ON PRO-p-IWAHORI INVARIANTS OF R-REPRESENTATIONS OF
REDUCTIVE p-ADIC GROUPS
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ABSTRACT. Let F be locally compact field with residue characteristic p, and G a connected
reductive F-group. Let U be a pro-p Iwahori subgroup of G = G(F'). Fix a commutative
ring R. If w is a smooth R[G]-representation, the space of invariants 7 is a right module
over the Hecke algebra H of U in G.

Let P be a parabolic subgroup of G with a Levi decomposition P = M N adapted to U.
We complement previous investigation of Ollivier-Vignéras on the relation between taking
U-invariants and various functor like Ind$ and right and left adjoints. More precisely the
authors’ previous work with Herzig introduce representations I (P, o, Q) where o is a smooth
representation of M extending, trivially on N, to a larger parabolic subgroup P(o), and @
is a parabolic subgroup between P and P(c). Here we relate Ig(P,o, Q)" to an analogously
defined H-module I3 (P, U | Q), where Uny = U N M and oYM is seen as a module over
the Hecke algebra Has of Uns in M. In the reverse direction, if V is a right Has-module,
we relate Iy (P, V, Q) ® c-IndG 1 to Ic(P,V @w,, c—Ind%u 1,Q). As an application we prove
that if R is an algebraically closed field of characteristic p, and 7 is an irreducible admissible
representation of G, then the contragredient of 7 is 0 unless 7 has finite dimension.

CONTENTS

1. INTRODUCTION

1.1. The present paper is a companion to [?] and is similarly inspired by the classification
results of [?]; however it can be read independently. We recall the setting. We have a non-
archimedean locally compact field F' of residue characteristic p and a connected reductive F-
group G. We fix a commutative ring R and study the smooth R-representations of G = G(F).

In [?] the irreducible admissible R-representations of G are classified in terms of supersin-
gular ones when R is an algebraically closed field of characteristic p. That classification is
expressed in terms of representations I (P, o, @), which make sense for any R. In that nota-
tion, P is a parabolic subgroup of G with a Levi decomposition P = M N and o a smooth
R-representation of the Levi subgroup M; there is a maximal parabolic subgroup P(o) of
G containing P to which o inflated to P extends to a representation ep(s) (), and @ is a
parabolic subgroup of G with P C Q C P(o). Then
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where Ind stands for parabolic induction and Stg(a) = Indg(a) R/ Zlndg,(a) R, the sum
being over parabolic subgroups Q" of G with Q C Q' C P(o). Alternatively, Ig(P,0,Q) is
the quotient of Indg(g)(ep(a)(a)) by Elndg, eq(0) with Q' as above, where eg(o) is the
restriction of ep(y(0) to Q, similarly for Q'.

In [?] we mainly studied what happens to I(P, o, Q) when we apply to it, for a parabolic
subgroup P; of G, the left adjoint of I]ndg17 or its right adjoint. Here we tackle a different
question. We fix a pro-p parahoric subgroup U of GG in good position with respect to P, so
that in particular Uy; = U N M is a pro-p parahoric subgroup of M. One of our main goals
is to identify the R-module Ig(P, o, Q)Y of U-invariants, as a right module over the Hecke
algebra H = Hg of U in G - the convolution algebra on the double coset space U\G /U - in
terms on the module ¥ over the Hecke algebra Hys of Uy in M. That goal is achieved in
section 7?7, Theorem ?77.

1.2. The initial work has been done in [?, §4] where (Ind% o) is identified. Precisely, writing
M for the monoid of elements m € M with m(U N N)m~" C UN N, the subalgebra H,;+ of
H s with support in M+, has a natural algebra embedding 6 into # and [?, Proposition 4.4]
identifies (Ind% o) with Ind%M(auM) = gHm @,,, H. So in a sense, this paper is a sequel
to [?] although some of our results here are used in [?, §5].

As Ig(P,0,Q) is only a subquotient of IdeCSv o and taking U-invariants is only left exact, it
is not straightforward to describe I (P, o, Q) from the previous result. However, that takes
care of the parabolic induction step, so in a first approach we may assume P(c) = G so that
Ig(P,0,Q) =eq(o) ® Stg. The crucial case is when moreover o is e-minimal, that is, not an
extension epr(7) of a smooth R-representation 7 of a proper Levi subgroup of M. That case
is treated first and the general case in section 77 only.

1.3. To explain our results, we need more notation. We choose a maximal F-split torus T'
in GG, a minimal parabolic subgroup B = ZU with Levi component Z the G-centralizer of
T. We assume that P = M N contains B and M contains Z, and that {/ corresponds to an
alcove in the apartment associated to T in the adjoint building of G. It turns out that when
o is e-minimal, the set Ajs of simple roots of T in Lie N is orthogonal to its complement in
the set A of simple roots of 7" in Lie U. We assume until the end of this section §77, that Ay
and Ay = A\ Ay are orthogonal. If My is the Levi subgroup - containing Z - corresponding
to Ag, both M and Ms are normal in G, M N My = Z and G = My M. Moreover the normal
subgroup M} of G generated by N is included in My and G = M MJ.

We say that a right H s-module V is extensible to H if TM acts trivially on V for 2 € ZNM;
(§?7). In this case, we show that there is a natural structure of right 7-module e(V) on
V such that T, € H corresponding to Ugld for g € My acts as in the trivial character of G
(§7?7). We call ey(V) the extension of V to H though Hjs is not a subalgebra of H. That
notion is already present in [?] in the case where R has characteristic p. Here we extend
the construction to any R and prove some more properties. In particular we produce an H-
equivariant embedding ey (V) into Ind% Y (Lemma ??). If Q is a parabolic subgroup of G
containing P, we go further and put on ey (V) ®p (Indg R and ey (V) ®r (Stg)u structures
of H-modules (Proposition ??7 and Corollary ?7) - note that H is not a group algebra and
there is no obvious notion of tensor product of H-modules.

If 0 is an R-representation of M extensible to GG, then its extension eg(o) is simply obtained
by letting M} acting trivially on the space of o; moreover it is clear that o¥M is extensible
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to H, and one shows easily that eq(c) = ey (c¥™) as an H-module (§?7). Moreover, the
natural inclusion of ¢ into Indg o induces on taking pro-p Iwahori invariants an embedding
ey (o¥™) — (Ind§ o) which, via the isomorphism of [?], yields exactly the above embedding
of H-modules of ey (c¥M) into Ind}! L, (ah),

Then we show that the H-modules (eq(0) ®r Indg R and ey (d¥™) @p (Indg R are

equal, and similarly (eg(0) ®g Stg)u and ey (dYM) @R (Stg)u are equal (Theorem ?77).

1.4. We turn back to the general case where we do not assume that Ay, and A\ Ay, are
orthogonal. Nevertheless, given a right Hjs-module V, there exists a largest Levi subgroup
M (V) of G - containing Z - corresponding to AUA; where A is a subset of A\ Ajs orthogonal
to Ay, such that V extends to a right Hysy-module epzy) (V) with the notation of section
(??). For any parabolic subgroup @ between P and P(V) = M (V)U we put (Definition ?7)

I (P’ v, Q) - Ind%M (eM(V) (V) QR (Stgrs}\}}(V)))UM(v) )

We refer to Theorem ?? for the description of the right #-module I (P, o, Q) for any smooth
R-representation o of U. As a special case, it says that when o is e-minimal then P(o) D
P(cYM) and if moreover P(0) = P(c"™) then I5(P,o, Q)Y is isomorphic to Iy (P, "™, Q).

Remark 1.1. In [?] are attached similar #-modules to (P, V, Q); here we write them CIy (P, V, Q)
because their definition uses, instead of Ind%M a different kind of induction, which we call
coinduction. In loc. cit. those modules are use to give, when R is an algebraically closed field
of characteristic p, a classification of simple H-modules in terms of supersingular modules -
that classification is similar to the classification of irreducible admissible R-representations
of G in [?]. Using the comparison between induced and coinduced modules established in [?,
4.3] for any R, our corollary ?? expresses C'Iy(P,V,Q) as a module Iy (P, Vi,Q1); conse-
quently we show in §?7 that the classification of [?] can also be expressed in terms of modules

Iy(P,V, Q).

1.5. In areverse direction one can associate to a right H-module V a smooth R-representation
V @4 R[U\G] of G (seeing H as the endomorphism ring of the R[G]-module R[U\G]).

If V is a right Hj/-module, we construct, again using [?], a natural R[G]-map

with the notation of (??7). We show in §?7? that it is an isomorphism under a mild assumption
on the Z-torsion in V; in particular it is an isomorphism if p = 0 in R.

1.6. In the final section §77, we turn back to the case where R is an algebraically closed field of
characteristic p. We prove that the smooth dual of an irreducible admissible R-representation
V of G is 0 unless V is finite dimensional - that result is new if F' has positive characteristic, a
case where the proof of Kohlhaase [?] for char(F') = 0 does not apply. Our proof first reduces
to the case where V is supercuspidal (by [?]) then uses again the H-module V¥,

2. NOTATION, USEFUL FACTS AND PRELIMINARIES

2.1. The group G and its standard parabolic subgroups P = M N. In all that follows,
p is a prime number, F' is a local field with finite residue field k& of characteristic p; We denote
an algebraic group over F' by a bold letter, like H, and use the same ordinary letter for the
group of F-points, H = H(F'). We fix a connected reductive F-group G. We fix a maximal
F-split subtorus T and write Z for its G-centralizer; we also fix a minimal parabolic subgroup
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B of G with Levi component Z, so that B = ZU where U is the unipotent radical of B. Let
X*(T) be the group of F-rational characters of T and ® the subset of roots of T in the Lie
algebra of G. Then B determines a subset ®* of positive roots - the roots of T in the Lie
algebra of U- and a subset of simple roots A. The G-normalizer Ng of T acts on X*(T)
and through that action, Ng/Z identifies with the Weyl group of the root system ®. Set
N := Ng(F) and note that Ng/Z ~ N'/Z; we write W for N'/Z.

A standard parabolic subgroup of G is a parabolic F-subgroup containing B. Such a
parabolic subgroup P has a unique Levi subgroup M containing Z, so that P = MN where
N is the unipotent radical of P - we also call M standard. By a common abuse of language
to describe the preceding situation, we simply say “let P = M N be a standard parabolic
subgroup of G”; we sometimes write Np for N and Mp for M. The parabolic subgroup of G
opposite to P will be written P and its unipotent radical N, so that P = M N, but beware
that P is not standard ! We write W, for the Weyl group (M NN)/Z.

If P = MN is a standard parabolic subgroup of G, then M N B is a minimal parabolic
subgroup of M. If &, denotes the set of roots of T in the Lie algebra of M, with respect to
M N B we have <I>]T/[ =P N®T and Ay = Py NA. We also write Ap for Ay as P and M
determine each other, P = MU. Thus we obtain a bijection P — Ap from standard parabolic
subgroups of G to subsets of A, with B corresponds to ® and G to A. If I is a subset of A,
we sometimes denote by Pr = M;Ny the corresponding standard parabolic subgroup of G.
If I = {a} is a singleton, we write P, = MyN,. We note a few useful properties. If P; is
another standard parabolic subgroup of G, then P C P if and only if Ap C Ap,; we have
Apnp, = Ap N Ap and the parabolic subgroup corresponding to Ap U Ap, is the subgroup
(P, P1) of G generated by P and P;. The standard parabolic subgroup of M associated to
Ay N Ay, is MNPy = (M N M) (M NNy [?, Proposition 2.8.9]. It is convenient to write
G’ for the subgroup of G generated by the unipotent radicals of the parabolic subgroups; it is
also the normal subgroup of G generated by U, and we have G = ZG'. For future references,
we give now a useful lemma extracted from [?]:

Lemma 2.1. The group Z NG’ is generated by the Z N M,

o @ running through A.

Proof. Take I = () in [?, I1.6.Proposition]. O

Let vp be the normalized valuation of F. For each o € X*(T'), the homomorphism = —
vp(a(x)) : T — 7Z extends uniquely to a homomorphism Z — Q that we denote in the
same way. This defines a homomorphism Z % X,(T) ® Q such that a(v(z)) = vp(a(z)) for
z€ Z,ae X¥T).

An interesting situation occurs when A = I1J is the union of two orthogonal subsets I and
J. In that case, G' = M;M/;, M} and M/, commute with each other, and their intersection is
finite and central in G [?, II.7 Remark 4].

2.2. Ig(P,0,Q) and minimality. We recall from [?] the construction of I5(P,o,Q), our
main object of study.
Let o be an R-representation of M and P(o) be the standard parabolic subgroup with

Apry ={a€ A\ Ap | ZN M, acts trivially on o} U Ap.

This is the largest parabolic subgroup P(o) containing P to which o extends, here N C P
acts on o trivially. Clearly when P C Q C P(0), o extends to @ and the extension is denoted
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by eq(o). The restriction of ep(,)(0) to Q is eq(c). If there is no risk of ambiguity, we write
e(0) = ep(e)(0)-

Definition 2.2. An R[G]-triple is a triple (P, 0, Q) made out of a standard parabolic sub-
group P = MN of G, a smooth R-representation of M, and a parabolic subgroup @ of G
with P C @ C P(0). To an R[G]-triple (P, 0, Q) is associated a smooth R-representation of
G:
P(o
Io(P,0,Q) = Ind$, (e(0) ® St, )

(

where Stg(g) is the quotient of Indg o) 1, 1 denoting the trivial R-representation of (), by the

sum of its subrepresentations Indg,(a) 1, the sum being over the set of parabolic subgroups @’

of G with Q € Q' C P(0).

Note that I¢(P,o0,Q) is naturally isomorphic to the quotient of Indg(eQ(a)) by the sum
of its subrepresentations Indg,(eQ/(a)) for @ C Q" C P(0) by Lemma 2.5.

It might happen that o itself has the form ep(oy) for some standard parabolic subgroup
P, = M N contained in P and some R-representation o1 of M. In that case, P(o1) = P(0)
and e(o) = e(o1). We say that o is e-minimal if 0 = ep(07) implies P, = P01 = 0.

Lemma 2.3 ([?, Lemma 2.9]). Let P = M N be a standard parabolic subgroup of G and let o
be an R-representation of M. There exists a unique standard parabolic subgroup Pyin, =
Min,o Nmin,e of G and a unique e-minimal representation of omin Of Mmine with o =
ep(omin). Moreover P(o) = P(omin) and e(c) = e(omin)-

Lemma 2.4. Let P = MN be a standard parabolic subgroup of G and o an e-minimal
R-representation of M. Then Ap and Ap(,) \ Ap are orthogonal.

