on an R'[M]-module 7 if and only if it acts trivially on 7 seen as
an R[M]-module. So P(c) = P(og/) (hence (P,ogr,Q) is an R’-triple of G),
and if o is irreducible P(o) = P(o’). It is clear from the definition that the
extension commutes with scalar extenbion R ®pe(o) = e(R' ®r o). The scalar

extension of St (J)( ) =-e(0) ®z St ) from R to R is R' ®p StP(J)( ) =R ®g
e(o) ®z StP(a) ~e(R ®ro) Qg StQ ~ StQ Now) = StP<°R' (or/). The scalar

extension of Ig(P,0,Q) = IndP(g)(StP(J)( )) from R to R’ is R ®@p Ig(P,0,Q) ~
d$,(Stg” (0r)) = d%, . (Sto """ (or)) = Ic(P.or, Q).

(i) If Ig(P,0,Q) = mr/, we have StQ(J)( ) =~ (L}GD(U) m)r (Proposition I11.12
(i1)).

If Stg(a)(a) ~ pp, then e(o) ~ HomR/[Mé](Stg(g)(R’) pr’) (Remark II1.11);
as Stg(a)(R') = StP(U)( R)g:, is irreducible, Homp/(a) (StP(”)(R’),pR/) o~
Hom gy (Sto' " (R), p)rr (Remark 11.2).

If e(0) ~ TR/ then o ~ (7|p)r because the restriction to M commutes with
scalar extension. O

I11.4. Supersingular representations.

We keep the notations of §II1.3. When R is algebraically closed and 7 is an
irreducible admissible R-representation of G, in [AHHYV] the definition of supersin-
gularity uses the Hecke algebras defined by the irreducible smooth R-representations
of the special parahoric subgroups of G. Two equivalent simpler criterions using
the pro-p Iwahori Hecke R-algebra of G are given in [OV, Thm. 5.3]. We will use
these equivalent criterions to extend the definition of supersingularity to the situa-
tion where R is not algebraically closed, and 7 is a non-zero smooth representation
generated by its pro-p Iwahori invariants.

Let I be a pro-p Iwahori subgroup of G compatible with B, so that INM is a
pro-p Iwahori subgroup of M for any parabolic subgroup P = M N (we recall that
P contains B = ZU and M contains Z). Let Zy be the unique parahoric subgroup
of Z and Z; the pro-p Sylow subgroup of Zy. We defined in §III.1 the pro-p Iwahori
Hecke ring H(G,I) = H(G), the pro-p Iwahori Hecke R-algebra H(G)gr and the
categories Modg(H(G)) and Mod% (G). The elements in H(G) with support in G’
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form a subring H(G’) normalized by a subring of H(G) isomorphic to Z[Q] for a
commutative finitely generated subgroup Q, H(G) is the product of H(G") by Z[)]
and

H(G)NZQ ~ZZ, Zi, = (ZoNG)/(ZNG").
To M is associated a certain element T in H(G’) which is central in H(G) [ViglT7].

DEFINITION II1.14. 1. An non-zero element v in a right H(G) g-module is called
supersingular if vT}; = 0 for all M # G and some positive integer n. A non-zero
H(G)pgr-module is called supersingular if its non-zero elements are supersingular.

2. A non-zero smooth R-representation 7 of G generated by «! is called super-
singular if the right H(G)g-module 7! is supersingular.

Any non-zero R-representation of G has a non-zero I-invariant vector, as the
characteristic of R is p, hence any irreducible smooth R-representation 7 of G is
generated by 7!, As explained above, when 7 is irreducible admissible and R
algebraically closed, our definition of supersingularity is equivalent to the definition

given in [AHHV] by [OV, Thm. 5.3].

REMARK II1.15. 1. Let 0 — V' — V — V" — 0 be an exact sequence of H(G) g-
modules. Then V is supersingular if and only if V' and V" are supersingular.

2. When R contains a root of unity of order the exponent of Z, = Zy/(ZoN 1),
the simple supersingular H(G)g-modules are classified [Vigl7, Thm. 6.18]; as
H(G")g-modules, they are sums of supersingular characters.

3. The group Aut(R) of automorphisms of R acts on Modgr(G) and on
Modg(H(G)). Clearly, the action of Aut(R) commutes with the I-invariant functor,
and respects supersingularity, irreducibility, and admissibility.

Supersingularity commutes with scalar extension:

LEMMA 111.16. Let R'/R an extension.

1) A (right) H(G)g-module X is supersingular if and only if Xg/ is; a smooth
R-representation © of G generated by w' is supersingular if and only if wgr: is.

2) Let  be a smooth irreducible R-representation m of G with dimp End gy 7 <
oo and ' be a non-zero subquotient of wr. Then 7 is supersingular if and only if
7' is supersingular.

PROOF. 1) In Xrr = R'®rX, we have (r'®z)Ty = r'®@zTy for ' € R,z € X;
clearly the non-zero elements of Xg/ are supersingular if and only if the non-zero
elements of X are supersingular.

If 7 is generated by m!, then g is generated by 7k, = (7!)g (Lemma IIL1
(iii)). By the previous case, 7 is supersingular if and only if mg/ is.

2) Any non-zero subquotient 7’ of mp/ is generated by 7'7 because 7 is (Lemma
III.1 (iii)). The proof that 7 is supersingular if and only if 7’ is supersingular is the
same as for admissible. Applying Thm. II1.4 2) and Remark II1.15, we can replace
“admissible” by “supersingular” in the proof of Thm. III.4 3). O

As an application, supersingularity for an irreducible admissible R-representa-
tion of G can be detected on a weaker property, as in the case where R is alge-
braically closed:

THEOREM II1.17. Let 7 be an irreducible admissible R-representation of G.
Then  is supersingular if and only if w1 contains a non-zero supersingular element.
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PROOF. Suppose that 7! contains a non-zero supersingular element. By Lem-
ma L1, (7)) gats = (TRae)!. By Lemma I11.16 and [OV, Thm. 5.3], (7!)gai
is supersingular. By Thm II1.4, wrais has finite length. The irreducible subrepre-
sentations of mras are supersingular. By Lemma II1.16, 7 is supersingular. The
converse is obvious. O

REMARK II1.18. The scalar extension to R*9 of a R-triple (P, o, Q) of G where
o is irreducible admissible supersingular, is an R*9-triple (P, 0 gas, Q) of G satis-
fying the hypotheses of Proposition II1.10: the irreducible subquotients 7 of o gaig
are supersingular (Lemma II1.16), P(1) = P(0) = P(0gas) (Prop.I11.13 (i)), and
Ig(P,7,Q) is irreducible (Classification theorem for G over R*9 [AHHV]).

