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Abstract. We investigate the irreducible cuspidal C-representations of a reductive p-adic
group G over a field C of characteristic different from p. In all known cases, such a represen-
tation is the compactly induced representation indG

J λ from a smooth C-representation λ of a
compact modulo centre subgroup J of G. When C is algebraically closed, for many groups G,
a list of pairs (J, λ) has been produced, such that any irreducible cuspidal C-representation
of G has the form indG

J λ, for a pair (J, λ) unique up to conjugation. We verify that those lists
are stable under the action of field automorphisms of C, and we produce similar lists when C
is no longer assumed algebraically closed. Our other main result concerns supercuspidality.
This notion makes sense for the irreducible cuspidal C-representations of G, but also for the
representations λ above, which involve representations of finite reductive groups. In most
cases we prove that indG

J λ is supercuspidal if and only if λ is supercuspidal.
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1. Introduction

Let F be a non-archimedean local field with finite residue field of characteristic p, G a
connected reductive linear group defined over F and C a field of characteristic c. We are
interested in irreducible smooth C-representations of G = G(F ).

Most of the literature supposes that the coefficient field C is the field C of complex numbers,
but the study of congruences of automorphic forms and the modularity conjectures of Galois
representations use representations over number fields or finite fields.

We concentrate here on the case c 6= p, which we always assume, and for which our
basic reference is [55]. With no further assumption on C, we investigate the irreducible
C-representations of G; we concentrate on the cuspidal ones since every irreducible smooth
C-representation of G embeds in a representation parabolically induced from an irreducible
cuspidal C-representation of some Levi subgroup of G.

When C is algebraically closed, all known irreducible cuspidal C-representations of G are
compactly induced from an open subgroup, compact modulo the centre, and one conjectures
that it is the case for any G. In this paper we extend many known results to a general
coefficient field C, as we now explain. For us a cuspidal C-type in G is a pair (J, λ) where
J ⊂ G is an open compact modulo the centre subgroup and λ is an isomorphism class of
smooth C-representations of J such that the representation indGJ λ of G compactly induced
from (J, λ) is irreducible, hence (as we show) cuspidal. A set X of cuspidal C-types in G is said
to satisfy exhaustion if all irreducible cuspidal C-representations are of this form, unicity if
indGJ λ determines (J, λ) modulo G-conjugation, intertwining if the endomorphism C-algebras
of λ and indGJ λ are isomorphic (that condition is automatic when C is algebraically closed),
H-stability for a subgroup H ⊂ Aut(C) if for (J, λ) ∈ X and σ ∈ H, (J, σ(λ)) is also in X.
When C is algebraically closed, and for many of our groups G, a list of cuspidal C-types (J, λ)
has been produced, which satisfies exhaustion (sometimes only for level 0 representations) and
often unicity. For those lists we verify Aut(C)-stability, which allows us to produce similar
lists when C is no longer assumed algebraically closed:

Theorem 1.1. Let C be a field of characteristic c 6= p and Ca an algebraic closure of C.
1) Any irreducible cuspidal C-representation of G of level 0 is induced from a type in a list

of cuspidal types in G satisfying intertwining, unicity, and Aut(C)-stability 1.
2) Any irreducible cuspidal C-representation of G is induced from a type in a list Y of

cuspidal types in G satisfying intertwining and unicity, if G admits a set Xa of cuspidal Ca-
types satisfying unicity, exhaustion, and AutC(Ca)-stability. If Xa satisfies Aut(Ca)-stability,
then Y satisfies Aut(C)-stability.

To construct Y from Xa, we replace each (J, λa) ∈ Xa by (K, ρa) where K is the G-
normalizer of J and ρa = indKJ λ

a. We prove that K is open and compact modulo the centre
(Proposition 4.16) and that the set Ya of Ca-types (K, ρa) in G associated to Xa satisfies the
same properties as Xa (Proposition 3.18). The new set Ya has the advantage that it satisfies
AutC(Ca)-unicity: if σ ∈ AutC(Ca) then σ(indGK(ρ)) ' indGK(ρ) implies σ(ρ) ' ρ. We obtain
Y by replacing (K, ρa) ∈ Ya by (K, ρ) where ρ is an irreducible smooth C-representation of

1Those types are called of level 0
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K such that ρa is ρ-isotypic (isomorphic to a direct sum of representations isomorphic to ρ)
as a C-representation of K; this relies on the decomposition theorem of Ca⊗C π for a simple
module π over a C-algebra, with an endomorphism ring of finite C-dimension [31]. We recall
that decomposition theorem in Section 2.

Applying our method to the list of cuspidal Ca-types in G constructed by Bushnell-Kutzko
[11], Moy-Prasad [43], Morris[42], Weissmann [58], Minguez-Sécherre [41], Cui [15], [16],
Kurinczuk-Skodlerack-Stevens [37], Skodlerack [51], Yu-Fintzen [26], we obtain:

Theorem 1.2. Let C be a field of characteristic c 6= p.
1) Any irreducible cuspidal C-representation of G of level 0 is compactly induced, and G

admits a list of level 0 cuspidal C-types in G satisfying intertwining, unicity, exhaustion, and
Aut(C)-stability.

2) Any irreducible cuspidal C-representation of G is compactly induced, and G admits a
list of cuspidal C-types satisfiying intertwining, unicity, exhaustion, and Aut(C)-stability, in
the following cases:

the semimple rank of G is ≤ 1 (except for unicity, which is not known for all G of rank 1),
G = SL(n, F ),
G = GL(n,D) for a central division algebra D of finite dimension over F ,
G is a classical group (a unitary,symplectic or special orthogonal group as in [37]) and

p 6= 2,
G a quaternionic form of a classical group as above.
G is a moderately ramified connected reductive group and p not dividing the order of the

absolute Weyl group.

Theorem 1.1 applies rather generally. Indeed we show that if Ca and C ′a are two alge-
braically closed fields with the same characteristic c 6= p and G admits a set of Ca-types
satisfying unicity, exhaustion, and Aut(Ca)-stability, then G also admits a list of C ′a-types
satisfying the same properties.

Our other main results concern supercuspidality. An irreducible smooth C-representation
π of G is supercuspidal if it is not a subquotient of a representation parabolically induced from
a proper Levi subgroup of G [55]. This notion of supercuspidality also makes sense for finite
reductive groups. The explicit cuspidal Ca-types (J, λ) considered above involve cuspidal Ca-
representations of finite reductive groups. More precisely J has two normal open subgroups
J1 ⊂ J0 and the quotient J0/J1 is naturally a finite reductive group. The restriction of λ to
J0 is constructed as a tensor product of an irreducible Ca-representation κ of J0, which we call
here a preferred extension (see §6.1 for detail), and a Ca-representation ρ of J0 trivial on J1,
inflated from a cuspidal representation of J0/J1. We say accordingly that λ is supercuspidal
if the irreducible components of ρ are inflated from supercuspidal representations of the finite
reductive group J0/J1. For a cuspidal C-type (J, λ) obtained via Theorem 1.1, we say that λ
is supercuspidal if the irreducible components of Ca ⊗C λ (which are cuspidal Ca-types) are
supercuspidal.

Theorem 1.3. Let (J, λ) be a cuspidal C-type in G. Then λ is supercuspidal if and only if
indGJ λ is supercuspidal, in the following cases:

- (J, λ) has level 0,
- C is algebraically closed, (J, λ) is in the list of cuspidal C-types of G = GL(n, F ) or G is

a classical group and p is odd, or G splits over a tame Galois extension of F and p is odd and
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does not divide the order of the absolute Weyl group of G, constructed by Bushnell-Kutzko
[12], Minguez-Sécherre [38], or Kurinczuk-Skodlerack-Stevens [34], or Yu [59], Fintzen [26] 2.

To prove Theorem 1.3 we use injective hulls. Indeed if π is an irreducible C-representation of
a finite reductive group, and Iπ is an injective hull of π, then π is supercuspidal if and only if Iπ
is cuspidal. In practice we work with representations whose restriction to a maximal torsion-
free subgroup Z] of the centre Z of G is a multiple of a fixed irreducible C-representation ω.
In that setting we show that if an injective hull Iλ,ω of λ is cuspidal then indGJ Iλ,ω is cuspidal
(with the same length as Iλ,ω) and is an injective hull and a projective cover of π = indGJ λ.
In the reverse direction we show that if Iπ,ω is cuspidal then Iλ,ω is supercuspidal. When the
second adjointness holds, then π is supercuspidal if and only if Iπ,ω is cuspidal, and we get
(Theorems 5.1 and 6.10):

For a cuspidal C-type (J, λ) in G of level 0 or satisfying the properties (i) to (vi) of §6.1,
if λ is supercuspidal then π = indGJ λ is. The converse is true if (J, λ) has level 0, or if (J, λ)
satisfies also the property (vii) of §6.1 and (G,C) satisfies the second adjunction.

