ON PRO- p-IWAHORI INVARIANTS OF R-REPRESENTATIONS OF REDUCTIVE p-ADIC GROUPS

N. ABE, G. HENNIART, AND M.-F. VIGNÉRAS

Abstract

Let F be locally compact field with residue characteristic p, and \mathbf{G} a connected reductive F-group. Let \mathcal{U} be a pro- p Iwahori subgroup of $G=\mathbf{G}(F)$. Fix a commutative ring R. If π is a smooth $R[G]$-representation, the space of invariants $\pi^{\mathcal{U}}$ is a right module over the Hecke algebra \mathcal{H} of \mathcal{U} in G.

Let P be a parabolic subgroup of G with a Levi decomposition $P=M N$ adapted to \mathcal{U}. We complement previous investigation of Ollivier-Vignéras on the relation between taking \mathcal{U}-invariants and various functor like $\operatorname{Ind}_{P}^{G}$ and right and left adjoints. More precisely the authors' previous work with Herzig introduce representations $I_{G}(P, \sigma, Q)$ where σ is a smooth representation of M extending, trivially on N, to a larger parabolic subgroup $P(\sigma)$, and Q is a parabolic subgroup between P and $P(\sigma)$. Here we relate $I_{G}(P, \sigma, Q)^{\mathcal{U}}$ to an analogously defined \mathcal{H}-module $I_{\mathcal{H}}\left(P, \sigma^{\mathcal{U}_{M}}, Q\right)$, where $\mathcal{U}_{M}=\mathcal{U} \cap M$ and $\sigma^{\mathcal{U}_{M}}$ is seen as a module over the Hecke algebra \mathcal{H}_{M} of \mathcal{U}_{M} in M. In the reverse direction, if \mathcal{V} is a right \mathcal{H}_{M}-module, we relate $I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes \mathrm{c}-\operatorname{Ind}_{\mathcal{U}}^{G} 1$ to $I_{G}\left(P, \mathcal{V} \otimes_{\mathcal{H}_{M}} \mathrm{c}-\operatorname{Ind}_{\mathcal{U}_{M}}^{M} \mathbf{1}, Q\right)$. As an application we prove that if R is an algebraically closed field of characteristic p, and π is an irreducible admissible representation of G, then the contragredient of π is 0 unless π has finite dimension.

Contents

1. Introduction

1.1. The present paper is a companion to [?] and is similarly inspired by the classification results of [?]; however it can be read independently. We recall the setting. We have a nonarchimedean locally compact field F of residue characteristic p and a connected reductive F group G. We fix a commutative ring R and study the smooth R-representations of $G=\mathbf{G}(F)$.

In [?] the irreducible admissible R-representations of G are classified in terms of supersingular ones when R is an algebraically closed field of characteristic p. That classification is expressed in terms of representations $I_{G}(P, \sigma, Q)$, which make sense for any R. In that notation, P is a parabolic subgroup of G with a Levi decomposition $P=M N$ and σ a smooth R-representation of the Levi subgroup M; there is a maximal parabolic subgroup $P(\sigma)$ of G containing P to which σ inflated to P extends to a representation $e_{P(\sigma)}(\sigma)$, and Q is a parabolic subgroup of G with $P \subset Q \subset P(\sigma)$. Then

$$
I_{G}(P, \sigma, Q)=\operatorname{Ind}_{P(\sigma)}^{G}\left(e_{P(\sigma)}(\sigma) \otimes \operatorname{St}_{Q}^{P(\sigma)}\right)
$$

[^0]where Ind stands for parabolic induction and $\mathrm{St}_{Q}^{P(\sigma)}=\operatorname{Ind}_{Q}^{P(\sigma)} R / \sum \operatorname{Ind}_{Q^{\prime}}^{P(\sigma)} R$, the sum being over parabolic subgroups Q^{\prime} of G with $Q \subsetneq Q^{\prime} \subset P(\sigma)$. Alternatively, $I_{G}(P, \sigma, Q)$ is the quotient of $\operatorname{Ind}_{P(\sigma)}^{G}\left(e_{P(\sigma)}(\sigma)\right)$ by $\sum \operatorname{Ind}_{Q^{\prime}}^{G} e_{Q^{\prime}}(\sigma)$ with Q^{\prime} as above, where $e_{Q}(\sigma)$ is the restriction of $e_{P(\sigma)}(\sigma)$ to Q, similarly for Q^{\prime}.

In [?] we mainly studied what happens to $I_{G}(P, \sigma, Q)$ when we apply to it, for a parabolic subgroup P_{1} of G, the left adjoint of $\operatorname{Ind}_{P_{1}}^{G}$, or its right adjoint. Here we tackle a different question. We fix a pro-p parahoric subgroup \mathcal{U} of G in good position with respect to P, so that in particular $\mathcal{U}_{M}=\mathcal{U} \cap M$ is a pro- p parahoric subgroup of M. One of our main goals is to identify the R-module $I_{G}(P, \sigma, Q)^{\mathcal{U}}$ of \mathcal{U}-invariants, as a right module over the Hecke algebra $\mathcal{H}=\mathcal{H}_{G}$ of \mathcal{U} in G - the convolution algebra on the double coset space $\mathcal{U} \backslash G / \mathcal{U}$ - in terms on the module $\sigma^{\mathcal{U}_{M}}$ over the Hecke algebra \mathcal{H}_{M} of \mathcal{U}_{M} in M. That goal is achieved in section ??, Theorem ??.
1.2. The initial work has been done in $[?, \S 4]$ where $\left(\operatorname{Ind}_{P}^{G} \sigma\right)^{\mathcal{U}}$ is identified. Precisely, writing M^{+}for the monoid of elements $m \in M$ with $m(\mathcal{U} \cap N) m^{-1} \subset \mathcal{U} \cap N$, the subalgebra $\mathcal{H}_{M^{+}}$of \mathcal{H}_{M} with support in M^{+}, has a natural algebra embedding θ into \mathcal{H} and [?, Proposition 4.4] identifies $\left(\operatorname{Ind}_{P}^{G} \sigma\right)^{\mathcal{U}}$ with $\operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}}\left(\sigma^{\mathcal{U}_{M}}\right)=\sigma^{\mathcal{U}_{M}} \otimes_{\mathcal{H}_{M+}} \mathcal{H}$. So in a sense, this paper is a sequel to [?] although some of our results here are used in [?, §5].

As $I_{G}(P, \sigma, Q)$ is only a subquotient of $\operatorname{Ind}_{P}^{G} \sigma$ and taking \mathcal{U}-invariants is only left exact, it is not straightforward to describe $I_{G}(P, \sigma, Q)^{\mathcal{U}}$ from the previous result. However, that takes care of the parabolic induction step, so in a first approach we may assume $P(\sigma)=G$ so that $I_{G}(P, \sigma, Q)=e_{G}(\sigma) \otimes \mathrm{St}_{Q}^{G}$. The crucial case is when moreover σ is e-minimal, that is, not an extension $e_{M}(\tau)$ of a smooth R-representation τ of a proper Levi subgroup of M. That case is treated first and the general case in section ?? only.
1.3. To explain our results, we need more notation. We choose a maximal F-split torus T in G, a minimal parabolic subgroup $B=Z U$ with Levi component Z the G-centralizer of T. We assume that $P=M N$ contains B and M contains Z, and that \mathcal{U} corresponds to an alcove in the apartment associated to T in the adjoint building of G. It turns out that when σ is e-minimal, the set Δ_{M} of simple roots of T in Lie N is orthogonal to its complement in the set Δ of simple roots of T in Lie U. We assume until the end of this section §??, that Δ_{M} and $\Delta_{2}=\Delta \backslash \Delta_{M}$ are orthogonal. If M_{2} is the Levi subgroup - containing Z - corresponding to Δ_{2}, both M and M_{2} are normal in $G, M \cap M_{2}=Z$ and $G=M_{1} M_{2}$. Moreover the normal subgroup M_{2}^{\prime} of G generated by N is included in M_{2} and $G=M M_{2}^{\prime}$.

We say that a right \mathcal{H}_{M}-module \mathcal{V} is extensible to \mathcal{H} if T_{z}^{M} acts trivially on \mathcal{V} for $z \in Z \cap M_{2}^{\prime}$ (§??). In this case, we show that there is a natural structure of right \mathcal{H}-module $e_{\mathcal{H}}(\mathcal{V})$ on \mathcal{V} such that $T_{g} \in \mathcal{H}$ corresponding to $\mathcal{U g U}$ for $g \in M_{2}^{\prime}$ acts as in the trivial character of G (§??). We call $e_{\mathcal{H}}(\mathcal{V})$ the extension of \mathcal{V} to \mathcal{H} though \mathcal{H}_{M} is not a subalgebra of \mathcal{H}. That notion is already present in [?] in the case where R has characteristic p. Here we extend the construction to any R and prove some more properties. In particular we produce an \mathcal{H} equivariant embedding $e_{\mathcal{H}}(\mathcal{V})$ into $\operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}} \mathcal{V}$ (Lemma ??). If Q is a parabolic subgroup of G containing P, we go further and put on $e_{\mathcal{H}}(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} R\right)^{\mathcal{U}}$ and $e_{\mathcal{H}}(\mathcal{V}) \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$ structures of \mathcal{H}-modules (Proposition ?? and Corollary ??) - note that \mathcal{H} is not a group algebra and there is no obvious notion of tensor product of \mathcal{H}-modules.

If σ is an R-representation of M extensible to G, then its extension $e_{G}(\sigma)$ is simply obtained by letting M_{2}^{\prime} acting trivially on the space of σ; moreover it is clear that $\sigma^{\mathcal{U}_{M}}$ is extensible
to \mathcal{H}, and one shows easily that $e_{G}(\sigma)^{\mathcal{U}}=e_{\mathcal{H}}\left(\sigma^{\mathcal{U}_{M}}\right)$ as an \mathcal{H}-module (§??). Moreover, the natural inclusion of σ into $\operatorname{Ind}_{P}^{G} \sigma$ induces on taking pro- p Iwahori invariants an embedding $e_{\mathcal{H}}\left(\sigma^{\mathcal{U}_{M}}\right) \rightarrow\left(\operatorname{Ind}_{P}^{G} \sigma\right)^{\mathcal{U}}$ which, via the isomorphism of [?], yields exactly the above embedding of \mathcal{H}-modules of $e_{\mathcal{H}}\left(\sigma^{\mathcal{U}_{M}}\right)$ into $\operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}_{M}}\left(\sigma^{\mathcal{U}_{M}}\right)$.

Then we show that the \mathcal{H}-modules $\left(e_{G}(\sigma) \otimes_{R} \operatorname{Ind}_{Q}^{G} R\right)^{\mathcal{U}}$ and $e_{\mathcal{H}}\left(\sigma^{\mathcal{U}_{M}}\right) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} R\right)^{\mathcal{U}}$ are equal, and similarly $\left(e_{G}(\sigma) \otimes_{R} \mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$ and $e_{\mathcal{H}}\left(\sigma^{\mathcal{U}_{M}}\right) \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$ are equal (Theorem ??).
1.4. We turn back to the general case where we do not assume that Δ_{M} and $\Delta \backslash \Delta_{M}$ are orthogonal. Nevertheless, given a right \mathcal{H}_{M}-module \mathcal{V}, there exists a largest Levi subgroup $M(\mathcal{V})$ of G - containing Z - corresponding to $\Delta \cup \Delta_{1}$ where Δ_{1} is a subset of $\Delta \backslash \Delta_{M}$ orthogonal to Δ_{M}, such that \mathcal{V} extends to a right $\mathcal{H}_{M(\mathcal{V})}$-module $e_{M(\mathcal{V})}(\mathcal{V})$ with the notation of section (??). For any parabolic subgroup Q between P and $P(\mathcal{V})=M(\mathcal{V}) U$ we put (Definition ??)

$$
I_{\mathcal{H}}(P, \mathcal{V}, Q)=\operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}}\left(e_{M(\mathcal{V})}(\mathcal{V}) \otimes_{R}\left(\operatorname{St}_{Q \cap M(\mathcal{V}))}^{M(\mathcal{V})}\right)^{\mathcal{U}_{M(\mathcal{V})}}\right)
$$

We refer to Theorem ?? for the description of the right \mathcal{H}-module $I_{G}(P, \sigma, Q)^{\mathcal{U}}$ for any smooth R-representation σ of \mathcal{U}. As a special case, it says that when σ is e-minimal then $P(\sigma) \supset$ $P\left(\sigma^{\mathcal{U}_{M}}\right)$ and if moreover $P(\sigma)=P\left(\sigma^{\mathcal{U}_{M}}\right)$ then $I_{G}(P, \sigma, Q)^{\mathcal{U}}$ is isomorphic to $I_{\mathcal{H}}\left(P, \sigma^{\mathcal{U}_{M}}, Q\right)$.
Remark 1.1. In [?] are attached similar \mathcal{H}-modules to (P, \mathcal{V}, Q); here we write them $C I_{\mathcal{H}}(P, \mathcal{V}, Q)$ because their definition uses, instead of $\operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}}$ a different kind of induction, which we call coinduction. In loc. cit. those modules are use to give, when R is an algebraically closed field of characteristic p, a classification of simple \mathcal{H}-modules in terms of supersingular modules that classification is similar to the classification of irreducible admissible R-representations of G in [?]. Using the comparison between induced and coinduced modules established in [?, 4.3] for any R, our corollary ?? expresses $C I_{\mathcal{H}}(P, \mathcal{V}, Q)$ as a module $I_{\mathcal{H}}\left(P_{1}, \mathcal{V}_{1}, Q_{1}\right)$; consequently we show in $\S ? ?$ that the classification of [?] can also be expressed in terms of modules $I_{\mathcal{H}}(P, \mathcal{V}, Q)$.
1.5. In a reverse direction one can associate to a right \mathcal{H}-module \mathcal{V} a smooth R-representation $\mathcal{V} \otimes_{\mathcal{H}} R[\mathcal{U} \backslash G]$ of G (seeing \mathcal{H} as the endomorphism ring of the $R[G]$-module $R[\mathcal{U} \backslash G]$).

If \mathcal{V} is a right \mathcal{H}_{M}-module, we construct, again using [?], a natural $R[G]$-map

$$
I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}} R[\mathcal{U} \backslash G] \rightarrow \operatorname{Ind}_{P(\mathcal{V})}^{G}\left(e_{M(\mathcal{V})}(\mathcal{V}) \otimes_{R} \operatorname{St}_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})}\right)
$$

with the notation of (??). We show in $\S ? ?$ that it is an isomorphism under a mild assumption on the \mathbb{Z}-torsion in \mathcal{V}; in particular it is an isomorphism if $p=0$ in R.
1.6. In the final section \S ??, we turn back to the case where R is an algebraically closed field of characteristic p. We prove that the smooth dual of an irreducible admissible R-representation V of G is 0 unless V is finite dimensional - that result is new if F has positive characteristic, a case where the proof of Kohlhaase [?] for $\operatorname{char}(F)=0$ does not apply. Our proof first reduces to the case where V is supercuspidal (by [?]) then uses again the \mathcal{H}-module $V^{\mathcal{U}}$.

2. Notation, useful facts and preliminaries

2.1. The group G and its standard parabolic subgroups $P=M N$. In all that follows, p is a prime number, F is a local field with finite residue field k of characteristic p; We denote an algebraic group over F by a bold letter, like \mathbf{H}, and use the same ordinary letter for the group of F-points, $H=\mathbf{H}(F)$. We fix a connected reductive F-group G. We fix a maximal F-split subtorus \mathbf{T} and write \mathbf{Z} for its \mathbf{G}-centralizer; we also fix a minimal parabolic subgroup
\mathbf{B} of \mathbf{G} with Levi component \mathbf{Z}, so that $\mathbf{B}=\mathbf{Z U}$ where \mathbf{U} is the unipotent radical of \mathbf{B}. Let $X^{*}(\mathbf{T})$ be the group of F-rational characters of \mathbf{T} and Φ the subset of roots of \mathbf{T} in the Lie algebra of \mathbf{G}. Then \mathbf{B} determines a subset Φ^{+}of positive roots - the roots of \mathbf{T} in the Lie algebra of \mathbf{U} - and a subset of simple roots Δ. The \mathbf{G}-normalizer $\mathbf{N}_{\mathbf{G}}$ of \mathbf{T} acts on $X^{*}(\mathbf{T})$ and through that action, $\mathbf{N}_{\mathbf{G}} / \mathbf{Z}$ identifies with the Weyl group of the root system Φ. Set $\mathcal{N}:=\mathbf{N}_{\mathbf{G}}(F)$ and note that $\mathbf{N}_{\mathbf{G}} / \mathbf{Z} \simeq \mathcal{N} / Z$; we write \mathbb{W} for \mathcal{N} / Z.

A standard parabolic subgroup of \mathbf{G} is a parabolic F-subgroup containing B. Such a parabolic subgroup \mathbf{P} has a unique Levi subgroup \mathbf{M} containing \mathbf{Z}, so that $\mathbf{P}=\mathbf{M N}$ where \mathbf{N} is the unipotent radical of \mathbf{P} - we also call \mathbf{M} standard. By a common abuse of language to describe the preceding situation, we simply say "let $P=M N$ be a standard parabolic subgroup of $G^{\prime \prime}$; we sometimes write N_{P} for N and M_{P} for M. The parabolic subgroup of G opposite to P will be written \bar{P} and its unipotent radical \bar{N}, so that $\bar{P}=M \bar{N}$, but beware that \bar{P} is not standard! We write \mathbb{W}_{M} for the Weyl group $(M \cap \mathcal{N}) / Z$.

If $\mathbf{P}=\mathbf{M N}$ is a standard parabolic subgroup of G, then $\mathbf{M} \cap \mathbf{B}$ is a minimal parabolic subgroup of \mathbf{M}. If Φ_{M} denotes the set of roots of \mathbf{T} in the Lie algebra of \mathbf{M}, with respect to $\mathbf{M} \cap \mathbf{B}$ we have $\Phi_{M}^{+}=\Phi_{M} \cap \Phi^{+}$and $\Delta_{M}=\Phi_{M} \cap \Delta$. We also write Δ_{P} for Δ_{M} as P and M determine each other, $P=M U$. Thus we obtain a bijection $P \mapsto \Delta_{P}$ from standard parabolic subgroups of G to subsets of Δ, with B corresponds to Φ and G to Δ. If I is a subset of Δ, we sometimes denote by $P_{I}=M_{I} N_{I}$ the corresponding standard parabolic subgroup of G. If $I=\{\alpha\}$ is a singleton, we write $P_{\alpha}=M_{\alpha} N_{\alpha}$. We note a few useful properties. If P_{1} is another standard parabolic subgroup of G, then $P \subset P_{1}$ if and only if $\Delta_{P} \subset \Delta_{P_{1}}$; we have $\Delta_{P \cap P_{1}}=\Delta_{P} \cap \Delta_{P_{1}}$ and the parabolic subgroup corresponding to $\Delta_{P} \cup \Delta_{P_{1}}$ is the subgroup $\left\langle P, P_{1}\right\rangle$ of G generated by P and P_{1}. The standard parabolic subgroup of M associated to $\Delta_{M} \cap \Delta_{M_{1}}$ is $M \cap P_{1}=\left(M \cap M_{1}\right)\left(M \cap N_{1}\right)$ [?, Proposition 2.8.9]. It is convenient to write G^{\prime} for the subgroup of G generated by the unipotent radicals of the parabolic subgroups; it is also the normal subgroup of G generated by U, and we have $G=Z G^{\prime}$. For future references, we give now a useful lemma extracted from [?]:
Lemma 2.1. The group $Z \cap G^{\prime}$ is generated by the $Z \cap M_{\alpha}^{\prime}$, α running through Δ.
Proof. Take $I=\emptyset$ in [?, II.6.Proposition].
Let v_{F} be the normalized valuation of F. For each $\alpha \in X^{*}(T)$, the homomorphism $x \mapsto$ $v_{F}(\alpha(x)): T \rightarrow \mathbb{Z}$ extends uniquely to a homomorphism $Z \rightarrow \mathbb{Q}$ that we denote in the same way. This defines a homomorphism $Z \xrightarrow{v} X_{*}(T) \otimes \mathbb{Q}$ such that $\alpha(v(z))=v_{F}(\alpha(z))$ for $z \in Z, \alpha \in X^{*}(T)$.

An interesting situation occurs when $\Delta=I \sqcup J$ is the union of two orthogonal subsets I and J. In that case, $G^{\prime}=M_{I}^{\prime} M_{J}^{\prime}, M_{I}^{\prime}$ and M_{J}^{\prime} commute with each other, and their intersection is finite and central in $G[?$, II. 7 Remark 4].
2.2. $I_{G}(P, \sigma, Q)$ and minimality. We recall from [?] the construction of $I_{G}(P, \sigma, Q)$, our main object of study.

Let σ be an R-representation of M and $P(\sigma)$ be the standard parabolic subgroup with

$$
\Delta_{P(\sigma)}=\left\{\alpha \in \Delta \backslash \Delta_{P} \mid Z \cap M_{\alpha}^{\prime} \text { acts trivially on } \sigma\right\} \cup \Delta_{P}
$$

This is the largest parabolic subgroup $P(\sigma)$ containing P to which σ extends, here $N \subset P$ acts on σ trivially. Clearly when $P \subset Q \subset P(\sigma), \sigma$ extends to Q and the extension is denoted
by $e_{Q}(\sigma)$. The restriction of $e_{P(\sigma)}(\sigma)$ to Q is $e_{Q}(\sigma)$. If there is no risk of ambiguity, we write

$$
e(\sigma)=e_{P(\sigma)}(\sigma)
$$

Definition 2.2. An $R[G]$-triple is a triple (P, σ, Q) made out of a standard parabolic subgroup $P=M N$ of G, a smooth R-representation of M, and a parabolic subgroup Q of G with $P \subset Q \subset P(\sigma)$. To an $R[G]$-triple (P, σ, Q) is associated a smooth R-representation of G :

$$
I_{G}(P, \sigma, Q)=\operatorname{Ind}_{P(\sigma)}^{G}\left(e(\sigma) \otimes \operatorname{St}_{Q}^{P(\sigma)}\right)
$$

where $\operatorname{St}_{Q}^{P(\sigma)}$ is the quotient of $\operatorname{Ind}_{Q}^{P(\sigma)} \mathbf{1}, \mathbf{1}$ denoting the trivial R-representation of Q, by the sum of its subrepresentations $\operatorname{Ind}_{Q^{\prime}}^{P(\sigma)} 1$, the sum being over the set of parabolic subgroups Q^{\prime} of G with $Q \subsetneq Q^{\prime} \subset P(\sigma)$.

Note that $I_{G}(P, \sigma, Q)$ is naturally isomorphic to the quotient of $\operatorname{Ind}_{Q}^{G}\left(e_{Q}(\sigma)\right)$ by the sum of its subrepresentations $\operatorname{Ind}_{Q^{\prime}}^{G}\left(e_{Q^{\prime}}(\sigma)\right)$ for $Q \subsetneq Q^{\prime} \subset P(\sigma)$ by Lemma 2.5.

It might happen that σ itself has the form $e_{P}\left(\sigma_{1}\right)$ for some standard parabolic subgroup $P_{1}=M_{1} N_{1}$ contained in P and some R-representation σ_{1} of M_{1}. In that case, $P\left(\sigma_{1}\right)=P(\sigma)$ and $e(\sigma)=e\left(\sigma_{1}\right)$. We say that σ is e-minimal if $\sigma=e_{P}\left(\sigma_{1}\right)$ implies $P_{1}=P, \sigma_{1}=\sigma$.
Lemma 2.3 ([?, Lemma 2.9]). Let $P=M N$ be a standard parabolic subgroup of G and let σ be an R-representation of M. There exists a unique standard parabolic subgroup $P_{\min , \sigma}=$ $M_{\min , \sigma} N_{\min , \sigma}$ of G and a unique e-minimal representation of $\sigma_{\min }$ of $M_{\min , \sigma}$ with $\sigma=$ $e_{P}\left(\sigma_{\min }\right)$. Moreover $P(\sigma)=P\left(\sigma_{\min }\right)$ and $e(\sigma)=e\left(\sigma_{\min }\right)$.
Lemma 2.4. Let $P=M N$ be a standard parabolic subgroup of G and σ an e-minimal R-representation of M. Then Δ_{P} and $\Delta_{P(\sigma)} \backslash \Delta_{P}$ are orthogonal.

That comes from [?, II. 7 Corollary 2]. That corollary of loc. cit. also shows that when R is a field and σ is supercuspidal, then σ is e-minimal. Lemma ?? shows that $\Delta_{P_{\text {min }, \sigma}}$ and $\Delta_{P\left(\sigma_{\min }\right)} \backslash \Delta_{P_{\min , \sigma}}$ are orthogonal.

Note that when Δ_{P} and Δ_{σ} are orthogonal of union $\Delta=\Delta_{P} \sqcup \Delta_{\sigma}$, then $G=P(\sigma)=M M_{\sigma}^{\prime}$ and $e(\sigma)$ is the R-representation of G simply obtained by extending σ trivially on M_{σ}^{\prime}.
Lemma 2.5 ([?, Lemma 2.11]). Let (P, σ, Q) be an $R[G]$-triple. Then $\left(P_{\min , \sigma}, \sigma_{\min }, Q\right)$ is an $R[G]$-triple and $I_{G}(P, l \sigma, Q)=I_{G}\left(P_{\min , \sigma}, \sigma_{\min }, Q\right)$.
2.3. Pro-p Iwahori Hecke algebras. We fix a special parahoric subgroup \mathcal{K} of G fixing a special vertex x_{0} in the apartment \mathcal{A} associated to T in the Bruhat-Tits building of the adjoint group of G. We let \mathcal{B} be the Iwahori subgroup fixing the alcove \mathcal{C} in \mathcal{A} with vertex x_{0} contained in the Weyl chamber (of vertex x_{0}) associated to B. We let \mathcal{U} be the pro- p radical of \mathcal{B} (the pro- p Iwahori subgroup). The pro- p Iwahori Hecke ring $\mathcal{H}=\mathcal{H}(G, \mathcal{U})$ is the convolution ring of compactly supported functions $G \rightarrow \mathbb{Z}$ constant on the double classes of G modulo \mathcal{U}. We denote by $T(g)$ the characteristic function of $\mathcal{U} g \mathcal{U}$ for $g \in G$, seen as an element of \mathcal{H}. Let R be a commutative ring. The pro- p Iwahori Hecke R-algebra $\mathcal{H}_{M, R}$ is $R \otimes_{\mathbb{Z}} \mathcal{H}_{M}$. We will follow the custom to still denote by h the natural image $1 \otimes h$ of $h \in \mathcal{H}$ in \mathcal{H}_{R}.

For $P=M N$ a standard parabolic subgroup of G, the similar objects for M are indexed by M, we have $\mathcal{K}_{M}=\mathcal{K} \cap M, \mathcal{B}_{M}=\mathcal{B} \cap M, \mathcal{U}_{M}=\mathcal{U} \cap M$, the pro-p Iwahori Hecke ring $\mathcal{H}_{M}=\mathcal{H}\left(M, \mathcal{U}_{M}\right), T^{M}(m)$ the characteristic function of $\mathcal{U}_{M} m \mathcal{U}_{M}$ for $m \in M$, seen as an
element of \mathcal{H}_{M}. The pro-p Iwahori group \mathcal{U} of G satisfies the Iwahori decomposition with respect to P :

$$
\mathcal{U}=\mathcal{U}_{N} \mathcal{U}_{M} \mathcal{U}_{\bar{N}}
$$

where $\mathcal{U}_{N}=\mathcal{U} \cap N, \mathcal{U}_{\bar{N}}=\mathcal{U} \cap \bar{N}$. The linear map

$$
\begin{equation*}
\mathcal{H}_{M} \xrightarrow{\theta} \mathcal{H}, \quad \theta\left(T^{M}(m)\right)=T(m) \quad(m \in M) \tag{2.1}
\end{equation*}
$$

does not respect the product. But if we introduce the monoid M^{+}of elements $m \in M$ contracting \mathcal{U}_{N}, meaning $m \mathcal{U}_{N} m^{-1} \subset \mathcal{U}_{N}$, and the submodule $\mathcal{H}_{M^{+}} \subset \mathcal{H}_{M}$ of functions with support in M^{+}, we have [?, Theorem 1.4]:
$\mathcal{H}_{M^{+}}$is a subring of \mathcal{H}_{M} and \mathcal{H}_{M} is the localization of $\mathcal{H}_{M^{+}}$at an element $\tau^{M} \in \mathcal{H}_{M^{+}}$ central and invertible in \mathcal{H}_{M}, meaning $\mathcal{H}_{M}=\cup_{n \in \mathbb{N}} \mathcal{H}_{M^{+}}\left(\tau^{M}\right)^{-n}$. The map $\mathcal{H}_{M} \xrightarrow{\theta} \mathcal{H}$ is injective and its restriction $\left.\theta\right|_{\mathcal{H}_{M^{+}}}$to $\mathcal{H}_{M^{+}}$respects the product.

These properties are also true when $\left(M^{+}, \tau^{M}\right)$ is replaced by its inverse $\left(M^{-},\left(\tau^{M}\right)^{-1}\right)$ where $M^{-}=\left\{m^{-1} \in M \mid m \in M^{+}\right\}$.

3. Pro-p Iwahori invariants of $I_{G}(P, \sigma, Q)$

3.1. Pro- p Iwahori Hecke algebras: structures. We supplement here the notations of $\S ? ?$ and $\S ? ?$. The subgroups $Z^{0}=Z \cap \mathcal{K}=Z \cap \mathcal{B}$ and $Z^{1}=Z \cap \mathcal{U}$ are normal in \mathcal{N} and we put

$$
W=\mathcal{N} / Z^{0}, W(1)=\mathcal{N} / Z^{1}, \Lambda=Z / Z^{0}, \Lambda(1)=Z / Z^{1}, Z_{k}=Z^{0} / Z^{1}
$$

We have $\mathcal{N}=(\mathcal{N} \cap \mathcal{K}) Z$ so that we see the finite Weyl group $\mathbb{W}=\mathcal{N} / Z$ as the subgroup $(\mathcal{N} \cap \mathcal{K}) / Z^{0}$ of W; in this way W is the semi-direct product $\Lambda \rtimes \mathbb{W}$. The image $W_{G^{\prime}}=W^{\prime}$ of $\mathcal{N} \cap G^{\prime}$ in W is an affine Weyl group generated by the set $S^{\text {aff }}$ of affine reflections determined by the walls of the alcove \mathcal{C}. The group W^{\prime} is normal in W and W is the semi-direct product $W^{\prime} \rtimes \Omega$ where Ω is the image in W of the normalizer $\mathcal{N}_{\mathcal{C}}$ of \mathcal{C} in \mathcal{N}. The length function ℓ on the affine Weyl system ($W^{\prime}, S^{\text {aff }}$) extends to a length function on W such that Ω is the set of elements of length 0 . We also view ℓ as a function of $W(1)$ via the quotient map $W(1) \rightarrow W$. We write

$$
\begin{equation*}
(\hat{w}, \tilde{w}, w) \in \mathcal{N} \times W(1) \times W \text { corresponding via the quotient maps } \mathcal{N} \rightarrow W(1) \rightarrow W . \tag{3.1}
\end{equation*}
$$

When $w=s$ in $S^{\text {aff }}$ or more generally w in $W_{G^{\prime}}$, we will most of the time choose \hat{w} in $\mathcal{N} \cap G^{\prime}$ and \tilde{w} in the image ${ }_{1} W_{G^{\prime}}$ of $\mathcal{N} \cap G^{\prime}$ in $W(1)$.

We are now ready to describe the pro- p Iwahori Hecke ring $\mathcal{H}=\mathcal{H}(G, \mathcal{U})$ [?]. We have $G=\mathcal{U} \mathcal{N} \mathcal{U}$ and for $n, n^{\prime} \in \mathcal{N}$ we have $\mathcal{U} n \mathcal{U}=\mathcal{U} n^{\prime} \mathcal{U}$ if and only if $n Z^{1}=n^{\prime} Z^{1}$. For $n \in \mathcal{N}$ of image $w \in W(1)$ and $g \in \mathcal{U} n \mathcal{U}$ we denote $T_{w}=T(n)=T(g)$ in \mathcal{H}. The relations among the basis elements $\left(T_{w}\right)_{w \in W(1)}$ of \mathcal{H} are:
(1) Braid relations : $T_{w} T_{w^{\prime}}=T_{w w^{\prime}}$ for $w, w^{\prime} \in W(1)$ with $\ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right)$.
(2) Quadratic relations: $T_{\widetilde{s}}^{2}=q_{s} T_{\widetilde{s}^{2}}+c_{\tilde{s}} T_{\tilde{s}}$
for $\tilde{s} \in W(1)$ lifting $s \in S^{\text {aff }}$, where $q_{s}=q_{G}(s)=\left|\mathcal{U} / \mathcal{U} \cap \hat{s} \mathcal{U}(\hat{s})^{-1}\right|$ depends only on s, and $c_{\tilde{s}}=\sum_{t \in Z_{k}} c_{\tilde{s}}(t) T_{t}$ for integers $c_{\tilde{s}}(t) \in \mathbb{N}$ summing to $q_{s}-1$.

We shall need the basis elements $\left(T_{w}^{*}\right)_{w \in W(1)}$ of \mathcal{H} defined by:
(1) $T_{w}^{*}=T_{w}$ for $w \in W(1)$ of length $\ell(w)=0$.
(2) $T_{\tilde{s}}^{*}=T_{\tilde{s}}-c_{\tilde{s}}$ for $\tilde{s} \in W(1)$ lifting $s \in S^{\text {aff }}$.
(3) $T_{w w^{\prime}}^{*}=T_{w}^{*} T_{w^{\prime}}^{*}$ for $w, w^{\prime} \in W(1)$ with $\ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right)$.