ITL.5. Classification of irreducible admissible R-representations of G.
We prove in this section the classification theorem for G (Thm. 1.7). The arguments
are formal and rely on:

1 The decomposition theorem for G (Thm.II1.4).

2 The classification theorem for G (Thm.1.7) over an algebraic closure R%9 of
R [AHHYV].

3 The compatibility of scalar extension from R to R*9 with supersingularity
(Lemma ITI.16) and the strong compatibility with I (P, —, Q) (Prop.111.13).

4 The lattice isomorphism Lo ., = Lig(Popa,,@) for the scalar extension

Opats to R¥ of an irreducible admissible supersingular R-representation o
(Prop.II1.10 and Rem.I11.18).

We start the proof with an R-triple (P = MN,0,Q) be of G with o irre-
ducible admissible supersingular. We show that Ig(P, o, Q) is irreducible. By the
decomposition theorem for M, orai, has finite length, I (P, o g, Q) also by the
lattice isomorphism Lo ., = L15(Po,01,.Q): a0d I6(P,0,Q) gats ~ I (P, 0 Rats, Q)
by compatibility of the scalar extension with I¢(P, —,Q); as the scalar extension
is faithful and exact, I (P, 0, Q) has also finite length. Let 7 be an irreducible R-
subrepresentation of I(P, 0,Q). As I¢(P,0,Q) is admissible, 7 is admissible. The
scalar extension mraiy is isomorphic to a subrepresentation of Ig(P, o, Q)gas =~
I(P,0Rats, Q). By the lattice isomorphism LURW — ch(p,URalg,Q), TRaly =~
I¢(P, p, Q) for a subrepresentation p of orag. The representation p descends to R
because I¢ (P, p, Q) does, by the strong compatibility of I (P, —, Q) with scalar ex-
tension. But o rais has no proper subrepresentation descending to R by the decom-
position theorem for G, s0 p = 0 gaty and wraty = Ig(P, 0 gate, Q) ~ Ig(P, 0, Q) gats,
or equivalently, 7 ~ I (P, p, Q).

Next, let (P,0,Q) and (Py,01, Q1) be two R-triples of G with o, oy irreducible
admissible supersingular and Ig(P,0,Q) ~ Ig(Pi,01,Q1). By scalar extension
Ig(P,0gate, Q) = I(Py, (01) gets, Q1). The classification theorem over R implies
P = P;,Q = Q; and some irreducible subquotient %9 of o gaiy is isomorphic to
some irreducible subquotient Jflg of (01)gats. As R-representations of G, o%9 is
o-isotypic and Uflg is o1-isotypic, hence o, 01 are isomorphic.

Finally, let @ be an arbitrary irreducible admissible R-representation of G.
By the decomposition theorem for G, its scalar extension mgai; has finite length;
we choose an irreducible subrepresentation 79 of 7e,. By the decomposition
theorem for G, 79 is admissible, descends to a finite extension of R. By the
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classification theorem over R*9,
79 ~ [5(P, 0™, Q)

for an R*9-triple (P = MN, o9, Q) of G with 0?9 irreducible admissible super-
singular. By the strong compatibility of I (P, —, Q) with scalar extension, c*9 de-
scends to a finite extension of R. By the decomposition theorem for M, o9 is con-
tained in the scalar extension o gaty of an irreducible admissible R-representation o.
By compatibility of scalar extension with supersingularity and I¢(P, —, Q), (P, 0, Q)
is an R-triple of G, o is supersingular and I (P, 0gas, Q) ~ Ig(P,0,Q)paes. By
the lattice isomorphism Lo .. = Lig(Pou1,.Q) Ig(P,0%9,Q) is contained in
Ig(P,0Rgate, Q). The irreducible representation 79 is isomorphic to an irreducible
subrepresentation of Ig(P,0,Q)gas. The decomposition theorem for G implies
that
7w~ Ig(P,o,Q).
This ends the proof of the classification theorem for G (Theorem 1.7).

IV. Classification theorem for H(G)

Let R be a field of characteristic p and G a p-adic reductive group, as in §III.3.
Let I be a pro-p Iwahori subgroup of G compatible with B, H(G) the pro-p Iwahori
Hecke ring, H(G)r = R ®z H(G), Z; the pro-p Sylow of the unique parahoric
subgroup Zy of Z and Z = Zy/Z1, as in §I11.4.

In this section we prove results analogous to those of Section §III but for right
H(G)g-modules. Although the I-invariant functor and its left adjoint relate R-
representations of H(G) and G, the relation in characteristic p is weaker than in
the complex case and does not permit to deduce the case of the pro-p Iwahori
Hecke algebra from the case of the group: similar results for H(G) and G have to
be proved separately.

IV.1. Pro-p Iwahori Hecke ring. The center Z(H(G)) of the pro-p Iwahori
Hecke ring H(G) is a finitely generated subring and H(G) is a finitely generated
module over its center; the same is true for the center of H(G)r [VigpIwc]. This
implies that the dimension over R of a simple H(G)g-module is finite [Hn, 2.8
Prop.].

Let P = MN be a parabolic subgroup of G. The pro-p Iwahori Hecke ring
H(M) of M for the pro-p Iwahori subgroup I N M does not embed in the ring
H(G). However we are in the good situation where H(M) is a localization of
a subring H(M™) (of elements supported in the positive monoid M+ := {m €
M | m(INN)m~t C INN}) which embeds in H(G). We explain this in more
detail after introducing more notations than in §II1.3 and §II1.4; our main reference
is [Vigplw].

An upper or lower index M indicates an object defined for M; for G we suppress
the index. We write Ny for the F-points of the normalizer of T in M, W, =
Nut/Z, War = Nag/Zy, Wy for the image of M/ NNy in Wy, A = Z/Zy, 1g,, for
the length of Wy, Qs for the image in Wy, of the Mys-normalizer of (INM); Qpy
is also the set of u € W)y of length lg,,(u) = 0 (the group 2 = Q¢ was introduced
in §I11.4).