This result implies Theorem 1.3. Indeed Dat proved the second adjointness for level 0
representations and for the groups G = GL(n, F ), the classical groups of Stevens, and the
moderately ramified groups of Fintzen-Yu. We check that the properties (i) to (vii) of §6.1
are satisfied by the cuspidal Ca-types in G when G is GL(n,D), a classical group as in [37]
and p 6= 2, a quaternionic form of such a classical group, a moderately ramified connected
reductive group and p not dividing the order of the absolute Weyl group, constructed by
Bushnell-Kutzko [12], Minguez-Sécherre [38], Kurinczuk-Skodlerack-Stevens [34], Skodlerak
[50], [51], Yu [59].

The layout of the paper is the following. In section 2 we recall useful consequences of
the Decomposition Theorem of [31]: when V is a simple module over a unital C-algebra A
with finite-dimensional commutant, it describes the submodule structure of Ca ⊗C π as a
module over Ca ⊗C A. Section 3 collects facts about various functors on the category of
smooth C-representations of a locally profinite group G; also, we derive from section 2 a
procedure to produce cuspidal C-types in G from cuspidal Ca-types. In section 4, we first
show that all irreducible smooth C-representations of G = G(F ), are admissible, and that
our procedure applies to such G; moreover we show that good sets of cuspidal types can be
transferred from one algebraically closed field to another of the same characteristic. Then
we show Aut(Ca)-stability for the level 0 cuspidal Ca-types, yielding corresponding lists of
C-types; the more technical case of positive level cuspidal Ca-types is treated at the end of
section 6. In section 5, we investigate the notion of supercuspidality and we prove that a level
0 cuspidal C-type (J, λ) is supercuspidal if and only if indGJ λ is supercuspidal. Section 6 is
devoted to the explicit Ca-types of Theorem 1.2. We show the properties (i) to (vi) of §6.1
and Aut(Ca)-stability for them, and the property (vii) for some of them to get Theorem 1.3.

Part of this paper was presented in Carthage at the conference organized by Ahmed Abbes
in June 2019. It is a pleasure to thank Muic, Fintzen, Aubert, Sécherre, Stevens, Abbes
and the participants of the Carthage conference and of IMJ-PRG for their contribution or
stimulating interest.

2This case is conditional on the verification of the second adjunction by Dat
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Notation: Throughout the paper p is a prime number, C is a field with characteristic c
different from p (unless mentioned otherwise), and Ca is an algebraic closure of C. All C-
algebras are assumed to be associative, Aut(C) is the group of field automorphisms of C and
AutC(Ca) is the group of automorphisms of Ca fixing C. In section 3, G is a locally profinite
group, most often with a compact open subgroup of pro-order invertible in C, and Z is a closed
central subgroup of G. We write ModC(G) for the category of smooth C-representations of
G and IrrC(G) ⊂ ModC(G) for the family of irreducible representations. In sections 4 to 6,
G = G(F ), where F is a non-archimedean local field with finite residue characteristic p, G
is a connected reductive F -group and Z is the centre of G of maximal compact subgroup Z0

and Z] a finitely generated torsion-free subgroup. As usual OF is the ring of integers of F ,
PF the maximal ideal of OF , O∗F the group of units of OF , and kF = OF /PF the residual
field.

2. The Decomposition Theorem

Let A be a unital C-algebra and V a simple A-module such that D = EndA(V ) has finite
dimension over C. The Decomposition Theorem ([31], Theorem1.1) analyzes the structure
of C ′ ⊗C V as a module over C ′ ⊗C A when C ′ is any normal extension of C containing a
maximal subfield of D. Its lattice of submodules is isomorphic to the lattice of right ideals in
the Artinian ring C ′ ⊗C D; in particular C ′ ⊗C V has finite length. We shall mostly use the
following consequences, drawn in [31], when C ′ = Ca.

Theorem 2.1. A) Let V be a simple A-module with dimC(EndA(V )) finite. Then, the
Ca⊗CA-module Ca⊗CV has finite length. A simple subquotient of Ca⊗CV is also isomorphic
to a submodule, and to a quotient; it is absolutely simple, and defined over a finite extension
of C. The isomorphism classes of simple subquotients form a finite orbit under AutC(Ca).

B) An absolutely simple Ca ⊗C A-module W which is defined over a finite extension of C
is a subquotient of Ca ⊗C V , for some simple A-module V with dimC(EndA(V )) finite. The
A-module V is determined up to isomorphism by the property that W is V -isotypic3 as an
A-module.

The theorem implies that the map sending V to the set of irreducible subquotients of
Ca ⊗C V induces a bijection from the set of isomorphism classes of simple A-modules with
endomorphism ring of finite C-dimension to the set of orbits under AutC(Ca) of absolutely
simple Ca ⊗C A-modules defined over a finite extension of C.

For any extension C ′/C we put AC′ = C ′⊗CA. An AC′-module isomorphic to C ′⊗CV for an
A-module V , is said to be defined over C; if V is simple, then C ′⊗CEndA V ' EndAC′ C

′⊗CV
([31], Rem.II.2). An A-module V is said to be absolutely simple if the AC′-module C ′ ⊗C V
is simple for any extension C ′/C.

As a consequence of Theorem 2.1, a simple A-module V with EndA(V ) = C is absolutely
simple. The converse is true ([31], Rem.II.3); in particular a simple ACa-module of finite
Ca-dimension is absolutely simple.

Lemma 2.2. (i) Let V be a simple A-module with D = EndA(V ) of finite C-dimension and
let C ′/C be an extension contained in D. Then C ′ ⊗C V is a simple AC′-module if and only
if C ′ = C.

3W is a direct sum of modiules isomorphic to V
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(ii) An A-module V such that D = EndA(V ) has finite C-dimension is absolutely simple
if and only if C ′ ⊗C V is a simple C ′ ⊗C A-module for all finite extensions C ′/C.

Proof. (ii) is a consequence of (i) by Theorem 2.1. We prove (i). If C ′ ⊗C V is a simple
C ′ ⊗C A-module, then C ′ ⊗C D ' EndC′⊗CA(C ′ ⊗C V ) is a division C ′-algebra of finite
dimension containing C ′ ⊗C C ′. An integral C ′-algebra of finite dimension is a field, so
C ′⊗CC ′ is a field. But C ′⊗CC ′ is a field if and only if C ′ = C (the multiplication x⊗y 7→ xy
is a quotient map C ′ ⊗C C ′ → C ′ hence is an isomorphism, and C ′ = C). �

Remark 2.3. Let V be a simple A-module with endomorphism ring D = EndAV and B ⊂ A
a central subalgebra (containing the unit). Let E be the image of B in EndC(V ). Then E
lies in the centre of D. In the special case where V is a finitely generated B-module, then E
is a field and V is a finite dimensional E-vector space ([5], 3.3, Corollary 2 of Proposition 3);
that applies in particular when B = A, in which case dimE(V ) = 1. In general, at least E is
integral.

Assume now that D has finite C-dimension. Then E is a commutative finite dimensional
C-algebra, and being an integral domain it is necessarily a field, hence is a finite extension
of C. The algebra B acts on V via its quotient field E, which is a simple B-module, and
V as a B-module, is E-isotypic. In the case that A = C[G] for a group G, and B = C[Z]
where Z ⊂ G is a central subgroup, we see that V is a simple E[G]-module, Z acting by an
homomorphism Z → E∗.

We now give a kind of converse to Theorem 2.1, which will be used in Proposition 3.13.

Proposition 2.4. Let V be an A-module such that EndA(V ) is a division algebra. Assume
that the Ca ⊗C A-module Ca ⊗C V has finite length and that all its simple subquotients are
absolutely simple, and their isomorphism classes form an orbit under AutC(Ca). Then V is
simple and EndA(V ) has finite dimension over C.