We need more notation for the definition of the admissible lifts of $S^{\text {aff }}$ in \mathcal{N}_{G}. Let $s \in S^{\text {aff }}$ fixing a face \mathcal{C}_{s} of the alcove \mathcal{C} and \mathcal{K}_{s} the parahoric subgroup of G fixing \mathcal{C}_{s}. The theory of Bruhat-Tits associates to \mathcal{C}_{s} a certain root $\alpha_{s} \in \Phi^{+}[?, \S 4.2]$. We consider the group G_{s}^{\prime} generated by $U_{\alpha_{s}} \cup U_{-\alpha_{s}}$ where $U_{ \pm \alpha_{s}}$ the root subgroup of $\pm \alpha_{s}$ (if $2 \alpha_{s} \in \Phi$, then $U_{2 \alpha_{s}} \subset U_{\alpha_{s}}$) and the group \mathcal{G}_{s}^{\prime} generated by $\mathcal{U}_{\alpha_{s}} \cup \mathcal{U}_{-\alpha_{s}}$ where $\mathcal{U}_{ \pm \alpha_{s}}=U_{ \pm \alpha_{s}} \cap \mathcal{K}_{s}$. When $u \in \mathcal{U}_{\alpha_{s}}-\{1\}$, the intersection $\mathcal{N}_{G} \cap \mathcal{U}_{-\alpha_{s}} u \mathcal{U}_{-\alpha_{s}}$ (equal to $\mathcal{N}_{G} \cap U_{-\alpha_{s}} u U_{-\alpha_{s}}[?, 6.2 .1$ (V5)] [?, §3.3 (19)]) possesses a single element $n_{s}(u)$. The group $Z_{s}^{\prime}=Z \cap \mathcal{G}_{s}^{\prime}$ is contained in $Z \cap \mathcal{K}_{s}=Z^{0}$; its image in Z_{k} is denoted by $Z_{k, s}^{\prime}$.

The elements $n_{s}(u)$ for $u \in \mathcal{U}_{\alpha_{s}}-\{1\}$ are the admissible lifts of s in \mathcal{N}_{G}; their images in $W(1)$ are the admissible lifts of s in $W(1)$. By [?, Theorem 2.2, Proposition 4.4], when $\tilde{s} \in W(1)$ is an admissible lift of $s, c_{\tilde{s}}(t)=0$ if $t \in Z_{k} \backslash Z_{k, s}^{\prime}$, and

$$
\begin{equation*}
c_{\tilde{s}} \equiv\left(q_{s}-1\right)\left|Z_{k, s}^{\prime}\right|^{-1} \sum_{t \in Z_{k, s}^{\prime}} T_{t} \quad \bmod p . \tag{3.2}
\end{equation*}
$$

The admissible lifts of S in \mathcal{N}_{G} are contained in $\mathcal{N}_{G} \cap \mathcal{K}$ because $\mathcal{K}_{s} \subset \mathcal{K}$ when $s \in S$.
Definition 3.1. An admissible lift of the finite Weyl group \mathbb{W} in \mathcal{N}_{G} is a map $w \mapsto \hat{w}$: $\mathbb{W} \rightarrow \mathcal{N}_{G} \cap \mathcal{K}$ such that \hat{s} is admissible for all $s \in S$ and $\hat{w}=\hat{w}_{1} \hat{w}_{2}$ for $w_{1}, w_{2} \in \mathbb{W}$ such that $w=w_{1} w_{2}$ and $\ell(w)=\ell\left(w_{1}\right)+\ell\left(w_{2}\right)$.

Any choice of admissible lifts of S in $\mathcal{N}_{G} \cap \mathcal{K}$ extends uniquely to an admissible lift of \mathbb{W} ([?, IV.6], [?, Proposition 2.7]).

Let $P=M N$ be a standard parabolic subgroup of G. The groups $Z, Z^{0}=Z \cap \mathcal{K}_{M}=$ $Z \cap \mathcal{B}_{M}, Z^{1}=Z \cap \mathcal{U}_{M}$ are the same for G and M, but $\mathcal{N}_{M}=\mathcal{N} \cap M$ and $M \cap G^{\prime}$ are subgroups of \mathcal{N} and G^{\prime}. The monoid $M^{+}(\S ? ?)$ contains $\left(\mathcal{N}_{M} \cap \mathcal{K}\right)$ and is equal to $M^{+}=\mathcal{U}_{M} \mathcal{N}_{M^{+}} \mathcal{U}_{M}$ where $\mathcal{N}_{M^{+}}=\mathcal{N} \cap M^{+}$. An element $z \in Z$ belongs to M^{+}if and only if $v_{F}(\alpha(z)) \geq 0$ for all $\alpha \in \Phi^{+} \backslash \Phi_{M}^{+}$(see [?, Lemme 2.2]). Put $W_{M}=\mathcal{N}_{M} / Z^{0}$ and $W_{M}(1)=\mathcal{N} / Z^{1}$.

Let $\epsilon=+$ or $\epsilon=-$. We denote by $W_{M^{\epsilon}}$ the images of $\mathcal{N}_{M^{\epsilon}}$ in $W_{M}, W_{M}(1)$. We see the groups $W_{M}, W_{M}(1),{ }_{1} W_{M^{\prime}}$ as subgroups of $W, W(1),{ }_{1} W_{G^{\prime}}$. As θ (§??), the linear injective map

$$
\begin{equation*}
\mathcal{H}_{M} \xrightarrow{\theta^{*}} \mathcal{H}, \quad \theta^{*}\left(T_{w}^{M, *}\right)=T_{w}^{*}, \quad\left(w \in W_{M}(1)\right), \tag{3.3}
\end{equation*}
$$

respects the product on the subring $\mathcal{H}_{M^{\epsilon}}$. Note that θ and θ^{*} satisfy the obvious transitivity property with respect to a change of parabolic subgroups.
3.2. Orthogonal case. Let us examine the case where Δ_{M} and $\Delta \backslash \Delta_{M}$ are orthogonal, writing $M_{2}=M_{\Delta \backslash \Delta_{M}}$ as in §??.

From $M \cap M_{2}=Z$ we get $W_{M} \cap W_{M_{2}}=\Lambda, W_{M}(1) \cap W_{M_{2}}(1)=\Lambda(1)$, the semisimple building of G is the product of those of M and M_{2} and $S^{\text {aff }}$ is the disjoint union of $S_{M}^{\text {aff }}$ and $S_{M_{2}}^{\mathrm{aff}}$, the group $W_{G^{\prime}}$ is the direct product of $W_{M^{\prime}}$ and $W_{M_{2}^{\prime}}$. For $\tilde{s} \in W_{M}(1)$ lifting $s \in S_{M}^{\mathrm{aff}}$, the elements $T_{\tilde{s}}^{M} \in \mathcal{H}_{M}$ and $T_{\tilde{s}} \in \mathcal{H}$ satisfy the same quadratic relations. A word of caution is necessary for the lengths ℓ_{M} of W_{M} and $\ell_{M_{2}}$ of $W_{M_{2}}$ different from the restrictions of the length ℓ of W_{M}, for example $\ell_{M}(\lambda)=0$ for $\lambda \in \Lambda \cap W_{M_{2}^{\prime}}$.
Lemma 3.2. We have $\Lambda=\left(W_{M^{\epsilon}} \cap \Lambda\right)\left(W_{M_{2}^{\prime}} \cap \Lambda\right)$.

Proof. We prove the lemma for $\epsilon=-$. The case $\epsilon=+$ is similar. The map $v: Z \rightarrow X_{*}(T) \otimes \mathbb{Q}$ defined in $\S ? ?$ is trivial on Z^{0} and we also write v for the resulting homomorphism on Λ. For $\lambda \in \Lambda$ there exists $\lambda_{2} \in W_{M_{2}^{\prime}} \cap \Lambda$ such that $\lambda \lambda_{2} \in W_{M^{-}}$, or equivalently $\alpha\left(v\left(\lambda \lambda_{2}\right)\right) \leq 0$ for all $\alpha \in \Phi^{+} \backslash \Phi_{M}^{+}=\Phi_{M_{2}}^{+}$. It suffices to have the inequality for $\alpha \in \Delta_{M_{2}}$. The ma$\operatorname{trix}\left(\alpha\left(\beta^{\vee}\right)\right)_{\alpha, \beta \in \Delta_{M_{2}}}$ is invertible, hence there exist $n_{\beta} \in \mathbb{Z}$ such that $\sum_{\beta \in \Delta_{M_{2}}} n_{\beta} \alpha\left(\beta^{\vee}\right) \leq$ $-\alpha(v(\lambda))$ for all $\alpha \in \Delta_{M_{2}}$. As $v\left(W_{M_{2}^{\prime}} \cap \Lambda\right)$ contains $\oplus_{\alpha \in \Delta_{M_{2}}} \mathbb{Z} \alpha^{\vee}$ where α^{\vee} is the coroot of α [?, after formula (71)], there exists $\lambda_{2} \in W_{M_{2}^{\prime}} \cap \Lambda$ with $v\left(\lambda_{2}\right)=\sum_{\beta \in \Delta_{M_{2}}} n_{\beta} \beta^{\vee}$.

The groups $\mathcal{N} \cap M^{\prime}$ and $\mathcal{N} \cap M_{2}^{\prime}$ are normal in \mathcal{N}, and $\mathcal{N}=\left(\mathcal{N} \cap M^{\prime}\right) \mathcal{N}_{\mathcal{C}}\left(\mathcal{N} \cap M_{2}^{\prime}\right)=$ $Z\left(\mathcal{N} \cap M^{\prime}\right)\left(\mathcal{N} \cap M_{2}^{\prime}\right)$, and

$$
W=W_{M^{\prime}} \Omega W_{M_{2}^{\prime}}=W_{M} W_{M_{2}^{\prime}}=W_{M^{+}} W_{M_{2}^{\prime}}=W_{M^{-}} W_{M_{2}^{\prime}}
$$

The first two equalities are clear, the equality $W_{M} W_{M_{2}^{\prime}}=W_{M \epsilon} W_{M_{2}^{\prime}}$ follows from $W_{M}=$ $\mathbb{W}_{M} \Lambda, \mathbb{W}_{M} \subset W_{M^{\epsilon}}$ and the lemma. The inverse image in $W(1)$ of these groups are

$$
\begin{equation*}
W(1)={ }_{1} W_{M^{\prime}} \Omega(1)_{1} W_{M_{2}^{\prime}}=W_{M}(1)_{1} W_{M_{2}^{\prime}}=W_{M^{+}}(1)_{1} W_{M_{2}^{\prime}}=W_{M^{-}}(1)_{1} W_{M_{2}^{\prime}} . \tag{3.4}
\end{equation*}
$$

We recall the function $q_{G}(n)=q(n)=\left|\mathcal{U} /\left(\mathcal{U} \cap n^{-1} \mathcal{U} n\right)\right|$ on \mathcal{N} [?, Proposition 3.38] and we extend to \mathcal{N} the functions q_{M} on $\mathcal{N} \cap M$ and $q_{M_{2}}$ on $\mathcal{N} \cap M_{2}$:

$$
\begin{equation*}
q_{M}(n)=\left|\mathcal{U}_{M} /\left(\mathcal{U}_{M} \cap n^{-1} \mathcal{U}_{M} n\right)\right|, \quad q_{M_{2}}(n)=\left|\mathcal{U}_{M_{2}} /\left(\mathcal{U}_{M_{2}} \cap n^{-1} \mathcal{U}_{M_{2}} n\right)\right| . \tag{3.5}
\end{equation*}
$$

The functions $q, q_{M}, q_{M_{2}}$ descend to functions on $W(1)$ and on W, also denoted by $q, q_{M}, q_{M_{2}}$.
Lemma 3.3. Let $n \in \mathcal{N}$ of image $w \in W$. We have
(1) $q(n)=q_{M}(n) q_{M_{2}}(n)$.
(2) $q_{M}(n)=q_{M}\left(n_{M}\right)$ if $n=n_{M} n_{2}, n_{M} \in \mathcal{N} \cap M, n_{2} \in \mathcal{N} \cap M_{2}^{\prime}$ and similarly when M and M_{2} are permuted.
(3) $q(w)=1 \Leftrightarrow q_{M}\left(\lambda w_{M}\right)=q_{M_{2}}\left(\lambda w_{M_{2}}\right)=1$, if $w=\lambda w_{M} w_{M_{2}},\left(\lambda, w_{M}, w_{M_{2}}\right) \in \Lambda \times \mathbb{W}_{M} \times$ $\mathbb{W}_{M_{2}}$.
(4) On the coset $\left(\mathcal{N} \cap M_{2}^{\prime}\right) \mathcal{N}_{C} n, q_{M}$ is constant equal to $q_{M}\left(n_{M^{\prime}}\right)$ for any element $n_{M^{\prime}} \in$ $M^{\prime} \cap\left(\mathcal{N} \cap M_{2}^{\prime}\right) \mathcal{N}_{C} n$. A similar result is true when M and M_{2} are permuted.

Proof. The product map

$$
\begin{equation*}
Z^{1} \prod_{\alpha \in \Phi_{M, \text { red }}} \mathcal{U}_{\alpha} \prod_{\alpha \in \Phi_{M_{2}, \text { red }}} \mathcal{U}_{\alpha} \rightarrow \mathcal{U} \tag{3.6}
\end{equation*}
$$

with $\mathcal{U}_{\alpha}=U_{\alpha} \cap \mathcal{U}$, is a homeomorphism. We have $\mathcal{U}_{M}=Z^{1} \mathcal{Y}_{M^{\prime}}, \mathcal{U}_{M^{\prime}}=\left(Z^{1} \cap M^{\prime}\right) \mathcal{Y}_{M^{\prime}}$ where $\mathcal{Y}_{M^{\prime}}=\prod_{\alpha \in \Phi_{M, \text { red }}} \mathcal{U}_{\alpha}$ and $\mathcal{N} \cap M_{2}^{\prime}$ normalizes $\mathcal{Y}_{M^{\prime}}$. Similar results are true when M and M_{2} are permuted, and $\mathcal{U}=\mathcal{U}_{M^{\prime}} \mathcal{U}_{M_{2}}=\mathcal{U}_{M} \mathcal{U}_{M_{2}^{\prime}}$.

Writing $\mathcal{N}=Z\left(\mathcal{N} \cap M^{\prime}\right)\left(\mathcal{N} \cap M_{2}^{\prime}\right)$ (in any order), we see that the product map

$$
\begin{equation*}
Z^{1}\left(\mathcal{Y}_{M^{\prime}} \cap n^{-1} \mathcal{Y}_{M^{\prime}} n\right)\left(\mathcal{Y}_{M_{2}^{\prime}} \cap n^{-1} \mathcal{Y}_{M_{2}^{\prime}} n\right) \rightarrow \mathcal{U} \cap n^{-1} \mathcal{U} n \tag{3.7}
\end{equation*}
$$

is an homeomorphism. The inclusions induce bijections

$$
\begin{equation*}
\mathcal{Y}_{M^{\prime}} /\left(\mathcal{Y}_{M^{\prime}} \cap n^{-1} \mathcal{Y}_{M^{\prime}} n\right) \simeq \mathcal{U}_{M^{\prime}} /\left(\mathcal{U}_{M^{\prime}} \cap n^{-1} \mathcal{U}_{M^{\prime}} n\right) \simeq \mathcal{U}_{M} /\left(\mathcal{U}_{M} \cap n^{-1} \mathcal{U}_{M} n\right) \tag{3.8}
\end{equation*}
$$

similarly for M_{2}, and also a bijection

$$
\begin{equation*}
\mathcal{U} /\left(\mathcal{U} \cap n^{-1} \mathcal{U} n\right) \simeq \mathcal{Y}_{M_{2}^{\prime}} /\left(\mathcal{Y}_{M_{2}^{\prime}} \cap n^{-1} \mathcal{Y}_{M_{2}^{\prime}} n\right) \times\left(\mathcal{Y}_{M^{\prime}} /\left(\mathcal{Y}_{M^{\prime}} \cap n^{-1} \mathcal{Y}_{M^{\prime}} n\right)\right. \tag{3.9}
\end{equation*}
$$

The assertion (1) in the lemma follows from (??), (??).

The assertion (2) follows from (??); it implies the assertion (3).
A subgroup of \mathcal{N} normalizes \mathcal{U}_{M} if and only if it normalizes $\mathcal{Y}_{M^{\prime}}$ by (??) if and only if $q_{M}=1$ on this group. The group $\mathcal{N} \cap M_{2}^{\prime}$ normalizes $\mathcal{Y}_{M^{\prime}}$ because the elements of M_{2}^{\prime} commute with those of M^{\prime} and q_{M} is trivial on $\mathcal{N}_{\mathcal{C}}$ by (2). Therefore the group $\left(\mathcal{N} \cap M_{2}^{\prime}\right) \mathcal{N}_{\mathcal{C}}$ normalizes \mathcal{U}_{M}. The coset $\left(\mathcal{N} \cap M_{2}^{\prime}\right) \mathcal{N}_{\mathcal{C}} n$ contains an element $n_{M^{\prime}} \in M^{\prime}$. For $x \in\left(\mathcal{N} \cap M_{2}^{\prime}\right) \mathcal{N}_{\mathcal{C}}$, $\left(x n_{M^{\prime}}\right)^{-1} \mathcal{U} x n_{M^{\prime}}=n_{M^{\prime}}^{-1} \mathcal{U} n_{M^{\prime}}$ hence $q_{M}\left(x n_{M^{\prime}}\right)=q_{M}\left(n_{M^{\prime}}\right)$.
3.3. Extension of an \mathcal{H}_{M}-module to \mathcal{H}. This section is inspired by similar results for the pro- p Iwahori Hecke algebras over an algebraically closed field field of characteristic $p[?$, Proposition 4.16]. We keep the setting of $\S ? ?$ and we introduce ideals:

- $\mathcal{J}_{\ell}\left(\right.$ resp. $\left.\mathcal{J}_{r}\right)$ the left (resp. right) ideal of \mathcal{H} generated by $T_{w}^{*}-1_{\mathcal{H}}$ for all $w \in{ }_{1} W_{M_{2}^{\prime}}$,
- $\mathcal{J}_{M, \ell}\left(\right.$ resp. $\left.\mathcal{J}_{M, r}\right)$ the left (resp. right) ideal of \mathcal{H}_{M} generated by $T_{\lambda}^{M, *}-1_{\mathcal{H}_{M}}$ for all λ in ${ }_{1} W_{M_{2}^{\prime}} \cap W_{M}(1)={ }_{1} W_{M_{2}^{\prime}} \cap \Lambda(1)$.
The next proposition shows that the ideals $\mathcal{J}_{\ell}=\mathcal{J}_{r}$ are equal and similarly $\mathcal{J}_{M, \ell}=\mathcal{J}_{M, r}$. After the proposition, we will drop the indices ℓ and r.

Proposition 3.4. The ideals \mathcal{J}_{ℓ} and \mathcal{J}_{r} are equal to the submodule \mathcal{J}^{\prime} of \mathcal{H} generated by $T_{w}^{*}-T_{w w_{2}}^{*}$ for all $w \in W(1)$ and $w_{2} \in{ }_{1} W_{M_{2}^{\prime}}$.

The ideals $\mathcal{J}_{M, \ell}$ and $\mathcal{J}_{M, r}$ are equal to the submodule \mathcal{J}_{M}^{\prime} of \mathcal{H}_{M} generated by $T_{w}^{M, *}-T_{w \lambda_{2}}^{M, *}$ for all $w \in W_{M}(1)$ and $\lambda_{2} \in \Lambda(1) \cap_{1} W_{M_{2}^{\prime}}$.
Proof. (1) We prove $\mathcal{J}_{\ell}=\mathcal{J}^{\prime}$. Let $w \in W(1), w_{2} \in{ }_{1} W_{M_{2}^{\prime}}$. We prove by induction on the length of w_{2} that $T_{w}^{*}\left(T_{w_{2}}^{*}-1\right) \in \mathcal{J}^{\prime}$. This is obvious when $\ell\left(w_{2}\right)=0$ because $T_{w}^{*} T_{w_{2}}^{*}=T_{w w_{2}}^{*}$. Assume that $\ell\left(w_{2}\right)=1$ and put $s=w_{2}$. If $\ell(w s)=\ell(w)+1$, as before $T_{w}^{*}\left(T_{s}^{*}-1\right) \in \mathcal{J}^{\prime}$ because $T_{w}^{*} T_{s}^{*}=T_{w s}^{*}$. Otherwise $\ell(w s)=\ell(w)-1$ and $T_{w}^{*}=T_{w s^{-1}}^{*} T_{s}^{*}$ hence

$$
T_{w}^{*}\left(T_{s}^{*}-1\right)=T_{w s^{-1}}^{*}\left(T_{s}^{*}\right)^{2}-T_{w}^{*}=T_{w s^{-1}}^{*}\left(q_{s} T_{s^{2}}^{*}-T_{s}^{*} c_{s}\right)-T_{w}^{*}=q_{s} T_{w s}^{*}-T_{w}^{*}\left(c_{s}+1\right)
$$

Recalling from ?? that $c_{s}+1=\sum_{t \in Z_{k}^{\prime}} c_{s}(t) T_{t}$ with $c_{s}(t) \in \mathbb{N}$ and $\sum_{t \in Z_{k}^{\prime}} c_{s}(t)=q_{s}$,

$$
q_{s} T_{w s}^{*}-T_{w}^{*}\left(c_{s}+1\right)=\sum_{t \in Z_{k}^{\prime}} c_{s}(t)\left(T_{w s}^{*}-T_{w}^{*} T_{t}^{*}\right)=\sum_{t \in Z_{k}^{\prime}} c_{s}(t)\left(T_{w s}^{*}-T_{w s s^{-1} t}^{*}\right) \in \mathcal{J}^{\prime}
$$

Assume now that $\ell\left(w_{2}\right)>1$. Then, we factorize $w_{2}=x y$ with $x, y \in{ }_{1} W_{M_{2}}$ of length $\ell(x), \ell(y)<\ell\left(w_{2}\right)$ and $\ell\left(w_{2}\right)=\ell(x)+\ell(y)$. The element $T_{w}^{*}\left(T_{w_{2}}^{*}-1\right)=T_{w}^{*} T_{x}^{*}\left(T_{y}^{*}-1\right)+$ $T_{w}^{*}\left(T_{x}^{*}-1\right)$ lies in \mathcal{J}^{\prime} by induction.

Conversely, we prove $T_{w w_{2}}^{*}-T_{w}^{*} \in \mathcal{J}_{\ell}$. We factorize $w=x y$ with $y \in{ }_{1} W_{M_{2}}$ and $x \in$ ${ }_{1} W_{M^{\prime}} \Omega(1)$. Then, we have $\ell(w)=\ell(x)+\ell(y)$ and $\ell\left(w w_{2}\right)=\ell(x)+\ell\left(y w_{2}\right)$. Hence

$$
T_{w w_{2}}^{*}-T_{w}^{*}=T_{x}^{*}\left(T_{y w_{2}}^{*}-T_{y}^{*}\right)=T_{x}^{*}\left(T_{y w_{2}}^{*}-1\right)-T_{x}^{*}\left(T_{y}^{*}-1\right) \in \mathcal{J}_{\ell}
$$

This ends the proof of $\mathcal{J}_{\ell}=\mathcal{J}^{\prime}$.
By the same argument, the right ideal \mathcal{J}_{r} of \mathcal{H} is equal to the submodule of \mathcal{H} generated by $T_{w_{2} w}^{*}-T_{w}^{*}$ for all $w \in W(1)$ and $w_{2} \in{ }_{1} W_{M_{2}^{\prime}}$. But this latter submodule is equal to \mathcal{J}^{\prime} because ${ }_{1} W_{M_{2}^{\prime}}$ is normal in $W(1)$. Therefore we proved $\mathcal{J}^{\prime}=\mathcal{J}_{r}=\mathcal{J}_{\ell}$.
(2) Proof of the second assertion. We prove $\mathcal{J}_{M, \ell}=\mathcal{J}_{M}^{\prime}$. The proof is easier than in (1) because for $w \in W_{M}(1)$ and $\lambda_{2} \in{ }_{1} W_{M_{2}^{\prime}} \cap \Lambda(1)$, we have $\ell\left(w \lambda_{2}\right)=\ell(w)+\ell\left(\lambda_{2}\right)$ hence $T_{w}^{M, *}\left(T_{\lambda_{2}}^{M, *}-1\right)=T_{w \lambda_{2}}^{M, *}-T_{w}^{M, *}$. We have also $\ell\left(\lambda_{2} w\right)=\ell\left(\lambda_{2}\right)+\ell(w)$ hence $\left(T_{\lambda_{2}}^{M, *}-1\right) T_{w}^{M, *}=$ $T_{\lambda_{2} w}^{M, *}-T_{w}^{M, *}$ hence $\mathcal{J}_{M, r}$ is equal to the submodule of \mathcal{H}_{M} generated by $T_{\lambda_{2} w}^{M, *}-T_{w}^{M, *}$ for
all $w \in W_{M}(1)$ and $\lambda_{2} \in{ }_{1} W_{M_{2}^{\prime}} \cap \Lambda(1)$. This latter submodule is \mathcal{J}_{M}^{\prime}, as ${ }_{1} W_{M_{2}^{\prime}} \cap \Lambda(1)=$ ${ }_{1} W_{M_{2}^{\prime}} \cap W_{M}(1)$ is normal in $W_{M}(1)$. Therefore $\mathcal{J}_{M}^{\prime}=\mathcal{J}_{M, r}=\mathcal{J}_{M, \ell}$.

By Proposition ??, a basis of \mathcal{J} is $T_{w}^{*}-T_{w w_{2}}^{*}$ for w in a system of representatives of $W(1) / 1 W_{M_{2}^{\prime}}$, and $w_{2} \in{ }_{1} W_{M_{2}^{\prime}} \backslash\{1\}$. Similarly a basis of \mathcal{J}_{M} is $T_{w}^{M, *}-T_{w \lambda_{2}}^{M, *}$ for w in a system of representatives of $W_{M}(1) /\left(\Lambda(1) \cap_{1} W_{M_{2}^{\prime}}\right)$. and $\lambda_{2} \in\left(\Lambda(1) \cap_{1} W_{M_{2}^{\prime}}\right) \backslash\{1\}$.
Proposition 3.5. The natural ring inclusion of $\mathcal{H}_{M^{-}}$in \mathcal{H}_{M} and the ring inclusion of $\mathcal{H}_{M^{-}}$ in \mathcal{H} via θ^{*} induce ring isomorphisms

$$
\mathcal{H}_{M} / \mathcal{J}_{M} \underset{\leftarrow}{\mathcal{H}_{M^{-}} /\left(\mathcal{J}_{M} \cap \mathcal{H}_{M^{-}}\right) \xrightarrow{\sim} \mathcal{H} / \mathcal{J} .}
$$

Proof. (1) The left map is obviously injective. We prove the surjectivity. Let $w \in W_{M}(1)$. Let $\lambda_{2} \in{ }_{1} W_{M_{2}^{\prime}} \cap \Lambda(1)$ such that $w \lambda_{2}^{-1} \in W_{M^{-}}$(1) (see (??)). We have $T_{w \lambda_{2}^{-1}}^{M, *} \in \mathcal{H}_{M^{-}}$and $T_{w}^{M, *}=T_{w \lambda_{2}^{-1}}^{M, *} T_{\lambda_{2}}^{M, *}=T_{w \lambda_{2}^{-1}}^{M, *}+T_{w \lambda_{2}^{-1}}^{M, *}\left(T_{\lambda_{2}}^{M, *}-1\right)$. Therefore $T_{w}^{M, *} \in \mathcal{H}_{M^{-}}+\mathcal{J}_{M}$. As w is arbitrary, $\mathcal{H}_{M}=\mathcal{H}_{M^{-}}+\mathcal{J}_{M}$.
(2) The right map is surjective: let $w \in W(1)$ and $w_{2} \in{ }_{1} W_{M_{2}^{\prime}}$ such that $w w_{2}^{-1} \in W_{M^{-}}(1)$ (see (??)). Then $T_{\hat{w}}^{*}-T_{w w_{2}^{-1}}^{*} \in \mathcal{J}$ with the same arguments than in (1), using Proposition ??. Therefore $\mathcal{H}=\theta^{*}\left(\mathcal{H}_{M^{-}}\right)+\mathcal{J}$.

We prove the injectivity: $\theta^{*}\left(\mathcal{H}_{M^{-}}\right) \cap \mathcal{J}=\theta^{*}\left(\mathcal{H}_{M^{-}} \cap \mathcal{J}_{M}\right)$. Let $\sum_{w \in W_{M^{-}}(1)} c_{w} T_{w}^{M, *}$, with $c_{w} \in \mathbb{Z}$, be an element of $\mathcal{H}_{M^{-}}$. Its image by θ^{*} is $\sum_{w \in W(1)} c_{w} T_{w}^{*}$ where we have set $c_{w}=0$ for $w \in W(1) \backslash W_{M^{-}}(1)$. We have $\sum_{w \in W(1)} c_{w} T_{w}^{*} \in \mathcal{J}$ if and only if $\sum_{w_{2} \in_{1} W_{M_{2}^{\prime}}} c_{w w_{2}}=0$ for all $w \in W(1)$. If $c_{w w_{2}} \neq 0$ then $w_{2} \in{ }_{1} W_{M_{2}^{\prime}} \cap W_{M}(1)$, that is, $w_{2} \in{ }_{1} W_{M_{2}^{\prime}} \cap \Lambda(1)$. The sum $\sum_{w_{2} \in_{1} W_{M_{2}^{\prime}}} c_{w w_{2}}$ is equal to $\sum_{\lambda_{2} \in_{1} W_{M_{2}^{\prime}} \cap \Lambda(1)} c_{w \lambda_{2}}$. By Proposition ??, $\sum_{w \in W(1)} c_{w} T_{w}^{*} \in \mathcal{J}$ if and only if $\sum_{w \in W_{M}-(1)} c_{w} T_{w}^{M, *} \in \mathcal{J}_{M}$.

We construct a ring isomorphism

$$
e^{*}: \mathcal{H}_{M} / \mathcal{J}_{M} \xrightarrow{\sim} \mathcal{H} / \mathcal{J}
$$

by using Proposition ??. For any $w \in W(1), T_{w}^{*}+\mathcal{J}=e^{*}\left(T_{w_{M^{-}}}^{M, *}+\mathcal{J}_{M}\right)$ where $w_{M^{-}} \in$ $W_{M^{-}}(1) \cap w_{1} W_{M_{2}^{\prime}}\left(\right.$ see (??)), because by Proposition ??, $T_{w}^{*}+\mathcal{J}=T_{w_{M^{-}}}^{*}+\mathcal{J}$ and $T_{w_{M^{-}}}^{*}+\mathcal{J}=$ $e^{*}\left(T_{w_{M^{-}}}^{M, *}+\mathcal{J}_{M}\right)$ by construction of e^{*}. We check that e^{*} is induced by θ^{*} :
Theorem 3.6. The linear map $\mathcal{H}_{M} \xrightarrow{\theta^{*}} \mathcal{H}$ induces a ring isomorphism

$$
e^{*}: \mathcal{H}_{M} / \mathcal{J}_{M} \xrightarrow{\sim} \mathcal{H} / \mathcal{J} .
$$

Proof. Let $w \in W_{M}(1)$. We have to show that $T_{w}^{*}+\mathcal{J}=e^{*}\left(T_{w}^{M, *}+\mathcal{J}_{M}\right)$. We saw above that $T_{w}^{*}+\mathcal{J}=e^{*}\left(T_{w_{M-}}^{M, *}+\mathcal{J}_{M}\right)$ with $w=w_{M^{-}} \lambda_{2}$ with $\lambda_{2} \in{ }_{1} W_{M_{2}^{\prime}} \cap W_{M}(1)$. As $\ell_{M}\left(\lambda_{2}\right)=0$, $T_{w}^{M, *}=T_{w_{M^{-}}}^{M, *} T_{\lambda_{2}}^{M, *} \in T_{w_{M^{-}}}^{M, *}+\mathcal{J}_{M}$. Therefore $T_{w_{M^{-}}}^{M, *}+\mathcal{J}_{M}=T_{w}^{M, *}+\mathcal{J}_{M}$, this ends the proof of the theorem.

We wish now to compute e^{*} in terms of the T_{w} instead of the T_{w}^{*}.
Proposition 3.7. Let $w \in W(1)$. Then, $T_{w}+\mathcal{J}=e^{*}\left(T_{w_{M}}^{M} q_{M_{2}}(w)+\mathcal{J}_{M}\right)$, for any $w_{M} \in$ $W_{M}(1) \cap w_{1} W_{M_{2}^{\prime}}$.