The natural map Wy, — (I N M)\M/(I N M) is bijective, Wy is a normal
subgroup Wy, and a quotient of Wyys (via the quotient map M — M), and we
have W]\/[ = WM/QM, W]yj/ n QM = WM/ n Zk
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For m € M and w = w(m) € W)y image of m; € Ny such that (I NAM)m(IN
M) = (InM)mi(I N M) (denoted also (I N M)w(I N M)), the characteristic
function of (I N M)m(I N M) seen as an element of H(M) is written T™ (m) or
TM (w); we have also TM* (m) = TM*(w) in H(M) defined by TM-* (w)T™ (w™') =
[(INM)w(INM): (INM)] [VigpIw, Prop.4.13]. For u € Qps, TM*(u) = T (u)
is invertible of inverse T™ (u=1). The Z-module H(M) is free with a natural basis
(TM(w))wew,,, and another basis (T™*(w))wew,,, called the xbasis. The Z-
submodule of basis (T™ (u) = T™*(u)) ez, is the subring H(Zy N M) of elements
supported on Zy. The relations satisfied by the natural basis and the x-basis are
the braid relations for wy, wy € Wy such that 1g;, (wiws) = gy, (w1) + 1ga, (w2):

TM (’u}l)TM (’wg) = TM(wlwg), TM’*(wl)T]VI’*(lUQ) = TM’*(wlwg),
and the quadratic relations with a change of sign for s € Wy, 1g,,(s) = 1:
TM(5)? = qs + csTM(5), TM*(5)? = g — cs T (s)

where g, = [(INM)s(INM) : (INM)] and ¢, € H(ZoNM') the subring of elements
supported on Zy N M’, satisfy the congruences q; = 0 modulo p and ¢, = —1
modulo the ideal of H(Zy N M’) generated by p and T(u) — 1 for u € Z; N Wiy
[VigpIw]|. Both ¢; and ¢s do not depend on M but lg,, depends on M. The
quotient map Wjyris — Wiy respects the length and the coefficients of the quadratic
relations, the surjective natural linear map from H(M®) to the subring H(M') of
elements supported on M, is a ring homomorphism sending 7™ (w) to T™ (w')
and TM"*(w) to TM*(w') if w’ € W)y is the image of w € Wyys.
The injective linear maps associated to the bases
G G,
TM (m) — T(m) : H(M) 25 H(G), TM*(m) — T*(m) : HM) 2 H(G),

generally do not respect the product but their restrictions to the subrings H(M™)
and H(M ™) (of elements supported on the inverse monoid M~ of M) do.

REMARK IV.1. 1. For P = MN C @ = MgNg, we have inclusions for
ee{+ -}

Me C Mg, 05 (H (M) € 05, (H(Mg)), 03" (H(Me)) € 03 (H(Mg)).

2. When Aj; and A\ A,y are orthogonal, the situation is simpler. For P, =
M5 N> the parabolic subgroup of G corresponding to A\ Ajy:

G' is the direct product of M’ and of My, G = M M3, W' = Wy Wi, Wiy 0
Wy = WM; NZg, W = WJW'WMQQ and for w € Wy, we € WMé,u e Q,
lg(wwau) = lgy(w) +1gy7, (w2). The braid and quadratic relations satisfied by

T(w) = TY(w) for w € Wy, are the same as for TM (w), the same is true for T(w)
05, xogh

and for My. Moreover, 0§, = GJGVI’*, M'Cc MTNM~ and H(M') x H(M})
H(@') is a ring isomorphism.

IV.2. Parabolic induction Indg(G). For a parabolic subgroup P = M N of
G, the parabolic inductions for the pro-p Iwahori Hecke rings and for the groups

Indp ' i= — @ (ar+),06 H(G) : Modg(H(M)) — Modr(H(G)),
Ind$ : Mod$ (M) — Mod% (G)
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are compatible with the pro-p Iwahori invariant functor and its left adjoint: [OV,
Prop.4.4, Prop.4.6] gives natural isomorphisms:

(2.1) (=) 0 Ind§ ~ Indf(@ o(—)InM
(~ ®n(6) ZU\G) 0 Indp? = Ind§ o(— @pan Z[(I N M)\M)).
The parabolic induction Indg(c) for the pro-p Iwahori Hecke rings has a right ad-

joint Rg(@ and a left adjoint LI;(G) as for the groups, [VigpIwst]. As —@H(M*).05,
H(G) ~ HomH(Mﬂ,Q%* (H(G),—) (Proposition VL1 in the appendix below):

H G H(G
(2.2) D~ i, g H(M), Rp'Y = Homyy(yrv) oo (H(M), ).

The right adjoint functors RG and RH(G) are compatible with the pro-p Iwahori

invariant functor but the left deOlnt functors are not [OV, Cor.4.13].

REMARK IV.2. For the pro-p Iwahori Hecke algebra, the left adjoint Lg(G)
being a localization is exact but for the group, the left adjoint Lg is not exact.

ProroOSITION IV.3. Let P = MN, P, = MyNy be two parabolic subgroups of

G. We have:
()RH(G) IdH(G)_I QM) pH(M)

PNP; PNPy -
LHO) 11 a! li) L HOD)
(i) Py P PNP; *

1i) The parabolic induction functor Ind2(@ s Sfully faithful.
P

PROOF. (i) is proved for the parabolic coinduction and its right adjoint in
[Abeparind, Prop. 5.1]8. Using the relation between the parabolic induction and
coinduction given in the appendix we get (i).

(ii) follows from (i) by left adjunction and exchanging P, P;.

(iii) The isomorphism (i) is described in the proof [Abeparind, Lemma 5.2].
For P, = P, one checks that it is given by the unit id — Rg(G) ) Indg(G) of the
adjunction. Applying Remark I1.8, the functor Indg(G) is fully faithful. O

IV.3. The H(G)g-module Stg(c)(V). The “trivial” representation of H(G)
is Trivg(g) = (Trivg)! where Trive is the trivial Z-representation of G. Let P =
M N be a parabolic subgroup of G and StH(G = (St&)!. Put Trivg gy, = R®z
Trivg () and St (G)(R) =R ®z StP (@, they are H(G)gr-modules. The H(G)g-
module Tnd© )(TrivH(M)R) = Indj,‘“(R) is isomorphic to (Ind§(R))" (§IV.2).
By [Ly], Stg(c)(R) is absolutely simple and isomorphic to the cokernel of the
natural map

(3.3) @prcoea(Indg(R)) — (Indf(R))".

One knows that T*(z) acts trivially on Indg(m (Z) and on Stg<G) for z€e ZNM'
[AHenV2, Ex.3.14].

Let V be a non-zero right H (M) g-module, and Py=MyNy, P(V)=M (V)N (V)
the parabolic subgroups of G corresponding to:

Ay = {a € A orthogonal to Ay, v = vTM*(2) forall veV,ze ZnN M.},

8What we call parabolic coinduction is denoted by Ip in [Abeparind, §4] and called para-
bolic induction
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A(V) = Ay U Ay [Abe] [AHenV2, Def.4.12]. Different consequences for M (V)
of the orthogonality of Ap; and Ay are described in Remark IV.1 2.

