ON PRO-p-IWAHORI INVARIANTS OF R-REPRESENTATIONS OF REDUCTIVE p-ADIC GROUPS

N. ABE, G. HENNIART, AND M.-F. VIGNÉRAS

ABSTRACT. Let F be locally compact field with residue characteristic p, and \mathbf{G} a connected reductive F-group. Let \mathcal{U} be a pro-p Iwahori subgroup of $G = \mathbf{G}(F)$. Fix a commutative ring R. If π is a smooth R[G]-representation, the space of invariants $\pi^{\mathcal{U}}$ is a right module over the Hecke algebra \mathcal{H} of \mathcal{U} in G.

Let P be a parabolic subgroup of G with a Levi decomposition P=MN adapted to \mathcal{U} . We complement previous investigation of Ollivier-Vignéras on the relation between taking \mathcal{U} -invariants and various functor like Ind_P^G and right and left adjoints. More precisely the authors' previous work with Herzig introduce representations $I_G(P,\sigma,Q)$ where σ is a smooth representation of M extending, trivially on N, to a larger parabolic subgroup $P(\sigma)$, and Q is a parabolic subgroup between P and $P(\sigma)$. Here we relate $I_G(P,\sigma,Q)^U$ to an analogously defined \mathcal{H} -module $I_{\mathcal{H}}(P,\sigma^{\mathcal{U}_M},Q)$, where $\mathcal{U}_M=\mathcal{U}\cap M$ and $\sigma^{\mathcal{U}_M}$ is seen as a module over the Hecke algebra \mathcal{H}_M of \mathcal{U}_M in M. In the reverse direction, if \mathcal{V} is a right \mathcal{H}_M -module, we relate $I_{\mathcal{H}}(P,\mathcal{V},Q)\otimes c\operatorname{-Ind}_U^G$ 1 to $I_G(P,\mathcal{V}\otimes_{\mathcal{H}_M}c\operatorname{-Ind}_{\mathcal{U}_M}^M 1,Q)$. As an application we prove that if R is an algebraically closed field of characteristic P, and P is an irreducible admissible representation of P, then the contragredient of P is 0 unless P has finite dimension.

Contents

1. Introduction

1.1. The present paper is a companion to [?] and is similarly inspired by the classification results of [?]; however it can be read independently. We recall the setting. We have a non-archimedean locally compact field F of residue characteristic p and a connected reductive F-group G. We fix a commutative ring R and study the smooth R-representations of G = G(F).

In [?] the irreducible admissible R-representations of G are classified in terms of supersingular ones when R is an algebraically closed field of characteristic p. That classification is expressed in terms of representations $I_G(P, \sigma, Q)$, which make sense for any R. In that notation, P is a parabolic subgroup of G with a Levi decomposition P = MN and σ a smooth R-representation of the Levi subgroup M; there is a maximal parabolic subgroup $P(\sigma)$ of G containing P to which σ inflated to P extends to a representation $e_{P(\sigma)}(\sigma)$, and Q is a parabolic subgroup of G with $P \subset Q \subset P(\sigma)$. Then

$$I_G(P, \sigma, Q) = \operatorname{Ind}_{P(\sigma)}^G(e_{P(\sigma)}(\sigma) \otimes \operatorname{St}_Q^{P(\sigma)})$$

²⁰¹⁰ Mathematics Subject Classification. primary 20C08, secondary 11F70.

Key words and phrases. parabolic induction, pro-p Iwahori Hecke algebra.

The first-named author was supported by JSPS KAKENHI Grant Number 26707001.

where Ind stands for parabolic induction and $\operatorname{St}_Q^{P(\sigma)} = \operatorname{Ind}_Q^{P(\sigma)} R / \sum \operatorname{Ind}_{Q'}^{P(\sigma)} R$, the sum being over parabolic subgroups Q' of G with $Q \subseteq Q' \subset P(\sigma)$. Alternatively, $I_G(P, \sigma, Q)$ is the quotient of $\operatorname{Ind}_{P(\sigma)}^G(e_{P(\sigma)}(\sigma))$ by $\sum \operatorname{Ind}_{Q'}^G e_{Q'}(\sigma)$ with Q' as above, where $e_Q(\sigma)$ is the restriction of $e_{P(\sigma)}(\sigma)$ to Q, similarly for Q'.

In [?] we mainly studied what happens to $I_G(P, \sigma, Q)$ when we apply to it, for a parabolic subgroup P_1 of G, the left adjoint of $\operatorname{Ind}_{P_1}^G$, or its right adjoint. Here we tackle a different question. We fix a pro-p parahoric subgroup \mathcal{U} of G in good position with respect to P, so that in particular $\mathcal{U}_M = \mathcal{U} \cap M$ is a pro-p parahoric subgroup of M. One of our main goals is to identify the R-module $I_G(P, \sigma, Q)^{\mathcal{U}}$ of \mathcal{U} -invariants, as a right module over the Hecke algebra $\mathcal{H} = \mathcal{H}_G$ of \mathcal{U} in G - the convolution algebra on the double coset space $\mathcal{U} \setminus G/\mathcal{U}$ - in terms on the module $\sigma^{\mathcal{U}_M}$ over the Hecke algebra \mathcal{H}_M of \mathcal{U}_M in M. That goal is achieved in section ??, Theorem ??.

1.2. The initial work has been done in [?, §4] where $(\operatorname{Ind}_P^G \sigma)^{\mathcal{U}}$ is identified. Precisely, writing M^+ for the monoid of elements $m \in M$ with $m(\mathcal{U} \cap N)m^{-1} \subset \mathcal{U} \cap N$, the subalgebra \mathcal{H}_{M^+} of \mathcal{H}_M with support in M^+ , has a natural algebra embedding θ into \mathcal{H} and [?, Proposition 4.4] identifies $(\operatorname{Ind}_P^G \sigma)^{\mathcal{U}}$ with $\operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}}(\sigma^{\mathcal{U}_M}) = \sigma^{\mathcal{U}_M} \otimes_{\mathcal{H}_{M^+}} \mathcal{H}$. So in a sense, this paper is a sequel to [?] although some of our results here are used in [?, §5].

As $I_G(P, \sigma, Q)$ is only a subquotient of $\operatorname{Ind}_P^G \sigma$ and taking \mathcal{U} -invariants is only left exact, it is not straightforward to describe $I_G(P, \sigma, Q)^{\mathcal{U}}$ from the previous result. However, that takes care of the parabolic induction step, so in a first approach we may assume $P(\sigma) = G$ so that $I_G(P, \sigma, Q) = e_G(\sigma) \otimes \operatorname{St}_Q^G$. The crucial case is when moreover σ is e-minimal, that is, not an extension $e_M(\tau)$ of a smooth R-representation τ of a proper Levi subgroup of M. That case is treated first and the general case in section $\ref{thm:eq}$? only.

1.3. To explain our results, we need more notation. We choose a maximal F-split torus T in G, a minimal parabolic subgroup B = ZU with Levi component Z the G-centralizer of T. We assume that P = MN contains B and M contains Z, and that U corresponds to an alcove in the apartment associated to T in the adjoint building of G. It turns out that when σ is e-minimal, the set Δ_M of simple roots of T in Lie N is orthogonal to its complement in the set Δ of simple roots of T in Lie U. We assume until the end of this section §??, that Δ_M and $\Delta_2 = \Delta \setminus \Delta_M$ are orthogonal. If M_2 is the Levi subgroup - containing Z - corresponding to Δ_2 , both M and M_2 are normal in G, $M \cap M_2 = Z$ and $G = M_1M_2$. Moreover the normal subgroup M'_2 of G generated by N is included in M_2 and $G = MM'_2$.

We say that a right \mathcal{H}_M -module \mathcal{V} is extensible to \mathcal{H} if T_z^M acts trivially on \mathcal{V} for $z \in Z \cap M_2'$ (§??). In this case, we show that there is a natural structure of right \mathcal{H} -module $e_{\mathcal{H}}(\mathcal{V})$ on \mathcal{V} such that $T_g \in \mathcal{H}$ corresponding to $\mathcal{U}g\mathcal{U}$ for $g \in M_2'$ acts as in the trivial character of G (§??). We call $e_{\mathcal{H}}(\mathcal{V})$ the extension of \mathcal{V} to \mathcal{H} though \mathcal{H}_M is not a subalgebra of \mathcal{H} . That notion is already present in [?] in the case where R has characteristic p. Here we extend the construction to any R and prove some more properties. In particular we produce an \mathcal{H} -equivariant embedding $e_{\mathcal{H}}(\mathcal{V})$ into $\operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}} \mathcal{V}$ (Lemma ??). If Q is a parabolic subgroup of G containing P, we go further and put on $e_{\mathcal{H}}(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G R)^{\mathcal{U}}$ and $e_{\mathcal{H}}(\mathcal{V}) \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}}$ structures of \mathcal{H} -modules (Proposition ?? and Corollary ??) - note that \mathcal{H} is not a group algebra and there is no obvious notion of tensor product of \mathcal{H} -modules.

If σ is an R-representation of M extensible to G, then its extension $e_G(\sigma)$ is simply obtained by letting M'_2 acting trivially on the space of σ ; moreover it is clear that $\sigma^{\mathcal{U}_M}$ is extensible

to \mathcal{H} , and one shows easily that $e_G(\sigma)^{\mathcal{U}} = e_{\mathcal{H}}(\sigma^{\mathcal{U}_M})$ as an \mathcal{H} -module (§??). Moreover, the natural inclusion of σ into $\operatorname{Ind}_P^G \sigma$ induces on taking pro-p Iwahori invariants an embedding $e_{\mathcal{H}}(\sigma^{\mathcal{U}_M}) \to (\operatorname{Ind}_P^G \sigma)^{\mathcal{U}}$ which, via the isomorphism of [?], yields exactly the above embedding of \mathcal{H} -modules of $e_{\mathcal{H}}(\sigma^{\mathcal{U}_M})$ into $\operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}}(\sigma^{\mathcal{U}_M})$.

Then we show that the \mathcal{H} -modules $(e_G(\sigma) \otimes_R \operatorname{Ind}_Q^G R)^{\mathcal{U}}$ and $e_{\mathcal{H}}(\sigma^{\mathcal{U}_M}) \otimes_R (\operatorname{Ind}_Q^G R)^{\mathcal{U}}$ are equal, and similarly $(e_G(\sigma) \otimes_R \operatorname{St}_Q^G)^{\mathcal{U}}$ and $e_{\mathcal{H}}(\sigma^{\mathcal{U}_M}) \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}}$ are equal (Theorem ??).

1.4. We turn back to the general case where we do not assume that Δ_M and $\Delta \setminus \Delta_M$ are orthogonal. Nevertheless, given a right \mathcal{H}_M -module \mathcal{V} , there exists a largest Levi subgroup $M(\mathcal{V})$ of G - containing Z - corresponding to $\Delta \cup \Delta_1$ where Δ_1 is a subset of $\Delta \setminus \Delta_M$ orthogonal to Δ_M , such that \mathcal{V} extends to a right $\mathcal{H}_{M(\mathcal{V})}$ -module $e_{M(\mathcal{V})}(\mathcal{V})$ with the notation of section (??). For any parabolic subgroup Q between P and $P(\mathcal{V}) = M(\mathcal{V})U$ we put (Definition ??)

$$I_{\mathcal{H}}(P, \mathcal{V}, Q) = \operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}}(e_{M(\mathcal{V})}(\mathcal{V}) \otimes_R (\operatorname{St}_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})})^{\mathcal{U}_{M(\mathcal{V})}}).$$

We refer to Theorem ?? for the description of the right \mathcal{H} -module $I_G(P, \sigma, Q)^{\mathcal{U}}$ for any smooth R-representation σ of \mathcal{U} . As a special case, it says that when σ is e-minimal then $P(\sigma) \supset P(\sigma^{\mathcal{U}_M})$ and if moreover $P(\sigma) = P(\sigma^{\mathcal{U}_M})$ then $I_G(P, \sigma, Q)^{\mathcal{U}}$ is isomorphic to $I_{\mathcal{H}}(P, \sigma^{\mathcal{U}_M}, Q)$.

Remark 1.1. In [?] are attached similar \mathcal{H} -modules to (P, \mathcal{V}, Q) ; here we write them $CI_{\mathcal{H}}(P, \mathcal{V}, Q)$ because their definition uses, instead of $\operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}}$ a different kind of induction, which we call coinduction. In loc. cit. those modules are use to give, when R is an algebraically closed field of characteristic p, a classification of simple \mathcal{H} -modules in terms of supersingular modules - that classification is similar to the classification of irreducible admissible R-representations of G in [?]. Using the comparison between induced and coinduced modules established in [?, 4.3] for any R, our corollary ?? expresses $CI_{\mathcal{H}}(P, \mathcal{V}, Q)$ as a module $I_{\mathcal{H}}(P_1, \mathcal{V}_1, Q_1)$; consequently we show in §?? that the classification of [?] can also be expressed in terms of modules $I_{\mathcal{H}}(P, \mathcal{V}, Q)$.

1.5. In a reverse direction one can associate to a right \mathcal{H} -module \mathcal{V} a smooth R-representation $\mathcal{V} \otimes_{\mathcal{H}} R[\mathcal{U} \backslash G]$ of G (seeing \mathcal{H} as the endomorphism ring of the R[G]-module $R[\mathcal{U} \backslash G]$).

If
$$\mathcal{V}$$
 is a right \mathcal{H}_M -module, we construct, again using [?], a natural $R[G]$ -map

 $I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}} R[\mathcal{U} \backslash G] \to \operatorname{Ind}_{P(\mathcal{V})}^{G}(e_{M(\mathcal{V})}(\mathcal{V}) \otimes_{R} \operatorname{St}_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})}),$

with the notation of (??). We show in §?? that it is an isomorphism under a mild assumption on the \mathbb{Z} -torsion in \mathcal{V} ; in particular it is an isomorphism if p = 0 in R.

1.6. In the final section §??, we turn back to the case where R is an algebraically closed field of characteristic p. We prove that the smooth dual of an irreducible admissible R-representation V of G is 0 unless V is finite dimensional - that result is new if F has positive characteristic, a case where the proof of Kohlhaase [?] for char(F) = 0 does not apply. Our proof first reduces to the case where V is supercuspidal (by [?]) then uses again the \mathcal{H} -module $V^{\mathcal{U}}$.

2. NOTATION, USEFUL FACTS AND PRELIMINARIES

2.1. The group G and its standard parabolic subgroups P = MN. In all that follows, p is a prime number, F is a local field with finite residue field k of characteristic p; We denote an algebraic group over F by a bold letter, like \mathbf{H} , and use the same ordinary letter for the group of F-points, $H = \mathbf{H}(F)$. We fix a connected reductive F-group \mathbf{G} . We fix a maximal F-split subtorus \mathbf{T} and write \mathbf{Z} for its \mathbf{G} -centralizer; we also fix a minimal parabolic subgroup

B of **G** with Levi component **Z**, so that $\mathbf{B} = \mathbf{Z}\mathbf{U}$ where **U** is the unipotent radical of **B**. Let $X^*(\mathbf{T})$ be the group of F-rational characters of **T** and Φ the subset of roots of **T** in the Lie algebra of **G**. Then **B** determines a subset Φ^+ of positive roots - the roots of **T** in the Lie algebra of **U**- and a subset of simple roots Φ . The **G**-normalizer $\mathbf{N}_{\mathbf{G}}$ of **T** acts on $X^*(\mathbf{T})$ and through that action, $\mathbf{N}_{\mathbf{G}}/\mathbf{Z}$ identifies with the Weyl group of the root system Φ . Set $\mathcal{N} := \mathbf{N}_{\mathbf{G}}(F)$ and note that $\mathbf{N}_{\mathbf{G}}/\mathbf{Z} \simeq \mathcal{N}/Z$; we write \mathbb{W} for \mathcal{N}/Z .

A standard parabolic subgroup of G is a parabolic F-subgroup containing B. Such a parabolic subgroup P has a unique Levi subgroup M containing Z, so that P = MN where N is the unipotent radical of P - we also call M standard. By a common abuse of language to describe the preceding situation, we simply say "let P = MN be a standard parabolic subgroup of G"; we sometimes write N_P for N and M_P for M. The parabolic subgroup of G opposite to P will be written \overline{P} and its unipotent radical \overline{N} , so that $\overline{P} = M\overline{N}$, but beware that \overline{P} is not standard! We write \mathbb{W}_M for the Weyl group $(M \cap N)/Z$.

If $\mathbf{P} = \mathbf{M}\mathbf{N}$ is a standard parabolic subgroup of G, then $\mathbf{M} \cap \mathbf{B}$ is a minimal parabolic subgroup of \mathbf{M} . If Φ_M denotes the set of roots of \mathbf{T} in the Lie algebra of \mathbf{M} , with respect to $\mathbf{M} \cap \mathbf{B}$ we have $\Phi_M^+ = \Phi_M \cap \Phi^+$ and $\Delta_M = \Phi_M \cap \Delta$. We also write Δ_P for Δ_M as P and M determine each other, P = MU. Thus we obtain a bijection $P \mapsto \Delta_P$ from standard parabolic subgroups of G to subsets of Δ , with B corresponds to Φ and G to Δ . If I is a subset of Δ , we sometimes denote by $P_I = M_I N_I$ the corresponding standard parabolic subgroup of G. If $I = \{\alpha\}$ is a singleton, we write $P_\alpha = M_\alpha N_\alpha$. We note a few useful properties. If P_1 is another standard parabolic subgroup of G, then $P \subset P_1$ if and only if $\Delta_P \subset \Delta_{P_1}$; we have $\Delta_{P \cap P_1} = \Delta_P \cap \Delta_{P_1}$ and the parabolic subgroup corresponding to $\Delta_P \cup \Delta_{P_1}$ is the subgroup $\langle P, P_1 \rangle$ of G generated by P and P_1 . The standard parabolic subgroup of M associated to $\Delta_M \cap \Delta_{M_1}$ is $M \cap P_1 = (M \cap M_1)(M \cap N_1)$ [?, Proposition 2.8.9]. It is convenient to write G' for the subgroup of G generated by the unipotent radicals of the parabolic subgroups; it is also the normal subgroup of G generated by U, and we have G = ZG'. For future references, we give now a useful lemma extracted from [?]:

Lemma 2.1. The group $Z \cap G'$ is generated by the $Z \cap M'_{\alpha}$, α running through Δ .

Proof. Take $I = \emptyset$ in [?, II.6.Proposition].

Let v_F be the normalized valuation of F. For each $\alpha \in X^*(T)$, the homomorphism $x \mapsto v_F(\alpha(x)) : T \to \mathbb{Z}$ extends uniquely to a homomorphism $Z \to \mathbb{Q}$ that we denote in the same way. This defines a homomorphism $Z \xrightarrow{v} X_*(T) \otimes \mathbb{Q}$ such that $\alpha(v(z)) = v_F(\alpha(z))$ for $z \in Z, \alpha \in X^*(T)$.

An interesting situation occurs when $\Delta = I \sqcup J$ is the union of two orthogonal subsets I and J. In that case, $G' = M'_I M'_J$, M'_I and M'_J commute with each other, and their intersection is finite and central in G [?, II.7 Remark 4].

2.2. $I_G(P, \sigma, Q)$ and minimality. We recall from [?] the construction of $I_G(P, \sigma, Q)$, our main object of study.

Let σ be an R-representation of M and $P(\sigma)$ be the standard parabolic subgroup with

$$\Delta_{P(\sigma)} = \{ \alpha \in \Delta \setminus \Delta_P \mid Z \cap M'_{\alpha} \text{ acts trivially on } \sigma \} \cup \Delta_P.$$

This is the largest parabolic subgroup $P(\sigma)$ containing P to which σ extends, here $N \subset P$ acts on σ trivially. Clearly when $P \subset Q \subset P(\sigma)$, σ extends to Q and the extension is denoted

by $e_Q(\sigma)$. The restriction of $e_{P(\sigma)}(\sigma)$ to Q is $e_Q(\sigma)$. If there is no risk of ambiguity, we write $e(\sigma) = e_{P(\sigma)}(\sigma)$.

Definition 2.2. An R[G]-triple is a triple (P, σ, Q) made out of a standard parabolic subgroup P = MN of G, a smooth R-representation of M, and a parabolic subgroup Q of G with $P \subset Q \subset P(\sigma)$. To an R[G]-triple (P, σ, Q) is associated a smooth R-representation of G:

$$I_G(P, \sigma, Q) = \operatorname{Ind}_{P(\sigma)}^G(e(\sigma) \otimes \operatorname{St}_Q^{P(\sigma)})$$

where $\operatorname{St}_Q^{P(\sigma)}$ is the quotient of $\operatorname{Ind}_Q^{P(\sigma)} \mathbf{1}$, $\mathbf{1}$ denoting the trivial R-representation of Q, by the sum of its subrepresentations $\operatorname{Ind}_{Q'}^{P(\sigma)} \mathbf{1}$, the sum being over the set of parabolic subgroups Q' of G with $Q \subseteq Q' \subset P(\sigma)$.

Note that $I_G(P, \sigma, Q)$ is naturally isomorphic to the quotient of $\operatorname{Ind}_Q^G(e_Q(\sigma))$ by the sum of its subrepresentations $\operatorname{Ind}_{O'}^G(e_{O'}(\sigma))$ for $Q \subseteq Q' \subset P(\sigma)$ by Lemma 2.5.

It might happen that σ itself has the form $e_P(\sigma_1)$ for some standard parabolic subgroup $P_1 = M_1 N_1$ contained in P and some R-representation σ_1 of M_1 . In that case, $P(\sigma_1) = P(\sigma)$ and $e(\sigma) = e(\sigma_1)$. We say that σ is e-minimal if $\sigma = e_P(\sigma_1)$ implies $P_1 = P, \sigma_1 = \sigma$.

Lemma 2.3 ([?, Lemma 2.9]). Let P = MN be a standard parabolic subgroup of G and let σ be an R-representation of M. There exists a unique standard parabolic subgroup $P_{\min,\sigma} = M_{\min,\sigma}N_{\min,\sigma}$ of G and a unique e-minimal representation of σ_{\min} of $M_{\min,\sigma}$ with $\sigma = e_P(\sigma_{\min})$. Moreover $P(\sigma) = P(\sigma_{\min})$ and $e(\sigma) = e(\sigma_{\min})$.

Lemma 2.4. Let P = MN be a standard parabolic subgroup of G and σ an e-minimal R-representation of M. Then Δ_P and $\Delta_{P(\sigma)} \setminus \Delta_P$ are orthogonal.

That comes from [?, II.7 Corollary 2]. That corollary of loc. cit. also shows that when R is a field and σ is supercuspidal, then σ is e-minimal. Lemma ?? shows that $\Delta_{P_{\min,\sigma}}$ and $\Delta_{P(\sigma_{\min})} \setminus \Delta_{P_{\min,\sigma}}$ are orthogonal.

Note that when Δ_P and Δ_σ are orthogonal of union $\Delta = \Delta_P \sqcup \Delta_\sigma$, then $G = P(\sigma) = MM'_\sigma$ and $e(\sigma)$ is the R-representation of G simply obtained by extending σ trivially on M'_σ .

Lemma 2.5 ([?, Lemma 2.11]). Let (P, σ, Q) be an R[G]-triple. Then $(P_{\min,\sigma}, \sigma_{\min}, Q)$ is an R[G]-triple and $I_G(P, l\sigma, Q) = I_G(P_{\min,\sigma}, \sigma_{\min}, Q)$.

2.3. Pro-p Iwahori Hecke algebras. We fix a special parahoric subgroup \mathcal{K} of G fixing a special vertex x_0 in the apartment \mathcal{A} associated to T in the Bruhat-Tits building of the adjoint group of G. We let \mathcal{B} be the Iwahori subgroup fixing the alcove \mathcal{C} in \mathcal{A} with vertex x_0 contained in the Weyl chamber (of vertex x_0) associated to B. We let \mathcal{U} be the pro-p radical of \mathcal{B} (the pro-p Iwahori subgroup). The pro-p Iwahori Hecke ring $\mathcal{H} = \mathcal{H}(G,\mathcal{U})$ is the convolution ring of compactly supported functions $G \to \mathbb{Z}$ constant on the double classes of G modulo \mathcal{U} . We denote by T(g) the characteristic function of $\mathcal{U}g\mathcal{U}$ for $g \in G$, seen as an element of \mathcal{H} . Let R be a commutative ring. The pro-p Iwahori Hecke R-algebra $\mathcal{H}_{M,R}$ is $R \otimes_{\mathbb{Z}} \mathcal{H}_M$. We will follow the custom to still denote by h the natural image $1 \otimes h$ of $h \in \mathcal{H}$ in \mathcal{H}_R .

For P = MN a standard parabolic subgroup of G, the similar objects for M are indexed by M, we have $\mathcal{K}_M = \mathcal{K} \cap M$, $\mathcal{B}_M = \mathcal{B} \cap M$, $\mathcal{U}_M = \mathcal{U} \cap M$, the pro-p Iwahori Hecke ring $\mathcal{H}_M = \mathcal{H}(M, \mathcal{U}_M)$, $T^M(m)$ the characteristic function of $\mathcal{U}_M m \mathcal{U}_M$ for $m \in M$, seen as an

element of \mathcal{H}_M . The pro-p Iwahori group \mathcal{U} of G satisfies the Iwahori decomposition with respect to P:

$$\mathcal{U}=\mathcal{U}_N\mathcal{U}_M\mathcal{U}_{\overline{N}},$$

where $\mathcal{U}_N = \mathcal{U} \cap N, \mathcal{U}_{\overline{N}} = \mathcal{U} \cap \overline{N}$. The linear map

(2.1)
$$\mathcal{H}_M \xrightarrow{\theta} \mathcal{H}, \quad \theta(T^M(m)) = T(m) \quad (m \in M)$$

does not respect the product. But if we introduce the monoid M^+ of elements $m \in M$ contracting \mathcal{U}_N , meaning $m\mathcal{U}_N m^{-1} \subset \mathcal{U}_N$, and the submodule $\mathcal{H}_{M^+} \subset \mathcal{H}_M$ of functions with support in M^+ , we have [?, Theorem 1.4]:

 \mathcal{H}_{M^+} is a subring of \mathcal{H}_M and \mathcal{H}_M is the localization of \mathcal{H}_{M^+} at an element $\tau^M \in \mathcal{H}_{M^+}$ central and invertible in \mathcal{H}_M , meaning $\mathcal{H}_M = \bigcup_{n \in \mathbb{N}} \mathcal{H}_{M^+}(\tau^M)^{-n}$. The map $\mathcal{H}_M \xrightarrow{\theta} \mathcal{H}$ is injective and its restriction $\theta|_{\mathcal{H}_{M^+}}$ to \mathcal{H}_{M^+} respects the product.

These properties are also true when (M^+, τ^M) is replaced by its inverse $(M^-, (\tau^M)^{-1})$ where $M^- = \{m^{-1} \in M \mid m \in M^+\}.$

3. Pro-p Iwahori invariants of $I_G(P, \sigma, Q)$

3.1. Pro-p Iwahori Hecke algebras: structures. We supplement here the notations of §?? and §??. The subgroups $Z^0 = Z \cap \mathcal{K} = Z \cap \mathcal{B}$ and $Z^1 = Z \cap \mathcal{U}$ are normal in \mathcal{N} and we put

$$W = \mathcal{N}/Z^0, \ W(1) = \mathcal{N}/Z^1, \ \Lambda = Z/Z^0, \ \Lambda(1) = Z/Z^1, \ Z_k = Z^0/Z^1.$$

We have $\mathcal{N} = (\mathcal{N} \cap \mathcal{K})Z$ so that we see the finite Weyl group $\mathbb{W} = \mathcal{N}/Z$ as the subgroup $(\mathcal{N} \cap \mathcal{K})/Z^0$ of W; in this way W is the semi-direct product $\Lambda \rtimes \mathbb{W}$. The image $W_{G'} = W'$ of $\mathcal{N} \cap G'$ in W is an affine Weyl group generated by the set S^{aff} of affine reflections determined by the walls of the alcove \mathcal{C} . The group W' is normal in W and W is the semi-direct product $W' \rtimes \Omega$ where Ω is the image in W of the normalizer $\mathcal{N}_{\mathcal{C}}$ of \mathcal{C} in \mathcal{N} . The length function ℓ on the affine Weyl system (W', S^{aff}) extends to a length function on W such that Ω is the set of elements of length 0. We also view ℓ as a function of W(1) via the quotient map $W(1) \to W$. We write

(3.1) $(\hat{w}, \tilde{w}, w) \in \mathcal{N} \times W(1) \times W$ corresponding via the quotient maps $\mathcal{N} \to W(1) \to W$. When w = s in S^{aff} or more generally w in $W_{G'}$, we will most of the time choose \hat{w} in $\mathcal{N} \cap G'$ and \tilde{w} in the image ${}_{1}W_{G'}$ of $\mathcal{N} \cap G'$ in W(1).

We are now ready to describe the pro-p Iwahori Hecke ring $\mathcal{H} = \mathcal{H}(G,\mathcal{U})$ [?]. We have $G = \mathcal{U}\mathcal{N}\mathcal{U}$ and for $n, n' \in \mathcal{N}$ we have $\mathcal{U}n\mathcal{U} = \mathcal{U}n'\mathcal{U}$ if and only if $nZ^1 = n'Z^1$. For $n \in \mathcal{N}$ of image $w \in W(1)$ and $g \in \mathcal{U}n\mathcal{U}$ we denote $T_w = T(n) = T(g)$ in \mathcal{H} . The relations among the basis elements $(T_w)_{w\in W(1)}$ of \mathcal{H} are:

- (1) Braid relations : $T_w T_{w'} = T_{ww'}$ for $w, w' \in W(1)$ with $\ell(ww') = \ell(w) + \ell(w')$. (2) Quadratic relations : $T_{\tilde{s}}^2 = q_s T_{\tilde{s}^2} + c_{\tilde{s}} T_{\tilde{s}}$

for $\tilde{s} \in W(1)$ lifting $s \in S^{\text{aff}}$, where $q_s = q_G(s) = |\mathcal{U}/\mathcal{U} \cap \hat{s}\mathcal{U}(\hat{s})^{-1}|$ depends only on s, and $c_{\tilde{s}} = \sum_{t \in Z_k} c_{\tilde{s}}(t) T_t$ for integers $c_{\tilde{s}}(t) \in \mathbb{N}$ summing to $q_s - 1$.