Proof. Let U be a simple A-subquotient of V . As an A-module, Ca ⊗C U is a direct sum of
modules isomorphic to U , hence each simple subquotient of Ca ⊗C U is, as an A-module, a
direct sum of modules isomorphic to U . Since the isomorphism classes of the simple subquo-
tients of Ca ⊗C V form an orbit under AutC(Ca), they are also the simple subquotients of
Ca ⊗C U . As an A-module, Ca ⊗C V is a direct sum of modules isomorphic to V . Therefore
the simple A-subquotients of V are isomorphic to U . Since the Ca ⊗C A-module Ca ⊗C V
has finite length, the A-module V has finite length too. As U occurs as an A-submodule
and a A-quotient of V , there exists an A-endomorphism of V of image U ; as EndA(V ) is a
division algebra, any non-zero A-endomorphism of V is surjective. Therefore V = U is simple.
Since Ca ⊗C V has finite length, and that all its simple subquotients are absolutely simple,
EndCa⊗A(Ca⊗C V ) has finite dimension over Ca. This is also the dimension of EndA(V ) over
C. �

3. Smooth C-representations of locally profinite groups

Let G be a locally profinite group, Z a closed central subgroup of G, and C a field.

Definition 3.1. We say that Z is almost finitely generated when Z/Z0 is finitely generated
for some open compact subgroup Z0 ⊂ Z. This property does not depend on the choice of
Z0.
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A C-representation V of G is called smooth if every vector in V has open stabilizer in G,
and V is called admissible if moreover the subspace V J of J-invariant vectors of V has finite
dimension for any open subgroup J of G. Note that a C-representation V of G generated by
V J for some J is smooth (as gv is fixed by gJg−1 for g ∈ G, v ∈ V ). We write ModC(G)
for the category of smooth C-representations of G and IrrC(G) for the family of irreducible
smooth C-representations of G.

A homomorphism χ : G → C∗ is called a C-character of G. The C-characters χ of G act
on the C-representations of G, respecting irreducibility : if (π, V ) is a C-representation of
G, then g 7→ χ(g)π(g) for g ∈ G, gives a C-representation of G on V , written χπ and called
the twist of π by χ. That action is compatible with morphisms of representations, so we
also get an action, written in the same way, on isomorphism classes of C[G]-modules. The
smooth characters, i.e. with open kernel, act on the smooth representations of G and on their
isomorphism classes.

3.1. Invariants under an open subgroup. Let J ⊂ G be an open subgroup. The functor
V → V J from C-representations of G to C-vector spaces is left exact, and exact if J is
compact and has pro-order invertible in C. If V is irreducible, we get a ring homomorphism
D = EndC[G](V )→ EndC(V J) which is injective if V J 6= 0, because D is a division algebra;
in particular if dimC(V J) is finite, so is dimC(D), and we can apply section 2 to V . In that
case Z acts via a quotient field of C[Z], finite over C (Remark 2.3), so Z acts via a character if
C is algebraically closed. We conclude that we can apply section 2 to an irreducible admissible
C-representation of G.

In fact the functor V → V J gives a functor from C-representations of G to modules over
the Hecke C-algebra HC(G, J) of J in G (in order to get left modules, HC(G, J) is defined as
the opposite of the C-algebra EndC[G](C[G/J ])).

The following is well-known when C = C is the field of complex numbers, and the proofs
in ([9]1.4.3 Proof of Proposition (2)) carry over to any field C.

Theorem 3.2. Let J ⊂ G be an open compact subgroup with pro-order invertible in C.
(i) If V is an irreducible C-representation of G with V J 6= 0, then V is smooth and V J is

a simple HC(G, J)-module.
(ii) LetM be a simple HC(G, J)-module. Then the C[G]-module XM = C[G/J ]⊗HC(G,J)M

is smooth, has a unique largest submodule X ′M not intersecting 1 ⊗ M , and the quotient
YM = XM/X

′
M is an irreducible smooth C-representation of G. The map sending m ∈M to

the image in YM of 1⊗m gives an isomorphism M → Y J
M of HC(G, J)-modules.

(iii) If V is an irreducible C-representation of G such that V J 6= 0, then taking M = V J ,
the natural map XM → V induces an isomorphism YM → V.

That theorem gives an explicit bijection between isomorphism classes of irreducible smooth
C-representations ofG with non-zero J-invariants, and isomorphism classes of simpleHC(G, J)-
modules.

Corollary 3.3. Let V ∈ IrrC(G) with V J 6= 0. Then the natural map EndC[G](V ) →
EndHC(G,J)(V J) is an isomorphism.

That result was already established in ([44], Theorem 4.1) when C = Q is the field of
rational numbers.
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Proof. We already remarked that the map is injective. Let a ∈ EndHC(G,J)(V J). Then a

induces an endomorphism of the C[G]-moduleXM whereM = V J , which preservesX ′M hence
induces b ∈ EndC[G](V ) by (iii) of the theorem; by construction b induces a on M = V J . �

Remark 3.4. Let V ∈ IrrC(G) with V J 6= 0 and dimC(V J) finite. By the corollary we
can apply section 2 to the C[G]-module V and also to the HC(G, J)-module V J ; we get
parallel results, in particular the map W → W J gives an isomorphism of the lattice of
subrepresentations of Ca ⊗C V onto the lattice of HC(G, J)-submodules of (Ca ⊗C V )J .

Let us consider an extension C ′/C. If V is a C[G]-module, the inclusion C ′⊗CV J → C ′⊗CV
induces an isomorphism C ′⊗C V J → (C ′⊗C V )J ; it is an isomorphism of HC′(G, J)-modules.
Clearly if V ′ is an irreducible C ′[G]-module defined over C with V ′J 6= 0, then the HC′(G, J)-
module V ′J is also defined over C. Conversely:

Corollary 3.5. Let C ′/C be an extension. Let V ′ ∈ IrrC′(G) with V ′J 6= 0. If the HC′(G, J)-
module V ′J is defined over C, then V ′ is defined over C.

Proof. Let M be an HC(G, J)-module such that C ′ ⊗C M ' V ′J . Then M is necessarily
simple, because V ′J is (by (i) of the theorem). Consider the irreducible C-representation YM
of G of J-invariants isomorphic to M ; then (C ′ ⊗C YM )J ' V ′J and by (iii) of the theorem,
C ′ ⊗C YM ' V ′ hence V ′ is defined over C. �

3.2. Irreducible C-representations of G with finite dimension. In this subsection, we
assume that G/Z is compact.

Proposition 3.6. Let V be a finitely generated smooth C-representation of G. Then V is
trivial on an open subgroup. If V is irreducible and Z is almost finitely generated (Definition
3.1), then dimC(V ) is finite.

The second assertion will be generalized (Proposition 3.8).

Proof. Let S be a finite set generating V . For v ∈ V , the G-stabilizer Jv of v is an open
subgroup of G; for g ∈ G, Jgv = gJvg

−1 and depends only on gZJv. So, because G/Z is
compact, there are only finitely many open subgroups Jgv for g ∈ G, v ∈ S. Their intersection
is therefore an open subgroup of G acting trivially on V . Moreover V is a finitely generated
module over C[Z] (as G/Z is compact and V is a finitely generated C[G]-module with an
open subgroup of G acting trivially). If Z is almost finitely generated, then any quotient field
of C[Z] has finite C-dimension, and the second assertion is a consequence of Remark 2.3. �

Corollary 3.7. When Z is almost finitely generated, any V ∈ IrrCa(G) has finite dimension,
is absolutely irreducible and is defined over a finite extension of C.

Proof. EndCa[G](V ) = Ca and Z acts on V via a character. The values of that character
generate a finite extension E of C in Ca (since Z is almost finitely generated). On the other
hand an open subgroup of G acts trivially on V so we may assume that G/Z is finite; taking
representatives gi for G/Z, the matrix coefficients of the action of the g′is on a basis of V
generate a finite extension C ′ of C in Ca, and we see that V is defined over EC ′. �

3.3. Z-compactness. In this subsection, we assume that G contains an open compact sub-
group with pro-order invertible in C.

For each such subgroup J ⊂ G, we then have a canonical projector eJ , which acts on any
smooth C-representation V of G, it is J-equivariant and has image eJV = V J .
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A smooth C-representation V of G is called Z-compact ([55] I.7.3 and 7.11) if for all small
enough open compact subgroups J ⊂ G, and all v ∈ V , the support of the function g → eJgv
is Z-compact (i.e. compact modulo Z). When Z is trivial, we say compact instead of Z-
compact. It is clear that a subrepresentation of a Z-compact smooth C-representation of G
is Z-compact, and a quotient representation is also.

It is known that a compact finitely generated smooth C-representation of G is admissible
([55] I.7.4). Let us analyze the situation in general. Let V ∈ ModC(G) and J an open compact
subgroup of G with pro-order invertible in C. Let v ∈ V and V (v) the subrepresentation of
V generated by v. Then the vector space V (v)J is generated by the eJgv, g ∈ G. If V is
Z-compact, the function g → eJgv vanishes outside a finite number of double cosets JgZJv,
where Jv ⊂ G is the G-stabilizer of v. In particular V (v)J is a finitely generated C[Z]-module.
More generally if V is Z-compact and W is a finitely generated subrepresentation of V , then
W J is finitely generated over C[Z]. If C[Z] acts on W via a quotient A with dimC(A) finite,
then W J is finite dimensional.