DEFINITION IV.4. There is a unique right H(M (V))g-module e(V) equal to V
as an R-vector space, where TM(V)*(m) acts by T *(m) for m € M and by the
identity for m € M,, [AHenV2, Def.3.8 and remark before Cor. 3.9]; we say that
e(V) is the extension of V to H(M (V)) or that V is the restriction of e(V) to H(M).

REMARK IV.5. Extension to H(M(V)) gives a lattice isomorphism Ly — Lg(y).

For P=MN C Q = MgNg C P(V), we define similarly the extension eq (V)

of V to H(Mg). When P C Q = MgNg, we write Stg(Q) = Stgéﬁz).

LEMMA IV.6. Assume that Ay is orthogonal to A\ Ay and that we have right
H(G)r-modules X extending an H(M)g-module and Y extending an H(Ms)pg-
module, where Py = M N3 is the parabolic subgroup of G corresponding to A\ Apy.

Then, there is a structure of right H(G)g-module on X @ Y where T*(w) and
T(w) forw € W act diagonally, and on Homgg:/[,;(H(Mé))()J7 X ®rY), where T*(w)

acts by the identity for w € Wy, and by
(T*(w)x @ T*(w)y) o — o (T*(w)y) ™" for w € WapQ,
where T*(w)x and T*(w)y are the actions of T*(w) on X and Y.

PROOF. For X @ ) see [AHenV2, Prop.3.15, Cor.3.17].

Put 2 = Homgf{,;(H(Mé))(y,X ®pr Y); we check that the action T (w)z of
T*(w) on Z for w € W defined in the lemma, respects the braid and quadratic re-
lations (§IV.1). The braid relations follow from W = Wy Wi Q and T* (wwau) =
T (w) T (wa2)T* (u) if w € Wi, wa € Wiy, u € Q (Remark IV.1 2). For the qua-
dratic relations, let so € Wy and s € Wy of length 1. Then T*(s2)x,T*(s2)z
and T*(s)y are the identity. As —c(s3)z is the identity and the characteristic of
R is p, T*(s2)z verifies the quadratic relation; T*(s)z(—) = (T*(s)x ® idy) o —
satisfies the quadratic relation because T (s)x does (§IV.1). O

Assume P C Q C P(V) = G, in particular Ap; and A\ Ay are orthogonal.
We have (Stg)I = (Stg)lm\/[é [AHenV2, §4.2, proof of theorem 4.7], the right
H(G)g-modules:

e(V) @r Indh V(R), St D (V) = e(V) @r Sth D (R),
HOmH(]\{éh?(e(V), Stg(c) (V))
where T*(w) acts diagonally for w € W on the first and second ones, and for the

third one, the map 6§ = 95\5[* embeds H(M)) in H(G) (Remark IV.1 2), T*(w)

2

acts by the identity for w € Wy, and by T*(w) o — o T*(w) ™! for w € Wy Q
(Lemma IV.6).
From the H(G)g-isomorphism

Indi @ (eq(V)) ~ e(V) @ (nd$(R))"

explicated in ([AHenV2, Prop.4.5], and the inclusion (IndGl(R))I C
(Indg(R))I for P C Q@ C @1, we obtain an injective H(G)pg-isomorphism
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Indng)(te ) 29, IndH(G (eq(V)) and an H(G)p-map

C(Q,
(4 Goce.colndf P eq, (V) LI 1af D (eq())
of cokernel isomorphic to StQ (@) (V) [AHenV2, Cor.4.6].

PROPOSITION IV.7. Assume P C Q C P(V) =G.

(i) The natural maps e(V) — Hompy (ar) , (Stg(c)(R) e(V) ®r StH(G)(R)) and

Homp (v (Stg © (R), Stg @ (V) @r St P(R) — St5 @ (V) are H(G)r-
isomorphisms.

(i) The map Y — Y Qg StH(G)(R) Leyy = L is a lattice isomor-

stg (V)
phism of inverse X — {y € e(V), y ®z StH(G) c X}.
ProOOF. We are in the setting of Cor. 1.6 for A = H(M})gr C A’ = H(G)g (the
inclusion is via 5, = HG:), the bases B = (T*(w))wew,,, and B’ = (T*(w))wew,
2

the right A-module V, and the right A’-module V = Stg(c)(R) = e(StQ MZ)(R)),
absolutely simple as an A-module where T}, for w € W\ Wy, (contained in Wi, )
acts invertibly. (]

IV.4. The module Iy (P,V, Q).

DEFINITION IV.8. An R-triple (P,V, Q) of H(G) consists of a parabolic sub-
group P = MN of G, a right H(M)g-module V, a parabolic subgroup @ of G with
P C @ C P(V). To an R-triple (P, V, Q) of H(G) is attached a right H(G) g-module

L) (P,V, Q) = Indp () (St M (v))

isomorphic to the cokernel of the H(G)g-homomorphism

®ac C(Q1,Q)
Docaicrw) Indg @ (eq, (V) —E2EL 0 nd gy D(eq(V))

where 1%(Q1,Q) = Tnd. () (M M(Q 1 M(V), Q1 N M(V))),

We can recover St M(V))(V) and e(V) from Iy (P, V,Q) and P(V):

(4.5) st MV W) ~ L) L) (PV,Q)))
by Proposition IV.3(ii) and
(4.6)  e(V) = Hompy ) (St M (R), LS ) (Tnie) (P V, Q)

by Proposition IV.7(i).

PROPOSITION IV.9. Let (P,V,Q) be an R-triple of H(G) with V of finite
length and such that for each irreducible subquotient X of V, P(V) = P(X) and
Iy (P, X,Q) is simple. Then P(V) = P(V') for any non-zero H(M)g-submodule
V' of V; moreover the map V' — Iy (P,V',Q) : Ly — Ly (Py,Q) s a lattice
isomorphism.