That comes from [?, I1.7 Corollary 2]. That corollary of loc. cit. also shows that when R
is a field and o is supercuspidal, then o is e-minimal. Lemma 77 shows that Ap , = and
Ap(oim) \ APy, , are orthogonal.

Note that when Ap and A, are orthogonal of union A = ApUA,, then G = P(0) = MM
and e(o) is the R-representation of G simply obtained by extending o trivially on M.

Lemma 2.5 ([?, Lemma 2.11}). Let (P,0,Q) be an R[G]-triple. Then (Pmin,o, Omin, @) s an
R[G]-triple and I¢(P,lo,Q) = IG(Puincs Omin, Q)-

2.3. Pro-p Iwahori Hecke algebras. We fix a special parahoric subgroup I of G fixing
a special vertex x( in the apartment A associated to 1" in the Bruhat-Tits building of the
adjoint group of G. We let B be the Iwahori subgroup fixing the alcove C in A with vertex
xo contained in the Weyl chamber (of vertex xp) associated to B. We let U be the pro-p
radical of B (the pro-p Iwahori subgroup). The pro-p Iwahori Hecke ring H = H(G,U) is the
convolution ring of compactly supported functions G — Z constant on the double classes of
G modulo U. We denote by T'(g) the characteristic function of Ugld for g € G, seen as an
element of H. Let R be a commutative ring. The pro-p Iwahori Hecke R-algebra Hs g is
R ®7 Hpr- We will follow the custom to still denote by h the natural image 1 @ h of h € H
in Hp.

For P = M N a standard parabolic subgroup of GG, the similar objects for M are indexed
by M, we have Kyy = KN M,By = BN M, Uy = U N M, the pro-p Iwahori Hecke ring
Har = H(M,Uyr), TM (m) the characteristic function of Uyrmidys for m € M, seen as an
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element of Hj,s. The pro-p Iwahori group U of G satisfies the Iwahori decomposition with
respect to P:
U = UnUyn Uz,

where Uy =U NN, Uz =UN N. The linear map
(2.1) Hur S, 0(TM(m)) =T(m) (me M)

does not respect the product. But if we introduce the monoid M™ of elements m € M
contracting Uy, meaning midym ! C Uy, and the submodule H ,,+ C Has of functions with
support in M, we have [?, Theorem 1.4]:

H s+ is a subring of Hyr and Hyy is the localization of Hy+ at an element 7™ € Hyy

central and invertible in Hys, meaning Hy = UpenHa+ (T™M)™". The map His 4, H is
injective and its restriction H\HMJr to H s+ respects the product.

These properties are also true when (M*,7M) is replaced by its inverse (M~,(7*)~1)
where M~ ={m~'e M |me MT}.

3. PRO-p IWAHORI INVARIANTS OF Ig(P, 0, Q)

3.1. Pro-p Iwahori Hecke algebras: structures. We supplement here the notations of
§?? and §77?. The subgroups Z° = ZNK =ZNB and Z' = ZNU are normal in N and we
put
W=N/Z° WQ)=N/Z', A=2/2°, AQ)=2Z/7", Z, = Z°/7".

We have N' = (N N K)Z so that we see the finite Weyl group W = N/Z as the subgroup
(NNK)/Z" of W; in this way W is the semi-direct product A x W. The image W = W’ of
N NG in W is an affine Weyl group generated by the set S®T of affine reflections determined
by the walls of the alcove C. The group W' is normal in W and W is the semi-direct product
W' % Q where Q is the image in W of the normalizer AV¢ of C in N. The length function ¢ on
the affine Weyl system (W', S*) extends to a length function on W such that Q is the set of
elements of length 0. We also view £ as a function of W (1) via the quotient map W (1) — W.
We write

(3.1) (0, w,w) € N x W(1) x W corresponding via the quotient maps N — W (1) — W.

When w = s in S or more generally w in W, we will most of the time choose @ in N NG’
and @ in the image 1W¢ of N NG’ in W(1).

We are now ready to describe the pro-p Iwahori Hecke ring H = H(G,U) [?]. We have
G = UNU and for n,n’ € N we have Unld = Un'U if and only if nZ' = n’'Z'. For n € N of
image w € W(1) and g € UnUd we denote T, = T'(n) = T'(g) in H. The relations among the
basis elements (T, ),cp(1) of H are:

(1) Braid relations : Ty, Tyy = Ty for w,w’ € W (1) with £(ww’) = £(w) + £(w").

(2) Quadratic relations : T§2 = qsTs + c5T;
for 3 € W(1) lifting s € S where ¢; = qa(s) = |[U/U N 8U(3)~"| depends only on s, and
s = Y ez, ¢5(t)Tt for integers c;(t) € N summing to g5 — 1.

We shall need the basis elements (T};),cw (1) of H defined by:

(1) Ty =T, for w € W(1) of length ¢(w) = 0.

(2) Tf = Ts — c; for 5§ € W(1) lifting s € S*f,

(3) T, = TaTr, for w,w’ € W(1) with £(ww') = £(w) + £(w').
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We need more notation for the definition of the admissible lifts of S? in Ng. Let s € Saff
fixing a face Cs of the alcove C and K the parahoric subgroup of G fixing Cs. The theory
of Bruhat-Tits associates to Cs a certain root a; € T [?, §4.2]. We consider the group G/,
generated by Uy, UU_,, where Uy,, the root subgroup of ta; (if 2as € ®, then Usy, C U,,)
and the group G. generated by U,, U U_,, where Uiy, = Ui, N Ks. When u € U, — {1},
the intersection Ng NU_q,ull_q, (equal to Ng NU_q,ulU_q, [?, 6.2.1 (V5)] [?, §3.3 (19)])
possesses a single element ng(u). The group Z! = Z NG’ is contained in Z N Ky = Z°; its
image in Zj is denoted by Zj ..

The elements ns(u) for u € U,, — {1} are the admissible lifts of s in Ng; their images
in W (1) are the admissible lifts of s in W (1). By [?, Theorem 2.2, Proposition 4.4], when
§ € W(1) is an admissible lift of s, c5(t) = 0if t € Zy \ Z; ,, and

(3.2) cs=(g—V|Zp |7 Y. T, modp.
tezy,

The admissible lifts of S in Ng are contained in Ng N K because K; C K when s € S.

Definition 3.1. An admissible lift of the finite Weyl group W in N¢g is a map w +— 0 :
W — Ng N K such that 5 is admissible for all s € S and W = wiws for wy, ws € W such that
w = wiwy and £(w) = L(wy) + £(w2).

Any choice of admissible lifts of S in Ng N K extends uniquely to an admissible lift of W
([?7, IV.6], [?, Proposition 2.7]).

Let P = MN be a standard parabolic subgroup of G. The groups Z,2Z° = ZN Ky =
ZNBy, Z' = ZNUyy are the same for G and M, but Ny = NN M and M NG’ are subgroups
of N and G’. The monoid M (§?7) contains (N N K) and is equal to M = Up N+ Uns
where N+ = NN M™T. An element z € Z belongs to M+ if and only if vg(a(z)) > 0 for all
a € ®T\ &), (see [?, Lemme 2.2]). Put Wy = Ny /Z° and Wy (1) = N/ Z1.

Let € = + or e = —. We denote by Wy the images of Nyse in Wiy, Wy (1). We see the
groups Wy, Was (1), 1 Wy as subgroups of W, W(1),1Wer. As 0 (§77), the linear injective
map

(3.3) Hu M1, 07T =15, (we Wy(l)),

respects the product on the subring Hpse. Note that 8 and 0* satisfy the obvious transitivity
property with respect to a change of parabolic subgroups.

3.2. Orthogonal case. Let us examine the case where Ay; and A\ Ay are orthogonal,
writing My = Ma\a,, as in §77.

From M N My = Z we get Wiy N Way, = A, War(1) N Wy, (1) = A(1), the semisimple
building of G is the product of those of M and M, and S is the disjoint union of 5’?\? and
S?Vf[g , the group Wy is the direct product of Wy and Wy, For 5 € Wi (1) lifting s € Sj“éf,
the elements T € Hj, and Ts € H satisfy the same quadratic relations. A word of caution
is necessary for the lengths ¢j; of Wi, and £y, of W)y, different from the restrictions of the
length ¢ of Wy, for example £3;(A\) =0 for A € AN W,

Lemma 3.2. We have A = (Wye N A) (W, NA).



8 N. ABE, G. HENNIART, AND M.-F. VIGNERAS

Proof. We prove the lemma for ¢ = —. The case € = + is similar. The map v : Z — X.(T)®Q
defined in §?7? is trivial on Z° and we also write v for the resulting homomorphism on A. For
A € A there exists Ay € Wy, N A such that Ay € Wy—, or equivalently a(v(A2)) < 0

for all @ € &\ @}, = CDJJ(/[Q. It suffices to have the inequality for o € Ajpz,. The ma-
trix ((8Y))a,pen,, is invertible, hence there exist ng € Z such that ZBGA]WQ nga(BY) <
—a(v())) for all a € Apy,. As v(Wyy NA) contains @aen,,, Za' where o is the coroot of a
[?, after formula (71)], there exists Ao € Wy, N A with v()2) = zﬂeAMQ ngBY. O

The groups N N M’" and N' N M} are normal in N, and N = (N N M")Ne(N N M) =
ZN N M)N N M), and
The first two equalities are clear, the equality WuWyy, = WaeWy, follows from Wy, =
WarA, Wy € Wise and the lemma. The inverse image in W (1) of these groups are
(34)  W(Q) = 1Wa Q1)1 Whyy = War(1) 1Whyy = War+ (1) 1 Wagy = Wiy (1) 1 Wagg.

We recall the function qg(n) = q(n) = [U/(UNn~1Un)| on N [?, Proposition 3.38] and we
extend to A the functions gpy on N'N M and gy, on N N Ma:
(3.5) qu(n) = [Unr/Use "~ Unm)|, qan, (n) = Ung, /Ung, V0~ Ungyn)-
The functions ¢, gar, gar, descend to functions on W (1) and on W, also denoted by q, qar, gz, -
Lemma 3.3. Let n € N of image w € W. We have

(1) a(n) = qa(n)qns,(n).

(2) qu(n) = qu(nam) if n = nyng, nyy € NN M,ny € NN M, and similarly when M
and M are permuted.

(3) q(w) =1 < qu(Awpr) = ga,(Awag,) = 1, if w = AMwprwag,, (A, war, war,) € AX Wy x
Wy,

(4) On the coset (N N M5Nen, qur is constant equal to gar(nag) for any element npy €
M' N (NN MYNen. A similar result is true when M and My are permuted.

Proof. The product map
(3.6) Z8 ] ta [ Ue—u
O‘G(I)M,'red aeq)]\/IQ,'red

with U, = U, NU, is a homeomorphism. We have Uys = Z 'V, Uy = (Z1 0 M) Yy where
Y =11 Q€D a1 red U, and N N M) normalizes V). Similar results are true when M and Mo
are permuted, and U = UppUys, = Z/{MUMé.

Writing N = Z(N N M) (N N M) (in any order), we see that the product map

(3.7) ZN YV OV Yym) (Vg N Vaygn) = U N Un

is an homeomorphism. The inclusions induce bijections

(3.8) Var /(Yo N0 V) ~ Une /Une 0 n " Uypm) =~ Ung /Ung N~ Uym),
similarly for Ms, and also a bijection

(3.9) U/U N0~ Un) = Yy /(Vagg N0~ Vagn) x Var/ Ve Nn™ Yarm).

The assertion (1) in the lemma follows from (?7?), (77?).
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The assertion (2) follows from (?7?); it implies the assertion (3).

A subgroup of N normalizes Uy, if and only if it normalizes Yy, by (?7?) if and only if
gu = 1 on this group. The group N N M) normalizes Yy because the elements of M
commute with those of M’ and q) is trivial on N¢ by (2). Therefore the group (N N Mj)Ne
normalizes Ups. The coset (N NMS)Nen contains an element nyy € M'. For x € (NNMS)Ne,
(xnpp) " Uznypy = n;j,l/{nM/ hence qpr(xnpy) = qur(nag). O

3.3. Extension of an Hj);-module to H. This section is inspired by similar results for
the pro-p Iwahori Hecke algebras over an algebraically closed field field of characteristic p [?,
Proposition 4.16]. We keep the setting of §?? and we introduce ideals:

o Ji (resp. J;) the left (resp. right) ideal of H generated by Ty — 14 for all w € 1 Wy,

o Ty (resp. Jur,r) the left (resp. right) ideal of H s generated by Ti\/l’* — 1y, for all
Ain 1WM§ NWy(l) = 1WM§ NA(1).
The next proposition shows that the ideals J; = J, are equal and similarly Jare = Jmr-
After the proposition, we will drop the indices £ and r.

Proposition 3.4. The ideals Jy and J, are equal to the submodule J' of H generated by
Ty, — T, for allw € W(1) and wa € 1Wyy.

The ideals Ty e and Ty are equal to the submodule j](4 of Har generated by TI{,M’* — Tﬁ:
for all w € War(1) and Ay € A1) N1 Wy,

Proof. (1) We prove J; = J'. Let w € W(1),ws € 1Wyy. We prove by induction on the
length of wy that Ty (T, — 1) € J'. This is obvious when £(w2) = 0 because Ty Ty, = Tppyp, -

Assume that f(we) = 1 and put s = wy. If f(ws) = ¢(w) + 1, as before T,5(TF — 1) € J’
because Ty Ty = Tps. Otherwise {(ws) = £(w) — 1 and Ty, = T)r _, T hence

T — 1) = Ty s (T2 — Ty = Ty 1 (5T — Ties) — Ty = a5 Ty — Thles + 1),
Recalling from ?? that ¢; +1 = Ztez,g cs(t)T; with ¢5(t) € N and ZteZ,; cs(t) = gs,

0 Ths = Tiles +1) = > ca(t) (T = TpT7) = D cs(t)(Tihs — Tihgy ) €T
tez;, tez;,

Assume now that ¢(wz) > 1. Then, we factorize we = zy with z,y € Wy, of length
U(x),l(y) < L(wg) and L(wz) = £(x) + £(y). The element Ty (Ty, — 1) = T,T;(T; — 1) +
T*(Tx —1) lies in J' by induction.

Conversely, we prove Ty, — Ty € J;. We factorize w = zy with y € Wy, and = €

wwa

1War§2(1). Then, we have £(w) = £(z) + {(y) and (wws) = ¢(x) + ¢(yws). Hence
Ty — Ty =Ty (T, — 1)) = T (T, — 1) = T (T, — 1) € Tp.

wwa2 Yyw2 Yyw2

This ends the proof of J, = J'.