We shall need the basis elements $(T_w^*)_{w \in W(1)}$ of \mathcal{H} defined by:

- (1) $T_w^* = T_w$ for $w \in W(1)$ of length $\ell(w) = 0$.
- (2) $T_{\tilde{s}}^* = T_{\tilde{s}} c_{\tilde{s}}$ for $\tilde{s} \in W(1)$ lifting $s \in S^{\text{aff}}$.
- (3) $T_{ww'}^* = T_w^* T_{w'}^*$ for $w, w' \in W(1)$ with $\ell(ww') = \ell(w) + \ell(w')$.

We need more notation for the definition of the admissible lifts of S^{aff} in \mathcal{N}_G . Let $s \in S^{\text{aff}}$ fixing a face \mathcal{C}_s of the alcove \mathcal{C} and \mathcal{K}_s the parahoric subgroup of G fixing \mathcal{C}_s . The theory of Bruhat-Tits associates to \mathcal{C}_s a certain root $\alpha_s \in \Phi^+$ [?, §4.2]. We consider the group G'_s generated by $U_{\alpha_s} \cup U_{-\alpha_s}$ where $U_{\pm \alpha_s}$ the root subgroup of $\pm \alpha_s$ (if $2\alpha_s \in \Phi$, then $U_{2\alpha_s} \subset U_{\alpha_s}$) and the group G'_s generated by $\mathcal{U}_{\alpha_s} \cup \mathcal{U}_{-\alpha_s}$ where $\mathcal{U}_{\pm \alpha_s} = U_{\pm \alpha_s} \cap \mathcal{K}_s$. When $u \in \mathcal{U}_{\alpha_s} - \{1\}$, the intersection $\mathcal{N}_G \cap \mathcal{U}_{-\alpha_s} u \mathcal{U}_{-\alpha_s}$ (equal to $\mathcal{N}_G \cap \mathcal{U}_{-\alpha_s} u \mathcal{U}_{-\alpha_s}$ [?, 6.2.1 (V5)] [?, §3.3 (19)]) possesses a single element $n_s(u)$. The group $Z'_s = Z \cap \mathcal{G}'_s$ is contained in $Z \cap \mathcal{K}_s = Z^0$; its image in Z_k is denoted by $Z'_{k,s}$.

The elements $n_s(u)$ for $u \in \mathcal{U}_{\alpha_s} - \{1\}$ are the admissible lifts of s in \mathcal{N}_G ; their images in W(1) are the admissible lifts of s in W(1). By [?, Theorem 2.2, Proposition 4.4], when $\tilde{s} \in W(1)$ is an admissible lift of s, $c_{\tilde{s}}(t) = 0$ if $t \in Z_k \setminus Z'_{k,s}$, and

(3.2)
$$c_{\tilde{s}} \equiv (q_s - 1)|Z'_{k,s}|^{-1} \sum_{t \in Z'_{k,s}} T_t \mod p.$$

The admissible lifts of S in \mathcal{N}_G are contained in $\mathcal{N}_G \cap \mathcal{K}$ because $\mathcal{K}_s \subset \mathcal{K}$ when $s \in S$.

Definition 3.1. An admissible lift of the finite Weyl group \mathbb{W} in \mathcal{N}_G is a map $w \mapsto \hat{w}$: $\mathbb{W} \to \mathcal{N}_G \cap \mathcal{K}$ such that \hat{s} is admissible for all $s \in S$ and $\hat{w} = \hat{w}_1 \hat{w}_2$ for $w_1, w_2 \in \mathbb{W}$ such that $w = w_1 w_2$ and $\ell(w) = \ell(w_1) + \ell(w_2)$.

Any choice of admissible lifts of S in $\mathcal{N}_G \cap \mathcal{K}$ extends uniquely to an admissible lift of \mathbb{W} ([?, IV.6], [?, Proposition 2.7]).

Let P = MN be a standard parabolic subgroup of G. The groups $Z, Z^0 = Z \cap \mathcal{K}_M = Z \cap \mathcal{B}_M, Z^1 = Z \cap \mathcal{U}_M$ are the same for G and M, but $\mathcal{N}_M = \mathcal{N} \cap M$ and $M \cap G'$ are subgroups of \mathcal{N} and G'. The monoid M^+ (§??) contains $(\mathcal{N}_M \cap \mathcal{K})$ and is equal to $M^+ = \mathcal{U}_M \mathcal{N}_{M^+} \mathcal{U}_M$ where $\mathcal{N}_{M^+} = \mathcal{N} \cap M^+$. An element $z \in Z$ belongs to M^+ if and only if $v_F(\alpha(z)) \geq 0$ for all $\alpha \in \Phi^+ \setminus \Phi_M^+$ (see [?, Lemme 2.2]). Put $W_M = \mathcal{N}_M/Z^0$ and $W_M(1) = \mathcal{N}/Z^1$.

Let $\epsilon = +$ or $\epsilon = -$. We denote by $W_{M^{\epsilon}}$ the images of $\mathcal{N}_{M^{\epsilon}}$ in $W_M, W_M(1)$. We see the groups $W_M, W_M(1), {}_1W_{M'}$ as subgroups of $W, W(1), {}_1W_{G'}$. As θ (§??), the linear injective map

(3.3)
$$\mathcal{H}_M \xrightarrow{\theta^*} \mathcal{H}, \quad \theta^*(T_w^{M,*}) = T_w^*, \quad (w \in W_M(1)),$$

respects the product on the subring $\mathcal{H}_{M^{\epsilon}}$. Note that θ and θ^* satisfy the obvious transitivity property with respect to a change of parabolic subgroups.

3.2. Orthogonal case. Let us examine the case where Δ_M and $\Delta \setminus \Delta_M$ are orthogonal, writing $M_2 = M_{\Delta \setminus \Delta_M}$ as in §??.

From $M \cap M_2 = Z$ we get $W_M \cap W_{M_2} = \Lambda, W_M(1) \cap W_{M_2}(1) = \Lambda(1)$, the semisimple building of G is the product of those of M and M_2 and S^{aff} is the disjoint union of S_M^{aff} and $S_{M_2}^{\text{aff}}$, the group $W_{G'}$ is the direct product of $W_{M'}$ and $W_{M'_2}$. For $\tilde{s} \in W_M(1)$ lifting $s \in S_M^{\text{aff}}$, the elements $T_{\tilde{s}}^M \in \mathcal{H}_M$ and $T_{\tilde{s}} \in \mathcal{H}$ satisfy the same quadratic relations. A word of caution is necessary for the lengths ℓ_M of W_M and ℓ_{M_2} of W_{M_2} different from the restrictions of the length ℓ of W_M , for example $\ell_M(\lambda) = 0$ for $\lambda \in \Lambda \cap W_{M'_2}$.

Lemma 3.2. We have $\Lambda = (W_{M^{\epsilon}} \cap \Lambda)(W_{M'_2} \cap \Lambda)$.

Proof. We prove the lemma for $\epsilon = -$. The case $\epsilon = +$ is similar. The map $v: Z \to X_*(T) \otimes \mathbb{Q}$ defined in §?? is trivial on Z^0 and we also write v for the resulting homomorphism on Λ . For $\lambda \in \Lambda$ there exists $\lambda_2 \in W_{M'_2} \cap \Lambda$ such that $\lambda \lambda_2 \in W_{M^-}$, or equivalently $\alpha(v(\lambda \lambda_2)) \leq 0$ for all $\alpha \in \Phi^+ \setminus \Phi^+_M = \Phi^+_{M_2}$. It suffices to have the inequality for $\alpha \in \Delta_{M_2}$. The matrix $(\alpha(\beta^\vee))_{\alpha,\beta\in\Delta_{M_2}}$ is invertible, hence there exist $n_\beta \in \mathbb{Z}$ such that $\sum_{\beta\in\Delta_{M_2}} n_\beta \alpha(\beta^\vee) \leq -\alpha(v(\lambda))$ for all $\alpha \in \Delta_{M_2}$. As $v(W_{M'_2} \cap \Lambda)$ contains $\bigoplus_{\alpha\in\Delta_{M_2}} \mathbb{Z}\alpha^\vee$ where α^\vee is the coroot of α [?, after formula (71)], there exists $\lambda_2 \in W_{M'_2} \cap \Lambda$ with $v(\lambda_2) = \sum_{\beta\in\Delta_{M_2}} n_\beta \beta^\vee$.

The groups $\mathcal{N} \cap M'$ and $\mathcal{N} \cap M'_2$ are normal in \mathcal{N} , and $\mathcal{N} = (\mathcal{N} \cap M')\mathcal{N}_{\mathcal{C}}(\mathcal{N} \cap M'_2) = Z(\mathcal{N} \cap M')(\mathcal{N} \cap M'_2)$, and

$$W = W_{M'}\Omega W_{M'_2} = W_M W_{M'_2} = W_{M^+} W_{M'_2} = W_{M^-} W_{M'_2}$$

The first two equalities are clear, the equality $W_M W_{M'_2} = W_{M^{\epsilon}} W_{M'_2}$ follows from $W_M = W_M \Lambda$, $W_M \subset W_{M^{\epsilon}}$ and the lemma. The inverse image in W(1) of these groups are

$$(3.4) W(1) = {}_{1}W_{M'}\Omega(1) {}_{1}W_{M'_{2}} = W_{M}(1) {}_{1}W_{M'_{2}} = W_{M^{+}}(1) {}_{1}W_{M'_{2}} = W_{M^{-}}(1) {}_{1}W_{M'_{2}}.$$

We recall the function $q_G(n) = q(n) = |\mathcal{U}/(\mathcal{U} \cap n^{-1}\mathcal{U}n)|$ on \mathcal{N} [?, Proposition 3.38] and we extend to \mathcal{N} the functions q_M on $\mathcal{N} \cap M$ and q_{M_2} on $\mathcal{N} \cap M_2$:

$$(3.5) q_M(n) = |\mathcal{U}_M/(\mathcal{U}_M \cap n^{-1}\mathcal{U}_M n)|, q_{M_2}(n) = |\mathcal{U}_{M_2}/(\mathcal{U}_{M_2} \cap n^{-1}\mathcal{U}_{M_2} n)|.$$

The functions q, q_M, q_{M_2} descend to functions on W(1) and on W, also denoted by q, q_M, q_{M_2} .

Lemma 3.3. Let $n \in \mathcal{N}$ of image $w \in W$. We have

- (1) $q(n) = q_M(n)q_{M_2}(n)$.
- (2) $q_M(n) = q_M(n_M)$ if $n = n_M n_2$, $n_M \in \mathcal{N} \cap M$, $n_2 \in \mathcal{N} \cap M'_2$ and similarly when M and M_2 are permuted.
- (3) $q(w) = 1 \Leftrightarrow q_M(\lambda w_M) = q_{M_2}(\lambda w_{M_2}) = 1$, if $w = \lambda w_M w_{M_2}$, $(\lambda, w_M, w_{M_2}) \in \Lambda \times \mathbb{W}_M \times \mathbb{W}_{M_2}$.
- (4) On the coset $(\mathcal{N} \cap M'_2)\mathcal{N}_{\mathcal{C}}n$, q_M is constant equal to $q_M(n_{M'})$ for any element $n_{M'} \in M' \cap (\mathcal{N} \cap M'_2)\mathcal{N}_{\mathcal{C}}n$. A similar result is true when M and M_2 are permuted.

Proof. The product map

(3.6)
$$Z^{1} \prod_{\alpha \in \Phi_{M,red}} \mathcal{U}_{\alpha} \prod_{\alpha \in \Phi_{M_{2},red}} \mathcal{U}_{\alpha} \to \mathcal{U}$$

with $\mathcal{U}_{\alpha} = \mathcal{U}_{\alpha} \cap \mathcal{U}$, is a homeomorphism. We have $\mathcal{U}_{M} = Z^{1}\mathcal{Y}_{M'}$, $\mathcal{U}_{M'} = (Z^{1} \cap M')\mathcal{Y}_{M'}$ where $\mathcal{Y}_{M'} = \prod_{\alpha \in \Phi_{M,red}} \mathcal{U}_{\alpha}$ and $\mathcal{N} \cap M'_{2}$ normalizes $\mathcal{Y}_{M'}$. Similar results are true when M and M_{2} are permuted, and $\mathcal{U} = \mathcal{U}_{M'}\mathcal{U}_{M_{2}} = \mathcal{U}_{M}\mathcal{U}_{M'_{2}}$.

Writing $\mathcal{N} = Z(\mathcal{N} \cap M')(\mathcal{N} \cap M'_2)$ (in any order), we see that the product map

(3.7)
$$Z^{1}(\mathcal{Y}_{M'} \cap n^{-1}\mathcal{Y}_{M'}n)(\mathcal{Y}_{M'_{2}} \cap n^{-1}\mathcal{Y}_{M'_{2}}n) \to \mathcal{U} \cap n^{-1}\mathcal{U}n$$

is an homeomorphism. The inclusions induce bijections

(3.8) $\mathcal{Y}_{M'}/(\mathcal{Y}_{M'} \cap n^{-1}\mathcal{Y}_{M'}n) \simeq \mathcal{U}_{M'}/(\mathcal{U}_{M'} \cap n^{-1}\mathcal{U}_{M'}n) \simeq \mathcal{U}_{M}/(\mathcal{U}_{M} \cap n^{-1}\mathcal{U}_{M}n),$ similarly for M_2 , and also a bijection

(3.9)
$$\mathcal{U}/(\mathcal{U} \cap n^{-1}\mathcal{U}n) \simeq \mathcal{Y}_{M'_2}/(\mathcal{Y}_{M'_2} \cap n^{-1}\mathcal{Y}_{M'_2}n) \times (\mathcal{Y}_{M'}/(\mathcal{Y}_{M'} \cap n^{-1}\mathcal{Y}_{M'}n).$$

The assertion (1) in the lemma follows from (??), (??).

The assertion (2) follows from (??); it implies the assertion (3).

A subgroup of \mathcal{N} normalizes \mathcal{U}_M if and only if it normalizes $\mathcal{Y}_{M'}$ by $(\ref{eq:commute})$ if and only if $q_M=1$ on this group. The group $\mathcal{N}\cap M_2'$ normalizes $\mathcal{Y}_{M'}$ because the elements of M_2' commute with those of M' and q_M is trivial on $\mathcal{N}_{\mathcal{C}}$ by (2). Therefore the group $(\mathcal{N}\cap M_2')\mathcal{N}_{\mathcal{C}}$ normalizes \mathcal{U}_M . The coset $(\mathcal{N}\cap M_2')\mathcal{N}_{\mathcal{C}}n$ contains an element $n_{M'}\in M'$. For $x\in (\mathcal{N}\cap M_2')\mathcal{N}_{\mathcal{C}}$, $(xn_{M'})^{-1}\mathcal{U}xn_{M'}=n_{M'}^{-1}\mathcal{U}n_{M'}$ hence $q_M(xn_{M'})=q_M(n_{M'})$.

- **3.3. Extension of an** \mathcal{H}_M -module to \mathcal{H} . This section is inspired by similar results for the pro-p Iwahori Hecke algebras over an algebraically closed field field of characteristic p [?, Proposition 4.16]. We keep the setting of §?? and we introduce ideals:
 - \mathcal{J}_{ℓ} (resp. \mathcal{J}_{r}) the left (resp. right) ideal of \mathcal{H} generated by $T_{w}^{*} 1_{\mathcal{H}}$ for all $w \in {}_{1}W_{M_{2}^{\prime}}$,
 - $\mathcal{J}_{M,\ell}$ (resp. $\mathcal{J}_{M,r}$) the left (resp. right) ideal of \mathcal{H}_M generated by $T_{\lambda}^{M,*} 1_{\mathcal{H}_M}$ for all λ in ${}_1W_{M'_2} \cap W_M(1) = {}_1W_{M'_2} \cap \Lambda(1)$.

The next proposition shows that the ideals $\mathcal{J}_{\ell} = \mathcal{J}_r$ are equal and similarly $\mathcal{J}_{M,\ell} = \mathcal{J}_{M,r}$. After the proposition, we will drop the indices ℓ and r.

Proposition 3.4. The ideals \mathcal{J}_{ℓ} and \mathcal{J}_{r} are equal to the submodule \mathcal{J}' of \mathcal{H} generated by $T_{w}^{*} - T_{ww_{2}}^{*}$ for all $w \in W(1)$ and $w_{2} \in {}_{1}W_{M_{2}'}$.

The ideals $\mathcal{J}_{M,\ell}$ and $\mathcal{J}_{M,r}$ are equal to the submodule \mathcal{J}'_M of \mathcal{H}_M generated by $T_w^{M,*} - T_{w\lambda_2}^{M,*}$ for all $w \in W_M(1)$ and $\lambda_2 \in \Lambda(1) \cap {}_1W_{M'_2}$.

Proof. (1) We prove $\mathcal{J}_{\ell} = \mathcal{J}'$. Let $w \in W(1), w_2 \in {}_1W_{M_2'}$. We prove by induction on the length of w_2 that $T_w^*(T_{w_2}^* - 1) \in \mathcal{J}'$. This is obvious when $\ell(w_2) = 0$ because $T_w^*T_{w_2}^* = T_{ww_2}^*$. Assume that $\ell(w_2) = 1$ and put $s = w_2$. If $\ell(ws) = \ell(w) + 1$, as before $T_w^*(T_s^* - 1) \in \mathcal{J}'$ because $T_w^*T_s^* = T_{ws}^*$. Otherwise $\ell(ws) = \ell(w) - 1$ and $T_w^* = T_{ws^{-1}}^*T_s^*$ hence

$$T_w^*(T_s^* - 1) = T_{ws^{-1}}^*(T_s^*)^2 - T_w^* = T_{ws^{-1}}^*(q_s T_{s^2}^* - T_s^* c_s) - T_w^* = q_s T_{ws}^* - T_w^*(c_s + 1).$$

Recalling from ?? that $c_s + 1 = \sum_{t \in Z'_k} c_s(t) T_t$ with $c_s(t) \in \mathbb{N}$ and $\sum_{t \in Z'_k} c_s(t) = q_s$,

$$q_s T_{ws}^* - T_w^*(c_s + 1) = \sum_{t \in Z_k'} c_s(t) (T_{ws}^* - T_w^* T_t^*) = \sum_{t \in Z_k'} c_s(t) (T_{ws}^* - T_{wss^{-1}t}^*) \in \mathcal{J}'.$$

Assume now that $\ell(w_2) > 1$. Then, we factorize $w_2 = xy$ with $x, y \in {}_1W_{M_2}$ of length $\ell(x), \ell(y) < \ell(w_2)$ and $\ell(w_2) = \ell(x) + \ell(y)$. The element $T_w^*(T_{w_2}^* - 1) = T_w^*T_x^*(T_y^* - 1) + T_w^*(T_x^* - 1)$ lies in \mathcal{J}' by induction.

Conversely, we prove $T^*_{ww_2} - T^*_w \in \mathcal{J}_{\ell}$. We factorize w = xy with $y \in {}_1W_{M_2}$ and $x \in {}_1W_{M'}\Omega(1)$. Then, we have $\ell(w) = \ell(x) + \ell(y)$ and $\ell(ww_2) = \ell(x) + \ell(yw_2)$. Hence

$$T_{ww_2}^* - T_w^* = T_x^* (T_{yw_2}^* - T_y^*) = T_x^* (T_{yw_2}^* - 1) - T_x^* (T_y^* - 1) \in \mathcal{J}_{\ell}.$$

This ends the proof of $\mathcal{J}_{\ell} = \mathcal{J}'$.

By the same argument, the right ideal \mathcal{J}_r of \mathcal{H} is equal to the submodule of \mathcal{H} generated by $T^*_{w_2w} - T^*_w$ for all $w \in W(1)$ and $w_2 \in {}_1W_{M'_2}$. But this latter submodule is equal to \mathcal{J}' because ${}_1W_{M'_2}$ is normal in W(1). Therefore we proved $\mathcal{J}' = \mathcal{J}_r = \mathcal{J}_\ell$.

(2) Proof of the second assertion. We prove $\mathcal{J}_{M,\ell} = \mathcal{J}_M'$. The proof is easier than in (1) because for $w \in W_M(1)$ and $\lambda_2 \in {}_1W_{M_2'} \cap \Lambda(1)$, we have $\ell(w\lambda_2) = \ell(w) + \ell(\lambda_2)$ hence $T_w^{M,*}(T_{\lambda_2}^{M,*}-1) = T_{w\lambda_2}^{M,*} - T_w^{M,*}$. We have also $\ell(\lambda_2 w) = \ell(\lambda_2) + \ell(w)$ hence $(T_{\lambda_2}^{M,*}-1)T_w^{M,*} = T_{\lambda_2 w}^{M,*} - T_w^{M,*}$ hence $\mathcal{J}_{M,r}$ is equal to the submodule of \mathcal{H}_M generated by $T_{\lambda_2 w}^{M,*} - T_w^{M,*}$ for

all $w \in W_M(1)$ and $\lambda_2 \in {}_1W_{M'_2} \cap \Lambda(1)$. This latter submodule is \mathcal{J}'_M , as ${}_1W_{M'_2} \cap \Lambda(1) = {}_1W_{M'_2} \cap W_M(1)$ is normal in $W_M(1)$. Therefore $\mathcal{J}'_M = \mathcal{J}_{M,r} = \mathcal{J}_{M,\ell}$.

By Proposition ??, a basis of \mathcal{J} is $T_w^* - T_{ww_2}^*$ for w in a system of representatives of $W(1)/_1W_{M_2'}$, and $w_2 \in {}_1W_{M_2'} \setminus \{1\}$. Similarly a basis of \mathcal{J}_M is $T_w^{M,*} - T_{w\lambda_2}^{M,*}$ for w in a system of representatives of $W_M(1)/(\Lambda(1) \cap {}_1W_{M_2'})$. and $\lambda_2 \in (\Lambda(1) \cap {}_1W_{M_2'}) \setminus \{1\}$.

Proposition 3.5. The natural ring inclusion of \mathcal{H}_{M^-} in \mathcal{H}_M and the ring inclusion of \mathcal{H}_{M^-} in \mathcal{H} via θ^* induce ring isomorphisms

$$\mathcal{H}_M/\mathcal{J}_M \stackrel{\sim}{\leftarrow} \mathcal{H}_{M^-}/(\mathcal{J}_M \cap \mathcal{H}_{M^-}) \stackrel{\sim}{\rightarrow} \mathcal{H}/\mathcal{J}.$$

Proof. (1) The left map is obviously injective. We prove the surjectivity. Let $w \in W_M(1)$. Let $\lambda_2 \in {}_1W_{M'_2} \cap \Lambda(1)$ such that $w\lambda_2^{-1} \in W_{M^-}(1)$ (see (??)). We have $T_{w\lambda_2^{-1}}^{M,*} \in \mathcal{H}_{M^-}$ and $T_w^{M,*} = T_{w\lambda_2^{-1}}^{M,*} T_{\lambda_2}^{M,*} = T_{w\lambda_2^{-1}}^{M,*} + T_{w\lambda_2^{-1}}^{M,*} (T_{\lambda_2}^{M,*} - 1)$. Therefore $T_w^{M,*} \in \mathcal{H}_{M^-} + \mathcal{J}_M$. As w is arbitrary, $\mathcal{H}_M = \mathcal{H}_{M^-} + \mathcal{J}_M$.

(2) The right map is surjective: let $w \in W(1)$ and $w_2 \in {}_1W_{M'_2}$ such that $ww_2^{-1} \in W_{M^-}(1)$ (see (??)). Then $T_{\hat{w}}^* - T_{ww_2^{-1}}^* \in \mathcal{J}$ with the same arguments than in (1), using Proposition ??. Therefore $\mathcal{H} = \theta^*(\mathcal{H}_{M^-}) + \mathcal{J}$.

We prove the injectivity: $\theta^*(\mathcal{H}_{M^-}) \cap \mathcal{J} = \theta^*(\mathcal{H}_{M^-} \cap \mathcal{J}_M)$. Let $\sum_{w \in W_{M^-}(1)} c_w T_w^{M,*}$, with $c_w \in \mathbb{Z}$, be an element of \mathcal{H}_{M^-} . Its image by θ^* is $\sum_{w \in W(1)} c_w T_w^*$ where we have set $c_w = 0$ for $w \in W(1) \setminus W_{M^-}(1)$. We have $\sum_{w \in W(1)} c_w T_w^* \in \mathcal{J}$ if and only if $\sum_{w_2 \in 1W_{M'_2}} c_{ww_2} = 0$ for all $w \in W(1)$. If $c_{ww_2} \neq 0$ then $w_2 \in {}_1W_{M'_2} \cap W_M(1)$, that is, $w_2 \in {}_1W_{M'_2} \cap \Lambda(1)$. The sum $\sum_{w_2 \in 1W_{M'_2}} c_{ww_2}$ is equal to $\sum_{\lambda_2 \in 1W_{M'_2} \cap \Lambda(1)} c_{w\lambda_2}$. By Proposition ??, $\sum_{w \in W(1)} c_w T_w^* \in \mathcal{J}$ if and only if $\sum_{w \in W_{M^-}(1)} c_w T_w^{M,*} \in \mathcal{J}_M$.

We construct a ring isomorphism

$$e^*: \mathcal{H}_M/\mathcal{J}_M \xrightarrow{\sim} \mathcal{H}/\mathcal{J}$$

by using Proposition ??. For any $w \in W(1)$, $T_w^* + \mathcal{J} = e^*(T_{w_{M^-}}^{M,*} + \mathcal{J}_M)$ where $w_{M^-} \in W_{M^-}(1) \cap w_1 W_{M'_2}$ (see (??)), because by Proposition ??, $T_w^* + \mathcal{J} = T_{w_{M^-}}^* + \mathcal{J}$ and $T_{w_{M^-}}^* + \mathcal{J} = e^*(T_{w_{M^-}}^{M,*} + \mathcal{J}_M)$ by construction of e^* . We check that e^* is induced by θ^* :

Theorem 3.6. The linear map $\mathcal{H}_M \xrightarrow{\theta^*} \mathcal{H}$ induces a ring isomorphism

$$e^*: \mathcal{H}_M/\mathcal{J}_M \xrightarrow{\sim} \mathcal{H}/\mathcal{J}.$$

Proof. Let $w \in W_M(1)$. We have to show that $T_w^* + \mathcal{J} = e^*(T_w^{M,*} + \mathcal{J}_M)$. We saw above that $T_w^* + \mathcal{J} = e^*(T_{w_{M^-}}^{M,*} + \mathcal{J}_M)$ with $w = w_{M^-}\lambda_2$ with $\lambda_2 \in {}_1W_{M_2'} \cap W_M(1)$. As $\ell_M(\lambda_2) = 0$, $T_w^{M,*} = T_{w_{M^-}}^{M,*} T_{\lambda_2}^{M,*} \in T_{w_{M^-}}^{M,*} + \mathcal{J}_M$. Therefore $T_{w_{M^-}}^{M,*} + \mathcal{J}_M = T_w^{M,*} + \mathcal{J}_M$, this ends the proof of the theorem.

We wish now to compute e^* in terms of the T_w instead of the T_w^* .

Proposition 3.7. Let $w \in W(1)$. Then, $T_w + \mathcal{J} = e^*(T_{w_M}^M q_{M_2}(w) + \mathcal{J}_M)$, for any $w_M \in W_M(1) \cap w_1 W_{M'_2}$.

Proof. The element w_M is unique modulo right multiplication by an element $\lambda_2 \in W_M(1) \cap {}_1W_{M'_2}$ of length $\ell_M(\lambda_2) = 0$ and $T^M_{w_M}q_{M_2}(w) + \mathcal{J}_M$ does not depend on the choice of w_M . We choose a decomposition (see (??)):

$$w = \tilde{s}_1 \dots \tilde{s}_a u \tilde{s}_{a+1} \dots \tilde{s}_{a+b}, \quad \ell(w) = a+b,$$

for $u \in \Omega(1)$, $\tilde{s}_i \in {}_1W_{M'}$ lifting $s_i \in S_M^{\rm aff}$ for $1 \le i \le a$ and $\tilde{s}_i \in {}_1W_{M'_2}$ lifting $s_i \in S_{M_2}^{\rm aff}$ for $a+1 \le i \le a+b$, and we choose $u_M \in W_M(1)$ such that $u \in u_{M,1}W_{M'_2}$. Then

$$w_M = \tilde{s}_1 \dots \tilde{s}_a u_M \in W_M(1) \cap w_1 W_{M_2'}$$

and $q_{M_2}(w)=q_{M_2}(\tilde{s}_{a+1}\dots\tilde{s}_{a+b})$ (Lemma ?? 4)). We check first the proposition in three simple cases:

Case 1. Let $w = \tilde{s} \in {}_{1}W_{M'}$ lifting $s \in S_{M}^{\text{aff}}$; we have $T_{\tilde{s}} + \mathcal{J} = e^{*}(T_{\tilde{s}}^{M} + \mathcal{J}_{M})$ because $T_{\tilde{s}}^{*} - e^{*}(T_{\tilde{s}}^{M,*}) \in \mathcal{J}$, $T_{\tilde{s}} = T_{\tilde{s}}^{*} + c_{\tilde{s}}$, $T_{\tilde{s}}^{M} = T_{\tilde{s}}^{M,*} + c_{\tilde{s}}$ and $1 = q_{M_{2}}(\tilde{s})$. Case 2. Let $w = u \in W(1)$ of length $\ell(u) = 0$ and $u_{M} \in W_{M}(1)$ such that $u \in u_{M} \cdot 1W_{M'_{2}}$.