Proor. P(V) = P(V’) is proved as in Proposition II1.10. We are in the situa-
tion of Corollary 1.6 (proof of Prop.IV.7 for M (V) instead of G). So Stg(M(V))(V)
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has finite length, and its irreducible subquotients are Stg(M(V))(X ) for the ir-
reducible subquotients X of V. If Ig(P,X,Q) = IndIGD(V)(St]\Q/I(V)(X)) is irre-

H(G)
PV)

W = Stg(M(V))(V) because Indg((g)) has a right adjoint and is exact fully faithful
(Proposition IV.3 (iii)) so the map V' — I¢(P, V', Q) : Ly — L1, (pv,o) is a lattice
isomorphism. O

ducible for all X, we are in the situation of Corollary 1.4 for F' = Ind and

REMARK IV.10. The scalar extension to R*9 of a R-triple (P,V,Q) of H(G)
where V is simple supersingular, is an R¥9-triple (P, 0 pais, Q) of H(G) satisfying
the hypotheses of Proposition IV.9, as for the group (Remark II1.18). By the
decomposition theorem and Lemma II1.16, Vgais has finite length and its irreducible
subquotients X are supersingular, P(X) = P(V) = P(Vgas) (Prop.IV.12 (ii)),
and I (P, X, Q) is irreducible by the classification theorem for H(G) over R
(Thm.I.8 [AHenV2]).

We now check the compatibility of Iy (P, V, Q) with scalar extension, as for
the group (Propositions I11.12 and III.13). Let R'/R be a field extension.

PROPOSITION IV.11. (i) The parabolic induction commutes with the scalar re-
striction from R’ to R and with the scalar extension from R to R’'. Hence the
left (resp. right) adjoint of the parabolic induction commutes with scalar extension
(resp. restriction).

(i) An H(M) g -module V' and an H(G)gr-module X such that Indg(G) V'~
XR/, we have V/ >~ (Lg(G)X)R/.

PROOF. As for the group (Proposition I11.12). Note that (i) is valid for com-
mutative rings R C R'. O

PROPOSITION 1V.12. (i) Let (P,V,Q) be an R-triple of H(G). Then P(V) =
P(Vr); if V is simple and V' is a subquotient of Vg:, then P(V) = P(V') and

(eOW)r = e(Vg), Stg(M(V))(V)R/ ~ Stg(M(V))(VR/),
I (PV,Q)r = Iy (P, Vr, Q).

(i1) Let (P,V', Q) be an R'-triple of H(G) such that e(V'), resp. Stg(M(vl))(V’),
resp. Iy (P, V) Q), descend to R. Then V' descends to R.

Precisely, if e(V'), resp. Stg(M(V/))(V’), resp. Iy (P, V', Q), is the scalar ex-
tension from R to R’ of X, resp. Y, resp. Z, then V' is the scalar extension from R
to R’ of the natural action of H(M)gr on X, resp. Homyp (Stg(M(V’»(R),))),

resp. HomH(M(),)R(Stg(M(V ) (R), Lg((g,))Z).

/)R

PROOF. (i) As for the group (Proposition II1.13).

(ii) If Trr() (P, V', Q) = Zpr then St M) (V) =V where Y~ LT 1) (2)
by (i) and (4.5).

1 St MY (V') = Ve, then e(V') = X where

X ~ Hompar ), (Stg MV (R), V)
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as e(V') ~ HomH(M\/)/)R,(Stg(M(Vl))(R'),yR/) (Prop. IV.7) and Stg(M(vl))(R’) ~

(st (R)
If e(V') = Xp: then TMV)*(m) acts trivially on X for m € M3, hence also
on X and V' is the scalar extension to R’ of X seen as a H(M)pg-module. O

IV.5. Classification of simple modules over the pro-p Iwahori Hecke
algebra. As in §IIL5 for the group, the classification theorem for H(G) over R*9
(Thm.1.8) descends to R by a formal proof relying on:

1 The decomposition theorem for H(G) (Thm.I.1).

2 The classification theorem for H(G) over R¥9 (Thm.I1.8 [AHenV2)).

3 The strong compatibility of scalar extension with I (g P, —, Q) (Prop. 1V.12)
and supersingularity (Lemma III.16).

4 The lattice isomorphism EVR — Z:IH(G)(P,VR(L:Q,Q) for the scalar extension

alg

Vgats to R of a simple supersingular H(M)g-module V (Prop.IV.7 and Remark
IV.10).

We start the proof with an R-triple (P,V, Q) of H(G) with V simple supersin-
gular and we prove that I q)(P,V, Q) is simple. By the decomposition theorem,
the H(G)pgats-module Vgaty has finite length, and Ip(g)(P, Vgas, Q) also by the
lattice isomorphism L’VRW — £1H< &) (PVhate Q) Scalar extension is faithful and
exact and Iy (q)(P,V, Q) gats ~ It(c) (P, VRats, Q) 50 Iy (P,V, Q) has also finite
length. We choose a simple H(G) g-submodule X of Iy (P, V, Q). The H(G) gais-
module Xgary is contained in I q)(P,V, Q) gats hence Xgary =~ Iy )P, V', Q) for
an H (M) gaig-submodule V' of Vgais by (5.8) and the lattice isomorphism Ly, —
LIy (PVary.@)- AS Irc)(PV', Q) descends to R, V' is also by the strong compat-
ibility of Iry(qy (P, —, @) with scalar extension. But no proper H (M) gais-submodule
of Vgais descends to R by the decomposition theorem for H(G), so V' = Vg5ay,
Xpats = ITp(a) (P, Vgas, Q) and Xgay ~ Iy (P,V,Q)pgas by compatibility of
scalar extension with /gy (P, —, Q). So X ~ I (P, V, Q) and I (P,V,Q) is
simple.

Next, let (P,V,Q) and (P, V1,Q1) be two R-triples of H(G) with V,V; sim-
ple supersingular and gy (P, V, Q) ~ I (P1, Vi, Q1). The scalar extensions to
RS9 are isomorphic Ty (P,V, Q) gats ~ Iy (P1,(V1), Q1)) gata. The classi-
fication theorem for H(G) over R*9 and (5.8) imply P = P;,Q = Q; and some
simple H (M) atg-subquotient V9 of Vpai, is isomorphic to some simple H (M) gatq-
subquotient V9 of (V1)gas. As V9 is V-isotypic and V&9 is Vi-isotypic as
H(M)p-module, V and V; are isomorphic.