By the same argument, the right ideal 7, of H is equal to the submodule of H generated
by Ty, — Ty, for all w € W(1) and wy € 1W)y;. But this latter submodule is equal to J'
because 1WMé is normal in W (1). Therefore we proved J' = J, = J;.

(2) Proof of the second assertion. We prove Tvye = j](4. The proof is easier than in

(1) because for w € Wiy(1) and A2 € 1W)y, N A(1), we have £(wAs) = £(w) + £(\2) hence
Ty’*(T){\f’* -1) = Tﬁ; — T2, We have also £(Aqw) = £(A2) + £(w) hence (Ti‘;[* — )T =

Ti\;[ ; — Ty " hence Jumr is equal to the submodule of Hjys generated by Ti‘f U:k — Ty ~* for
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all w € Wi(1) and A2 € 1Wy; NA(L). This latter submodule is Jy,, as 1 Wy N A(1)
Wiy 0 Wir(1) is normal in Wy (1). Therefore 73, = Tamr = Tare-

O

By Proposition 7?7, a basis of J is T}, — Ty, for w in a system of representatives of
W(1)/1Whygy, and wa € 1Wyyy \ {1}. Similarly a basis of Jas is T —TU]JV/[\’; for w in a system
of representatives of Wi (1)/(A(1) N1 Wyy). and A2 € (A(1) N1 Wiyy) \ {1}

Proposition 3.5. The natural ring inclusion of Hy— in Hyr and the ring inclusion of H -
i H via 0% induce ring isomorphisms

Har/ Tm Vi Hor- /(T O Hopr-) = H/T.
Proof. (1) The left map is obviously injective. We prove the surjectivity. Let w € Wh(1).
Let A2 € 1Wjy; N A(1) such that w/\2_1 € Wy-(1) (see (77)). We have T 1 € Hp- and
Ty = T o Ti\;[’* = T 1 +T (Ti\j* —1). Therefore TY"™ € Hy- —i—jM. As w is

arbitrary, HM Hay- + jM

(2) The right map is surjective: let w € W(1) and wy € 1W)y; such that wwy ' € Wy (1)
(see (?7?)). Then T — T:;w;l € J with the same arguments than in (1), using Proposition
??. Therefore H = 0*(Hy-) + J.

We prove the injectivity: 0*(Hy—) N T = 0*(Hy- N Tar). Let ZweWM_(l) co T, with
Ccw € 7, be an element of H,,;—. Its image by 6* is Zwew(l) cwT;, where we have set ¢, = 0
for w € W(1) \ Wy (1). We have 3, cyy (1) cwTy € J if and only if Zw2€1WM/ Cww, = 0 for
all w € W(1). If Cyuy # 0 then wy € Wy N War(1), that s, wy € {Wyy; N A(1). The sum
ngeleé Cww, 1S equal to Z/\2€1WM/ nA(1) Cwre- By Proposition 77, 37 vy coTy, € T if

and only if ZwEW ) co TN € T O
We construct a ring isomorphism
e Hy /T — H)T

by using Proposition ??. For any w € W(1), T;) + J = e*(TwM_ + Jm) where wy- €
Wir-(1)Nw 1 Wy (see (77)), because by Proposition 77, T74+7 =T, +J and T +J =

e*(TM + Jar) by construction of e*. We check that e* is induced by 6*:

W,y —
Theorem 3.6. The linear map Has &, ‘H induces a ring isomorphism

e Hy /I — H|T.
Proof. Let w € WM( ) We have to show that T + J = e*(Ta"™ + Ju). We saw above

that T* +J =e ( U’M* —i—jM) with w = wys- Ao with Ao € 1WM’ N WM( ) As 6]\/[(/\2) =0,
TM* — M TM* TA{M*_ + Jnr. Therefore Tw]\;_ + TIu = Tw * 4+ Ju, this ends the proof

Wpyr—

of the theorem. O
We wish now to compute e* in terms of the T, instead of the T7,.

Proposition 3.7. Let w € W(1). Then, T, +J = e*(T3! qu,(w) + Tnr), for any way €
War(l) Nw 1WM§-
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Proof. The element wy is unique modulo right multiplication by an element Ay € Wy, (1) N
1Wyy of length £)/(A2) = 0 and T qr, (w) + Jar does not depend on the choice of wy;. We
choose a decomposition (see (?77?)):

w=381...8uSq+41---8qrp, L(w)=a-+Db,

for u € Q(1), §; € {Wyy lifting s; € Sj‘\‘/fff for1 <i<gqgand3s; € 1WMé lifting s; € S%Z for
a+1<i<a-+b, and we choose up; € Wpys(1) such that u € uy, 1Whyy. Then

wpr = 81 ... 8qupr € War(1) Nw IWMé

and qur, (W) = qar, (Sq+1 -+ - Sat+p) (Lemma ?7 4)). We check first the proposition in three
simple cases:

Case 1. Let w = § € Wy lifting s € S; we have T5 + J = e*(TgM + Jum) because
T: —e*(TM*) e J, Ts = TF + c5, TM = T 4 ¢5 and 1 = qup, (3).

Case 2. Let w =u € W(1) of length £(u) = 0 and upr € Wiy(1) such that u € upr 1 Wy
We have {y;(up) = 0 and qar,(u) = 1 (Lemma ??). We deduce T, + J = e*(TM + Ju)
because Ty +J =Ty +J = e (T2 + Jap), and T, = T, Y = T

Case 3. Let w = 5 € 1W)y lifting s € Sl » we have Ts + J = €*(q,(5) + Jur) because
T —1,cs—(qs—1) €T, T5 =T; + s € gs + J and qs = qur, (5).

In general, the braid relations T,y = T3, ... T, Ty/T5,,, - .- T5,,, give a similar product de-
composition of Ty, + J, and the simple cases 1, 2, 3 imply that T, + J is equal to

e (T + Tnr) ... e (T + Tan)e* (Toh + Tn)e (ansy (Sat1) + Tnr) - - - € (aoay (3ate) + Tnr)
= e*(T%qMQ(w) + Tm)-
The proposition is proved. U

Propositions 7?7, 77?7, and Theorem ?7 are valid over any commutative ring R (instead of
7).
The two-sided ideal of Hp generated by 7, — 1 for all w € Wy is Jr = J ®z R, the
two-sided ideal of H s, r generated by T — 1 for all \ € Wi N A1) is Tur = Iu @z R,
and we get as in Proposition 7?7 isomorphisms

Harr/ Ik <— Har- v/ (Ivr N Har- g) = Hr/ Tk,

giving an isomorphism H s g/ Jm,r — Hr/Jr induced by 6*. Therefore, we have an isomor-
phism from the category of right H s, r-modules where [J)s acts by 0 onto the category of
right Hr-modules where J acts by 0.

Definition 3.8. A right H s r-module V where J)s acts by 0 is called extensible to H. The
corresponding Hpr-module where J acts by 0 is called its extension to H and denoted by
en(V) or e(V).

With the element basis T}, V is extensible to H if and only if
(3.10) VI =wvforall veV and Ay € 1 Wy NA(L).
The H-module structure on the R-module e(V) =V is determined by

(3.11) Ty, =v, vl = oTM* . forall v eV, wy € Wiy, w € War(1).
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It is also determined by the action of Ty, for w € 1 Wy UWj+(1) (or w € 1Wiy UWyy-(1)).
Conversely, a right H-module W over R is extended from an Hp;-module if and only if

(3.12) vTy, =v, forall veW,wy € 1Wyy.
In terms of the basis elements T, instead of T};, this says:
Corollary 3.9. A right Hyr-module V over R is extensible to H if and only if
(3.13) UT)]\\g =0 forall veV and Ay € 1Wy, NA(L).
Then, the structure of H-module on the R-module e(V) =V is determined by
(3.14) VT = Uy, 0T = vTMqr, (w),  for all v € V,wy € W, w e War(1).

(Wir+(1) or Wyr- (1) instead of Wir(1) is enough.) A right H-module W over R is extended
from an Hyr-module if and only if

(3.15) VT, = Vquw,, for all v e W, we € 1 W)y

3.4. oYM is extensible to H of extension e(c¥™) = e(0)". Let P = MN be a standard
parabolic subgroup of G such that Ap and A\ Ap are orthogonal, and ¢ a smooth R-
representation of M extensible to G. Let P, = Ms Ny denote the standard parabolic subgroup
of G with Ap2 =A \ AP.

Recall that G = M M/, that M N M} = ZN M}, acts trivially on o, e(o) is the representation
of G equal to o on M and trivial on M. We will describe the H-module e(o)¥ in this section.
We first consider e(o) as a subrepresentation of Ind% ¢. For v € o, let f, € (Ind% )2 be
the unique function with value v on M. Then, the map

(3.16) v fy o — ndEo

is the natural G-equivariant embedding of e(¢) in Ind%o. As o¥™ = e(o)” as R-modules,
the image of e(o)¥ in (Ind% ¢)¥ is made out of the f, for v € g¥M.
We now recall the explicit description of (Ind%o)¥. For each d € Wyy,, we fix a lift

de 1Why; and for v € oUM et f P € (Ind% o) for the function with support contained in
Pdl and value v on dU. As Z N M}, acts trivially on o, the function I pay» does not depend
on the choice of the lift d e 1Why of d. By [?, Lemma 4.5]:

U G _\U i .
The map Gaew,,, 0™ — (Indpo)” given on each d-component by v fpiu 15 an
‘Hps+-equivariant isomorphism where H )+ is seen as a subring of H via 6, and induces an
‘H r-module isomorphism

(3.17) v@h e fpuoh: o™ @y g H — (IndG o).

Mt

In particular for v € o™, v @ T(d) does not depend on the choice of the lift d € 1Wy of
d and

(3.18) chZZ/I,v = fPZ/I,vT(CZ)‘
As G is the disjoint union of Pdi for d € Wyy,, we have f, = 3 dEW s,

image of v ® ey, in (?7), where

(3.19) ey =y T(d).

dEW]WQ

I Py, @nd fy is the
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Recalling (?77) we get:
Lemma 3.10. The map v — v ® ey, : e(o)¥
embedding.

Z/{]W . _ . .
— O Oyt 0 H is an Hp-equivariant

Remark 3.11. The trivial map v — v ® 1y is not an H r-equivariant embedding.

We describe the action of T'(n) on e(o)¥ for n € N. By definition for v € e(o)¥,

(3.20) vT'(n) = Z yn v,

yeU/(UNn—1Un)

Proposition 3.12. We have vT(n) = vTM (nar)qur, (n) for any ny € NN M is such that
n = ny (N NM).

Proof. The description (??) of U/(U Nn~'Un) gives

vT'(n) = Z Y1 Z yan v,

y1€U /UntNn = Unm) - y2&Uygy /Ungy ™ Uy m)
As M} acts trivially on e(o), we obtain

T =anm S pmite = ) o ()
y1€UM [ UniNn— U

0

Theorem 3.13. Let o be a smooth R-representation of M. If P(c) = G, then o“™ is
extensible to H of extension e(d™) = e(o)4. Conversely, if o™ is extensible to H and
generates o, then P(o) = G.

Proof. (1) The Hjy-module o“™ is extensible to H if and only if Z N M} acts trivially on
oM Indeed, for v € oYM 29 € Z N M),

vTM (25) = Z yzy v = Z yzy v = 25 v,

yeUnr /UniNzy Unrz2) YEVM /(VarNzy *Varz2)

by (??), then (??), then the fact that z; ' commutes with the elements of V.

(2) P(o) = G if and only if Z N M) acts trivially on o (the group Z N M)} is generated by
ZN M., for o € Ay, by Lemma ??). The R-submodule 027M5 of elements fixed by Z N M}
is stable by M, because M = ZM’, the elements of M’ commute with those of Z N M} and
Z normalizes Z N Mj.

(3) Apply (1) and (2) to get the theorem except the equality e(c¥™) = e(o)¥ when P(c) =
G which follows from Propositions 7?7 and 77. (|

Let 1,7 denote the trivial representation of M over R (or 1 when there is no ambiguity
on M). The right Hz-module (1) = 13 (or 1 if there is no ambiguity) is the trivial right
Hpr-module: for w € Wyy(1), T = guwid and T}, = id on 1y.

Ezample 3.14. The H-module (Ind% 1)¥ is the extension of the Hs,-module (Indﬂﬂ/gmB 1)4r,
Indeed, the representation Ind% 1 of G is trivial on Ny, as G = MM} and Ny € M’ (as
O = &y UPypy,). For g = mmby with m € M,m) € M) and ny € Ny, we have Pgny =
Pming = Pnaml = Pmf = Pg. The group My N B = My N P is the standard minimal
parabolic subgroup of My and (Ind% 1) My = Ind%ﬁm 5 1. Apply Theorem ?7:
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3.5. The Hr-module ¢(V) ®R(Indg 1)“. Let P = M N be a standard parabolic subgroup of
G such that Ap and A\ Ap are orthogonal, let V be a right H s, p-module which is extensible
to Hp of extension e(V) and let @ be a parabolic subgroup of G containing P.

We define on the R-module e(V) ®g (Indg 1)¥ a structure of right H gr-module:

Proposition 3.15. (1) The diagonal action of T, for w € W (1) on e(V) ®r (Indg 1)
defines a structure of right Hg-module.
(2) The action of the Ty, is also diagonal and satisfies:

(0 )T (v @ NTE) = Ty © S Tory 0Ty @ [T )
where w = vwypwyy with w € W(1),6(u) = 0,wyy € 1Warr, wayy € 1 Wy

Proof. If the lemma is true for P it is also true for @, because the R-module e(V)®p (Indg 1)
naturally embedded in e(V) @ (Ind$ 1)¥ is stable by the action of # defined in the lemma.
So, we suppose Q = P.

Suppose that T for w € W(1) acts on e(V) @p (Ind% 1) as in (1). The braid relations
obviously hold. The quadratic relations hold because T} with s € 1S acts trivially either
on e(V) or on (Indg 1)¥. Indeed, ;5 = ;153 U 153/1};, T for s € 1938, acts trivially on

(Ind% 1) which is extended from a Hjz,-module (Example ??), and T* for s € 15;;2,

acts
trivially on e()) which is extended from a #Hp/-module. This proves (1).

We describe now the action of T,, instead of T on the H-module e(V) Qg (Indg 14,
Let w € W(1). We write w = uwppwyy = uwpgwyy with u € W(1),6(u) = 0,wyr €
1WM’7wMé € 1WMé‘ We have K(w) = E(wM/) + E(wMé) hence T,, = TuTwM/TwMé'

For w = u, we have T), = Tf and (v® f)T,, = (v® f)Ty = vT; @ fT; =T, @ fT,.