Proof. The element w_{M} is unique modulo right multiplication by an element $\lambda_{2} \in W_{M}(1) \cap$ ${ }_{1} W_{M_{2}^{\prime}}$ of length $\ell_{M}\left(\lambda_{2}\right)=0$ and $T_{w_{M}}^{M} q_{M_{2}}(w)+\mathcal{J}_{M}$ does not depend on the choice of w_{M}. We choose a decomposition (see (??)):

$$
w=\tilde{s}_{1} \ldots \tilde{s}_{a} u \tilde{s}_{a+1} \ldots \tilde{s}_{a+b}, \quad \ell(w)=a+b
$$

for $u \in \Omega(1), \tilde{s}_{i} \in{ }_{1} W_{M^{\prime}}$ lifting $s_{i} \in S_{M}^{\text {aff }}$ for $1 \leq i \leq a$ and $\tilde{s}_{i} \in{ }_{1} W_{M_{2}^{\prime}}$ lifting $s_{i} \in S_{M_{2}}^{\text {aff }}$ for $a+1 \leq i \leq a+b$, and we choose $u_{M} \in W_{M}(1)$ such that $u \in u_{M 1} W_{M_{2}^{\prime}}$. Then

$$
w_{M}=\tilde{s}_{1} \ldots \tilde{s}_{a} u_{M} \in W_{M}(1) \cap w_{1} W_{M_{2}^{\prime}}
$$

and $q_{M_{2}}(w)=q_{M_{2}}\left(\tilde{s}_{a+1} \ldots \tilde{s}_{a+b}\right)$ (Lemma ?? 4)). We check first the proposition in three simple cases:

Case 1. Let $w=\tilde{s} \in{ }_{1} W_{M^{\prime}}$ lifting $s \in S_{M}^{\text {aff }}$; we have $T_{\tilde{s}}+\mathcal{J}=e^{*}\left(T_{\tilde{s}}^{M}+\mathcal{J}_{M}\right)$ because $T_{\tilde{s}}^{*}-e^{*}\left(T_{\tilde{s}}^{M, *}\right) \in \mathcal{J}, T_{\tilde{s}}=T_{\tilde{s}}^{*}+c_{\tilde{s}}, T_{\tilde{s}}^{M}=T_{\tilde{s}}^{M, *}+c_{\tilde{s}}$ and $1=q_{M_{2}}(\tilde{s})$.

Case 2. Let $w=u \in W(1)$ of length $\ell(u)=0$ and $u_{M} \in W_{M}(1)$ such that $u \in u_{M 1} W_{M_{2}^{\prime}}$. We have $\ell_{M}\left(u_{M}\right)=0$ and $q_{M_{2}}(u)=1$ (Lemma ??). We deduce $T_{u}+\mathcal{J}=e^{*}\left(T_{u_{M}}^{M}+\mathcal{J}_{M}\right)$ because $T_{u}^{*}+\mathcal{J}=T_{u_{M}}^{*}+\mathcal{J}=e^{*}\left(T_{u_{M}}^{M, *}+\mathcal{J}_{M}\right)$, and $T_{u}=T_{u}^{*}, T_{u_{M}}^{M}=T_{u_{M}}^{M, *}$.

Case 3. Let $w=\tilde{s} \in{ }_{1} W_{M_{2}^{\prime}}$ lifting $s \in S_{M_{2}}^{\text {aff }}$; we have $T_{\tilde{s}}+\mathcal{J}=e^{*}\left(q_{M_{2}}(\tilde{s})+\mathcal{J}_{M}\right)$ because $T_{\tilde{s}}^{*}-1, c_{\tilde{s}}-\left(q_{s}-1\right) \in \mathcal{J}, T_{\tilde{s}}=T_{\tilde{s}}^{*}+c_{\tilde{s}} \in q_{s}+\mathcal{J}$ and $q_{s}=q_{M_{2}}(\tilde{s})$.

In general, the braid relations $T_{w}=T_{\tilde{s}_{1}} \ldots \tilde{T}_{s_{a}} T_{u} T_{\tilde{s}_{a+1}} \ldots T_{\tilde{s}_{a+b}}$ give a similar product decomposition of $T_{w}+\mathcal{J}$, and the simple cases $1,2,3$ imply that $T_{w}+\mathcal{J}$ is equal to

$$
\begin{aligned}
& e^{*}\left(T_{\tilde{s}_{1}}^{M}+\mathcal{J}_{M}\right) \ldots e^{*}\left(T_{\tilde{s}_{a}}^{M}+\mathcal{J}_{M}\right) e^{*}\left(T_{u_{M}}^{M}+\mathcal{J}_{M}\right) e^{*}\left(q_{M_{2}}\left(\tilde{s}_{a+1}\right)+\mathcal{J}_{M}\right) \ldots e^{*}\left(q_{M_{2}}\left(\tilde{s}_{a+b}\right)+\mathcal{J}_{M}\right) \\
& =e^{*}\left(T_{w_{M}}^{M} q_{M_{2}}(w)+\mathcal{J}_{M}\right) .
\end{aligned}
$$

The proposition is proved.
Propositions ??, ????, and Theorem ?? are valid over any commutative ring R (instead of $\mathbb{Z})$.

The two-sided ideal of \mathcal{H}_{R} generated by $T_{w}^{*}-1$ for all $w \in{ }_{1} W_{M_{2}^{\prime}}$ is $\mathcal{J}_{R}=\mathcal{J} \otimes_{\mathbb{Z}} R$, the two-sided ideal of $\mathcal{H}_{M, R}$ generated by $T_{\lambda}^{*}-1$ for all $\lambda \in{ }_{1} W_{M_{2}^{\prime}} \cap \Lambda(1)$ is $\mathcal{J}_{M, R}=\mathcal{J}_{M} \otimes_{\mathbb{Z}} R$, and we get as in Proposition ?? isomorphisms

$$
\mathcal{H}_{M, R} / \mathcal{J}_{M, R} \approx \mathcal{H}_{M^{-}, R} /\left(\mathcal{J}_{M, R} \cap \mathcal{H}_{M^{-}, R}\right) \xrightarrow{\sim} \mathcal{H}_{R} / \mathcal{J}_{R},
$$

giving an isomorphism $\mathcal{H}_{M, R} / \mathcal{J}_{M, R} \rightarrow \mathcal{H}_{R} / \mathcal{J}_{R}$ induced by θ^{*}. Therefore, we have an isomorphism from the category of right $\mathcal{H}_{M, R}$-modules where \mathcal{J}_{M} acts by 0 onto the category of right \mathcal{H}_{R}-modules where \mathcal{J} acts by 0 .

Definition 3.8. A right $\mathcal{H}_{M, R}$-module \mathcal{V} where \mathcal{J}_{M} acts by 0 is called extensible to \mathcal{H}. The corresponding \mathcal{H}_{R}-module where \mathcal{J} acts by 0 is called its extension to \mathcal{H} and denoted by $e_{\mathcal{H}}(\mathcal{V})$ or $e(\mathcal{V})$.

With the element basis T_{w}^{*}, \mathcal{V} is extensible to \mathcal{H} if and only if

$$
\begin{equation*}
v T_{\lambda_{2}}^{M, *}=v \text { for all } v \in \mathcal{V} \text { and } \lambda_{2} \in{ }_{1} W_{M_{2}^{\prime}} \cap \Lambda(1) . \tag{3.10}
\end{equation*}
$$

The \mathcal{H}-module structure on the R-module $e(\mathcal{V})=\mathcal{V}$ is determined by

$$
\begin{equation*}
v T_{w_{2}}^{*}=v, \quad v T_{w}^{*}=v T_{w}^{M, *}, \quad \text { for all } v \in \mathcal{V}, w_{2} \in{ }_{1} W_{M_{2}^{\prime}}, w \in W_{M}(1) \tag{3.11}
\end{equation*}
$$

It is also determined by the action of T_{w}^{*} for $w \in{ }_{1} W_{M_{2}^{\prime}} \cup W_{M^{+}}(1)\left(\right.$ or $\left.w \in{ }_{1} W_{M_{2}^{\prime}} \cup W_{M^{-}}(1)\right)$. Conversely, a right \mathcal{H}-module \mathcal{W} over R is extended from an \mathcal{H}_{M}-module if and only if

$$
\begin{equation*}
v T_{w_{2}}^{*}=v, \quad \text { for all } v \in \mathcal{W}, w_{2} \in{ }_{1} W_{M_{2}^{\prime}} \tag{3.12}
\end{equation*}
$$

In terms of the basis elements T_{w} instead of T_{w}^{*}, this says:
Corollary 3.9. A right \mathcal{H}_{M}-module \mathcal{V} over R is extensible to \mathcal{H} if and only if

$$
\begin{equation*}
v T_{\lambda_{2}}^{M}=v \text { for all } v \in \mathcal{V} \text { and } \lambda_{2} \in{ }_{1} W_{M_{2}^{\prime}} \cap \Lambda(1) \tag{3.13}
\end{equation*}
$$

Then, the structure of \mathcal{H}-module on the R-module $e(\mathcal{V})=\mathcal{V}$ is determined by

$$
\begin{equation*}
v T_{w_{2}}=v q_{w_{2}}, \quad v T_{w}=v T_{w}^{M} q_{M_{2}}(w), \quad \text { for all } v \in \mathcal{V}, w_{2} \in{ }_{1} W_{M_{2}^{\prime}}, w \in W_{M}(1) \tag{3.14}
\end{equation*}
$$

($W_{M^{+}}(1)$ or $W_{M^{-}}(1)$ instead of $W_{M}(1)$ is enough.) A right \mathcal{H}-module \mathcal{W} over R is extended from an \mathcal{H}_{M}-module if and only if

$$
\begin{equation*}
v T_{w_{2}}=v q_{w_{2}}, \quad \text { for all } v \in \mathcal{W}, w_{2} \in{ }_{1} W_{M_{2}^{\prime}} . \tag{3.15}
\end{equation*}
$$

3.4. $\sigma^{\mathcal{U}_{M}}$ is extensible to \mathcal{H} of extension $e\left(\sigma^{\mathcal{U}_{M}}\right)=e(\sigma)^{\mathcal{U}}$. Let $P=M N$ be a standard parabolic subgroup of G such that Δ_{P} and $\Delta \backslash \Delta_{P}$ are orthogonal, and σ a smooth R representation of M extensible to G. Let $P_{2}=M_{2} N_{2}$ denote the standard parabolic subgroup of G with $\Delta_{P_{2}}=\Delta \backslash \Delta_{P}$.

Recall that $G=M M_{2}^{\prime}$, that $M \cap M_{2}^{\prime}=Z \cap M_{2}^{\prime}$ acts trivially on $\sigma, e(\sigma)$ is the representation of G equal to σ on M and trivial on M_{2}^{\prime}. We will describe the \mathcal{H}-module $e(\sigma)^{\mathcal{U}}$ in this section. We first consider $e(\sigma)$ as a subrepresentation of $\operatorname{Ind}_{P}^{G} \sigma$. For $v \in \sigma$, let $f_{v} \in\left(\operatorname{Ind}_{P}^{G} \sigma\right)^{M_{2}^{\prime}}$ be the unique function with value v on M_{2}^{\prime}. Then, the map

$$
\begin{equation*}
v \mapsto f_{v}: \sigma \rightarrow \operatorname{Ind}_{P}^{G} \sigma \tag{3.16}
\end{equation*}
$$

is the natural G-equivariant embedding of $e(\sigma)$ in $\operatorname{Ind}_{P}^{G} \sigma$. As $\sigma^{\mathcal{U}_{M}}=e(\sigma)^{\mathcal{U}}$ as R-modules, the image of $e(\sigma)^{\mathcal{U}}$ in $\left(\operatorname{Ind}_{P}^{G} \sigma\right)^{\mathcal{U}}$ is made out of the f_{v} for $v \in \sigma^{\mathcal{U}_{M}}$.

We now recall the explicit description of $\left(\operatorname{Ind}_{P}^{G} \sigma\right)^{\mathcal{U}}$. For each $d \in \mathbb{W}_{M_{2}}$, we fix a lift $\hat{d} \in{ }_{1} W_{M_{2}^{\prime}}$ and for $v \in \sigma^{\mathcal{U}_{M}}$ let $f_{P \hat{\mathcal{U}}, v} \in\left(\operatorname{Ind}_{P}^{G} \sigma\right)^{\mathcal{U}}$ for the function with support contained in $P \hat{d} \mathcal{U}$ and value v on $\hat{d \mathcal{U}}$. As $Z \cap M_{2}^{\prime}$ acts trivially on σ, the function $f_{P \hat{d} \mathcal{U}, v}$ does not depend on the choice of the lift $\hat{d} \in{ }_{1} W_{M_{2}^{\prime}}$ of d. By [?, Lemma 4.5]:

The map $\oplus_{d \in \mathbb{W}_{M_{2}}} \sigma^{\mathcal{U}} \rightarrow\left(\operatorname{Ind}_{P}^{G} \sigma\right)^{\mathcal{U}}$ given on each d-component by $v \mapsto f_{P \hat{\mathcal{U}}, v}$, is an $\mathcal{H}_{M^{+}}$-equivariant isomorphism where $\mathcal{H}_{M^{+}}$is seen as a subring of \mathcal{H} via θ, and induces an \mathcal{H}_{R}-module isomorphism

$$
\begin{equation*}
v \otimes h \mapsto f_{P \mathcal{U}, v} h: \sigma^{\mathcal{U}_{M}} \otimes_{\mathcal{H}_{M^{+}, \theta}} \mathcal{H} \rightarrow\left(\operatorname{Ind}_{P}^{G} \sigma\right)^{\mathcal{U}} . \tag{3.17}
\end{equation*}
$$

In particular for $v \in \sigma^{\mathcal{U}_{M}}, v \otimes T(\hat{d})$ does not depend on the choice of the lift $\hat{d} \in{ }_{1} W_{M_{2}^{\prime}}$ of d and

$$
\begin{equation*}
f_{P \hat{d} \mathcal{U}, v}=f_{P \mathcal{U}, v} T(\hat{d}) \tag{3.18}
\end{equation*}
$$

As G is the disjoint union of $P \hat{d} \mathcal{U}$ for $d \in \mathbb{W}_{M_{2}}$, we have $f_{v}=\sum_{d \in \mathbb{W}_{M_{2}}} f_{P \hat{d} \mathcal{U}, v}$ and f_{v} is the image of $v \otimes e_{M_{2}}$ in (??), where

$$
\begin{equation*}
e_{M_{2}}=\sum_{d \in \mathbb{W}_{M_{2}}} T(\hat{d}) \tag{3.19}
\end{equation*}
$$

Recalling (??) we get:
Lemma 3.10. The map $v \mapsto v \otimes e_{M_{2}}: e(\sigma)^{\mathcal{U}} \rightarrow \sigma^{\mathcal{U}_{M}} \otimes_{\mathcal{H}_{M^{+}, \theta}} \mathcal{H}$ is an $\mathcal{H}_{R^{-} \text {-equivariant }}$ embedding.

Remark 3.11. The trivial map $v \mapsto v \otimes 1_{\mathcal{H}}$ is not an \mathcal{H}_{R}-equivariant embedding.
We describe the action of $T(n)$ on $e(\sigma)^{\mathcal{U}}$ for $n \in \mathcal{N}$. By definition for $v \in e(\sigma)^{\mathcal{U}}$,

$$
\begin{equation*}
v T(n)=\sum_{y \in \mathcal{U} /\left(\mathcal{U} \cap n^{-1} \mathcal{U} n\right)} y n^{-1} v \tag{3.20}
\end{equation*}
$$

Proposition 3.12. We have $v T(n)=v T^{M}\left(n_{M}\right) q_{M_{2}}(n)$ for any $n_{N} \in \mathcal{N} \cap M$ is such that $n=n_{M}\left(\mathcal{N} \cap M_{2}^{\prime}\right)$.
Proof. The description (??) of $\mathcal{U} /\left(\mathcal{U} \cap n^{-1} \mathcal{U} n\right)$ gives

$$
v T(n)=\sum_{y_{1} \in \mathcal{U}_{M} /\left(\mathcal{U}_{M} \cap n^{-1} \mathcal{U}_{M} n\right)} y_{1} \sum_{y_{2} \in \mathcal{U}_{M_{2}^{\prime}} /\left(\mathcal{U}_{\left.M_{2}^{\prime} \cap n^{-1} \mathcal{U}_{M_{2}^{\prime}} n\right)} y_{2} n^{-1} v\right.}
$$

As M_{2}^{\prime} acts trivially on $e(\sigma)$, we obtain

$$
v T(n)=q_{M_{2}}(n) \sum_{y_{1} \in \mathcal{U}_{M} /\left(\mathcal{U}_{M} \cap n^{-1} \mathcal{U}_{M} n\right)} y_{1} n_{M}^{-1} v=q_{M_{2}}(n) v T^{M}\left(n_{M}\right)
$$

Theorem 3.13. Let σ be a smooth R-representation of M. If $P(\sigma)=G$, then $\sigma^{\mathcal{U}_{M}}$ is extensible to \mathcal{H} of extension $e\left(\sigma^{\mathcal{U}_{M}}\right)=e(\sigma)^{\mathcal{U}}$. Conversely, if $\sigma^{\mathcal{U}_{M}}$ is extensible to \mathcal{H} and generates σ, then $P(\sigma)=G$.

Proof. (1) The \mathcal{H}_{M}-module $\sigma^{\mathcal{U}_{M}}$ is extensible to \mathcal{H} if and only if $Z \cap M_{2}^{\prime}$ acts trivially on $\sigma^{\mathcal{U}_{M}}$. Indeed, for $v \in \sigma^{\mathcal{U}_{M}}, z_{2} \in Z \cap M_{2}^{\prime}$,

$$
v T^{M}\left(z_{2}\right)=\sum_{y \in \mathcal{U}_{M} /\left(\mathcal{U}_{M} \cap z_{2}^{-1} \mathcal{U}_{M} z_{2}\right)} y z_{2}^{-1} v=\sum_{y \in \mathcal{Y}_{M} /\left(\mathcal{Y}_{M} \cap z_{2}^{-1} \mathcal{Y}_{M} z_{2}\right)} y z_{2}^{-1} v=z_{2}^{-1} v
$$

by (??), then (??), then the fact that z_{2}^{-1} commutes with the elements of \mathcal{Y}_{M}.
(2) $P(\sigma)=G$ if and only if $Z \cap M_{2}^{\prime}$ acts trivially on σ (the group $Z \cap M_{2}^{\prime}$ is generated by $Z \cap \mathcal{M}_{\alpha}^{\prime}$ for $\alpha \in \Delta_{M_{2}}$ by Lemma ??). The R-submodule $\sigma^{Z \cap M_{2}^{\prime}}$ of elements fixed by $Z \cap M_{2}^{\prime}$ is stable by M, because $M=Z M^{\prime}$, the elements of M^{\prime} commute with those of $Z \cap M_{2}^{\prime}$ and Z normalizes $Z \cap M_{2}^{\prime}$.
(3) Apply (1) and (2) to get the theorem except the equality $e\left(\sigma^{\mathcal{U}_{M}}\right)=e(\sigma)^{\mathcal{U}}$ when $P(\sigma)=$ G which follows from Propositions ?? and ??.

Let $\mathbf{1}_{M}$ denote the trivial representation of M over R (or $\mathbf{1}$ when there is no ambiguity on $M)$. The right \mathcal{H}_{R}-module $\left(\mathbf{1}_{G}\right)^{\mathcal{U}}=\mathbf{1}_{\mathcal{H}}$ (or $\mathbf{1}$ if there is no ambiguity) is the trivial right \mathcal{H}_{R}-module: for $w \in W_{M}(1), T_{w}=q_{w} \mathrm{id}$ and $T_{w}^{*}=\mathrm{id}$ on $\mathbf{1}_{\mathcal{H}}$.
Example 3.14. The \mathcal{H}-module $\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}}$ is the extension of the $\mathcal{H}_{M_{2}}$-module $\left(\operatorname{Ind}_{M_{2} \cap B}^{M_{2}} \mathbf{1}\right)^{\mathcal{U}_{M_{2}}}$. Indeed, the representation $\operatorname{Ind}_{P}^{G} 1$ of G is trivial on N_{2}, as $G=M M_{2}^{\prime}$ and $N_{2} \subset M^{\prime}$ (as $\Phi=\Phi_{M} \cup \Phi_{M_{2}}$). For $g=m m_{2}^{\prime}$ with $m \in M, m_{2}^{\prime} \in M_{2}^{\prime}$ and $n_{2} \in N_{2}$, we have $P g n_{2}=$ $P m_{2}^{\prime} n_{2}=P n_{2} m_{2}^{\prime}=P m_{2}^{\prime}=P g$. The group $M_{2} \cap B=M_{2} \cap P$ is the standard minimal parabolic subgroup of M_{2} and $\left.\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)\right|_{M_{2}}=\operatorname{Ind}_{M_{2} \cap B}^{M_{2}} 1$. Apply Theorem ??:
3.5. The \mathcal{H}_{R}-module $e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$. Let $P=M N$ be a standard parabolic subgroup of G such that Δ_{P} and $\Delta \backslash \Delta_{P}$ are orthogonal, let \mathcal{V} be a right $\mathcal{H}_{M, R}$-module which is extensible to \mathcal{H}_{R} of extension $e(\mathcal{V})$ and let Q be a parabolic subgroup of G containing P.

We define on the R-module $e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ a structure of right \mathcal{H}_{R}-module:
Proposition 3.15. (1) The diagonal action of T_{w}^{*} for $w \in W(1)$ on $e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ defines a structure of right \mathcal{H}_{R}-module.
(2) The action of the T_{w} is also diagonal and satisfies:

$$
\left((v \otimes f) T_{w},(v \otimes f) T_{w}^{*}\right)=\left(v T_{u w_{M^{\prime}}} \otimes f T_{u w_{M_{2}^{\prime}}}, v T_{u w_{M^{\prime}}}^{*} \otimes f T_{u w_{M_{2}^{\prime}}}^{*}\right)
$$

$$
\text { where } w=u w_{M^{\prime}} w_{M_{2}^{\prime}} \text { with } u \in W(1), \ell(u)=0, w_{M^{\prime}} \in{ }_{1} W_{M^{\prime}}, w_{M_{2}^{\prime}} \in{ }_{1} W_{M_{2}^{\prime}} .
$$

Proof. If the lemma is true for P it is also true for Q, because the R-module $e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ naturally embedded in $e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}}$ is stable by the action of \mathcal{H} defined in the lemma. So, we suppose $Q=P$.

Suppose that T_{w}^{*} for $w \in W(1)$ acts on $e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}}$ as in (1). The braid relations obviously hold. The quadratic relations hold because T_{s}^{*} with $s \in{ }_{1} S^{\text {aff }}$, acts trivially either on $e(\mathcal{V})$ or on $\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}}$. Indeed, ${ }_{1} S^{\text {aff }}={ }_{1} S_{M}^{\text {aff }} \cup_{1} S_{M_{2}}^{\text {aff }}, T_{s}^{*}$ for $s \in{ }_{1} S_{M}^{\text {aff }}$, acts trivially on $\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}}$ which is extended from a $\mathcal{H}_{M_{2}}$-module (Example ??), and T_{s}^{*} for $s \in{ }_{1} S_{M_{2}^{\prime}}^{\text {aff }}$, acts trivially on $e(\mathcal{V})$ which is extended from a \mathcal{H}_{M}-module. This proves (1).

We describe now the action of T_{w} instead of T_{w}^{*} on the \mathcal{H}-module $e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$. Let $w \in W(1)$. We write $w=u w_{M^{\prime}} w_{M_{2}^{\prime}}=u w_{M_{2}^{\prime}} w_{M^{\prime}}$ with $u \in W(1), \ell(u)=0, w_{M^{\prime}} \in$ ${ }_{1} W_{M^{\prime}}, w_{M_{2}^{\prime}} \in{ }_{1} W_{M_{2}^{\prime}}$. We have $\ell(w)=\ell\left(w_{M^{\prime}}^{\prime}\right)+\ell\left(w_{M_{2}^{\prime}}\right)$ hence $T_{w}=T_{u} T_{w_{M^{\prime}}} T_{w_{M_{2}^{\prime}}}$.

For $w=u$, we have $T_{u}=T_{u}^{*}$ and $(v \otimes f) T_{u}=(v \otimes f) T_{u}^{*}=v T_{u}^{*} \otimes f T_{u}^{*}=v T_{u} \otimes f T_{u}$.
For $w=w_{M^{\prime}},(v \otimes f) T_{w}^{*}=v T_{w}^{*} \otimes f$; in particular for $s \in{ }_{1} S_{M}^{\text {aff }}, c_{s}=\sum_{t \in Z_{k} \cap_{1} W_{M^{\prime}}} c_{s}(t) T_{t}^{*}$, we have $(v \otimes f) T_{s}=(v \otimes f)\left(T_{s}^{*}+c_{s}\right)=v\left(T_{s}^{*}+c_{s}\right) \otimes f=v T_{s} \otimes f$. Hence $(v \otimes f) T_{w}=v T_{w} \otimes f$.

For $w=w_{M_{2}^{\prime}}$, we have similarly $(v \otimes f) T_{w}^{*}=v \otimes f T_{w}^{*}$ and $(v \otimes f) T_{w}=v \otimes f T_{w}$.
Example 3.16. Let \mathcal{X} be a right \mathcal{H}_{R}-module. Then $\mathbf{1}_{\mathcal{H}} \otimes_{R} \mathcal{X}$ where the T_{w}^{*} acts diagonally is a \mathcal{H}_{R}-module isomorphic to \mathcal{X}. But the action of the T_{w} on $\mathbf{1}_{\mathcal{H}} \otimes_{R} \mathcal{X}$ is not diagonal.

It is known [?] that $\left(\operatorname{Ind}_{Q^{\prime}}^{G} \mathbf{1}\right)^{\mathcal{U}}$ and $\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$ are free R-modules and that $\left(\operatorname{St}_{Q}^{G}\right)^{\mathcal{U}}$ is the cokernel of the natural \mathcal{H}_{R}-map

$$
\begin{equation*}
\oplus_{Q \subsetneq Q^{\prime}}\left(\operatorname{Ind}_{Q^{\prime}}^{G} \mathbf{1}\right)^{\mathcal{U}} \rightarrow\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}} \tag{3.21}
\end{equation*}
$$

although the invariant functor $(-)^{\mathcal{U}}$ is only left exact.
Corollary 3.17. The diagonal action of T_{w}^{*} for $w \in W(1)$ on $e(\mathcal{V}) \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$ defines a structure of right \mathcal{H}_{R}-module satisfying Proposition ?? (2).

4. Hecke module $I_{\mathcal{H}}(P, \mathcal{V}, Q)$

4.1. Case \mathcal{V} extensible to \mathcal{H}. Let $P=M N$ be a standard parabolic subgroup of G such that Δ_{P} and $\Delta \backslash \Delta_{P}$ are orthogonal, \mathcal{V} a right $\mathcal{H}_{M, R}$-module extensible to \mathcal{H}_{R} of extension $e(\mathcal{V})$, and Q be a parabolic subgroup of G containing P. As Q and M_{Q} determine each other: $Q=M_{Q} U$, we denote also $\mathcal{H}_{M_{Q}}=\mathcal{H}_{Q}$ and $\mathcal{H}_{M_{Q}, R}=\mathcal{H}_{Q, R}$ when $Q \neq P, G$. When $Q=G$ we $\operatorname{drop} G$ and we denote $e_{\mathcal{H}}(\mathcal{V})=e(\mathcal{V})$ when $Q=G$.

Lemma 4.1. \mathcal{V} is extensible to an $\mathcal{H}_{Q, R}$-module $e_{\mathcal{H}_{Q}}(\mathcal{V})$.

Proof. This is straightforward. By Corollary ??, \mathcal{V} extensible to \mathcal{H} means that $T^{M, *}(z)$ acts trivially on \mathcal{V} for all $z \in \mathcal{N}_{M_{2}^{\prime}} \cap Z$. We have $M_{Q}=M M_{2, Q}^{\prime}$ with $M_{2, Q}^{\prime} \subset M_{Q} \cap M_{2}^{\prime}$ and $\mathcal{N}_{M_{2, Q}^{\prime}} \subset \mathcal{N}_{M_{2}^{\prime}}$; hence $T^{M, *}(z)$ acts trivially on \mathcal{V} for all $z \in \mathcal{N}_{M_{2, Q}^{\prime}} \cap Z$ meaning that \mathcal{V} is extensible to \mathcal{H}_{Q}.

Remark 4.2. We cannot say that $e_{\mathcal{H}_{Q}}(\mathcal{V})$ is extensible to \mathcal{H} of extension $e(\mathcal{V})$ when the set of roots Δ_{Q} and $\Delta \backslash \Delta_{Q}$ are not orthogonal (Definition ??).

Let Q^{\prime} be an arbitrary parabolic subgroup of G containing Q. We are going to define a $\mathcal{H}_{R^{\text {-embedding }}} \operatorname{Ind}_{\mathcal{H}_{Q^{\prime}}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q^{\prime}}}(\mathcal{V})\right) \xrightarrow{\iota\left(Q, Q^{\prime}\right)} \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right)=e_{\mathcal{H}_{Q}}(\mathcal{V}) \otimes_{\mathcal{H}_{M_{Q}^{+}}, \theta} \mathcal{H}$ defining a \mathcal{H}_{R}-homomorphism

$$
\oplus_{Q \subsetneq Q^{\prime} \subset G} \operatorname{Ind}_{H_{Q^{\prime}}}^{\mathcal{H}}\left(e_{\text {mathcal }}^{Q^{\prime}}(\mathcal{V})\right) \rightarrow \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right)
$$

of cokernel isomorphic to $e(\mathcal{V}) \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$. In the extreme case $\left(Q, Q^{\prime}\right)=(P, G)$, the $\mathcal{H}_{R^{-}}$ embedding $e(\mathcal{V}) \xrightarrow{\iota(P, G)} \operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V})$ is given in the following lemma where f_{G} and $f_{P \mathcal{U}} \in$ $\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}}$ of $P \mathcal{U}$ denote the characteristic functions of G and $P \mathcal{U}, f_{G}=f_{P \mathcal{U}} e_{M_{2}}$ (see (??)).

Lemma 4.3. There is a natural \mathcal{H}_{R}-isomorphism

$$
v \otimes 1_{\mathcal{H}} \mapsto v \otimes f_{P \mathcal{U}}: \operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V})=\mathcal{V} \otimes_{\mathcal{H}_{M^{+}, \theta}} \mathcal{H} \xrightarrow{\kappa_{P}} e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{P}^{G} 1\right)^{\mathcal{U}}
$$

and compatible \mathcal{H}_{R}-embeddings

$$
\begin{aligned}
& v \mapsto v \otimes f_{G}: e(\mathcal{V}) \rightarrow e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}} \\
& v \mapsto v \otimes e_{M_{2}}: e(\mathcal{V}) \xrightarrow{\iota(P, G)} \operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V})
\end{aligned}
$$

Proof. We show first that the map

$$
\begin{equation*}
v \mapsto v \otimes f_{P \mathcal{U}}: \mathcal{V} \rightarrow e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}} \tag{4.1}
\end{equation*}
$$

 $f_{P \mathcal{U}} T_{w}=f_{P \mathcal{U}} T_{u w_{M_{2}^{\prime}}}$. We have $f_{P \mathcal{U}} T_{u w_{M_{2}^{\prime}}}=f_{P \mathcal{U}}$ because ${ }_{1} W_{M^{\prime}} \subset W_{M^{+}}(1) \cap W_{M^{-}}$(1) hence $u w_{M_{2}^{\prime}}=w w_{M^{\prime}}^{-1} \in W_{M^{+}}(1)$ and in $\mathbf{1}_{\mathcal{H}_{M}} \otimes_{\mathcal{H}_{M^{+}}, \theta} \mathcal{H}$ we have $\left(1 \otimes 1_{\mathcal{H}}\right) T_{u w_{M_{2}^{\prime}}}=1 T_{u w_{M_{2}^{\prime}}}^{M} \otimes 1_{\mathcal{H}}$, and $T_{u w_{M_{2}^{\prime}}}^{M}$ acts trivially in $\mathbf{1}_{\mathcal{H}_{M}}$ because $\ell_{M}\left(u w_{M_{2}^{\prime}}\right)=0$. We deduce $\left(v \otimes f_{P \mathcal{U}}\right) T_{w}=v T_{w} \otimes f_{P \mathcal{U}} T_{w}=$ $v T_{w}^{M} \otimes f_{P \mathcal{U}}$.

By adjunction (??) gives an \mathcal{H}_{R}-equivariant linear map

$$
\begin{equation*}
v \otimes 1_{\mathcal{H}} \mapsto v \otimes f_{P \mathcal{U}}: \mathcal{V} \otimes_{\mathcal{H}_{M^{+}, \theta}} \mathcal{H} \xrightarrow{\kappa_{P}} e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}} \tag{4.2}
\end{equation*}
$$

We prove that κ_{P} is an isomorphism. Recalling $\hat{d} \in \mathcal{N} \cap M_{2}^{\prime}, \tilde{d} \in{ }_{1} W_{M_{2}^{\prime}}$ lift d, one knows that

$$
\begin{equation*}
\mathcal{V} \otimes_{\mathcal{H}_{M^{+}}, \theta} \mathcal{H}=\oplus_{d \in \mathbb{W}_{M_{2}}} \mathcal{V} \otimes T_{\tilde{d}}, \quad e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}}=\oplus_{d \in \mathbb{W}_{M_{2}}} \mathcal{V} \otimes f_{P \hat{d} \mathcal{U}} \tag{4.3}
\end{equation*}
$$

where each summand is isomorphic to \mathcal{V}. The left equality follows from $\S 4.1$ and Remark 3.7 in [?] recalling that $w \in \mathbb{W}_{M_{2}}$ is of minimal length in its coset $\mathbb{W}_{M} w=w \mathbb{W}_{M}$ as Δ_{M} and $\Delta_{M_{2}}$ are orthogonal; for the second equality see $\S ? ?(? ?)$. We have $\kappa_{P}\left(v \otimes T_{\tilde{d}}\right)=\left(v \otimes f_{P \mathcal{U}}\right) T_{\tilde{d}}=$ $v \otimes f_{P \mathcal{U}} T_{\tilde{d}}$ (Lemma ??). Hence κ_{P} is an isomorphism.