Proposition 3.8. Assume that Z is almost finitely generated. Then any Z-compact V ∈
IrrC(G) is admissible.

WhenG/Z is compact, all smooth C-representations ofG are Z-compact, so the proposition
does generalize the last assertion of Proposition 3.6.

Proof. Choose a non-zero vector v ∈ V and J ⊂ G a compact open subgroup with pro-order
invertible in C fixing v. By the above, the simple HC(G, J)-module V J is finitely generated
over C[Z]. Since Z is almost finitely generated, reasoning as for Proposition 3.6 gives that
V J has finite dimension. �

Remark 3.9. 1) Assume that Z is almost finitely generated. If there exists a Z-compact
irreducible smooth representation V of G of finite dimension over C, we claim that G/Z is
compact. Indeed, since V is smooth of finite dimension, an open normal subgroup in G acts
trivially on V , and dividing by this subgroup we may assume G discrete. Taking now J trivial
in the property of Z-compactness, we see that that gv 6= 0 only for g in a finite number of
Z-cosets; but that implies that G/Z is finite.

2) Assume that V ∈ IrrC(G) is Z-compact. Then the image A of C[Z] in the division
algebra D = EndC[G](V ) is an integral domain, so has a fraction field E ⊂ D. Since D
stabilizes V J , A and E stabilizes V J too. By the above, V J is finitely generated over A, so
dimE(V J) is finite. If dimC A (or equivalenly dimC E) is finite, then dimC(V J) is finite.

3) Let C ′ be an extension of C and let V ∈ ModC(G). Then C ′ ⊗C V ∈ ModC′(G), and V
is Z-compact if and only if C ′ ⊗C V is Z-compact.

The space of linear forms L : V → C invariant under an open subgroup of G with the
natural action (gL(gv) = L(v) for v ∈ V, g ∈ G) of G is a smooth representation V ∨ ∈
ModC(G) called the contragredient of V ([55] I.7.1). As G contains a compact open subgroup
of pro-order invertible in C, the contragredient functor V 7→ V ∨ : ModC(G) → ModC(G)
is exact ([55] 4.18 Proposition (i)); the three properties: V admissible, V ∨ admissible, the
natural map V → (V ∨)∨ is bijective, are equivalent, and when V is admissible then V is
irreducible if and only if V ∨ is ([55] I.4.18 Proposition (iii) and (v)). A smooth coefficient of
V ∈ ModC(G) is a function g → L(gv) from G to C for v ∈ V,L ∈ V ∨.

Proposition 3.10. Let V ∈ ModC(G). Then V is Z-compact if and only if the support of
any smooth coefficient of V is Z-compact.
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Proof. That is already established with compact instead of Z-compact in [55] I.7.3 Proposition
c). It is clear that if V is Z-compact then any smooth coefficient of V is Z-compact. Let
us prove the converse. Fix v ∈ V . To prove that the support of the function g → eJgv is
Z-compact for all compact open subgroups J ⊂ G with pro-order invertible in C, we may as
well assume that J fixes v and that v generates V . For each double coset x = JhZJ, h ∈ G,
let V (x) ⊂ V J the subspace generated by the eJhzv for z ∈ Z. Then V J is the sum of the
V (x), because v generates V . Let X be the set of cosets x such that V (x) 6= 0. The goal is
to show that X is finite. By the hypothesis on coefficients, any linear form on V J (which can
be uniquely extended to a linear form on V fixed by J) vanishes outside a finite number of
subspaces V (x). For each x ∈ X , let us choose a non-zero vector vx ∈ V (x). Extract from the
family vx, x ∈ X , a maximal linearly independent subfamily vx, x ∈ Y, with Y ⊂ X . There is
a linear form on V J taking value 1 at each vx for x ∈ Y, which implies that Y is finite by our
hypothesis on coefficients, so the family vx, x ∈ X , generates a finite dimensional subspace
W ⊂ V J . Choose a basis of W ∗ = HomC(W,C); each element of that basis vanishes on vx for
all x ∈ X , except for finitely many, so the vx are 0 except finitely many which finally shows
that X is finite, as desired. �

Remark 3.11. Let V ∈ ModC(G) admissible. From Proposition 3.10, V is Z-compact if and
only if V ∨ is. If V is also irreducible, then V is Z-compact if and only if the support of some
smooth coefficient of V is Z-compact.
3.4. Compact induction. In the setting of the introduction, all known constructions of
cuspidal irreducible C-representations of G(F ) are for C algebraically closed and are obtained
via compact induction. We now investigate the situation without assuming C algebraically
closed.

Let J ⊂ G be a subgroup. The functor C[G]⊗C[J ] − from C[J ]-modules to C[G]-modules
is exact (because C[G] is a free C[J ]-module) and faithful; it is left adjoint to the restriction
functor ResGJ . It is obviously compatible with scalar extension through a field extension C ′/C;
in particular, it is compatible with the action of Aut(C) and with the action of C-characters
of G on C[G]-modules (in the sense that if χ is a C-character of G and ρ a C[J ]-module, then
χ(C[G]⊗C[J ] ρ) ' C[G]⊗C[J ] χ|Jρ ).

We now assume that J is open. In that case the previous functor restricts to a functor
ModC(J)→ ModC(G); we rather use the isomorphic functor of compact induction ([55], I.5.7)
denoted indGJ : ModC(J)→ ModC(G) while the smooth induction from J to G is denoted by
IndGJ : ModC(J)→ ModC(G) ([55] I.5.1).

If V ∈ ModC(J), we thus get a ring homomorphism
(3.1) EndC[J ](V )→ EndC[G](indGJ V )
which is injective by faithfulness. It is rarely surjective, though, even when V is irreducible.
By adjunction EndC[G](indGJ V ) ' HomC[J ](V,ResGJ indGJ V ), and ResGJ indGJ V decomposes
as a direct sum over double cosets JgJ of the representation of J on the space indJgJJ V of
functions in indGJ V with support in JgJ ,

(3.2) ResGJ indGJ V = ⊕JgJ indJgJJ V.

The trivial coset J yields a representation of J naturally isomorphic to V, and accounts
for the embedding (3.1). The embedding is an isomorphism if and only if no non-trivial
coset contributes. Note that indGJ V can be admissible only if V is and finitely many cosets
contribute.
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Let us analyze a more general situation. Let J ′ be another open subgroup of G and
V ′ ∈ ModC(J ′). By adjunction

HomC[G](indGJ ′(V ′), indGJ (V )) ' HomC[J ′](V ′,ResGJ ′ indGJ V ), ResGJ ′ indGJ V = ⊕JgJ ′ indJgJ
′

J V.

Consequently HomC[J ′](V ′,ResGJ ′ indGJ V ) sits between the direct sum and the direct product
of the HomC[J ′](V ′, indJgJ

′

J V ). More precisely, it is made out of the collections of φJgJ ′ ∈
HomC[J ′](V ′, indJgJ

′

J V ) such that for v′ ∈ V ′, φJgJ ′(v′) = 0 except for a finite number of
double cosets JgJ ′ in G 4. Note that we have an isomorphism

(3.3) HomC[J ′](V ′, indJgJ
′

J V )→ HomC[J ′∩g−1Jg](V ′, gV )

which associates to φ the map v′ 7→ φ(v′)(1), where gV is the representation of g−1Jg on V
via (g−1hg, v) 7→ hv.

Let us recall what intertwining means. Let G be a group and H,K subgroups of G. Let ρ
be a C-representation of H on a space V , and τ a C-representation of K on a space W . For
g ∈ G, a map Φ ∈ HomC(V,W ) such that τ(k) ◦ Φ = Φ ◦ ρ(g−1kg) for k ∈ K ∩ gHg−1, is
called a g-intertwiner of ρ with τ . The space I(g, ρ, τ) of g-intertwiners of ρ with τ is
(3.4) HomC[gHg−1∩K](V g,W ) = HomC[H∩g−1Kg](V, gW ),

where V g = g−1
V is the g-conjugate of V : the representation of gHg−1 on V via (ghg−1, v) 7→

hv. We say that g intertwines ρ with τ if I(g, ρ, τ) 6= 0; this is equivalent to saying that the set
KgH supports a non-zero function f : G → HomC(V,W ) such that f(kgh) = τ(k)f(g)ρ(h)
for k ∈ K,h ∈ H. Indeed, the map f 7→ Φ = f(g) is an isomorphism from the space of such
functions to the space of g-interwiners. When g interwines ρ with ρ, we simply say that g
intertwines ρ. The set of g ∈ G which interwines ρ is called the G-intertwining of ρ. The
G-normalizer of ρ is the K-intertwining of ρ where K is the G-normalizer of H.