For w = wyr, (v® f)T = T, ® f; in particular for s € 152}:}, Ccs = ZteZmlWM/ cs ()T,
we have (v® f)Ts = (v f)(TF+c¢s) =v(TF +¢5)Q f =vTs® f. Hence (v® f)T,, = vT, @ f.

For w = wjyy, we have similarly (v® f)Ty, = v® fT, and (v ® )Ty = v @ fTy. O

Example 3.16. Let X be a right Hr-module. Then 1y ®gr X where the T}; acts diagonally is
a Hgr-module isomorphic to X. But the action of the T;, on 1y ®g X is not diagonal.

It is known [?]| that (Indg, 1) and (Stg)“ are free R-modules and that (Stg)u is the
cokernel of the natural ‘Hpz-map
(3.21) ®ocq (Indg, 1)U — (Indg 1)

although the invariant functor (—)* is only left exact.

Corollary 3.17. The diagonal action of Ty, for w € W(1) on e(V) ®gr (Stg)“ defines a
structure of right Hr-module satisfying Proposition 7?7 (2).

4. HECKE MODULE Iy (P,V, Q)

4.1. Case V extensible to H. Let P = M N be a standard parabolic subgroup of G such
that Ap and A\ Ap are orthogonal, V a right #H s g-module extensible to Hp of extension
e(V), and @ be a parabolic subgroup of G containing P. As ) and Mg determine each other:
Q = MU, we denote also Hyr, = Hg and Hary,r = Ho,r when Q # P,G. When Q = G
we drop G and we denote ey (V) = e(V) when Q = G.

Lemma 4.1. V is extensible to an Hg,r-module ez, (V).
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Proof. This is straightforward. By Corollary ??, V extensible to H means that T*(2) acts
trivially on V for all z € Ny N Z. We have Mg = MM, , with My, C Mg N M and

NMQQ C Ny; hence TM*(z) acts trivially on V for all z € NMQQ N Z meaning that V is
extensible to Hog. ’ O

Remark 4.2. We cannot say that ey, (V) is extensible to H of extension e()) when the set of
roots Ag and A\ Ag are not orthogonal (Definition ?7).

Let Q' be an arbitrary parabolic subgroup of G containing Q. We are going to define
o Hp-embedding Indff_ (exy, (V) “2%% Wd¥ (exy (V) = eng (V) @1, 5.0 M defining o
‘H r-homomorphism
ocqrce Il (emaneatrig (V) — Indl (e1, (V)

of cokernel isomorphic to e(V) ®gr (Stg)u. In the extreme case (Q,Q') = (P,G), the Hp-

embedding e(V) M IndﬁM(V) is given in the following lemma where fg and fpy €

(Ind$% 1) of PU denote the characteristic functions of G and PU, fo = fpuen, (see (27)).
Lemma 4.3. There is a natural Hp-isomorphism

vR 1y —mv® fpy :Ind%M(V) =) Ry QHH—P>€(V) RR (Indgl)u,

M+
and compatible Hr-embeddings
v v ® foe(V) = e(V) @r (IndE 1),
v v ® e :e(V) “Ura), IndﬁM(V).
Proof. We show first that the map
(4.1) visv® fpy: V= e(V) g (Ind% 1)

is Hpr+-equivariant. Let w € W+ (1). We write w = uwypwyy as in Lemma ?7? (2), so that
fruTly = fPZ/[TuwM/ . We have fpuTuwM, = fpy because 1 Wy C WM+(1) N WM—(l) hence
2 2

o H we have (1@ 13)Tuw,, = 1TM  ©14, and
2

uwMé = ww&l/ [ WM+(1) and in 1HM ®’H 'u,wMé

M+t

T%}Mé acts trivially in 14,, because EM(uwMé) = 0. We deduce (v® fpy)Tw = vT0w® fruTw =

UT£4 ® fru.
By adjunction (?7) gives an Hg-equivariant linear map

(4.2) VR 1y = v® fpu VO, 0 H 2y e(V) @p (IndE 1Y,
We prove that kp is an isomorphism. Recalling de NN M}, de Wy lift d, one knows that
(4.3) V@4, 0 H=Bdaew,,V @ Ty (V) ®g (IndE 1Y = Gaew,, V@ fpiy

where each summand is isomorphic to V. The left equality follows from §4.1 and Remark 3.7
in [?] recalling that w € Wy, is of minimal length in its coset Wy,w = wW s as Ay and Ay,
are orthogonal; for the second equality see §?? (?7). We have kp(v ® T;) = (v ® fpu)T; =
v® fpyT; (Lemma ?7). Hence kp is an isomorphism.

We consider the composite map

v 1= 0® fpyen, : e(V) = e(V) ®p 1y — e(V) @r (IndE 1),

Mt
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where the right map is the tensor product e(V) ®pgr — of the Hpg-equivariant embedding
14 — (Ind% 1)¥ sending 15 to fpyens, (Lemma ??); this map is injective because (Ind% 1) /1
is a free R-module; it is Hp-equivariant for the diagonal action of the 7, on the tensor

products (Example ?? for the first map). By compatibility with (1), we get the H p-equivariant

embedding v — v ® epy, : e(V) 4rG), Ind%M(V). O

For a general (Q, Q') the Hp-embedding IndHQl(eHQ, V) 4L, Ind%Q(eHQ(V)) is given
in the next proposition generalizing Lemma ??. The element ey, of Hr appearing in the
definition of «(P,G") is replaced in the definition of +(Q, Q") by an element HQl(eg) € Hr
that we define first.

Until the end of §??, we fix an admissible lift w — @ : W — N N K (Definition ??) and w
denotes the image of @ in W (1). We denote Wy, = W and by WoW the set of w € W of
minimal length in their coset Wow. The group G is the disjoint union of QdU for d running
through WeW [?, Lemma 2.18 (2)].

(4.4) Q74::LbeWQWQ;Q&u,
Set,
Q' . MQ/
de"ew

We write 68 = eq. We have ejQD = ZdeWMZQ TéVIQ.

Remark 4.4. Note that VMW = War, and ep = epr,, where My is the standard Levi subgroup
of G with Apz, = A\ Apr, as Apr and A\ Ay are orthogonal. More generally, WQWMQ, =

WM2vQWM2 o where MQ,Q' = M>nN MQ/.

Note that eg/ € Hpr+ NHps—. We consider the linear map
’ M
03 Hg = Hy Tu®—Tuw® (weW(l)).

We write 0§ = ¢ so HQ(Tf,iw ?) = T,. When @Q = P this is the map 6 defined earlier. Similarly
! % . . * M, /4% *
we denote by 08 " the linear map sending the ng " to Ty ¢ and 98’ = 922. We have

(46) 9@/(68 ) = Z T”, QQ/(eg ) = 0@(6%)9(@/(68 )
de"ew

Proposition 4.5. There exists an Hpg-isomorphism

A7) v@ly—v® fou : Indl (e, (V) = ery (V) @3, o H —> e(V) @ (IndF 1),

Mg’
and compatible Hr-embeddings
(4.8) v® fourv® fou: €Hy (V) ®@gr (Indg/ l)u — €1, (V) ®gr (Indg 1)“,
! UQ,Q")
(4.9) VR 1y = v ® by (eg')2 ): Inde, (e, (V) —— Ind%Q (e2, (V).
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Proof. We have the H s, r-embedding

VU eg repg(V) = Vo, o Ho = IndZJQW V)

by Lemma ?? (2) as Ay is orthogonal to Ay, \ Apr. Applying the parabolic induction which
is exact, we get the H-embedding

H
V@ 1y v ® e ® 1y Ind} (e, (V) = Indff, (Indy® (V).

Note that T’ é-VIQ eH Mg for d € Wyy,. By transitivity of the parabolic induction, it is equal
to the Hp-embedding

(4.10) v @ 1y~ v ®0g(eR) : Ind¥ (e, (V) — Ind}f (V).
On the other hand we have the Hr-embedding
(4.11) v® fou — v ®0g(el) : e(V) ®g (Ind§ 1Y — Ind}f (V)

given by the restriction to e(V) ®p (Indg 1) of the Hg-isomorphism given in Lemma ?7 (1),
from e(V) ®p (Indg 1Y to V ®,,4.0 H sending v ® fru to v ® 1y, noting that v ® fou =
(v® fpu)eQ(eg) by Lemma ?7, fou = fpueQ(eg) and HQ(ejQD) acts trivially on e(V) (this
is true for T for d € 1W)yy). Comparing the embeddings (??) and (??), we get the Hp-
isomorphism (?7).

We can replace @ by Q' in the H p-homomorphisms (??), (??) and (??). With (??) we see
Ind}}th(eHQ, (V)) and IndﬁQ(efHQ(V)) as ‘Hp-submodules of Ind%M(V). As seen in (77?) we
have O (e ) = 0 (e2)0qy (eg ). We deduce the H p-embedding (??).

By (?7) for @Q and (?7),

fou = Z fouT; = fQUHQ'(eg )
dGWQWQl
in (c—Indg 1)4. We deduce that the Hg-embedding corresponding to (?7?) via kg and k¢ is
the Hpr-embedding (77?). O

We recall that Ap and A\ Ap are orthogonal and that V is extensible to H of extension
e(V).

Corollary 4.6. The cokernel of the Hr-map
@QQQ’CG Ind}'{[Q, (emathcalHQ/ (V)) — Ind%Q (CHQ (V))
defined by the «(Q,Q"), is isomorphic to e(V) g (Stg)u via KQ.

4.2. Invariants in the tensor product. We return to the setting where P = MN is a
standard parabolic subgroup of G, ¢ is a smooth R-representation of M with P(c) = G of
extension e(o) to G, and @) a parabolic subgroup of G containing P. We still assume that
Ap and A\ Ap are orthogonal.

The Hp-modules e(c"™) = e(o) are equal (Theorem ??). We compute Ig(P,o, Q)Y =
(e(o) ®pr Stg)u.

Theorem 4.7. The natural linear maps e(o)¥ g (Indg DY — (e(o) ®r Indg VY and
e(o) @ (Stg)” — (e(0) @R Stg)u are isomorphisms.
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Proof. We need some preliminaries. In [?], [?], is introduced a finite free Z-module 9t (depend-
ing on Ag) and a B-equivariant embedding Sth % C(B, M) (we indicate the coefficient
ring in the Steinberg representation) which induces an isomorphism (Sth)B ~ C>(B,M)5.

Lemma 4.8. (1) (Indg Z)B is a direct factor of Indg Z.
(2) (Sth)B is a direct factor of Sth.
Proof. (1) [?, Example 2.2].
(2) As 9 is a free Z-module, C°(B,M)? is a direct factor of C°(B,9M). Consequently,
L((Sth)B) = C°(B,M)" is a direct factor of L(Sth). As ¢ is injective, we get (2). O

We prove now Theorem ??. We may and do assume that o is e-minimal (because P(o) =
P(0min), €(0) = e(omin)) so that Aps and A\ Ajs are orthogonal and we use the same notation
as in §77 in particular My = Ma\a,,- Let V be the space of e(0) on which Mj acts trivially.

The restriction of Indg Z to M> is Indgrszg ?Zj that of Sth is S;g%MQZ.
As in [?, Example 2.2],((Indg%M2 Z)QV) M ~ (Ind]g%M2 Z) ™ @ V. We have
(Ind32,, 2)"™% = (Ind)2,, Z)"m: = (Ind§ Z).
The first equality follows from My = (Q N M2)War,Uns,, Uni, = Z 1UM§ and Z!' normalizes
Uy, and is normalized by Wyy,. The second equality follows from U = UppUpr, and Indg Z

is trivial on M’. Therefore ((Indg Z) ® V)uMé ~ (Indg ZM ® V. Taking now fixed points
under Uy, as U = UMéZ/{M,

(nd§Z) @ V) ~ (Ind§ Z)* @ V)M = (Ind§ Z)* @ VHM

The equality uses that the Z-module Indg Z is free. We get the first part of the theorem as
(Ind§ Z)¥ @ VUM ~ (IndG R} @5 VUM,

Tensoring with R the usual exact sequence defining Sth gives an isomorphism Sth(X)R ~
Sth and in loc. cit. it is proved that the resulting map Sth R, C®(B,M ® R) is also
injective. Their proof in no way uses the ring structure of R, and for any Z-module V,
tensoring with V' gives a B-equivariant embedding Sth@) V 2% C®(B,M® V). The natural
map (Sth)B RV — Sth ® V is also injective by Lemma ?? (2). Taking B-fixed points we
get inclusions
(4.12) (StEZ)P @V = (StGZ@ V)P = C(B, M V)P 2 M V.

The composite map is surjective, so the inclusions are isomorphisms. The image of ¢} consists
of functions which are left Z%invariant, and B = Z%U’ where U’ = G’ NU. It follows that ¢
yields an isomorphism (Sth)w ~ C®(ZO\B, M) again consisting of the constant functions.
So that in particular (Sth)ul = (Sth)lg and reasoning as previously we get isomorphisms

(4.13) (StGZM @V = (StSZ @ V) ~ M@ V.

The equality (Sth)“/ = (Sth)B and the isomorphisms remain true when we replace U’

by any group between B and U’. We apply these results to Stgﬁ1 w,Z ®V to get that the

u]\/[

natural map (Stg%MQZ) 2@V — (Stg%MQZ ® V)uMé is an isomorphism and also that
M- Uy
(Sthz,, 7)™

2 = (Stg%MQZ)uM% We have U = UppUny, so (Sth)u = (StgéMzZ)uMz and the
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natural map (Sth)“®V — (SthQ@V)MMﬁ is an isomorphism. The Z-module (Sth)u is free
and the V¥ = V¥ 5o taking fixed points under Uy;, we get (Sth)u @ VY ~ (Sth ® VY.
We have St3Z @V = St§R®x V and (StGZ)Y @ VY = (St§R)“ @ VY. This ends the proof
of the theorem. 0

Theorem 4.9. The Hr-modules (e(o0) ®pr Indg DY = e(0)4 @p (Indg 1Y are equal. The
Hpr-modules (e(0) ®p Stg)u =elo)¥ @R (Stg)u are also equal.