Case 2. Let $w = u \in W(1)$ of length $\ell(u) = 0$ and $u_M \in W_M(1)$ such that $u \in u_{M 1} W_{M'_2}$. We have $\ell_M(u_M) = 0$ and $q_{M_2}(u) = 1$ (Lemma ??). We deduce $T_u + \mathcal{J} = e^*(T_{u_M}^M + \mathcal{J}_M)$ because $T_u^* + \mathcal{J} = T_{u_M}^* + \mathcal{J} = e^*(T_{u_M}^{M,*} + \mathcal{J}_M)$, and $T_u = T_u^{M,*} = T_{u_M}^{M,*}$.

because $T_u^* + \mathcal{J} = T_{u_M}^* + \mathcal{J} = e^*(T_{u_M}^{M,*} + \mathcal{J}_M)$, and $T_u = T_u^*, T_{u_M}^M = T_{u_M}^{M,*}$. Case 3. Let $w = \tilde{s} \in {}_1W_{M'_2}$ lifting $s \in S_{M_2}^{\text{aff}}$; we have $T_{\tilde{s}} + \mathcal{J} = e^*(q_{M_2}(\tilde{s}) + \mathcal{J}_M)$ because $T_{\tilde{s}}^* - 1, c_{\tilde{s}} - (q_s - 1) \in \mathcal{J}, T_{\tilde{s}} = T_{\tilde{s}}^* + c_{\tilde{s}} \in q_s + \mathcal{J}$ and $q_s = q_{M_2}(\tilde{s})$.

In general, the braid relations $T_w = T_{\tilde{s}_1} \dots \tilde{T}_{s_a} T_u T_{\tilde{s}_{a+1}} \dots T_{\tilde{s}_{a+b}}$ give a similar product decomposition of $T_w + \mathcal{J}$, and the simple cases 1, 2, 3 imply that $T_w + \mathcal{J}$ is equal to

$$e^*(T_{\tilde{s}_1}^M + \mathcal{J}_M) \dots e^*(T_{\tilde{s}_a}^M + \mathcal{J}_M)e^*(T_{u_M}^M + \mathcal{J}_M)e^*(q_{M_2}(\tilde{s}_{a+1}) + \mathcal{J}_M) \dots e^*(q_{M_2}(\tilde{s}_{a+b}) + \mathcal{J}_M)$$

$$= e^*(T_{u_M}^M q_{M_2}(w) + \mathcal{J}_M).$$

The proposition is proved.

Propositions ??, ????, and Theorem ?? are valid over any commutative ring R (instead of \mathbb{Z}).

The two-sided ideal of \mathcal{H}_R generated by $T_w^* - 1$ for all $w \in {}_1W_{M'_2}$ is $\mathcal{J}_R = \mathcal{J} \otimes_{\mathbb{Z}} R$, the two-sided ideal of $\mathcal{H}_{M,R}$ generated by $T_\lambda^* - 1$ for all $\lambda \in {}_1W_{M'_2} \cap \Lambda(1)$ is $\mathcal{J}_{M,R} = \mathcal{J}_M \otimes_{\mathbb{Z}} R$, and we get as in Proposition ?? isomorphisms

$$\mathcal{H}_{M,R}/\mathcal{J}_{M,R} \stackrel{\sim}{\leftarrow} \mathcal{H}_{M^-,R}/(\mathcal{J}_{M,R} \cap \mathcal{H}_{M^-,R}) \stackrel{\sim}{\rightarrow} \mathcal{H}_R/\mathcal{J}_R,$$

giving an isomorphism $\mathcal{H}_{M,R}/\mathcal{J}_{M,R} \to \mathcal{H}_R/\mathcal{J}_R$ induced by θ^* . Therefore, we have an isomorphism from the category of right $\mathcal{H}_{M,R}$ -modules where \mathcal{J}_M acts by 0 onto the category of right \mathcal{H}_R -modules where \mathcal{J} acts by 0.

Definition 3.8. A right $\mathcal{H}_{M,R}$ -module \mathcal{V} where \mathcal{J}_{M} acts by 0 is called extensible to \mathcal{H} . The corresponding \mathcal{H}_{R} -module where \mathcal{J} acts by 0 is called its extension to \mathcal{H} and denoted by $e_{\mathcal{H}}(\mathcal{V})$ or $e(\mathcal{V})$.

With the element basis T_w^* , \mathcal{V} is extensible to \mathcal{H} if and only if

(3.10)
$$vT_{\lambda_2}^{M,*} = v \text{ for all } v \in \mathcal{V} \text{ and } \lambda_2 \in {}_1W_{M_2'} \cap \Lambda(1).$$

The \mathcal{H} -module structure on the R-module $e(\mathcal{V}) = \mathcal{V}$ is determined by

(3.11)
$$vT_{w_2}^* = v, \quad vT_w^* = vT_w^{M,*}, \quad \text{for all } v \in \mathcal{V}, w_2 \in {}_1W_{M_2'}, w \in W_M(1).$$

It is also determined by the action of T_w^* for $w \in {}_1W_{M'_2} \cup W_{M^+}(1)$ (or $w \in {}_1W_{M'_2} \cup W_{M^-}(1)$). Conversely, a right \mathcal{H} -module \mathcal{W} over R is extended from an \mathcal{H}_M -module if and only if

(3.12)
$$vT_{w_2}^* = v$$
, for all $v \in \mathcal{W}, w_2 \in {}_1W_{M_2'}$.

In terms of the basis elements T_w instead of T_w^* , this says:

Corollary 3.9. A right \mathcal{H}_M -module \mathcal{V} over R is extensible to \mathcal{H} if and only if

(3.13)
$$vT_{\lambda_2}^M = v \text{ for all } v \in \mathcal{V} \text{ and } \lambda_2 \in {}_1W_{M_2'} \cap \Lambda(1).$$

Then, the structure of \mathcal{H} -module on the R-module $e(\mathcal{V}) = \mathcal{V}$ is determined by

$$(3.14) vT_{w_2} = vq_{w_2}, vT_w = vT_w^M q_{M_2}(w), for all v \in \mathcal{V}, w_2 \in {}_1W_{M_2'}, w \in W_M(1).$$

 $(W_{M^+}(1) \text{ or } W_{M^-}(1) \text{ instead of } W_M(1) \text{ is enough.}) \text{ A right \mathcal{H}-module \mathcal{W} over R is extended from an \mathcal{H}_M-module if and only if}$

(3.15)
$$vT_{w_2} = vq_{w_2}, \text{ for all } v \in \mathcal{W}, w_2 \in {}_1W_{M'_2}.$$

3.4. $\sigma^{\mathcal{U}_M}$ is extensible to \mathcal{H} of extension $e(\sigma^{\mathcal{U}_M}) = e(\sigma)^{\mathcal{U}}$. Let P = MN be a standard parabolic subgroup of G such that Δ_P and $\Delta \setminus \Delta_P$ are orthogonal, and σ a smooth R-representation of M extensible to G. Let $P_2 = M_2N_2$ denote the standard parabolic subgroup of G with $\Delta_{P_2} = \Delta \setminus \Delta_P$.

Recall that $G = MM'_2$, that $M \cap M'_2 = Z \cap M'_2$ acts trivially on σ , $e(\sigma)$ is the representation of G equal to σ on M and trivial on M'_2 . We will describe the \mathcal{H} -module $e(\sigma)^{\mathcal{U}}$ in this section. We first consider $e(\sigma)$ as a subrepresentation of $\operatorname{Ind}_P^G \sigma$. For $v \in \sigma$, let $f_v \in (\operatorname{Ind}_P^G \sigma)^{M'_2}$ be the unique function with value v on M'_2 . Then, the map

$$(3.16) v \mapsto f_v : \sigma \to \operatorname{Ind}_P^G \sigma$$

is the natural G-equivariant embedding of $e(\sigma)$ in $\operatorname{Ind}_P^G \sigma$. As $\sigma^{\mathcal{U}_M} = e(\sigma)^{\mathcal{U}}$ as R-modules, the image of $e(\sigma)^{\mathcal{U}}$ in $(\operatorname{Ind}_P^G \sigma)^{\mathcal{U}}$ is made out of the f_v for $v \in \sigma^{\mathcal{U}_M}$.

We now recall the explicit description of $(\operatorname{Ind}_P^G \sigma)^{\mathcal{U}}$. For each $d \in \mathbb{W}_{M_2}$, we fix a lift $\hat{d} \in {}_1W_{M'_2}$ and for $v \in \sigma^{\mathcal{U}_M}$ let $f_{P\hat{d}\mathcal{U},v} \in (\operatorname{Ind}_P^G \sigma)^{\mathcal{U}}$ for the function with support contained in $P\hat{d}\mathcal{U}$ and value v on $\hat{d}\mathcal{U}$. As $Z \cap M'_2$ acts trivially on σ , the function $f_{P\hat{d}\mathcal{U},v}$ does not depend on the choice of the lift $\hat{d} \in {}_1W_{M'_2}$ of d. By [?, Lemma 4.5]:

The map $\bigoplus_{d \in \mathbb{W}_{M_2}} \sigma^{\mathcal{U}_M} \to (\operatorname{Ind}_P^G \sigma)^{\mathcal{U}}$ given on each d-component by $v \mapsto f_{P\hat{d}\mathcal{U},v}$, is an \mathcal{H}_{M^+} -equivariant isomorphism where \mathcal{H}_{M^+} is seen as a subring of \mathcal{H} via θ , and induces an \mathcal{H}_R -module isomorphism

$$(3.17) v \otimes h \mapsto f_{P\mathcal{U},v}h : \sigma^{\mathcal{U}_M} \otimes_{\mathcal{H}_{M^+},\theta} \mathcal{H} \to (\operatorname{Ind}_P^G \sigma)^{\mathcal{U}}.$$

In particular for $v \in \sigma^{\mathcal{U}_M}$, $v \otimes T(\hat{d})$ does not depend on the choice of the lift $\hat{d} \in {}_{1}W_{M'_{2}}$ of d and

$$(3.18) f_{P\hat{d}\mathcal{U},v} = f_{P\mathcal{U},v}T(\hat{d}).$$

As G is the disjoint union of $P\hat{d}\mathcal{U}$ for $d \in \mathbb{W}_{M_2}$, we have $f_v = \sum_{d \in \mathbb{W}_{M_2}} f_{P\hat{d}\mathcal{U},v}$ and f_v is the image of $v \otimes e_{M_2}$ in $(\ref{eq:mass_def})$, where

(3.19)
$$e_{M_2} = \sum_{d \in \mathbb{W}_{M_2}} T(\hat{d}).$$

Recalling (??) we get:

Lemma 3.10. The map $v \mapsto v \otimes e_{M_2} : e(\sigma)^{\mathcal{U}} \to \sigma^{\mathcal{U}_M} \otimes_{\mathcal{H}_{M^+}, \theta} \mathcal{H}$ is an \mathcal{H}_R -equivariant embedding.

Remark 3.11. The trivial map $v \mapsto v \otimes 1_{\mathcal{H}}$ is not an \mathcal{H}_R -equivariant embedding.

We describe the action of T(n) on $e(\sigma)^{\mathcal{U}}$ for $n \in \mathcal{N}$. By definition for $v \in e(\sigma)^{\mathcal{U}}$,

(3.20)
$$vT(n) = \sum_{y \in \mathcal{U}/(\mathcal{U} \cap n^{-1}\mathcal{U}n)} yn^{-1}v.$$

Proposition 3.12. We have $vT(n) = vT^M(n_M)q_{M_2}(n)$ for any $n_N \in \mathcal{N} \cap M$ is such that $n = n_M(\mathcal{N} \cap M_2')$.

Proof. The description (??) of $\mathcal{U}/(\mathcal{U} \cap n^{-1}\mathcal{U}n)$ gives

$$vT(n) = \sum_{y_1 \in \mathcal{U}_M/(\mathcal{U}_M \cap n^{-1}\mathcal{U}_M n)} y_1 \sum_{y_2 \in \mathcal{U}_{M_2'}/(\mathcal{U}_{M_2'} \cap n^{-1}\mathcal{U}_{M_2'} n)} y_2 n^{-1} v.$$

As M'_2 acts trivially on $e(\sigma)$, we obtain

$$vT(n) = q_{M_2}(n) \sum_{y_1 \in \mathcal{U}_M / (\mathcal{U}_M \cap n^{-1}\mathcal{U}_M n)} y_1 n_M^{-1} v = q_{M_2}(n) v T^M(n_M).$$

Theorem 3.13. Let σ be a smooth R-representation of M. If $P(\sigma) = G$, then $\sigma^{\mathcal{U}_M}$ is extensible to \mathcal{H} of extension $e(\sigma^{\mathcal{U}_M}) = e(\sigma)^{\mathcal{U}}$. Conversely, if $\sigma^{\mathcal{U}_M}$ is extensible to \mathcal{H} and generates σ , then $P(\sigma) = G$.

Proof. (1) The \mathcal{H}_M -module $\sigma^{\mathcal{U}_M}$ is extensible to \mathcal{H} if and only if $Z \cap M_2'$ acts trivially on $\sigma^{\mathcal{U}_M}$. Indeed, for $v \in \sigma^{\mathcal{U}_M}, z_2 \in Z \cap M_2'$,

$$vT^{M}(z_{2}) = \sum_{y \in \mathcal{U}_{M}/(\mathcal{U}_{M} \cap z_{2}^{-1}\mathcal{U}_{M}z_{2})} yz_{2}^{-1}v = \sum_{y \in \mathcal{Y}_{M}/(\mathcal{Y}_{M} \cap z_{2}^{-1}\mathcal{Y}_{M}z_{2})} yz_{2}^{-1}v = z_{2}^{-1}v,$$

by (??), then (??), then the fact that z_2^{-1} commutes with the elements of \mathcal{Y}_M .

- (2) $P(\sigma) = G$ if and only if $Z \cap M'_2$ acts trivially on σ (the group $Z \cap M'_2$ is generated by $Z \cap M'_{\alpha}$ for $\alpha \in \Delta_{M_2}$ by Lemma ??). The R-submodule $\sigma^{Z \cap M'_2}$ of elements fixed by $Z \cap M'_2$ is stable by M, because M = ZM', the elements of M' commute with those of $Z \cap M'_2$ and Z normalizes $Z \cap M'_2$.
- (3) Apply (1) and (2) to get the theorem except the equality $e(\sigma^{\mathcal{U}_M}) = e(\sigma)^{\mathcal{U}}$ when $P(\sigma) = G$ which follows from Propositions ?? and ??.

Let $\mathbf{1}_M$ denote the trivial representation of M over R (or $\mathbf{1}$ when there is no ambiguity on M). The right \mathcal{H}_R -module $(\mathbf{1}_G)^{\mathcal{U}} = \mathbf{1}_{\mathcal{H}}$ (or $\mathbf{1}$ if there is no ambiguity) is the trivial right \mathcal{H}_R -module: for $w \in W_M(1)$, $T_w = q_w \mathrm{id}$ and $T_w^* = \mathrm{id}$ on $\mathbf{1}_{\mathcal{H}}$.

Example 3.14. The \mathcal{H} -module $(\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}}$ is the extension of the \mathcal{H}_{M_2} -module $(\operatorname{Ind}_{M_2\cap B}^{M_2} \mathbf{1})^{\mathcal{U}_{M_2}}$. Indeed, the representation $\operatorname{Ind}_P^G \mathbf{1}$ of G is trivial on N_2 , as $G = MM_2'$ and $N_2 \subset M'$ (as $\Phi = \Phi_M \cup \Phi_{M_2}$). For $g = mm_2'$ with $m \in M, m_2' \in M_2'$ and $n_2 \in N_2$, we have $Pgn_2 = Pm_2'n_2 = Pn_2m_2' = Pm_2' = Pg$. The group $M_2 \cap B = M_2 \cap P$ is the standard minimal parabolic subgroup of M_2 and $(\operatorname{Ind}_P^G \mathbf{1})|_{M_2} = \operatorname{Ind}_{M_2\cap B}^{M_2} \mathbf{1}$. Apply Theorem ??:

3.5. The \mathcal{H}_R -module $e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$. Let P = MN be a standard parabolic subgroup of G such that Δ_P and $\Delta \setminus \Delta_P$ are orthogonal, let \mathcal{V} be a right $\mathcal{H}_{M,R}$ -module which is extensible to \mathcal{H}_R of extension $e(\mathcal{V})$ and let Q be a parabolic subgroup of G containing P.

We define on the R-module $e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ a structure of right \mathcal{H}_R -module:

Proposition 3.15. (1) The diagonal action of T_w^* for $w \in W(1)$ on $e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ defines a structure of right \mathcal{H}_R -module.

(2) The action of the T_w is also diagonal and satisfies:

$$((v \otimes f)T_w, (v \otimes f)T_w^*) = (vT_{uw_{M'}} \otimes fT_{uw_{M'_2}}, vT_{uw_{M'}}^* \otimes fT_{uw_{M'_2}}^*),$$

where $w = uw_{M'}w_{M'_2}$ with $u \in W(1), \ell(u) = 0, w_{M'} \in {}_{1}W_{M'}, w_{M'_2} \in {}_{1}W_{M'_2}$.

Proof. If the lemma is true for P it is also true for Q, because the R-module $e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ naturally embedded in $e(\mathcal{V}) \otimes_R (\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}}$ is stable by the action of \mathcal{H} defined in the lemma. So, we suppose Q = P.

Suppose that T_w^* for $w \in W(1)$ acts on $e(\mathcal{V}) \otimes_R (\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}}$ as in (1). The braid relations obviously hold. The quadratic relations hold because T_s^* with $s \in {}_1S^{\operatorname{aff}}$, acts trivially either on $e(\mathcal{V})$ or on $(\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}}$. Indeed, ${}_1S^{\operatorname{aff}} = {}_1S^{\operatorname{aff}}_M \cup {}_1S^{\operatorname{aff}}_M$, T_s^* for $s \in {}_1S^{\operatorname{aff}}_M$, acts trivially on $(\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}}$ which is extended from a \mathcal{H}_{M_2} -module (Example ??), and T_s^* for $s \in {}_1S^{\operatorname{aff}}_{M_2'}$, acts trivially on $e(\mathcal{V})$ which is extended from a \mathcal{H}_M -module. This proves (1).

We describe now the action of T_w instead of T_w^* on the \mathcal{H} -module $e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$. Let $w \in W(1)$. We write $w = uw_{M'}w_{M'_2} = uw_{M'_2}w_{M'}$ with $u \in W(1), \ell(u) = 0, w_{M'} \in {}_1W_{M'}, w_{M'_2} \in {}_1W_{M'_2}$. We have $\ell(w) = \ell(w_{M'}) + \ell(w_{M'_2})$ hence $T_w = T_u T_{w_{M'}} T_{w_{M'_2}}$.

For w=u, we have $T_u=T_u^*$ and $(v\otimes f)T_u=(v\otimes f)T_u^*=vT_u^*\otimes fT_u^*=vT_u\otimes fT_u$. For $w=w_{M'}$, $(v\otimes f)T_w^*=vT_w^*\otimes f$; in particular for $s\in {}_1S_M^{\mathrm{aff}}$, $c_s=\sum_{t\in Z_k\cap 1W_{M'}}c_s(t)T_t^*$, we have $(v\otimes f)T_s=(v\otimes f)(T_s^*+c_s)=v(T_s^*+c_s)\otimes f=vT_s\otimes f$. Hence $(v\otimes f)T_w=vT_w\otimes f$. For $w=w_{M'_2}$, we have similarly $(v\otimes f)T_w^*=v\otimes fT_w^*$ and $(v\otimes f)T_w=v\otimes fT_w$.

Example 3.16. Let \mathcal{X} be a right \mathcal{H}_R -module. Then $\mathbf{1}_{\mathcal{H}} \otimes_R \mathcal{X}$ where the T_w^* acts diagonally is a \mathcal{H}_R -module isomorphic to \mathcal{X} . But the action of the T_w on $\mathbf{1}_{\mathcal{H}} \otimes_R \mathcal{X}$ is not diagonal.

It is known [?] that $(\operatorname{Ind}_{Q'}^G \mathbf{1})^{\mathcal{U}}$ and $(\operatorname{St}_Q^G)^{\mathcal{U}}$ are free R-modules and that $(\operatorname{St}_Q^G)^{\mathcal{U}}$ is the cokernel of the natural \mathcal{H}_R -map

$$(3.21) \qquad \qquad \oplus_{Q \subsetneq Q'} (\operatorname{Ind}_{Q'}^G \mathbf{1})^{\mathcal{U}} \to (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$$

although the invariant functor $(-)^{\mathcal{U}}$ is only left exact.

Corollary 3.17. The diagonal action of T_w^* for $w \in W(1)$ on $e(\mathcal{V}) \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}}$ defines a structure of right \mathcal{H}_R -module satisfying Proposition ?? (2).

4. Hecke module
$$I_{\mathcal{H}}(P, \mathcal{V}, Q)$$

4.1. Case \mathcal{V} extensible to \mathcal{H} . Let P=MN be a standard parabolic subgroup of G such that Δ_P and $\Delta \setminus \Delta_P$ are orthogonal, \mathcal{V} a right $\mathcal{H}_{M,R}$ -module extensible to \mathcal{H}_R of extension $e(\mathcal{V})$, and Q be a parabolic subgroup of G containing P. As Q and M_Q determine each other: $Q=M_QU$, we denote also $\mathcal{H}_{M_Q}=\mathcal{H}_Q$ and $\mathcal{H}_{M_Q,R}=\mathcal{H}_{Q,R}$ when $Q\neq P,G$. When Q=G we drop G and we denote $e_{\mathcal{H}}(\mathcal{V})=e(\mathcal{V})$ when Q=G.

Lemma 4.1. V is extensible to an $\mathcal{H}_{Q,R}$ -module $e_{\mathcal{H}_Q}(V)$.

Proof. This is straightforward. By Corollary ??, \mathcal{V} extensible to \mathcal{H} means that $T^{M,*}(z)$ acts trivially on \mathcal{V} for all $z \in \mathcal{N}_{M'_2} \cap Z$. We have $M_Q = MM'_{2,Q}$ with $M'_{2,Q} \subset M_Q \cap M'_2$ and $\mathcal{N}_{M'_{2,Q}} \subset \mathcal{N}_{M'_2}$; hence $T^{M,*}(z)$ acts trivially on \mathcal{V} for all $z \in \mathcal{N}_{M'_{2,Q}} \cap Z$ meaning that \mathcal{V} is extensible to \mathcal{H}_Q .

Remark 4.2. We cannot say that $e_{\mathcal{H}_Q}(\mathcal{V})$ is extensible to \mathcal{H} of extension $e(\mathcal{V})$ when the set of roots Δ_Q and $\Delta \setminus \Delta_Q$ are not orthogonal (Definition ??).

Let Q' be an arbitrary parabolic subgroup of G containing Q. We are going to define a \mathcal{H}_R -embedding $\operatorname{Ind}_{\mathcal{H}_{Q'}}^{\mathcal{H}}(e_{\mathcal{H}_{Q'}}(\mathcal{V})) \xrightarrow{\iota(Q,Q')} \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}(e_{\mathcal{H}_{Q}}(\mathcal{V})) = e_{\mathcal{H}_{Q}}(\mathcal{V}) \otimes_{\mathcal{H}_{M_{Q}^{+}},\theta} \mathcal{H}$ defining a \mathcal{H}_R -homomorphism

$$\bigoplus_{Q \subsetneq Q' \subset G} \operatorname{Ind}_{H_{Q'}}^{\mathcal{H}}(e_{mathcal}_{H_{Q'}}(\mathcal{V})) \to \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}(e_{\mathcal{H}_{Q}}(\mathcal{V}))$$

of cokernel isomorphic to $e(\mathcal{V}) \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}}$. In the extreme case (Q, Q') = (P, G), the \mathcal{H}_R -embedding $e(\mathcal{V}) \xrightarrow{\iota(P,G)} \operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}}(\mathcal{V})$ is given in the following lemma where f_G and $f_{P\mathcal{U}} \in (\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}}$ of $P\mathcal{U}$ denote the characteristic functions of G and $P\mathcal{U}$, $f_G = f_{P\mathcal{U}}e_{M_2}$ (see (??)).

Lemma 4.3. There is a natural \mathcal{H}_R -isomorphism

$$v \otimes 1_{\mathcal{H}} \mapsto v \otimes f_{P\mathcal{U}} : \operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}}(\mathcal{V}) = \mathcal{V} \otimes_{\mathcal{H}_{M^+}, \theta} \mathcal{H} \xrightarrow{\kappa_P} e(\mathcal{V}) \otimes_R (\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}},$$

and compatible \mathcal{H}_R -embeddings

$$v \mapsto v \otimes f_G : e(\mathcal{V}) \to e(\mathcal{V}) \otimes_R (\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}},$$

 $v \mapsto v \otimes e_{M_2} : e(\mathcal{V}) \xrightarrow{\iota(P,G)} \operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}}(\mathcal{V}).$

Proof. We show first that the map

$$(4.1) v \mapsto v \otimes f_{P\mathcal{U}} : \mathcal{V} \to e(\mathcal{V}) \otimes_R (\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}}$$

is \mathcal{H}_{M^+} -equivariant. Let $w \in W_{M^+}(1)$. We write $w = uw_{M'}w_{M'_2}$ as in Lemma ?? (2), so that $f_{\mathcal{P}\mathcal{U}}T_w = f_{\mathcal{P}\mathcal{U}}T_{uw_{M'_2}}$. We have $f_{\mathcal{P}\mathcal{U}}T_{uw_{M'_2}} = f_{\mathcal{P}\mathcal{U}}$ because ${}_1W_{M'} \subset W_{M^+}(1) \cap W_{M^-}(1)$ hence $uw_{M'_2} = ww_{M'}^{-1} \in W_{M^+}(1)$ and in $\mathbf{1}_{\mathcal{H}_M} \otimes_{\mathcal{H}_{M^+},\theta} \mathcal{H}$ we have $(1 \otimes 1_{\mathcal{H}})T_{uw_{M'_2}} = 1T_{uw_{M'_2}}^M \otimes 1_{\mathcal{H}}$, and $T_{uw_{M'_2}}^M$ acts trivially in $\mathbf{1}_{\mathcal{H}_M}$ because $\ell_M(uw_{M'_2}) = 0$. We deduce $(v \otimes f_{\mathcal{P}\mathcal{U}})T_w = vT_w \otimes f_{\mathcal{P}\mathcal{U}}T_w = vT_w^M \otimes f_{\mathcal{P}\mathcal{U}}$.

By adjunction (??) gives an \mathcal{H}_R -equivariant linear map

$$(4.2) v \otimes 1_{\mathcal{H}} \mapsto v \otimes f_{P\mathcal{U}} : \mathcal{V} \otimes_{\mathcal{H}_{M^+}, \theta} \mathcal{H} \xrightarrow{\kappa_P} e(\mathcal{V}) \otimes_R (\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}}.$$

We prove that κ_P is an isomorphism. Recalling $\hat{d} \in \mathcal{N} \cap M'_2, \tilde{d} \in {}_1W_{M'_2}$ lift d, one knows that

$$(4.3) \mathcal{V} \otimes_{\mathcal{H}_{M^+},\theta} \mathcal{H} = \bigoplus_{d \in \mathbb{W}_{M_2}} \mathcal{V} \otimes T_{\tilde{d}}, \quad e(\mathcal{V}) \otimes_R (\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}} = \bigoplus_{d \in \mathbb{W}_{M_2}} \mathcal{V} \otimes f_{P\hat{d}\mathcal{U}},$$

where each summand is isomorphic to \mathcal{V} . The left equality follows from §4.1 and Remark 3.7 in [?] recalling that $w \in \mathbb{W}_{M_2}$ is of minimal length in its coset $\mathbb{W}_M w = w \mathbb{W}_M$ as Δ_M and Δ_{M_2} are orthogonal; for the second equality see §?? (??). We have $\kappa_P(v \otimes T_{\tilde{d}}) = (v \otimes f_{P\mathcal{U}})T_{\tilde{d}} = v \otimes f_{P\mathcal{U}}T_{\tilde{d}}$ (Lemma ??). Hence κ_P is an isomorphism.

We consider the composite map

$$v \mapsto v \otimes 1 \mapsto v \otimes f_{P\mathcal{U}}e_{M_2} : e(\mathcal{V}) \to e(\mathcal{V}) \otimes_R \mathbf{1}_{\mathcal{H}} \to e(\mathcal{V}) \otimes_R (\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}},$$

where the right map is the tensor product $e(\mathcal{V}) \otimes_R - \text{ of the } \mathcal{H}_R$ -equivariant embedding $\mathbf{1}_{\mathcal{H}} \to (\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}}$ sending $\mathbf{1}_R$ to $f_{P\mathcal{U}}e_{M_2}$ (Lemma ??); this map is injective because $(\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}}/\mathbf{1}$ is a free R-module; it is \mathcal{H}_R -equivariant for the diagonal action of the T_w^* on the tensor products (Example ?? for the first map). By compatibility with (1), we get the \mathcal{H}_R -equivariant embedding $v \mapsto v \otimes e_{M_2} : e(\mathcal{V}) \xrightarrow{\iota(P,G)} \operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}}(\mathcal{V})$.

For a general (Q,Q') the \mathcal{H}_R -embedding $\operatorname{Ind}_{H_{Q'}}^{\mathcal{H}}(e_{H_{Q'}}(\mathcal{V})) \xrightarrow{\iota(Q,Q')} \operatorname{Ind}_{\mathcal{H}_Q}^{\mathcal{H}}(e_{\mathcal{H}_Q}(\mathcal{V}))$ is given in the next proposition generalizing Lemma ??. The element e_{M_2} of \mathcal{H}_R appearing in the definition of $\iota(P,G')$ is replaced in the definition of $\iota(Q,Q')$ by an element $\theta_{Q'}(e_Q^{Q'}) \in \mathcal{H}_R$ that we define first.