An immediate but important remark is that the action of Aut(C) preserves intertwining.
Indeed, let σ ∈ Aut(C). Then σ(V ) = C ⊗σ V identifies with V by 1⊗ v corresponding to v,
the action of c ∈ C on 1⊗v corresponding to the action of σ(c)−1 on v (as c⊗v = 1⊗σ−1(c)v).
Clearly, a g-intertwiner of ρ with τ identifies with a g-intertwiner of σ(ρ) with σ(τ),
(3.5) I(g, ρ, τ) ' I(g, σ(ρ), σ(τ)).

Recall that indGJ V is contained in the smooth induced representation IndGJ V and that
(indGJ V )∨ is naturally isomorphic to IndGJ (V ∨).

Remark 3.12. Assuming that G has a compact open subgroup of pro-order invertible in C,
let us briefly tackle the issue of admissibility.

a) If indGJ V is admissible, so is V , because J ⊂ G is open and V ⊂ ResGJ indGJ V .
b) Assume V admissible (so V ∨ is admissible and (V ∨)∨ ' V ). Adapting the reasoning in

[8] (see also [55], I.2.8), one proves that the following conditions are equivalent: (i) IndGJ V
is admissible (ii) indGJ V is admissible (iii) indGJ V = IndGJ V . If those conditions are satisfied
for V , they are also satisfied for V ∨. In particular indGJ (V ∨) = IndGJ (V ∨) and all smooth
coefficients of indGJ V have support contained in a finite number of cosets Jg; consequently
their support is Z-compact if J contains Z with J/Z compact, and then indGJ V is Z-compact.

4The reader should be aware of slightly incorrect statements in ([55] I.8.3 Preuve (i) (ii), and [36] Remark
2.1)
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Our main interest goes to cases where indGJ V is irreducible, which can only happen when
V is. Let us assume then that V is irreducible. Let NG(J, V ) be the G-normalizer of (J, V ),
made out of the elements in the G-normalizer of J which transform V into an isomorphic
representation of J . In general the intermediate induction indNG(J,V )

J V is not irreducible.
So to ensure that indGJ V be irreducible, it is better to assume that J contains the centre of
G. For g ∈ NG(J, V ) the coset gJ = JgJ contributes to EndC[G](indGJ V ); if the embedding
EndC[J ] V → EndC[G](indGJ V ) (3.1) is an isomorphism, then NG(J, V ) = J .

For V irreducible and V a an irreducible subquotient of Ca⊗C V , we derive information on
indGJ V from indGJ V a using section 2 when EndC[J ] V has finite C-dimension.

Proposition 3.13. Let V ∈ IrrC(J) such that EndC[J ] V has finite dimension. Let V a ∈
IrrCa(J) be a subquotient of Ca ⊗C V . The following two conditions are equivalent:

(i) The embedding EndC[J ] V → EndC[G](indGJ V ) (3.1) is an isomorphism.
(ii) The embedding HomCa[J ](V a, σ(V a))→ HomCa[G](indGJ V a, indGJ σ(V a)) is an isomor-

phism, for any σ ∈ AutC(Ca).
Assume that indGJ V a is absolutely irreducible and that indGJ σ(V a) ' indGJ V a only if

σ(V a) ' V a for σ ∈ AutC(Ca). Then (i) holds true and indGJ V is irreducible.

Proof. Condition (i) means that HomC[J ](V, indJgJJ V ) = 0 for any non-trivial coset JgJ .
Similarly, condition (ii) means that HomCa[J ](V a, indJgJJ σ(V a)) = 0 for any non-trivial coset
JgJ , and any σ ∈ AutC(Ca).

Let us fix g ∈ G. Because V is irreducible, HomCa[J ](Ca ⊗C V, indJgJJ (Ca ⊗C V )) '
Ca⊗CHomC[J ](V, indJgJJ V ). From Theorem 2.1 the irreducible subquotients of Ca⊗C V have
the form σ(V a), for σ ∈ AutC(Ca), and each of them is (isomorphic to) a subrepresentation
of Ca ⊗C V , and also a quotient. We deduce the equivalence of the four properties:

(1) HomC[J ](V, indJgJJ V ) 6= 0,
(2) HomCa[J ](Ca ⊗C V, indJgJJ (Ca ⊗C V )) 6= 0,
(3) there exist σ, σ′ ∈ AutC(Ca) such that HomCa[J ](σ(V a), indJgJJ σ′(V a)) 6= 0,
(4) there exists τ ∈ AutC(Ca) such that HomCa[J ](V a, indJgJJ τ(V a)) 6= 0.

Therefore, conditions (i) and (ii) are equivalent.
Assume now that indGJ V a is absolutely irreducible and that indGJ σ(V a) ' indGJ V a only if

σ(V a) ' V a for σ ∈ AutC(Ca). By the decomposition theorem 2.1 there is a finite normal
extension C ′ of C such that C ′ ⊗C V achieves the length of Ca ⊗C V and such V a is defined
over C ′, so indGJ V a is also defined over C ′. By assumption indGJ V a is absolutely irreducible
so all the irreducible subquotients of indGJ (Ca ⊗C V ) which are its AutC(Ca)-conjugates, are
absolutely irreducible as well. It follows also that the length of indGJ (Ca ⊗C V ) is the same
as that of Ca ⊗C V which by the decomposition theorem 2.1 is finite. The other part of the
assumption implies that condition (ii) is satisfied, hence also condition (i). Consequently we
can apply Proposition 2.4 to indGJ V , and we get that it is simple. �

Remark 3.14. Assume that all conditions in the proposition are satisfied. Then applying
the decomposition theorem 2.1 to V or indGJ V gives parallel results. In particular compact
induction from J to G gives an isomorphism from the lattice of subrepresentations of Ca⊗C V
to the lattice of subrepresentations of Ca ⊗C indGJ V .

3.5. C-types.
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Definition 3.15. A C-type in G is a pair (J, V ) where J ⊂ G is an open subgroup and
V an isomorphism class of irreducible smooth C-representations of J such that indGJ V is
irreducible; it is called Z-compact if Z ⊂ J and J/Z is compact; it is said to have finite
dimension if dimC V is finite, to be defined over a subfield C ′ of C if V is defined over C ′.

Warning: That is not the usual definition of types when G = G(F ) [14]. It is simply a
convenient one for us; we can take J = G, in particular.

The group Aut(C) acts on the set of C-types in G by its action on the component V of the
pair. Also, G acts on that set by conjugation. The two actions respect Z-compact types.

When (J, V ) is a C-type in G and J ′ is a subgroup of G containing J , the transitivity of the
compact induction indGJ V ' indGJ ′(indJ ′J V ) shows that indJ ′J V is irreducible, so (J ′, indJ ′J V )
is a C-type in G, which is Z-compact if (J, V ) is and J has finite index in J ′.

Definition 3.16. A C-type (J, V ) in G is said to satisfy intertwining if the homomorphism
EndC[J ] V → EndC[G](indGJ V ) (3.1) is an isomorphism.

Definition 3.17. Let X be a set of C-types in G. The set X satisfies intertwining if each
element of X does, it satisfies unicity if for (J, V ), (J ′, λ′) ∈ X such that indGJ V ' indGJ ′ V ′,
there is g ∈ G conjugating (J, λ) to (J ′, λ′).

Let Z be a set of isomorphism classes of irreducible Z-compact smooth C-representations
of G. The set X satisfies Z-exhaustion if for (J, V ) ∈ X, the isomorphism class of indGJ V is
in Z and any element of Z has that form.

Let σ ∈ Aut(C). The set X is σ-stable if for (J, V ) ∈ X, then (J, σ(V )) is also in X; X is
said to satisfy σ-unicity when moreover indGJ V ' indGJ σ(V ) implies V ' σV .

Let H ⊂ Aut(C) be a subgroup. The set X is H-stable if it is σ-stable for any σ ∈ H; it
satisfies H-unicity if it satisfies σ-unicity for any σ ∈ H.

Proposition 3.18. Let X be a set of C-types in G. Let X′ denote the set of C-types (J ′, V ′),
where J ′ is the G-normalizer of J and V ′ the isomorphism class of indJ ′J V . Let Z and H be
as in Definition 3.17.