Proof. We already know that the R-modules are equal (Theorem ?7). We show that they are
equal as H-modules. The H-modules e(0)¥ @ g (Indg 1) = ey(c" U xR (Indg 1) are equal
(Theorem ?7?), they are isomorphic to Ind%Q (e3, (cM21)) (Proposition ?7?), to (Indg (eg(o))H
[?7, Proposition 4.4] and to (e(a)@RIndg 1) [?, Lemma 2.5]). We deduce that the H gr-modules
e(o) ®r (Indg 1Y = (e(0) ®r Indg 1" are equal. The same is true when Q is replaced by
a parabolic subgroup @’ of G containing Q. The representation (o) ®p Stg is the cokernel
of the natural R[G]-map

®gcqre(o) ®r IndS, 1 2% e(o) ®r Indg 1

and the H p-module e(0)¥ ®p (Stg)u is the cokernel of the natural H -map

B
@Q;Q/e(a)u ®r (Ind$, 1Y N e(o)" ®r (Indg 1)Y

obtained by tensoring (??) by e(o)¥ over R, because the tensor product is right exact. The
maps g = ag are equal and the R-modules (o) ®p (Stg)u = (e(o) ®r Stg)u are equal.
This implies that the Hp-modules (¢) ®p (Stg)u = (e(0) ®R Stg)u are equal. O

Remark 4.10. The proof shows that the representations e(o) ®r Indg 1 and e(0) ® Stg of G
are generated by their U-fixed vectors if the representation o of M is generated by its Ups-

fixed vectors. Indeed, the R-modules e(c)¥ = o¥M (Indg 1)uMé = (Indg 1Y are equal. If
o™ generates o, then e(o) is generated by (o). The representation Indg 1|y is generated
by (Indg 1)¥ (this follows from the lemma below), we have G = M M} and M} acts trivially
on e(c). Therefore the R[G]-module generated by o ®r (Indg 1) is e(0) ®r Indg 1. As
e(o) ®r Stg is a quotient of e(c) ®g Indg 1, the R[G]-module generated by o @g (Stg)u is
e(o) ®r Stg.

Lemma 4.11. For any standard parabolic subgroup P of G, the representation Indg 1| is
generated by its U-fixzed vectors.

Proof. Because G = PG’ it suffices to prove that if J is an open compact subgroup of N the
characteristic function 1p; of PJ is a finite sum of translates of 1pyy = 1 Pus by G' . ForteT

we have PUt = Pt_luﬁt and we can choose t € T'N J’ such that t_ll/lﬁt c J. OJ

4.3. General triples. Let P = MN be a standard parabolic subgroup of G. We now
investigate situations where Ap and A\ Ap are not necessarily orthogonal. Let V a right
H v, r-module.
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Definition 4.12. Let P(V) = M(V)N(V) be the standard parabolic subgroup of G with
AP(V) = ApUAy and

Ay = {a € A orthogonal to Ay, T™*(2) acts trivially on V for all z € Z N M.}

If @ is a parabolic subgroup of G between P and P(V), the triple (P, V, Q) called an H r-triple,
defines a right Hpr-module I (P, V, Q) equal to

MV MV
mdf, (V) @ (Stirmpn)100) = (e(V) @R (St V) @2

where e(V) is the extension of V to Hysy).

o Hr

M(V)T,R

This definition is justified by the fact that M (V) is the maximal standard Levi subgroup
of G such that the H s g-module V is extensible to Hysy):

Lemma 4.13. Ay is the mazimal subset of A\ Ap orthogonal to Ap such that T)]\W’* acts
trivially on 'V for all A € A(1) N1 W)y .

Proof. For J C A let M denote the standard Levi subgroup of G with A7, = J. The group
Z N M/ is generated by the Z N M/, for all « € J (Lemma ??). When J is orthogonal to
Apy and A € Ay (1), £ar(A) = 0 where £y is the length associated to Saft - and the map

A T;\VI’* =TM . AMg(l) — H s is multiplicative. 0

The following is the natural generalisation of Proposition ?? and Corollary ??. Let Q' be
a parabolic subgroup of G with @ C Q" € P(V). Applying the results of §?7 to M (V) and
its standard parabolic subgroups @ N M (V) C Q' N M(V), we have an H M(V),r-isomorphism

Ind M<v>( ero (V) = eng (V) D0 Huw),r

v 1y = v® founm)

RQnM (V) (V) ®R (Inerg]\}(v) 1)Z/IM(V)

and an H s (y) g-embedding

Ind JW(V) ( ’HQ/ (V)) L(QQM(V),Q/PIM(V)), Ind::gl(v) (e'HQ (V))

v ® 13, r—>v®0Q,( )( Q)

Applying the parabolic induction IndHM v which is exact and transitive, we obtain an Hg-

isomorphism kg = IndHM(V) (KQnm())s

(4.14) d}f,, (3, (V) =5 Ind} | (e(V) @ (Indgy 1) Targ ) 4107)
VR 1y = v ® fouyy ® 1n
and an Hp-embedding 1(Q, Q') = IndHM(V)( U(Q, QMM

L(Q Q")
(4.15) VR 1y v ® HQ/(eQ ) : IndHQl(eHQ, V) —=

md%, (ex, (V))-

Applying Corollary 7?7 we obtain:

Theorem 4.14. Let (P,V,Q) be an Hpr-triple. Then, the cokernel of the Hr-map
©ocqrcpr) Indf, (ex, (V) — Indff, (ex, (V)),

defined by the 1(Q, Q") is isomorphic to I (P,V,Q) via the Hr-isomorphism Kg.
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Let o be a smooth R-representation of M and () a parabolic subgroup of G with P C @) C
P(o).

Remark 4.15. The Hp-module Iy (P,o"™ Q) is defined if Ag \ Ap and Ap are orthogonal
because QQ C P(c) C P(o"™) (Theorem ?7).

We denote here by Ppin = Mmin/Nmin the minimal standard parabolic subgroup of G
contained in P such that ¢ = ep(o|n,,,) (Lemma ??, we drop the index o). The sets
of roots Ap,, and Apey, ) \ Ap_, are orthogonal (Lemma ??). The groups P(c) =
P(o|n,,, ), the representations e(o) = e(o|ar,,,) of M(o), the representations I(P, o, Q) =
I¢(Puin, 0lp,,,, @) = Indg(a)(e(o) ®R Stg(g)) of G, and the R-modules ¢“Mmin = oYM are
equal. From Theorem 77,

P(0) C P(o™mm), ey, (0M00mn) = (o),

and P(c¥m@) = P(0) if o¥M©) generates the representation oy . . The Hp-module

min *
P(o’uMmin )

u
I’H(thh O_MMmi“ 5 Q) == Ind% u (C(UuMmin) ®R (StQ ) M(o-MMmin ))

M(o Mmin)
is defined because Ap,; and A,

P(UuMmin ).

(0" Momin) \ Ap_ . are orthogonal and P C Q C P(o) C

Remark 4.16. If ¢"M(=) generates the representation oy . (in particular if R = C and o is

irrreducible), then P(c) = P(c"Mmin) hence

M(o
I3y (Prin, oM Mmin Q) = Ind%M(o) (eHM(o) (O'uMmi“) ®R (Sthg]\/?f(U))uM(a))'

Applying Theorem ?? to (Puin N M (0), 0| M, @ N M(0)), the H (o), g-modules

M(o o
(4.16) Mt (O.Z/{]\Jmin) QR (StQm(A}(g))UM(o) = (eM(J) (0’) XRRr Stgm(]\/)[(o))uM(G)

are equal. We have the #H r-isomorphism [?, Proposition 4.4]:

Ia(P,o, QY = (Ind§, (e(0) @ St ™ N" 2 Wndl | ((e(0) @R Sty ) 1)

M(o
frouz— @1y (€ (e(o) ®r StQm(]\}(U))uM‘”))-
We deduce:

Theorem 4.17. Let (P,0,Q) be a R[G|-triple. Then, we have the Hpg-isomorphism

M(o
Ia(P,o, QM 25 Il (€3, (0%¥min) g (St ) 1)),

In particular,

I’H (Pmirn Jujwmi“ ) Q) Zf P(O') = P(O’uMmin)

U
IG(PaU; ) _{IH(P70MM7Q) ifP:Pmin,P(U):P(O-UAI).
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4.4. Comparison of the parabolic induction and coinduction. Let P = MN be a
standard parabolic subgroup of G, V a right Hpr-module and @ a parabolic subgroup of G
with @ C P(V). When R = C, in [?], we associated to (P,V,Q) an Hgr-module using the
parabolic coinduction

Coind}}, (—) = Homy, H,—) : Modg(Har) — Modg(H)

M~ ,0% (

instead of the parabolic induction Indﬁ (=) == ®@,,+,0 ". The index 0% in the parabolic
coinduction means that H Mg embeds in H by 95. Our terminology is different from the one

in [?] where the parabolic coinduction is called induction. For a parabolic subgroup @’ of G
with @ C @' C P(V), there is a natural inclusion of Hz-modules [?, Proposition 4.19]

i(Q,Q")
(4.17) HomHM&’e* (H, €He V) —= Homq{Mé’g* (H, €1 V)).

because 0*(HM5) C 0*(H,,-) as WMé(l) c Wy~ (1), and quf]\/[Q'* = vT'%" for w €
@ @
WMé(l) and v € V.

Definition 4.18. Let CIy(P,V, Q) denote the cokernel of the map
@QQQ’CP(V) Hom'HM5/79* (%7 6’HQ, (V>) — HomHMé,e* (Ha eHQ (V))

defined by the Hpg-embeddings i(Q, Q").

When R = C, we showed that the Ho-module CIy(P,V, Q) is simple when V is simple
and supersingular (Definition ?7), and that any simple Hc-module is of this form for a He-
triple (P, V, @) where V is simple and supersingular, P, @ and the isomorphism class of V are
unique [?]. The aim of this section is to compare the Hr-modules Iy (P, V, Q) with the H -
modules CIy(P,V, Q) and to show that the classification is also valid with the Hc-modules

In(P,V, Q).

It is already known that a parabolically coinduced module is a parabolically induced module
and vice versa [?] [?]. To make it more precise we need to introduce notations.

We lift the elements w of the finite Weyl group W to w € Ng N K as in [?, IV.6], [?,
Proposition 2.7]: they satisfy the braid relations w1 = (wijws) when £(w;) + {(w2) =
l(wiwe) and when s € S, § is admissible, in particular lies in 1 Wy.

Let w, wjyr, wM denote respectively the longest elements in W, Wj; and wwj;. We have

w=w1=wMwy,wy = WJT/}, w = wMw,,,

w’(Ay) = —w(Ay) Cc A, wM(@T\ D)) =w(@T\ &F)).
Let w.M be the standard Levi subgroup of G with Ay 3 = WM(AM) and w.P the standard
parabolic subgroup of G with Levi w.M. We have
w.M=wM M) =wMw)™t, WM = wyw = (wM) L
M My=1in W gives a group isomorlﬁlisrfl Wy — Ww.m sendinlg
)

The conjugation w — w w(w
Sf{/f[f onto Sf,‘fM, respecting the finite Weyl subgroups w W, (w =Wwr = wWyw,
and echanging W+ and Wy ap)- = wWyr+ w L. The conjugation by W™ restricts to a group
isomorphism Wy (1) — Wy as(1) sending Wyy+ (1) onto Wy pp)-(1). The linear isomorphism

L \7V]M
(4.18) Har D s T s TR arya for w € W (1),
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is a ring isomorphism between the pro-p-Iwahori Hecke rings of M and w.M. It sends the

positive part H s+ of Hys onto the negative part H (. ar)- of Hw s [?, Proposition 2.20]. We

~w. M ~ M ~M)—1

have w = w;w =w"wy, (W = wYVM¢, where ty = VVQW]Tf € 7.

Definition 4.19. The twist w™.V of V by W™ is the right Hw.ar-module deduced from
the right H y7-module V by functoriality: as R-modules w™.V =V and for v € V,w € Wy(1)
we have vTW;M = =oTM,

WMoy (wM) w

We can define the twist w2,V of V with the T3"* instead of M,

Lemma 4.20. Forv € V,w € Wy (1) we have UT:J,'\%&M),l = oTM* i wM V.

= M
Proof. By the ring isomorphism Hps M Hw.nr, we have cg;\%.(wM),l = cé\/[ when § €

Wir(1) lifts s € Sj“\f[f . So the equality of the lemma is true for w = 5. Apply the braid
relations to get the equality for all w € Wy(1). O
We return to the Hp-module Homy, . (H, V) parabolically coinduced from V. It has a
natural direct decomposition indexed by the set WWM of elements d in the finite Weyl group
W of minimal length in the coset dWj,. Indeed it is known that the linear map
[ (f(Tj))deWWM : HomHMﬂG* (Ha V) — EBdeWWMV
is an isomorphism. For v € V and d € WW  there is a unique element

fi, € Homy _ p-(H,V) satisfying f(T;) = v and f(Tj) =0 for d' € WWar\ {d}.

It is known that the map v — fgu, : w7V — Homy o«(H,V) is H(w.ar)+-equivariant:
fant ypwr = fom Ty for allv € V,w € Wy, p+(1). By adjunction, this Hw ar)+-equivariant
map gives an Hr-homomorphism from an induced module to a coinduced module:

(4.19) V@ Ly S, WY @y o 1 =5 Homyy,,_ g+ (H, V).

M)+
This is an isomorphism [?], [?] .
The naive guess that a variant pug of up induces an Hg-isomorphism between the Hg-

modules I (w.P,wM .V, w.Q) and Cly(P,V,Q) turns out to be true. The proof is the aim
of the rest of this section.

The Hp-module I (w.P,wM.V, w.Q) is well defined because the parabolic subgroups of
G containing w.P and contained in P(w™.V) are w.Q for P ¢ Q C P(V), as follows from:
Lemma 4.21. Agm )y = —w(Ay).

Proof. Recall that Ay is the set of simple roots a € A\ Ay orthogonal to Ay and TM*(z)
acts trivially on V for all z € Z N M/, and the corresponding standard parabolic subgroup
Py = MyNy. The Z N M|, for a € Ay generate the group Z N M;j,. A root o € A\ Ay
orthogonal to Ay is fixed by wys so wM(a) = w(a) and

wM My (WM = Wy (w) L
The proof of Lemma ?7 is straightforward as A = —w(A), Aw.ar = —w(Apy). O

Before going further, we check the commutativity of the extension with the twist. As
Q = MU and Mg, determine each other we denote wy, = wq, wMe = w? when Q # P,G.
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~ M =
Lemma 4.22. ey, ,(W".V) = w@.ey, (V).