Until the end of §??, we fix an admissible lift $w \mapsto \hat{w} : \mathbb{W} \to \mathcal{N} \cap \mathcal{K}$ (Definition ??) and \tilde{w} denotes the image of \hat{w} in W(1). We denote $\mathbb{W}_{M_Q} = \mathbb{W}_Q$ and by $\mathbb{W}_Q \mathbb{W}$ the set of $w \in \mathbb{W}$ of minimal length in their coset $\mathbb{W}_Q w$. The group G is the disjoint union of $Q\hat{d}\mathcal{U}$ for d running through $\mathbb{W}_Q \mathbb{W}$ [?, Lemma 2.18 (2)].

$$(4.4) Q'\mathcal{U} = \sqcup_{d \in \mathcal{W}_{Q \mathbb{W}_{Q'}}} Q \hat{d} \mathcal{U},$$

Set

$$e_Q^{Q'} = \sum_{d \in \mathbb{W}_Q \mathbb{W}_{Q'}} T_{\tilde{d}}^{M_{Q'}}.$$

We write $e_Q^G = e_Q$. We have $e_P^Q = \sum_{d \in \mathbb{W}_{M_{2,Q}}} T_{\tilde{d}}^{M_Q}$.

Remark 4.4. Note that $\mathbb{W}_M \mathbb{W} = \mathbb{W}_{M_2}$ and $e_P = e_{M_2}$, where M_2 is the standard Levi subgroup of G with $\Delta_{M_2} = \Delta \setminus \Delta_M$, as Δ_M and $\Delta \setminus \Delta_M$ are orthogonal. More generally, $\mathbb{W}_Q \mathbb{W}_{M_{Q'}} = \mathbb{W}_{M_{2,Q'}} \mathbb{W}_{M_{2,Q'}}$ where $M_{2,Q'} = M_2 \cap M_{Q'}$.

Note that $e_Q^{Q'} \in \mathcal{H}_{M^+} \cap \mathcal{H}_{M^-}$. We consider the linear map

$$\theta_Q^{Q'}: \mathcal{H}_Q \to H_{Q'} \quad T_w^{M_Q} \mapsto T_w^{M_{Q'}} \quad (w \in W_{M_Q}(1)).$$

We write $\theta_Q^G = \theta_Q$ so $\theta_Q(T_w^{M_Q}) = T_w$. When Q = P this is the map θ defined earlier. Similarly we denote by $\theta_Q^{Q',*}$ the linear map sending the $T_w^{M_Q,*}$ to $T_w^{M_{Q'},*}$ and $\theta_Q^{G,*} = \theta_Q^*$. We have

(4.6)
$$\theta_{Q'}(e_Q^{Q'}) = \sum_{d \in \mathbb{W}_{Q} \mathbb{W}_{Q'}} T_{\tilde{d}}, \quad \theta_{Q'}(e_P^{Q'}) = \theta_Q(e_P^Q)\theta_{Q'}(e_Q^{Q'}).$$

Proposition 4.5. There exists an \mathcal{H}_R -isomorphism

$$(4.7) v \otimes 1_{\mathcal{H}} \mapsto v \otimes f_{Q\mathcal{U}} : \operatorname{Ind}_{\mathcal{H}_Q}^{\mathcal{H}}(e_{\mathcal{H}_Q}(\mathcal{V})) = e_{\mathcal{H}_Q}(\mathcal{V}) \otimes_{\mathcal{H}_{M_Q^+}, \theta} \mathcal{H} \xrightarrow{\kappa_Q} e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}},$$
and compatible \mathcal{H}_R -embeddings

$$(4.8) v \otimes f_{Q'\mathcal{U}} \mapsto v \otimes f_{Q'\mathcal{U}} : e_{\mathcal{H}_{Q'}}(\mathcal{V}) \otimes_R (\operatorname{Ind}_{Q'}^G \mathbf{1})^{\mathcal{U}} \to e_{\mathcal{H}_Q}(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}},$$

$$(4.9) v \otimes 1_{\mathcal{H}} \mapsto v \otimes \theta_{Q'}(e_Q^{Q'}) : \operatorname{Ind}_{H_{Q'}}^{\mathcal{H}}(e_{\mathcal{H}_{Q'}}(\mathcal{V})) \xrightarrow{\iota(Q,Q')} \operatorname{Ind}_{\mathcal{H}_Q}^{\mathcal{H}}(e_{\mathcal{H}_Q}(\mathcal{V})).$$

Proof. We have the $\mathcal{H}_{M_O,R}$ -embedding

$$v \mapsto v \otimes e_P^Q : e_{\mathcal{H}_Q}(\mathcal{V}) \to \mathcal{V} \otimes_{\mathcal{H}_{M^+}, \theta} \mathcal{H}_Q = \operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}_Q}(\mathcal{V})$$

by Lemma ?? (2) as Δ_M is orthogonal to $\Delta_{M_Q} \setminus \Delta_M$. Applying the parabolic induction which is exact, we get the \mathcal{H} -embedding

$$v \otimes 1_{\mathcal{H}} \mapsto v \otimes e_P^Q \otimes 1_{\mathcal{H}} : \operatorname{Ind}_{\mathcal{H}_Q}^{\mathcal{H}}(e_{\mathcal{H}_Q}(\mathcal{V})) \to \operatorname{Ind}_{\mathcal{H}_Q}^{\mathcal{H}}(\operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}_Q}(\mathcal{V})).$$

Note that $T_{\tilde{d}}^{M_Q} \in \mathcal{H}_{M_Q^+}$ for $d \in \mathbb{W}_{M_Q}$. By transitivity of the parabolic induction, it is equal to the \mathcal{H}_R -embedding

$$(4.10) v \otimes 1_{\mathcal{H}} \mapsto v \otimes \theta_Q(e_P^Q) : \operatorname{Ind}_{\mathcal{H}_Q}^{\mathcal{H}}(e_{\mathcal{H}_Q}(\mathcal{V})) \to \operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}}(\mathcal{V}).$$

On the other hand we have the \mathcal{H}_R -embedding

$$(4.11) v \otimes f_{Q\mathcal{U}} \mapsto v \otimes \theta_Q(e_P^Q) : e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}} \to \operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}}(\mathcal{V})$$

given by the restriction to $e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ of the \mathcal{H}_R -isomorphism given in Lemma ?? (1), from $e(\mathcal{V}) \otimes_R (\operatorname{Ind}_P^G \mathbf{1})^{\mathcal{U}}$ to $\mathcal{V} \otimes_{\mathcal{H}_{M+},\theta} \mathcal{H}$ sending $v \otimes f_{P\mathcal{U}}$ to $v \otimes 1_{\mathcal{H}}$, noting that $v \otimes f_{Q\mathcal{U}} = (v \otimes f_{P\mathcal{U}})\theta_Q(e_P^Q)$ by Lemma ??, $f_{Q\mathcal{U}} = f_{P\mathcal{U}}\theta_Q(e_P^Q)$ and $\theta_Q(e_P^Q)$ acts trivially on $e(\mathcal{V})$ (this is true for $T_{\tilde{d}}$ for $\tilde{d} \in {}_1W_{M'_2}$). Comparing the embeddings (??) and (??), we get the \mathcal{H}_R -isomorphism (??).

We can replace Q by Q' in the \mathcal{H}_R -homomorphisms (??), (??) and (??). With (??) we see $\operatorname{Ind}_{H_{Q'}}^{\mathcal{H}}(e_{H_{Q'}}(\mathcal{V}))$ and $\operatorname{Ind}_{\mathcal{H}_Q}^{\mathcal{H}}(e_{\mathcal{H}_Q}(\mathcal{V}))$ as \mathcal{H}_R -submodules of $\operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}}(\mathcal{V})$. As seen in (??) we have $\theta_{Q'}(e_P^{Q'}) = \theta_Q(e_P^Q)\theta_{Q'}(e_Q^{Q'})$. We deduce the \mathcal{H}_R -embedding (??).

By (??) for Q and (??),

$$f_{Q'U} = \sum_{d \in \mathcal{W}_{Q} \mathcal{W}_{Q'}} f_{QU} T_{\tilde{d}} = f_{QU} \theta_{Q'}(e_Q^{Q'})$$

in (c-Ind $_Q^G \mathbf{1}$) $^{\mathcal{U}}$. We deduce that the \mathcal{H}_R -embedding corresponding to (??) via κ_Q and $\kappa_{Q'}$ is the \mathcal{H}_R -embedding (??).

We recall that Δ_P and $\Delta \setminus \Delta_P$ are orthogonal and that \mathcal{V} is extensible to \mathcal{H} of extension $e(\mathcal{V})$.

Corollary 4.6. The cokernel of the \mathcal{H}_R -map

$$\oplus_{Q \subsetneq Q' \subset G} \operatorname{Ind}_{H_{Q'}}^{\mathcal{H}}(e_{mathcal}_{H_{Q'}}(\mathcal{V})) \to \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}(e_{\mathcal{H}_{Q}}(\mathcal{V}))$$

defined by the $\iota(Q,Q')$, is isomorphic to $e(\mathcal{V}) \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}}$ via κ_Q .

4.2. Invariants in the tensor product. We return to the setting where P = MN is a standard parabolic subgroup of G, σ is a smooth R-representation of M with $P(\sigma) = G$ of extension $e(\sigma)$ to G, and G a parabolic subgroup of G containing G. We still assume that G and G are orthogonal.

The \mathcal{H}_R -modules $e(\sigma^{\mathcal{U}_M}) = e(\sigma)^{\mathcal{U}}$ are equal (Theorem ??). We compute $I_G(P, \sigma, Q)^{\mathcal{U}} = (e(\sigma) \otimes_R \operatorname{St}_O^G)^{\mathcal{U}}$.

Theorem 4.7. The natural linear maps $e(\sigma)^{\mathcal{U}} \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}} \to (e(\sigma) \otimes_R \operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ and $e(\sigma)^{\mathcal{U}} \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}} \to (e(\sigma) \otimes_R \operatorname{St}_Q^G)^{\mathcal{U}}$ are isomorphisms.

Proof. We need some preliminaries. In [?], [?], is introduced a finite free \mathbb{Z} -module \mathfrak{M} (depending on Δ_Q) and a \mathcal{B} -equivariant embedding $\operatorname{St}_Q^G \mathbb{Z} \xrightarrow{\iota} C_c^{\infty}(\mathcal{B}, \mathfrak{M})$ (we indicate the coefficient ring in the Steinberg representation) which induces an isomorphism $(\operatorname{St}_Q^G\mathbb{Z})^{\mathcal{B}} \simeq C_c^{\infty}(\mathcal{B},\mathfrak{M})^{\mathcal{B}}$.

Lemma 4.8. (1) $(\operatorname{Ind}_{\mathcal{O}}^{G}\mathbb{Z})^{\mathcal{B}}$ is a direct factor of $\operatorname{Ind}_{\mathcal{O}}^{G}\mathbb{Z}$.

(2) $(\operatorname{St}_O^G \mathbb{Z})^{\mathcal{B}}$ is a direct factor of $\operatorname{St}_Q^G \mathbb{Z}$.

Proof. (1) [?, Example 2.2].

(2) As \mathfrak{M} is a free \mathbb{Z} -module, $C_c^{\infty}(\mathcal{B},\mathfrak{M})^{\mathcal{B}}$ is a direct factor of $C_c^{\infty}(\mathcal{B},\mathfrak{M})$. Consequently, $\iota((\operatorname{St}_O^G \mathbb{Z})^{\mathcal{B}}) = C_c^{\infty}(\mathcal{B}, \mathfrak{M})^{\mathcal{B}}$ is a direct factor of $\iota(\operatorname{St}_O^G \mathbb{Z})$. As ι is injective, we get (2).

We prove now Theorem ??. We may and do assume that σ is e-minimal (because $P(\sigma) =$ $P(\sigma_{\min}), e(\sigma) = e(\sigma_{\min})$ so that Δ_M and $\Delta \setminus \Delta_M$ are orthogonal and we use the same notation as in §?? in particular $M_2 = M_{\Delta \setminus \Delta_M}$. Let V be the space of $e(\sigma)$ on which M_2' acts trivially. The restriction of $\operatorname{Ind}_Q^G \mathbb{Z}$ to M_2 is $\operatorname{Ind}_{Q \cap M_2}^{M_2} \mathbb{Z}$, that of $\operatorname{St}_Q^G \mathbb{Z}$ is $\operatorname{St}_{Q \cap M_2}^{M_2} \mathbb{Z}$. As in [?, Example 2.2], $((\operatorname{Ind}_{Q \cap M_2}^{M_2} \mathbb{Z}) \otimes V)^{\mathcal{U}_{M'_2}} \simeq (\operatorname{Ind}_{Q \cap M_2}^{M_2} \mathbb{Z})^{\mathcal{U}_{M'_2}} \otimes V$. We have

$$\left(\operatorname{Ind}_{Q\cap M_2}^{M_2}\mathbb{Z}\right)^{\mathcal{U}_{M_2'}} = \left(\operatorname{Ind}_{Q\cap M_2}^{M_2}\mathbb{Z}\right)^{\mathcal{U}_{M_2}} = \left(\operatorname{Ind}_Q^G\mathbb{Z}\right)^{\mathcal{U}}.$$

The first equality follows from $M_2 = (Q \cap M_2) \mathbb{W}_{M_2} \mathcal{U}_{M_2}$, $\mathcal{U}_{M_2} = Z^1 \mathcal{U}_{M_2'}$ and Z^1 normalizes $\mathcal{U}_{M_2'}$ and is normalized by \mathbb{W}_{M_2} . The second equality follows from $\mathcal{U} = \mathcal{U}_{M'}\mathcal{U}_{M_2}$ and $\operatorname{Ind}_Q^G \mathbb{Z}$ is trivial on M'. Therefore $((\operatorname{Ind}_Q^G \mathbb{Z}) \otimes V)^{\mathcal{U}_{M'_2}} \simeq (\operatorname{Ind}_Q^G \mathbb{Z})^{\mathcal{U}} \otimes V$. Taking now fixed points under \mathcal{U}_M , as $\mathcal{U} = \mathcal{U}_{M_2}\mathcal{U}_M$,

$$((\operatorname{Ind}_Q^G \mathbb{Z}) \otimes V)^{\mathcal{U}} \simeq ((\operatorname{Ind}_Q^G \mathbb{Z})^{\mathcal{U}} \otimes V)^{\mathcal{U}_M} = (\operatorname{Ind}_Q^G \mathbb{Z})^{\mathcal{U}} \otimes V^{\mathcal{U}_M}$$

The equality uses that the \mathbb{Z} -module $\operatorname{Ind}_O^G \mathbb{Z}$ is free. We get the first part of the theorem as $(\operatorname{Ind}_O^G \mathbb{Z})^{\mathcal{U}} \otimes V^{\mathcal{U}_M} \simeq (\operatorname{Ind}_O^G R)^{\mathcal{U}} \otimes_R V^{\mathcal{U}_M}.$

Tensoring with R the usual exact sequence defining $\operatorname{St}_{\mathcal{O}}^{G}\mathbb{Z}$ gives an isomorphism $\operatorname{St}_{\mathcal{O}}^{G}\mathbb{Z}\otimes R\simeq$ $\operatorname{St}_Q^G R$ and in loc. cit. it is proved that the resulting map $\operatorname{St}_Q^G R \xrightarrow{\iota_R} C^{\infty}(\mathcal{B}, \mathfrak{M} \otimes R)$ is also injective. Their proof in no way uses the ring structure of R, and for any \mathbb{Z} -module V, tensoring with V gives a \mathcal{B} -equivariant embedding $\operatorname{St}_Q^G \mathbb{Z} \otimes V \xrightarrow{\iota_V} C_c^{\infty}(\mathcal{B}, \mathfrak{M} \otimes V)$. The natural map $(\operatorname{St}_Q^G \mathbb{Z})^{\mathcal{B}} \otimes V \to \operatorname{St}_Q^G \mathbb{Z} \otimes V$ is also injective by Lemma ?? (2). Taking \mathcal{B} -fixed points we get inclusions

$$(4.12) (\operatorname{St}_Q^G \mathbb{Z})^{\mathcal{B}} \otimes V \to (\operatorname{St}_Q^G \mathbb{Z} \otimes V)^{\mathcal{B}} \to C_c^{\infty}(\mathcal{B}, \mathfrak{M} \otimes V)^{\mathcal{B}} \simeq \mathfrak{M} \otimes V.$$

The composite map is surjective, so the inclusions are isomorphisms. The image of ι_V consists of functions which are left Z^0 -invariant, and $\mathcal{B} = Z^0\mathcal{U}'$ where $\mathcal{U}' = G' \cap \mathcal{U}$. It follows that ι yields an isomorphism $(\operatorname{St}_Q^G \mathbb{Z})^{\mathcal{U}'} \simeq C_c^{\infty}(Z^0 \backslash \mathcal{B}, \mathfrak{M})^{\mathcal{U}'}$ again consisting of the constant functions. So that in particular $(\operatorname{St}_Q^G \mathbb{Z})^{\mathcal{U}'} = (\operatorname{St}_Q^G \mathbb{Z})^{\mathcal{B}}$ and reasoning as previously we get isomorphisms

$$(4.13) (\operatorname{St}_{\mathcal{O}}^{G}\mathbb{Z})^{\mathcal{U}'} \otimes V \simeq (\operatorname{St}_{\mathcal{O}}^{G}\mathbb{Z} \otimes V)^{\mathcal{U}'} \simeq \mathfrak{M} \otimes V.$$

The equality $(\operatorname{St}_Q^G \mathbb{Z})^{\mathcal{U}'} = (\operatorname{St}_Q^G \mathbb{Z})^{\mathcal{B}}$ and the isomorphisms remain true when we replace \mathcal{U}' by any group between \mathcal{B} and \mathcal{U}' . We apply these results to $\operatorname{St}_{Q\cap M_2}^{M_2}\mathbb{Z}\otimes V$ to get that the natural map $(\operatorname{St}_{Q\cap M_2}^{M_2}\mathbb{Z})^{\mathcal{U}_{M_2'}}\otimes V \to (\operatorname{St}_{Q\cap M_2}^{M_2}\mathbb{Z}\otimes V)^{\mathcal{U}_{M_2'}}$ is an isomorphism and also that $(\operatorname{St}_{Q\cap M_2}^{M_2}\mathbb{Z})^{\mathcal{U}_{M_2'}} = (\operatorname{St}_{Q\cap M_2}^{M_2}\mathbb{Z})^{\mathcal{U}_{M_2}}$. We have $\mathcal{U} = \mathcal{U}_{M'}\mathcal{U}_{M_2}$ so $(\operatorname{St}_Q^G\mathbb{Z})^{\mathcal{U}} = (\operatorname{St}_{Q\cap M_2}^{M_2}\mathbb{Z})^{\mathcal{U}_{M_2}}$ and the natural map $(\operatorname{St}_Q^G \mathbb{Z})^{\mathcal{U}} \otimes V \to (\operatorname{St}_Q^G \mathbb{Z} \otimes V)^{\mathcal{U}_{M'_2}}$ is an isomorphism. The \mathbb{Z} -module $(\operatorname{St}_Q^G \mathbb{Z})^{\mathcal{U}}$ is free and the $V^{\mathcal{U}_M} = V^{\mathcal{U}}$, so taking fixed points under \mathcal{U}_M , we get $(\operatorname{St}_Q^G \mathbb{Z})^{\mathcal{U}} \otimes V^{\mathcal{U}} \simeq (\operatorname{St}_Q^G \mathbb{Z} \otimes V)^{\mathcal{U}}$. We have $\operatorname{St}_Q^G \mathbb{Z} \otimes V = \operatorname{St}_Q^G R \otimes_R V$ and $(\operatorname{St}_Q^G \mathbb{Z})^{\mathcal{U}} \otimes V^{\mathcal{U}} = (\operatorname{St}_Q^G R)^{\mathcal{U}} \otimes_R V^{\mathcal{U}}$. This ends the proof of the theorem.

Theorem 4.9. The \mathcal{H}_R -modules $(e(\sigma) \otimes_R \operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}} = e(\sigma)^{\mathcal{U}} \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ are equal. The \mathcal{H}_R -modules $(e(\sigma) \otimes_R \operatorname{St}_Q^G)^{\mathcal{U}} = e(\sigma)^{\mathcal{U}} \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}}$ are also equal.

Proof. We already know that the R-modules are equal (Theorem $\ref{thm:equal}$). We show that they are equal as \mathcal{H} -modules. The \mathcal{H}_R -modules $e(\sigma)^{\mathcal{U}} \otimes_R (\operatorname{Ind}_Q^G \mathbf{1}) = e_{\mathcal{H}} (\sigma^{\mathcal{U}_M})^{\mathcal{U}} \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ are equal (Theorem $\ref{thm:equal}$), they are isomorphic to $\operatorname{Ind}_{\mathcal{H}_Q}^{\mathcal{H}}(e_{\mathcal{H}_Q}(\sigma^{\mathcal{U}_M}))$ (Proposition $\ref{thm:equal}$), to $(\operatorname{Ind}_Q^G(e_Q(\sigma)))^{\mathcal{U}}$ [?, Proposition $\ref{thm:equal}$] and to $(e(\sigma) \otimes_R \operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ [?, Lemma 2.5]). We deduce that the \mathcal{H}_R -modules $e(\sigma)^{\mathcal{U}} \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}} = (e(\sigma) \otimes_R \operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ are equal. The same is true when Q is replaced by a parabolic subgroup Q' of G containing Q. The representation $e(\sigma) \otimes_R \operatorname{St}_Q^G$ is the cokernel of the natural R[G]-map

$$\bigoplus_{Q \subsetneq Q'} e(\sigma) \otimes_R \operatorname{Ind}_{Q'}^G \mathbf{1} \xrightarrow{\alpha_Q} e(\sigma) \otimes_R \operatorname{Ind}_Q^G \mathbf{1}$$

and the \mathcal{H}_R -module $e(\sigma)^{\mathcal{U}} \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}}$ is the cokernel of the natural \mathcal{H}_R -map

$$\bigoplus_{Q \subseteq Q'} e(\sigma)^{\mathcal{U}} \otimes_R (\operatorname{Ind}_{Q'}^G \mathbf{1})^{\mathcal{U}} \xrightarrow{\beta_Q} e(\sigma)^{\mathcal{U}} \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$$

obtained by tensoring $(\ref{eq:condition})^{\mathcal{U}}$ over R, because the tensor product is right exact. The maps $\beta_Q = \alpha_Q^U$ are equal and the R-modules $(\sigma)^{\mathcal{U}} \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}} = (e(\sigma) \otimes_R \operatorname{St}_Q^G)^{\mathcal{U}}$ are equal. This implies that the \mathcal{H}_R -modules $(\sigma)^{\mathcal{U}} \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}} = (e(\sigma) \otimes_R \operatorname{St}_Q^G)^{\mathcal{U}}$ are equal. \square

Remark 4.10. The proof shows that the representations $e(\sigma) \otimes_R \operatorname{Ind}_Q^G \mathbf{1}$ and $e(\sigma) \otimes \operatorname{St}_Q^G$ of G are generated by their \mathcal{U} -fixed vectors if the representation σ of M is generated by its \mathcal{U}_M -fixed vectors. Indeed, the R-modules $e(\sigma)^{\mathcal{U}} = \sigma^{\mathcal{U}_M}$, $(\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}_{M'_2}} = (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ are equal. If $\sigma^{\mathcal{U}_M}$ generates σ , then $e(\sigma)$ is generated by $e(\sigma)^{\mathcal{U}}$. The representation $\operatorname{Ind}_Q^G \mathbf{1}|_{M'_2}$ is generated by $(\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ (this follows from the lemma below), we have $G = MM'_2$ and M'_2 acts trivially on $e(\sigma)$. Therefore the R[G]-module generated by $\sigma^{\mathcal{U}} \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ is $e(\sigma) \otimes_R \operatorname{Ind}_Q^G \mathbf{1}$. As $e(\sigma) \otimes_R \operatorname{St}_Q^G$ is a quotient of $e(\sigma) \otimes_R \operatorname{Ind}_Q^G \mathbf{1}$, the R[G]-module generated by $\sigma^{\mathcal{U}} \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}}$ is $e(\sigma) \otimes_R \operatorname{St}_Q^G$.

Lemma 4.11. For any standard parabolic subgroup P of G, the representation $\operatorname{Ind}_P^G \mathbf{1}|_{G'}$ is generated by its \mathcal{U} -fixed vectors.

Proof. Because G = PG' it suffices to prove that if J is an open compact subgroup of \overline{N} the characteristic function 1_{PJ} of PJ is a finite sum of translates of $1_{P\mathcal{U}} = 1_{P\mathcal{U}_{\overline{N}}}$ by G'. For $t \in T$ we have $P\mathcal{U}t = Pt^{-1}\mathcal{U}_{\overline{N}}t$ and we can choose $t \in T \cap J'$ such that $t^{-1}\mathcal{U}_{\overline{N}}t \subset J$.

4.3. General triples. Let P = MN be a standard parabolic subgroup of G. We now investigate situations where Δ_P and $\Delta \setminus \Delta_P$ are not necessarily orthogonal. Let \mathcal{V} a right $\mathcal{H}_{M,R}$ -module.

Definition 4.12. Let $P(\mathcal{V}) = M(\mathcal{V})N(\mathcal{V})$ be the standard parabolic subgroup of G with $\Delta_{P(\mathcal{V})} = \Delta_P \cup \Delta_{\mathcal{V}}$ and

$$\Delta_{\mathcal{V}} = \{ \alpha \in \Delta \text{ orthogonal to } \Delta_M, T^{M,*}(z) \text{ acts trivially on } \mathcal{V} \text{ for all } z \in Z \cap M'_{\alpha} \}.$$

If Q is a parabolic subgroup of G between P and $P(\mathcal{V})$, the triple (P, \mathcal{V}, Q) called an \mathcal{H}_R -triple, defines a right \mathcal{H}_R -module $I_{\mathcal{H}}(P, \mathcal{V}, Q)$ equal to

$$\operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}(e(\mathcal{V}) \otimes_{R} (\operatorname{St}_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})})^{\mathcal{U}_{M(\mathcal{V})}}) = (e(\mathcal{V}) \otimes_{R} (\operatorname{St}_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})})^{\mathcal{U}_{M(\mathcal{V})}}) \otimes_{\mathcal{H}_{M(\mathcal{V})^{+},R},\theta} \mathcal{H}_{R}$$
 where $e(\mathcal{V})$ is the extension of \mathcal{V} to $\mathcal{H}_{M(\mathcal{V})}$.

This definition is justified by the fact that $M(\mathcal{V})$ is the maximal standard Levi subgroup of G such that the $\mathcal{H}_{M,R}$ -module \mathcal{V} is extensible to $\mathcal{H}_{M(\mathcal{V})}$:

Lemma 4.13. $\Delta_{\mathcal{V}}$ is the maximal subset of $\Delta \setminus \Delta_P$ orthogonal to Δ_P such that $T_{\lambda}^{M,*}$ acts trivially on \mathcal{V} for all $\lambda \in \Lambda(1) \cap {}_1W_{M'_{\lambda}}$.

Proof. For $J \subset \Delta$ let M_J denote the standard Levi subgroup of G with $\Delta_{M_J} = J$. The group $Z \cap M_J'$ is generated by the $Z \cap M_\alpha'$ for all $\alpha \in J$ (Lemma ??). When J is orthogonal to Δ_M and $\lambda \in \Lambda_{M_J'}(1)$, $\ell_M(\lambda) = 0$ where ℓ_M is the length associated to S_M^{aff} , and the map $\lambda \mapsto T_\lambda^{M,*} = T_\lambda^M : \Lambda_{M_J'}(1) \to \mathcal{H}_M$ is multiplicative. \square

The following is the natural generalisation of Proposition ?? and Corollary ??. Let Q' be a parabolic subgroup of G with $Q \subset Q' \subset P(\mathcal{V})$. Applying the results of §?? to $M(\mathcal{V})$ and its standard parabolic subgroups $Q \cap M(\mathcal{V}) \subset Q' \cap M(\mathcal{V})$, we have an $\mathcal{H}_{M(\mathcal{V}),R}$ -isomorphism

$$\operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}_{M}(\mathcal{V})}(e_{\mathcal{H}_{Q}}(\mathcal{V})) = e_{\mathcal{H}_{Q}}(\mathcal{V}) \otimes_{\mathcal{H}_{M_{Q}^{+}}, \theta} \mathcal{H}_{M(\mathcal{V}), R} \xrightarrow{\kappa_{Q \cap M(\mathcal{V})}} e(\mathcal{V}) \otimes_{R} (\operatorname{Ind}_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})} \mathbf{1})^{\mathcal{U}_{M(\mathcal{V})}}$$
$$v \otimes 1_{\mathcal{H}} \mapsto v \otimes f_{OU \cap M(\mathcal{V})}:$$

and an $\mathcal{H}_{M(\mathcal{V}),R}$ -embedding

$$\operatorname{Ind}_{\mathcal{H}_{Q'}}^{\mathcal{H}_{M(\mathcal{V})}}(e_{\mathcal{H}_{Q'}}(\mathcal{V})) \xrightarrow{\iota(Q \cap M(\mathcal{V}), Q' \cap M(\mathcal{V}))} \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}_{M(\mathcal{V})}}(e_{\mathcal{H}_{Q}}(\mathcal{V}))$$
$$v \otimes 1_{\mathcal{H}_{M(\mathcal{V})}} \mapsto v \otimes \theta_{Q'}^{P(\mathcal{V})}(e_{Q}^{Q'}).$$

Applying the parabolic induction $\operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}$ which is exact and transitive, we obtain an \mathcal{H}_{R} isomorphism $\kappa_Q = \operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}(\kappa_{Q \cap M(\mathcal{V})})$,

(4.14)
$$\operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}(e_{\mathcal{H}_{Q}}(\mathcal{V})) \xrightarrow{\kappa_{Q}} \operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}(e(\mathcal{V}) \otimes_{R} (\operatorname{Ind}_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})} \mathbf{1}_{M_{Q}})^{\mathcal{U}_{M(\mathcal{V})}})$$
$$v \otimes 1_{\mathcal{H}} \mapsto v \otimes f_{Q\mathcal{U}_{M(\mathcal{V})}} \otimes 1_{\mathcal{H}}$$

and an \mathcal{H}_R -embedding $\iota(Q,Q') = \operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}(\iota(Q,Q')^{M(\mathcal{V})})$

$$(4.15) v \otimes 1_{\mathcal{H}} \mapsto v \otimes \theta_{Q'}(e_Q^{Q'}) : \operatorname{Ind}_{H_{Q'}}^{\mathcal{H}}(e_{\mathcal{H}_{Q'}}(\mathcal{V})) \xrightarrow{\iota(Q,Q')} \operatorname{Ind}_{\mathcal{H}_Q}^{\mathcal{H}}(e_{\mathcal{H}_Q}(\mathcal{V})).$$

Applying Corollary ?? we obtain:

Theorem 4.14. Let (P, \mathcal{V}, Q) be an \mathcal{H}_R -triple. Then, the cokernel of the \mathcal{H}_R -map $\bigoplus_{Q \subseteq Q' \subset P(\mathcal{V})} \operatorname{Ind}_{\mathcal{H}_{Q'}}^{\mathcal{H}}(e_{\mathcal{H}_{Q'}}(\mathcal{V})) \to \operatorname{Ind}_{\mathcal{H}_Q}^{\mathcal{H}}(e_{\mathcal{H}_Q}(\mathcal{V})),$

defined by the $\iota(Q,Q')$ is isomorphic to $I_{\mathcal{H}}(P,\mathcal{V},Q)$ via the \mathcal{H}_R -isomorphism κ_Q .