We consider the composite map

$$
v \mapsto v \otimes 1 \mapsto v \otimes f_{P \mathcal{U}} e_{M_{2}}: e(\mathcal{V}) \rightarrow e(\mathcal{V}) \otimes_{R} \mathbf{1}_{\mathcal{H}} \rightarrow e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}}
$$

where the right map is the tensor product $e(\mathcal{V}) \otimes_{R}-$ of the \mathcal{H}_{R}-equivariant embedding $\mathbf{1}_{\mathcal{H}} \rightarrow\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}}$ sending 1_{R} to $f_{P \mathcal{U}} e_{M_{2}}$ (Lemma ??); this map is injective because $\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}} / \mathbf{1}$ is a free R-module; it is \mathcal{H}_{R}-equivariant for the diagonal action of the T_{w}^{*} on the tensor products (Example ?? for the first map). By compatibility with (1), we get the $\mathcal{H}_{R^{-}}$-equivariant embedding $v \mapsto v \otimes e_{M_{2}}: e(\mathcal{V}) \xrightarrow{\iota(P, G)} \operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V})$.

For a general $\left(Q, Q^{\prime}\right)$ the $\mathcal{H}_{R^{-}}$-embedding $\operatorname{Ind}_{H_{Q^{\prime}}}^{\mathcal{H}}\left(e_{H_{Q^{\prime}}}(\mathcal{V})\right) \xrightarrow{\iota\left(Q, Q^{\prime}\right)} \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right)$ is given in the next proposition generalizing Lemma ??. The element $e_{M_{2}}$ of \mathcal{H}_{R} appearing in the definition of $\iota\left(P, G^{\prime}\right)$ is replaced in the definition of $\iota\left(Q, Q^{\prime}\right)$ by an element $\theta_{Q^{\prime}}\left(e_{Q}^{Q^{\prime}}\right) \in \mathcal{H}_{R}$ that we define first.

Until the end of $\S ? ?$, we fix an admissible lift $w \mapsto \hat{w}: \mathbb{W} \rightarrow \mathcal{N} \cap \mathcal{K}$ (Definition ??) and \tilde{w} denotes the image of \hat{w} in $W(1)$. We denote $\mathbb{W}_{M_{Q}}=\mathbb{W}_{Q}$ and by $\mathbb{W}_{Q} \mathbb{W}$ the set of $w \in \mathbb{W}$ of minimal length in their coset $\mathbb{W}_{Q} w$. The group G is the disjoint union of $Q \hat{d} \mathcal{U}$ for d running through $\mathbb{W}_{Q \mathbb{W}}[?$, Lemma 2.18 (2)].

$$
\begin{equation*}
Q^{\prime} \mathcal{U}=\sqcup_{d \in \mathbb{W}^{\mathbb{W}} \mathbb{W}_{Q^{\prime}}} Q \hat{d} \mathcal{U} \tag{4.4}
\end{equation*}
$$

Set

$$
\begin{equation*}
e_{Q}^{Q^{\prime}}=\sum_{d \in \mathbb{W}^{\mathbb{W}_{\mathbb{W}_{Q^{\prime}}}}} T_{\tilde{d}}^{M_{Q^{\prime}}} . \tag{4.5}
\end{equation*}
$$

We write $e_{Q}^{G}=e_{Q}$. We have $e_{P}^{Q}=\sum_{d \in \mathbb{W}_{M_{2, Q}}} T_{\tilde{d}}^{M_{Q}}$.
Remark 4.4. Note that $\mathbb{W}_{M} \mathbb{W}=\mathbb{W}_{M_{2}}$ and $e_{P}=e_{M_{2}}$, where M_{2} is the standard Levi subgroup of G with $\Delta_{M_{2}}=\Delta \backslash \Delta_{M}$, as Δ_{M} and $\Delta \backslash \Delta_{M}$ are orthogonal. More generally, ${ }^{\mathbb{W}} \mathbb{W}_{\mathbb{W}_{M_{Q^{\prime}}}}=$ $\mathbb{W}_{M_{2, Q}} \mathbb{W}_{M_{2, Q^{\prime}}}$ where $M_{2, Q^{\prime}}=M_{2} \cap M_{Q^{\prime}}$.

Note that $e_{Q}^{Q^{\prime}} \in \mathcal{H}_{M^{+}} \cap \mathcal{H}_{M^{-}}$. We consider the linear map

$$
\theta_{Q}^{Q^{\prime}}: \mathcal{H}_{Q} \rightarrow H_{Q^{\prime}} \quad T_{w}^{M_{Q}} \mapsto T_{w}^{M_{Q^{\prime}}} \quad\left(w \in W_{M_{Q}}(1)\right)
$$

We write $\theta_{Q}^{G}=\theta_{Q}$ so $\theta_{Q}\left(T_{w}^{M_{Q}}\right)=T_{w}$. When $Q=P$ this is the map θ defined earlier. Similarly we denote by $\theta_{Q}^{Q^{\prime}, *}$ the linear map sending the $T_{w}^{M_{Q}, *}$ to $T_{w}^{M_{Q^{\prime}, *}}$ and $\theta_{Q}^{G, *}=\theta_{Q}^{*}$. We have

$$
\begin{equation*}
\theta_{Q^{\prime}}\left(e_{Q}^{Q^{\prime}}\right)=\sum_{d \in \mathbb{W}_{Q} \mathbb{W}_{Q^{\prime}}} T_{\tilde{d}}, \quad \theta_{Q^{\prime}}\left(e_{P}^{Q^{\prime}}\right)=\theta_{Q}\left(e_{P}^{Q}\right) \theta_{Q^{\prime}}\left(e_{Q}^{Q^{\prime}}\right) \tag{4.6}
\end{equation*}
$$

Proposition 4.5. There exists an \mathcal{H}_{R}-isomorphism

$$
\begin{equation*}
v \otimes 1_{\mathcal{H}} \mapsto v \otimes f_{Q \mathcal{U}}: \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right)=e_{\mathcal{H}_{Q}}(\mathcal{V}) \otimes_{\mathcal{H}_{M_{Q}^{+}, \theta}} \mathcal{H} \xrightarrow{\kappa_{Q}} e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}, \tag{4.7}
\end{equation*}
$$

and compatible \mathcal{H}_{R}-embeddings

$$
\begin{align*}
& v \otimes f_{Q^{\prime} \mathcal{U}} \mapsto v \otimes f_{Q^{\prime} \mathcal{U}}: e_{\mathcal{H}_{Q^{\prime}}}(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q^{\prime}}^{G} \mathbf{1}\right)^{\mathcal{U}} \rightarrow e_{\mathcal{H}_{Q}}(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}, \tag{4.8}\\
& v \otimes 1_{\mathcal{H}} \mapsto v \otimes \theta_{Q^{\prime}}\left(e_{Q}^{Q^{\prime}}\right): \operatorname{Ind}_{H_{Q^{\prime}}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q^{\prime}}}(\mathcal{V})\right) \xrightarrow{\iota\left(Q, Q^{\prime}\right)} \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right) . \tag{4.9}
\end{align*}
$$

Proof. We have the $\mathcal{H}_{M_{Q}, R^{-} \text {-embedding }}$

$$
v \mapsto v \otimes e_{P}^{Q}: e_{\mathcal{H}_{Q}}(\mathcal{V}) \rightarrow \mathcal{V} \otimes_{\mathcal{H}_{M^{+}}, \theta} \mathcal{H}_{Q}=\operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}_{Q}}(\mathcal{V})
$$

by Lemma ?? (2) as Δ_{M} is orthogonal to $\Delta_{M_{Q}} \backslash \Delta_{M}$. Applying the parabolic induction which is exact, we get the \mathcal{H}-embedding

$$
v \otimes 1_{\mathcal{H}} \mapsto v \otimes e_{P}^{Q} \otimes 1_{\mathcal{H}}: \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right) \rightarrow \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(\operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}_{Q}}(\mathcal{V})\right)
$$

Note that $T_{\tilde{d}}^{M_{Q}} \in \mathcal{H}_{M_{Q}^{+}}$for $d \in \mathbb{W}_{M_{Q}}$. By transitivity of the parabolic induction, it is equal to the \mathcal{H}_{R}-embedding

$$
\begin{equation*}
v \otimes 1_{\mathcal{H}} \mapsto v \otimes \theta_{Q}\left(e_{P}^{Q}\right): \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right) \rightarrow \operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V}) . \tag{4.10}
\end{equation*}
$$

On the other hand we have the \mathcal{H}_{R}-embedding

$$
\begin{equation*}
v \otimes f_{Q \mathcal{U}} \mapsto v \otimes \theta_{Q}\left(e_{P}^{Q}\right): e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}} \rightarrow \operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V}) \tag{4.11}
\end{equation*}
$$

given by the restriction to $e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ of the \mathcal{H}_{R}-isomorphism given in Lemma ?? (1), from $e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{P}^{G} \mathbf{1}\right)^{\mathcal{U}}$ to $\mathcal{V} \otimes_{\mathcal{H}_{M^{+}, \theta}} \mathcal{H}$ sending $v \otimes f_{P \mathcal{U}}$ to $v \otimes 1_{\mathcal{H}}$, noting that $v \otimes f_{Q \mathcal{U}}=$ $\left(v \otimes f_{P \mathcal{U}}\right) \theta_{Q}\left(e_{P}^{Q}\right)$ by Lemma ??, $f_{Q \mathcal{U}}=f_{P \mathcal{U}} \theta_{Q}\left(e_{P}^{Q}\right)$ and $\theta_{Q}\left(e_{P}^{Q}\right)$ acts trivially on $e(\mathcal{V})$ (this is true for $T_{\tilde{d}}$ for $\tilde{d} \in{ }_{1} W_{M_{2}^{\prime}}$). Comparing the embeddings (??) and (??), we get the $\mathcal{H}_{R^{-}}$ isomorphism (??).

We can replace Q by Q^{\prime} in the \mathcal{H}_{R}-homomorphisms (??), (??) and (??). With (??) we see $\operatorname{Ind}_{H_{Q^{\prime}}}^{\mathcal{H}}\left(e_{H_{Q^{\prime}}}(\mathcal{V})\right)$ and $\operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right)$ as $\mathcal{H}_{R^{-}}$-submodules of $\operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V})$. As seen in (??) we have $\theta_{Q^{\prime}}\left(e_{P}^{Q^{\prime}}\right)=\theta_{Q}\left(e_{P}^{Q}\right) \theta_{Q^{\prime}}\left(e_{Q}^{Q^{\prime}}\right)$. We deduce the $\mathcal{H}_{R^{-e m b e d d i n g ~}}(\boldsymbol{?}$? $)$.

By (??) for Q and (??),

$$
f_{Q^{\prime} U}=\sum_{d \in \mathbb{W}^{W_{W}} \mathbb{W}_{Q^{\prime}}} f_{Q U} T_{\tilde{d}}=f_{Q U} \theta_{Q^{\prime}}\left(e_{Q}^{Q^{\prime}}\right)
$$

in $\left(\mathrm{c}-\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$. We deduce that the $\mathcal{H}_{R^{-}}$embedding corresponding to (??) via κ_{Q} and $\kappa_{Q^{\prime}}$ is the \mathcal{H}_{R}-embedding (??).

We recall that Δ_{P} and $\Delta \backslash \Delta_{P}$ are orthogonal and that \mathcal{V} is extensible to \mathcal{H} of extension $e(\mathcal{V})$.

Corollary 4.6. The cokernel of the \mathcal{H}_{R}-map

$$
\oplus_{Q \subsetneq Q^{\prime} \subset G} \operatorname{Ind}_{H_{Q^{\prime}}}^{\mathcal{H}}\left(e_{\text {mathcal } H_{Q^{\prime}}}(\mathcal{V})\right) \rightarrow \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right)
$$

defined by the $\iota\left(Q, Q^{\prime}\right)$, is isomorphic to $e(\mathcal{V}) \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$ via κ_{Q}.
4.2. Invariants in the tensor product. We return to the setting where $P=M N$ is a standard parabolic subgroup of G, σ is a smooth R-representation of M with $P(\sigma)=G$ of extension $e(\sigma)$ to G, and Q a parabolic subgroup of G containing P. We still assume that Δ_{P} and $\Delta \backslash \Delta_{P}$ are orthogonal.

The \mathcal{H}_{R}-modules $e\left(\sigma^{\mathcal{U}_{M}}\right)=e(\sigma)^{\mathcal{U}}$ are equal (Theorem ??). We compute $I_{G}(P, \sigma, Q)^{\mathcal{U}}=$ $\left(e(\sigma) \otimes_{R} \mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$.

Theorem 4.7. The natural linear maps $e(\sigma)^{\mathcal{U}} \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}} \rightarrow\left(e(\sigma) \otimes_{R} \operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ and $e(\sigma)^{\mathcal{U}} \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}} \rightarrow\left(e(\sigma) \otimes_{R} \mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$ are isomorphisms.

Proof. We need some preliminaries. In [?], [?], is introduced a finite free \mathbb{Z}-module \mathfrak{M} (depending on Δ_{Q}) and a \mathcal{B}-equivariant embedding $\mathrm{St}_{Q}^{G} \mathbb{Z} \xrightarrow{\iota} C_{c}^{\infty}(\mathcal{B}, \mathfrak{M})$ (we indicate the coefficient ring in the Steinberg representation) which induces an isomorphism $\left(\mathrm{St}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{B}} \simeq C_{c}^{\infty}(\mathcal{B}, \mathfrak{M})^{\mathcal{B}}$.
Lemma 4.8. (1) $\left(\operatorname{Ind}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{B}}$ is a direct factor of $\operatorname{Ind}_{Q}^{G} \mathbb{Z}$.
(2) $\left(\mathrm{St}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{B}}$ is a direct factor of $\mathrm{St}_{Q}^{G} \mathbb{Z}$.

Proof. (1) [?, Example 2.2].
(2) As \mathfrak{M} is a free \mathbb{Z}-module, $C_{c}^{\infty}(\mathcal{B}, \mathfrak{M})^{\mathcal{B}}$ is a direct factor of $C_{c}^{\infty}(\mathcal{B}, \mathfrak{M})$. Consequently, $\iota\left(\left(\mathrm{St}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{B}}\right)=C_{c}^{\infty}(\mathcal{B}, \mathfrak{M})^{\mathcal{B}}$ is a direct factor of $\iota\left(\mathrm{St}^{G} \mathbb{Z}\right)$. As ι is injective, we get (2).

We prove now Theorem ??. We may and do assume that σ is e-minimal (because $P(\sigma)=$ $\left.P\left(\sigma_{\min }\right), e(\sigma)=e\left(\sigma_{\min }\right)\right)$ so that Δ_{M} and $\Delta \backslash \Delta_{M}$ are orthogonal and we use the same notation as in \S ?? in particular $M_{2}=M_{\Delta \backslash \Delta_{M}}$. Let V be the space of $e(\sigma)$ on which M_{2}^{\prime} acts trivially. The restriction of $\operatorname{Ind}_{Q}^{G} \mathbb{Z}$ to M_{2} is $\operatorname{Ind}_{Q \cap M_{2}}^{M_{2}} \mathbb{Z}$, that of $\mathrm{St}_{Q}^{G} \mathbb{Z}$ is $\mathrm{St}_{Q \cap M_{2}}^{M_{2}} \mathbb{Z}$.

As in [?, Example 2.2],(($\left.\left.\operatorname{Ind}_{Q \cap M_{2}}^{M_{2}} \mathbb{Z}\right) \otimes V\right)^{\mathcal{U}_{M_{2}^{\prime}}} \simeq\left(\operatorname{Ind}_{Q \cap M_{2}}^{M_{2}} \mathbb{Z}\right)^{\mathcal{U}_{M_{2}^{\prime}}} \otimes V$. We have

$$
\left(\operatorname{Ind}_{Q \cap M_{2}}^{M_{2}} \mathbb{Z}\right)^{\mathcal{U}_{M_{2}^{\prime}}}=\left(\operatorname{Ind}_{Q \cap M_{2}}^{M_{2}} \mathbb{Z}\right)^{\mathcal{U}_{M_{2}}}=\left(\operatorname{Ind}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{U}} .
$$

The first equality follows from $M_{2}=\left(Q \cap M_{2}\right) \mathbb{W}_{M_{2}} \mathcal{U}_{M_{2}}, \mathcal{U}_{M_{2}}=Z^{1} \mathcal{U}_{M_{2}^{\prime}}$ and Z^{1} normalizes $\mathcal{U}_{M_{2}^{\prime}}$ and is normalized by $\mathbb{W}_{M_{2}}$. The second equality follows from $\mathcal{U}=\mathcal{U}_{M^{\prime}} \mathcal{U}_{M_{2}}$ and $\operatorname{Ind}_{Q}^{G} \mathbb{Z}$ is trivial on M^{\prime}. Therefore $\left(\left(\operatorname{Ind}_{Q}^{G} \mathbb{Z}\right) \otimes V\right)^{\mathcal{U}_{M_{2}^{\prime}}} \simeq\left(\operatorname{Ind}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{U}} \otimes V$. Taking now fixed points under \mathcal{U}_{M}, as $\mathcal{U}=\mathcal{U}_{M_{2}^{\prime}} \mathcal{U}_{M}$,

$$
\left(\left(\operatorname{Ind}_{Q}^{G} \mathbb{Z}\right) \otimes V\right)^{\mathcal{U}} \simeq\left(\left(\operatorname{Ind}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{U}} \otimes V\right)^{\mathcal{U}_{M}}=\left(\operatorname{Ind}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{U}} \otimes V^{\mathcal{U}_{M}}
$$

The equality uses that the \mathbb{Z}-module $\operatorname{Ind}_{Q}^{G} \mathbb{Z}$ is free. We get the first part of the theorem as $\left(\operatorname{Ind}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{U}} \otimes V^{\mathcal{U}_{M}} \simeq\left(\operatorname{Ind}_{Q}^{G} R\right)^{\mathcal{U}} \otimes_{R} V^{\mathcal{U}_{M}}$.

Tensoring with R the usual exact sequence defining $\mathrm{St}^{G} \mathbb{Z}$ gives an isomorphism $\mathrm{St}^{G} \mathbb{Z} \otimes R \simeq$ $\mathrm{St}^{G}{ }_{Q}^{G} R$ and in loc. cit. it is proved that the resulting map $\mathrm{St}^{G} R \xrightarrow{{ }^{\iota_{R}}} C^{\infty}(\mathcal{B}, \mathfrak{M} \otimes R)$ is also injective. Their proof in no way uses the ring structure of R, and for any \mathbb{Z}-module V, tensoring with V gives a \mathcal{B}-equivariant embedding $\mathrm{St}_{Q}^{G} \mathbb{Z} \otimes V \xrightarrow{\iota_{V}} C_{c}^{\infty}(\mathcal{B}, \mathfrak{M} \otimes V)$. The natural map $\left(\mathrm{St}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{B}} \otimes V \rightarrow \mathrm{St}_{Q}^{G} \mathbb{Z} \otimes V$ is also injective by Lemma ?? (2). Taking \mathcal{B}-fixed points we get inclusions

$$
\begin{equation*}
\left(\mathrm{St}^{G} \mathbb{Z}\right)^{\mathcal{B}} \otimes V \rightarrow\left(\mathrm{St}_{Q}^{G} \mathbb{Z} \otimes V\right)^{\mathcal{B}} \rightarrow C_{c}^{\infty}(\mathcal{B}, \mathfrak{M} \otimes V)^{\mathcal{B}} \simeq \mathfrak{M} \otimes V \tag{4.12}
\end{equation*}
$$

The composite map is surjective, so the inclusions are isomorphisms. The image of ι_{V} consists of functions which are left Z^{0}-invariant, and $\mathcal{B}=Z^{0} \mathcal{U}^{\prime}$ where $\mathcal{U}^{\prime}=G^{\prime} \cap \mathcal{U}$. It follows that ι yields an isomorphism $\left(\mathrm{St}^{G} \mathbb{Z}\right)^{\mathcal{U}^{\prime}} \simeq C_{c}^{\infty}\left(Z^{0} \backslash \mathcal{B}, \mathfrak{M}\right)^{\mathcal{U}^{\prime}}$ again consisting of the constant functions. So that in particular $\left(\mathrm{St}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{U}^{\prime}}=\left(\mathrm{St}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{B}}$ and reasoning as previously we get isomorphisms

$$
\begin{equation*}
\left(\mathrm{St}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{U}^{\prime}} \otimes V \simeq\left(\mathrm{St}_{Q}^{G} \mathbb{Z} \otimes V\right)^{\mathcal{U}^{\prime}} \simeq \mathfrak{M} \otimes V . \tag{4.13}
\end{equation*}
$$

The equality $\left(\mathrm{St}^{G} \mathbb{Z}\right)^{\mathcal{U}^{\prime}}=\left(\mathrm{St}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{B}}$ and the isomorphisms remain true when we replace \mathcal{U}^{\prime} by any group between \mathcal{B} and \mathcal{U}^{\prime}. We apply these results to $\mathrm{St}_{Q \cap M_{2}}^{M_{2}} \mathbb{Z} \otimes V$ to get that the natural map $\left(\mathrm{St}_{Q \cap M_{2}}^{M_{2}} \mathbb{Z}\right)^{\mathcal{U}_{M_{2}^{\prime}}} \otimes V \rightarrow\left(\mathrm{St}_{Q \cap M_{2}}^{M_{2}} \mathbb{Z} \otimes V\right)^{\mathcal{U}_{M_{2}^{\prime}}}$ is an isomorphism and also that $\left(\mathrm{St}_{Q \cap M_{2}}^{M_{2}} \mathbb{Z}\right)^{\mathcal{U}_{M_{2}^{\prime}}}=\left(\mathrm{St}_{Q \cap M_{2}}^{M_{2}} \mathbb{Z}\right)^{\mathcal{U}_{M_{2}}}$. We have $\mathcal{U}=\mathcal{U}_{M^{\prime}} \mathcal{U}_{M_{2}}$ so $\left(\operatorname{St}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{U}}=\left(\operatorname{St}_{Q \cap M_{2}}^{M_{2}} \mathbb{Z}\right)^{\mathcal{U}_{M_{2}}}$ and the
natural map $\left(\mathrm{St}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{U}} \otimes V \rightarrow\left(\mathrm{St}_{Q}^{G} \mathbb{Z} \otimes V\right)^{\mathcal{U}_{M_{2}^{\prime}}}$ is an isomorphism. The \mathbb{Z}-module $\left(\mathrm{St}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{U}}$ is free and the $V^{\mathcal{U}_{M}}=V^{\mathcal{U}}$, so taking fixed points under \mathcal{U}_{M}, we get $\left(\mathrm{St}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{U}} \otimes V^{\mathcal{U}} \simeq\left(\mathrm{St}_{Q}^{G} \mathbb{Z} \otimes V\right)^{\mathcal{U}}$. We have $\mathrm{St}_{Q}^{G} \mathbb{Z} \otimes V=\mathrm{St}_{Q}^{G} R \otimes_{R} V$ and $\left(\mathrm{St}_{Q}^{G} \mathbb{Z}\right)^{\mathcal{U}} \otimes V^{\mathcal{U}}=\left(\mathrm{St}_{Q}^{G} R\right)^{\mathcal{U}} \otimes_{R} V^{\mathcal{U}}$. This ends the proof of the theorem.

Theorem 4.9. The \mathcal{H}_{R}-modules $\left(e(\sigma) \otimes_{R} \operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}=e(\sigma)^{\mathcal{U}} \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ are equal. The \mathcal{H}_{R}-modules $\left(e(\sigma) \otimes_{R} \mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}=e(\sigma)^{\mathcal{U}} \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$ are also equal.

Proof. We already know that the R-modules are equal (Theorem ??). We show that they are equal as \mathcal{H}-modules. The \mathcal{H}_{R}-modules $e(\sigma)^{\mathcal{U}} \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)=e_{\mathcal{H}}\left(\sigma^{\mathcal{U}_{M}}\right)^{\mathcal{U}} \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ are equal (Theorem ??), they are isomorphic to $\operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}\left(\sigma^{\mathcal{U}_{M}}\right)\right)\left(\right.$ Proposition ??), to $\left(\operatorname{Ind}_{Q}^{G}\left(e_{Q}(\sigma)\right)\right)^{\mathcal{U}}$ [?, Proposition 4.4] and to $\left(e(\sigma) \otimes_{R} \operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ [?, Lemma 2.5]). We deduce that the \mathcal{H}_{R}-modules $e(\sigma)^{\mathcal{U}} \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}=\left(e(\sigma) \otimes_{R} \operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ are equal. The same is true when Q is replaced by a parabolic subgroup Q^{\prime} of G containing Q. The representation $e(\sigma) \otimes_{R} \mathrm{St}_{Q}^{G}$ is the cokernel of the natural $R[G]$-map

$$
\oplus_{Q \subsetneq Q^{\prime}} e(\sigma) \otimes_{R} \operatorname{Ind}_{Q^{\prime}}^{G} \mathbf{1} \xrightarrow{\alpha_{Q}} e(\sigma) \otimes_{R} \operatorname{Ind}_{Q}^{G} \mathbf{1}
$$

and the $\mathcal{H}_{R^{\text {-module }}} e(\sigma)^{\mathcal{U}} \otimes_{R}\left(\operatorname{St}_{Q}^{G}\right)^{\mathcal{U}}$ is the cokernel of the natural $\mathcal{H}_{R^{-}}$map

$$
\oplus_{Q \subsetneq Q^{\prime}} e(\sigma)^{\mathcal{U}} \otimes_{R}\left(\operatorname{Ind}_{Q^{\prime}}^{G} \mathbf{1}\right)^{\mathcal{U}} \xrightarrow{\beta_{Q}} e(\sigma)^{\mathcal{U}} \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}
$$

obtained by tensoring (??) by $e(\sigma)^{\mathcal{U}}$ over R, because the tensor product is right exact. The maps $\beta_{Q}=\alpha_{Q}^{U}$ are equal and the R-modules $(\sigma)^{\mathcal{U}} \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}=\left(e(\sigma) \otimes_{R} \mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$ are equal. This implies that the \mathcal{H}_{R}-modules $(\sigma)^{\mathcal{U}} \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}=\left(e(\sigma) \otimes_{R} \mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$ are equal.

Remark 4.10. The proof shows that the representations $e(\sigma) \otimes_{R} \operatorname{Ind}_{Q}^{G} \mathbf{1}$ and $e(\sigma) \otimes \mathrm{St}_{Q}^{G}$ of G are generated by their \mathcal{U}-fixed vectors if the representation σ of M is generated by its $\mathcal{U}_{M^{-}}$ fixed vectors. Indeed, the R-modules $e(\sigma)^{\mathcal{U}}=\sigma^{\mathcal{U}_{M}},\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}_{M_{2}^{\prime}}}=\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ are equal. If $\sigma^{\mathcal{U}_{M}}$ generates σ, then $e(\sigma)$ is generated by $e(\sigma)^{\mathcal{U}}$. The representation $\left.\operatorname{Ind}_{Q}^{G} \mathbf{1}\right|_{M_{2}^{\prime}}$ is generated by $\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ (this follows from the lemma below), we have $G=M M_{2}^{\prime}$ and M_{2}^{\prime} acts trivially on $e(\sigma)$. Therefore the $R[G]$-module generated by $\sigma^{\mathcal{U}} \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ is $e(\sigma) \otimes_{R} \operatorname{Ind}_{Q}^{G} \mathbf{1}$. As $e(\sigma) \otimes_{R} \mathrm{St}_{Q}^{G}$ is a quotient of $e(\sigma) \otimes_{R} \operatorname{Ind}_{Q}^{G} 1$, the $R[G]$-module generated by $\sigma^{\mathcal{U}} \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$ is $e(\sigma) \otimes_{R} \mathrm{St}_{Q}^{G}$.
Lemma 4.11. For any standard parabolic subgroup P of G, the representation $\left.\operatorname{Ind}_{P}^{G} \mathbf{1}\right|_{G^{\prime}}$ is generated by its \mathcal{U}-fixed vectors.

Proof. Because $G=P G^{\prime}$ it suffices to prove that if J is an open compact subgroup of \bar{N} the characteristic function $1_{P J}$ of $P J$ is a finite sum of translates of $1_{P \mathcal{U}}=1_{P \mathcal{U}_{\bar{N}}}$ by G^{\prime}. For $t \in T$ we have $P \mathcal{U} t=P t^{-1} \mathcal{U}_{\bar{N}} t$ and we can choose $t \in T \cap J^{\prime}$ such that $t^{-1} \mathcal{U}_{\bar{N}} t \subset J$.
4.3. General triples. Let $P=M N$ be a standard parabolic subgroup of G. We now investigate situations where Δ_{P} and $\Delta \backslash \Delta_{P}$ are not necessarily orthogonal. Let \mathcal{V} a right $\mathcal{H}_{M, R}$-module.

Definition 4.12. Let $P(\mathcal{V})=M(\mathcal{V}) N(\mathcal{V})$ be the standard parabolic subgroup of G with $\Delta_{P(\mathcal{V})}=\Delta_{P} \cup \Delta_{\mathcal{V}}$ and

$$
\Delta_{\mathcal{V}}=\left\{\alpha \in \Delta \text { orthogonal to } \Delta_{M}, T^{M, *}(z) \text { acts trivially on } \mathcal{V} \text { for all } z \in Z \cap M_{\alpha}^{\prime}\right\}
$$

If Q is a parabolic subgroup of G between P and $P(\mathcal{V})$, the triple (P, \mathcal{V}, Q) called an \mathcal{H}_{R}-triple, defines a right \mathcal{H}_{R}-module $I_{\mathcal{H}}(P, \mathcal{V}, Q)$ equal to

$$
\operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}\left(e(\mathcal{V}) \otimes_{R}\left(\operatorname{St}_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})}\right)^{\mathcal{U}_{M(\mathcal{V})}}\right)=\left(e(\mathcal{V}) \otimes_{R}\left(\operatorname{St}_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})}\right)^{\mathcal{U}_{M(\mathcal{V})}}\right) \otimes_{\mathcal{H}_{M(\mathcal{V})^{+}, R}, \theta} \mathcal{H}_{R}
$$

where $e(\mathcal{V})$ is the extension of \mathcal{V} to $\mathcal{H}_{M(\mathcal{V})}$.
This definition is justified by the fact that $M(\mathcal{V})$ is the maximal standard Levi subgroup of G such that the $\mathcal{H}_{M, R}$-module \mathcal{V} is extensible to $\mathcal{H}_{M(\mathcal{V})}$:

Lemma 4.13. $\Delta_{\mathcal{V}}$ is the maximal subset of $\Delta \backslash \Delta_{P}$ orthogonal to Δ_{P} such that $T_{\lambda}^{M, *}$ acts trivially on \mathcal{V} for all $\lambda \in \Lambda(1) \cap_{1} W_{M_{\mathcal{V}}^{\prime}}$.
Proof. For $J \subset \Delta$ let M_{J} denote the standard Levi subgroup of G with $\Delta_{M_{J}}=J$. The group $Z \cap M_{J}^{\prime}$ is generated by the $Z \cap M_{\alpha}^{\prime}$ for all $\alpha \in J$ (Lemma ??). When J is orthogonal to Δ_{M} and $\lambda \in \Lambda_{M_{J}^{\prime}}(1), \ell_{M}(\lambda)=0$ where ℓ_{M} is the length associated to S_{M}^{aff}, and the map $\lambda \mapsto T_{\lambda}^{M, *}=T_{\lambda}^{M}: \Lambda_{M_{J}^{\prime}}(1) \rightarrow \mathcal{H}_{M}$ is multiplicative.