Proof. As R-modules V = ey, ,(WM.V) = WQ.eHQ(V). A direct computation shows that
the Hecke element TJ,V'Q’* acts in the Hpr-module GHWAQ(\X/'M.V), by the identity if w €
v~vQ1WM§ (w?)~! and by T(]gg),lw‘w ifw e vNVQlI/VMé (w®@)~! where My, denotes the standard
Levi subgroup with Ay, = Ag \ Ap. Whereas in the Hp-module WQ.GHQ(V), the Hecke
element 70" acts by the identity if w € 1 Wy and by T(]v\f[v}\f[)*lwv?/M if we Wy m(1). So
the lemma means that

Waeary = WO W (w) ™, (W) low? = (W) Tww™ if w € W (1),

These properties are easily proved using that ;W is normal in W(1) and that the sets of
roots Ap and Ag \ Ap are orthogonal: wg = wy, W)y, the elements wy, and wjys normalise
Whr and Wy, the elements of Wy, commutes with the elements of Wj,. ]

We return to our guess. The variant ;1 of up is obtained by combining the commutativity
of the extension with the twist and the isomorphism 7?7 applied to (Q, ey, (V)) instead of
(P,V). The Hpg-isomorphism g is:

- 1Q
(4.20) V@ 1y > fanr, Indigw_MQ (er1.o (WMV)) = HomHMCS o (H, e, (V).
Our guess is that ug induces an H g-isomorphism from the cokernel of the H g-map
@QQQ’CP(V) Ind%w‘Ql (B'HW‘QI (WMV)) — Ind%w@ (e’Hw_Q (‘X/MV))

defined by the Hr-embeddings «(w.Q, w.Q’), isomorphic to Iy (w.P,wV, w.Q) via Kw.Q
(Theorem ?7), onto the cokernel CIy(P,V, Q) the Hr-map

DQcq@cp(v) HomHM&,g* (H.eny, (V) — HomHMéyg* (M, e35(V))

defined by the Hpg-embeddings i(Q, Q). This is true if i(Q, Q") corresponds to ((w.Q, w.Q’)
via the isomorphisms pqr and pg. This is the content of the next proposition.

Proposition 4.23. For all Q C Q' C P(V) we have
i(Q,Q) 0 gy = pg o Uw.Quw.Q).
We postpone to section §?7 the rather long proof of the proposition.
Corollary 4.24. The Hg-isomorphism jig o n;V.lQ induces an Hp-isomorphism
Iny(w.P,wMV, w.Q) — CIy(P,V, Q).

4.5. Supersingular Hr-modules, classification of simple Hc-modules. We recall first
the notion of supersingularity based on the action of center of H.

The center of H [?, Theorem 1.3] contains a subalgebra Zp+ isomorphic to Z[T*/T}]
where T is the monoid of dominant elements of T' and T} is the pro-p-Sylow subgroup of
the maximal compact subgroup of T'.

Let t € T of image y; € W (1) and let (Eo(w))wew (1) denote the alcove walk basis of H
associated to a closed Weyl chamber o of W. The element

Eo(C()) = Y Eo(i)
"
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is the sum over the elements in x' in the conjugacy class C(u¢) of py in W(1). It is a central
element of  and does not depend on the choice of 0. We write also z(t) = E,(C())-

Definition 4.25. A non-zero right Hg-module V is called supersingular when, for any v € V
and any non-invertible ¢ € T, there exists a positive integer n € N such that v(z(t))" = 0.
If one can choose n independent on (v,t), then V is called uniformly supersingular.

Remark 4.26. One can choose n independent on (v, t) when V is finitely generated as a right
‘Hpr-module. If R is a field and V is simple we can take n = 1.

When G is compact modulo the center, T+ = T, and any non-zero H g-module is super-
singular.

The induction functor IndﬁM : Mod(Ha,r) — Mod(Hpr) has a left adjoint E%M and a
right adjoint R% [?]: for V € Mod(Hg),

(421) ﬁ?—[]u (V) = WWM ° (V ®H( 0* HWM)? R%}w (V) = HomHM+,9(HM7 V)

w. M)

In the left adjoint, V is seen as a right H(y.a7)--module via the ring homomorphism
O Hwan- — H; in the right adjoint, V is seen as a right Hps+-module via the ring
homomorphism Oyr: Hp+ — H (§77).

Proposition 4.27. Assume thatV is a supersingular right Hr-module and that p is nilpotent
inV. Then E%M(V) =0, and if V is uniformly supersingular RHM(V) =0.

Proof. This is a consequence of three known properties:

(1) Has is the localisation of Hj+ (resp. Hp—) at T/f‘/f for any element u € Ap(1),
central in Wy, (1) and strictly N-positive (resp. N-negative), and Té” = Ty’*. See [?7,
Theorem 1.4].

(2) When o is anti-dominant, E,(u) = T}, if p € AT (1) and E,(u) = Ty if p € A=(1).

(3) Let an integer n > 0 and p € A(1) such that the W-orbit of v(u) € X (T) ® Q
(Definition in §?7?) and of p have the same number of elements. Then

(Bo(C()))" Eo() — Eo(u)"** € pH.
See [?, Lemma 6.5], where the hypotheses are given in the proof (but not written in
the lemma).

Let u € A%(1) satisfying (1) for M* and (3), similarly let w.u € AL (1) satisfying (1)
for (w.M)~ and (3). For (R,V) as in the proposition, let v € V and n > 0 such that
VE,(C(p)" = vE,(C(w.u))™ = 0. Multiplying by E,(u) or Ey(w.u), and applying (3) and
(2) for o anti-dominant we get:

VE, () = oI € pV, vEo((w.p)™) = o(Ty, )" € pV.

The proposition follows from: vT77*, v(T3, ,)"*! in pV (as explained in [?, Proposition 5.17]
when p = 0 in R). From (T3, ,)"*! in pV, we get v ® (T * )yl — (T @ gy
in pV DUy 2y 0" Hwnr As TWM* = TW-M g invertible in Hw.r we get v @ 1y, ,, in
pV B, a0 ’Hw M- As v was arbitrary, V BU gy 1py— 0" Hw.m C pV OH g ary— 0 Hewar- I p
is mlpotent in V, then V ®H( - Hw v = 0 Suppose now that there exists n > 0 such
that V(z(t))" = 0 for any non-invertible ¢ € T, then VI*! C pV where u = 5 hence
p(h) = (hT T-)T ! in pY for an arbitrary ¢ € Homy , o(Ha, V) and an arbitrary
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h € Hy. We deduce Homyy,  o(Har, V) C Homyy, | o(Har,pV). If p is nilpotent in V), then
HomHM+79(HM, V) =0. O

Recalling that w™.) is obtained by functoriality from V and the ring isomorphism ¢(w")
defined in (??), the equivalence between V supersingular and w*V supersingular follows
from:

Lemma 4.28. (1) Lett € T. Thent is dominant for Uys if and only if WMt(wM)=1 € T

is dominant for Uy ar.
L(V?/NI)

(2) The R-algebra isomorphism Hyrr —— Hw.M,R ™ s Tva:f%;(wf\f)—l for w €
Wi (1) sends 2M(t) to 2 M(WMt(WM)~1) for t € T dominant for Uyy.

Proof. The conjugation by wM stabilizes T, sends Ups to Uyw.ar and sends the Wy -orbit of

t € T to the Wy, pr-orbit of WMt(WM)=1 as wMW (wM)™1 = Wy as. It is known that

t(WM) respects the antidominant alcove walk bases [?, Proposition 2.20]: it sends E (w) to
EVM (5 Map(wM)=1) for w € Wr(1). O
We deduce:

Corollary 4.29. Let V be a right Har,r-module. Then V is supersingular if and only if the
right Hw. v, rR-module wMy s supersingular.

Assume R = C. The supersingular simple H s c-modules are classified in [?]. By Corol-
laries ?? and ?7, the classification of the simple Hc-modules in [?] remains valid with the
He-modules Iy (P, V, Q) instead of CIy(P,V, Q):

Corollary 4.30 (Classification of simple Hc-modules). Assume R = C. Let (P,V,Q) be a
He-triple where V is simple and supersingular. Then, the Ho-module Ty (P, V, Q) is simple.
A simple He-module is isomorphic to Iy (P, V, Q) for a Ho-triple (P,V, Q) where V is simple
and supersingular, P, Q) and the isomorphism class of V are unique.

4.6. A commutative diagram. We prove in this section Proposition ??. For Q C Q' C
P(V) we show by an explicit computation that

g 0@ Q) opg Ind}f | (en, o (WM V)) = Indff (e, o (W.V)).

is equal to ((w.Q,w.Q’). The R-module €ty o (WM.V) ® 1y generates the Hp-module
ey, o (W) @y o por Hir = Ind%WAQl(eHw‘ o (WM.V)) and by (?7))

(4.22) L(w.Q,w.QNv®1ly) =v® > T;

War,
de W'QWJWWIQ/

for v € V seen as an element of ey, (WM.V) in the LHS and an element of eHwAQ(WM.V)
in the RHS.

—1 - / _ *
Lemma 4.31. (ug 0i(Q, Q") o pg)(v®@1y) =v® ZdeWXMQ qd Tva(wQ’cZ)—l'
Q/
Proof. pg(v® 1y) is the unique homomorphism fWAJQ, , € HomHM7 o (H, EH ey (V)) sending
b Q/
T;,q to v and vanishing on T} for d’ € W Mo \{w?} by (?2). By (??),i(Q, Q’) is the natural
embedding of HomHM&e* (R, en,, (V) in HomHMéye* (M, exq (V) therefore i(Q, Q') (f vy 71})
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is the unique homomorphism Homy, _ o (H,eno(V)) sending Ty, o/ to v and vanishing on T,
o

War

’ %
for d € W Mo’ \ {w?'}. As WMo = WwWerw MZ[’Q’ this homomorphism vanishes on Ty for

W
w not in we'W MZI,Q. By [?, Lemma 2.22], the inverse of g is the H g-isomorphism:

1

(4.23) Homy, _ g (H, erq (V) 79, maf, g (€ g (WHV))

fe > HT)OThugs

deWwWm

where WWM is the set of d € W with minimal length in the coset dWj;. We deduce the
explicit formula:

(g i@ Q) ong) @l = D> i@ Q) g JTa) © Thug,

W
wew Mo

W, . My WMQ
Some terms are zero: the terms for w € W@ not in w"e'W,, M We analyse the other

. W Wi . . W,
terms for w in W™ e N WMQ’WMQIQ; this set is wMe’ WM Mo Let w = wMer d,d e WM A

and w = wMe'd with d € ;W lifting d. By the braid relatlons Ty = T‘;VMQ,T . We have
T;= 9*(T;4Q') by the braid relations because d € Way,,, Sn,, C Saff and 0 (céwQ') = ¢; for
s € SMQ,. As WMQ, C Wy NW,+ , we deduce:

Q Q

Mgy

i@ Q) [y )(Ta) = i@ Q) g N T Ti) =i(Q Q) 2aagy N T )T
= de~ Mo _ qqu.-
Corollary 7?7 gives the last equality. O

The formula for (,uél 0i(Q,Q") o py)(v ® 1y) given in Lemma ?? is different from the
formula (?7?) for «(w.Q,w.Q")(v® 1H) It needs some work to prove that they are equal.
W
p = {wd™lw | d € WMZ,Q}, so the two

summation sets have the same number of elements. But better,

A first reassuring remark is that Mw Wy

oWy, = {wewd) [dew M@}

Q/

WMQ WMQ . L
because WQ/WMQI wg = WMQ, . To prove the latter equality, we apply the criterion: w €

. W, - . .. Warg
Wiy, lies in Wy, "Q if and only if w(a) > 0 for all @ € Ag noticing that d € WMQ
implies wg(a) € AQ, dwg(a) € =Py, Wodwg(a) > 0. Let zq = we(w?d)"l. We
have wMe (wMe'd)~! = Z; because the lifts w of the elements w € W satisfy the braid
relations and {(xq) = €(de*1WQ/) = lwg) — lwod™) = lwg) — l(wg) — ¢(d) =
Uwg) — Uwg) — £(d) = —U(w?) + L(w®) — £(d). We have qq = AWy quaw,, o Decause
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wd 'w = Ww.QTdWw.Q/» ald g = ¢4-1 = Qyg-1w- SO
* _ *
E QdTV;,Q(‘;VQ’J)—l = E quAQxdWW,QlTi"d‘
W W
Q Q
dEWAlQ, T4€ W WMW'Q/

In the RHS, only WM.V, w.Q, w.Q’ appear. The same holds true in the formula (??). The map
(P,V,Q,Q") — (w.P,wM.V,w.Q,w.Q') is a bijection of the set of triples (P, V,Q, Q') where
P = MN,Q,Q are standard parabolic subgroups of G, V a right H-module, Q C Q' C P(V)
by Lemma ??. So we can replace (w.P,wM.V, w.Q,w.Q') by (P,V,Q,Q'). Our task is
reduced to prove in ey, (V) Qn, 1.0 Hp:

Q

(424) V&K Z TJ =vQ® Z QWQdWQ/ T;lf
dEWNIQ WMQ’ dGWMQ WNIQ’
A second simplification is possible: we can replace Q C Q' by the standard parabolic sub-
groups Q2 C Q% of G with Ag, = Ag\Ap and AQg2 = A\ Ap, because Ap and Ap(y) \Ap
are orthogonal. Indeed, WMQ, =Wy x WMQ, and WMQ =Wy x WMQ2 are direct products,
2

the longest elements wg = w MW@, WQ = WWQ, are direct products and
W A%
Mg WMQ/ = Mg WMQIz’ WQdWQ/ = WQQdWQé.
Once this is done, we use the properties of ez, (V): vh ® 13 = v ® 0g(h) for h € HM5 ,
2
and TS acts trivially on enq (V) for w € IWMéQ U (A1) N 1WM/ ) Set 1WM/ ={w €
1WM/ | w is a lift of some element in WMQ, } and W M), smrularly Then Z; N 1WM/ C
2
(A( ) ﬂ IWM’ ) N 1WM52 and 1WM&;2 C 1WM&22 N 1WM52' This implies that ( ) Where
Q C Q' has been replaced by Q2 C Q) follows from a congruence

(4.25) oo Ti= > Qoo dw, T

w W
de MR2w,, de MR2w,,
Q@ Qy

in the finite subring H(1WMQ/ ) of H generated by {T,, | w € 1WMé, } modulo the the right
2 2
ideal J5 with generators {QQ(TQ’*) —1lwe (Zrn 1WM/ ) U 1Way, }.
Q2
Another simplification concerns T* modulo J5 for d 26 WMQ,. We recall that for any

reduced decomposition d = s1... s, Wlth si € SNWay,, , We have T = (T5, —cz,) ... (15, —cs,.)

where the §; are admissible. For § admissible, by (‘77)
cs =qs — 1.
Therefore
T = (T~ g 1) (T, g, + 1)
Let J' C J2 be the ideal of H(leéz’Q) generated by {T; — 1 |t € Zx N 1WMé/2}. Then the
ring H(leé/ )/J’" and its right ideal Jo/J’ are the specialisation of the generic finite ring

2
H(WMQ, )9 over Z[(Qs)seSMQ,] where the g, for s € Sy, = 5N Wy, are indeterminates,
2 5 2 2
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and of its right ideal J§ with the same generators. The similar congruence modulo Jj in
H(Wjy, ol )9 (the generic congruence) implies the congruence (??) by specialisation.