If X satisfies intertwining (resp. unicity, resp. Z-exhaustion, H-stability), then so does X′.
If X satisfies unicity and H-stability, then X′ satisfies H-unicity.

Proof. The composite of the natural maps EndC[J ] V → EndC[J ′] indJ ′J V → EndC[G] indGJ V is
(3.1). The assertion for intertwining follows. The assertion for unicity comes from the fact that
if g ∈ G conjugates (J, V ) to (J1, V1) then it also conjugates (J ′, indJ ′J V ) to ((J1)′, ind(J1)′

J1
V ).

The assertion for Z-exhaustion comes from transitivity of induction. The assertion for H-
stability is due to the fact that compact induction is compatible with the action of Aut(C).
Let us assume that X satisfies unicity and H-stability, and let (J, V ) ∈ X and σ ∈ H be such
that indGJ σ(V ) ' indGJ V . By unicity there is g ∈ G conjugating (J, V ) to (J, σ(V )). But
then g is in the G-normalizer J ′ of J so indJ ′J V ' indJ ′J σ(V ). �

3.6. From Ca-types to C-types. When G is a reductive group with centre Z as in the
introduction, many lists of Ca-types (J, V ) are known. Our purpose is to produce C-types
from Ca-types. We now describe a general procedure using Proposition 3.13.

We start from a set Ya of Ca-types (J, V a) in G such that:
a) Each V a is absolutely irreducible and defined over a finite extension of C (by Corollary

3.7 that is automatic if the types in Ya are Z-compact).
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b) Ya satisfies intertwining, unicity, AutC(Ca)-stability and AutC(Ca)-unicity.
We let Za be the set of isomorphism classes of the C-representations indGJ V a for (J, V a) ∈

Ya. Those representations are absolutely irreducible (because V a is and Ya satisfies in-
tertwining), defined over a finite extension of C (because V a is), and Za is stable under
AutC(Ca).

Let (J, V a) ∈ Ya; there is a unique isomorphism class V of smooth irreducible C-representations
of J such that V a is a subquotient of Ca ⊗C V (Theorem 2.1), and EndC[J ] V has finite di-
mension over C.

Lemma 3.19. The pair (J, V ) is a C-type in G satisfying intertwining.

Proof. We see that indGJ σ(V a) ' indGJ V a only if σ(V a) ' V a for σ ∈ AutC(Ca), since
Ya satisfies unicity, AutC(Ca)-stability and AutC(Ca)-unicity. Proposition 3.13 gives the
result. �

From the set Ya of Ca-types (J, V a) in G we therefore get a set Y of C-types (J, V )
in G, satisfying intertwining. Note that Za is the set of isomorphism classes of irreducible
subquotients of Ca ⊗C W for W in the set Z of isomorphim classes of indGJ V ∈ IrrC(G) for
(J, V ) ∈ Y.

Proposition 3.20. The set Y of C-types in G satisfies intertwining and unicity. If Ya

satisfies Aut(Ca)-stability and Aut(Ca)-unicity, then Y satisfies Aut(C)-stability and Aut(C)-
unicity.

Proof. That the set Y satisfies intertwining comes from the lemma.
Let (J, V ) and (J ′, V ′) in Y be such that indGJ V and indGJ ′ V ′ are isomorphic. Let V a be

the class of an irreducible subquotient of Ca ⊗C V , and choose similarly V ′a. They belong
to Ya, and since indGJ V ' indGJ ′ V ′, we have indGJ V a ' indGJ ′ σ(V ′a) for some σ ∈ AutC(Ca).
Since Ya satisfies unicity, V a and σ(V ′a) are conjugate by some g ∈ G, so that V and V ′ are
also conjugate by g. That proves that Y satisfies unicity.

Assume now that Ya satisfies Aut(Ca)-stability and Aut(Ca)-unicity. Let (J, V ) ∈ Y and
τ ∈ Aut(C). There is an extension of τ to an automorphism τa of Ca ([4] §4, No 3,Corollary
2 of Theorem2). If ι : C → Ca is the embedding, then ι ◦ τ = τa ◦ ι and

Ca ⊗C τ(V ) = Ca ⊗ι◦τ V ' τa(Ca ⊗C V ).

If V a is the class of an irreducible subquotient of Ca ⊗C V , then (J, V a) ∈ Ya, and because
Ya satisfies Aut(Ca)-stability, (J, τa(V a)) is also in Ya, and it follows that (J, τ(V )) ∈ Y,
proving that Y satisfies Aut(C)-stability.

Let now τ ∈ Aut(C) be such that indGJ V ' indGJ τ(V ). Choosing V a and τa as before,
we have see that indGJ V a and indGJ τa(V a) are conjugate under AutC(Ca), and changing τa
we may assume that they are isomorphic. But Ya satisfies Aut(Ca)-unicity, so V a = τa(V a),
and it follows that V = τ(V ). That proves that Y satisfies Aut(C)-unicity. �

4. Cuspidal types in reductive groups

In this section, F is a non-Archimedean local field with finite residual characteristic p, C
is a field of characteristic c 6= p of algebraic closure Ca, G is a connected reductive F -group
of centre Z with rank nZ (the dimension of a maximal F -split subtorus), G = G(F ) and Z[
is a closed subgroup of Z = Z(F ) with compact quotient Z/Z[ (for example Z[ = Z).
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The group G contains an open pro-p subgroup; the compact subgroups of G generate
an open and normal subgroup G0, and the quotient G/G0 a finitely generated free abelian
group. The maximal compact subgroup Z0 of Z is Z ∩ G0; the injective homomorphism
Z/Z0 → G/G0 has finite cokernel. Similarly, the maximal compact subgroup Z[0 of Z[ is
Z[ ∩ G0, and the injective homomorphism Z[/Z[0 → G/G0 has finite cokernel (as Z/Z[ is
compact). The groups Z and Z[ are almost finitely generated (Definition 3.1) and are the
product of their maximal compact subgroup by a (non unique) subgroup isomorphic to ZnZ .
We can choose Z[ isomorphic to ZnZ (we can choose Z[ trivial if and only if nZ = 0).

For a parabolic subgroup P of G with Levi decomposition P = MN of rational points
P = MN (we will say that P is a parabolic subgroup of G), the (unnormalized) parabolic
induction

IndGP : ModC(M)→ ModC(G)
is faithful and exact, with a left adjoint the N -coinvariant functor (−)N and a right adjoint
RGP [57]. This implies that (−)N is right exact and RGP is left exact.

As c 6= p, (−)N is exact ([55] I.4.10) and the second adjunction conjecture says that RGP is
equivalent to δP (−)N where δP is the modulus of P . The equivalence is a celebrated result of
Bernstein when C is the complex field, and a theorem of Dat ([17] Proposition 6.3, Theorem
9.2) when G is GL(n, F ) or is a classical p-adic group and p 6= 2; it is also true for any G, for
the restriction of the functors to the subcategories of level 0 representations (see below §4.4
for that notion).

When G is the group of points of a connected reductive group over a finite field of character-
istic p (we will say simply that G is a finite reductive group in characteristic p), the parabolic
induction IndGP is faithful and exact, of left adjoint (−)N and right adjoint the N -invariant
functor (−)N ([45] Proposition3.1). As c 6= p, there exists an idempotent e ∈ C[N ] such that
eV = V N for V ∈ ModC(G) ([55] 4.9 Proposition a) and RGP is equivalent to (−)N (this is
the form of the second adjunction).

4.1. Review on cuspidal representations. The definitions and results in this subsection
are valid also for finite reductive groups.

Definition 4.1. ([55] 2.2, 2.3) A representation τ ∈ ModC(G) is called cuspidal if τN = 0 for
all proper parabolic subgroups P = MN of G.

Equivalently by adjunction, τ is cuspidal if HomC[G](τ, IndGP ρ) = 0 for all proper parabolic
subgroups P = MN of G and ρ ∈ ModC(M).

Remark 4.2. When τ is irreducible one can restrict to ρ irreducible: τ ∈ IrrC(G) is cuspidal
if and only if HomC[G](τ, IndGP ρ) = 0 for all proper parabolic subgroups P = MN of G and
ρ ∈ IrrC(M) ([55] II.2.4).

Remark 4.3. We note that τN = 0 if and only if for any element v ∈ τ there exists an open
compact subgroup Nv of N such that eNvv = 0 where eNv : τ → τNv is the projection on the
Nv-invariants ([55] I.4.6). This remark will be used in Proposition 6.7.