Let σ be a smooth R-representation of M and Q a parabolic subgroup of G with $P \subset Q \subset P(\sigma)$.

Remark 4.15. The \mathcal{H}_R -module $I_{\mathcal{H}}(P, \sigma^{\mathcal{U}_M}, Q)$ is defined if $\Delta_Q \setminus \Delta_P$ and Δ_P are orthogonal because $Q \subset P(\sigma) \subset P(\sigma^{\mathcal{U}_M})$ (Theorem ??).

We denote here by $P_{\min} = M_{\min} N_{\min}$ the minimal standard parabolic subgroup of G contained in P such that $\sigma = e_P(\sigma|_{M_{\min}})$ (Lemma $\ref{lem:property}$, we drop the index σ). The sets of roots $\Delta_{P_{\min}}$ and $\Delta_{P(\sigma|_{M_{\min}})} \setminus \Delta_{P_{\min}}$ are orthogonal (Lemma $\ref{lem:property}$). The groups $P(\sigma) = P(\sigma|_{M_{\min}})$, the representations $e(\sigma) = e(\sigma|_{M_{\min}})$ of $M(\sigma)$, the representations $I_G(P, \sigma, Q) = I_G(P_{\min}, \sigma|_{M_{\min}}, Q) = \operatorname{Ind}_{P(\sigma)}^G(e(\sigma) \otimes_R \operatorname{St}_Q^{P(\sigma)})$ of G, and the R-modules $\sigma^{\mathcal{U}_{M_{\min}}} = \sigma^{\mathcal{U}_M}$ are equal. From Theorem $\ref{lem:property}$?

$$P(\sigma) \subset P(\sigma^{\mathcal{U}_{M_{\min}}}), \quad e_{\mathcal{H}_{M(\sigma)}}(\sigma^{\mathcal{U}_{M_{\min}}}) = e(\sigma)^{\mathcal{U}_{M(\sigma)}},$$

and $P(\sigma^{\mathcal{U}_{M(\sigma)}}) = P(\sigma)$ if $\sigma^{\mathcal{U}_{M(\sigma)}}$ generates the representation $\sigma|_{M_{\min}}$. The \mathcal{H}_R -module

$$I_{\mathcal{H}}(P_{\min}, \sigma^{\mathcal{U}_{M_{\min}}}, Q) = \operatorname{Ind}_{\mathcal{H}_{M(\sigma^{\mathcal{U}_{M_{\min}}})}}^{\mathcal{H}} (e(\sigma^{\mathcal{U}_{M_{\min}}}) \otimes_{R} (\operatorname{St}_{Q}^{P(\sigma^{\mathcal{U}_{M_{\min}}})})^{\mathcal{U}_{M(\sigma^{\mathcal{U}_{M_{\min}}})}})$$

is defined because $\Delta_{P_{\min}}$ and $\Delta_{P(\sigma^{\mathcal{U}_{M_{\min}}})} \setminus \Delta_{P_{\min}}$ are orthogonal and $P \subset Q \subset P(\sigma) \subset P(\sigma^{\mathcal{U}_{M_{\min}}})$.

Remark 4.16. If $\sigma^{\mathcal{U}_{M(\sigma)}}$ generates the representation $\sigma|_{M_{\min}}$ (in particular if R=C and σ is irrreducible), then $P(\sigma)=P(\sigma^{\mathcal{U}_{M_{\min}}})$ hence

$$I_{\mathcal{H}}(P_{\min}, \sigma^{\mathcal{U}_{M_{\min}}}, Q) = \operatorname{Ind}_{\mathcal{H}_{M(\sigma)}}^{\mathcal{H}}(e_{\mathcal{H}_{M(\sigma)}}(\sigma^{\mathcal{U}_{M_{\min}}}) \otimes_{R} (\operatorname{St}_{Q \cap M(\sigma)}^{M(\sigma)})^{\mathcal{U}_{M(\sigma)}}).$$

Applying Theorem ?? to $(P_{\min} \cap M(\sigma), \sigma|_{M_{\min}}, Q \cap M(\sigma))$, the $\mathcal{H}_{M(\sigma),R}$ -modules

$$(4.16) e_{\mathcal{H}_{M(\sigma)}}(\sigma^{\mathcal{U}_{M_{\min}}}) \otimes_R (\operatorname{St}_{Q \cap M(\sigma)}^{M(\sigma)})^{\mathcal{U}_{M(\sigma)}} = (e_{M(\sigma)}(\sigma) \otimes_R \operatorname{St}_{Q \cap M(\sigma)}^{M(\sigma)})^{\mathcal{U}_{M(\sigma)}}$$

are equal. We have the \mathcal{H}_R -isomorphism [?, Proposition 4.4]:

$$I_{G}(P, \sigma, Q)^{\mathcal{U}} = (\operatorname{Ind}_{P(\sigma)}^{G}(e(\sigma) \otimes_{R} \operatorname{St}_{Q}^{P(\sigma)}))^{\mathcal{U}} \xrightarrow{ov} \operatorname{Ind}_{\mathcal{H}_{M(\sigma)}}^{\mathcal{H}}((e(\sigma) \otimes_{R} \operatorname{St}_{Q \cap M(\sigma)}^{M(\sigma)})^{\mathcal{U}_{M(\sigma)}})$$
$$f_{P(\sigma)\mathcal{U}, x} \mapsto x \otimes 1_{\mathcal{H}} \quad (x \in (e(\sigma) \otimes_{R} \operatorname{St}_{Q \cap M(\sigma)}^{M(\sigma)})^{\mathcal{U}_{M(\sigma)}}).$$

We deduce:

Theorem 4.17. Let (P, σ, Q) be a R[G]-triple. Then, we have the \mathcal{H}_R -isomorphism

$$I_G(P, \sigma, Q)^{\mathcal{U}} \xrightarrow{ov} \operatorname{Ind}_{\mathcal{H}_{M(\sigma)}}^{\mathcal{H}}(e_{\mathcal{H}_{M(\sigma)}}(\sigma^{\mathcal{U}_{M_{\min}}}) \otimes_R (\operatorname{St}_{Q \cap M(\sigma)}^{M(\sigma)})^{\mathcal{U}_{M(\sigma)}}).$$

In particular,

$$I_G(P, \sigma, Q)^{\mathcal{U}} \simeq \begin{cases} I_{\mathcal{H}}(P_{\min}, \sigma^{\mathcal{U}_{M_{\min}}}, Q) & \text{if } P(\sigma) = P(\sigma^{\mathcal{U}_{M_{\min}}}) \\ I_{\mathcal{H}}(P, \sigma^{\mathcal{U}_{M}}, Q) & \text{if } P = P_{\min}, P(\sigma) = P(\sigma^{\mathcal{U}_{M}}) \end{cases}.$$

4.4. Comparison of the parabolic induction and coinduction. Let P = MN be a standard parabolic subgroup of G, V a right \mathcal{H}_R -module and Q a parabolic subgroup of G with $Q \subset P(V)$. When R = C, in [?], we associated to (P, V, Q) an \mathcal{H}_R -module using the parabolic coinduction

$$\operatorname{Coind}_{\mathcal{H}_M}^{\mathcal{H}}(-) = \operatorname{Hom}_{\mathcal{H}_{M^- \, \theta^*}}(\mathcal{H}, -) : \operatorname{Mod}_R(\mathcal{H}_M) \to \operatorname{Mod}_R(\mathcal{H})$$

instead of the parabolic induction $\operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}}(-) = -\otimes_{\mathcal{H}_{M+},\theta} \mathcal{H}$. The index θ^* in the parabolic coinduction means that $\mathcal{H}_{M_Q^-}$ embeds in \mathcal{H} by θ_Q^* . Our terminology is different from the one in [?] where the parabolic coinduction is called induction. For a parabolic subgroup Q' of G with $Q \subset Q' \subset P(\mathcal{V})$, there is a natural inclusion of \mathcal{H}_R -modules [?, Proposition 4.19]

$$(4.17) \qquad \operatorname{Hom}_{\mathcal{H}_{\overline{Q'}},\theta^*}(\mathcal{H},e_{\mathcal{H}_{Q'}}(\mathcal{V})) \xrightarrow{i(Q,Q')} \operatorname{Hom}_{\mathcal{H}_{\overline{Q'}},\theta^*}(\mathcal{H},e_{\mathcal{H}_{Q}}(\mathcal{V})).$$

because $\theta^*(\mathcal{H}_{M_Q^-}) \subset \theta^*(\mathcal{H}_{M_{Q'}^-})$ as $W_{M_Q^-}(1) \subset W_{M_{Q'}^-}(1)$, and $vT_w^{M_{Q'}*} = vT_w^{M_Q*}$ for $w \in W_{M_Q^-}(1)$ and $v \in \mathcal{V}$.

Definition 4.18. Let $CI_{\mathcal{H}}(P, \mathcal{V}, Q)$ denote the cokernel of the map

$$\oplus_{Q \subsetneq Q' \subset P(\mathcal{V})} \ \operatorname{Hom}_{\mathcal{H}_{M_{Q'}^-,\theta^*}}(\mathcal{H},e_{\mathcal{H}_{Q'}}(\mathcal{V})) \to \operatorname{Hom}_{\mathcal{H}_{M_Q^-,\theta^*}}(\mathcal{H},e_{\mathcal{H}_Q}(\mathcal{V}))$$

defined by the \mathcal{H}_R -embeddings i(Q, Q').

When R = C, we showed that the \mathcal{H}_C -module $\mathcal{C}I_{\mathcal{H}}(P, \mathcal{V}, Q)$ is simple when \mathcal{V} is simple and supersingular (Definition \ref{loop}), and that any simple \mathcal{H}_C -module is of this form for a \mathcal{H}_C -triple (P, \mathcal{V}, Q) where \mathcal{V} is simple and supersingular, P, Q and the isomorphism class of \mathcal{V} are unique \ref{loop} . The aim of this section is to compare the \mathcal{H}_R -modules $I_{\mathcal{H}}(P, \mathcal{V}, Q)$ with the \mathcal{H}_R -modules $CI_{\mathcal{H}}(P, \mathcal{V}, Q)$ and to show that the classification is also valid with the \mathcal{H}_C -modules $I_{\mathcal{H}}(P, \mathcal{V}, Q)$.

It is already known that a parabolically coinduced module is a parabolically induced module and vice versa [?] [?]. To make it more precise we need to introduce notations.

We lift the elements w of the finite Weyl group \mathbb{W} to $\hat{w} \in \mathcal{N}_G \cap \mathcal{K}$ as in [?, IV.6], [?, Proposition 2.7]: they satisfy the braid relations $\hat{w}_1\hat{w}_2 = (w_1w_2)$ when $\ell(w_1) + \ell(w_2) = \ell(w_1w_2)$ and when $s \in S$, \hat{s} is admissible, in particular lies in ${}_1W_{G'}$.

Let $\mathbf{w}, \mathbf{w}_M, \mathbf{w}^M$ denote respectively the longest elements in \mathbb{W}, \mathbb{W}_M and $\mathbf{w}\mathbf{w}_M$. We have $\mathbf{w} = \mathbf{w}^{-1} = \mathbf{w}^M \mathbf{w}_M, \mathbf{w}_M = \mathbf{w}_M^{-1}, \ \hat{\mathbf{w}} = \hat{\mathbf{w}}^M \hat{\mathbf{w}}_M,$

$$\mathbf{w}^M(\Delta_M) = -\mathbf{w}(\Delta_M) \subset \Delta, \quad \mathbf{w}^M(\Phi^+ \setminus \Phi_M^+) = \mathbf{w}(\Phi^+ \setminus \Phi_M^+).$$

Let $\mathbf{w}.M$ be the standard Levi subgroup of G with $\Delta_{\mathbf{w}.M} = \mathbf{w}^M(\Delta_M)$ and $\mathbf{w}.P$ the standard parabolic subgroup of G with Levi $\mathbf{w}.M$. We have

$$\mathbf{w}.M = \hat{\mathbf{w}}^M M (\hat{\mathbf{w}}^M)^{-1} = \hat{\mathbf{w}} M (\hat{\mathbf{w}})^{-1}, \quad \mathbf{w}^{\mathbf{w}.M} = \mathbf{w}_M \mathbf{w} = (\mathbf{w}^M)^{-1}.$$

The conjugation $w \mapsto \mathbf{w}^M w(\mathbf{w}^M)^{-1}$ in W gives a group isomorphism $W_M \to W_{\mathbf{w}.M}$ sending S_M^{aff} onto $S_{\mathbf{w}.M}^{\mathrm{aff}}$, respecting the finite Weyl subgroups $\mathbf{w}^M \mathbb{W}_M(\mathbf{w}^M)^{-1} = \mathbb{W}_{\mathbf{w}.M} = \mathbf{w} \mathbb{W}_M \mathbf{w}^{-1}$, and echanging W_{M^+} and $W_{(\mathbf{w}.M)^-} = \mathbf{w} W_{M^+} \mathbf{w}^{-1}$. The conjugation by $\tilde{\mathbf{w}}^M$ restricts to a group isomorphism $W_M(1) \to W_{\mathbf{w}.M}(1)$ sending $W_{M^+}(1)$ onto $W_{(\mathbf{w}.M)^-}(1)$. The linear isomorphism

(4.18)
$$\mathcal{H}_M \xrightarrow{\iota(\tilde{\mathbf{w}}^M)} \mathcal{H}_{\mathbf{w}.M} \quad T_w^M \mapsto T_{\tilde{\mathbf{w}}^M w(\tilde{\mathbf{w}}^M)^{-1}}^{\mathbf{w}.M} \text{ for } w \in W_M(1),$$

is a ring isomorphism between the pro-p-Iwahori Hecke rings of M and $\mathbf{w}.M$. It sends the positive part \mathcal{H}_{M^+} of \mathcal{H}_M onto the negative part $\mathcal{H}_{(\mathbf{w}.M)^-}$ of $\mathcal{H}_{\mathbf{w}.M}$ [?, Proposition 2.20]. We have $\tilde{\mathbf{w}} = \tilde{\mathbf{w}}_M \tilde{\mathbf{w}}^{\mathbf{w}.M} = \tilde{\mathbf{w}}^M \tilde{\mathbf{w}}_M$, $(\tilde{\mathbf{w}}^M)^{-1} = \tilde{\mathbf{w}}^{\mathbf{w}.M} t_M$ where $t_M = \tilde{\mathbf{w}}^2 \tilde{\mathbf{w}}_M^{-2} \in Z_k$.

Definition 4.19. The **twist** $\tilde{\mathbf{w}}^M.\mathcal{V}$ **of** \mathcal{V} **by** $\tilde{\mathbf{w}}^M$ is the right $\mathcal{H}_{\mathbf{w}.M}$ -module deduced from the right \mathcal{H}_M -module \mathcal{V} by functoriality: as R-modules $\tilde{\mathbf{w}}^M.\mathcal{V} = \mathcal{V}$ and for $v \in \mathcal{V}, w \in W_M(1)$ we have $vT_{\tilde{\mathbf{w}}^Mw(\tilde{\mathbf{w}}^M)^{-1}}^{\mathbf{w}.M} = vT_w^M$.

We can define the twist $\tilde{\mathbf{w}}^M.\mathcal{V}$ of \mathcal{V} with the $T_w^{M,*}$ instead of T_w^M .

Lemma 4.20. For $v \in \mathcal{V}, w \in W_M(1)$ we have $vT_{\tilde{\mathbf{w}}^M w(\tilde{\mathbf{w}}^M)^{-1}}^{\mathbf{w}.M,*} = vT_w^{M,*}$ in $\tilde{\mathbf{w}}^M.\mathcal{V}$.

Proof. By the ring isomorphism $\mathcal{H}_M \xrightarrow{\iota(\tilde{\mathbf{w}}^M)} \mathcal{H}_{\mathbf{w}.M}$, we have $c_{\tilde{\mathbf{w}}^M \tilde{s}(\tilde{\mathbf{w}}^M)^{-1}}^{\mathbf{w}.M} = c_{\tilde{s}}^M$ when $\tilde{s} \in W_M(1)$ lifts $s \in S_M^{\mathrm{aff}}$. So the equality of the lemma is true for $w = \tilde{s}$. Apply the braid relations to get the equality for all $w \in W_M(1)$.

We return to the \mathcal{H}_R -module $\operatorname{Hom}_{\mathcal{H}_{M^-,\theta^*}}(\mathcal{H},V)$ parabolically coinduced from \mathcal{V} . It has a natural direct decomposition indexed by the set $\mathbb{W}^{\mathbb{W}_M}$ of elements d in the finite Weyl group \mathbb{W} of minimal length in the coset $d\mathbb{W}_M$. Indeed it is known that the linear map

$$f \mapsto (f(T_{\tilde{d}}))_{d \in \mathbb{W}^{\mathbb{W}_M}} : \operatorname{Hom}_{\mathcal{H}_{M^-}, \theta^*}(\mathcal{H}, \mathcal{V}) \to \bigoplus_{d \in \mathbb{W}^{\mathbb{W}_M}} \mathcal{V}$$

is an isomorphism. For $v \in \mathcal{V}$ and $d \in \mathbb{W}^{\mathbb{W}_M}$, there is a unique element

$$f_{\tilde{d},v} \in \operatorname{Hom}_{\mathcal{H}_{M^-},\theta^*}(\mathcal{H},\mathcal{V})$$
 satisfying $f(T_{\tilde{d}}) = v$ and $f(T_{\tilde{d}'}) = 0$ for $d' \in \mathbb{W}^{\mathbb{W}_M} \setminus \{d\}$.

It is known that the map $v \mapsto f_{\tilde{\mathbf{w}}^M,v} : \tilde{\mathbf{w}}^M.\mathcal{V} \to \operatorname{Hom}_{\mathcal{H}_{M^-},\theta^*}(\mathcal{H},\mathcal{V})$ is $\mathcal{H}_{(\mathbf{w}.M)^+}$ -equivariant: $f_{\tilde{\mathbf{w}}^M,vT_{\mathbf{w}}^{\mathbf{w}.M}} = f_{\tilde{\mathbf{w}}^M,v}T_w$ for all $v \in \mathcal{V}, w \in W_{\mathbf{w}.M^+}(1)$. By adjunction, this $\mathcal{H}_{(\mathbf{w}.M)^+}$ -equivariant map gives an \mathcal{H}_R -homomorphism from an induced module to a coinduced module:

$$(4.19) v \otimes 1_{\mathcal{H}} \mapsto f_{\tilde{\mathbf{w}}^{M},v} : \tilde{\mathbf{w}}^{M}.\mathcal{V} \otimes_{\mathcal{H}_{(\mathbf{w},M)^{+}},\theta} \mathcal{H} \xrightarrow{\mu_{P}} \operatorname{Hom}_{\mathcal{H}_{M^{-}},\theta^{*}}(\mathcal{H},\mathcal{V}).$$

This is an isomorphism [?], [?].

The naive guess that a variant μ_Q of μ_P induces an \mathcal{H}_R -isomorphism between the \mathcal{H}_R -modules $I_{\mathcal{H}}(\mathbf{w}.P,\tilde{\mathbf{w}}^M.\mathcal{V},\mathbf{w}.Q)$ and $CI_{\mathcal{H}}(P,\mathcal{V},Q)$ turns out to be true. The proof is the aim of the rest of this section.

The \mathcal{H}_R -module $I_{\mathcal{H}}(\mathbf{w}.P, \tilde{\mathbf{w}}^M.\mathcal{V}, \mathbf{w}.Q)$ is well defined because the parabolic subgroups of G containing $\mathbf{w}.P$ and contained in $P(\tilde{\mathbf{w}}^M.\mathcal{V})$ are $\mathbf{w}.Q$ for $P \subset Q \subset P(\mathcal{V})$, as follows from:

Lemma 4.21.
$$\Delta_{\tilde{\mathbf{w}}^M.\mathcal{V}} = -\mathbf{w}(\Delta_{\mathcal{V}}).$$

Proof. Recall that $\Delta_{\mathcal{V}}$ is the set of simple roots $\alpha \in \Delta \setminus \Delta_M$ orthogonal to Δ_M and $T^{M,*}(z)$ acts trivially on \mathcal{V} for all $z \in Z \cap M'_{\alpha}$, and the corresponding standard parabolic subgroup $P_{\mathcal{V}} = M_{\mathcal{V}}N_{\mathcal{V}}$. The $Z \cap M'_{\alpha}$ for $\alpha \in \Delta_{\mathcal{V}}$ generate the group $Z \cap M'_{\mathcal{V}}$. A root $\alpha \in \Delta \setminus \Delta_M$ orthogonal to Δ_M is fixed by \mathbf{w}_M so $\mathbf{w}^M(\alpha) = \mathbf{w}(\alpha)$ and

$$\hat{\mathbf{w}}^M M_{\mathcal{V}}(\hat{\mathbf{w}}^M)^{-1} = \hat{\mathbf{w}} M_{\mathcal{V}}(\hat{\mathbf{w}})^{-1}.$$

The proof of Lemma ?? is straightforward as $\Delta = -\mathbf{w}(\Delta)$, $\Delta_{\mathbf{w},M} = -\mathbf{w}(\Delta_M)$.

Before going further, we check the commutativity of the extension with the twist. As $Q = M_Q U$ and M_Q determine each other we denote $\mathbf{w}_{M_Q} = \mathbf{w}_Q, \mathbf{w}^{M_Q} = \mathbf{w}^Q$ when $Q \neq P, G$.

Lemma 4.22. $e_{\mathcal{H}_{\mathbf{w},Q}}(\tilde{\mathbf{w}}^M.\mathcal{V}) = \tilde{\mathbf{w}}^Q.e_{\mathcal{H}_Q}(\mathcal{V}).$

Proof. As R-modules $\mathcal{V} = e_{\mathcal{H}_{\mathbf{w},Q}}(\tilde{\mathbf{w}}^M.\mathcal{V}) = \tilde{\mathbf{w}}^Q.e_{\mathcal{H}_Q}(\mathcal{V})$. A direct computation shows that the Hecke element $T_w^{\mathbf{w},Q,*}$ acts in the \mathcal{H}_R -module $e_{\mathcal{H}_{\mathbf{w},Q}}(\tilde{\mathbf{w}}^M.\mathcal{V})$, by the identity if $w \in \tilde{\mathbf{w}}^Q.W_{M_2'}(\mathbf{w}^Q)^{-1}$ and by $T_{(\tilde{\mathbf{w}}^Q)^{-1}w\tilde{\mathbf{w}}^Q}^{M,*}$ if $w \in \tilde{\mathbf{w}}^Q.W_{M_2'}(\mathbf{w}^Q)^{-1}$ where M_2 denotes the standard Levi subgroup with $\Delta_{M_2} = \Delta_Q \setminus \Delta_P$. Whereas in the \mathcal{H}_R -module $\tilde{\mathbf{w}}^Q.e_{\mathcal{H}_Q}(\mathcal{V})$, the Hecke element $T_w^{\mathbf{w},Q,*}$ acts by the identity if $w \in {}_{1}W_{\mathbf{w},M_2'}$ and by $T_{(\tilde{\mathbf{w}}^M)^{-1}w\tilde{\mathbf{w}}^M}^{M,*}$ if $w \in W_{\mathbf{w},M}(1)$. So the lemma means that

$$_{1}W_{\mathbf{w}.M_{2}'} = \tilde{\mathbf{w}}^{Q}{_{1}}W_{M_{2}'}(\mathbf{w}^{Q})^{-1}, \quad (\tilde{\mathbf{w}}^{Q})^{-1}w\tilde{\mathbf{w}}^{Q} = (\tilde{\mathbf{w}}^{M})^{-1}w\tilde{\mathbf{w}}^{M} \text{ if } w \in W_{\mathbf{w}.M}(1).$$

These properties are easily proved using that ${}_{1}W_{G'}$ is normal in W(1) and that the sets of roots Δ_P and $\Delta_Q \setminus \Delta_P$ are orthogonal: $\mathbf{w}_Q = \mathbf{w}_{M_2}\mathbf{w}_M$, the elements \mathbf{w}_{M_2} and \mathbf{w}_M normalise W_M and W_{M_2} , the elements of \mathbb{W}_{M_2} commutes with the elements of \mathbb{W}_M .

We return to our guess. The variant μ_Q of μ_P is obtained by combining the commutativity of the extension with the twist and the isomorphism ?? applied to $(Q, e_{\mathcal{H}_Q}(\mathcal{V}))$ instead of (P, \mathcal{V}) . The \mathcal{H}_R -isomorphism μ_Q is:

$$(4.20) v \otimes 1_{\mathcal{H}} \mapsto f_{\tilde{\mathbf{w}}^{M},v} : \operatorname{Ind}_{\mathcal{H}_{\mathbf{w}.M_{Q}}}^{\mathcal{H}}(e_{\mathcal{H}_{\mathbf{w}.Q}}(\tilde{\mathbf{w}}^{M}.\mathcal{V})) \xrightarrow{\mu_{Q}} \operatorname{Hom}_{\mathcal{H}_{M_{Q}^{-}},\theta^{*}}(\mathcal{H}, e_{\mathcal{H}_{Q}}(\mathcal{V})).$$

Our guess is that μ_Q induces an \mathcal{H}_R -isomorphism from the cokernel of the \mathcal{H}_R -map

$$\bigoplus_{Q \subsetneq Q' \subset P(\mathcal{V})} \operatorname{Ind}_{\mathcal{H}_{\mathbf{w},Q'}}^{\mathcal{H}}(e_{\mathcal{H}_{\mathbf{w},Q'}}(\tilde{\mathbf{w}}^M.\mathcal{V})) \to \operatorname{Ind}_{\mathcal{H}_{\mathbf{w},Q}}^{\mathcal{H}}(e_{\mathcal{H}_{\mathbf{w},Q}}(\tilde{\mathbf{w}}^M.\mathcal{V}))$$

defined by the \mathcal{H}_R -embeddings $\iota(\mathbf{w}.Q, \mathbf{w}.Q')$, isomorphic to $I_{\mathcal{H}}(\mathbf{w}.P, \tilde{\mathbf{w}}^M \mathcal{V}, \mathbf{w}.\overline{Q})$ via $\kappa_{\mathbf{w}.Q}$ (Theorem ??), onto the cokernel $CI_{\mathcal{H}}(P, \mathcal{V}, Q)$ the \mathcal{H}_R -map

$$\oplus_{Q \subsetneq Q' \subset P(\mathcal{V})} \ \operatorname{Hom}_{\mathcal{H}_{M_{Q'}^-,\theta^*}}(\mathcal{H},e_{\mathcal{H}_{Q'}}(\mathcal{V})) \to \operatorname{Hom}_{\mathcal{H}_{M_{Q}^-,\theta^*}}(\mathcal{H},e_{\mathcal{H}_{Q}}(\mathcal{V}))$$

defined by the \mathcal{H}_R -embeddings i(Q, Q'). This is true if i(Q, Q') corresponds to $\iota(\mathbf{w}.Q, \mathbf{w}.Q')$ via the isomorphisms $\mu_{Q'}$ and μ_Q . This is the content of the next proposition.

Proposition 4.23. For all $Q \subseteq Q' \subset P(\mathcal{V})$ we have

$$i(Q, Q') \circ \mu_{Q'} = \mu_Q \circ \iota(\mathbf{w}.Q, \mathbf{w}.Q').$$

We postpone to section §?? the rather long proof of the proposition.

Corollary 4.24. The \mathcal{H}_R -isomorphism $\mu_Q \circ \kappa_{\mathbf{w},Q}^{-1}$ induces an \mathcal{H}_R -isomorphism

$$I_{\mathcal{H}}(\mathbf{w}.P, \tilde{\mathbf{w}}^{M}\mathcal{V}, \mathbf{w}.\overline{Q}) \to CI_{\mathcal{H}}(P, \mathcal{V}, Q).$$

4.5. Supersingular \mathcal{H}_R -modules, classification of simple \mathcal{H}_C -modules. We recall first the notion of supersingularity based on the action of center of \mathcal{H} .

The center of \mathcal{H} [?, Theorem 1.3] contains a subalgebra \mathcal{Z}_{T^+} isomorphic to $\mathbb{Z}[T^+/T_1]$ where T^+ is the monoid of dominant elements of T and T_1 is the pro-p-Sylow subgroup of the maximal compact subgroup of T.