We W1211 prove the generic congruence in a more general setting where H is the generic Hecke
ring of a finite Coxeter system(W, S) and parameters (¢s)scs such that gs = gy when s, s” are
conjugate in W. The Hecke ring H is a Z[(¢s)ses|-free module of basis (T3, )wew satisfying
the braid relations and the quadratic relations T? = g5 + (g5 — 1)Ts for s € S. The other basis
(T)wew satisfies the braid relations and the quadratic relations (T7)? = g5 — (gs — 1)T for
s € S, and is related to the first basis by T = Ts — (¢s — 1) for s € S, and more generally
T,T: =T 1Ty = qu for w € W [?, Proposition 4.13].

Let J C S and J is the right ideal of H with generators T}, — 1 for all w in the group W
generated by J.

Lemma 4.32. A basis of J is (T, — 1)Ty, for wy € Wy \ {1}, w2 € VW, and adding T,
for wy € WIW gives a basis of H. In particular, J is a direct factor of H.

Proof. The elements (T, — 1)T;; for wy € Wy, w € W generate J. We write w = ujwy with
unique elements u; € Wy, wo € WW, and T = T} Tj,. Therefore, (Tj — 1)T; Ty, By an
induction on the length of u1, one proves that (Ty;, —1)T};, is a linear combination of (Ty —1)

for v; € W as in the proof of Proposition ?7. It is clear that the elements (T, — )T, and
Ty, for wy € Wy \ {1}, wo € VW form a basis of H. O

Let w; denote the longest element of W; and w = wg.

Lemma 4.33. In the generic Hecke ring H, the congruence modulo J

Z T'dE Z qWJdWT;

deWow deWIw
holds true.

Proof. Step 1. We show:
WJW = WJWJWW; (]w‘](]wL]dw,IZlk - TWJTWJdWT:v-

The equality between the groups follows from the characterisation of W/ W in W: an element
d € W has minimal length in W ;d if and only if (ud) = ¢(u) + ¢(d) for all u € W ;. An easy
computation shows that £(uwjdw) = £(u) + {(w dw) for all u € Wy, d € W/W (both sides
are equal to £(u) + £(w) — £((wy) — £(d)). The second equality follows from q¢w,q¢w,dw = Gaw
because (wy)? = 1 and ¢(wy) + {(wydw) = £(dw) (both sides are £(w) — £(d)) and from
qaw Ty = Taw Ty -1 T] = TawTy- We also have Tyw = T, Tw dw-

Step 2. The multlphcatlon by gw, on the quotient H/J is injective (Lemma ??) and
Gw; = Tw,. By Step 1, qw awl] = Tw awly and

Z QWde ;= Z ,—Td,—zﬂ<

deWsw deWIw
The congruence
(4.26) Yo Tu= ) T
aeV'ow deWIw

for all s € S implies the lemma because Ty, = T3, ...T; for any reduced decomposition
W =2581...8, with s; € S.
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Step 3. When J = (), the congruence (??) is an equality:
(4.27) > Tw=)Y T.JI;.
weW weW

It holds true because Y, w Tw = > Tw(Ts+1) and (Ts+V)TF =TsTr+TF = qs+ T8 =
Ts+ 1.
Step 4. Conversely the congruence (?7) follows from (??) because

NoTu=(>T) > Ta=(> @) Y. T

weW ueWy deVow ueWy deWow

w<ws

(vecall g, =T T, = T,) and we can simplify by >, -, ¢u in H/J. O

This ends the proof of Proposition 77.

5. UNIVERSAL REPRESENTATION Iy (P, V, Q) ®y RIU\G|
The invariant functor (—)¥ by the pro-p Iwahori subgroup U of G has a left adjoint
— Qup RU\G] : Modgr(H) — Mod%® (G).

The smooth R-representation V ®4,, R{U\G] of G constructed from the right Hr-module V
is called universal. We write

RU\G] = X.

Question 5.1. Does V # 0 implies V ®, X # 0 ? or does v ® 13y = 0 for v € V implies
v =0 7 We have no counter-example. If R is a field and the H r-module V is simple, the two
questions are equivalent: V ®4, X # 0 if and only if the map v — v ® 1 is injective. When
R =0C,V ®y, X # 0 for all simple Hc-modules V if this is true for V simple supersingular
(this is a consequence of Corollary ?7).

The functor —®4, X satisfies a few good properties: it has a right adjoint and is compatible
with the parabolic induction and the left adjoint (of the parabolic induction). Let P = M N
be a standard parabolic subgroup and X;; = R[Uy\M]. We have functor isomorphisms

(5.1) (— ®np X) 0 Indft,  — Ind% o(— @y, Xar),
(5.2) (v o (= ®@up X) = (— @, Xar) 0 L3,

The first one is [?, formula 4.15], the second one is obtained by left adjunction from the iso-
morphism IndﬁM o(—)M — (=) oIndG [?, formula (4.14)]. If V is a right H g-supersingular
module and p is nilpotent in V, then ﬁ%M (V) =0if M # G (Proposition ??). Applying (77?)
we deduce:

Proposition 5.2. If p is nilpotent in V and V supersingular, then V Q1 , X is left cuspidal.

Remark 5.3. For a non-zero smooth R-representation 7 of M, A, is orthogonal to Ap if 7 is
left cuspidal. Indeed, we recall from [?, II.7 Corollary 2] that A, is not orthogonal to Ap if
and only if it exists a proper standard parabolic subgroup X of M such that o is trivial on
the unipotent radical of X; moreover 7 is a subrepresentation of Ind}! (7|x), so the image of
7 by the left adjoint of Ind]\)g is not 0.
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From now on, V is a non-zero right H s g-module and
o=V ®7‘l1\/l,R XM.

In general, when o # 0, let P (o) be the standard parabolic subgroup of G' with Ap () =
ApUA | , where A , is the set of simple roots o € A, orthogonal to Ap.

Proposition 5.4. (1) P(V)C Py(o) if o #0.

(2) P(V) = Pyi(0) if the map v — v ® 1y, is injective.
(3) P(V) = P(o) if the map v — v®]1y,, is injective, p nilpotent inV andV supersingular.
(4) P(V)=P(o) ifc #0, R is a field of characteristic p and V simple supersingular.

Proof. (1) P(V) C Py (o) means that Z N Mj, acts trivially on V ® 1,,, where My is the
standard Levi subgroup such that Ay, = Ay. Let z € ZN M, and v € V. As Ay and
Ay are orthogonal, we have TM*(2) = TM(2) and Up2Upy = Uprz. We have v ®@ 1y, =
vTM(2) @ 1y, = v @ TM(2) 1y, =0 @ 1y, =v @ 27y, = 2710 @ 1y,,).

(2) If v®1yy,, = 0 for v € V implies v = 0, then o # 0 because V # 0. By (1) P(V) C P, (o).
As in the proof of (1), for 2 € ZN M| , we have vTM*(2) @ 1y, = vTM(2) @ 1y, = v @ 1y,
and our hypothesis implies vT™*(2) = v hence P(V) D P (o).

(3) Proposition ??, Remark ?? and (2).

(4) Question ?? and (3). O

Let @ be a parabolic subgroup of G with P C @ C P(V). In this chapter we will compute
Iy(P,V,Q) ® RU\G) where Iy (P,V,Q) = Ind}{,  (e(V) @ (Indg” 1)"40) (Theorem
?7). The smooth R-representation Ig(P,o,Q) of G is well defined: it is 0 if ¢ = 0 and
Indg(o) (e(o)® Stg(g)) if o # 0 because (P, 0, Q) is an R|[G]-triple by Proposition ??. We will
show that the universal representation Iy (P, V, Q) ®y R[U\G] is isomorphic to I(P,o,Q),
if P(V) = P(0) and p = 0, or if 0 = 0 (Corollary ??). In particular, when R = C and
Iy(P,V, Q) @y RU\G] ~ Ig(P,0,Q) when V is supersingular

5.1. Q@ = G. We consider first the case = G. We are in the simple situation where V is
extensible to H and P(V) = P(o) = G, I(P,V,G) = e(V) and Ig(P,0,G) = e(0). We recall
that A\ Ap is orthogonal to Ap and that My denotes the standard Levi subgroup of G with
Ay, = A\ Ap.

The Hg-morphism e(V) — e(0)¥ = o“™ sending v to v®1y,, for v € V, gives by adjunction
an R[G]-homomorphism

G
VR 1y = v 1y, s e(V) @y, X 3—>e(0),

If ¢ is an isomorphism, then e(V) ®3, X is the extension to G of (e(V) @3, X)|a, meaning
that M} acts trivially on e(V) ®4, X. The converse is true:

Lemma 5.5. If M} acts trivially on e(V) @4, X, then ®% is an isomorphism.

Proof. Suppose that M} acts trivially on e()V) ®y, X. Then e(V) ®y, X is the extension to G
of (e(V) ®uy X)|ar, and by Theorem ??, (e(V) ®3;, X)¥ is the extension of (e(V) @y, X)“M.
Therefore

(v @ 1T = (v @ 1) TM*  for all v € V,w € Wy(1).

AsV is extensible to H, the natural map v — v®1y : V LN (e(V) @, X)¥M is H pr-equivariant,
ie.:
vTM* @ 1y = (v @ 1y)TM* for all v € V,w € Wy(1).
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because ((?72)) vTa"* @ 1y = v @ 1y = v @ T = (v ® 1) T in e(V) Qup X

We recall that —®7,, , Xas is the left adjoint of (—)¥¥. The adjoint R[M]-homomorphism
o=V 0y r Xu — e(V) @y, X sends v ® 1y, to v ® 1y for all v € V. The R[M]-module
generated by the v ® 13, for all v € V is equal to e(V) ®4, X because M/ acts trivially. Hence
we obtained an inverse of ®C. 0

Our next move is to determine if M acts trivially on e(V) ®4,, X. It is equivalent to see if
M acts trivially on e(V) ® 13 as this set generates the representation e(V) ®4, X of G and
M3 is a normal subgroup of G as My and M commute and G = ZM'M;. Obviously, U N M}
acts trivially on e(V) ® 1. The group of double classes (U N M4)\ M, /(U N M}) is generated
by the lifts § € NN M} of the simple affine roots s of Wy Therefore, M/, acts trivially on

e(V) @, X if and only if for any simple affine root s € Sﬁ/ of Wy, any § € N N M} lifting
2
s acts trivially on e(V) ® 1.

Lemma 5.6. Let v € V,s € 53 and § € N'N M} lifting s. We have
2

(gs + 1) (v ® 1y — 3(v ® 1)) = 0.
Proof. We compute:

To(31y) = $(Tsly) = Ly = Y Su(8) 'y =Y uly,

u uor

To(81y) = 8 (Tslu) = Lyquesy-2 = Ly - = Zu«ﬂu-
u

for u in the group U /(371U NU) and u° in the group 8U(8)~1/(8U(8)~' NU); the reason
is that 32 normalizes U, U5U5~! is the disjoint union of the sets U5u~1(3)~" and U(5)~U is
the disjoint union of the sets ¢(8)"'u~!. We introduce now a natural bijection

(5.3) uw—u? U/ USOU) — SUB)T/(UG) T NU)

which is not a group homomorphism. We recall the finite reductive group Gy s quotient of the
parahoric subgroup £ of G fixing the face fixed by s of the alcove C. The Iwahori groups Z%U
and Z95U(8)~! are contained in £ and their images in G are opposite Borel subgroups
ZyUs y, and Z,UZ%.. Via the surjective maps u v @ : U — Uy y, and u® v @ : 3U(3) ™" — UR,
we identify the groups U /(8 'USNU) ~ U, j, and similarly $U(8) 1 /(8U(3) "' NU) ~ U2 . Let
Gﬁw be the group generated by Us j, and U;’;C, and let B;k =G N ZUsp = (G}, ;N Z;C)Us’k.
We suppose (as we can) that § € K and that its image §; in G,y lies in G;v,s. We have
8kUs e (8) 71 = Ufﬁz and the Bruhat decomposition G;?s = Bl’ﬁ,’S U Uk7s<§kB]/€,s implies the
existence of a canonical bijection w” — @ : (U~ — {1}) = (Uk,s — {1}) respecting the cosets
UOPBAS = ﬂ§kB§g’s. Via the preceding identifications we get the wanted bijection (?7).

For v € e(V) and z € Z° N M} we have vT, = v, 21y = T.1y and v ®@ Ty 1y = T, ® 1y
therefore Z° N M, acts trivially on V ® 14. The action of the group (Z°N MU on V@ 1y is
also trivial. As the image of Z° N M} in Gy contains Z, N Gls,k’

u$(v ® 1) = uP(v ® 1)
when u and u®’ are not units and correspond via the bijection (??). So we have

(5.4) v @ Ts(31y) — (v @ 1y) = v @ Tu(8%1y) — v @ 81y
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We can move T on the other side of ® and as vTs = gsv (Corollary ?7?7), we can replace
T, by q;. We have v ® 5§21y = v ® T,—21y because §2 € Z°nN MY, normalizes U; as we can
move T,—» on the other side of ® and as vT,-2 = v we can forget 52. So (??) is equivalent to
(gs + 1) (v @ 1y — 3(v @ 1)) = 0. O

Combining the two lemmas we obtain:

aff

Proposition 5.7. When V is extensible to H and has no qs + 1-torsion for any s € SM§7

then M} acts trivially on e(V) @y, X and ®% is an R[G]-isomorphism.

Proposition 77 for the trivial character 14, says that 13 ®7,, X is the trivial representation
1¢ of G when g5 + 1 has no torsion in R for all s € S, This is proved in [?, Lemma 2.28|
by a different method. The following counter-example shows that this is not true for all R.

Ezample 5.8. Let G = GL(2, F) and R an algebraically closed field where g5, +1 = ¢5, +1 =0
and Sag = {s0,s1}. (Note that g5, = ¢s, is the order of the residue field of R.) Then the
dimension of 13 ®3, X is infinite, in particular 1y ®, X # 1.

Indeed, the Steinberg representation Stg = (Ind% 12)/1¢ of G is an indecomposable rep-
resentation of length 2 containing an irreducible infinite dimensional representation 7w with
7 = 0 of quotient the character (—1)¥°det, This follows from the proof of Theorem 3 and
from Proposition 24 in [?]. The kernel of the quotient map Stg ® (—1)¥1°det — 14 is infinite
dimensional without a non-zero U-invariant vector. As the characteristic of R is not p, the
functor of U-invariants is exact hence (Stg ® (—1)"@°deH = 15, As — ®y, RU\G] is the
left adjoint of (—)¥ there is a non-zero homomorphism

13 @3, X — Stg @ (—1)valodet

with image generated by its U-invariants. The homomorphism is therefore surjective.
5.2. V extensible to H. Let P = M N be a standard parabolic subgroup of G with Ap and
A\ Ap orthogonal. We still suppose that the H s, g-module V is extensible to #, but now
P C @Q C G. So we have I (P,V,Q) =e(V) ®gr (Stg)u and Ig(P,0,Q) =e(0) ®r Stg where
0 =V ®u,, » Xp. We compare the images by — ®3, X of the H g-modules e(V) @r (Indg 1)
and e(V) ®r (Stg)“ with the smooth R-representations e(o) ® Indg 1 and e(0) ® Stg of G.