Finally, let X be an arbitrary simple H(G)g-module. By the decomposition
theorem, the H(G) gats-module Xgaiy has finite length; we choose a simple submod-
ule X9 of Xpaie. By the classification theorem over R*9,

(5.7) XU = Ty ) (P V™, Q)

for an R*-triple (P = M N, V9. Q) of H(G) where V9 is a simple supersingu-
lar H(M) gas-module. By the decomposition theorem, X9 descends to a finite
extension of R, and also V%9 by strong compatibility of scalar extension with
Iy (P, —, Q). By the decomposition theorem, V9 is contained in the scalar ex-
tension Vgaty to R¥9 of a simple H(M)g-module V. By compatibility of scalar
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extension with I (P, —, Q) and supersingularity, V is supersingular, (P,V, Q) is
an R-triple of G and

(5.8) Ir(cy (P, VRats, Q) = I ) (P, V, Q) gato-
We have Iy () (P, Vals Q) c Ir(c) (P, Vgais, Q) by the lattice isomorphism Ly _,, —

alg

L4 (PVpate,@)- The decomposition theorem and xs ¢ Iy (P, V, Q) Rats imply

X~ Iy (PV,Q).
This ends the proof of the classification theorem for H(G) (Thm.1.8). O

V. Applications
Let R be a field of characteristic p and G a reductive p-adic group as in §IIL.3.

V.1. Vanishing of the smooth dual. The dual of 7 € Modg(G) is
Hompg(m, R) with the contragredient action of G, that is, (gf)(gz) = f(x) for
g € G, f € Hompg(m, R),z € 7. The smooth dual of 7 is 7V := U Hompg(m, R)¥
where K runs through the open compact subgroups of G.

A finite dimensional smooth R-representation of G is fixed by an open compact
subgroup, and its smooth dual is equal to its dual.

We prove Theorem 1.9. Let R*9 /R be an algebraic closure and let = be a non-
zero irreducible admissible R-representation 7 of G. By Remark I1.2, (7V)gay C
(mRatg)Y. Assume that 7V # 0. Then, (7¥)gas # 0, hence (mgay)Y # 0. We
know that mges has finite length (Thm. IIT1.4), so p¥ # 0 for some irreducible
subquotient p of Tgate. By the theorem over R*9 [AHenV2, Thm.6.4], the R*9-
dimension of p is finite. The R*9-dimension is constant on the Autpg(R9)-orbit
of p. By the decomposition theorem (Thm. II1.4), the R*9-dimension of 7gat, is
finite. It is equal to the R-dimension of 7. So we proved that 7V # 0 implies that
the R-dimension of 7 is finite. O

V.2. Lattice of submodules (Proof of Theorem 1.10).

V.2.1. We recall some properties of the I-invariant functor and of its left ad-
joint. Let o be a smooth R-representation of M.

1. The parabolic induction commutes with (—) and its left adjoint — ® H(G)
Z[I\G] (§1V.2 (2.1)).

2. If the natural surjective R[G]-map (counit of the adjunction)
a, i Z[(I N M)\M] — o is an R[M]-isomorphism, it follows from 1 and the
full faithfulness of Ind% that (Ind%(o))? ®m(a,1) Z[I\G] is isomorphic to md$%(0)°.

3. The natural R[G]-map (Trivy gy ®@p(eZ[I\G])! — Trivg where Trivg is
the trivial R-representation of G and Trivy gy = (Trivg)! [OV, end of the proof
of Lemma 2.25].

4. Ig(P,0,Q)" ~ Ij)(P,o'™ Q) if 0 = o pin (§111.3) and P(o) = P(c!™M)
[AHenV2, Thm. 4.17].

UIHJM ®

LEMMA V.1. Let o be an irreducible admissible supersingular R-representation
of M. Then o = omin, P(o) = P(c!™), s0 Ic(P,0,Q)! ~ Iy (P,d'™™, Q).

9One can check that the natural surjective map (counit of the adjunction) (Ind%(0)) ® (g, 1)
Z[I\G] — Ind$ (o) is an R[G]-isomorphism
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PROOF. The equality 0 = 0y, follows from the classification (Thm.I1.7) be-

cause o is supersingular (§II1.4). When ¢ = o, then A, is orthogonal to
Ay (8IIL3). As o being irreducible is generated by o!™"M  P(o) = P(g'™M)
[AHenV2, Thm.3.13]. O

5. In)(PV,Q) ®u(c) ZUN\G] = Ia(P,Y @n) Z[(I N M)\M],Q) if Vis a
simple supersingular H (M) r-module (more generally, if P(V) = P(Y ®g ) Z[(IN
M)\M]) when V @g(ar) Z[(I N M)\M] # 0) [AHenV2, Cor. 5.12, 5.13].

PROPOSITION V.2. Let o be an irreducible admissible supersingular R-represen-
tation of M such that o'™M simple and the map o'™ @y Z[(I N M)\M] — o
is bijective. Then,

Ind% (o) has multiplicity 1 and irreducible subquotients I (P, o, Q) for P C Q C
P(o).

(Ind$ o)’ ~ Indg(c)(amM) has multiplicity 1 and simple subquotients
IG(P707 Q)I = IH(G)(P7 JImM7Q) fOTP C Q - P(U)

Indp ("M@ (o ZI\G] ~Ind$ (0, Q) and Iy (P, o™, Q)@ (e ZII\G]
~ I¢(P,0,Q) for PC Q C P(0).

PRrROOF. This follows from the above properties 1 to 5, Lemma V.1, the classi-
fication theorems 1.7, 1.8 and from [AHHYV, II1.24 Prop., the proof is valid for R
not algebraically closed]. O

V.2.2. Ind$(R) and Indg(c)(R). By [Ly, §9], the R-representation Ind (Triv,,)
= Ind%(R) of G is multiplicity free of irreducible subquotients Stg (R)for PCQC
G. The H(G)g-module Indg(c)(R) = (Ind% R)” has a filtration with subquotients
Stg(R)I = Stg(G)(R) for P C Q C G. By the classification theorem, the Stg<c)(R)
are simple not isomorphic. So Indg(@ (R) is multiplicity free of simple subquotients
Sto @ (R) for P Q C G.

Applying 1, 2 and 3 in §V.2.1, we see that Indg(G)(R) ®m (@) Z[I\G] and
Ind%(R) are isomorphic; this implies that Stg(G)(R) ®p(q) Z[I\G] and St&(R) are
also isomorphic.

We can apply Thm. 1.3 (b) to the functor F = —®pg e Z[I\G] : Modr(H(G)) —
Modg(G) of right adjoint G = (—)!, and the H(G)g-module V = Indg(c)(R). So
(—®m () ZII\G), (—)!) give lattice isomorphisms between ElndH(G)(R) and Ly,46 (r)-

P

For P C Q C @G, the subrepresentation of Ind,G)(R) with cosocle Stg(R) is
Indg(R)7 and sending Stg(R) for P C @ to Ag \ Ap induces a lattice isomorphism
from Ly,4¢(r) onto the set of upper sets in P(A \ Ap); to an upper set in P(A \
Ap) is associated the subrepresentation ) ; IndIG;JuAP (R) for J in the upper set
[AHenV1, Prop.3.6].