Let $t \in T$ of image $\mu_t \in W(1)$ and let $(E_o(w))_{w \in W(1)}$ denote the alcove walk basis of \mathcal{H} associated to a closed Weyl chamber o of \mathbb{W} . The element

$$E_o(C(\mu_t)) = \sum_{\mu'} E_o(\mu')$$

is the sum over the elements in μ' in the conjugacy class $C(\mu_t)$ of μ_t in W(1). It is a central element of \mathcal{H} and does not depend on the choice of o. We write also $z(t) = E_o(C(\mu_t))$.

Definition 4.25. A non-zero right \mathcal{H}_R -module \mathcal{V} is called supersingular when, for any $v \in \mathcal{V}$ and any non-invertible $t \in T^+$, there exists a positive integer $n \in \mathbb{N}$ such that $v(z(t))^n = 0$. If one can choose n independent on (v, t), then \mathcal{V} is called uniformly supersingular.

Remark 4.26. One can choose n independent on (v,t) when \mathcal{V} is finitely generated as a right \mathcal{H}_R -module. If R is a field and \mathcal{V} is simple we can take n=1.

When G is compact modulo the center, $T^+ = T$, and any non-zero \mathcal{H}_R -module is super-singular.

The induction functor $\operatorname{Ind}_{\mathcal{H}_M}^{\mathcal{H}}:\operatorname{Mod}(\mathcal{H}_{M,R})\to\operatorname{Mod}(\mathcal{H}_R)$ has a left adjoint $\mathcal{L}_{\mathcal{H}_M}^{\mathcal{H}}$ and a right adjoint $\mathcal{R}_{\mathcal{H}_M}^{\mathcal{H}}$ [?]: for $\mathcal{V}\in\operatorname{Mod}(\mathcal{H}_R)$,

$$(4.21) \qquad \mathcal{L}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V}) = \tilde{\mathbf{w}}^{\mathbf{w}.M} \circ (\mathcal{V} \otimes_{\mathcal{H}_{(\mathbf{w}.M)^{-}}, \theta^{*}} \mathcal{H}_{\mathbf{w}.M}), \quad \mathcal{R}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V}) = \operatorname{Hom}_{\mathcal{H}_{M^{+}}, \theta}(\mathcal{H}_{M}, \mathcal{V}).$$

In the left adjoint, \mathcal{V} is seen as a right $\mathcal{H}_{(\mathbf{w}.M)^-}$ -module via the ring homomorphism $\theta^*_{\mathbf{w}.M} \colon \mathcal{H}_{(\mathbf{w}.M)^-} \to \mathcal{H}$; in the right adjoint, \mathcal{V} is seen as a right \mathcal{H}_{M^+} -module via the ring homomorphism $\theta_M \colon \mathcal{H}_{M^+} \to \mathcal{H}$ (§??).

Proposition 4.27. Assume that V is a supersingular right \mathcal{H}_R -module and that p is nilpotent in V. Then $\mathcal{L}^{\mathcal{H}}_{\mathcal{H}_M}(V) = 0$, and if V is uniformly supersingular $\mathcal{R}^{\mathcal{H}}_{\mathcal{H}_M}(V) = 0$.

Proof. This is a consequence of three known properties:

- (1) \mathcal{H}_M is the localisation of \mathcal{H}_{M^+} (resp. \mathcal{H}_{M^-}) at T_{μ}^M for any element $\mu \in \Lambda_T(1)$, central in $W_M(1)$ and strictly N-positive (resp. N-negative), and $T_{\mu}^M = T_{\mu}^{M,*}$. See [?, Theorem 1.4].
- (2) When o is anti-dominant, $E_o(\mu) = T_\mu$ if $\mu \in \Lambda^+(1)$ and $E_o(\mu) = T_\mu^*$ if $\mu \in \Lambda^-(1)$.
- (3) Let an integer n > 0 and $\mu \in \Lambda(1)$ such that the W-orbit of $v(\mu) \in X_*(T) \otimes \mathbb{Q}$ (Definition in §??) and of μ have the same number of elements. Then

$$(E_o(C(\mu)))^n E_o(\mu) - E_o(\mu)^{n+1} \in p\mathcal{H}.$$

See [?, Lemma 6.5], where the hypotheses are given in the proof (but not written in the lemma).

Let $\mu \in \Lambda_T^+(1)$ satisfying (1) for M^+ and (3), similarly let $\mathbf{w}.\mu \in \Lambda_T^-(1)$ satisfying (1) for $(\mathbf{w}.M)^-$ and (3). For (R,\mathcal{V}) as in the proposition, let $v \in \mathcal{V}$ and n > 0 such that $vE_o(C(\mu))^n = vE_o(C(\mathbf{w}.\mu))^n = 0$. Multiplying by $E_o(\mu)$ or $E_o(\mathbf{w}.\mu)$, and applying (3) and (2) for o anti-dominant we get:

$$vE_o(\mu^{n+1}) = vT_{\mu}^{n+1} \in p\mathcal{V}, \quad vE_o((\mathbf{w}.\mu)^{n+1}) = v(T_{\mathbf{w}.\mu}^*)^{n+1} \in p\mathcal{V}.$$

The proposition follows from: vT_{μ}^{n+1} , $v(T_{\mathbf{w},\mu}^*)^{n+1}$ in $p\mathcal{V}$ (as explained in [?, Proposition 5.17] when p=0 in R). From $v(T_{\mathbf{w},\mu}^*)^{n+1}$ in $p\mathcal{V}$, we get $v\otimes (T_{\mathbf{w},\mu}^{\mathbf{w},M,*})^{n+1}=v(T_{\mathbf{w},\mu}^*)^{n+1}\otimes 1_{\mathcal{H}_{\mathbf{w},M}}$ in $p\mathcal{V}\otimes_{\mathcal{H}_{(\mathbf{w},M)^-},\theta^*}\mathcal{H}_{\mathbf{w},M}$. As $T^{\mathbf{w},M,*}=T^{\mathbf{w},M}$ is invertible in $\mathcal{H}_{\mathbf{w},M}$ we get $v\otimes 1_{\mathcal{H}_{\mathbf{w},M}}$ in $p\mathcal{V}\otimes_{\mathcal{H}_{(\mathbf{w},M)^-},\theta^*}\mathcal{H}_{\mathbf{w},M}$. As v was arbitrary, $\mathcal{V}\otimes_{\mathcal{H}_{(\mathbf{w},M)^-},\theta^*}\mathcal{H}_{\mathbf{w},M}\subset p\mathcal{V}\otimes_{\mathcal{H}_{(\mathbf{w},M)^-},\theta^*}\mathcal{H}_{\mathbf{w},M}$. If p is nilpotent in \mathcal{V} , then $\mathcal{V}\otimes_{\mathcal{H}_{(\mathbf{w},M)^-},\theta^*}\mathcal{H}_{\mathbf{w},M}=0$. Suppose now that there exists n>0 such that $\mathcal{V}(z(t))^n=0$ for any non-invertible $v\in T^+$, then $v\in T^{n+1}_{\mu}\subset v$ where $v\in T^{n+1}_{\mu}$ in $v\in T$

 $h \in \mathcal{H}_M$. We deduce $\operatorname{Hom}_{\mathcal{H}_{M^+},\theta}(\mathcal{H}_M,\mathcal{V}) \subset \operatorname{Hom}_{\mathcal{H}_{M^+},\theta}(\mathcal{H}_M,p\mathcal{V})$. If p is nilpotent in \mathcal{V} , then $\operatorname{Hom}_{\mathcal{H}_{M^+},\theta}(\mathcal{H}_M,\mathcal{V}) = 0$.

Recalling that $\tilde{\mathbf{w}}^M.\mathcal{V}$ is obtained by functoriality from \mathcal{V} and the ring isomorphism $\iota(\tilde{\mathbf{w}}^M)$ defined in $(\ref{eq:condition})$, the equivalence between \mathcal{V} supersingular and $\tilde{\mathbf{w}}^M\mathcal{V}$ supersingular follows from:

- **Lemma 4.28.** (1) Let $t \in T$. Then t is dominant for U_M if and only if $\hat{\mathbf{w}}^M t(\hat{\mathbf{w}}^M)^{-1} \in T$ is dominant for $U_{\mathbf{w},M}$.
 - (2) The R-algebra isomorphism $\mathcal{H}_{M,R} \xrightarrow{\iota(\tilde{\mathbf{w}}^M)} \mathcal{H}_{\mathbf{w},M,R}$, $T_w^M \mapsto T_{\tilde{\mathbf{w}}^M w(\tilde{\mathbf{w}}^M)^{-1}}^{\mathbf{w},M}$ for $w \in W_M(1)$ sends $z^M(t)$ to $z^{\mathbf{w},M}(\hat{\mathbf{w}}^M t(\hat{\mathbf{w}}^M)^{-1})$ for $t \in T$ dominant for U_M .

Proof. The conjugation by $\hat{\mathbf{w}}^M$ stabilizes T, sends U_M to $U_{\mathbf{w},M}$ and sends the \mathbb{W}_M -orbit of $t \in T$ to the $\mathbb{W}_{\mathbf{w},M}$ -orbit of $\hat{\mathbf{w}}^M t(\hat{\mathbf{w}}^M)^{-1}$, as $\mathbf{w}^M \mathbb{W}_M(\mathbf{w}^M)^{-1} = \mathbb{W}_{\mathbf{w},M}$. It is known that $\iota(\tilde{\mathbf{w}}^M)$ respects the antidominant alcove walk bases [?, Proposition 2.20]: it sends $E^M(w)$ to $E^{\mathbf{w},M}(\tilde{\mathbf{w}}^M w(\tilde{\mathbf{w}}^M)^{-1})$ for $w \in W_M(1)$.

We deduce:

Corollary 4.29. Let V be a right $\mathcal{H}_{M,R}$ -module. Then V is supersingular if and only if the right $\mathcal{H}_{\mathbf{w}.M,R}$ -module $\tilde{\mathbf{w}}^M V$ is supersingular.

Assume R = C. The supersingular simple $\mathcal{H}_{M,C}$ -modules are classified in [?]. By Corollaries ?? and ??, the classification of the simple \mathcal{H}_{C} -modules in [?] remains valid with the \mathcal{H}_{C} -modules $I_{\mathcal{H}}(P, \mathcal{V}, Q)$ instead of $\mathcal{C}I_{\mathcal{H}}(P, \mathcal{V}, Q)$:

Corollary 4.30 (Classification of simple \mathcal{H}_C -modules). Assume R = C. Let (P, \mathcal{V}, Q) be a \mathcal{H}_C -triple where \mathcal{V} is simple and supersingular. Then, the \mathcal{H}_C -module $\mathcal{I}_{\mathcal{H}}(P, \mathcal{V}, Q)$ is simple. A simple \mathcal{H}_C -module is isomorphic to $\mathcal{I}_{\mathcal{H}}(P, \mathcal{V}, Q)$ for a \mathcal{H}_C -triple (P, \mathcal{V}, Q) where \mathcal{V} is simple and supersingular, P, Q and the isomorphism class of \mathcal{V} are unique.

4.6. A commutative diagram. We prove in this section Proposition ??. For $Q \subset Q' \subset P(\mathcal{V})$ we show by an explicit computation that

$$\mu_Q^{-1} \circ i(Q, Q') \circ \mu_{Q'} : \operatorname{Ind}_{\mathcal{H}_{\mathbf{w}, Q'}}^{\mathcal{H}}(e_{\mathcal{H}_{\mathbf{w}, Q'}}(\tilde{\mathbf{w}}^M.\mathcal{V})) \to \operatorname{Ind}_{\mathcal{H}_{\mathbf{w}, Q}}^{\mathcal{H}}(e_{\mathcal{H}_{\mathbf{w}, Q}}(\tilde{\mathbf{w}}^M.\mathcal{V})).$$

is equal to $\iota(\mathbf{w}.Q, \mathbf{w}.Q')$. The R-module $e_{\mathcal{H}_{\mathbf{w}.Q'}}(\tilde{\mathbf{w}}^M.\mathcal{V}) \otimes 1_{\mathcal{H}}$ generates the \mathcal{H}_R -module $e_{\mathcal{H}_{\mathbf{w}.Q'}}(\tilde{\mathbf{w}}^M.\mathcal{V}) \otimes_{\mathcal{H}_{\mathbf{w}.Q'},R}\theta^+ \mathcal{H}_R = \operatorname{Ind}_{\mathcal{H}_{\mathbf{w}.Q'}}^{\mathcal{H}}(e_{\mathcal{H}_{\mathbf{w}.Q'}}(\tilde{\mathbf{w}}^M.\mathcal{V}))$ and by $(\ref{equation})$

(4.22)
$$\iota(\mathbf{w}.Q, \mathbf{w}.Q')(v \otimes 1_{\mathcal{H}}) = v \otimes \sum_{d \in \mathbb{W}_{M_{\mathbf{w}}.Q} \setminus \mathbb{W}_{M_{\mathbf{w}},Q'}} T_{\tilde{d}}$$

for $v \in \mathcal{V}$ seen as an element of $e_{\mathcal{H}_{\mathbf{w},Q'}}(\tilde{\mathbf{w}}^M.\mathcal{V})$ in the LHS and an element of $e_{\mathcal{H}_{\mathbf{w},Q}}(\tilde{\mathbf{w}}^M.\mathcal{V})$ in the RHS.

Lemma 4.31.
$$(\mu_Q^{-1} \circ i(Q, Q') \circ \mu_{Q'})(v \otimes 1_{\mathcal{H}}) = v \otimes \sum_{d \in \mathbb{W}_{M_{Q'}}} q_d T^*_{\tilde{\mathbf{w}}^Q(\tilde{\mathbf{w}}^{Q'}\tilde{d})^{-1}}.$$

Proof. $\mu_{Q'}(v \otimes 1_{\mathcal{H}})$ is the unique homomorphism $f_{\tilde{\mathbf{w}}^{M_{Q'}},v} \in \operatorname{Hom}_{\mathcal{H}_{M_{Q'}}^{-},\theta^{*}}(\mathcal{H},e_{\mathcal{H}_{Q'}}(\mathcal{V}))$ sending

 $T_{\tilde{\mathbf{w}}^{Q'}}$ to v and vanishing on $T_{\tilde{d'}}$ for $d' \in \mathbb{W}^{\mathbb{W}_{M_{Q'}}} \setminus \{\mathbf{w}^{Q'}\}$ by (??). By (??), i(Q,Q') is the natural embedding of $\operatorname{Hom}_{\mathcal{H}_{M_{Q'}^{-},\theta^{*}}}(\mathcal{H}, e_{\mathcal{H}_{Q'}}(\mathcal{V}))$ in $\operatorname{Hom}_{\mathcal{H}_{M_{Q}^{-},\theta^{*}}}(\mathcal{H}, e_{\mathcal{H}_{Q}}(\mathcal{V}))$ therefore $i(Q,Q')(f_{\tilde{\mathbf{w}}^{M_{Q'}},v})$

is the unique homomorphism $\operatorname{Hom}_{\mathcal{M}_{Q}^{-},\theta^{*}}(\mathcal{H},e_{\mathcal{H}_{Q}}(\mathcal{V}))$ sending $T_{\tilde{\mathbf{w}}Q'}$ to v and vanishing on $T_{\tilde{d}'}$ for $d' \in \mathbb{W}^{\mathbb{W}_{M_{Q'}}} \setminus \{\mathbf{w}^{Q'}\}$. As $\mathbb{W}^{\mathbb{W}_{M_{Q}}} = \mathbb{W}^{\mathbb{W}_{Q'}}\mathbb{W}_{M_{Q'}}^{\mathbb{W}_{M_{Q}}}$, this homomorphism vanishes on $T_{\tilde{w}}$ for w not in $\mathbf{w}^{M_{Q'}}\mathbb{W}_{M_{Q'}}^{\mathbb{W}_{M_{Q}}}$. By [?, Lemma 2.22], the inverse of μ_{Q} is the \mathcal{H}_{R} -isomorphism:

$$(4.23) \qquad \operatorname{Hom}_{\mathcal{H}_{M_{Q}^{-}},\theta^{*}}(\mathcal{H},e_{\mathcal{H}_{Q}}(\mathcal{V})) \xrightarrow{\mu_{Q}^{-1}} \operatorname{Ind}_{\mathcal{H}_{\mathbf{w},M_{Q}}}^{\mathcal{H}}(e_{\mathcal{H}_{\mathbf{w},Q}}(\tilde{\mathbf{w}}^{M}.\mathcal{V}))$$

$$f \mapsto \sum_{d \in \mathbb{W}^{\mathbb{W}_M}} f(T_{\tilde{d}}) \otimes T^*_{\tilde{\mathbf{w}}^M \tilde{d}^{-1}},$$

where $\mathbb{W}^{\mathbb{W}_M}$ is the set of $d \in \mathbb{W}$ with minimal length in the coset $d\mathbb{W}_M$. We deduce the explicit formula:

$$(\mu_Q^{-1} \circ i(Q, Q') \circ \mu_{Q'})(v \otimes 1_{\mathcal{H}}) = \sum_{w \in \mathbb{W}^{\mathbb{W}_{M_Q}}} i(Q, Q') (f_{\tilde{\mathbf{w}}^{M_{Q'}}, v}^{Q'})(T_{\tilde{w}}) \otimes T_{\tilde{\mathbf{w}}^{M_Q} \tilde{w}^{-1}}^*.$$

Some terms are zero: the terms for $w \in \mathbb{W}^{\mathbb{W}_{M_Q}}$ not in $\mathbf{w}^{M_{Q'}}\mathbb{W}^{\mathbb{W}_{M_Q}}_{M_{Q'}}$. We analyse the other terms for w in $\mathbb{W}^{\mathbb{W}_{M_Q}} \cap \mathbf{w}^{M_{Q'}}\mathbb{W}^{\mathbb{W}_{M_Q}}_{M_{Q'}}$; this set is $\mathbf{w}^{M_{Q'}}\mathbb{W}^{\mathbb{W}_{M_Q}}_{M_{Q'}}$. Let $w = \mathbf{w}^{M_{Q'}}d, d \in \mathbb{W}^{\mathbb{W}_{M_Q}}_{M_{Q'}}$, and $\tilde{w} = \tilde{\mathbf{w}}^{M_{Q'}}\tilde{d}$ with $\tilde{d} \in {}_{1}W_{G'}$ lifting d. By the braid relations $T_{\tilde{w}} = T_{\tilde{\mathbf{w}}^{M_{Q'}}}T_{\tilde{d}}$. We have $T_{\tilde{d}} = \theta^*(T_{\tilde{d}}^{M_{Q'}})$ by the braid relations because $d \in \mathbb{W}_{M_{Q'}}$, $S_{M_{Q'}} \subset S^{\text{aff}}$ and $\theta^*(c_{\tilde{s}}^{M_{Q'}}) = c_{\tilde{s}}$ for $s \in S_{M_{Q'}}$. As $\mathbb{W}_{M_{Q'}} \subset W_{M_{Q'}} \cap W_{M_{Q'}}$, we deduce:

$$i(Q,Q')(f_{\tilde{\mathbf{w}}^{M_{Q'}},v}^{Q'})(T_{\tilde{\mathbf{w}}}) = i(Q,Q')(f_{\tilde{\mathbf{w}}^{M_{Q'}},v}^{Q'})(T_{\tilde{\mathbf{w}}^{M_{Q'}}}T_{\tilde{d}}) = i(Q,Q')(f_{\tilde{\mathbf{w}}^{M_{Q'}},v}^{Q'})(T_{\tilde{\mathbf{w}}^{M_{Q'}}})T_{\tilde{d}}^{M_{Q'}}$$
$$= vT_{\tilde{d}}^{M_{Q'}} = q_{d}v.$$

Corollary ?? gives the last equality.

The formula for $(\mu_Q^{-1} \circ i(Q, Q') \circ \mu_{Q'})(v \otimes 1_{\mathcal{H}})$ given in Lemma ?? is different from the formula (??) for $\iota(\mathbf{w}.Q, \mathbf{w}.Q')(v \otimes 1_{\mathcal{H}})$. It needs some work to prove that they are equal.

A first reassuring remark is that $\mathbb{W}_{M_{\mathbf{w},Q}} \mathbb{W}_{M_{\mathbf{w},Q'}} = \{ \mathbf{w} d^{-1} \mathbf{w} \mid d \in \mathbb{W}_{M_{Q'}}^{\mathbb{W}_{M_Q}} \}$, so the two summation sets have the same number of elements. But better,

$$\mathbb{W}_{M_{\mathbf{w},Q}} \mathbb{W}_{M_{\mathbf{w},Q'}} = \{ \mathbf{w}^{Q} (\mathbf{w}^{Q'} d)^{-1} \mid d \in \mathbb{W}_{M_{Q'}}^{\mathbb{W}_{M_{Q}}} \}$$

because $\mathbf{w}_{Q'} \mathbb{W}_{M_{Q'}}^{\mathbb{W}_{M_Q}} \mathbf{w}_Q = \mathbb{W}_{M_{Q'}}^{\mathbb{W}_{M_Q}}$. To prove the latter equality, we apply the criterion: $w \in \mathbb{W}_{M_{Q'}}$ lies in $\mathbb{W}_{M_{Q'}}^{\mathbb{W}_{M_Q}}$ if and only if $w(\alpha) > 0$ for all $\alpha \in \Delta_Q$ noticing that $d \in \mathbb{W}_{M_{Q'}}^{\mathbb{W}_{M_Q}}$ implies $\mathbf{w}_Q(\alpha) \in -\Delta_Q$, $d\mathbf{w}_Q(\alpha) \in -\Phi_{M_{Q'}}$, $\mathbf{w}_{Q'}d\mathbf{w}_Q(\alpha) > 0$. Let $x_d = \mathbf{w}^Q(\mathbf{w}^{Q'}d)^{-1}$. We have $\tilde{\mathbf{w}}^{M_Q}(\tilde{\mathbf{w}}^{M_{Q'}}\tilde{d})^{-1} = \tilde{x}_d$ because the lifts \tilde{w} of the elements $w \in \mathbb{W}$ satisfy the braid relations and $\ell(x_d) = \ell(\mathbf{w}_Q d^{-1}\mathbf{w}_{Q'}) = \ell(\mathbf{w}_{Q'}) - \ell(\mathbf{w}_Q d^{-1}) = \ell(\mathbf{w}_{Q'}) - \ell(\mathbf{d}) = \ell(\mathbf{w}_{Q'}) - \ell(\mathbf{d})$. We have $q_d = q_{\mathbf{w}_{\mathbf{w},Q} x_d \mathbf{w}_{\mathbf{w},Q'}}$ because

 $\mathbf{w}d^{-1}\mathbf{w} = \mathbf{w}_{\mathbf{w}.Q}x_d\mathbf{w}_{\mathbf{w}.Q'}$, and $q_d = q_{d^{-1}} = q_{\mathbf{w}d^{-1}\mathbf{w}}$. So

$$\sum_{\substack{\mathbf{W}_{M_Q}\\d\in\mathbb{W}_{M_{Q'}}}}q_dT^*_{\tilde{\mathbf{w}}^Q(\tilde{\mathbf{w}}^{Q'}\tilde{d})^{-1}}=\sum_{\substack{x_d\in\mathbb{W}_{M_{\mathbf{w}},Q}\,\mathbb{W}_{M_{\mathbf{w}},Q'}\\}}q_{\mathbf{w}_{\mathbf{w}},Q}x_d\mathbf{w}_{\mathbf{w},Q'}T^*_{\tilde{x}_d}.$$

In the RHS, only $\tilde{\mathbf{w}}^M.\mathcal{V}, \mathbf{w}.Q, \mathbf{w}.Q'$ appear. The same holds true in the formula (??). The map $(P, \mathcal{V}, Q, Q') \mapsto (\mathbf{w}.P, \tilde{\mathbf{w}}^M.\mathcal{V}, \mathbf{w}.Q, \mathbf{w}.Q')$ is a bijection of the set of triples (P, \mathcal{V}, Q, Q') where P = MN, Q, Q' are standard parabolic subgroups of G, \mathcal{V} a right \mathcal{H}_R -module, $Q \subset Q' \subset P(\mathcal{V})$ by Lemma ??. So we can replace $(\mathbf{w}.P, \tilde{\mathbf{w}}^M.\mathcal{V}, \mathbf{w}.Q, \mathbf{w}.Q')$ by (P, \mathcal{V}, Q, Q') . Our task is reduced to prove in $e_{\mathcal{H}_Q}(\mathcal{V}) \otimes_{\mathcal{H}_{M_C}^+, \theta} \mathcal{H}_R$:

$$(4.24) v \otimes \sum_{d \in \mathbb{W}_{M_Q} \mathbb{W}_{M_{Q'}}} T_{\tilde{d}} = v \otimes \sum_{d \in \mathbb{W}_{M_Q} \mathbb{W}_{M_{Q'}}} q_{\mathbf{w}_Q d\mathbf{w}_{Q'}} T_{\tilde{d}}^*.$$

A second simplification is possible: we can replace $Q \subset Q'$ by the standard parabolic subgroups $Q_2 \subset Q_2'$ of G with $\Delta_{Q_2} = \Delta_Q \setminus \Delta_P$ and $\Delta_{Q_2'} = \Delta_{Q'} \setminus \Delta_P$, because Δ_P and $\Delta_{P(\mathcal{V})} \setminus \Delta_P$ are orthogonal. Indeed, $\mathbb{W}_{M_{Q'}} = \mathbb{W}_M \times \mathbb{W}_{M_{Q_2'}}$ and $\mathbb{W}_{M_Q} = \mathbb{W}_M \times \mathbb{W}_{M_{Q_2}}$ are direct products, the longest elements $\mathbf{w}_{Q'} = \mathbf{w}_M \mathbf{w}_{Q_2'}$, $\mathbf{w}_Q = \mathbf{w}_M \mathbf{w}_{Q_2}$ are direct products and

$$^{\mathbb{W}_{M_Q}}\mathbb{W}_{M_{Q'}}=^{\mathbb{W}_{M_{Q_2}}}\mathbb{W}_{M_{Q'_2}},\quad \mathbf{w}_Qd\mathbf{w}_{Q'}=\mathbf{w}_{Q_2}d\mathbf{w}_{Q'_2}.$$

Once this is done, we use the properties of $e_{\mathcal{H}_Q}(\mathcal{V})$: $vh \otimes 1_{\mathcal{H}} = v \otimes \theta_Q(h)$ for $h \in \mathcal{H}_{M_{Q_2}^+}$, and $T_w^{Q,*}$ acts trivially on $e_{\mathcal{H}_Q}(\mathcal{V})$ for $w \in {}_1W_{M'_{Q_2}} \cup (\Lambda(1) \cap {}_1W_{M'_{Q_2'}})$. Set ${}_1W_{M'_{Q_2'}} = \{w \in {}_1W_{M'_{Q_2'}} \mid w \text{ is a lift of some element in } \mathbb{W}_{M_{Q_2'}} \}$ and ${}_1\mathbb{W}_{M'_{Q_2}}$ similarly. Then $Z_k \cap {}_1\mathbb{W}_{M'_{Q_2'}} \subset (\Lambda(1) \cap {}_1W_{M'_{Q_2'}}) \cap {}_1W_{M_{Q_2}^+}$ and ${}_1\mathbb{W}_{M'_{Q_2}} \subset {}_1W_{M'_{Q_2}} \cap {}_1W_{M'_{Q_2}}$. This implies that $(\ref{eq:condition})$ where $Q \subset Q'$ has been replaced by $Q_2 \subset Q'_2$ follows from a congruence

(4.25)
$$\sum_{d \in \mathbb{W}_{M_{Q_2}} \mathbb{W}_{M_{Q_2'}}} T_{\tilde{d}} \equiv \sum_{d \in \mathbb{W}_{M_{Q_2}} \mathbb{W}_{M_{Q_2'}}} q_{\mathbf{w}_{Q_2} d\mathbf{w}_{Q_2'}} T_{\tilde{d}}^*.$$

in the finite subring $H({}_{1}\mathbb{W}_{M_{Q'_{2}}})$ of \mathcal{H} generated by $\{T_{w} \mid w \in {}_{1}\mathbb{W}_{M'_{Q'_{2}}}\}$ modulo the the right ideal \mathcal{J}_{2} with generators $\{\theta_{Q}(T_{w}^{Q,*}) - 1 \mid w \in (Z_{k} \cap {}_{1}\mathbb{W}_{M'_{Q'_{2}}}) \cup {}_{1}\mathbb{W}_{M'_{Q_{2}}}\}$.

Another simplification concerns $T_{\tilde{d}}^*$ modulo \mathcal{J}_2 for $d \in \mathbb{W}_{M_{Q'_2}}$. We recall that for any reduced decomposition $d = s_1 \dots s_n$ with $s_i \in S \cap \mathbb{W}_{M_{Q'_2}}$ we have $T_{\tilde{d}}^* = (T_{\tilde{s}_1} - c_{\tilde{s}_1}) \dots (T_{\tilde{s}_n} - c_{\tilde{s}_n})$ where the \tilde{s}_i are admissible. For \tilde{s} admissible, by (??)

$$c_{\tilde{s}} \equiv q_s - 1.$$

Therefore

$$T_d^* \equiv (T_{\tilde{s}_1} - q_{s_1} + 1) \cdots (T_{\tilde{s}_n} - q_{s_n} + 1).$$

Let $\mathcal{J}' \subset \mathcal{J}_2$ be the ideal of $H(_1 \mathbb{W}_{M'_{Q'_2}})$ generated by $\{T_t - 1 \mid t \in Z_k \cap {}_1W_{M'_{Q'_2}}\}$. Then the ring $H(_1 \mathbb{W}_{M'_{Q'_2}})/\mathcal{J}'$ and its right ideal $\mathcal{J}_2/\mathcal{J}'$ are the specialisation of the generic finite ring $H(\mathbb{W}_{M_{Q'_2}})^g$ over $\mathbb{Z}[(q_s)_{s \in S_{M_{Q'_2}}}]$ where the q_s for $s \in S_{M_{Q'_2}} = S \cap \mathbb{W}_{M_{Q'_2}}$ are indeterminates,

and of its right ideal \mathcal{J}_2^g with the same generators. The similar congruence modulo \mathcal{J}_2^g in $H(\mathbb{W}_{M_{O'}})^g$ (the generic congruence) implies the congruence (??) by specialisation.