The following is the natural generalisation of Proposition ?? and Corollary ??. Let Q^{\prime} be a parabolic subgroup of G with $Q \subset Q^{\prime} \subset P(\mathcal{V})$. Applying the results of $\S ? ?$ to $M(\mathcal{V})$ and its standard parabolic subgroups $Q \cap M(\mathcal{V}) \subset Q^{\prime} \cap M(\mathcal{V})$, we have an $\mathcal{H}_{M(\mathcal{V}), R^{\text {-isomorphism }}}$

$$
\begin{gathered}
\operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}_{M(\mathcal{V})}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right)=e_{\mathcal{H}_{Q}}(\mathcal{V}) \otimes_{\mathcal{H}_{M_{Q}^{+}}, \theta} \mathcal{H}_{M(\mathcal{V}), R} \xrightarrow{\kappa_{Q \cap M(\mathcal{V})}} e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})} \mathbf{1}\right)^{\mathcal{U}_{M(\mathcal{V})}} \\
v \otimes 1_{\mathcal{H}} \mapsto v \otimes f_{Q \mathcal{U} \cap M(\mathcal{V})}:
\end{gathered}
$$

and an $\mathcal{H}_{M(\mathcal{V}), R^{-e m b e d d i n g}}$

$$
\begin{aligned}
& \operatorname{Ind}_{\mathcal{H}_{Q^{\prime}}}^{\mathcal{H}_{M(\mathcal{V})}}\left(e_{\mathcal{H}_{Q^{\prime}}}(\mathcal{V})\right) \xrightarrow{\iota\left(Q \cap M(\mathcal{V}), Q^{\prime} \cap M(\mathcal{V})\right)} \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}_{M(\mathcal{V})}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right)} \\
& v \otimes 1_{\mathcal{H}_{M(\mathcal{V})}} \mapsto v \otimes \theta_{Q^{\prime}}^{P(\mathcal{V})}\left(e_{Q}^{Q^{\prime}}\right) .
\end{aligned}
$$

Applying the parabolic induction $\operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}$ which is exact and transitive, we obtain an $\mathcal{H}_{R^{-}}$ isomorphism $\kappa_{Q}=\operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}\left(\kappa_{Q \cap M(\mathcal{V})}\right)$,

$$
\begin{gather*}
\operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right) \xrightarrow{\kappa_{Q}} \operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}\left(e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})} \mathbf{1}_{M_{Q}}\right)^{\mathcal{U}_{M(\mathcal{V})}}\right) \tag{4.14}\\
v \otimes 1_{\mathcal{H}} \mapsto v \otimes f_{Q \mathcal{U}_{M(\mathcal{V})}} \otimes 1_{\mathcal{H}}
\end{gather*}
$$

and an $\mathcal{H}_{R^{\text {-embedding }} \iota\left(Q, Q^{\prime}\right)=\operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}\left(\iota\left(Q, Q^{\prime}\right)^{M(\mathcal{V})}\right), ~(Q) .}$

$$
\begin{equation*}
v \otimes 1_{\mathcal{H}} \mapsto v \otimes \theta_{Q^{\prime}}\left(e_{Q}^{Q^{\prime}}\right): \operatorname{Ind}_{H_{Q^{\prime}}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q^{\prime}}}(\mathcal{V})\right) \xrightarrow{\iota\left(Q, Q^{\prime}\right)} \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right) \tag{4.15}
\end{equation*}
$$

Applying Corollary ?? we obtain:
Theorem 4.14. Let (P, \mathcal{V}, Q) be an \mathcal{H}_{R}-triple. Then, the cokernel of the \mathcal{H}_{R}-map

$$
\oplus_{Q \subsetneq Q^{\prime} \subset P(\mathcal{V})} \operatorname{Ind}_{\mathcal{H}_{Q^{\prime}}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q^{\prime}}}(\mathcal{V})\right) \rightarrow \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right),
$$

defined by the $\iota\left(Q, Q^{\prime}\right)$ is isomorphic to $I_{\mathcal{H}}(P, \mathcal{V}, Q)$ via the \mathcal{H}_{R}-isomorphism κ_{Q}.

Let σ be a smooth R-representation of M and Q a parabolic subgroup of G with $P \subset Q \subset$ $P(\sigma)$.

Remark 4.15. The \mathcal{H}_{R}-module $I_{\mathcal{H}}\left(P, \sigma^{\mathcal{U}_{M}}, Q\right)$ is defined if $\Delta_{Q} \backslash \Delta_{P}$ and Δ_{P} are orthogonal because $Q \subset P(\sigma) \subset P\left(\sigma^{U_{M}}\right)$ (Theorem ??).

We denote here by $P_{\min }=M_{\min } N_{\min }$ the minimal standard parabolic subgroup of G contained in P such that $\sigma=e_{P}\left(\left.\sigma\right|_{M_{\min }}\right)$ (Lemma ??, we drop the index σ). The sets of roots $\Delta_{P_{\min }}$ and $\Delta_{P\left(\left.\sigma\right|_{M_{\min }}\right)} \backslash \Delta_{P_{\min }}$ are orthogonal (Lemma ??). The groups $P(\sigma)=$ $P\left(\left.\sigma\right|_{M_{\text {min }}}\right)$, the representations $e(\sigma)=e\left(\left.\sigma\right|_{M_{\text {min }}}\right)$ of $M(\sigma)$, the representations $I_{G}(P, \sigma, Q)=$ $I_{G}\left(P_{\text {min }},\left.\sigma\right|_{M_{\text {min }}}, Q\right)=\operatorname{Ind}_{P(\sigma)}^{G}\left(e(\sigma) \otimes_{R} \operatorname{St}_{Q}^{P(\sigma)}\right)$ of G, and the R-modules $\sigma^{\mathcal{U}_{M_{\text {min }}}}=\sigma^{\mathcal{U}_{M}}$ are equal. From Theorem ??,

$$
P(\sigma) \subset P\left(\sigma^{\mathcal{U}_{M_{\text {min }}}}\right), \quad e_{\mathcal{H}_{M(\sigma)}}\left(\sigma^{\mathcal{U}_{M_{\text {min }}}}\right)=e(\sigma)^{\mathcal{U}_{M(\sigma)}},
$$

and $P\left(\sigma^{\mathcal{U}_{M(\sigma)}}\right)=P(\sigma)$ if $\sigma^{\mathcal{U}_{M(\sigma)}}$ generates the representation $\left.\sigma\right|_{M_{\text {min }}}$. The \mathcal{H}_{R}-module
is defined because $\Delta_{P_{\min }}$ and $\Delta_{P\left(\sigma^{u_{M_{\min }}}\right.} \backslash \Delta_{P_{\min }}$ are orthogonal and $P \subset Q \subset P(\sigma) \subset$ $P\left(\sigma^{\mathcal{U}_{M_{\text {min }}}}\right)$.

Remark 4.16. If $\sigma^{\mathcal{U}_{M(\sigma)}}$ generates the representation $\left.\sigma\right|_{M_{\text {min }}}$ (in particular if $R=C$ and σ is irrreducible $)$, then $P(\sigma)=P\left(\sigma^{\mathcal{U}_{M_{\text {min }}}}\right)$ hence

$$
I_{\mathcal{H}}\left(P_{\text {min }}, \sigma^{\mathcal{U}_{M_{\text {min }}}}, Q\right)=\operatorname{Ind}_{\mathcal{H}_{M(\sigma)}}^{\mathcal{H}}\left(e_{\mathcal{H}_{M(\sigma)}}\left(\sigma^{\mathcal{U}_{M_{\text {min }}}}\right) \otimes_{R}\left(\mathrm{St}_{Q \cap M(\sigma)}^{M(\sigma)}\right)^{\mathcal{U}_{M(\sigma)}}\right) .
$$

Applying Theorem ?? to $\left(P_{\min } \cap M(\sigma),\left.\sigma\right|_{M_{\text {min }}}, Q \cap M(\sigma)\right)$, the $\mathcal{H}_{M(\sigma), R}$-modules

$$
\begin{equation*}
e_{\mathcal{H}_{M(\sigma)}}\left(\sigma^{\mathcal{U}_{M_{\text {min }}}}\right) \otimes_{R}\left(\mathrm{St}_{Q \cap M(\sigma)}^{M(\sigma)}\right)^{\mathcal{U}_{M(\sigma)}}=\left(e_{M(\sigma)}(\sigma) \otimes_{R} \mathrm{St}_{Q \cap M(\sigma)}^{M(\sigma)}\right)^{\mathcal{U}_{M(\sigma)}} \tag{4.16}
\end{equation*}
$$

are equal. We have the \mathcal{H}_{R}-isomorphism [?, Proposition 4.4]:

$$
\begin{aligned}
I_{G}(P, \sigma, Q)^{\mathcal{U}}=\left(\operatorname{Ind}_{P(\sigma)}^{G}\left(e(\sigma) \otimes_{R} \operatorname{St}_{Q}^{P(\sigma)}\right)\right)^{\mathcal{U}} \xrightarrow{o v} \operatorname{Ind}_{\mathcal{H}_{M(\sigma)}}^{\mathcal{H}}\left(\left(e(\sigma) \otimes_{R} \operatorname{St}_{Q \cap M(\sigma)}^{M(\sigma)}\right)^{\mathcal{U}_{M(\sigma)}}\right) \\
f_{P(\sigma) \mathcal{U}, x} \mapsto x \otimes 1_{\mathcal{H}} \quad\left(x \in\left(e(\sigma) \otimes_{R} \operatorname{St}_{Q \cap M(\sigma)}^{M(\sigma)}\right)^{\left.\mathcal{U}_{M(\sigma)}\right) .}\right.
\end{aligned}
$$

We deduce:
Theorem 4.17. Let (P, σ, Q) be a $R[G]$-triple. Then, we have the \mathcal{H}_{R}-isomorphism

$$
I_{G}(P, \sigma, Q)^{\mathcal{U}} \xrightarrow{o v} \operatorname{Ind}_{\mathcal{H}_{M(\sigma)}}^{\mathcal{H}}\left(e_{\mathcal{H}_{M(\sigma)}}\left(\sigma^{\mathcal{U}_{M_{\text {min }}}}\right) \otimes_{R}\left(\mathrm{St}_{Q \cap M(\sigma)}^{M(\sigma)}\right)^{\mathcal{U}_{M(\sigma)}}\right) .
$$

In particular,

$$
I_{G}(P, \sigma, Q)^{\mathcal{U}} \simeq\left\{\begin{array}{ll}
I_{\mathcal{H}}\left(P_{\min }, \sigma^{\mathcal{U}_{M_{\min }}}, Q\right) & \text { if } P(\sigma)=P\left(\sigma^{\mathcal{U}_{M_{\min }}}\right) \\
I_{\mathcal{H}}\left(P, \sigma^{\mathcal{U}_{M}}, Q\right) & \text { if } P=P_{\min }, P(\sigma)=P\left(\sigma^{\mathcal{U}_{M}}\right)
\end{array} .\right.
$$

4.4. Comparison of the parabolic induction and coinduction. Let $P=M N$ be a standard parabolic subgroup of G, \mathcal{V} a right \mathcal{H}_{R}-module and Q a parabolic subgroup of G with $Q \subset P(\mathcal{V})$. When $R=C$, in [?], we associated to (P, \mathcal{V}, Q) an \mathcal{H}_{R}-module using the parabolic coinduction

$$
\operatorname{Coind}_{\mathcal{H}_{M}}^{\mathcal{H}}(-)=\operatorname{Hom}_{\mathcal{H}_{M^{-}, \theta^{*}}}(\mathcal{H},-): \operatorname{Mod}_{R}\left(\mathcal{H}_{M}\right) \rightarrow \operatorname{Mod}_{R}(\mathcal{H})
$$

instead of the parabolic induction $\operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}}(-)=-\otimes_{\mathcal{H}_{M^{+}}, \theta} \mathcal{H}$. The index θ^{*} in the parabolic coinduction means that $\mathcal{H}_{M_{Q}^{-}}$embeds in \mathcal{H} by θ_{Q}^{*}. Our terminology is different from the one in [?] where the parabolic coinduction is called induction. For a parabolic subgroup Q^{\prime} of G with $Q \subset Q^{\prime} \subset P(\mathcal{V})$, there is a natural inclusion of \mathcal{H}_{R}-modules [?, Proposition 4.19]

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{H}_{M_{Q^{\prime}}^{-,} \theta^{*}}}\left(\mathcal{H}, e_{\mathcal{H}_{Q^{\prime}}}(\mathcal{V})\right) \xrightarrow{i\left(Q, Q^{\prime}\right)} \operatorname{Hom}_{\mathcal{H}_{M_{Q}^{-}, \theta^{*}}}\left(\mathcal{H}, e_{\mathcal{H}_{Q}}(\mathcal{V})\right) . \tag{4.17}
\end{equation*}
$$

because $\theta^{*}\left(\mathcal{H}_{M_{Q}^{-}}\right) \subset \theta^{*}\left(\mathcal{H}_{M_{Q^{\prime}}^{-}}\right)$as $W_{M_{Q}^{-}}(1) \subset W_{M_{Q^{\prime}}^{-}}(1)$, and $v T_{w}^{M_{Q^{\prime}} *}=v T_{w}^{M_{Q} *}$ for $w \in$ $W_{M_{Q}^{-}}(1)$ and $v \in \mathcal{V}$.

Definition 4.18. Let $C I_{\mathcal{H}}(P, \mathcal{V}, Q)$ denote the cokernel of the map

$$
\oplus_{Q \subseteq Q^{\prime} \subset P(\mathcal{V})} \operatorname{Hom}_{\mathcal{H}_{M_{Q^{\prime}}^{-}, \theta^{*}}}\left(\mathcal{H}, e_{\mathcal{H}_{Q^{\prime}}}(\mathcal{V})\right) \rightarrow \operatorname{Hom}_{\mathcal{H}_{M_{Q}^{-}, \theta^{*}}}\left(\mathcal{H}, e_{\mathcal{H}_{Q}}(\mathcal{V})\right)
$$

defined by the $\mathcal{H}_{R^{-}}$-embeddings $i\left(Q, Q^{\prime}\right)$.
When $R=C$, we showed that the \mathcal{H}_{C}-module $\mathcal{C} I_{\mathcal{H}}(P, \mathcal{V}, Q)$ is simple when \mathcal{V} is simple and supersingular (Definition ??), and that any simple $\mathcal{H}_{C^{-}}$-module is of this form for a $\mathcal{H}_{C^{-}}$ triple (P, \mathcal{V}, Q) where \mathcal{V} is simple and supersingular, P, Q and the isomorphism class of \mathcal{V} are unique [?]. The aim of this section is to compare the $\mathcal{H}_{R^{-}}$modules $I_{\mathcal{H}}(P, \mathcal{V}, Q)$ with the $\mathcal{H}_{R^{-}}$ modules $C I_{\mathcal{H}}(P, \mathcal{V}, Q)$ and to show that the classification is also valid with the \mathcal{H}_{C}-modules $\mathcal{I}_{\mathcal{H}}(P, \mathcal{V}, Q)$.

It is already known that a parabolically coinduced module is a parabolically induced module and vice versa [?] [?]. To make it more precise we need to introduce notations.

We lift the elements w of the finite Weyl group \mathbb{W} to $\hat{w} \in \mathcal{N}_{G} \cap \mathcal{K}$ as in [?, IV.6], [?, Proposition 2.7]: they satisfy the braid relations $\hat{w}_{1} \hat{w}_{2}=\left(w_{1} w_{2}\right)^{\text {c }}$ when $\ell\left(w_{1}\right)+\ell\left(w_{2}\right)=$ $\ell\left(w_{1} w_{2}\right)$ and when $s \in S, \hat{s}$ is admissible, in particular lies in ${ }_{1} W_{G^{\prime}}$.

Let $\mathbf{w}, \mathbf{w}_{M}, \mathbf{w}^{M}$ denote respectively the longest elements in $\mathbb{W}, \mathbb{W}_{M}$ and $\mathbf{w} \mathbf{w}_{M}$. We have $\mathbf{w}=\mathbf{w}^{-1}=\mathbf{w}^{M} \mathbf{w}_{M}, \mathbf{w}_{M}=\mathbf{w}_{M}^{-1}, \hat{\mathbf{w}}=\hat{\mathbf{w}}^{M} \hat{\mathbf{w}}_{M}$,

$$
\mathbf{w}^{M}\left(\Delta_{M}\right)=-\mathbf{w}\left(\Delta_{M}\right) \subset \Delta, \quad \mathbf{w}^{M}\left(\Phi^{+} \backslash \Phi_{M}^{+}\right)=\mathbf{w}\left(\Phi^{+} \backslash \Phi_{M}^{+}\right) .
$$

Let $\mathbf{w} \cdot M$ be the standard Levi subgroup of G with $\Delta_{\mathbf{w} \cdot M}=\mathbf{w}^{M}\left(\Delta_{M}\right)$ and $\mathbf{w} \cdot P$ the standard parabolic subgroup of G with Levi w.M. We have

$$
\mathbf{w} \cdot M=\hat{\mathbf{w}}^{M} M\left(\hat{\mathbf{w}}^{M}\right)^{-1}=\hat{\mathbf{w}} M(\hat{\mathbf{w}})^{-1}, \quad \mathbf{w}^{\mathbf{w} \cdot M}=\mathbf{w}_{M} \mathbf{w}=\left(\mathbf{w}^{M}\right)^{-1} .
$$

The conjugation $w \mapsto \mathbf{w}^{M} w\left(\mathbf{w}^{M}\right)^{-1}$ in W gives a group isomorphism $W_{M} \rightarrow W_{\mathbf{w} . M}$ sending $S_{M}^{\text {aff }}$ onto $S_{\mathbf{w} \cdot M}^{\text {aff }}$, respecting the finite Weyl subgroups $\mathbf{w}^{M} \mathbb{W}_{M}\left(\mathbf{w}^{M}\right)^{-1}=\mathbb{W}_{\mathbf{w} \cdot M}=\mathbf{w}_{\mathbb{W}_{M}} \mathbf{w}^{-1}$, and echanging $W_{M^{+}}$and $W_{(\mathbf{w} \cdot M)^{-}}=\mathbf{w} W_{M^{+}} \mathbf{w}^{-1}$. The conjugation by $\tilde{\mathbf{w}}^{M}$ restricts to a group isomorphism $W_{M}(1) \rightarrow W_{\mathbf{w} . M}(1)$ sending $W_{M^{+}}(1)$ onto $W_{(\mathbf{w} . M)^{-}}(1)$. The linear isomorphism

$$
\begin{equation*}
\mathcal{H}_{M} \xrightarrow{\ell\left(\tilde{\mathbf{w}}^{M}\right)} \mathcal{H}_{\mathbf{w} \cdot M} \quad T_{w}^{M} \mapsto T_{\tilde{\mathbf{w}}^{M} w\left(\tilde{\mathbf{w}}^{M}\right)^{-1}}^{\mathbf{w}} \text { for } w \in W_{M}(1), \tag{4.18}
\end{equation*}
$$

is a ring isomorphism between the pro- p-Iwahori Hecke rings of M and w. M. It sends the positive part $\mathcal{H}_{M^{+}}$of \mathcal{H}_{M} onto the negative part $\mathcal{H}_{(\mathbf{w} . M)^{-}}$of $\mathcal{H}_{\mathbf{w} . M}$ [?, Proposition 2.20]. We have $\tilde{\mathbf{w}}=\tilde{\mathbf{w}}_{M} \tilde{\mathbf{w}}^{\mathbf{w} \cdot M}=\tilde{\mathbf{w}}^{M} \tilde{\mathbf{w}}_{M},\left(\tilde{\mathbf{w}}^{M}\right)^{-1}=\tilde{\mathbf{w}}^{\mathbf{w} . M} t_{M}$ where $t_{M}=\tilde{\mathbf{w}}^{2} \tilde{\mathbf{w}}_{M}^{-2} \in Z_{k}$.
Definition 4.19. The twist $\tilde{\mathbf{w}}^{M} . \mathcal{V}$ of \mathcal{V} by $\tilde{\mathbf{w}}^{M}$ is the right $\mathcal{H}_{\mathbf{w} . M^{-} \text {-module deduced from }}$ the right \mathcal{H}_{M}-module \mathcal{V} by functoriality: as R-modules $\tilde{\mathbf{w}}^{M} \cdot \mathcal{V}=\mathcal{V}$ and for $v \in \mathcal{V}, w \in W_{M}(1)$ we have $v T_{\tilde{\mathbf{w}}^{M} w\left(\tilde{\mathbf{w}}^{M}\right)^{-1}}^{\mathbf{w}}=v T_{w}^{M}$.

We can define the twist $\tilde{\mathbf{w}}^{M} \cdot \mathcal{V}$ of \mathcal{V} with the $T_{w}^{M, *}$ instead of T_{w}^{M}.

Proof. By the ring isomorphism $\mathcal{H}_{M} \xrightarrow{\iota\left(\tilde{\mathbf{w}}^{M}\right)} \mathcal{H}_{\mathbf{w} . M}$, we have $c_{\left.\tilde{\mathbf{w}}^{\mathbf{w}} \cdot M \tilde{(} \tilde{\mathbf{w}}^{M}\right)^{-1}}=c_{\tilde{s}}^{M}$ when $\tilde{s} \in$ $W_{M}(1)$ lifts $s \in S_{M}^{\text {aff }}$. So the equality of the lemma is true for $w=\tilde{s}$. Apply the braid relations to get the equality for all $w \in W_{M}(1)$.

We return to the $\left.\mathcal{H}_{R^{-} \text {-module }} \operatorname{Hom}_{\mathcal{H}_{M^{-}, \theta^{*}}} \mathcal{H}, V\right)$ parabolically coinduced from \mathcal{V}. It has a natural direct decomposition indexed by the set $\mathbb{W}^{\mathbb{W}_{M}}$ of elements d in the finite Weyl group \mathbb{W} of minimal length in the coset $d \mathbb{W}_{M}$. Indeed it is known that the linear map

$$
f \mapsto\left(f\left(T_{\tilde{d}}\right)\right)_{d \in \mathbb{W}^{W} \mathbb{W}_{M}}: \operatorname{Hom}_{\mathcal{H}_{M^{-}}, \theta^{*}}(\mathcal{H}, \mathcal{V}) \rightarrow \oplus_{d \in \mathbb{W}^{W}{ }_{M}} \mathcal{V}
$$

is an isomorphism. For $v \in \mathcal{V}$ and $d \in \mathbb{W}^{\mathbb{W}_{M}}$, there is a unique element

$$
f_{\tilde{d}, v} \in \operatorname{Hom}_{\mathcal{H}_{M^{-}}, \theta^{*}}(\mathcal{H}, \mathcal{V}) \text { satisfying } f\left(T_{\tilde{d}}\right)=v \text { and } f\left(T_{\tilde{d}^{\prime}}\right)=0 \text { for } d^{\prime} \in \mathbb{W}^{\mathbb{W}_{M}} \backslash\{d\} .
$$

It is known that the map $v \mapsto f_{\tilde{\mathbf{w}}^{M}, v}: \tilde{\mathbf{w}}^{M} . \mathcal{V} \rightarrow \operatorname{Hom}_{\mathcal{H}_{M^{-}}, \theta^{*}}(\mathcal{H}, \mathcal{V})$ is $\mathcal{H}_{(\mathbf{w} . M)^{+}}$-equivariant: $f_{\tilde{\mathbf{w}}}{ }^{M}, v T_{w}^{\mathbf{w}}, M=f_{\tilde{\mathbf{w}} M, v} T_{w}$ for all $v \in \mathcal{V}, w \in W_{\mathbf{w} \cdot M^{+}}(1)$. By adjunction, this $\mathcal{H}_{(\mathbf{w} . M)^{+-}}$equivariant map gives an \mathcal{H}_{R}-homomorphism from an induced module to a coinduced module:

$$
\begin{equation*}
v \otimes 1_{\mathcal{H}} \mapsto f_{\tilde{\mathbf{w}}^{M}, v}: \tilde{\mathbf{w}}^{M} . \mathcal{V} \otimes \mathcal{H}_{(\mathbf{w} \cdot M)^{+}, \theta} \mathcal{H} \xrightarrow{\mu_{P}} \operatorname{Hom}_{\mathcal{H}_{M^{-}}, \theta^{*}}(\mathcal{H}, \mathcal{V}) . \tag{4.19}
\end{equation*}
$$

This is an isomorphism [?], [?] .
The naive guess that a variant μ_{Q} of μ_{P} induces an $\mathcal{H}_{R^{-}}$-isomorphism between the $\mathcal{H}_{R^{-}}$ modules $I_{\mathcal{H}}\left(\mathbf{w} \cdot P, \tilde{\mathbf{w}}^{M} \cdot \mathcal{V}, \mathbf{w} \cdot Q\right)$ and $C I_{\mathcal{H}}(P, \mathcal{V}, Q)$ turns out to be true. The proof is the aim of the rest of this section.

The \mathcal{H}_{R}-module $I_{\mathcal{H}}\left(\mathbf{w} \cdot P, \tilde{\mathbf{w}}^{M} \cdot \mathcal{V}, \mathbf{w} \cdot Q\right)$ is well defined because the parabolic subgroups of G containing w. P and contained in $P\left(\tilde{\mathbf{w}}^{M} \cdot \mathcal{V}\right)$ are $\mathbf{w} \cdot Q$ for $P \subset Q \subset P(\mathcal{V})$, as follows from:
Lemma 4.21. $\Delta_{\tilde{\mathbf{w}}^{M}, \mathcal{V}}=-\mathbf{w}\left(\Delta_{\mathcal{V}}\right)$.
Proof. Recall that $\Delta_{\mathcal{V}}$ is the set of simple roots $\alpha \in \Delta \backslash \Delta_{M}$ orthogonal to Δ_{M} and $T^{M, *}(z)$ acts trivially on \mathcal{V} for all $z \in Z \cap M_{\alpha}^{\prime}$, and the corresponding standard parabolic subgroup $P_{\mathcal{V}}=M_{\mathcal{V}} N_{\mathcal{V}}$. The $Z \cap M_{\alpha}^{\prime}$ for $\alpha \in \Delta_{\mathcal{V}}$ generate the group $Z \cap M_{\mathcal{V}}^{\prime}$. A root $\alpha \in \Delta \backslash \Delta_{M}$ orthogonal to Δ_{M} is fixed by \mathbf{w}_{M} so $\mathbf{w}^{M}(\alpha)=\mathbf{w}(\alpha)$ and

$$
\hat{\mathbf{w}}^{M} M_{\mathcal{V}}\left(\hat{\mathbf{w}}^{M}\right)^{-1}=\hat{\mathbf{w}} M_{\mathcal{V}}(\hat{\mathbf{w}})^{-1} .
$$

The proof of Lemma ?? is straightforward as $\Delta=-\mathbf{w}(\Delta), \Delta_{\mathbf{w} \cdot M}=-\mathbf{w}\left(\Delta_{M}\right)$.
Before going further, we check the commutativity of the extension with the twist. As $Q=M_{Q} U$ and M_{Q} determine each other we denote $\mathbf{w}_{M_{Q}}=\mathbf{w}_{Q}, \mathbf{w}^{M_{Q}}=\mathbf{w}^{Q}$ when $Q \neq P, G$.

Lemma 4.22. $e_{\mathcal{H}_{\mathbf{w} . Q}}\left(\tilde{\mathbf{w}}^{M} \cdot \mathcal{V}\right)=\tilde{\mathbf{w}}^{Q} . e_{\mathcal{H}_{Q}}(\mathcal{V})$.
Proof. As R-modules $\mathcal{V}=e_{\mathcal{H}_{\mathbf{w} . Q}}\left(\tilde{\mathbf{w}}^{M} . \mathcal{V}\right)=\tilde{\mathbf{w}}^{Q} . e_{\mathcal{H}_{Q}}(\mathcal{V})$. A direct computation shows that the Hecke element $T_{w}^{\mathbf{w} \cdot Q, *}$ acts in the \mathcal{H}_{R}-module $e_{\mathcal{H}_{\mathbf{w} \cdot Q}}\left(\tilde{\mathbf{w}}^{M} . \mathcal{V}\right)$, by the identity if $w \in$ $\tilde{\mathbf{w}}^{Q} W_{M_{2}^{\prime}}\left(\mathbf{w}^{Q}\right)^{-1}$ and by $T_{\left(\tilde{\mathbf{w}}^{Q}\right)^{-1} w \tilde{\mathbf{w}}^{Q}}^{M, *}$ if $w \in \tilde{\mathbf{w}}^{Q}{ }_{1} W_{M_{2}^{\prime}}\left(\mathbf{w}^{Q}\right)^{-1}$ where M_{2} denotes the standard Levi subgroup with $\Delta_{M_{2}}=\Delta_{Q} \backslash \Delta_{P}$. Whereas in the \mathcal{H}_{R}-module $\tilde{\mathbf{w}}^{Q} . e_{\mathcal{H}_{Q}}(\mathcal{V})$, the Hecke element $T_{w}^{\mathbf{w} \cdot Q, *}$ acts by the identity if $w \in{ }_{1} W_{\mathbf{w} \cdot M_{2}^{\prime}}$ and by $T_{\left(\tilde{\mathbf{w}}^{M}\right)^{-1} w \tilde{\mathbf{w}}^{M}}^{M, *}$ if $w \in W_{\mathbf{w} \cdot M}(1)$. So the lemma means that

$$
{ }_{1} W_{\mathbf{w} \cdot M_{2}^{\prime}}=\tilde{\mathbf{w}}^{Q}{ }_{1} W_{M_{2}^{\prime}}\left(\mathbf{w}^{Q}\right)^{-1}, \quad\left(\tilde{\mathbf{w}}^{Q}\right)^{-1} w \tilde{\mathbf{w}}^{Q}=\left(\tilde{\mathbf{w}}^{M}\right)^{-1} w \tilde{\mathbf{w}}^{M} \text { if } w \in W_{\mathbf{w} \cdot M}(1)
$$

These properties are easily proved using that ${ }_{1} W_{G^{\prime}}$ is normal in $W(1)$ and that the sets of roots Δ_{P} and $\Delta_{Q} \backslash \Delta_{P}$ are orthogonal: $\mathbf{w}_{Q}=\mathbf{w}_{M_{2}} \mathbf{w}_{M}$, the elements $\mathbf{w}_{M_{2}}$ and \mathbf{w}_{M} normalise W_{M} and $W_{M_{2}}$, the elements of $\mathbb{W}_{M_{2}}$ commutes with the elements of \mathbb{W}_{M}.

We return to our guess. The variant μ_{Q} of μ_{P} is obtained by combining the commutativity of the extension with the twist and the isomorphism ?? applied to $\left(Q, e_{\mathcal{H}_{Q}}(\mathcal{V})\right)$ instead of (P, \mathcal{V}). The \mathcal{H}_{R}-isomorphism μ_{Q} is:

$$
\begin{equation*}
v \otimes 1_{\mathcal{H}} \mapsto f_{\tilde{\mathbf{w}}^{M}, v}: \operatorname{Ind}_{\mathcal{H}_{\mathbf{w} \cdot M_{Q}}^{\mathcal{H}}}\left(e_{\mathcal{H}_{\mathbf{w} \cdot Q}}\left(\tilde{\mathbf{w}}^{M} . \mathcal{V}\right)\right) \xrightarrow{\mu_{Q}} \operatorname{Hom}_{\mathcal{H}_{M_{Q}^{-}}, \theta^{*}}\left(\mathcal{H}, e_{\mathcal{H}_{Q}}(\mathcal{V})\right) . \tag{4.20}
\end{equation*}
$$

Our guess is that μ_{Q} induces an \mathcal{H}_{R}-isomorphism from the cokernel of the \mathcal{H}_{R}-map

$$
\oplus_{Q \subsetneq Q^{\prime} \subset P(\mathcal{V})} \operatorname{Ind}_{\mathcal{H}_{\mathbf{w} \cdot Q^{\prime}}^{\mathcal{H}}}\left(e_{\mathcal{H}_{\mathbf{w} \cdot Q^{\prime}}}\left(\tilde{\mathbf{w}}^{M} . \mathcal{V}\right)\right) \rightarrow \operatorname{Ind}_{\mathcal{H}_{\mathbf{w} \cdot Q}}^{\mathcal{H}}\left(e_{\mathcal{H} \mathbf{w} \cdot Q}\left(\tilde{\mathbf{w}}^{M} . \mathcal{V}\right)\right)
$$

defined by the \mathcal{H}_{R}-embeddings $\iota\left(\mathbf{w} \cdot Q, \mathbf{w} \cdot Q^{\prime}\right)$, isomorphic to $I_{\mathcal{H}}\left(\mathbf{w} \cdot P, \tilde{\mathbf{w}}^{M} \mathcal{V}, \mathbf{w} \cdot \bar{Q}\right)$ via $\kappa_{\mathbf{w} \cdot Q}$ (Theorem ??), onto the cokernel $C I_{\mathcal{H}}(P, \mathcal{V}, Q)$ the \mathcal{H}_{R}-map

$$
\oplus_{Q \subsetneq Q^{\prime} \subset P(\mathcal{V})} \operatorname{Hom}_{\mathcal{H}_{M_{Q^{\prime}}^{-}, \theta^{*}}}\left(\mathcal{H}, e_{\mathcal{H}_{Q^{\prime}}}(\mathcal{V})\right) \rightarrow \operatorname{Hom}_{\mathcal{H}_{M_{Q}^{-}, \theta^{*}}}\left(\mathcal{H}, e_{\mathcal{H}_{Q}}(\mathcal{V})\right)
$$

defined by the \mathcal{H}_{R}-embeddings $i\left(Q, Q^{\prime}\right)$. This is true if $i\left(Q, Q^{\prime}\right)$ corresponds to $\iota\left(\mathbf{w} \cdot Q, \mathbf{w} \cdot Q^{\prime}\right)$ via the isomorphisms $\mu_{Q^{\prime}}$ and μ_{Q}. This is the content of the next proposition.
Proposition 4.23. For all $Q \subsetneq Q^{\prime} \subset P(\mathcal{V})$ we have

$$
i\left(Q, Q^{\prime}\right) \circ \mu_{Q^{\prime}}=\mu_{Q} \circ \iota\left(\mathbf{w} \cdot Q, \mathbf{w} \cdot Q^{\prime}\right)
$$

We postpone to section $\S ? ?$ the rather long proof of the proposition.
Corollary 4.24. The \mathcal{H}_{R}-isomorphism $\mu_{Q} \circ \kappa_{\mathbf{w} . Q}^{-1}$ induces an \mathcal{H}_{R}-isomorphism

$$
I_{\mathcal{H}}\left(\mathbf{w} \cdot P, \tilde{\mathbf{w}}^{M} \mathcal{V}, \mathbf{w} \cdot \bar{Q}\right) \rightarrow C I_{\mathcal{H}}(P, \mathcal{V}, Q)
$$

4.5. Supersingular \mathcal{H}_{R}-modules, classification of simple \mathcal{H}_{C}-modules. We recall first the notion of supersingularity based on the action of center of \mathcal{H}.

The center of $\mathcal{H}[?$, Theorem 1.3$]$ contains a subalgebra $\mathcal{Z}_{T^{+}}$isomorphic to $\mathbb{Z}\left[T^{+} / T_{1}\right]$ where T^{+}is the monoid of dominant elements of T and T_{1} is the pro- p-Sylow subgroup of the maximal compact subgroup of T.