V.2.3. Indg(Stg(R)) and Indg(G)(Stg(y)(R)) for @ C P. This case is a di-
rect consequence of §V.2.2 because IndIGD(Stg(R)) is a quotient of Indg(R):

Id§(Sty (R)) = Ind§(R)/ > Indg (R).
QCQ.CP
We deduce from §V.2.2 that IndIGp(Stg (R)) is multiplicity free of irreducible sub-
quotients IndIGp(Stg,(R)) for Q C Q' but Q' does not contain any @ such that
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Q € Q1 C P, that is, @ = Q' N P. The subrepresentation Indg(Stgf,(R)) of
Indg(StAQ/[(R)) has cosocle Stg,. Sending Stg,(R) to Ag: N (A\ Ap) gives a lat-
tice isomorphism from Elndg(Stg(R)) onto the lattice of upper sets in P(A\ Ap)
(which does not depend on Q). We deduce also from §V.2.2 and Remark I1.10 that
—®m(c) Z[I\G) and (—)” give lattice isomorphisms between ‘CIndJIZ<G)(Stg(N])(R)) and
Linag(std (r)-

V.2.4. Indga for o irreducible admissible supersingular and Indg(G) V forV
simple supersingular. IndIGDJ admits a filtration with quotients Ig(P,0,Q) =
Indg(a)(Stg(g)(U)) for P C @Q C P(o), and by the classification theorem the
I¢(P,0,Q) are irreducible and not isomorphic; so Indg(a) is multiplicity free of
irreducible subquotients I(P, o, Q) for P C @ C P(0). The maps

X e(0)®rX = IndB ) (e(0)@pX) : L =L — Linag (o)

Ind Y ()(R) e(0)®rInd ¥ () (R)

are lattice isomorphisms: this follows from the lattice theorems and the classifi-

cation theorem (Thm.I.3, Thm.I.5, Thm.I.7), as in Proposition III.10 (for R alge-
braically closed [AHenV1, Prop.3.8)).
H(G)

The same arguments show that Ind,, "~/ (V) is multiplicity free of simple sub-
quotients Iy(c)(P,V, Q) for P C Q@ C P(V) and that the maps

G
Y — e(V) RRY — Indg((v))(E(V) QR Y) : ﬁlndg(M(v))(R)

- L R)—>£

e(V)@pInd 2 MOV ( Ind (9 (v)

are lattice isomorphisms, by applying Thm.I.3, Thm.I.5, Thm.I.8, as in Proposition
Iv.9.

V.2.5. Indg(StAQ/I(Ul)) and Indg(G)(Stg(]m(Vl)) for an R-triple (Py,01,P) of
G, P, C Q C P, o1 irreducible admissible supersingular and similarly for V. This
is a direct consequence of §V.2.4 because

A (St (1) = (G eqe))/( Y. ndf, eq, (1))
QER:CP
is a subquotient of Indg1 (01) as eg(o1) C Indgq (01) and similarly for V;. We

have Indg1 e, (o1) ~ Indg(ol)(e(al) ®Rr indgl(ol)(R)), and a lattice isomorphism
(§V.2.4):
X = Indg,, ) (e(o1) ©r X) : Linaten gy = Lmndg, 1)

inducing a lattice isomorphism (Remark I1.10):
Elnd";("l)(Stg(R)) - ﬁlndg(Stg(m))'

The R-representation Indg(Stg (01)) is multiplicity free of irreducible subquotients
I¢(Py1,01,Q") for the R-triples (P1,01,Q") of G with Q' N P = Q (§V.2.3). And
similarly for V; with the same arguments and references.

V.2.6. Ind,Gp o for o irreducible admissible and Indg(G) V forV simple. By the
classification theorem, there exists an R-triple (P,01,Q) of G with Q C P, o3
irreducible admissible supersingular such that

o~ In (PN M,01,Q N M) = Tnd¥,, )2 (St 5™ (01)).
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The transitivity of the induction implies IndG o ~ Indg(gl)mp(Stg(al)m\'{(ol)).
This is the case §V.2.5 with P(1) N P. The R-representation Ind$ o of G is mul-
tiplicity free of irreducible subquotients I (P, 01, Q") for the R-triples (Py,01,Q")
of G with @' N P = Q (note that Q" C P(01),Q C P). The map

X — Indg(al)(e(Ul) ®prX): ﬁlndzwol) (Stg(qlmM(R)) — [’Indg(a)

P(o1)NP
is a lattice isomorphism. And similarly for V with the same arguments and refer-
ences.
V.2.7. Invariants by the pro-p Iwahori subgroup. We start with an irreducible
admissible R-representation o of M and we keep the notations of §V.2.6. The
classification theorem shows that

o™ s simple < amel is simple

because o!™M ~ Iy (PLNM, o™ QN M) (§V.2.1) and of ™" is supersingular
of finite length.

Put V; = 01" and assume first that P(oy) = P(Vy). In §V.2.3 we saw that
the maps

1) X XV Y ¥ @ason) ZU N M(01)\M(01)]

between L. o)) and £, mm(ey)) are lattice iso-

Indp(gl)np(Stg<”1)mM(R)) IndP(ol)ﬁP (Stg(M({’IMM)(R))’
morphisms. They induce lattice isomorphisms between .Chldg((,) and £, 4@ ()
P
(2.2)
d,,)(e(01) @ X) = Indp ) (e(V1) @5 XIM (7)),
(2.3)
H(G
Indp (7 (e(V1) ®r V) = Ind§ () (e(01) ©r (Y Sniar(or) ZIL N M(01)\M(01)])).
by the lattice isomorphisms of §V.2.6 with ﬁlndg(g) and £
M

Ind};(c)(V)'

We assume now that ¢/" is simple and the natural map o/™ @) Z[(IN
M)\M] — o bijective, and we prove that the map ¥ — Y ®g(q) Z[I\G] :
‘Clndg(G)(aImM) — L1nag (o) is a lattice isomorphism. By Lemma V.1, P(o1) =
P(V). By Remark I1.10, it is enough to prove it when o = o7, that is, o is super-
singular. For that, we use Thm. 1.3 (b) with F' = —® () Z[I\G] : Modg(H(G)) —
Modg(G) of right adjoint (=)’ and V = Ind$% o which satisfy the hypotheses by
Prop.V.2. This ends the proof of Thm. 1.10.

V.3. Proof of Theorem 1.12. Proving Theorem 1.12 from the classification
theorem needs no new techniques. It suffices to quote for RIGDl (m) [AHenV1, Corol-

lary 6.5], for LE (r) [AHenV1, Cor. 6.2, 6.8], for Lgl(G)(X) and R;Il(G)(X)
([Abeparind, Thm. 5.20] when R is algebraically closed, but this hypothesis is
not used), for 7/ and X ® ¢y Z[I\G] [AHenV2, Thm.4.17, Thm.5.11].