Remark 4.4. What we call cuspidal here is called left cuspidal in [2] Definition 6.3, (2.3), be-
cause there is a symmetric notion, which we call right cuspidal, where one asks RGP τ = 0, for all
proper parabolic subgroups P = MN ofG, or equivalently by adjunction HomC[G](IndGP ρ, τ) =
0, for all proper parabolic subgroups P = MN and ρ ∈ ModC(M). Of course when the second
adjunction holds true, in particular for level 0 representations, these notions are equivalent.
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Without assuming the second adjunction, we will verify in Proposition 4.10 (iii) their equiv-
alence for admissible representations.

We are lead naturally to the notion of supercuspidality for semi-simple representations.

Definition 4.5. ([55], II.2.5) An irreducible smooth C-representation of G is called super-
cuspidal if it is not isomorphic to a subquotient of IndGP ρ for all proper parabolic subgroups
P = MN ⊂ G and ρ ∈ ModC(M).

A semi-simple smooth C-representation π of G is supercuspidal if each irreducible compo-
nent of π is supercuspidal.

Clearly supercuspidal implies (left) cuspidal and right cuspidal; the converse is not true
(when C is the prime field of characteristic ` dividing p+ 1, the principal series of GL(2,Qp)
induced by the trivial C-character of the diagonal torus has a cuspidal non-supercuspidal
subquotient).

Lemma 4.6. An irreducible quotient π of a projective cuspidal representation V is supercus-
pidal.

This will be used in the proof of Proposition 6.7. We will see that all known irreducible
supercuspidal representations are of this form (Theorems 5.10, 5.11, 6.12).

Proof. If π is a subquotient of a parabolically induced representation IndGP ρ for a proper
parabolic subgroup P = MN of G and a smooth C-representation ρ of M , then IndGP ρ
contains a subrepresentation W of quotient π. As V is projective of quotient π, there is a
non-zero C[G]-map V →W . Any quotient of a cuspidal representation is cuspidal and IndGP ρ
does not contains a cuspidal representation. Hence, a contradiction. �

Remark 4.7. One does not need to consider all ρ ∈ ModC(M) in Definition 4.5; it suffices to
take ρ = C[Kn\M ] for all Kn in some decreasing sequence of pro-p-open subgroups ofM with
trivial intersection. Indeed, ModC(M) is an abelian Grothendieck category with generator
⊕nC[Kn\M ] ([57] Lemma 3.2), and the functor IndGP is exact and commutes with direct sums
(it has a right adjoint and [34] remark after Proposition2.2.10).

Remark 4.8. In the definition of supercuspidality of π ∈ IrrC(G), one can suppose ρ irreducible
when G satisfies the second adjunction or when π has level 0 (a theorem of Dat [18] Theorem
1.1), or when G is finite (as C[M ] has finite length). Such an assumption is forgotten but
used in the proof in ([55] II.2.6).

Remark 4.9. Assume only for this remark that c = p. When G/Z is not compact, the trivial
representation is right cuspidal and not left cuspidal [2]; an irreducible representation may be
not admissible. A definition of supercuspidality ([1] for C algebraically closed, [2] in general)
is given for admissible irreducible C-representations π of G: π is called supercuspidal if it is
not isomorphic to a subquotient of IndGP ρ for all proper parabolic subgroups P = MN ⊂ G
and all admissible irreducible C-representations ρ of M .

Proposition 4.10. (i) (IndGP ρ)∨ ' IndGP (δPρ∨) for all parabolic subgroups P = MN of G
and ρ ∈ ModC(M).

(ii) Let τ ∈ ModC(G). Then τ is Z-compact ⇔ τ is cuspidal ⇔ τ∨ is right cuspidal.
(iii) If τ is admissible, then
(τN )∨ ' (τ∨)N ′ for P ′ = MN ′ opposite to P with respect to M .
τ is cuspidal ⇔ τ is right cuspidal.
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(iv) Let π ∈ IrrC(G) and χ : G→ C∗ a smooth C-character of G. Then
π ⊂ IndGP ρ for some P = MN and ρ ∈ IrrC(M) cuspidal.
π is admissible.
π is cuspidal ⇔ π∨ is cuspidal ⇔ χπ is cuspidal.
π is supercuspidal ⇔ π∨ is supercuspidal ⇔ χπ is supercuspidal.
(v) Any irreducible smooth Ca-representation π of G is absolutely irreducible.

Proof. For (i), (iii) except for τ cuspidal ⇔ τ right cuspidal, and for (iv) except for the last
line, we refer to ([55] I.4.18 (iii), I.5.11, II.2.1 (vi), II.2.4, II.2.7, II.2.8 where the proof does
not use the assumption that C is algebraically closed, II.2.9).

We have τ cuspidal ⇔ τ∨ right cuspidal (hence (ii)) because ((i) and ([55] I.4.13))

HomC[G](IndGP ρ, τ∨) ' HomC[G](τ, (IndGP ρ)∨) ' HomC[G](τ, IndGP (δPρ∨))

and HomC[G](τ, IndGP ρ) 6= 0 implies HomC[G]((IndGP ρ)∨, τ∨) 6= 0.
If τ is admissible, we deduce τ cuspidal ⇔ τ right cuspidal (ending the proof of (iii)).

Indeeed, τ ' (τ∨)∨ and τ is cuspidal if and only if τ∨ is cuspidal as (τN )∨ ' (τ∨)N ′ .
We prove the last line of (iv). As χ IndGP ρ ' IndGP (ρχ|M ), it is clear that π (super)cuspidal

⇔ χπ (super)cuspidal. If π is non supercuspidal, it is a quotient of a subrepresentation Y
of IndGP ρ for some proper parabolic subgroup P = MN of G and ρ ∈ ModC(M); taking the
contragredient which is exact, Y ∨ is a quotient of (IndGP ρ)∨ containing π∨, and as (IndGP ρ)∨ '
IndGP (δPρ∨) we see that π∨ is non supercuspidal. As (π∨)∨ ' π, the reverse is true.

(v) The intertwining algebra of π is a finite extension of Ca, hence is equal to Ca, because
π is admissible by (iv). Therefore π is absolutely irreducible (remarks following Theorem
2.1). �

Proposition 4.11. Let C ′/C be an extension. Let π ∈ IrrC(G) and π′ ∈ IrrC′(G) an irre-
ducible subquotient of C ′ ⊗C π. Then, π is supercuspidal if and only if π′ is; similarly for
cuspidal.

Proof. a) Let P = MN be a parabolic subgroup of G and ρ ∈ ModC(M). If π is a subquotient
of IndGP ρ then π′ is a subquotient of IndGP (C ′⊗C ρ) as IndGP commutes with scalar extension.
Therefore π′ supercuspidal implies π supercuspidal.

b) Conversely, if π′ is a subquotient of IndGP (C ′[Kn\M)] (Remark 4.7) then π is a subquo-
tient of IndGP (C[Kn\M ]) because, as C-representations, π′ is π-isotypic and IndGP (C ′[Kn\M ])
is isomorphic to a direct sum of IndGP (C[Kn\M ]). Therefore π supercuspidal implies π′ su-
percuspidal.

c) Similarly for quotient and right cuspidal, replacing subquotient and supercuspidal in a)
and b). Hence π is right cuspidal if and only if π′ is. As right cuspidal = cuspidal for an
irreducible representation (Proposition 4.10), π is cuspidal if and only if π′ is. �

The next proposition is used in the proof of Proposition 4.24.

Proposition 4.12. The scalar extension and the parabolic induction respect finite length.

Proof. Let C ′/C be an extension and π ∈ IrrC(G). Let P = MN a parabolic subgroup of G
and σ ∈ IrrC(M). We show that the lengths of C ′ ⊗C π and of indGP σ are finite. The scalar
extension and the parabolic induction being exact, this implies the proposition.

a) The dimension of EndC[G] π is finite as π is admissible (Proposition 4.10 (iv)). The
length of C ′ ⊗C π is finite bounded by the length of Ca ⊗C π by [31] Corollary I.2.
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b) It is already known that the length of indGP σ is finite when C is algebraically closed
([55] 5.13). The parabolic induction commutes with scalar extension, and by a) Ca ⊗C σ has
finite length. Hence the length of indGP (Ca ⊗C σ) ' Ca ⊗C indGP (σ) is finite. A fortiori the
length of indGP (σ) is finite. �

4.2. Cuspidal type. Compared to the case of a general locally profinite group, Z-compact
C-types in G (Definition 3.15) and irreducible smooth C-representations of G have peculiar
features:

Proposition 4.13. (i) A Z-compact C-type in G has finite dimension.
(ii) A Z-compact Ca-type in G is defined over a finite extension of C.
(iii) If (J, V ) is a Z-compact C-type in G, the representation indGJ V ∈ IrrC(G) is cuspidal,

and indGJ V = IndGJ V .
(iv) A Z-compact Ca-type (J, V ) in G is absolutely irreducible, and so is indGJ V . In

particular (J, V ) satisfies intertwining.