Let $t \in T$ of image $\mu_{t} \in W(1)$ and let $\left(E_{o}(w)\right)_{w \in W(1)}$ denote the alcove walk basis of \mathcal{H} associated to a closed Weyl chamber o of \mathbb{W}. The element

$$
E_{o}\left(C\left(\mu_{t}\right)\right)=\sum_{\mu^{\prime}} E_{o}\left(\mu^{\prime}\right)
$$

is the sum over the elements in μ^{\prime} in the conjugacy class $C\left(\mu_{t}\right)$ of μ_{t} in $W(1)$. It is a central element of \mathcal{H} and does not depend on the choice of o. We write also $z(t)=E_{o}\left(C\left(\mu_{t}\right)\right)$.
Definition 4.25. A non-zero right \mathcal{H}_{R}-module \mathcal{V} is called supersingular when, for any $v \in \mathcal{V}$ and any non-invertible $t \in T^{+}$, there exists a positive integer $n \in \mathbb{N}$ such that $v(z(t))^{n}=0$. If one can choose n independent on (v, t), then \mathcal{V} is called uniformly supersingular.
Remark 4.26. One can choose n independent on (v, t) when \mathcal{V} is finitely generated as a right \mathcal{H}_{R}-module. If R is a field and \mathcal{V} is simple we can take $n=1$.

When G is compact modulo the center, $T^{+}=T$, and any non-zero $\mathcal{H}_{R^{-}}$module is supersingular.

The induction functor $\operatorname{Ind}_{\mathcal{H}_{M}}^{\mathcal{H}}: \operatorname{Mod}\left(\mathcal{H}_{M, R}\right) \rightarrow \operatorname{Mod}\left(\mathcal{H}_{R}\right)$ has a left adjoint $\mathcal{L}_{\mathcal{H}_{M}}^{\mathcal{H}}$ and a right adjoint $\mathcal{R}_{\mathcal{H}_{M}}^{\mathcal{H}}$ [?]: for $\mathcal{V} \in \operatorname{Mod}\left(\mathcal{H}_{R}\right)$,

$$
\begin{equation*}
\mathcal{L}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V})=\tilde{\mathbf{w}}^{\mathbf{w} \cdot M} \circ\left(\mathcal{V} \otimes_{\mathcal{H}_{(\mathbf{w} . M)^{-}}, \theta^{*}} \mathcal{H}_{\mathbf{w} \cdot M}\right), \quad \mathcal{R}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V})=\operatorname{Hom}_{\mathcal{H}_{M^{+}}, \theta}\left(\mathcal{H}_{M}, \mathcal{V}\right) . \tag{4.21}
\end{equation*}
$$

In the left adjoint, \mathcal{V} is seen as a right $\mathcal{H}_{(\mathbf{w} . M)^{-}-\text {module }}$ via the ring homomorphism $\theta_{\mathrm{w} . M}^{*}: \mathcal{H}_{(\mathrm{w} . M)^{-}} \rightarrow \mathcal{H}$; in the right adjoint, \mathcal{V} is seen as a right $\mathcal{H}_{M^{+}}$module via the ring homomorphism $\theta_{M}: \mathcal{H}_{M^{+}} \rightarrow \mathcal{H}$ (§??).

Proposition 4.27. Assume that \mathcal{V} is a supersingular right \mathcal{H}_{R}-module and that p is nilpotent in \mathcal{V}. Then $\mathcal{L}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V})=0$, and if \mathcal{V} is uniformly supersingular $\mathcal{R}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V})=0$.
Proof. This is a consequence of three known properties:
(1) \mathcal{H}_{M} is the localisation of $\mathcal{H}_{M^{+}}$(resp. $\mathcal{H}_{M^{-}}$) at T_{μ}^{M} for any element $\mu \in \Lambda_{T}(1)$, central in $W_{M}(1)$ and strictly N-positive (resp. N-negative), and $T_{\mu}^{M}=T_{\mu}^{M, *}$. See [?, Theorem 1.4].
(2) When o is anti-dominant, $E_{o}(\mu)=T_{\mu}$ if $\mu \in \Lambda^{+}(1)$ and $E_{o}(\mu)=T_{\mu}^{*}$ if $\mu \in \Lambda^{-}(1)$.
(3) Let an integer $n>0$ and $\mu \in \Lambda(1)$ such that the \mathbb{W}-orbit of $v(\mu) \in X_{*}(T) \otimes \mathbb{Q}$ (Definition in §??) and of μ have the same number of elements. Then

$$
\left(E_{o}(C(\mu))\right)^{n} E_{o}(\mu)-E_{o}(\mu)^{n+1} \in p \mathcal{H} .
$$

See [?, Lemma 6.5], where the hypotheses are given in the proof (but not written in the lemma).
Let $\mu \in \Lambda_{T}^{+}$(1) satisfying (1) for M^{+}and (3), similarly let $\mathbf{w} . \mu \in \Lambda_{T}^{-}(1)$ satisfying (1) for $(\mathbf{w} \cdot M)^{-}$and (3). For (R, \mathcal{V}) as in the proposition, let $v \in \mathcal{V}$ and $n>0$ such that $v E_{o}(C(\mu))^{n}=v E_{o}(C(\mathbf{w} \cdot \mu))^{n}=0$. Multiplying by $E_{o}(\mu)$ or $E_{o}(\mathbf{w} \cdot \mu)$, and applying (3) and (2) for o anti-dominant we get:

$$
v E_{o}\left(\mu^{n+1}\right)=v T_{\mu}^{n+1} \in p \mathcal{V}, \quad v E_{o}\left((\mathbf{w} \cdot \mu)^{n+1}\right)=v\left(T_{\mathbf{w} \cdot \mu}^{*}\right)^{n+1} \in p \mathcal{V} .
$$

The proposition follows from: $v T_{\mu}^{n+1}, v\left(T_{\mathbf{w} . \mu}^{*}\right)^{n+1}$ in $p \mathcal{V}$ (as explained in [?, Proposition 5.17] when $p=0$ in R. From $v\left(T_{\mathbf{w} . \mu}^{*}\right)^{n+1}$ in $p \mathcal{V}$, we get $v \otimes\left(T_{\mathbf{w} . \mu}^{\mathbf{w} \cdot M, *}\right)^{n+1}=v\left(T_{\mathbf{w} . \mu}^{*}\right)^{n+1} \otimes 1_{\mathcal{H}_{\mathbf{w} . M}}$ in $p \mathcal{V} \otimes_{\mathcal{H}_{(\mathbf{w}, M)^{-}}, \theta^{*}} \mathcal{H}_{\mathbf{w} . M}$. As $T^{\mathbf{w} . M, *}=T^{\mathbf{w} . M}$ is invertible in $\mathcal{H}_{\mathbf{w} . M}$ we get $v \otimes 1_{\mathcal{H}_{\mathbf{w} . M}}$ in $p \mathcal{V} \otimes_{\mathcal{H}_{(\mathbf{w}, M)^{-}}, \theta^{*}} \mathcal{H}_{\mathbf{w} . M}$. As v was arbitrary, $\mathcal{V} \otimes_{\mathcal{H}_{(\mathbf{w}, M)^{-}}, \theta^{*}} \mathcal{H}_{\mathbf{w} . M} \subset p \mathcal{V} \otimes_{\mathcal{H}_{(\mathbf{w}, M)^{-}}, \theta^{*}} \mathcal{H}_{\mathbf{w} . M}$. If p is nilpotent in \mathcal{V}, then $\mathcal{V} \otimes_{\mathcal{H}_{(\mathbf{w}, M)^{-}}, \theta^{*}} \mathcal{H}_{\mathbf{w} . M}=0$. Suppose now that there exists $n>0$ such that $\mathcal{V}(z(t))^{n}=0$ for any non-invertible $t \in T^{+}$, then $\mathcal{V} T_{\mu}^{n+1} \subset p \mathcal{V}$ where $\mu=\mu_{t}$; hence $\varphi(h)=\varphi\left(h T_{\mu^{-n-1}}^{M}\right) T_{\mu}^{n+1}$ in $p \mathcal{V}$ for an arbitrary $\varphi \in \operatorname{Hom}_{\mathcal{H}_{M^{+}}, \theta}\left(\mathcal{H}_{M}, \mathcal{V}\right)$ and an arbitrary
$h \in \mathcal{H}_{M}$. We deduce $\operatorname{Hom}_{\mathcal{H}_{M^{+}, \theta}}\left(\mathcal{H}_{M}, \mathcal{V}\right) \subset \operatorname{Hom}_{\mathcal{H}_{M^{+}, \theta}}\left(\mathcal{H}_{M}, p \mathcal{V}\right)$. If p is nilpotent in \mathcal{V}, then $\operatorname{Hom}_{\mathcal{H}_{M^{+}}, \theta}\left(\mathcal{H}_{M}, \mathcal{V}\right)=0$.

Recalling that $\tilde{\mathbf{w}}^{M} \cdot \mathcal{V}$ is obtained by functoriality from \mathcal{V} and the ring isomorphism $\iota\left(\tilde{\mathbf{w}}^{M}\right)$ defined in (??), the equivalence between \mathcal{V} supersingular and $\tilde{\mathbf{w}}^{M} \mathcal{V}$ supersingular follows from:

Lemma 4.28. (1) Let $t \in T$. Then t is dominant for U_{M} if and only if $\hat{\mathbf{w}}^{M} t\left(\hat{\mathbf{w}}^{M}\right)^{-1} \in T$ is dominant for $U_{\mathbf{w} . M}$.
(2) The R-algebra isomorphism $\mathcal{H}_{M, R} \xrightarrow{\iota\left(\tilde{\mathbf{w}}^{M}\right)} \mathcal{H}_{\mathbf{w} \cdot M, R}, T_{w}^{M} \mapsto T_{\tilde{\mathbf{w}}^{M} w\left(\tilde{\mathbf{w}}^{M}\right)^{-1}}^{\mathbf{w}}$ for $w \in$ $W_{M}(1)$ sends $z^{M}(t)$ to $z^{\mathbf{w} \cdot M}\left(\hat{\mathbf{w}}^{M} t\left(\hat{\mathbf{w}}^{M}\right)^{-1}\right)$ for $t \in T$ dominant for U_{M}.
Proof. The conjugation by $\hat{\mathbf{w}}^{M}$ stabilizes T, sends U_{M} to $U_{\mathbf{w} . M}$ and sends the \mathbb{W}_{M}-orbit of
 $\iota\left(\tilde{\mathbf{w}}^{M}\right)$ respects the antidominant alcove walk bases [?, Proposition 2.20]: it sends $E^{M}(w)$ to $E^{\mathbf{w} \cdot M}\left(\tilde{\mathbf{w}}^{M} w\left(\tilde{\mathbf{w}}^{M}\right)^{-1}\right)$ for $w \in W_{M}(1)$.

We deduce:
Corollary 4.29. Let \mathcal{V} be a right $\mathcal{H}_{M, R}$-module. Then \mathcal{V} is supersingular if and only if the right $\mathcal{H}_{\mathbf{w} . M, R}$-module $\tilde{\mathbf{w}}^{M} \mathcal{V}$ is supersingular.

Assume $R=C$. The supersingular simple $\mathcal{H}_{M, C}$-modules are classified in [?]. By Corollaries ?? and ??, the classification of the simple \mathcal{H}_{C}-modules in [?] remains valid with the \mathcal{H}_{C}-modules $I_{\mathcal{H}}(P, \mathcal{V}, Q)$ instead of $\mathcal{C} I_{\mathcal{H}}(P, \mathcal{V}, Q)$:

Corollary 4.30 (Classification of simple \mathcal{H}_{C}-modules). Assume $R=C$. Let (P, \mathcal{V}, Q) be a \mathcal{H}_{C}-triple where \mathcal{V} is simple and supersingular. Then, the \mathcal{H}_{C}-module $\mathcal{I}_{\mathcal{H}}(P, \mathcal{V}, Q)$ is simple. A simple \mathcal{H}_{C}-module is isomorphic to $\mathcal{I}_{\mathcal{H}}(P, \mathcal{V}, Q)$ for a \mathcal{H}_{C}-triple (P, \mathcal{V}, Q) where \mathcal{V} is simple and supersingular, P, Q and the isomorphism class of \mathcal{V} are unique.
4.6. A commutative diagram. We prove in this section Proposition ??. For $Q \subset Q^{\prime} \subset$ $P(\mathcal{V})$ we show by an explicit computation that

$$
\mu_{Q}^{-1} \circ i\left(Q, Q^{\prime}\right) \circ \mu_{Q^{\prime}}: \operatorname{Ind}_{\mathcal{H}_{\mathbf{w} \cdot Q^{\prime}}^{\mathcal{H}}}^{\mathcal{H}}\left(e_{\mathcal{H}_{\mathbf{w} \cdot Q^{\prime}}}\left(\tilde{\mathbf{w}}^{M} . \mathcal{V}\right)\right) \rightarrow \operatorname{Ind}_{\mathcal{H}_{\mathbf{w} \cdot Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{\mathbf{w} \cdot Q}}\left(\tilde{\mathbf{w}}^{M} . \mathcal{V}\right)\right) .
$$

is equal to $\iota\left(\mathbf{w} \cdot Q, \mathbf{w} \cdot Q^{\prime}\right)$. The R-module $e_{\mathcal{H}_{\mathbf{w} \cdot Q^{\prime}}}\left(\tilde{\mathbf{w}}^{M} . \mathcal{V}\right) \otimes 1_{\mathcal{H}}$ generates the \mathcal{H}_{R}-module $e_{\mathcal{H}_{\mathbf{w} \cdot Q^{\prime}}}\left(\tilde{\mathbf{w}}^{M} \cdot \mathcal{V}\right) \otimes_{\mathcal{H}_{\mathbf{w} \cdot Q^{\prime}, R}, \theta^{+}} \mathcal{H}_{R}=\operatorname{Ind}_{\mathcal{H}_{\mathbf{w} \cdot Q^{\prime}}^{\mathcal{H}}}\left(e_{\mathcal{H}_{\mathbf{w} \cdot Q^{\prime}}}\left(\tilde{\mathbf{w}}^{M} . \mathcal{V}\right)\right)$ and by $\left.(? \boldsymbol{?})\right)$

$$
\begin{equation*}
\iota\left(\mathbf{w} \cdot Q, \mathbf{w} \cdot Q^{\prime}\right)\left(v \otimes 1_{\mathcal{H}}\right)=v \otimes \sum_{d \in^{\mathbb{W}_{M_{\mathbf{w}} \cdot Q} \mathbb{W}_{M_{\mathbf{w}} \cdot Q^{\prime}}}} T_{\tilde{d}} \tag{4.22}
\end{equation*}
$$

for $v \in \mathcal{V}$ seen as an element of $e_{\mathcal{H}_{\mathbf{w} \cdot Q^{\prime}}}\left(\tilde{\mathbf{w}}^{M} . \mathcal{V}\right)$ in the LHS and an element of $e_{\mathcal{H}_{\mathbf{w} \cdot Q}}\left(\tilde{\mathbf{w}}^{M} . \mathcal{V}\right)$ in the RHS.

Lemma 4.31. $\left(\mu_{Q}^{-1} \circ i\left(Q, Q^{\prime}\right) \circ \mu_{Q^{\prime}}\right)\left(v \otimes 1_{\mathcal{H}}\right)=v \otimes \sum_{d \in \mathbb{W}_{M_{Q^{\prime}}}}^{\mathbb{W}_{M_{Q}}} q_{d} T_{\tilde{\mathbf{w}}}\left(\tilde{\mathbf{w}}^{Q^{\prime}} \tilde{d}\right)^{-1}$.
Proof. $\mu_{Q^{\prime}}\left(v \otimes 1_{\mathcal{H}}\right)$ is the unique homomorphism $f_{\tilde{\mathbf{w}}^{M_{Q^{\prime}}, v}} \in \operatorname{Hom}_{\mathcal{H}_{M_{Q^{\prime}}^{-}}, \theta^{*}}\left(\mathcal{H}, e_{\mathcal{H}_{Q^{\prime}}}(\mathcal{V})\right)$ sending
 embedding of $\operatorname{Hom}_{\mathcal{H}_{M_{Q^{\prime}}, \theta^{*}}}\left(\mathcal{H}, e_{\mathcal{H}_{Q^{\prime}}}(\mathcal{V})\right)$ in $\operatorname{Hom}_{\mathcal{H}_{M_{Q}^{-}, \theta^{*}}}\left(\mathcal{H}, e_{\mathcal{H}_{Q}}(\mathcal{V})\right)$ therefore $i\left(Q, Q^{\prime}\right)\left(f_{\tilde{\mathbf{w}}^{M}{ }_{Q^{\prime}}, v}\right)$
is the unique homomorphism $\operatorname{Hom}_{\mathcal{H}_{M_{Q}^{-}, \theta^{*}}}\left(\mathcal{H}, e_{\mathcal{H}_{Q}}(\mathcal{V})\right)$ sending $T_{\tilde{\mathbf{w}}^{Q^{\prime}}}$ to v and vanishing on $T_{\tilde{d}^{\prime}}$ for $d^{\prime} \in \mathbb{W}^{\mathbb{W}} M_{Q^{\prime}} \backslash\left\{\mathbf{w}^{Q^{\prime}}\right\}$. As $\mathbb{W}^{\mathbb{W}_{M_{Q}}}=\mathbb{W}^{\mathbb{W}} Q_{Q^{\prime}} \mathbb{W}_{M_{Q^{\prime}}}^{\mathbb{W}_{M_{Q}}}$, this homomorphism vanishes on $T_{\tilde{w}}$ for w not in $\mathbf{w}^{M_{Q^{\prime}}} \mathbb{W}_{M_{Q^{\prime}}}^{\mathbb{W}_{M_{Q}}}$. By [?, Lemma 2.22], the inverse of μ_{Q} is the $\mathcal{H}_{R^{-}}$-isomorphism:

$$
\begin{align*}
\operatorname{Hom}_{\mathcal{H}_{M_{Q}^{-}}, \theta^{*}}\left(\mathcal{H}, e_{\mathcal{H}_{Q}}(\mathcal{V})\right) & \xrightarrow{\mu_{Q}^{-1}} \operatorname{Ind}_{\mathcal{H}_{\mathbf{w} . M_{Q}}^{\mathcal{H}}}\left(e_{\mathcal{H}_{\mathbf{w} . Q}}\left(\tilde{\mathbf{w}}^{M} . \mathcal{V}\right)\right) \tag{4.23}\\
f & \mapsto \sum_{d \in \mathbb{W}^{W_{M}}} f\left(T_{\tilde{d}}\right) \otimes T_{\tilde{\mathbf{w}}^{M} \tilde{d}^{-1}}^{*}
\end{align*}
$$

where $\mathbb{W}^{\mathbb{W}}{ }_{M}$ is the set of $d \in \mathbb{W}$ with minimal length in the coset $d \mathbb{W}_{M}$. We deduce the explicit formula:

$$
\left(\mu_{Q}^{-1} \circ i\left(Q, Q^{\prime}\right) \circ \mu_{Q^{\prime}}\right)\left(v \otimes 1_{\mathcal{H}}\right)=\sum_{w \in \mathbb{W}^{W_{M}} M_{Q}} i\left(Q, Q^{\prime}\right)\left(f_{\tilde{\mathbf{w}}^{M_{Q^{\prime}}, v}}^{Q^{\prime}}\right)\left(T_{\tilde{w}}\right) \otimes T_{\tilde{\mathbf{w}}^{M} \tilde{w}^{-1}}^{*} .
$$

Some terms are zero: the terms for $w \in \mathbb{W}^{\mathbb{W}_{M_{Q}}}$ not in $\mathbf{w}^{M_{Q^{\prime}}} \mathbb{W}_{M_{Q^{\prime}}}^{\mathbb{W}_{M_{Q}}}$. We analyse the other terms for w in $\mathbb{W}^{\mathbb{W}} \mathbb{M}_{Q} \cap \mathbf{w}^{M_{Q^{\prime}}} \mathbb{W}_{M_{Q^{\prime}}}^{\mathbb{W}_{M_{Q}}}$; this set is $\mathbf{w}^{M_{Q^{\prime}}} \mathbb{W}_{M_{Q^{\prime}}}^{\mathbb{W}_{M_{Q}}}$. Let $w=\mathbf{w}^{M_{Q^{\prime}}} d, d \in \mathbb{W}_{M_{Q^{\prime}}}^{\mathbb{W}_{M_{Q}}}$, and $\tilde{w}=\tilde{\mathbf{w}}^{M_{Q^{\prime}}} \tilde{d}$ with $\tilde{d} \in{ }_{1} W_{G^{\prime}}$ lifting d. By the braid relations $T_{\tilde{w}}=T_{\tilde{\mathbf{w}}}{ }^{M_{Q^{\prime}}} T_{\tilde{d}}$. We have $T_{\tilde{d}}=\theta^{*}\left(T_{\tilde{d}}^{M_{Q^{\prime}}}\right)$ by the braid relations because $d \in \mathbb{W}_{M_{Q^{\prime}}}, S_{M_{Q^{\prime}}} \subset S^{\text {aff }}$ and $\theta^{*}\left(c_{\tilde{s}}^{M_{Q^{\prime}}}\right)=c_{\tilde{s}}$ for $s \in S_{M_{Q^{\prime}}} . \mathrm{As} \mathbb{W}_{M_{Q^{\prime}}} \subset W_{M_{Q^{\prime}}^{-}} \cap W_{M_{Q^{\prime}}^{+}}$, we deduce:

$$
\begin{aligned}
i\left(Q, Q^{\prime}\right)\left(f_{\tilde{\mathbf{w}}^{M_{Q^{\prime}}, v}}^{Q^{\prime}}\right)\left(T_{\tilde{w}}\right) & =i\left(Q, Q^{\prime}\right)\left(f_{\tilde{\mathbf{w}}^{M_{Q^{\prime}}, v}}^{Q^{\prime}}\right)\left(T_{\tilde{\mathbf{w}}^{M} Q^{\prime}} T_{\tilde{d}}\right)=i\left(Q, Q^{\prime}\right)\left(f_{\tilde{\mathbf{w}}^{M_{Q^{\prime}}, v}}^{Q^{\prime}}\right)\left(T_{\tilde{\mathbf{w}}^{M_{Q^{\prime}}}}\right) T_{\tilde{d}}^{M_{Q^{\prime}}} \\
& =v T_{\tilde{d}}^{M_{Q^{\prime}}}=q_{d} v .
\end{aligned}
$$

Corollary ?? gives the last equality.
The formula for $\left(\mu_{Q}^{-1} \circ i\left(Q, Q^{\prime}\right) \circ \mu_{Q^{\prime}}\right)\left(v \otimes 1_{\mathcal{H}}\right)$ given in Lemma ?? is different from the formula (??) for $\iota\left(\mathbf{w} \cdot Q, \mathbf{w} \cdot Q^{\prime}\right)\left(v \otimes 1_{\mathcal{H}}\right)$. It needs some work to prove that they are equal.

A first reassuring remark is that $\mathbb{W}_{M_{\mathbf{w}} \cdot Q} \mathbb{W}_{M_{\mathbf{w} \cdot Q^{\prime}}}=\left\{\mathbf{w} d^{-1} \mathbf{w} \mid d \in \mathbb{W}_{M_{Q^{\prime}}}^{\mathbb{W}_{M_{Q}}}\right\}$, so the two summation sets have the same number of elements. But better,

$$
\mathbb{W}_{M_{\mathbf{w} \cdot Q}} \mathbb{W}_{M_{\mathbf{w} \cdot Q^{\prime}}}=\left\{\mathbf{w}^{Q}\left(\mathbf{w}^{Q^{\prime}} d\right)^{-1} \mid d \in \mathbb{W}_{M_{Q^{\prime}}}^{\mathbb{W}_{M_{Q}}}\right\}
$$

because $\mathbf{w}_{Q^{\prime}} \mathbb{W}_{M_{Q^{\prime}}}^{\mathbb{W}_{M_{Q}}} \mathbf{w}_{Q}=\mathbb{W}_{M_{Q^{\prime}}}^{\mathbb{W}_{M_{Q}}}$. To prove the latter equality, we apply the criterion: $w \in$ $\mathbb{W}_{M_{Q^{\prime}}}$ lies in $\mathbb{W}_{M_{Q^{\prime}}} \mathbb{W}_{M_{Q}}$ if and only if $w(\alpha)>0$ for all $\alpha \in \Delta_{Q}$ noticing that $d \in \mathbb{W}_{M_{Q^{\prime}}}^{\mathbb{W}_{M_{Q}}}$ implies $\mathbf{w}_{Q}(\alpha) \in-\Delta_{Q}, d \mathbf{w}_{Q}(\alpha) \in-\Phi_{M_{Q^{\prime}}}, \mathbf{w}_{Q^{\prime}} d \mathbf{w}_{Q}(\alpha)>0$. Let $x_{d}=\mathbf{w}^{Q}\left(\mathbf{w}^{Q^{\prime}} d\right)^{-1}$. We have $\tilde{\mathbf{w}}^{M_{Q}}\left(\tilde{\mathbf{w}}^{M_{Q^{\prime}}} \tilde{d}\right)^{-1}=\tilde{x}_{d}$ because the lifts \tilde{w} of the elements $w \in \mathbb{W}$ satisfy the braid relations and $\ell\left(x_{d}\right)=\ell\left(\mathbf{w}_{Q} d^{-1} \mathbf{w}_{Q^{\prime}}\right)=\ell\left(\mathbf{w}_{Q^{\prime}}\right)-\ell\left(\mathbf{w}_{Q} d^{-1}\right)=\ell\left(\mathbf{w}_{Q^{\prime}}\right)-\ell\left(\mathbf{w}_{Q}\right)-\ell\left(d^{-1}\right)=$ $\ell\left(\mathbf{w}_{Q^{\prime}}\right)-\ell\left(\mathbf{w}_{Q}\right)-\ell(d)=-\ell\left(\mathbf{w}^{Q^{\prime}}\right)+\ell\left(\mathbf{w}^{Q}\right)-\ell(d)$. We have $q_{d}=q_{\mathbf{w}_{\mathbf{w} \cdot Q} x_{d} \mathbf{w}_{\mathbf{w} \cdot Q^{\prime}}}$ because
$\mathbf{w} d^{-1} \mathbf{w}=\mathbf{w}_{\mathbf{w} \cdot Q} x_{d} \mathbf{w}_{\mathbf{w} \cdot Q^{\prime}}$, and $q_{d}=q_{d^{-1}}=q_{\mathbf{w} d^{-1} \mathbf{w}}$. So

In the RHS, only $\tilde{\mathbf{w}}^{M} . \mathcal{V}, \mathbf{w} \cdot Q, \mathbf{w} \cdot Q^{\prime}$ appear. The same holds true in the formula (??). The map $\left(P, \mathcal{V}, Q, Q^{\prime}\right) \mapsto\left(\mathbf{w} \cdot P, \tilde{\mathbf{w}}^{M} \cdot \mathcal{V}, \mathbf{w} \cdot Q, \mathbf{w} \cdot Q^{\prime}\right)$ is a bijection of the set of triples $\left(P, \mathcal{V}, Q, Q^{\prime}\right)$ where $P=M N, Q, Q^{\prime}$ are standard parabolic subgroups of G, \mathcal{V} a right $\mathcal{H}_{R^{-}}$module, $Q \subset Q^{\prime} \subset P(\mathcal{V})$ by Lemma ??. So we can replace (w. $P, \tilde{\mathbf{w}}^{M} . \mathcal{V}, \mathbf{w} \cdot Q, \mathbf{w} \cdot Q^{\prime}$) by $\left(P, \mathcal{V}, Q, Q^{\prime}\right)$. Our task is reduced to prove in $e_{\mathcal{H}_{Q}}(\mathcal{V}) \otimes_{\mathcal{H}_{M_{Q}^{+}}, \theta} \mathcal{H}_{R}$:

$$
\begin{equation*}
v \otimes \sum_{d \in{ }^{\mathbb{W}} M_{Q} \mathbb{W}_{M_{Q^{\prime}}}} T_{\tilde{d}}=v \otimes \sum_{d \in{ }^{W_{M_{Q}} \mathbb{W}_{M_{Q^{\prime}}}}} q_{\mathbf{w}_{Q} d \mathbf{w}_{Q^{\prime}}} T_{\tilde{d}}^{*} \tag{4.24}
\end{equation*}
$$

A second simplification is possible: we can replace $Q \subset Q^{\prime}$ by the standard parabolic subgroups $Q_{2} \subset Q_{2}^{\prime}$ of G with $\Delta_{Q_{2}}=\Delta_{Q} \backslash \Delta_{P}$ and $\Delta_{Q_{2}^{\prime}}=\Delta_{Q^{\prime}} \backslash \Delta_{P}$, because Δ_{P} and $\Delta_{P(\mathcal{V})} \backslash \Delta_{P}$ are orthogonal. Indeed, $\mathbb{W}_{M_{Q^{\prime}}}=\mathbb{W}_{M} \times \mathbb{W}_{M_{Q_{2}^{\prime}}}$ and $\mathbb{W}_{M_{Q}}=\mathbb{W}_{M} \times \mathbb{W}_{M_{Q_{2}}}$ are direct products, the longest elements $\mathbf{w}_{Q^{\prime}}=\mathbf{w}_{M} \mathbf{w}_{Q_{2}^{\prime}}, \mathbf{w}_{Q}=\mathbf{w}_{M} \mathbf{w}_{Q_{2}}$ are direct products and

$$
\mathbb{W}_{M_{Q}} \mathbb{W}_{M_{Q^{\prime}}}=\mathbb{W}_{M_{Q_{2}}} \mathbb{W}_{M_{Q_{2}^{\prime}}}, \quad \mathbf{w}_{Q} d \mathbf{w}_{Q^{\prime}}=\mathbf{w}_{Q_{2}} d \mathbf{w}_{Q_{2}^{\prime}}
$$

Once this is done, we use the properties of $e_{\mathcal{H}_{Q}}(\mathcal{V}): v h \otimes 1_{\mathcal{H}}=v \otimes \theta_{Q}(h)$ for $h \in \mathcal{H}_{M_{Q_{2}}^{+}}$, and $T_{w}^{Q, *}$ acts trivially on $e_{\mathcal{H}_{Q}}(\mathcal{V})$ for $w \in{ }_{1} W_{M_{Q_{2}}^{\prime}} \cup\left(\Lambda(1) \cap_{1} W_{M_{Q_{2}^{\prime}}^{\prime}}\right)$. Set ${ }_{1} \mathbb{W}_{M_{Q_{2}^{\prime}}^{\prime}}=\{w \in$ ${ }_{1} W_{M_{Q_{2}^{\prime}}^{\prime}} \mid w$ is a lift of some element in $\left.\mathbb{W}_{M_{Q_{2}^{\prime}}}\right\}$ and $\mathbb{W}_{M_{Q_{2}}^{\prime}}$ similarly. Then $Z_{k} \cap \mathbb{W}_{M_{Q_{2}^{\prime}}^{\prime}} \subset$ $\left(\Lambda(1) \cap_{1} W_{M_{Q_{2}^{\prime}}^{\prime}}\right) \cap_{1} W_{M_{Q_{2}}^{+}}$and ${ }_{1} \mathbb{W}_{M_{Q_{2}}^{\prime}} \subset{ }_{1} W_{M_{Q_{2}}^{\prime}} \cap_{1} W_{M_{Q_{2}}^{+}}$. This implies that (??) where $Q \subset Q^{\prime}$ has been replaced by $Q_{2} \subset Q_{2}^{\prime}$ follows from a congruence

$$
\begin{equation*}
\sum_{d \in{ }^{\mathbb{W}_{M_{Q_{2}} \mathbb{W}_{M_{M}}^{\prime}}}} T_{\tilde{d}} \equiv \sum_{d \in \in^{\mathbb{W}_{M_{Q_{2}} \mathbb{W}_{M_{Q_{2}^{\prime}}}}}} q_{\mathbf{w}_{Q_{2}} d \mathbf{w}_{Q_{2}^{\prime}}} T_{\tilde{d}}^{*} . \tag{4.25}
\end{equation*}
$$

in the finite subring $H\left({ }_{1} \mathbb{W}_{M_{Q_{2}^{\prime}}}\right)$ of \mathcal{H} generated by $\left\{T_{w} \mid w \in{ }_{1} \mathbb{W}_{M_{Q_{2}^{\prime}}^{\prime}}\right\}$ modulo the the right ideal \mathcal{J}_{2} with generators $\left\{\theta_{Q}\left(T_{w}^{Q, *}\right)-1 \mid w \in\left(Z_{k} \cap_{1} \mathbb{W}_{M_{Q_{2}^{\prime}}^{\prime}}\right) \cup_{1} \mathbb{W}_{M_{Q_{2}}^{\prime}}\right\}$.