VI. Appendix: Eight inductions Modg(H(M)) — Modr(H(G))

For a commutative ring R and a parabolic subgroup P = MN of G, eight
different inductions Modg(H(M)) — Modr(H(G))

— ®n(mey,on H(G) and  Hompareyon(H(G),—) foree{+,—}, ne{, }
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are associated to the elements of {®, Hom} x {+,—} x {0,0*} where § := 0,
and {07,0*"} = {0,0*} as sets (see IV.1). The triple (®,+,6) corresponds to the
parabolic induction Indg(G)(—) = — ®@nm+),e H(G) and the triple (Hom, —, 6*)
corresponds to Homg(ps-y,6+(H(G), —) that we call parabolic coinduction. Before
comparing these eight inductions, we define the “ twist by nygw,,” and the invo-
lution Lfgi gy,

Twist by nyqw, - We choose an injective homomorphism w +— n,, : W — W
from the Weyl group W of A to W satisfying the braid relations (there is no
canonical choice).

Put wy = wp for the longest element of the finite Weyl group Wy, of M
(see §IV.1), and P°? = M°PN°P for the parabolic subgroup of G corresponding to
Appor = Apor = wgwp(Ap) = wg(—Ap) (it is contained in A and is the image
of Ap by the opposition involution & — wg(—a) [T, 1.5.1]). The conjugation
W = My Wy, : Wy — Wagor by Nyguw,, 1S @ group isomorphism inducing

.9 wGwM .
the ring isomorphism “twist by nygw,,

H(M) — H(M°P), TM - 1M : (w € War)

Nwgwp Wwgw g

sending also TM>*) to T [Abe, §4.3]. It restricts to an isomor-
Nwgwp WNwgw s
phism H(M¢€) — H(M°P—¢) [VigpIwst, Prop.2.20], and its inverse is the twist

bY Nwgwypops PECAUSE Nygwpop = Nwpwe = Ny p -

We have the functor “twist by nygw,,”:

Modp(H (M) 223 \od p(H(MOP)),

where the spaces of V € Modgr(H(M)) and nygw,, (V) € Modg(H(M°P)) are the

op
same and vTM = oTM . forve V,we Wy.
w Nw g w iy Wawgw g

Involution Lf\g/l lg,, [Abeparind, §4.1]. The two commuting involutions M

and g _1g,, of the ring H(M):
LJW

(T, T") — (=1)emCU(T0, T [Vigplw, Prop. 4.23],
(TM T M) LT (—1)'8@)—lga () (M TM*) [Abeparind, Lemmas 4.2,

w w
43,44, 4.5).
give by composition an involution L{‘g{ g, of H (M)
LN17
(T, Tl === (=1)=0)(T)0 T,

The twist by 7y, w, and the involution Lfg_

for w € Wy by

: M
1g,, commute, and the image of T,

M (=) : H(M) — H(M°P)

M —_

Nwewn (_) ° ngflgM - ngflgMop O Nwgwn

is
-1
(_1)lg(nU,GmeanwM)TMW,* » _ (_1)1g(w)TMoP,* »
Nuwgwy WNwgwy N gy Wi g w

(the length 1g,, of W)y is invariant by conjugation by waz, and 1g(nwgw,, W, )
_ —1 -1y _ -1y _ ol
= lg(NuweNwy Wngy, Mes) = 18w, wng ) = lg(w)). By functoriality, we get a
functor

M
(=)'~ lenm

Modg(H(M)) —— Modg(H(M)).
When M = G, we write simply (.
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We are now ready for the comparison of the eight inductions, which follows
from different propositions in [Abeparind] and [Abeinv]. Let V be any right
H(M¢)g-module. .

ProrosiTiON VI.1. Ezchanging +, — corresponds to the twist by Nuygwyy,
(0.1) V®pume)on H(G) = nwguwy (V) @m(aror—e),0n H(G),
(02) HOmH(N[e)’gn (H(G), V) >~ HOmH(Mop.—e)’gn (}I(CJ)7 Nwgwa (V))

Exchanging 0,0* corresponds to the involutions Lf‘gf 187 and ©.

Gyl
(0.3) (V @umeyon H(G))" = Vie—tem @p(age,pon H(G),
(0.4) Hom g1 (xrey.00 (H(G), V)" ~ Homz(yre) gen (H (G), Vs~ 1621 ).
FEzchanging ®, Hom corresponds to the involutions Ll]g_ e and @,

G LIW
(0.5) (V QH(Me), o7 H(G))" ~ HOInH(Me)ﬁn (H(G),V g —len ),

REMARK VI.2. By (0.3) and (0.5), exchanging (®,0") and (Hom, 0*") respects
the isomorphism class:

(06) 1% QH(Me),0m H(G) ~ HOIIIH(]Me)’e*n (H(G), V)

In Propositions ~ mean that there are natural isomorphisms described in
[Abeparind] and [Abeinv]

Duality Put ¢ for the anti-involution of H(G) defined by ((T\) = Ty for
w € W; we have also ((Ty;) = T_, [VigpIwst, Remark 2.12]. The dual of a right
H(G)g-module X is X* = Hompg(X,R) where h € H(G)g acts on f € X* by
(fh)(x) = f(x¢(h)) [Abeinv, Introduction].

PROPOSITION VI.3. The dual exchanges (®,+) and (Hom, —):
(0.7) (V @u(mey,on H(G))* =~ Hom g (pr-<),n (H(G), V"),
(0.8) V" @n(aeyon H(G) = (Hompar-e) 00 (H(G), V)"

PROOF. Applying (0.6), an upper isomorphism (0.7) for any (e, 8",)) is equiv-
alent to a lower isomorphism (0.8) for any (e, 07,V). It suffices to prove (0.7).

An isomorphism (0.7) for (+,0) and any V is implicit in [Abeinv, §4.1]. Using
(0.1) (0.2), we get an isomorphism (0.7) for (—,#) and any V; so we proved (0.7)

M

for § and any €,V. The image by (“ of an isomorphism (0.7) for (6,¢, V"5 —1sur)
is an isomorphism (0.7) for (e,6*,V), because the anti-involution (p; of H(M)
commutes with the involution Ll]\g/f _ and their composite sends (TM,TM*) to

g w ) Tw
(—1)lg(w)(T£{_’f,T£{1) for w € Wy, as lg(w) = lg(w™!). This ends the proof of
(0.7). 0
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