As — ®y, X is left adjoint of (—)¥, the Hpg-homomorphism v ® f — v ® Iy, ® f :
e(V) ®r (Indg 1Y = (e(0) ®r Indg 1) gives by adjunction an R[G]-homomorphism

PG
VR Ry~ vy, ®@f:(e(V)®r (Indg 1Y) @3, X =2 e(0) @R Indg 1.

When @Q = G we have @g = ®%. By Remark ??, @8 is surjective. Proposition 7?7 applies
with Mg instead of G and gives the R[Mg]-homomorphism

PR
V@ Lugy, = 0@ Ly, eng (V) ®np p Xnp — eq(o).

Proposition 5.9. The R[G]-homomorphism @g is an isomorphism if ® is an isomorphism,

in particular if V has no qs + 1-torsion for any s € S?\ZOMQ.

Proof. The proposition follows from another construction of @g that we now describe. Propo-

sition 7?7 gives the H r-module isomorphism

v® fou —v®1ly:(e(V) ®r (Indg 1)”) — Ind%Q (eno (V) = enp (V) On, 4 6 H.
Q.R
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We have the R[G]-isomorphism [?, Corollary 4.7]

v® g ® L = fQuasiuy,, ¢ Ind%, (ex4 (V) @y, X) = IndG(er, (V) @ 5 Xntg)
and the R[G]-isomorphism ***

foupery,, = v @ luy, ® fou: Indg(eQ(a)) —e(o)® Indg 1.
From ®% and these three homomorphisms, there exists a unique R[G]-homomorphism
(e(V)®r (Indg 1)) @y, X = e(0) ®r Indg 1

sending v ® fou ® 1y to v ® 1y,, ® fou. We deduce: this homomorphism is equal to oG
VY ® lou ® 1y generates (e(V) ®g (Indg 1Y) @4, X, if 9 is an isomorphism then CIDg is an
isomorphism. By Proposition ??, if V has no ¢s + 1-torsion for any s € S2ff then ®©

MéﬂMQ ’
and CI)S are isomorphisms. O

We recall that the H s g-module V is extensible to H.

Proposition 5.10. The R|[G|-homomorphism @8 induces an R|G]|-homomorphism
(e(V) ®r (St§)") @y X = e(0) @R StG,

It is an isomorphism if @g, is an R[G]-isomorphism for all parabolic subgroups Q' of G
containing @Q, in particular if V has no qs + 1-torsion for any s € S?\f,.
2

Proof. The proof is straightforward, with the arguments already developped for Proposition
?? and Theorem ??. The representations e(0) ®@p Stg and (e(V) ®r (Stg)“) ®np X of G are
the cokernels of the natural R[G]-homomorphisms

®gcqre(o) ®r Indg, 1 142, e(o) ®r Indg 1,

id@a¥ ®@id
1dQa™ ®1

®qco (e(V) ®r (Ind@, 1)) @y, X (e(V) ®r (Ind§ 1)) @3, X.

These R[G]-homomorphisms make a commutative diagram with the R[G]-homomorphisms
@QQQ@S/ and @g going from the lower line to the upper line. Indeed, let v ® fou ® 1y €
(e(V) ®r (Indg, 1)¥) ®3, X. One one hand, it goes to v ® fQUOQ/(eg) ® 1y € (e(V) ®r
(Indg 1)%) ®y,, X by the horizontal map, and then to v ® 1y, ® fQuﬁQ/(eg) by the vertical
map. On the other hand, it goes to v ® 1y,, ® fgu/ by the vertical map, and then to
v ® 1y, ® fQMOQ/(eg) by the horizontal map. One deduces that @8 induces an R|[G]-
homomorphism (e(V) ®g (Stg)u) Qup X — e(0) ®r Stg, which is an isomorphism if @8, is
an R[G]-isomorphism for all Q C Q'. O

5.3. General. We consider now the general case: let P = MN C @ be two standard

parabolic subgroups of G and V a non-zero right #H s g-module with @ C P(V). We recall
In(P,V,Q) = Ind%M(v) ((6(V)®R(Stg(v))uzu(v)) and 0 = V®y,, , Xur (Proposition??). There
is a natural R[G|-homomorphism

7. 1mal P(V)
Iy(P,V,Q) Qnp X — IndP(V)(eM(V) (o) ®r StQ )
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obtained by composition of the R[G]-isomorphism [?, Corollary 4.7] (proof of Proposition ?7?):
MV
In(P,V,Q) @y X — Indg(v)((e(]/) ®R (StQm(z\/}(v))uM(w) DHary.n XMV))s
with the R[G]-homomorphism
PV by
image by the parabolic induction Indg(v) of the homomorphism

(V) @r (St ")10) Gray i, 1 Knr) = earn(0) @ St
. . PV) _ sM(OV)
induced by the R[M (V)]-homomorphism (I)Q = <I>QmM V)
instead of G.

This homomorphism (IJIG is an isomorphism if @S(V)

of Proposition 7?7 applied to M (V)

is an isomorphism, in particular if V
has no ¢s + 1-torsion for any s € Sjavf[z where Ap, = Apryy \ Ay (Proposition ?77). We get
the main theorem of this section:

Theorem 5.11. Let (P = MN,V,Q) be an Hp-triple and 0 =V @y, n RUn\M]. Then,
(P,0,Q) is an R[G]-triple. The R|G]|-homomorphism

¢ G P(V)
Iny(P,V,Q) @y, RU\G] — IndP(V) (emv)(0) ®r StQ )
)

. . .2 P(V) . . . . . . L
s an isomorphism if <I>Q is an isomorphism. In particular @? is an isomorphism if V has

no qs + 1-torsion for any s € Sj’\“f,.
2

Recalling I(P,0,Q) = Indg(g)(e(a) ®R Stg(g)) when o # 0, we deduce:

Corollary 5.12. We have:

Iy(P,V, Q) @y, RU\G] ~ Ig(P,0,Q), ifc #0, P(V) = P(o) and V has no gs+ 1-torsion
for any s € Sf\f,z.

I’H(Pa V7 Q) ®HR R[Z/{\G] = IG'(Pa g, Q) = 07 ZfJ =0.

Recalling P(V) = P(0) if 0 # 0, R is a field of characteristic p and V simple supersingular
(Proposition ?? 4)), we deduce:

Corollary 5.13. Iy(P,V,Q)®y, RIU\G| ~ Ic(P,0,Q) if R is a field of characteristic p and
V simple supersingular.

6. VANISHING OF THE SMOOTH DUAL

Let V be an R[G]-module. The dual Homp(V, R) of V is an R[G]-module for the contra-
gredient action: gL(gv) = L(v) if g € G, L € Hompg(V, R) is a linear form and v € V. When
V € Mod% (G) is a smooth R-representation of G, the dual of V' is not necessarily smooth. A
linear form L is smooth if there exists an open subgroup H C G such that L(hv) = L(v) for
all h € H,v € V; the space Homp(V, R)*>of smooth linear forms is a smooth R-representation
of G, called the smooth dual (or smooth contragredient) of V. The smooth dual of V is
contained in the dual of V.

Ezample 6.1. When R is a field and the dimension of V over R is finite, the dual of V is
equal to the smooth dual of V' because the kernel of the action of G on V is an open normal
subgroup H C G; the action of G on the dual Hompg(V, R) is trivial on H.
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We assume in this section that R is a field of characteristic p. Let P = M N be a parabolic
subgroup of G and V € Mod% (M). Generalizing the proof given in [?, 8.1] when G =
GL(2,F) and the dimension of V' is 1, we show:

Proposition 6.2. If P # G, the smooth dual of Tnd% (V) is 0.

Proof. Let L be a smooth linear form on Ind%(V) and K an open pro-p-subgroup of G' which
fixes L. Let J an arbitrary open subgroup of K, g € G and f € (Ind%(V))” with support
PgJ. We want to show that L(f) = 0. Let J’ be any open normal subgroup of J and let ¢
denote the function in (Ind%(V))”" with support PgJ’ and value ¢(g) = f(g) at g. For j € J
we have L(jp) = L(y), and the support of jp(x) = ¢(zj) is PgJ’j~!. The function f is the
sum of translates jo, where j ranges through the left cosets of the image X of g~ 'Pg N J
in J/J', so that L(f) = rL(p) where r is the order of X in J/J'. We can certainly find .J’
such that r # 1, and then r is a positive power of p. As the characteristic of C' is p we have
L(f)=0. O

The module R[\G] is contained in the module R¥\C of functions f : U\G — R. The
actions of H and of G' on R[U\G] extend to RY\C by the same formulas. The pairing

(f.0) = (f0) = > fl@)elg) : BN\Y x RU\G] - R
geU\G

identifies RY\C with the dual of R[U\G]. Let h € H and h € H, h(g) = h(g~") for g € G.
We have

(fshe) = (hf, 0).
Proposition 6.3. When R is an algebraically closed field of characteristic p, G is not compact

modulo the center and V is a simple supersingular right Hpr-module, the smooth dual of
VY @, RU\G] is 0.

Proof. Let H¥T be the subalgebra of Hp of basis (Tw)wewr 1y where W'(1) is the inverse
image of W’ in W (1). The dual of V ®y,,, R[UU\G] is contained in the dual of V Ryqar RIU\G];
the H-module V‘H?{f is a finite sum of supersingular characters [?]. Let y : H&4 — R be
a supersingular character. The dual of x Ry R[U\G] is contained in the dual of R[U\G]|

isomorphic to RY\?. Tt is the space of f € RY\G with hf = x(h)f for all h € HM. The
smooth dual of x @ R[U\G] is 0 if the dual of x Dyyarr R[U\G] has no non-zero element
fixed by U. Let us take f € RU\C/U with hf = x(h)f for all h € H We shall prove that
f=0. We have T,, = T,,-1 for w € W(1).
The elements (T})cz, and (Ts),cgen Where § is an admissible lift of s in W2 (1), generate
the algebra H%ﬁ and
T -
TiTy = T, TiTw = { o
c;ly Ssw<w.
with ¢; = —|Z_]| Ztézz@ T} because the characteristic of R is p [?, Proposition 4.4]. Express-

ing f = ZwEW(l) aywTy, ay € R, as an infinite sum, we have

th: Z =1L, Tgf: Z (a(§)71w+awC§)Tw’

weW (1) weW (1),5w<w



ON PRO-p-IWAHORI INVARIANTS OF R-REPRESENTATIONS OF REDUCTIVE p-ADIC GROUPS 37

where < denote the Bruhat order of W (1) associated to ST [?] and [?, Proposition 4.4]. A
character x of ’H%ﬁ is associated to a character xi : Zr — R* and a subset J of

S;f ={s¢€ gaft | (Xk)|lec,s trivial }
[?, Definition 2.7]. We have

X(T¢) = xk(t) t € Zg,

(6.1) 0 s € SN\ ) (xk)(cs) = {

0 s oot gaff
T5) =
X(Ts) {—1 seJ

. Xk’
a
-1 SeSXk'

Therefore x(t)f = T;f = Tj-1 f hence i (t)aw = ap. We have x(T3)f = Tsf = T f =
TsT(s-2f = xk((3))Tsf; as (3)* € Zy, ¢ 17, three lines before Proposition 4.4] and J C S;g,
we obtain

_Jo se s
(6.2) Taf = {—f seJ.

Introducing xx(t)ay, = agy in the formula for Tsf, we get

Z yCs Ly = _|Z]/§75 -t Z Aoy Tty

weW (1),5w<w weW (1),5w<w,teZ},

= —’Z]/g’s -1 Z a/tflew
weW (1),5w<w,t€Z},
=1zt X ) 3wl

tezy, weW (1),5w<w

= Xk(c§) Z awTw-

weW (1),5w<w

Tsf = Z (a@)-1w + awxk(cs)) Tw
weW (1),5w<w
_ ) 2 wew (1) sw<w 43) 1wl s € 5o\ saff,
ZwEW(l),§w<w(a(§)_1w - aw)Tw S € S;'I;f

From the last equality and (?7) for T5f, we get:

. {o s € JU (S 52 Fu < w,

oy sESff\J.

(6.3)

Assume that a,, # 0. By the first condition, we know that w > dw for s € J U (52 \ S;f).

The character y is supersingular if for each irreducible component X of S, the intersection
X NJ is not empty and different from X [?, Definition 2.7, Theorem 6.18]. This implies that
the group generated by the s € S;f \ J is finite. If x is supersingular, by the second condition

we can suppose w > Sw for any s € ST But there is no such element if S is not empty. O

Theorem 6.4. Let m be an irreducible admissible R-representation of G with a non-zero
smooth dual where R is an algebraically closed field of characteristic p. Then w is finite
dimensional.



38 N. ABE, G. HENNIART, AND M.-F. VIGNERAS

Proof. Let (P, 0,Q) be a R|G]-triple with o supercuspidal such that m ~ I5(P, o, Q). The rep-
resentation I(P, o, Q) is a quotient of Indg eq(o) hence the smooth dual of Indg eq(o) is not
zero. From Proposition 7?7, ) = G. We have Ig(P,0,G) = e(0). The smooth dual of ¢ con-
tains the smooth linear dual of e(o) hence is not zero. As o is supercuspidal, the H/-module
oYM contains a simple supersingular submodule V [?, Proposition 7.10, Corollary 7.11]. The
functor — ®y,,, , R[Un/\M] being the right adjoint of (—)4n | the irreducible representation
o is a quotient of V ®4,, , R[Uy\M], hence the smooth dual of V ®3,, , R[Un\M] is not
zero. By Proposition 7?7, M = Z. Hence o is finite dimensional and the same is true for
e(oc) =1q(B,0,G) ~ 7. O

Remark 6.5. When the characteristic of F' is 0, Theorem ?? was proved by Kohlhaase for
a field R of characteristic p. He gives two proofs [?, Proposition 3.9, Remark 3.10], but
none of them extends to F' of characteristic p. Our proof is valid without restriction on the
characteristic of F' and does not use the results of Kohlhaase. Our assumption that R is an
algebraically closed field of characteristic p comes from the classification theorem in [?].
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