Another simplification concerns $T_{\tilde{d}}^{*}$ modulo \mathcal{J}_{2} for $d \in \mathbb{W}_{M_{Q_{2}^{\prime}}}$. We recall that for any reduced decomposition $d=s_{1} \ldots s_{n}$ with $s_{i} \in S \cap \mathbb{W}_{M_{Q_{2}^{\prime}}}$ we have $T_{\tilde{d}}^{*}=\left(T_{\tilde{s}_{1}}-c_{\tilde{s}_{1}}\right) \ldots\left(T_{\tilde{s}_{n}}-c_{\tilde{s}_{n}}\right)$ where the \tilde{s}_{i} are admissible. For \tilde{s} admissible, by (??)

$$
c_{\tilde{s}} \equiv q_{s}-1
$$

Therefore

$$
T_{d}^{*} \equiv\left(T_{\tilde{s}_{1}}-q_{s_{1}}+1\right) \cdots\left(T_{\tilde{s}_{n}}-q_{s_{n}}+1\right)
$$

Let $\mathcal{J}^{\prime} \subset \mathcal{J}_{2}$ be the ideal of $H\left(\mathbb{W}_{M_{Q_{2}^{\prime}}^{\prime}}\right)$ generated by $\left\{T_{t}-1 \mid t \in Z_{k} \cap{ }_{1} W_{M_{Q_{2}^{\prime}}^{\prime}}\right\}$. Then the ring $H\left({ }_{1} \mathbb{W}_{M_{Q_{2}^{\prime}}^{\prime}}\right) / \mathcal{J}^{\prime}$ and its right ideal $\mathcal{J}_{2} / \mathcal{J}^{\prime}$ are the specialisation of the generic finite ring $H\left(\mathbb{W}_{M_{Q_{2}^{\prime}}}\right)^{g}$ over $\mathbb{Z}\left[\left(q_{s}\right)_{s \in S_{M_{Q_{2}^{\prime}}}}\right]$ where the q_{s} for $s \in S_{M_{Q_{2}^{\prime}}}=S \cap \mathbb{W}_{M_{Q_{2}^{\prime}}}$ are indeterminates,
and of its right ideal \mathcal{J}_{2}^{g} with the same generators. The similar congruence modulo \mathcal{J}_{2}^{g} in $H\left(\mathbb{W}_{M_{Q_{2}^{\prime}}}\right)^{g}$ (the generic congruence) implies the congruence (??) by specialisation.

We will prove the generic congruence in a more general setting where H is the generic Hecke ring of a finite Coxeter system (\mathbb{W}, S) and parameters $\left(q_{s}\right)_{s \in S}$ such that $q_{s}=q_{s^{\prime}}$ when s, s^{\prime} are conjugate in \mathbb{W}. The Hecke ring H is a $\mathbb{Z}\left[\left(q_{s}\right)_{s \in S}\right]$-free module of basis $\left(T_{w}\right)_{w \in \mathbb{W}}$ satisfying the braid relations and the quadratic relations $T_{s}^{2}=q_{s}+\left(q_{s}-1\right) T_{s}$ for $s \in S$. The other basis $\left(T_{w}^{*}\right)_{w \in \mathbb{W}}$ satisfies the braid relations and the quadratic relations $\left(T_{s}^{*}\right)^{2}=q_{s}-\left(q_{s}-1\right) T_{s}^{*}$ for $s \in S$, and is related to the first basis by $T_{s}^{*}=T_{s}-\left(q_{s}-1\right)$ for $s \in S$, and more generally $T_{w} T_{w^{-1}}^{*}=T_{w^{-1}}^{*} T_{w}=q_{w}$ for $w \in \mathbb{W}[?$, Proposition 4.13].

Let $J \subset S$ and \mathcal{J} is the right ideal of H with generators $T_{w}^{*}-1$ for all w in the group \mathbb{W}_{J} generated by J.

Lemma 4.32. A basis of \mathcal{J} is $\left(T_{w_{1}}^{*}-1\right) T_{w_{2}}^{*}$ for $w_{1} \in \mathbb{W}_{J} \backslash\{1\}$, $w_{2} \in \mathbb{W}_{J} \mathbb{W}$, and adding $T_{w_{2}}^{*}$ for $w_{2} \in \mathbb{W}_{J} \mathbb{W}$ gives a basis of H. In particular, \mathcal{J} is a direct factor of \mathcal{H}.

Proof. The elements $\left(T_{w_{1}}^{*}-1\right) T_{w}^{*}$ for $w_{1} \in \mathbb{W}_{J}, w \in \mathbb{W}$ generate \mathcal{J}. We write $w=u_{1} w_{2}$ with unique elements $u_{1} \in \mathbb{W}_{J}, w_{2} \in \mathbb{W}_{J} \mathbb{W}$, and $T_{w}^{*}=T_{u_{1}}^{*} T_{w_{2}}^{*}$. Therefore, $\left(T_{w_{1}}^{*}-1\right) T_{u_{1}}^{*} T_{w_{2}}^{*}$. By an induction on the length of u_{1}, one proves that $\left(T_{w_{1}}^{*}-1\right) T_{u_{1}}^{*}$ is a linear combination of $\left(T_{v_{1}}^{*}-1\right)$ for $v_{1} \in \mathbb{W}_{J}$ as in the proof of Proposition ??. It is clear that the elements $\left(T_{w_{1}}^{*}-1\right) T_{w_{2}}^{*}$ and $T_{w_{2}}^{*}$ for $w_{1} \in \mathbb{W}_{J} \backslash\{1\}, w_{2} \in \mathbb{W}_{J} \mathbb{W}$ form a basis of H.

Let \mathbf{w}_{J} denote the longest element of \mathbb{W}_{J} and $\mathbf{w}=\mathbf{w}_{S}$.
Lemma 4.33. In the generic Hecke ring H, the congruence modulo \mathcal{J}

$$
\sum_{d \in \in_{J \mathbb{W}}} T_{d} \equiv \sum_{d \epsilon^{\mathbb{W}_{J} \mathbb{W}}} q_{\mathbf{w}_{J} d \mathbf{w}} T_{d}^{*}
$$

holds true.
Proof. Step 1. We show:

The equality between the groups follows from the characterisation of $\mathbb{W}_{J} \mathbb{W}$ in \mathbb{W} : an element $d \in \mathbb{W}$ has minimal length in $\mathbb{W}_{J} d$ if and only if $\ell(u d)=\ell(u)+\ell(d)$ for all $u \in \mathbb{W}_{J}$. An easy computation shows that $\ell\left(u \mathbf{w}_{J} d \mathbf{w}\right)=\ell(u)+\ell\left(\mathbf{w}_{J} d \mathbf{w}\right)$ for all $u \in \mathbb{W}_{J}, d \in \mathbb{W}_{J} \mathbb{W}$ (both sides are equal to $\ell(u)+\ell(\mathbf{w})-\ell\left(\left(\mathbf{w}_{J}\right)-\ell(d)\right)$. The second equality follows from $q_{\mathbf{w}_{J}} q_{\mathbf{w}_{J} d \mathbf{w}}=q_{d \mathbf{w}}$ because $\left(\mathbf{w}_{J}\right)^{2}=1$ and $\ell\left(\mathbf{w}_{J}\right)+\ell\left(\mathbf{w}_{J} d \mathbf{w}\right)=\ell(d \mathbf{w})$ (both sides are $\ell(\mathbf{w})-\ell(d)$) and from $q_{d \mathbf{w}} T_{d}^{*}=T_{d \mathbf{w}} T_{\mathbf{w} d^{-1}}^{*} T_{d}^{*}=T_{d \mathbf{w}} T_{\mathbf{w}}^{*}$. We also have $T_{d \mathbf{w}}=T_{\mathbf{w}_{J}} T_{\mathbf{w}_{J} d \mathbf{w}}$.

Step 2. The multiplication by $q_{\mathbf{w}_{J}}$ on the quotient H / \mathcal{J} is injective (Lemma ??) and $q_{\mathbf{w}_{J}} \equiv T_{\mathbf{w}_{J}}$. By Step $1, q_{\mathbf{w}_{J} d \mathbf{w}} T_{d}^{*} \equiv T_{\mathbf{w}_{J} d \mathbf{w}} T_{\mathbf{w}}^{*}$ and

$$
\sum_{d \in \mathbb{W}_{J \mathbb{W}}} q_{\mathbf{w}_{J} d \mathbf{w}} T_{d}^{*} \equiv \sum_{d \in \mathbb{W}_{J} \mathbb{W}} T_{d} T_{\mathbf{w}}^{*}
$$

The congruence

$$
\begin{equation*}
\sum_{d \in \mathbb{W}_{J \mathbb{W}}} T_{d} \equiv \sum_{d \in^{\mathbb{W}} J \mathbb{W}} T_{d} T_{s}^{*} \tag{4.26}
\end{equation*}
$$

for all $s \in S$ implies the lemma because $T_{\mathbf{w}}^{*}=T_{s_{1}}^{*} \ldots T_{s_{n}}^{*}$ for any reduced decomposition $\mathbf{w}=s_{1} \ldots s_{n}$ with $s_{i} \in S$.

Step 3 . When $J=\emptyset$, the congruence (??) is an equality:

$$
\begin{equation*}
\sum_{w \in \mathbb{W}} T_{w}=\sum_{w \in \mathbb{W}} T_{w} T_{s}^{*} . \tag{4.27}
\end{equation*}
$$

It holds true because $\sum_{w \in \mathbb{W}} T_{w}=\sum_{w<w s} T_{w}\left(T_{s}+1\right)$ and $\left(T_{s}+1\right) T_{s}^{*}=T_{s} T_{s}^{*}+T_{s}^{*}=q_{s}+T_{s}^{*}=$ $T_{s}+1$.

Step 4. Conversely the congruence (??) follows from (??) because

$$
\sum_{w \in \mathbb{W}} T_{w}=\left(\sum_{u \in W_{J}} T_{u}\right) \sum_{d \in \in^{\mathbb{W}} J \mathbb{W}} T_{d} \equiv\left(\sum_{u \in W_{J}} q_{u}\right) \sum_{d \in^{\mathbb{W}_{J}} \mathbb{W}^{W}} T_{d}
$$

(recall $q_{u}=T_{u^{-1}}^{*} T_{u} \equiv T_{u}$) and we can simplify by $\sum_{u \in W_{J}} q_{u}$ in H / \mathcal{J}.
This ends the proof of Proposition ??.

5. Universal representation $I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}} R[\mathcal{U} \backslash G]$

The invariant functor $(-)^{\mathcal{U}}$ by the pro- p Iwahori subgroup \mathcal{U} of G has a left adjoint

$$
-\otimes_{\mathcal{H}_{R}} R[\mathcal{U} \backslash G]: \operatorname{Mod}_{R}(\mathcal{H}) \rightarrow \operatorname{Mod}_{R}^{\infty}(G) .
$$

The smooth R-representation $\mathcal{V} \otimes_{\mathcal{H}_{R}} R[\mathcal{U} \backslash G]$ of G constructed from the right \mathcal{H}_{R}-module \mathcal{V} is called universal. We write

$$
R[\mathcal{U} \backslash G]=\mathbb{X}
$$

Question 5.1. Does $\mathcal{V} \neq 0$ implies $\mathcal{V} \otimes_{\mathcal{H}_{R}} \mathbb{X} \neq 0$? or does $v \otimes 1_{\mathcal{U}}=0$ for $v \in \mathcal{V}$ implies $v=0$? We have no counter-example. If R is a field and the \mathcal{H}_{R}-module \mathcal{V} is simple, the two questions are equivalent: $\mathcal{V} \otimes_{\mathcal{H}_{R}} \mathbb{X} \neq 0$ if and only if the map $v \mapsto v \otimes 1_{\mathcal{U}}$ is injective. When $R=C, \mathcal{V} \otimes \mathcal{H}_{R} \mathbb{X} \neq 0$ for all simple \mathcal{H}_{C}-modules \mathcal{V} if this is true for \mathcal{V} simple supersingular (this is a consequence of Corollary ??).

The functor $-\otimes_{\mathcal{H}_{R}} \mathbb{X}$ satisfies a few good properties: it has a right adjoint and is compatible with the parabolic induction and the left adjoint (of the parabolic induction). Let $P=M N$ be a standard parabolic subgroup and $\mathbb{X}_{M}=R\left[\mathcal{U}_{M} \backslash M\right]$. We have functor isomorphisms

$$
\begin{align*}
& \left(-\otimes_{\mathcal{H}_{R}} \mathbb{X}\right) \circ \mathcal{I n d}_{\mathcal{H}_{M}}^{\mathcal{H}} \rightarrow \operatorname{Ind}_{P}^{G} \circ\left(-\otimes_{\mathcal{H}_{R}} \mathbb{X}_{M}\right), \tag{5.1}\\
& (-)_{N} \circ\left(-\otimes_{\mathcal{H}_{R}} \mathbb{X}\right) \rightarrow\left(-\otimes_{\mathcal{H}_{R}} \mathbb{X}_{M}\right) \circ \mathcal{L}_{\mathcal{H}_{M}}^{\mathcal{H}} . \tag{5.2}
\end{align*}
$$

The first one is [?, formula 4.15], the second one is obtained by left adjunction from the isomorphism $\mathcal{I} n d_{\mathcal{H}_{M}}^{\mathcal{H}} \circ(-)^{\mathcal{U}_{M}} \rightarrow(-)^{\mathcal{U}} \circ \operatorname{Ind}_{P}^{G}$ [?, formula (4.14)]. If \mathcal{V} is a right \mathcal{H}_{R}-supersingular module and p is nilpotent in \mathcal{V}, then $\mathcal{L}_{\mathcal{H}_{M}}^{\mathcal{H}}(\mathcal{V})=0$ if $M \neq G$ (Proposition ??). Applying (??) we deduce:

Proposition 5.2. If p is nilpotent in \mathcal{V} and \mathcal{V} supersingular, then $\mathcal{V} \otimes_{\mathcal{H}_{R}} \mathbb{X}$ is left cuspidal.
Remark 5.3. For a non-zero smooth R-representation τ of M, Δ_{τ} is orthogonal to Δ_{P} if τ is left cuspidal. Indeed, we recall from [?, II. 7 Corollary 2] that Δ_{τ} is not orthogonal to Δ_{P} if and only if it exists a proper standard parabolic subgroup X of M such that σ is trivial on the unipotent radical of X; moreover τ is a subrepresentation of $\operatorname{Ind}_{X}^{M}\left(\left.\tau\right|_{X}\right)$, so the image of τ by the left adjoint of $\operatorname{Ind}_{X}^{M}$ is not 0 .

From now on, \mathcal{V} is a non-zero right $\mathcal{H}_{M, R}$-module and

$$
\sigma=\mathcal{V} \otimes_{\mathcal{H}_{M, R}} \mathbb{X}_{M}
$$

In general, when $\sigma \neq 0$, let $P_{\perp}(\sigma)$ be the standard parabolic subgroup of G with $\Delta_{P_{\perp}(\sigma)}=$ $\Delta_{P} \cup \Delta_{\perp, \sigma}$ where $\Delta_{\perp, \sigma}$ is the set of simple roots $\alpha \in \Delta_{\sigma}$ orthogonal to Δ_{P}.
Proposition 5.4. (1) $P(\mathcal{V}) \subset P_{\perp}(\sigma)$ if $\sigma \neq 0$.
(2) $P(\mathcal{V})=P_{\perp}(\sigma)$ if the map $v \mapsto v \otimes 1_{\mathcal{U}_{M}}$ is injective.
(3) $P(\mathcal{V})=P(\sigma)$ if the map $v \mapsto v \otimes 1_{\mathcal{U}_{M}}$ is injective, p nilpotent in \mathcal{V} and \mathcal{V} supersingular.
(4) $P(\mathcal{V})=P(\sigma)$ if $\sigma \neq 0, R$ is a field of characteristic p and \mathcal{V} simple supersingular.

Proof. (1) $P(\mathcal{V}) \subset P_{\perp}(\sigma)$ means that $Z \cap M_{\mathcal{V}}^{\prime}$ acts trivially on $\mathcal{V} \otimes \mathcal{1}_{\mathcal{U}_{M}}$, where $M_{\mathcal{V}}$ is the standard Levi subgroup such that $\Delta_{M_{\mathcal{V}}}=\Delta_{\mathcal{V}}$. Let $z \in Z \cap M_{\mathcal{V}}^{\prime}$ and $v \in \mathcal{V}$. As Δ_{M} and $\Delta_{\mathcal{V}}$ are orthogonal, we have $T^{M, *}(z)=T^{M}(z)$ and $\mathcal{U}_{M} z \mathcal{U}_{M}=\mathcal{U}_{M} z$. We have $v \otimes 1_{\mathcal{U}_{M}}=$ $v T^{M}(z) \otimes 1_{\mathcal{U}_{M}}=v \otimes T^{M}(z) 1_{\mathcal{U}_{M}}=v \otimes \mathbf{1}_{\mathcal{U}_{M} z}=v \otimes z^{-1} \mathcal{U}_{\mathcal{U}_{M}}=z^{-1}\left(v \otimes 1_{\mathcal{U}_{M}}\right)$.
(2) If $v \otimes \mathcal{U}_{M}=0$ for $v \in \mathcal{V}$ implies $v=0$, then $\sigma \neq 0$ because $\mathcal{V} \neq 0$. By (1) $P(\mathcal{V}) \subset P_{\perp}(\sigma)$. As in the proof of (1), for $z \in Z \cap M_{\perp, \sigma}^{\prime}$ we have $v T^{M, *}(z) \otimes 1_{\mathcal{U}_{M}}=v T^{M}(z) \otimes \mathcal{1}_{\mathcal{U}_{M}}=v \otimes 1_{\mathcal{U}_{M}}$ and our hypothesis implies $v T^{M, *}(z)=v$ hence $P(\mathcal{V}) \supset P_{\perp}(\sigma)$.
(3) Proposition ??, Remark ?? and (2).
(4) Question ?? and (3).

Let Q be a parabolic subgroup of G with $P \subset Q \subset P(\mathcal{V})$. In this chapter we will compute $I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}} R[\mathcal{U} \backslash G]$ where $I_{\mathcal{H}}(P, \mathcal{V}, Q)=\operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}\left(e(\mathcal{V}) \otimes\left(\operatorname{Ind}_{Q}^{P(\mathcal{V})} \mathbf{1}\right)^{\left.\mathcal{U}_{M(\mathcal{V})}\right)}\right.$) (Theorem ??). The smooth R-representation $I_{G}(P, \sigma, Q)$ of G is well defined: it is 0 if $\sigma=0$ and $\operatorname{Ind}_{P(\sigma)}^{G}\left(e(\sigma) \otimes \operatorname{St}_{Q}^{P(\sigma)}\right)$ if $\sigma \neq 0$ because (P, σ, Q) is an $R[G]$-triple by Proposition ??. We will show that the universal representation $I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}} R[\mathcal{U} \backslash G]$ is isomorphic to $I_{G}(P, \sigma, Q)$, if $P(\mathcal{V})=P(\sigma)$ and $p=0$, or if $\sigma=0$ (Corollary ??). In particular, when $R=C$ and $I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}} R[\mathcal{U} \backslash G] \simeq I_{G}(P, \sigma, Q)$ when \mathcal{V} is supersingular
5.1. $Q=G$. We consider first the case $Q=G$. We are in the simple situation where \mathcal{V} is extensible to \mathcal{H} and $P(\mathcal{V})=P(\sigma)=G, I_{\mathcal{H}}(P, \mathcal{V}, G)=e(\mathcal{V})$ and $I_{G}(P, \sigma, G)=e(\sigma)$. We recall that $\Delta \backslash \Delta_{P}$ is orthogonal to Δ_{P} and that M_{2} denotes the standard Levi subgroup of G with $\Delta_{M_{2}}=\Delta \backslash \Delta_{P}$.

The \mathcal{H}_{R}-morphism $e(\mathcal{V}) \rightarrow e(\sigma)^{\mathcal{U}}=\sigma^{\mathcal{U}_{M}}$ sending v to $v \otimes 1_{\mathcal{U}_{M}}$ for $v \in \mathcal{V}$, gives by adjunction an $R[G]$-homomorphism

$$
v \otimes \mathbf{1}_{\mathcal{U}} \mapsto v \otimes 1_{\mathcal{U}_{M}}: e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X} \xrightarrow{\Phi^{G}} e(\sigma),
$$

If Φ^{G} is an isomorphism, then $e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}$ is the extension to G of $\left.\left(e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}\right)\right|_{M}$, meaning that M_{2}^{\prime} acts trivially on $e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}$. The converse is true:
Lemma 5.5. If M_{2}^{\prime} acts trivially on $e(\mathcal{V}) \otimes \mathcal{H}_{R} \mathbb{X}$, then Φ^{G} is an isomorphism.
Proof. Suppose that M_{2}^{\prime} acts trivially on $e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}$. Then $e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}$ is the extension to G of $\left.\left(e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}\right)\right|_{M}$, and by Theorem ??, $\left(e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}\right)^{\mathcal{U}}$ is the extension of $\left(e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}\right)^{\mathcal{U}_{M}}$. Therefore

$$
\left(v \otimes 1_{\mathcal{U}}\right) T_{w}^{*}=\left(v \otimes 1_{\mathcal{U}}\right) T_{w}^{M, *} \quad \text { for all } v \in \mathcal{V}, w \in W_{M}(1) .
$$

As \mathcal{V} is extensible to \mathcal{H}, the natural map $v \mapsto v \otimes 1_{\mathcal{U}}: \mathcal{V} \xrightarrow{\Psi}\left(e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}\right)^{\mathcal{U}_{M}}$ is \mathcal{H}_{M}-equivariant, i.e.:

$$
v T_{w}^{M, *} \otimes 1_{\mathcal{U}}=\left(v \otimes 1_{\mathcal{U}}\right) T_{w}^{M, *} \quad \text { for all } v \in \mathcal{V}, w \in W_{M}(1) .
$$

because ((??)) $v T_{w}^{M, *} \otimes 1_{\mathcal{U}}=v T_{w}^{*} \otimes 1_{\mathcal{U}}=v \otimes T_{w}^{*}=\left(v \otimes 1_{\mathcal{U}}\right) T_{w}^{*}$ in $e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}$.
We recall that $-\otimes_{\mathcal{H}_{M, R}} \mathbb{X}_{M}$ is the left adjoint of $(-)^{\mathcal{U}_{M}}$. The adjoint $R[M]$-homomorphism $\sigma=\mathcal{V} \otimes_{\mathcal{H}_{M, R}} \mathbb{X}_{M} \rightarrow e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}$ sends $v \otimes 1_{\mathcal{U}_{M}}$ to $v \otimes \mathbf{1}_{\mathcal{U}}$ for all $v \in \mathcal{V}$. The $R[M]$-module generated by the $v \otimes \mathbf{1}_{\mathcal{U}}$ for all $v \in \mathcal{V}$ is equal to $e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}$ because M_{2}^{\prime} acts trivially. Hence we obtained an inverse of Φ^{G}.

Our next move is to determine if M_{2}^{\prime} acts trivially on $e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}$. It is equivalent to see if M_{2}^{\prime} acts trivially on $e(\mathcal{V}) \otimes \mathcal{1}_{\mathcal{U}}$ as this set generates the representation $e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}$ of G and M_{2}^{\prime} is a normal subgroup of G as M_{2}^{\prime} and M commute and $G=Z M^{\prime} M_{2}^{\prime}$. Obviously, $\mathcal{U} \cap M_{2}^{\prime}$ acts trivially on $e(\mathcal{V}) \otimes 1_{\mathcal{U}}$. The group of double classes $\left(\mathcal{U} \cap M_{2}^{\prime}\right) \backslash M_{2}^{\prime} /\left(\mathcal{U} \cap M_{2}^{\prime}\right)$ is generated by the lifts $\hat{s} \in \mathcal{N} \cap M_{2}^{\prime}$ of the simple affine roots s of $W_{M_{2}^{\prime}}$. Therefore, M_{2}^{\prime} acts trivially on $e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}$ if and only if for any simple affine root $s \in S_{M_{2}^{\prime}}^{\text {afft }}$ of $W_{M_{2}^{\prime}}$, any $\hat{s} \in \mathcal{N} \cap M_{2}^{\prime}$ lifting s acts trivially on $e(\mathcal{V}) \otimes 1_{\mathcal{U}}$.
Lemma 5.6. Let $v \in \mathcal{V}, s \in S_{M_{2}^{\prime}}^{\text {aff }}$ and $\hat{s} \in \mathcal{N} \cap M_{2}^{\prime}$ lifting s. We have

$$
\left(q_{s}+1\right)\left(v \otimes \mathcal{1}_{\mathcal{U}}-\hat{s}\left(v \otimes \mathcal{1}_{\mathcal{U}}\right)\right)=0 .
$$

Proof. We compute:

$$
\begin{aligned}
& T_{s}\left(\hat{s} \mathbf{1}_{\mathcal{U}}\right)=\hat{s}\left(T_{s} \mathbf{1}_{\mathcal{U}}\right)=1_{\mathcal{U} \hat{\mathcal{U}}(\hat{s})^{-1}}=\sum_{u} \hat{s} u(\hat{s})^{-1} \mathbf{1}_{\mathcal{U}}=\sum_{u^{o p}} u^{o p} \mathbf{1}_{\mathcal{U}}, \\
& T_{s}\left(\hat{s}^{2} \mathbf{1}_{\mathcal{U}}\right)=\hat{s}^{2}\left(T_{s} \mathbf{1}_{\mathcal{U}}\right)=\mathbf{1}_{\mathcal{U} \hat{\mathcal{S}}(\hat{s})^{-2}}=\mathbf{1}_{\mathcal{U}(\hat{s})^{-1} \mathcal{U}}=\sum_{u} u \hat{s} \mathbf{1}_{\mathcal{U}} .
\end{aligned}
$$

for u in the group $\mathcal{U} /\left(\hat{s}^{-1} \mathcal{U} \hat{s} \cap \mathcal{U}\right)$ and $u^{o p}$ in the group $\hat{\mathcal{U}} \mathcal{U}(\hat{s})^{-1} /\left(\hat{s} \mathcal{U}(\hat{s})^{-1} \cap \mathcal{U}\right)$; the reason is that \hat{s}^{2} normalizes $\mathcal{U}, \mathcal{U} \hat{s} \mathcal{U} \hat{s}^{-1}$ is the disjoint union of the sets $\mathcal{U} \hat{s} u^{-1}(\hat{s})^{-1}$ and $\mathcal{U}(\hat{s})^{-1} \mathcal{U}$ is the disjoint union of the sets $\mathcal{U}(\hat{s})^{-1} u^{-1}$. We introduce now a natural bijection

$$
\begin{equation*}
u \rightarrow u^{o p}: \mathcal{U} /\left(\hat{s}^{-1} \mathcal{U} \hat{s} \cap \mathcal{U}\right) \rightarrow \hat{s} \mathcal{U}(\hat{s})^{-1} /\left(\hat{s} \mathcal{U}(\hat{s})^{-1} \cap \mathcal{U}\right) \tag{5.3}
\end{equation*}
$$

which is not a group homomorphism. We recall the finite reductive group $G_{k, s}$ quotient of the parahoric subgroup \mathfrak{K}_{s} of G fixing the face fixed by s of the alcove \mathcal{C}. The Iwahori groups $Z^{0} \mathcal{U}$ and $Z^{0} \hat{\mathcal{S}} \mathcal{U}(\hat{s})^{-1}$ are contained in \mathfrak{K}_{s} and their images in $G_{s, k}$ are opposite Borel subgroups $Z_{k} U_{s, k}$ and $Z_{k} U_{s, k}^{o p}$. Via the surjective maps $u \mapsto \bar{u}: \mathcal{U} \rightarrow U_{s, k}$ and $u^{o p} \mapsto \bar{u}^{o p}: \hat{s} \mathcal{U}(\hat{s})^{-1} \rightarrow U_{s, k}^{o p}$ we identify the groups $\mathcal{U} /\left(\hat{s}^{-1} \mathcal{U} \hat{s} \cap \mathcal{U}\right) \simeq U_{s, k}$ and similarly $\hat{s} \mathcal{U}(\hat{s})^{-1} /\left(\hat{s} \mathcal{U}(\hat{s})^{-1} \cap \mathcal{U}\right) \simeq U_{s, k}^{o p}$. Let $G_{k, s}^{\prime}$ be the group generated by $U_{s, k}$ and $U_{s, k}^{o p}$, and let $B_{s, k}^{\prime}=G_{k, s}^{\prime} \cap Z_{k} U_{s, k}=\left(G_{k, s}^{\prime} \cap Z_{k}\right) U_{s, k}$. We suppose (as we can) that $\hat{s} \in \mathfrak{K}_{s}$ and that its image \hat{s}_{k} in $G_{s, k}$ lies in $G_{k, s}^{\prime}$. We have $\hat{s}_{k} U_{s, k}\left(\hat{s}_{k}\right)^{-1}=U_{s, k}^{o p}$ and the Bruhat decomposition $G_{k, s}^{\prime}=B_{k, s}^{\prime} \sqcup U_{k, s} \hat{\hat{s}}_{k} B_{k, s}^{\prime}$ implies the existence of a canonical bijection $\bar{u}^{o p} \rightarrow \bar{u}:\left(U_{k, s}^{o p}-\{1\}\right) \rightarrow\left(U_{k, s}-\{1\}\right)$ respecting the cosets $\bar{u}^{o p} B_{k, s}^{\prime}=\bar{u} \hat{s}_{k} B_{k, s}^{\prime}$. Via the preceding identifications we get the wanted bijection (??).

For $v \in e(\mathcal{V})$ and $z \in Z^{0} \cap M_{2}^{\prime}$ we have $v T_{z}=v, z 1_{\mathcal{U}}=T_{z} 1_{\mathcal{U}}$ and $v \otimes T_{z} 1_{\mathcal{U}}=v T_{z} \otimes 1_{\mathcal{U}}$ therefore $Z^{0} \cap M_{2}^{\prime}$ acts trivially on $\mathcal{V} \otimes 1_{\mathcal{U}}$. The action of the group $\left(Z^{0} \cap M_{2}^{\prime}\right) \mathcal{U}$ on $\mathcal{V} \otimes 1_{\mathcal{U}}$ is also trivial. As the image of $Z^{0} \cap M_{2}^{\prime}$ in $G_{s, k}$ contains $Z_{k} \cap G_{s, k}^{\prime}$,

$$
u \hat{s}\left(v \otimes 1_{\mathcal{U}}\right)=u^{o p}\left(v \otimes 1_{\mathcal{U}}\right)
$$

when u and $u^{o p}$ are not units and correspond via the bijection (??). So we have

$$
\begin{equation*}
v \otimes T_{s}\left(\hat{s} 1_{\mathcal{U}}\right)-\left(v \otimes 1_{\mathcal{U}}\right)=v \otimes T_{s}\left(\hat{s}^{2} 1_{\mathcal{U}}\right)-v \otimes \hat{s} 1_{\mathcal{U}} \tag{5.4}
\end{equation*}
$$

We can move T_{s} on the other side of \otimes and as $v T_{s}=q_{s} v$ (Corollary ??), we can replace T_{s} by q_{s}. We have $v \otimes \hat{s}^{2} 1_{\mathcal{U}}=v \otimes T_{s^{-2}} 1_{\mathcal{U}}$ because $\hat{s}^{2} \in Z^{0} \cap M_{2}^{\prime}$ normalizes \mathcal{U}; as we can move $T_{s^{-2}}$ on the other side of \otimes and as $v T_{s^{-2}}=v$ we can forget \hat{s}^{2}. So (??) is equivalent to $\left(q_{s}+1\right)\left(v \otimes \mathcal{1}_{\mathcal{U}}-\hat{s}\left(v \otimes 1_{\mathcal{U}}\right)\right)=0$.

Combining the two lemmas we obtain:
Proposition 5.7. When \mathcal{V} is extensible to \mathcal{H} and has no $q_{s}+1$-torsion for any $s \in S_{M_{2}^{\prime}}^{\text {aff }}$, then M_{2}^{\prime} acts trivially on $e(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}$ and Φ^{G} is an $R[G]$-isomorphism.

Proposition ?? for the trivial character $\mathbf{1}_{\mathcal{H}}$, says that $\mathbf{1}_{\mathcal{H}} \otimes_{\mathcal{H}_{R}} \mathbb{X}$ is the trivial representation $\mathbf{1}_{G}$ of G when $q_{s}+1$ has no torsion in R for all $s \in S^{\text {aff. }}$. This is proved in [?, Lemma 2.28] by a different method. The following counter-example shows that this is not true for all R.
Example 5.8. Let $G=G L(2, F)$ and R an algebraically closed field where $q_{s_{0}}+1=q_{s_{1}}+1=0$ and $S_{\mathrm{aff}}=\left\{s_{0}, s_{1}\right\}$. (Note that $q_{s_{0}}=q_{s_{1}}$ is the order of the residue field of R.) Then the dimension of $\mathbf{1}_{\mathcal{H}} \otimes_{\mathcal{H}_{R}} \mathbb{X}$ is infinite, in particular $\mathbf{1}_{\mathcal{H}} \otimes_{\mathcal{H}_{R}} \mathbb{X} \neq \mathbf{1}_{G}$.