We will prove the generic congruence in a more general setting where H is the generic Hecke ring of a finite Coxeter system(\mathbb{W}, S) and parameters $(q_s)_{s \in S}$ such that $q_s = q_{s'}$ when s, s' are conjugate in \mathbb{W} . The Hecke ring H is a $\mathbb{Z}[(q_s)_{s \in S}]$ -free module of basis $(T_w)_{w \in \mathbb{W}}$ satisfying the braid relations and the quadratic relations $T_s^2 = q_s + (q_s - 1)T_s$ for $s \in S$. The other basis $(T_w^*)_{w \in \mathbb{W}}$ satisfies the braid relations and the quadratic relations $(T_s^*)^2 = q_s - (q_s - 1)T_s^*$ for $s \in S$, and is related to the first basis by $T_s^* = T_s - (q_s - 1)$ for $s \in S$, and more generally $T_w T_{w^{-1}}^* = T_{w^{-1}}^* T_w = q_w$ for $w \in \mathbb{W}$ [?, Proposition 4.13].

Let $J \subset S$ and \mathcal{J} is the right ideal of H with generators $T_w^* - 1$ for all w in the group W_J generated by J.

Lemma 4.32. A basis of \mathcal{J} is $(T_{w_1}^* - 1)T_{w_2}^*$ for $w_1 \in \mathbb{W}_J \setminus \{1\}, w_2 \in \mathbb{W}_J \mathbb{W}$, and adding $T_{w_2}^*$ for $w_2 \in \mathbb{W}_J \mathbb{W}$ gives a basis of H. In particular, \mathcal{J} is a direct factor of \mathcal{H} .

Proof. The elements $(T_{w_1}^* - 1)T_w^*$ for $w_1 \in \mathbb{W}_J, w \in \mathbb{W}$ generate \mathcal{J} . We write $w = u_1w_2$ with unique elements $u_1 \in \mathbb{W}_J, w_2 \in \mathbb{W}_J\mathbb{W}$, and $T_w^* = T_{u_1}^*T_{w_2}^*$. Therefore, $(T_{w_1}^* - 1)T_{u_1}^*T_{w_2}^*$. By an induction on the length of u_1 , one proves that $(T_{w_1}^* - 1)T_{u_1}^*$ is a linear combination of $(T_{v_1}^* - 1)$ for $v_1 \in \mathbb{W}_J$ as in the proof of Proposition ??. It is clear that the elements $(T_{w_1}^* - 1)T_{w_2}^*$ and $T_{w_2}^*$ for $w_1 \in \mathbb{W}_J \setminus \{1\}, w_2 \in \mathbb{W}_J\mathbb{W}$ form a basis of H.

Let \mathbf{w}_J denote the longest element of \mathbb{W}_J and $\mathbf{w} = \mathbf{w}_S$.

Lemma 4.33. In the generic Hecke ring H, the congruence modulo \mathcal{J}

$$\sum_{d \in \mathbb{W}_J \mathbb{W}} T_d \equiv \sum_{d \in \mathbb{W}_J \mathbb{W}} q_{\mathbf{w}_J d\mathbf{w}} T_d^*$$

holds true.

Proof. Step 1. We show:

$$\mathbb{W}_J \mathbb{W} = \mathbf{w}_J \mathbb{W}_J \mathbb{W} \mathbf{w}, \quad q_{\mathbf{w}_J} q_{\mathbf{w}_J d \mathbf{w}} T_d^* = T_{\mathbf{w}_J} T_{\mathbf{w}_J d \mathbf{w}} T_{\mathbf{w}}^*.$$

The equality between the groups follows from the characterisation of $^{\mathbb{W}_J}\mathbb{W}$ in \mathbb{W} : an element $d \in \mathbb{W}$ has minimal length in $\mathbb{W}_J d$ if and only if $\ell(ud) = \ell(u) + \ell(d)$ for all $u \in \mathbb{W}_J$. An easy computation shows that $\ell(u\mathbf{w}_J d\mathbf{w}) = \ell(u) + \ell(\mathbf{w}_J d\mathbf{w})$ for all $u \in \mathbb{W}_J, d \in ^{\mathbb{W}_J}\mathbb{W}$ (both sides are equal to $\ell(u) + \ell(\mathbf{w}) - \ell((\mathbf{w}_J) - \ell(d))$). The second equality follows from $q_{\mathbf{w}_J}q_{\mathbf{w}_J d\mathbf{w}} = q_{d\mathbf{w}}$ because $(\mathbf{w}_J)^2 = 1$ and $\ell(\mathbf{w}_J) + \ell(\mathbf{w}_J d\mathbf{w}) = \ell(d\mathbf{w})$ (both sides are $\ell(\mathbf{w}) - \ell(d)$) and from $q_{d\mathbf{w}}T_d^* = T_{d\mathbf{w}}T_{\mathbf{w}^{d-1}}^*T_d^* = T_{d\mathbf{w}}T_{\mathbf{w}}^*$. We also have $T_{d\mathbf{w}} = T_{\mathbf{w}_J}T_{\mathbf{w}_J d\mathbf{w}}$.

Step 2. The multiplication by $q_{\mathbf{w}_J}$ on the quotient H/\mathcal{J} is injective (Lemma ??) and $q_{\mathbf{w}_J} \equiv T_{\mathbf{w}_J}$. By Step 1, $q_{\mathbf{w}_J d\mathbf{w}} T_d^* \equiv T_{\mathbf{w}_J d\mathbf{w}} T_{\mathbf{w}}^*$ and

$$\sum_{d \in \mathbb{W}_J \mathbb{W}} q_{\mathbf{w}_J d\mathbf{w}} T_d^* \equiv \sum_{d \in \mathbb{W}_J \mathbb{W}} T_d T_{\mathbf{w}}^*.$$

The congruence

(4.26)
$$\sum_{d \in \mathbb{W}_J \mathbb{W}} T_d \equiv \sum_{d \in \mathbb{W}_J \mathbb{W}} T_d T_s^*$$

for all $s \in S$ implies the lemma because $T_{\mathbf{w}}^* = T_{s_1}^* \dots T_{s_n}^*$ for any reduced decomposition $\mathbf{w} = s_1 \dots s_n$ with $s_i \in S$.

Step 3. When $J = \emptyset$, the congruence (??) is an equality:

$$(4.27) \sum_{w \in \mathbb{W}} T_w = \sum_{w \in \mathbb{W}} T_w T_s^*.$$

It holds true because $\sum_{w \in \mathbb{W}} T_w = \sum_{w < ws} T_w(T_s + 1)$ and $(T_s + 1)T_s^* = T_sT_s^* + T_s^* = q_s + T_s^* = T_s + 1$.

Step 4. Conversely the congruence (??) follows from (??) because

$$\sum_{w \in \mathbb{W}} T_w = (\sum_{u \in W_J} T_u) \sum_{d \in \mathbb{W}_J \mathbb{W}} T_d \equiv (\sum_{u \in W_J} q_u) \sum_{d \in \mathbb{W}_J \mathbb{W}} T_d$$

(recall $q_u = T_{u-1}^* T_u \equiv T_u$) and we can simplify by $\sum_{u \in W_I} q_u$ in H/\mathcal{J} .

This ends the proof of Proposition ??.

5. Universal representation $I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}} R[\mathcal{U} \backslash G]$

The invariant functor $(-)^{\mathcal{U}}$ by the pro-p Iwahori subgroup \mathcal{U} of G has a left adjoint

$$-\otimes_{\mathcal{H}_R} R[\mathcal{U}\backslash G]: \mathrm{Mod}_R(\mathcal{H}) \to \mathrm{Mod}_R^{\infty}(G).$$

The smooth R-representation $\mathcal{V} \otimes_{\mathcal{H}_R} R[\mathcal{U} \backslash G]$ of G constructed from the right \mathcal{H}_R -module \mathcal{V} is called universal. We write

$$R[\mathcal{U}\backslash G] = \mathbb{X}.$$

Question 5.1. Does $\mathcal{V} \neq 0$ implies $\mathcal{V} \otimes_{\mathcal{H}_R} \mathbb{X} \neq 0$? or does $v \otimes 1_{\mathcal{U}} = 0$ for $v \in \mathcal{V}$ implies v = 0? We have no counter-example. If R is a field and the \mathcal{H}_R -module \mathcal{V} is simple, the two questions are equivalent: $\mathcal{V} \otimes_{\mathcal{H}_R} \mathbb{X} \neq 0$ if and only if the map $v \mapsto v \otimes 1_{\mathcal{U}}$ is injective. When R = C, $\mathcal{V} \otimes_{\mathcal{H}_R} \mathbb{X} \neq 0$ for all simple \mathcal{H}_C -modules \mathcal{V} if this is true for \mathcal{V} simple supersingular (this is a consequence of Corollary ??).

The functor $-\otimes_{\mathcal{H}_R} \mathbb{X}$ satisfies a few good properties: it has a right adjoint and is compatible with the parabolic induction and the left adjoint (of the parabolic induction). Let P = MN be a standard parabolic subgroup and $\mathbb{X}_M = R[\mathcal{U}_M \setminus M]$. We have functor isomorphisms

$$(5.1) \qquad (-\otimes_{\mathcal{H}_R} \mathbb{X}) \circ \mathcal{I}nd_{\mathcal{H}_M}^{\mathcal{H}} \to \operatorname{Ind}_P^G \circ (-\otimes_{\mathcal{H}_R} \mathbb{X}_M),$$

$$(5.2) \qquad (-)_N \circ (- \otimes_{\mathcal{H}_R} \mathbb{X}) \to (- \otimes_{\mathcal{H}_R} \mathbb{X}_M) \circ \mathcal{L}_{\mathcal{H}_M}^{\mathcal{H}}.$$

The first one is [?, formula 4.15], the second one is obtained by left adjunction from the isomorphism $\mathcal{I}nd_{\mathcal{H}_M}^{\mathcal{H}} \circ (-)^{\mathcal{U}_M} \to (-)^{\mathcal{U}} \circ \operatorname{Ind}_P^G$ [?, formula (4.14)]. If \mathcal{V} is a right \mathcal{H}_R -supersingular module and p is nilpotent in \mathcal{V} , then $\mathcal{L}_{\mathcal{H}_M}^{\mathcal{H}}(\mathcal{V}) = 0$ if $M \neq G$ (Proposition ??). Applying (??) we deduce:

Proposition 5.2. If p is nilpotent in V and V supersingular, then $V \otimes_{\mathcal{H}_R} \mathbb{X}$ is left cuspidal.

Remark 5.3. For a non-zero smooth R-representation τ of M, Δ_{τ} is orthogonal to Δ_{P} if τ is left cuspidal. Indeed, we recall from [?, II.7 Corollary 2] that Δ_{τ} is not orthogonal to Δ_{P} if and only if it exists a proper standard parabolic subgroup X of M such that σ is trivial on the unipotent radical of X; moreover τ is a subrepresentation of $\operatorname{Ind}_{X}^{M}(\tau|_{X})$, so the image of τ by the left adjoint of $\operatorname{Ind}_{X}^{M}$ is not 0.

From now on, \mathcal{V} is a non-zero right $\mathcal{H}_{M,R}$ -module and

$$\sigma = \mathcal{V} \otimes_{\mathcal{H}_{M,R}} \mathbb{X}_{M}.$$

In general, when $\sigma \neq 0$, let $P_{\perp}(\sigma)$ be the standard parabolic subgroup of G with $\Delta_{P_{\perp}(\sigma)} = \Delta_P \cup \Delta_{\perp,\sigma}$ where $\Delta_{\perp,\sigma}$ is the set of simple roots $\alpha \in \Delta_{\sigma}$ orthogonal to Δ_P .

Proposition 5.4. (1) $P(V) \subset P_{\perp}(\sigma)$ if $\sigma \neq 0$.

- (2) $P(\mathcal{V}) = P_{\perp}(\sigma)$ if the map $v \mapsto v \otimes 1_{\mathcal{U}_M}$ is injective.
- (3) $P(\mathcal{V}) = P(\sigma)$ if the map $v \mapsto v \otimes 1_{\mathcal{U}_M}$ is injective, p nilpotent in \mathcal{V} and \mathcal{V} supersingular.
- (4) $P(\mathcal{V}) = P(\sigma)$ if $\sigma \neq 0$, R is a field of characteristic p and \mathcal{V} simple supersingular.
- Proof. (1) $P(\mathcal{V}) \subset P_{\perp}(\sigma)$ means that $Z \cap M'_{\mathcal{V}}$ acts trivially on $\mathcal{V} \otimes 1_{\mathcal{U}_M}$, where $M_{\mathcal{V}}$ is the standard Levi subgroup such that $\Delta_{M_{\mathcal{V}}} = \Delta_{\mathcal{V}}$. Let $z \in Z \cap M'_{\mathcal{V}}$ and $v \in \mathcal{V}$. As Δ_M and $\Delta_{\mathcal{V}}$ are orthogonal, we have $T^{M,*}(z) = T^M(z)$ and $\mathcal{U}_M z \mathcal{U}_M = \mathcal{U}_M z$. We have $v \otimes 1_{\mathcal{U}_M} = v T^M(z) \otimes 1_{\mathcal{U}_M} = v \otimes T^M(z) 1_{\mathcal{U}_M} = v \otimes 1_{\mathcal{U}_M z} = v \otimes z^{-1} 1_{\mathcal{U}_M} = z^{-1}(v \otimes 1_{\mathcal{U}_M})$.

 (2) If $v \otimes 1_{\mathcal{U}_M} = 0$ for $v \in \mathcal{V}$ implies v = 0, then $\sigma \neq 0$ because $\mathcal{V} \neq 0$. By (1) $P(\mathcal{V}) \subset P_{\perp}(\sigma)$.
- (2) If $v \otimes 1_{\mathcal{U}_M} = 0$ for $v \in \mathcal{V}$ implies v = 0, then $\sigma \neq 0$ because $\mathcal{V} \neq 0$. By (1) $P(\mathcal{V}) \subset P_{\perp}(\sigma)$. As in the proof of (1), for $z \in Z \cap M'_{\perp,\sigma}$ we have $vT^{M,*}(z) \otimes 1_{\mathcal{U}_M} = vT^{M}(z) \otimes 1_{\mathcal{U}_M} = v \otimes 1_{\mathcal{U}_M}$ and our hypothesis implies $vT^{M,*}(z) = v$ hence $P(\mathcal{V}) \supset P_{\perp}(\sigma)$.
 - (3) Proposition ??, Remark ?? and (2).
 - (4) Question ?? and (3).

Let Q be a parabolic subgroup of G with $P \subset Q \subset P(\mathcal{V})$. In this chapter we will compute $I_{\mathcal{H}}(P,\mathcal{V},Q) \otimes_{\mathcal{H}} R[\mathcal{U}\backslash G]$ where $I_{\mathcal{H}}(P,\mathcal{V},Q) = \operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}(e(\mathcal{V}) \otimes (\operatorname{Ind}_{Q}^{P(\mathcal{V})} \mathbf{1})^{\mathcal{U}_{M(\mathcal{V})}})$ (Theorem ??). The smooth R-representation $I_{G}(P,\sigma,Q)$ of G is well defined: it is 0 if $\sigma = 0$ and $\operatorname{Ind}_{P(\sigma)}^{G}(e(\sigma) \otimes \operatorname{St}_{Q}^{P(\sigma)})$ if $\sigma \neq 0$ because (P,σ,Q) is an R[G]-triple by Proposition ??. We will show that the universal representation $I_{\mathcal{H}}(P,\mathcal{V},Q) \otimes_{\mathcal{H}} R[\mathcal{U}\backslash G]$ is isomorphic to $I_{G}(P,\sigma,Q)$, if $P(\mathcal{V}) = P(\sigma)$ and p = 0, or if $\sigma = 0$ (Corollary ??). In particular, when R = C and $I_{\mathcal{H}}(P,\mathcal{V},Q) \otimes_{\mathcal{H}} R[\mathcal{U}\backslash G] \simeq I_{G}(P,\sigma,Q)$ when \mathcal{V} is supersingular

5.1. Q = G. We consider first the case Q = G. We are in the simple situation where \mathcal{V} is extensible to \mathcal{H} and $P(\mathcal{V}) = P(\sigma) = G$, $I_{\mathcal{H}}(P, \mathcal{V}, G) = e(\mathcal{V})$ and $I_G(P, \sigma, G) = e(\sigma)$. We recall that $\Delta \setminus \Delta_P$ is orthogonal to Δ_P and that M_2 denotes the standard Levi subgroup of G with $\Delta_{M_2} = \Delta \setminus \Delta_P$.

The \mathcal{H}_R -morphism $e(\mathcal{V}) \to e(\sigma)^{\mathcal{U}} = \sigma^{\mathcal{U}_M}$ sending v to $v \otimes 1_{\mathcal{U}_M}$ for $v \in \mathcal{V}$, gives by adjunction an R[G]-homomorphism

$$v \otimes \mathbf{1}_{\mathcal{U}} \mapsto v \otimes \mathbf{1}_{\mathcal{U}_{\mathcal{M}}} : e(\mathcal{V}) \otimes_{\mathcal{H}_{\mathcal{P}}} \mathbb{X} \xrightarrow{\Phi^{G}} e(\sigma),$$

If Φ^G is an isomorphism, then $e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X}$ is the extension to G of $(e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X})|_M$, meaning that M'_2 acts trivially on $e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X}$. The converse is true:

Lemma 5.5. If M_2' acts trivially on $e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X}$, then Φ^G is an isomorphism.

Proof. Suppose that M'_2 acts trivially on $e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X}$. Then $e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X}$ is the extension to G of $(e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X})|_M$, and by Theorem ??, $(e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X})^{\mathcal{U}}$ is the extension of $(e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X})^{\mathcal{U}_M}$. Therefore

$$(v \otimes 1_{\mathcal{U}})T_w^* = (v \otimes 1_{\mathcal{U}})T_w^{M,*}$$
 for all $v \in \mathcal{V}, w \in W_M(1)$.

As \mathcal{V} is extensible to \mathcal{H} , the natural map $v \mapsto v \otimes 1_{\mathcal{U}} : \mathcal{V} \xrightarrow{\Psi} (e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X})^{\mathcal{U}_M}$ is \mathcal{H}_M -equivariant, i.e.:

$$vT_w^{M,*} \otimes 1_{\mathcal{U}} = (v \otimes 1_{\mathcal{U}})T_w^{M,*}$$
 for all $v \in \mathcal{V}, w \in W_M(1)$.

because ((??)) $vT_w^{M,*} \otimes 1_{\mathcal{U}} = vT_w^* \otimes 1_{\mathcal{U}} = v \otimes T_w^* = (v \otimes 1_{\mathcal{U}})T_w^*$ in $e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X}$.

We recall that $-\otimes_{\mathcal{H}_{M,R}} \mathbb{X}_M$ is the left adjoint of $(-)^{\mathcal{U}_M}$. The adjoint R[M]-homomorphism $\sigma = \mathcal{V} \otimes_{\mathcal{H}_{M,R}} \mathbb{X}_M \to e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X}$ sends $v \otimes 1_{\mathcal{U}_M}$ to $v \otimes 1_{\mathcal{U}}$ for all $v \in \mathcal{V}$. The R[M]-module generated by the $v \otimes 1_{\mathcal{U}}$ for all $v \in \mathcal{V}$ is equal to $e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X}$ because M'_2 acts trivially. Hence we obtained an inverse of Φ^G .

Our next move is to determine if M'_2 acts trivially on $e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X}$. It is equivalent to see if M'_2 acts trivially on $e(\mathcal{V}) \otimes 1_{\mathcal{U}}$ as this set generates the representation $e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X}$ of G and M'_2 is a normal subgroup of G as M'_2 and M commute and $G = ZM'M'_2$. Obviously, $\mathcal{U} \cap M'_2$ acts trivially on $e(\mathcal{V}) \otimes 1_{\mathcal{U}}$. The group of double classes $(\mathcal{U} \cap M'_2) \backslash M'_2/(\mathcal{U} \cap M'_2)$ is generated by the lifts $\hat{s} \in \mathcal{N} \cap M'_2$ of the simple affine roots s of $W_{M'_2}$. Therefore, M'_2 acts trivially on $e(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X}$ if and only if for any simple affine root $s \in S_{M'_2}^{\mathrm{aff}}$ of $W_{M'_2}$, any $\hat{s} \in \mathcal{N} \cap M'_2$ lifting s acts trivially on $e(\mathcal{V}) \otimes 1_{\mathcal{U}}$.

Lemma 5.6. Let $v \in \mathcal{V}, s \in S_{M'_2}^{\text{aff}}$ and $\hat{s} \in \mathcal{N} \cap M'_2$ lifting s. We have

$$(q_s+1)(v\otimes 1_{\mathcal{U}}-\hat{s}(v\otimes 1_{\mathcal{U}}))=0.$$

Proof. We compute:

$$T_s(\hat{s}\mathbf{1}_{\mathcal{U}}) = \hat{s}(T_s\mathbf{1}_{\mathcal{U}}) = \mathbf{1}_{\mathcal{U}\hat{s}\mathcal{U}(\hat{s})^{-1}} = \sum_u \hat{s}u(\hat{s})^{-1}\mathbf{1}_{\mathcal{U}} = \sum_{u^{op}} u^{op}\mathbf{1}_{\mathcal{U}},$$
$$T_s(\hat{s}^2\mathbf{1}_{\mathcal{U}}) = \hat{s}^2(T_s\mathbf{1}_{\mathcal{U}}) = \mathbf{1}_{\mathcal{U}\hat{s}\mathcal{U}(\hat{s})^{-2}} = \mathbf{1}_{\mathcal{U}(\hat{s})^{-1}\mathcal{U}} = \sum_u u\hat{s}\mathbf{1}_{\mathcal{U}}.$$

for u in the group $\mathcal{U}/(\hat{s}^{-1}\mathcal{U}\hat{s}\cap\mathcal{U})$ and u^{op} in the group $\hat{s}\mathcal{U}(\hat{s})^{-1}/(\hat{s}\mathcal{U}(\hat{s})^{-1}\cap\mathcal{U})$; the reason is that \hat{s}^2 normalizes \mathcal{U} , $\mathcal{U}\hat{s}\mathcal{U}\hat{s}^{-1}$ is the disjoint union of the sets $\mathcal{U}\hat{s}u^{-1}(\hat{s})^{-1}$ and $\mathcal{U}(\hat{s})^{-1}\mathcal{U}$ is the disjoint union of the sets $\mathcal{U}(\hat{s})^{-1}u^{-1}$. We introduce now a natural bijection

$$(5.3) u \to u^{op} : \mathcal{U}/(\hat{s}^{-1}\mathcal{U}\hat{s} \cap \mathcal{U}) \to \hat{s}\mathcal{U}(\hat{s})^{-1}/(\hat{s}\mathcal{U}(\hat{s})^{-1} \cap \mathcal{U})$$

which is not a group homomorphism. We recall the finite reductive group $G_{k,s}$ quotient of the parahoric subgroup \mathfrak{K}_s of G fixing the face fixed by s of the alcove C. The Iwahori groups $Z^0\mathcal{U}$ and $Z^0\hat{s}\mathcal{U}(\hat{s})^{-1}$ are contained in \mathfrak{K}_s and their images in $G_{s,k}$ are opposite Borel subgroups $Z_kU_{s,k}$ and $Z_kU_{s,k}^{op}$. Via the surjective maps $u\mapsto \overline{u}:\mathcal{U}\to U_{s,k}$ and $u^{op}\mapsto \overline{u}^{op}:\hat{s}\mathcal{U}(\hat{s})^{-1}\to U_{s,k}^{op}$ we identify the groups $\mathcal{U}/(\hat{s}^{-1}\mathcal{U}\hat{s}\cap\mathcal{U})\simeq U_{s,k}$ and similarly $\hat{s}\mathcal{U}(\hat{s})^{-1}/(\hat{s}\mathcal{U}(\hat{s})^{-1}\cap\mathcal{U})\simeq U_{s,k}^{op}$. Let $G'_{k,s}$ be the group generated by $U_{s,k}$ and $U^{op}_{s,k}$, and let $B'_{s,k}=G'_{k,s}\cap Z_kU_{s,k}=(G'_{k,s}\cap Z_k)U_{s,k}$. We suppose (as we can) that $\hat{s}\in\mathfrak{K}_s$ and that its image \hat{s}_k in $G_{s,k}$ lies in $G'_{k,s}$. We have $\hat{s}_kU_{s,k}(\hat{s}_k)^{-1}=U^{op}_{s,k}$ and the Bruhat decomposition $G'_{k,s}=B'_{k,s}\sqcup U_{k,s}\hat{s}_kB'_{k,s}$ implies the existence of a canonical bijection $\overline{u}^{op}\to \overline{u}:(U^{op}_{k,s}-\{1\})\to(U_{k,s}-\{1\})$ respecting the cosets $\overline{u}^{op}B'_{k,s}=\overline{u}\hat{s}_kB'_{k,s}$. Via the preceding identifications we get the wanted bijection (??).

For $v \in e(\mathcal{V})$ and $z \in Z^0 \cap M'_2$ we have $vT_z = v$, $z1_{\mathcal{U}} = T_z1_{\mathcal{U}}$ and $v \otimes T_z1_{\mathcal{U}} = vT_z \otimes 1_{\mathcal{U}}$ therefore $Z^0 \cap M'_2$ acts trivially on $\mathcal{V} \otimes 1_{\mathcal{U}}$. The action of the group $(Z^0 \cap M'_2)\mathcal{U}$ on $\mathcal{V} \otimes 1_{\mathcal{U}}$ is also trivial. As the image of $Z^0 \cap M'_2$ in $G_{s,k}$ contains $Z_k \cap G'_{s,k}$,

$$u\hat{s}(v\otimes 1_{\mathcal{U}})=u^{op}(v\otimes 1_{\mathcal{U}})$$

when u and u^{op} are not units and correspond via the bijection (??). So we have

$$(5.4) v \otimes T_s(\hat{s}1_{\mathcal{U}}) - (v \otimes 1_{\mathcal{U}}) = v \otimes T_s(\hat{s}^21_{\mathcal{U}}) - v \otimes \hat{s}1_{\mathcal{U}}$$

We can move T_s on the other side of \otimes and as $vT_s = q_s v$ (Corollary ??), we can replace T_s by q_s . We have $v \otimes \hat{s}^2 1_{\mathcal{U}} = v \otimes T_{s^{-2}} 1_{\mathcal{U}}$ because $\hat{s}^2 \in Z^0 \cap M'_2$ normalizes \mathcal{U} ; as we can move $T_{s^{-2}}$ on the other side of \otimes and as $vT_{s^{-2}} = v$ we can forget \hat{s}^2 . So (??) is equivalent to $(q_s + 1)(v \otimes 1_{\mathcal{U}} - \hat{s}(v \otimes 1_{\mathcal{U}})) = 0$.

Combining the two lemmas we obtain:

Proposition 5.7. When V is extensible to \mathcal{H} and has no $q_s + 1$ -torsion for any $s \in S_{M'_2}^{\mathrm{aff}}$, then M'_2 acts trivially on $e(V) \otimes_{\mathcal{H}_R} \mathbb{X}$ and Φ^G is an R[G]-isomorphism.

Proposition ?? for the trivial character $\mathbf{1}_{\mathcal{H}}$, says that $\mathbf{1}_{\mathcal{H}} \otimes_{\mathcal{H}_R} \mathbb{X}$ is the trivial representation $\mathbf{1}_G$ of G when $q_s + 1$ has no torsion in R for all $s \in S^{\text{aff}}$. This is proved in [?, Lemma 2.28] by a different method. The following counter-example shows that this is not true for all R.

Example 5.8. Let G = GL(2, F) and R an algebraically closed field where $q_{s_0} + 1 = q_{s_1} + 1 = 0$ and $S_{\text{aff}} = \{s_0, s_1\}$. (Note that $q_{s_0} = q_{s_1}$ is the order of the residue field of R.) Then the dimension of $\mathbf{1}_{\mathcal{H}} \otimes_{\mathcal{H}_R} \mathbb{X}$ is infinite, in particular $\mathbf{1}_{\mathcal{H}} \otimes_{\mathcal{H}_R} \mathbb{X} \neq \mathbf{1}_G$.

Indeed, the Steinberg representation $\operatorname{St}_G = (\operatorname{Ind}_B^G \mathbf{1}_Z)/\mathbf{1}_G$ of G is an indecomposable representation of length 2 containing an irreducible infinite dimensional representation π with $\pi^{\mathcal{U}} = 0$ of quotient the character $(-1)^{\operatorname{val} \circ \det}$. This follows from the proof of Theorem 3 and from Proposition 24 in [?]. The kernel of the quotient map $\operatorname{St}_G \otimes (-1)^{\operatorname{val} \circ \det} \to \mathbf{1}_G$ is infinite dimensional without a non-zero \mathcal{U} -invariant vector. As the characteristic of R is not p, the functor of \mathcal{U} -invariants is exact hence $(\operatorname{St}_G \otimes (-1)^{\operatorname{val} \circ \det})^{\mathcal{U}} = \mathbf{1}_{\mathcal{H}}$. As $- \otimes_{\mathcal{H}_R} R[\mathcal{U} \setminus G]$ is the left adjoint of $(-)^{\mathcal{U}}$ there is a non-zero homomorphism

$$\mathbf{1}_{\mathcal{H}} \otimes_{\mathcal{H}_R} \mathbb{X} \to \operatorname{St}_G \otimes (-1)^{\operatorname{val} \circ \det}$$

with image generated by its \mathcal{U} -invariants. The homomorphism is therefore surjective.