Indeed, the Steinberg representation $\mathrm{St}_{G}=\left(\operatorname{Ind}_{B}^{G} \mathbf{1}_{Z}\right) / \mathbf{1}_{G}$ of G is an indecomposable representation of length 2 containing an irreducible infinite dimensional representation π with $\pi^{\mathcal{U}}=0$ of quotient the character $(-1)^{\text {valodet }}$. This follows from the proof of Theorem 3 and from Proposition 24 in [?]. The kernel of the quotient map $\mathrm{St}_{G} \otimes(-1)^{\mathrm{valodet}} \rightarrow \mathbf{1}_{G}$ is infinite dimensional without a non-zero \mathcal{U}-invariant vector. As the characteristic of R is not p, the functor of \mathcal{U}-invariants is exact hence $\left(\mathrm{St}_{G} \otimes(-1)^{\text {valo } \operatorname{det}}\right)^{\mathcal{U}}=\mathbf{1}_{\mathcal{H}}$. As $-\otimes_{\mathcal{H}_{R}} R[\mathcal{U} \backslash G]$ is the left adjoint of $(-)^{\mathcal{U}}$ there is a non-zero homomorphism

$$
\mathbf{1}_{\mathcal{H}} \otimes_{\mathcal{H}_{R}} \mathbb{X} \rightarrow \mathrm{St}_{G} \otimes(-1)^{\text {val odet }}
$$

with image generated by its \mathcal{U}-invariants. The homomorphism is therefore surjective.
5.2. \mathcal{V} extensible to \mathcal{H}. Let $P=M N$ be a standard parabolic subgroup of G with Δ_{P} and $\Delta \backslash \Delta_{P}$ orthogonal. We still suppose that the $\mathcal{H}_{M, R}$-module \mathcal{V} is extensible to \mathcal{H}, but now $P \subset Q \subset G$. So we have $I_{\mathcal{H}}(P, \mathcal{V}, Q)=e(\mathcal{V}) \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$ and $I_{G}(P, \sigma, Q)=e(\sigma) \otimes_{R} \mathrm{St}_{Q}^{G}$ where $\sigma=\mathcal{V} \otimes_{\mathcal{H}_{M, R}} \mathbb{X}_{M}$. We compare the images by $-\otimes_{\mathcal{H}_{R}} \mathbb{X}$ of the \mathcal{H}_{R}-modules $e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ and $e(\mathcal{V}) \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}$ with the smooth R-representations $e(\sigma) \otimes \operatorname{Ind}_{Q}^{G} 1$ and $e(\sigma) \otimes \mathrm{St}_{Q}^{G}$ of G.

As $-\otimes_{\mathcal{H}_{R}} \mathbb{X}$ is left adjoint of $(-)^{\mathcal{U}}$, the \mathcal{H}_{R}-homomorphism $v \otimes f \mapsto v \otimes 1_{\mathcal{U}_{M}} \otimes f:$ $e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} 1\right)^{\mathcal{U}} \rightarrow\left(e(\sigma) \otimes_{R} \operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}$ gives by adjunction an $R[G]$-homomorphism

$$
v \otimes f \otimes 1_{\mathcal{U}} \mapsto v \otimes 1_{\mathcal{U}_{M}} \otimes f:\left(e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}\right) \otimes_{\mathcal{H}_{R}} \mathbb{X} \xrightarrow{\Phi_{Q}^{G}} e(\sigma) \otimes_{R} \operatorname{Ind}_{Q}^{G} 1 .
$$

When $Q=G$ we have $\Phi_{G}^{G}=\Phi^{G}$. By Remark ??, Φ_{Q}^{G} is surjective. Proposition ?? applies with M_{Q} instead of G and gives the $R\left[M_{Q}\right]$-homomorphism

$$
v \otimes 1_{\mathcal{U}_{M_{Q}}} \mapsto v \otimes 1_{\mathcal{U}_{M}}: e_{\mathcal{H}_{Q}}(\mathcal{V}) \otimes_{\mathcal{H}_{Q, R}} \mathbb{X}_{M_{Q}} \xrightarrow{\Phi^{Q}} e_{Q}(\sigma) .
$$

Proposition 5.9. The $R[G]$-homomorphism Φ_{Q}^{G} is an isomorphism if Φ^{Q} is an isomorphism, in particular if \mathcal{V} has no $q_{s}+1$-torsion for any $s \in S_{M_{2}^{\prime} \cap M_{Q}}^{\text {aff }}$.
Proof. The proposition follows from another construction of Φ_{Q}^{G} that we now describe. Proposition ?? gives the \mathcal{H}_{R}-module isomorphism

$$
v \otimes f_{Q \mathcal{U}} \mapsto v \otimes 1_{\mathcal{H}}:\left(e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}\right) \rightarrow \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V})\right)=e_{\mathcal{H}_{Q}}(\mathcal{V}) \otimes_{\mathcal{H}_{M_{Q, R}^{+}}, \theta} \mathcal{H} .
$$

We have the $R[G]$-isomorphism [?, Corollary 4.7]

$$
v \otimes 1_{\mathcal{H}} \otimes 1_{\mathcal{U}} \mapsto f_{Q \mathcal{U}, v \otimes 1_{\mathcal{U}_{M_{Q}}}}: \operatorname{Ind}_{\mathcal{H}_{Q}}^{\mathcal{H}}\left(e_{\mathcal{H}_{Q}}(\mathcal{V}) \otimes_{\mathcal{H}_{R}} \mathbb{X}\right) \rightarrow \operatorname{Ind}_{Q}^{G}\left(e_{\mathcal{H}_{Q}}(\mathcal{V}) \otimes_{\mathcal{H}_{Q, R}} \mathbb{X}_{M_{Q}}\right)
$$

and the $R[G]$-isomorphism ***

$$
f_{Q \mathcal{U}, v \otimes 1_{\mathcal{U}_{M}}} \mapsto v \otimes 1_{\mathcal{U}_{M}} \otimes f_{Q \mathcal{U}}: \operatorname{Ind}_{Q}^{G}\left(e_{Q}(\sigma)\right) \rightarrow e(\sigma) \otimes \operatorname{Ind}_{Q}^{G} 1 .
$$

From Φ^{Q} and these three homomorphisms, there exists a unique $R[G]$-homomorphism

$$
\left(e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}\right) \otimes_{\mathcal{H}_{R}} \mathbb{X} \rightarrow e(\sigma) \otimes_{R} \operatorname{Ind}_{Q}^{G} \mathbf{1}
$$

sending $v \otimes f_{Q \mathcal{U}} \otimes 1_{\mathcal{U}}$ to $v \otimes 1_{\mathcal{U}_{M}} \otimes f_{Q \mathcal{U}}$. We deduce: this homomorphism is equal to Φ_{Q}^{G}, $\mathcal{V} \otimes 1_{Q \mathcal{U}} \otimes 1_{\mathcal{U}}$ generates $\left(e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}\right) \otimes_{\mathcal{H}_{R}} \mathbb{X}$, if Φ^{Q} is an isomorphism then Φ_{Q}^{G} is an isomorphism. By Proposition ??, if \mathcal{V} has no $q_{s}+1$-torsion for any $s \in S_{M_{2}^{\prime} \cap M_{Q}}^{\text {aff }}$, then Φ^{Q} and Φ_{Q}^{G} are isomorphisms.

We recall that the $\mathcal{H}_{M, R}$-module \mathcal{V} is extensible to \mathcal{H}.
Proposition 5.10. The $R[G]$-homomorphism Φ_{Q}^{G} induces an $R[G]$-homomorphism

$$
\left(e(\mathcal{V}) \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}\right) \otimes_{\mathcal{H}_{R}} \mathbb{X} \rightarrow e(\sigma) \otimes_{R} \mathrm{St}_{Q}^{G},
$$

It is an isomorphism if $\Phi_{Q^{\prime}}^{G}$ is an $R[G]$-isomorphism for all parabolic subgroups Q^{\prime} of G containing Q, in particular if \mathcal{V} has no $q_{s}+1$-torsion for any $s \in S_{M_{2}^{\prime}}^{\text {aff }}$.

Proof. The proof is straightforward, with the arguments already developped for Proposition ?? and Theorem ??. The representations $e(\sigma) \otimes_{R} \mathrm{St}_{Q}^{G}$ and $\left(e(\mathcal{V}) \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}\right) \otimes_{\mathcal{H}_{R}} \mathbb{X}$ of G are the cokernels of the natural $R[G]$-homomorphisms

$$
\begin{gathered}
\oplus_{Q \subsetneq Q^{\prime}} e(\sigma) \otimes_{R} \operatorname{Ind}_{Q^{\prime}}^{G} \xrightarrow{\mathrm{id} \otimes \alpha} e(\sigma) \otimes_{R} \operatorname{Ind}_{Q}^{G} \mathbf{1}, \\
\oplus_{Q \subsetneq Q^{\prime}}\left(e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q^{\prime}}^{G} \mathbf{1}\right)^{\mathcal{U}}\right) \otimes_{\mathcal{H}_{R}} \mathbb{X} \xrightarrow{\mathrm{id} \otimes \alpha^{u} \otimes \mathrm{id}}\left(e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}\right) \otimes_{\mathcal{H}_{R}} \mathbb{X} .
\end{gathered}
$$

These $R[G]$-homomorphisms make a commutative diagram with the $R[G]$-homomorphisms $\oplus_{Q \subseteq Q^{\prime}} \Phi_{Q^{\prime}}^{G}$ and Φ_{Q}^{G} going from the lower line to the upper line. Indeed, let $v \otimes f_{Q^{\prime} \mathcal{U}} \otimes 1_{\mathcal{U}} \in$ $\left(e(\mathcal{V}) \otimes_{R}\left(\operatorname{Ind}_{Q^{\prime}}^{G}\right)^{\mathcal{U}}\right) \otimes_{\mathcal{H}_{R}} \mathbb{X}$. One one hand, it goes to $v \otimes f_{Q \mathcal{U}} \theta_{Q^{\prime}}\left(e_{Q}^{Q^{\prime}}\right) \otimes 1_{\mathcal{U}} \in\left(e(\mathcal{V}) \otimes_{R}\right.$ $\left.\left(\operatorname{Ind}_{Q}^{G} \mathbf{1}\right)^{\mathcal{U}}\right) \otimes_{\mathcal{H}_{R}} \mathbb{X}$ by the horizontal map, and then to $v \otimes 1_{\mathcal{U}_{M}} \otimes f_{Q \mathcal{U}} \theta_{Q^{\prime}}\left(e_{Q}^{Q^{\prime}}\right)$ by the vertical map. On the other hand, it goes to $v \otimes 1_{\mathcal{U}_{M}} \otimes f_{Q^{\prime} \mathcal{U}}$ by the vertical map, and then to $v \otimes 1_{\mathcal{U}_{M}} \otimes f_{Q \mathcal{U}} \theta_{Q^{\prime}}\left(e_{Q}^{Q^{\prime}}\right)$ by the horizontal map. One deduces that Φ_{Q}^{G} induces an $R[G]-$ homomorphism $\left(e(\mathcal{V}) \otimes_{R}\left(\mathrm{St}_{Q}^{G}\right)^{\mathcal{U}}\right) \otimes_{\mathcal{H}_{R}} \mathbb{X} \rightarrow e(\sigma) \otimes_{R} \mathrm{St}_{Q}^{G}$, which is an isomorphism if $\Phi_{Q^{\prime}}^{G}$ is an $R[G]$-isomorphism for all $Q \subset Q^{\prime}$.
5.3. General. We consider now the general case: let $P=M N \subset Q$ be two standard parabolic subgroups of G and \mathcal{V} a non-zero right $\mathcal{H}_{M, R}$-module with $Q \subset P(\mathcal{V})$. We recall $I_{\mathcal{H}}(P, \mathcal{V}, Q)=\operatorname{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}\left(\left(e(\mathcal{V}) \otimes_{R}\left(\operatorname{St}_{Q}^{P(\mathcal{V})}\right)^{\mathcal{U}_{M(\mathcal{V})}}\right)\right.$ and $\sigma=\mathcal{V} \otimes_{\mathcal{H}_{M, R}} \mathbb{X}_{M}$ (Proposition??). There is a natural $R[G]$-homomorphism

$$
I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_{R}} \mathbb{X} \xrightarrow{\Phi_{I}^{G}} \operatorname{Ind}_{P(\mathcal{V})}^{G}\left(e_{M(\mathcal{V})}(\sigma) \otimes_{R} \operatorname{St}_{Q}^{P(\mathcal{V})}\right)
$$

obtained by composition of the $R[G]$-isomorphism [?, Corollary 4.7] (proof of Proposition ??):

$$
I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_{R}} \mathbb{X} \rightarrow \operatorname{Ind}_{P(\mathcal{V})}^{G}\left(\left(e(\mathcal{V}) \otimes_{R}\left(\mathrm{St}_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})}\right)^{\mathcal{U}_{M(\mathcal{V})}}\right) \otimes_{\mathcal{H}_{M(\mathcal{V}), R}} \mathbb{X}_{M(\mathcal{V})}\right)
$$

with the $R[G]$-homomorphism

$$
\operatorname{Ind}_{P(\mathcal{V})}^{G}\left(\left(e(\mathcal{V}) \otimes_{R}\left(\mathrm{St}_{Q}^{P(\mathcal{V})}\right)^{\mathcal{U}_{M(\mathcal{V})}}\right) \otimes_{\mathcal{H}_{M(\mathcal{V}), R}} \mathbb{X}_{M(\mathcal{V})}\right) \rightarrow \operatorname{Ind}_{P(\mathcal{V})}^{G}\left(e_{M(\mathcal{V})}(\sigma) \otimes_{R} \mathrm{St}_{Q}^{P(\mathcal{V})}\right)
$$

image by the parabolic induction $\operatorname{Ind}_{P(\mathcal{V})}^{G}$ of the homomorphism

$$
\left(e(\mathcal{V}) \otimes_{R}\left(\mathrm{St}_{Q}^{P(\mathcal{V})}\right)^{\mathcal{U}_{M(\mathcal{V})}}\right) \otimes_{\mathcal{H}_{M(\mathcal{V}), R}} \mathbb{X}_{M(\mathcal{V})} \rightarrow e_{M(\mathcal{V})}(\sigma) \otimes_{R} \mathrm{St}_{Q}^{P(\mathcal{V})}
$$

induced by the $R[M(\mathcal{V})]$-homomorphism $\Phi_{Q}^{P(\mathcal{V})}=\Phi_{Q \cap M(\mathcal{V})}^{M(\mathcal{V})}$ of Proposition ?? applied to $M(\mathcal{V})$ instead of G.

This homomorphism Φ_{I}^{G} is an isomorphism if $\Phi_{Q}^{P(\mathcal{V})}$ is an isomorphism, in particular if \mathcal{V} has no $q_{s}+1$-torsion for any $s \in S_{M_{2}^{\prime}}^{\text {aff }}$ where $\Delta_{M_{2}}=\Delta_{M(\mathcal{V})} \backslash \Delta_{M}$ (Proposition ??). We get the main theorem of this section:

Theorem 5.11. Let $(P=M N, \mathcal{V}, Q)$ be an \mathcal{H}_{R}-triple and $\sigma=\mathcal{V} \otimes_{\mathcal{H}_{M, R}} R\left[\mathcal{U}_{M} \backslash M\right]$. Then, (P, σ, Q) is an $R[G]$-triple. The $R[G]$-homomorphism

$$
I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_{R}} R[\mathcal{U} \backslash G] \xrightarrow{\Phi_{I}^{G}} \operatorname{Ind}_{P(\mathcal{V})}^{G}\left(e_{M(\mathcal{V})}(\sigma) \otimes_{R} \operatorname{St}_{Q}^{P(\mathcal{V})}\right)
$$

is an isomorphism if $\Phi_{Q}^{P(\mathcal{V})}$ is an isomorphism. In particular Φ_{I}^{G} is an isomorphism if \mathcal{V} has no $q_{s}+1$-torsion for any $s \in S_{M_{2}^{\prime}}^{\text {aff }}$.

Recalling $I_{G}(P, \sigma, Q)=\operatorname{Ind}_{P(\sigma)}^{G}\left(e(\sigma) \otimes_{R} \operatorname{St}_{Q}^{P(\sigma)}\right)$ when $\sigma \neq 0$, we deduce:
Corollary 5.12. We have:
$I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_{R}} R[\mathcal{U} \backslash G] \simeq I_{G}(P, \sigma, Q)$, if $\sigma \neq 0, P(\mathcal{V})=P(\sigma)$ and \mathcal{V} has no $q_{s}+1$-torsion for any $s \in S_{M_{2}^{\prime}}^{\text {aff }}$.
$I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_{R}} R[\mathcal{U} \backslash G]=I_{G}(P, \sigma, Q)=0$, if $\sigma=0$.
Recalling $P(\mathcal{V})=P(\sigma)$ if $\sigma \neq 0, R$ is a field of characteristic p and \mathcal{V} simple supersingular (Proposition ?? 4)), we deduce:

Corollary 5.13. $I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_{R}} R[\mathcal{U} \backslash G] \simeq I_{G}(P, \sigma, Q)$ if R is a field of characteristic p and \mathcal{V} simple supersingular.

6. VANISHING OF THE SMOOTH DUAL

Let V be an $R[G]$-module. The dual $\operatorname{Hom}_{R}(V, R)$ of V is an $R[G]$-module for the contragredient action: $g L(g v)=L(v)$ if $g \in G, L \in \operatorname{Hom}_{R}(V, R)$ is a linear form and $v \in V$. When $V \in \operatorname{Mod}_{R}^{\infty}(G)$ is a smooth R-representation of G, the dual of V is not necessarily smooth. A linear form L is smooth if there exists an open subgroup $H \subset G$ such that $L(h v)=L(v)$ for all $h \in H, v \in V$; the space $\operatorname{Hom}_{R}(V, R)^{\infty}$ of smooth linear forms is a smooth R-representation of G, called the smooth dual (or smooth contragredient) of V. The smooth dual of V is contained in the dual of V.

Example 6.1. When R is a field and the dimension of V over R is finite, the dual of V is equal to the smooth dual of V because the kernel of the action of G on V is an open normal subgroup $H \subset G$; the action of G on the dual $\operatorname{Hom}_{R}(V, R)$ is trivial on H.

We assume in this section that R is a field of characteristic p. Let $P=M N$ be a parabolic subgroup of G and $V \in \operatorname{Mod}_{R}^{\infty}(M)$. Generalizing the proof given in [?, 8.1] when $G=$ $G L(2, F)$ and the dimension of V is 1 , we show:

Proposition 6.2. If $P \neq G$, the smooth dual of $\operatorname{Ind}_{P}^{G}(V)$ is 0 .
Proof. Let L be a smooth linear form on $\operatorname{Ind}_{P}^{G}(V)$ and K an open pro- p-subgroup of G which fixes L. Let J an arbitrary open subgroup of $K, g \in G$ and $f \in\left(\operatorname{Ind}_{P}^{G}(V)\right)^{J}$ with support $P g J$. We want to show that $L(f)=0$. Let J^{\prime} be any open normal subgroup of J and let φ denote the function in $\left(\operatorname{Ind}_{P}^{G}(V)\right)^{J^{\prime}}$ with support $P g J^{\prime}$ and value $\varphi(g)=f(g)$ at g. For $j \in J$ we have $L(j \varphi)=L(\varphi)$, and the support of $j \varphi(x)=\varphi(x j)$ is $P g J^{\prime} j^{-1}$. The function f is the sum of translates $j \varphi$, where j ranges through the left cosets of the image X of $g^{-1} P g \cap J$ in J / J^{\prime}, so that $L(f)=r L(\varphi)$ where r is the order of X in J / J^{\prime}. We can certainly find J^{\prime} such that $r \neq 1$, and then r is a positive power of p. As the characteristic of C is p we have $L(f)=0$.

The module $R[\mathcal{U} \backslash G]$ is contained in the module $R^{\mathcal{U} \backslash G}$ of functions $f: \mathcal{U} \backslash G \rightarrow R$. The actions of \mathcal{H} and of G on $R[\mathcal{U} \backslash G]$ extend to $R^{\mathcal{U} \backslash G}$ by the same formulas. The pairing

$$
(f, \varphi) \mapsto\langle f, \varphi\rangle=\sum_{g \in \mathcal{U} \backslash G} f(g) \varphi(g): R^{\mathcal{U} \backslash G} \times R[\mathcal{U} \backslash G] \rightarrow R
$$

identifies $R^{\mathcal{U} \backslash G}$ with the dual of $R[\mathcal{U} \backslash G]$. Let $h \in \mathcal{H}$ and $\check{h} \in \mathcal{H}, \check{h}(g)=h\left(g^{-1}\right)$ for $g \in G$. We have

$$
\langle f, h \varphi\rangle=\langle\check{h} f, \varphi\rangle
$$

Proposition 6.3. When R is an algebraically closed field of characteristic p, G is not compact modulo the center and \mathcal{V} is a simple supersingular right \mathcal{H}_{R}-module, the smooth dual of $\mathcal{V} \otimes_{\mathcal{H}_{R}} R[\mathcal{U} \backslash G]$ is 0.

Proof. Let $\mathcal{H}_{R}^{\text {aff }}$ be the subalgebra of \mathcal{H}_{R} of basis $\left(T_{w}\right)_{w \in W^{\prime}(1)}$ where $W^{\prime}(1)$ is the inverse image of W^{\prime} in $W(1)$. The dual of $\mathcal{V} \otimes_{\mathcal{H}_{R}} R[\mathcal{U} \backslash G]$ is contained in the dual of $\mathcal{V} \otimes_{\mathcal{H}_{R}^{\text {aff }}} R[\mathcal{U} \backslash G]$; the $\mathcal{H}_{R}^{\text {aff }}$-module $\left.\mathcal{V}\right|_{\mathcal{H}_{R}^{\text {aff }}}$ is a finite sum of supersingular characters [?]. Let $\chi: \mathcal{H}_{R}^{\text {aff }} \rightarrow R$ be a supersingular character. The dual of $\chi \otimes_{\mathcal{H}_{R}^{\text {aff }}} R[\mathcal{U} \backslash G]$ is contained in the dual of $R[\mathcal{U} \backslash G]$ isomorphic to $R^{\mathcal{U} \backslash G}$. It is the space of $f \in R^{\mathcal{U} \backslash G}$ with $\check{h} f=\chi(h) f$ for all $h \in \mathcal{H}_{R}^{\text {aff }}$. The smooth dual of $\chi \otimes_{\mathcal{H}_{R}^{\text {aff }}} R[\mathcal{U} \backslash G]$ is 0 if the dual of $\chi \otimes_{\mathcal{H}_{R}^{\text {aff }}} R[\mathcal{U} \backslash G]$ has no non-zero element fixed by \mathcal{U}. Let us take $f \in R^{\mathcal{U} \backslash G / \mathcal{U}}$ with $\check{h} f=\chi(h) f$ for all $h \in \mathcal{H}_{R}^{\text {aff }}$. We shall prove that $f=0$. We have $\check{T}_{w}=T_{w^{-1}}$ for $w \in W(1)$.

The elements $\left(T_{t}\right)_{t \in Z_{k}}$ and $\left(T_{\tilde{s}}\right)_{s \in S^{\text {aff }}}$ where \tilde{s} is an admissible lift of s in $W^{\text {aff }}(1)$, generate the algebra $\mathcal{H}_{R}^{\text {aff }}$ and

$$
T_{t} T_{w}=T_{t w}, \quad T_{\tilde{s}} T_{w}= \begin{cases}T_{\tilde{s} w} & \tilde{s} w>w \\ c_{\tilde{s}} T_{w} & \tilde{s} w<w\end{cases}
$$

with $c_{\tilde{s}}=-\left|Z_{k, s}^{\prime}\right| \sum_{t \in Z_{k, s}^{\prime}} T_{t}$ because the characteristic of R is p [?, Proposition 4.4]. Express$\operatorname{ing} f=\sum_{w \in W(1)} a_{w} T_{w}, a_{w} \in R$, as an infinite sum, we have

$$
T_{t} f=\sum_{w \in W(1)} a_{t^{-1} w} T_{w}, \quad T_{\tilde{s}} f=\sum_{w \in W(1), \tilde{s} w<w}\left(a_{(\tilde{s})^{-1} w}+a_{w} c_{\tilde{s}}\right) T_{w}
$$

where $<$ denote the Bruhat order of $W(1)$ associated to $S^{\text {aff }}[?]$ and [?, Proposition 4.4]. A character χ of $\mathcal{H}_{R}^{\text {aff }}$ is associated to a character $\chi_{k}: Z_{k} \rightarrow R^{*}$ and a subset J of

$$
S_{\chi_{k}}^{\mathrm{aff}}=\left\{s \in S^{\mathrm{aff}}\left|\left(\chi_{k}\right)\right|_{Z_{k, s}^{\prime}} \quad \text { trivial }\right\}
$$

[?, Definition 2.7]. We have

$$
\left\{\begin{array}{l}
\chi\left(T_{t}\right)=\chi_{k}(t) \quad t \in Z_{k} \tag{6.1}\\
\chi\left(T_{\tilde{s}}\right)=\left\{\begin{array}{ll}
0 & s \in S^{\mathrm{aff}} \backslash J, \\
-1 & s \in J
\end{array} \quad\left(\chi_{k}\right)\left(c_{\tilde{s}}\right)= \begin{cases}0 & s \in S^{\mathrm{aff}} \backslash S_{\chi k}^{\mathrm{aff}} \\
-1 & s \in S_{\chi k}^{\mathrm{aff}}\end{cases} \right.
\end{array}\right.
$$

Therefore $\chi_{k}(t) f=\check{T}_{t} f=T_{t^{-1}} f$ hence $\chi_{k}(t) a_{w}=a_{t w}$. We have $\chi\left(T_{\tilde{s}}\right) f=\check{T}_{\tilde{s}} f=T_{(\tilde{s})^{-1}} f=$ $T_{\tilde{s}} T_{(\tilde{s})^{-2}} f=\chi_{k}\left((\tilde{s})^{2}\right) T_{\tilde{s}} f ;$ as $(\tilde{s})^{2} \in Z_{k, s}^{\prime}\left[?\right.$, three lines before Proposition 4.4] and $J \subset S_{\chi_{k}}^{\text {aff }}$, we obtain

$$
T_{\tilde{s}} f= \begin{cases}0 & s \in S^{\mathrm{aff}} \backslash J \tag{6.2}\\ -f & s \in J\end{cases}
$$

Introducing $\chi_{k}(t) a_{w}=a_{t w}$ in the formula for $T_{\tilde{s}} f$, we get

$$
\begin{aligned}
\sum_{w \in W(1), \tilde{s} w<w} a_{w} c_{\tilde{s}} T_{w} & =-\left|Z_{k, s}^{\prime}\right|^{-1} \sum_{w \in W(1), \tilde{s} w<w, t \in Z_{k, s}^{\prime}} a_{w} T_{t w} \\
& =-\left|Z_{k, s}^{\prime}\right|^{-1} \sum_{w \in W(1), \tilde{s} w<w, t \in Z_{k, s}^{\prime}} a_{t-1} T_{w} \\
& =-\left|Z_{k, s}^{\prime}\right|^{-1} \sum_{t \in Z_{k, s}^{\prime}} \chi_{k}\left(t^{-1}\right) \sum_{w \in W(1), \tilde{s} w<w} a_{w} T_{w} \\
& =\chi_{k}\left(c_{\tilde{s})} \sum_{w \in W(1), \tilde{s} w<w} a_{w} T_{w}\right.
\end{aligned} \begin{aligned}
T_{\tilde{s} f}=\sum_{w \in W(1), \tilde{s} w<w}\left(a_{(\tilde{s})^{-1} w}+a_{w} \chi_{k}\left(c_{\tilde{s})}\right) T_{w}\right. \\
= \begin{cases}\sum_{w \in W(1), \tilde{s} w<w} a_{(\tilde{s})^{-1} w} T_{w} & s \in S^{\mathrm{aff}} \backslash S_{\chi k}^{\mathrm{aff}} \\
\sum_{w \in W(1), \tilde{s} w<w}\left(a_{(\tilde{s})^{-1} w}-a_{w}\right) T_{w} & s \in S_{\chi k}^{\mathrm{aff}}\end{cases}
\end{aligned}
$$

From the last equality and (??) for $T_{\tilde{s}} f$, we get:

$$
a_{\tilde{s} w}= \begin{cases}0 & s \in J \cup\left(S^{\mathrm{aff}} \backslash S_{\chi k}^{\mathrm{aff}}\right), \tilde{s} w<w \tag{6.3}\\ a_{w} & s \in S_{\chi k}^{\mathrm{aff}} \backslash J\end{cases}
$$

Assume that $a_{w} \neq 0$. By the first condition, we know that $w>\tilde{s} w$ for $s \in J \cup\left(S^{\text {aff }} \backslash S_{\chi_{k}}^{\text {aff }}\right)$. The character χ is supersingular if for each irreducible component X of $S^{\text {aff }}$, the intersection $X \cap J$ is not empty and different from X [?, Definition 2.7, Theorem 6.18]. This implies that the group generated by the $s \in S_{\chi k}^{\text {aff }} \backslash J$ is finite. If χ is supersingular, by the second condition we can suppose $w>\tilde{s} w$ for any $s \in S^{\text {aff }}$. But there is no such element if $S^{\text {aff }}$ is not empty.

Theorem 6.4. Let π be an irreducible admissible R-representation of G with a non-zero smooth dual where R is an algebraically closed field of characteristic p. Then π is finite dimensional.

Proof. Let (P, σ, Q) be a $R[G]$-triple with σ supercuspidal such that $\pi \simeq I_{G}(P, \sigma, Q)$. The representation $I_{G}(P, \sigma, Q)$ is a quotient of $\operatorname{Ind}_{Q}^{G} e_{Q}(\sigma)$ hence the smooth dual of $\operatorname{Ind}_{Q}^{G} e_{Q}(\sigma)$ is not zero. From Proposition ??, $Q=G$. We have $I_{G}(P, \sigma, G)=e(\sigma)$. The smooth dual of σ contains the smooth linear dual of $e(\sigma)$ hence is not zero. As σ is supercuspidal, the \mathcal{H}_{M}-module $\sigma^{\mathcal{U}_{M}}$ contains a simple supersingular submodule \mathcal{V} [?, Proposition 7.10, Corollary 7.11]. The functor $-\otimes_{\mathcal{H}_{M, R}} R\left[\mathcal{U}_{M} \backslash M\right]$ being the right adjoint of $(-)^{\mathcal{U}_{M}}$, the irreducible representation σ is a quotient of $\mathcal{V} \otimes_{\mathcal{H}_{M, R}} R\left[\mathcal{U}_{M} \backslash M\right]$, hence the smooth dual of $\mathcal{V} \otimes_{\mathcal{H}_{M, R}} R\left[\mathcal{U}_{M} \backslash M\right]$ is not zero. By Proposition ??, $M=Z$. Hence σ is finite dimensional and the same is true for $e(\sigma)=I_{G}(B, \sigma, G) \simeq \pi$.

Remark 6.5. When the characteristic of F is 0 , Theorem ?? was proved by Kohlhaase for a field R of characteristic p. He gives two proofs [?, Proposition 3.9, Remark 3.10], but none of them extends to F of characteristic p. Our proof is valid without restriction on the characteristic of F and does not use the results of Kohlhaase. Our assumption that R is an algebraically closed field of characteristic p comes from the classification theorem in [?].

References

[Abe] N. Abe, Modulo p parabolic induction of pro-p-Iwahori Hecke algebra, J. Reine Angew. Math., DOI:10.1515/crelle-2016-0043.
[Abe16] N. Abe, Parabolic inductions for pro-p-Iwahori Hecke algebras, arXiv:1612.01312.
[AHHV17] N. Abe, G. Henniart, F. Herzig, and M.-F. Vignéras, A classification of irreducible admissible mod p representations of p-adic reductive groups, J. Amer. Math. Soc. 30 (2017), no. 2, 495-559.
[AHV17] N. Abe, G. Henniart, and M.-F. Vignéras, Modulo p representations of reductive p-adic groups: functorial properties, arXiv:1703.05599.
[BT72] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. (1972), no. 41, 5-251.
[Car85] R. W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley \& Sons, Inc., New York, 1985, Conjugacy classes and complex characters, A Wiley-Interscience Publication.
[GK14] E. Grosse-Klönne, On special representations of p-adic reductive groups, Duke Math. J. 163 (2014), no. 12, 2179-2216.
[Koh] J. Kohlhasse, Smooth duality in natural characteristic, preprint.
[Ly15] T. Ly, Représentations de Steinberg modulo p pour un groupe réductif sur un corps local, Pacific J. Math. 277 (2015), no. 2, 425-462.
[OV17] R. Ollivier and M.-F. Vignéras, Parabolic induction in characteristic p, arXiv:1703.04921.
[Vig89] M.-F. Vignéras, Représentations modulaires de GL $(2, F)$ en caractéristique l, F corps p-adique, $p \neq l$, Compositio Math. 72 (1989), no. 1, 33-66.
[Vig07] M.-F. Vignéras, Représentations irréductibles de GL $(2, F)$ modulo p, L-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 548-563.
[Vig14] M.-F. Vignéras, The pro-p-Iwahori-Hecke algebra of a reductive p-adic group, II, Münster J. Math. 7 (2014), no. 1, 363-379.
[Vig15a] M.-F. Vignéras, The pro-p-Iwahori Hecke algebra of a p-adic group III, J. Inst. Math. Jussieu (2015), 1-38.
[Vig15b] M.-F. Vignéras, The pro-p Iwahori Hecke algebra of a reductive p-adic group, V (parabolic induction), Pacific J. Math. 279 (2015), no. 1-2, 499-529.
[Vig16] M.-F. Vigneras, The pro-p-Iwahori Hecke algebra of a reductive p-adic group I, Compos. Math. 152 (2016), no. 4, 693-753.
(N. Abe) Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan

E-mail address: abenori@math.sci.hokudai.ac.jp
(G. Henniart) Université de Paris-Sud, Laboratoire de Mathématiques d’Orsay, Orsay cedex F-91405 France; CNRS, Orsay cedex F-91405 France

E-mail address: Guy.Henniart@math.u-psud.fr
(M.-F. Vignéras) Institut de Mathématiques de Jussieu, 175 Rue du Chevaleret, Paris 75013 France

E-mail address: vigneras@math.jussieu.fr

[^0]: 2010 Mathematics Subject Classification. primary 20C08, secondary 11F70.
 Key words and phrases. parabolic induction, pro-p Iwahori Hecke algebra.
 The first-named author was supported by JSPS KAKENHI Grant Number 26707001.