5.2. \mathcal{V} extensible to \mathcal{H} . Let P = MN be a standard parabolic subgroup of G with Δ_P and $\Delta \setminus \Delta_P$ orthogonal. We still suppose that the $\mathcal{H}_{M,R}$ -module \mathcal{V} is extensible to \mathcal{H} , but now $P \subset Q \subset G$. So we have $I_{\mathcal{H}}(P,\mathcal{V},Q) = e(\mathcal{V}) \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}}$ and $I_G(P,\sigma,Q) = e(\sigma) \otimes_R \operatorname{St}_Q^G$ where $\sigma = \mathcal{V} \otimes_{\mathcal{H}_{M,R}} \mathbb{X}_M$. We compare the images by $-\otimes_{\mathcal{H}_R} \mathbb{X}$ of the \mathcal{H}_R -modules $e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ and $e(\mathcal{V}) \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}}$ with the smooth R-representations $e(\sigma) \otimes \operatorname{Ind}_Q^G \mathbf{1}$ and $e(\sigma) \otimes \operatorname{St}_Q^G$ of G. As $-\otimes_{\mathcal{H}_R} \mathbb{X}$ is left adjoint of $(-)^{\mathcal{U}}$, the \mathcal{H}_R -homomorphism $v \otimes f \mapsto v \otimes 1_{\mathcal{U}_M} \otimes f : e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}} \to (e(\sigma) \otimes_R \operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}$ gives by adjunction an R[G]-homomorphism

$$v \otimes f \otimes 1_{\mathcal{U}} \mapsto v \otimes 1_{\mathcal{U}_M} \otimes f : (e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}) \otimes_{\mathcal{H}_R} \mathbb{X} \xrightarrow{\Phi_Q^G} e(\sigma) \otimes_R \operatorname{Ind}_Q^G \mathbf{1}.$$

When Q = G we have $\Phi_G^G = \Phi^G$. By Remark ??, Φ_Q^G is surjective. Proposition ?? applies with M_Q instead of G and gives the $R[M_Q]$ -homomorphism

$$v \otimes 1_{\mathcal{U}_{M_Q}} \mapsto v \otimes 1_{\mathcal{U}_M} : e_{\mathcal{H}_Q}(\mathcal{V}) \otimes_{\mathcal{H}_{Q,R}} \mathbb{X}_{M_Q} \xrightarrow{\Phi^Q} e_Q(\sigma).$$

Proposition 5.9. The R[G]-homomorphism Φ_Q^G is an isomorphism if Φ^Q is an isomorphism, in particular if \mathcal{V} has no $q_s + 1$ -torsion for any $s \in S_{M_2' \cap M_Q}^{\mathrm{aff}}$.

Proof. The proposition follows from another construction of Φ_Q^G that we now describe. Proposition ?? gives the \mathcal{H}_R -module isomorphism

$$v \otimes f_{Q\mathcal{U}} \mapsto v \otimes 1_{\mathcal{H}} : (e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}) \to \operatorname{Ind}_{\mathcal{H}_Q}^{\mathcal{H}} (e_{\mathcal{H}_Q}(\mathcal{V})) = e_{\mathcal{H}_Q}(\mathcal{V}) \otimes_{\mathcal{H}_{M_{OR}^+}, \theta} \mathcal{H}.$$

We have the R[G]-isomorphism [?, Corollary 4.7]

$$v \otimes 1_{\mathcal{H}} \otimes 1_{\mathcal{U}} \mapsto f_{Q\mathcal{U},v \otimes 1_{\mathcal{U}_{M_Q}}} : \operatorname{Ind}_{\mathcal{H}_Q}^{\mathcal{H}}(e_{\mathcal{H}_Q}(\mathcal{V}) \otimes_{\mathcal{H}_R} \mathbb{X}) \to \operatorname{Ind}_Q^G(e_{\mathcal{H}_Q}(\mathcal{V}) \otimes_{\mathcal{H}_{Q,R}} \mathbb{X}_{M_Q})$$

and the R[G]-isomorphism ***

$$f_{Q\mathcal{U},v\otimes 1_{\mathcal{U}_M}} \mapsto v\otimes 1_{\mathcal{U}_M}\otimes f_{Q\mathcal{U}}: \operatorname{Ind}_Q^G(e_Q(\sigma)) \to e(\sigma)\otimes \operatorname{Ind}_Q^G 1.$$

From Φ^Q and these three homomorphisms, there exists a unique R[G]-homomorphism

$$(e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}) \otimes_{\mathcal{H}_R} \mathbb{X} \to e(\sigma) \otimes_R \operatorname{Ind}_Q^G \mathbf{1}$$

sending $v \otimes f_{Q\mathcal{U}} \otimes 1_{\mathcal{U}}$ to $v \otimes 1_{\mathcal{U}_M} \otimes f_{Q\mathcal{U}}$. We deduce: this homomorphism is equal to Φ_Q^G , $\mathcal{V} \otimes 1_{Q\mathcal{U}} \otimes 1_{\mathcal{U}}$ generates $(e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}) \otimes_{\mathcal{H}_R} \mathbb{X}$, if Φ^Q is an isomorphism then Φ_Q^G is an isomorphism. By Proposition $\ref{eq:proposition}$, if \mathcal{V} has no $q_s + 1$ -torsion for any $s \in S_{M_2' \cap M_Q}^{\operatorname{aff}}$, then Φ^Q and Φ_Q^G are isomorphisms.

We recall that the $\mathcal{H}_{M,R}$ -module \mathcal{V} is extensible to \mathcal{H} .

Proposition 5.10. The R[G]-homomorphism Φ_Q^G induces an R[G]-homomorphism

$$(e(\mathcal{V}) \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}}) \otimes_{\mathcal{H}_R} \mathbb{X} \to e(\sigma) \otimes_R \operatorname{St}_Q^G,$$

It is an isomorphism if $\Phi_{Q'}^G$ is an R[G]-isomorphism for all parabolic subgroups Q' of G containing Q, in particular if \mathcal{V} has no $q_s + 1$ -torsion for any $s \in S_{M'_s}^{aff}$.

Proof. The proof is straightforward, with the arguments already developped for Proposition ?? and Theorem ??. The representations $e(\sigma) \otimes_R \operatorname{St}_Q^G$ and $(e(\mathcal{V}) \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}}) \otimes_{\mathcal{H}_R} \mathbb{X}$ of G are the cokernels of the natural R[G]-homomorphisms

$$\bigoplus_{Q \subsetneq Q'} e(\sigma) \otimes_R \operatorname{Ind}_{Q'}^G \mathbf{1} \xrightarrow{\operatorname{id} \otimes \alpha} e(\sigma) \otimes_R \operatorname{Ind}_Q^G \mathbf{1},$$

$$\bigoplus_{Q \subsetneq Q'} (e(\mathcal{V}) \otimes_R (\operatorname{Ind}_{Q'}^G \mathbf{1})^{\mathcal{U}}) \otimes_{\mathcal{H}_R} \mathbb{X} \xrightarrow{\operatorname{id} \otimes \alpha^{\mathcal{U}} \otimes \operatorname{id}} (e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}) \otimes_{\mathcal{H}_R} \mathbb{X}.$$

These R[G]-homomorphisms make a commutative diagram with the R[G]-homomorphisms $\bigoplus_{Q \subseteq Q'} \Phi_{Q'}^G$ and Φ_Q^G going from the lower line to the upper line. Indeed, let $v \otimes f_{Q'\mathcal{U}} \otimes 1_{\mathcal{U}} \in (e(\mathcal{V}) \otimes_R (\operatorname{Ind}_{Q'}^G \mathbf{1})^{\mathcal{U}}) \otimes_{\mathcal{H}_R} \mathbb{X}$. One one hand, it goes to $v \otimes f_{Q\mathcal{U}}\theta_{Q'}(e_Q^{Q'}) \otimes 1_{\mathcal{U}} \in (e(\mathcal{V}) \otimes_R (\operatorname{Ind}_Q^G \mathbf{1})^{\mathcal{U}}) \otimes_{\mathcal{H}_R} \mathbb{X}$ by the horizontal map, and then to $v \otimes 1_{\mathcal{U}_M} \otimes f_{Q\mathcal{U}}\theta_{Q'}(e_Q^{Q'})$ by the vertical map. On the other hand, it goes to $v \otimes 1_{\mathcal{U}_M} \otimes f_{Q'\mathcal{U}}$ by the vertical map, and then to $v \otimes 1_{\mathcal{U}_M} \otimes f_{Q\mathcal{U}}\theta_{Q'}(e_Q^{Q'})$ by the horizontal map. One deduces that Φ_Q^G induces an R[G]-homomorphism $(e(\mathcal{V}) \otimes_R (\operatorname{St}_Q^G)^{\mathcal{U}}) \otimes_{\mathcal{H}_R} \mathbb{X} \to e(\sigma) \otimes_R \operatorname{St}_Q^G$, which is an isomorphism if $\Phi_{Q'}^G$ is an R[G]-isomorphism for all $Q \subset Q'$.

5.3. General. We consider now the general case: let $P = MN \subset Q$ be two standard parabolic subgroups of G and \mathcal{V} a non-zero right $\mathcal{H}_{M,R}$ -module with $Q \subset P(\mathcal{V})$. We recall $I_{\mathcal{H}}(P,\mathcal{V},Q) = \operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}((e(\mathcal{V}) \otimes_R (\operatorname{St}_Q^{P(\mathcal{V})})^{\mathcal{U}_M(\mathcal{V})})$ and $\sigma = \mathcal{V} \otimes_{\mathcal{H}_{M,R}} \mathbb{X}_M$ (Proposition??). There is a natural R[G]-homomorphism

$$I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_R} \mathbb{X} \xrightarrow{\Phi_I^G} \operatorname{Ind}_{P(\mathcal{V})}^G(e_{M(\mathcal{V})}(\sigma) \otimes_R \operatorname{St}_O^{P(\mathcal{V})})$$

obtained by composition of the R[G]-isomorphism [?, Corollary 4.7] (proof of Proposition ??):

$$I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_R} \mathbb{X} \to \operatorname{Ind}_{P(\mathcal{V})}^G((e(\mathcal{V}) \otimes_R (\operatorname{St}_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})})^{\mathcal{U}_{M(\mathcal{V})}}) \otimes_{\mathcal{H}_{M(\mathcal{V}),R}} \mathbb{X}_{M(\mathcal{V})}),$$

with the R[G]-homomorphism

$$\operatorname{Ind}_{P(\mathcal{V})}^G((e(\mathcal{V}) \otimes_R (\operatorname{St}_Q^{P(\mathcal{V})})^{\mathcal{U}_{M(\mathcal{V})}}) \otimes_{\mathcal{H}_{M(\mathcal{V}),R}} \mathbb{X}_{M(\mathcal{V})}) \to \operatorname{Ind}_{P(\mathcal{V})}^G(e_{M(\mathcal{V})}(\sigma) \otimes_R \operatorname{St}_Q^{P(\mathcal{V})}),$$

image by the parabolic induction $\operatorname{Ind}_{P(\mathcal{V})}^G$ of the homomorphism

$$(e(\mathcal{V}) \otimes_R (\operatorname{St}_Q^{P(\mathcal{V})})^{\mathcal{U}_{M(\mathcal{V})}}) \otimes_{\mathcal{H}_{M(\mathcal{V}),R}} \mathbb{X}_{M(\mathcal{V})} \to e_{M(\mathcal{V})}(\sigma) \otimes_R \operatorname{St}_Q^{P(\mathcal{V})}.$$

induced by the $R[M(\mathcal{V})]$ -homomorphism $\Phi_Q^{P(\mathcal{V})} = \Phi_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})}$ of Proposition ?? applied to $M(\mathcal{V})$ instead of G.

This homomorphism Φ_I^G is an isomorphism if $\Phi_Q^{P(\mathcal{V})}$ is an isomorphism, in particular if \mathcal{V} has no q_s+1 -torsion for any $s\in S_{M_2'}^{\mathrm{aff}}$ where $\Delta_{M_2}=\Delta_{M(\mathcal{V})}\setminus\Delta_M$ (Proposition ??). We get the main theorem of this section:

Theorem 5.11. Let $(P = MN, \mathcal{V}, Q)$ be an \mathcal{H}_R -triple and $\sigma = \mathcal{V} \otimes_{\mathcal{H}_{M,R}} R[\mathcal{U}_M \setminus M]$. Then, (P, σ, Q) is an R[G]-triple. The R[G]-homomorphism

$$I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_R} R[\mathcal{U} \backslash G] \xrightarrow{\Phi_I^G} \operatorname{Ind}_{P(\mathcal{V})}^G(e_{M(\mathcal{V})}(\sigma) \otimes_R \operatorname{St}_Q^{P(\mathcal{V})})$$

is an isomorphism if $\Phi_Q^{P(\mathcal{V})}$ is an isomorphism. In particular Φ_I^G is an isomorphism if \mathcal{V} has no $q_s + 1$ -torsion for any $s \in S_{M'_o}^{aff}$.

Recalling $I_G(P, \sigma, Q) = \operatorname{Ind}_{P(\sigma)}^G(e(\sigma) \otimes_R \operatorname{St}_Q^{P(\sigma)})$ when $\sigma \neq 0$, we deduce:

Corollary 5.12. We have:

 $I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_R} R[\mathcal{U} \setminus G] \simeq I_G(P, \sigma, Q), \text{ if } \sigma \neq 0, P(\mathcal{V}) = P(\sigma) \text{ and } \mathcal{V} \text{ has no } q_s + 1\text{-torsion for any } s \in S_{M'_2}^{\mathrm{aff}}.$

$$I_{\mathcal{H}}(P, \mathcal{V}, Q) \overset{\text{in}}{\otimes}_{\mathcal{H}_R} R[\mathcal{U} \backslash G] = I_G(P, \sigma, Q) = 0, \text{ if } \sigma = 0.$$

Recalling $P(\mathcal{V}) = P(\sigma)$ if $\sigma \neq 0$, R is a field of characteristic p and \mathcal{V} simple supersingular (Proposition ?? 4)), we deduce:

Corollary 5.13. $I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_R} R[\mathcal{U} \setminus G] \simeq I_G(P, \sigma, Q)$ if R is a field of characteristic p and V simple supersingular.

6. Vanishing of the smooth dual

Let V be an R[G]-module. The dual $\operatorname{Hom}_R(V,R)$ of V is an R[G]-module for the contragredient action: qL(qv) = L(v) if $q \in G$, $L \in \text{Hom}_R(V,R)$ is a linear form and $v \in V$. When $V \in \operatorname{Mod}_{R}^{\infty}(G)$ is a smooth R-representation of G, the dual of V is not necessarily smooth. A linear form L is smooth if there exists an open subgroup $H \subset G$ such that L(hv) = L(v) for all $h \in H, v \in V$; the space $\operatorname{Hom}_R(V, R)^{\infty}$ of smooth linear forms is a smooth R-representation of G, called the **smooth dual** (or smooth contragredient) of V. The smooth dual of V is contained in the dual of V.

Example 6.1. When R is a field and the dimension of V over R is finite, the dual of V is equal to the smooth dual of V because the kernel of the action of G on V is an open normal subgroup $H \subset G$; the action of G on the dual $\operatorname{Hom}_R(V,R)$ is trivial on H.

We assume in this section that R is a field of characteristic p. Let P = MN be a parabolic subgroup of G and $V \in \operatorname{Mod}_R^{\infty}(M)$. Generalizing the proof given in [?, 8.1] when G = GL(2, F) and the dimension of V is 1, we show:

Proposition 6.2. If $P \neq G$, the smooth dual of $\operatorname{Ind}_{P}^{G}(V)$ is 0.

Proof. Let L be a smooth linear form on $\operatorname{Ind}_P^G(V)$ and K an open pro-p-subgroup of G which fixes L. Let J an arbitrary open subgroup of K, $g \in G$ and $f \in (\operatorname{Ind}_P^G(V))^J$ with support PgJ. We want to show that L(f) = 0. Let J' be any open normal subgroup of J and let φ denote the function in $(\operatorname{Ind}_P^G(V))^{J'}$ with support PgJ' and value $\varphi(g) = f(g)$ at g. For $j \in J$ we have $L(j\varphi) = L(\varphi)$, and the support of $j\varphi(x) = \varphi(xj)$ is $PgJ'j^{-1}$. The function f is the sum of translates $j\varphi$, where j ranges through the left cosets of the image X of $g^{-1}Pg \cap J$ in J/J', so that $L(f) = rL(\varphi)$ where r is the order of X in J/J'. We can certainly find J' such that $r \neq 1$, and then r is a positive power of p. As the characteristic of C is p we have L(f) = 0.

The module $R[\mathcal{U}\backslash G]$ is contained in the module $R^{\mathcal{U}\backslash G}$ of functions $f:\mathcal{U}\backslash G\to R$. The actions of \mathcal{H} and of G on $R[\mathcal{U}\backslash G]$ extend to $R^{\mathcal{U}\backslash G}$ by the same formulas. The pairing

$$(f,\varphi) \mapsto \langle f,\varphi \rangle = \sum_{g \in \mathcal{U} \backslash G} f(g) \varphi(g) : R^{\mathcal{U} \backslash G} \times R[\mathcal{U} \backslash G] \to R$$

identifies $R^{\mathcal{U}\backslash G}$ with the dual of $R[\mathcal{U}\backslash G]$. Let $h\in\mathcal{H}$ and $\check{h}\in\mathcal{H}$, $\check{h}(g)=h(g^{-1})$ for $g\in G$. We have

$$\langle f, h\varphi \rangle = \langle \check{h}f, \varphi \rangle.$$

Proposition 6.3. When R is an algebraically closed field of characteristic p, G is not compact modulo the center and V is a simple supersingular right \mathcal{H}_R -module, the smooth dual of $V \otimes_{\mathcal{H}_R} R[U \setminus G]$ is 0.

Proof. Let $\mathcal{H}_R^{\mathrm{aff}}$ be the subalgebra of \mathcal{H}_R of basis $(T_w)_{w\in W'(1)}$ where W'(1) is the inverse image of W' in W(1). The dual of $\mathcal{V}\otimes_{\mathcal{H}_R}R[\mathcal{U}\backslash G]$ is contained in the dual of $\mathcal{V}\otimes_{\mathcal{H}_R^{\mathrm{aff}}}R[\mathcal{U}\backslash G]$; the $\mathcal{H}_R^{\mathrm{aff}}$ -module $\mathcal{V}|_{\mathcal{H}_R^{\mathrm{aff}}}$ is a finite sum of supersingular characters [?]. Let $\chi:\mathcal{H}_R^{\mathrm{aff}}\to R$ be a supersingular character. The dual of $\chi\otimes_{\mathcal{H}_R^{\mathrm{aff}}}R[\mathcal{U}\backslash G]$ is contained in the dual of $R[\mathcal{U}\backslash G]$ isomorphic to $R^{\mathcal{U}\backslash G}$. It is the space of $f\in R^{\mathcal{U}\backslash G}$ with $hf=\chi(h)f$ for all $h\in\mathcal{H}_R^{\mathrm{aff}}$. The smooth dual of $\chi\otimes_{\mathcal{H}_R^{\mathrm{aff}}}R[\mathcal{U}\backslash G]$ is 0 if the dual of $\chi\otimes_{\mathcal{H}_R^{\mathrm{aff}}}R[\mathcal{U}\backslash G]$ has no non-zero element fixed by \mathcal{U} . Let us take $f\in R^{\mathcal{U}\backslash G/\mathcal{U}}$ with $hf=\chi(h)f$ for all $h\in\mathcal{H}_R^{\mathrm{aff}}$. We shall prove that f=0. We have $\check{T}_w=T_{w^{-1}}$ for $w\in W(1)$.

The elements $(T_t)_{t \in Z_k}$ and $(T_{\tilde{s}})_{s \in S^{\text{aff}}}$ where \tilde{s} is an admissible lift of s in $W^{\text{aff}}(1)$, generate the algebra $\mathcal{H}_R^{\text{aff}}$ and

$$T_t T_w = T_{tw}, \quad T_{\tilde{s}} T_w = \begin{cases} T_{\tilde{s}w} & \tilde{s}w > w, \\ c_{\tilde{s}} T_w & \tilde{s}w < w. \end{cases}$$

with $c_{\tilde{s}} = -|Z'_{k,s}| \sum_{t \in Z'_{k,s}} T_t$ because the characteristic of R is p [?, Proposition 4.4]. Expressing $f = \sum_{w \in W(1)} a_w T_w$, $a_w \in R$, as an infinite sum, we have

$$T_t f = \sum_{w \in W(1)} a_{t^{-1}w} T_w, \quad T_{\tilde{s}} f = \sum_{w \in W(1), \tilde{s}w < w} (a_{(\tilde{s})^{-1}w} + a_w c_{\tilde{s}}) T_w,$$

where < denote the Bruhat order of W(1) associated to S^{aff} [?] and [?, Proposition 4.4]. A character χ of $\mathcal{H}_R^{\text{aff}}$ is associated to a character $\chi_k : Z_k \to R^*$ and a subset J of

$$S^{\mathrm{aff}}_{\chi_k} = \{ s \in S^{\mathrm{aff}} \mid (\chi_k)|_{Z'_{k,s}} \text{ trivial } \}$$

[?, Definition 2.7]. We have

(6.1)
$$\begin{cases} \chi(T_t) = \chi_k(t) & t \in Z_k, \\ \chi(T_{\tilde{s}}) = \begin{cases} 0 & s \in S^{\text{aff}} \setminus J, \\ -1 & s \in J. \end{cases} & (\chi_k)(c_{\tilde{s}}) = \begin{cases} 0 & s \in S^{\text{aff}} \setminus S_{\chi_k}^{\text{aff}}, \\ -1 & s \in S_{\chi_k}^{\text{aff}}. \end{cases}$$

Therefore $\chi_k(t)f = \check{T}_t f = T_{t^{-1}}f$ hence $\chi_k(t)a_w = a_{tw}$. We have $\chi(T_{\tilde{s}})f = \check{T}_{\tilde{s}}f = T_{(\tilde{s})^{-1}}f = T_{\tilde{s}}T_{(\tilde{s})^{-2}}f = \chi_k((\tilde{s})^2)T_{\tilde{s}}f$; as $(\tilde{s})^2 \in Z'_{k,s}$ [?, three lines before Proposition 4.4] and $J \subset S^{\text{aff}}_{\chi_k}$, we obtain

(6.2)
$$T_{\tilde{s}}f = \begin{cases} 0 & s \in S^{\text{aff}} \setminus J, \\ -f & s \in J. \end{cases}$$

Introducing $\chi_k(t)a_w = a_{tw}$ in the formula for $T_{\tilde{s}}f$, we get

$$\sum_{w \in W(1), \tilde{s}w < w} a_w c_{\tilde{s}} T_w = -|Z'_{k,s}|^{-1} \sum_{w \in W(1), \tilde{s}w < w, t \in Z'_{k,s}} a_w T_{tw}$$

$$= -|Z'_{k,s}|^{-1} \sum_{w \in W(1), \tilde{s}w < w, t \in Z'_{k,s}} a_{t^{-1}w} T_w$$

$$= -|Z'_{k,s}|^{-1} \sum_{t \in Z'_{k,s}} \chi_k(t^{-1}) \sum_{w \in W(1), \tilde{s}w < w} a_w T_w$$

$$= \chi_k(c_{\tilde{s}}) \sum_{w \in W(1), \tilde{s}w < w} a_w T_w.$$

$$T_{\tilde{s}}f = \sum_{w \in W(1), \tilde{s}w < w} (a_{(\tilde{s})^{-1}w} + a_w \chi_k(c_{\tilde{s}})) T_w$$

$$= \begin{cases} \sum_{w \in W(1), \tilde{s}w < w} a_{(\tilde{s})^{-1}w} T_w & s \in S^{\text{aff}} \setminus S^{\text{aff}}_{\chi_k}, \\ \sum_{w \in W(1), \tilde{s}w < w} (a_{(\tilde{s})^{-1}w} - a_w) T_w & s \in S^{\text{aff}}_{\chi_k}. \end{cases}$$

From the last equality and (??) for $T_{\tilde{s}}f$, we get:

(6.3)
$$a_{\tilde{s}w} = \begin{cases} 0 & s \in J \cup (S^{\text{aff}} \setminus S_{\chi_k}^{\text{aff}}), \tilde{s}w < w, \\ a_w & s \in S_{\chi_k}^{\text{aff}} \setminus J. \end{cases}$$

Assume that $a_w \neq 0$. By the first condition, we know that $w > \tilde{s}w$ for $s \in J \cup (S^{\mathrm{aff}} \setminus S_{\chi_k}^{\mathrm{aff}})$. The character χ is supersingular if for each irreducible component X of S^{aff} , the intersection $X \cap J$ is not empty and different from X [?, Definition 2.7, Theorem 6.18]. This implies that the group generated by the $s \in S_{\chi_k}^{\mathrm{aff}} \setminus J$ is finite. If χ is supersingular, by the second condition we can suppose $w > \tilde{s}w$ for any $s \in S^{\mathrm{aff}}$. But there is no such element if S^{aff} is not empty. \square

Theorem 6.4. Let π be an irreducible admissible R-representation of G with a non-zero smooth dual where R is an algebraically closed field of characteristic p. Then π is finite dimensional.

Proof. Let (P, σ, Q) be a R[G]-triple with σ supercuspidal such that $\pi \simeq I_G(P, \sigma, Q)$. The representation $I_G(P, \sigma, Q)$ is a quotient of $\operatorname{Ind}_Q^G e_Q(\sigma)$ hence the smooth dual of $\operatorname{Ind}_Q^G e_Q(\sigma)$ is not zero. From Proposition $\ref{eq:total_Q}$, Q = G. We have $I_G(P, \sigma, G) = e(\sigma)$. The smooth dual of σ contains the smooth linear dual of $e(\sigma)$ hence is not zero. As σ is supercuspidal, the \mathcal{H}_M -module $\sigma^{\mathcal{U}_M}$ contains a simple supersingular submodule \mathcal{V} [?, Proposition 7.10, Corollary 7.11]. The functor $-\otimes_{\mathcal{H}_{M,R}} R[\mathcal{U}_M \setminus M]$ being the right adjoint of $(-)^{\mathcal{U}_M}$, the irreducible representation σ is a quotient of $\mathcal{V} \otimes_{\mathcal{H}_{M,R}} R[\mathcal{U}_M \setminus M]$, hence the smooth dual of $\mathcal{V} \otimes_{\mathcal{H}_{M,R}} R[\mathcal{U}_M \setminus M]$ is not zero. By Proposition $\ref{eq:total_Q}$, $\mathcal{H}_{M,R}$ and $\mathcal{H}_{M,R}$ is finite dimensional and the same is true for $e(\sigma) = I_G(B, \sigma, G) \simeq \pi$.

Remark 6.5. When the characteristic of F is 0, Theorem ?? was proved by Kohlhaase for a field R of characteristic p. He gives two proofs [?, Proposition 3.9, Remark 3.10], but none of them extends to F of characteristic p. Our proof is valid without restriction on the characteristic of F and does not use the results of Kohlhaase. Our assumption that R is an algebraically closed field of characteristic p comes from the classification theorem in [?].

References

- [Abe] N. Abe, Modulo p parabolic induction of pro-p-Iwahori Hecke algebra, J. Reine Angew. Math., DOI:10.1515/crelle-2016-0043.
- [Abe16] N. Abe, Parabolic inductions for pro-p-Iwahori Hecke algebras, arXiv:1612.01312.
- [AHHV17] N. Abe, G. Henniart, F. Herzig, and M.-F. Vignéras, A classification of irreducible admissible mod p representations of p-adic reductive groups, J. Amer. Math. Soc. 30 (2017), no. 2, 495–559.
- [AHV17] N. Abe, G. Henniart, and M.-F. Vignéras, Modulo p representations of reductive p-adic groups: functorial properties, arXiv:1703.05599.
- [BT72] F. Bruhat and J. Tits, *Groupes réductifs sur un corps local*, Inst. Hautes Études Sci. Publ. Math. (1972), no. 41, 5–251.
- [Car85] R. W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985, Conjugacy classes and complex characters, A Wiley-Interscience Publication.
- [GK14] E. Grosse-Klönne, On special representations of p-adic reductive groups, Duke Math. J. 163 (2014), no. 12, 2179–2216.
- [Koh] J. Kohlhasse, Smooth duality in natural characteristic, preprint.
- [Ly15] T. Ly, Représentations de Steinberg modulo p pour un groupe réductif sur un corps local, Pacific J. Math. 277 (2015), no. 2, 425–462.
- $[OV17] \qquad \text{R. Ollivier and M.-F. Vignéras}, \textit{Parabolic induction in characteristic p, arXiv:1703.04921}.$
- [Vig89] M.-F. Vignéras, Représentations modulaires de GL(2,F) en caractéristique l, F corps p-adique, $p \neq l$, Compositio Math. **72** (1989), no. 1, 33–66.
- [Vig07] M.-F. Vignéras, Représentations irréductibles de GL(2, F) modulo p, L-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 548–563.
- [Vig14] M.-F. Vignéras, The pro-p-Iwahori-Hecke algebra of a reductive p-adic group, II, Münster J. Math. 7 (2014), no. 1, 363–379.
- [Vig15a] M.-F. Vignéras, The pro-p-Iwahori Hecke algebra of a p-adic group III, J. Inst. Math. Jussieu (2015), 1–38.
- [Vig15b] M.-F. Vignéras, The pro-p Iwahori Hecke algebra of a reductive p-adic group, V (parabolic induction), Pacific J. Math. 279 (2015), no. 1-2, 499–529.
- [Vig16] M.-F. Vigneras, The pro-p-Iwahori Hecke algebra of a reductive p-adic group I, Compos. Math. 152 (2016), no. 4, 693–753.

(N. Abe) Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan

 $E ext{-}mail\ address: abenori@math.sci.hokudai.ac.jp}$

(G. Henniart) Université de Paris-Sud, Laboratoire de Mathématiques d'Orsay, Orsay cedex F-91405 France; CNRS, Orsay cedex F-91405 France

E-mail address: Guy.Henniart@math.u-psud.fr

(M.-F. Vignéras) Institut de Mathématiques de Jussieu, 175 rue du Chevaleret, Paris 75013 France

 $E ext{-}mail\ address: wigners@math.jussieu.fr}$