Proof. (i) Proposition 3.6.
(ii) Corollary 3.7.
(iii) Any coefficient of V extended by 0 is a coefficient of indGJ V with Z-compact support.

By Remark 3.11, indGJ V ∈ IrrC(G) is Z-compact. By Proposition 4.10 (ii), indGJ V is cuspidal.
By Remark 3.12 b), indGJ V ' IndGJ V .

(iv) When (J, V ) is a Z-compact Ca-type in G, then V is irreducible of finite Ca-dimension
(Proposition 3.6), so V is absolutely irreducible; the irreducible representation indGJ V is
admissible (Proposition 4.10 (iv)) so is absolutely irreducible. The commutant of an absolutely
irreducible Ca-representation is Ca. �

Definition 4.14. A Z-compact C-type in G (Definition 3.15) is called a cuspidal C-type in
G.

The definition is motivated by Proposition 4.13 (iv). A cuspidal C-type in G satisfies
intertwining when C is algebraically closed (Proposition 4.13 (iii)), but not in general.

Example 4.15. Take C = R and a quaternion division algebra D over Q3. We construct an
example of R-type (J, λ) in D∗ which does not satisfy intertwining.

Let H be the Hamilton quaternion algebra and U the quaternion subgroup of order 8,
generated by the order 4 elements i, j, ij = −ji. The left multiplication by U on H gives
an irreducible R-representation ρ of U . If T is the subgroup of U generated by i, and τ the
2-dimensional representation of T on R[i] then ρ = indUT τ . The commutant of τ is R[i] and
the commutant of ρ is H.

We show that U is a quotient of D∗; then we take the inverse image J of T in D∗ and the
inflation λ of τ to J . The type (J, λ) in D∗ does not satisfy intertwinining. The quotient
UD/U

1
D of the unit group by its first congruence subgroup is cyclic of order 8; choose a

generator ζ. Let ω be the image of a uniformizer of D in D∗/U1
D. The group morphism

D∗/U1
D → U sending ζ to i and ω to j is surjective.

Proposition 4.16. Let J ⊂ G be an open subgroup containing Z with J/Z compact. Then
the G-normalizer J ′ of J is open in G and J ′/Z is compact.

As a consequence, if (J, V ) is a cuspidal C-type in G then the pair (J ′, indJ ′J V ) is a cuspidal
C-type in G. Applying the procedure of §3.5 and §3.6, we immediately get:
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Theorem 4.17. Let Xa be a set of cuspidal Ca-types (J, V a) in G, satisfying unicity, AutC(Ca)-
stability and AutC(Ca)-unicity.

Let Ya denote the set of cuspidal Ca-types in G of the form (J ′, indJ ′J V a), where (J, V ) ∈ Xa

and J ′ is the G-normalizer of J , and let Y denote the set of cuspidal C-types (J ′, V ′) in G
obtained by applying the decomposition theorem 2.1 to Ya,

Let Za denote the set of isomorphism classes of indGJ V a for (J, V a) ∈ Xa and let Z
denote the set of isomorphism classes of C-representations of G obtained by applying the
decomposition theorem 2.1 to Za.

Then
(i) Za is the set of isomorphism classes of indGJ ′ V ′a for (J ′, V ′a) ∈ Ya and Z is the set of

isomorphism classes of indGJ ′ V ′ for (J ′, V ′) ∈ Y.
(ii) The set Y satisfies unicity and intertwining.
(iii) If moreover Xa satisfies Aut(Ca)-stability and Aut(Ca)-unicity, then Y satisfies Aut(C)-

stability and Aut(C)-unicity.

The key to the proof of Proposition 4.16 is the next lemma. Let Gad be the adjoint group of
G, f : G→ Gad = Gad(F ) the natural group homomorphism with kernel Z and B = B(Gad)
the Bruhat-Tits building of Gad. Let J ⊂ G be an open subgroup containing Z such that
J/Z is compact. The G-normalizer J ′ of J which contains J is open, but f(J) ⊂ Gad might
not be open (when the characteristic of F is 2, the image of SL(2, F ) in PGL(2, F ) is not
open because 1 is not open in F ∗/(F ∗)2).

Lemma 4.18. The subset Bf(J) ⊂ B of fixed points of f(J) is compact and non-empty.

Proof. The subgroup f(J) ⊂ Gad being compact, the set Bf(J) is not empty because any
orbit of f(J) in B is bounded hence contains a point fixed by its Gad-stabilizer ([7] 3.2.4).
Let B be the Landvogt compactification of B. The action of f(J) on B is continuous ([39]
14.31) so the subset Bf(J) ⊂ B of fixed points of f(J) is closed, hence compact. The open
subgroup J ⊂ G is not contained in any proper parabolic subgroup of G (which is F -analytic
of dimension less than the dimension of G and J). It follows that f(J) is not contained in
any proper parabolic subgroup of Gad. This implies Bf(J) = Bf(J) ([39] (14.4 i),(12.4), (12.3),
(2.4) and the notations (0.20) and (0.15)). Hence the lemma. �

We finally prove Proposition 4.16. It is clear that J ′ contains Z and is open as it contains
J . We prove that J ′ is Z-compact. The Gad-normalizer K of f(J) is a closed subgroup of Gad
stabilizing Bf(J), and Bf(J) is a compact non-empty subset of B by the lemma. A non-empty
compact subset of B is bounded in the metric space B ([7], 2.5.1); there exists x ∈ Bf(J) fixed
by K ([7], 3.2.4). By ([7], 3.3.1), the Gad-stabilizer of x is open and compact; as it contains
K, we deduce that K is compact. Hence f−1(K) is Z-compact as well as the closed subgroup
J ′ ⊂ f−1(K).

4.3. Fields of the same characteristic. For some groups G, a good set of types as in
Theorem 4.17 has been produced only for C. It is likely that all the arguments can be
adapted to obtain such a set of types for all algebraically closed fields of characteristic 0,
but that needs verification. Let C,C ′ be two fields of the same characteristic c and algebraic
closure Ca, C ′a. We write C0 for the prime subfield of C and Ca0 for its algebraic closure in
Ca. Here we show directly, using twists by unramified characters, that a good set of Ca-types
in G gives rise to a good set of C ′a-types in G.
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The centre Z of G acts on any irreducible smooth Ca-representation πa of G by a Ca-
character ωa, called its central character, because πa is admissible (Proposition 4.10).

Theorem 4.19. Let πa be an irreducible cuspidal Ca-representation of G. Assume that the
central character ωa of πa has finite order. Then πa is defined over a finite extension of C0
in Ca.

Proof. Because ωa has finite order by assumption, the subfield K ⊂ Ca generated by the
values of ωa is a finite cyclotomic extension of C0. Choose an open compact subgroup J ⊂ G
such that (πa)J 6= 0. By Corollary 3.5, it is enough to prove that the HCa(G, J)-module
(πa)J is defined over a finite extension of C0. We know that dimCa(πa)J = n is finite by
admissibility. Moreover by Z-compactness of cuspidal representations ([55] II.2.7) we know
that the coefficients vanish outside a finite union of cosets JgZJ , and that there are only
finitely many cosets JgZJ which give non-zero operators πa(JgzJ) ∈ EndCa((πa)J), z ∈
Z; those operators generate a finite dimensional K-subalgebra of EndCa((πa)J), because
πa(JgzJ) = ωa(z)πa(JgJ). Each such operator satisfies a (non-trivial) polynomial equation
with coefficients in K. The finiteness up to K∗ shows that the eigenvalues of the πa(JgJ)
taken together generate a finite extension L/K in Ca; the characteristic polynomials of the
πa(JgJ) all have their coefficients in L. Choose a Ca-basis of (πa)J . The coefficients of
the πa(JgJ) ∈ EndCa((πa)J) in the chosen basis generate a finitely generated L-subalgebra
A ⊂ Ca, and we get an L-algebra homomorphism τ : HL(G, J) → M(n,A). Any quotient
field E of A is a finite extension of L, and we get an L-algebra homomorphism τ : HL(G, J)→
M(n,E). Thus τ gives an HE(G, J)-module structure on En. Choose an extension E → Ca

of the embedding L→ Ca ([4] §4, No 3,Corollaty 2 of Theorem 2). That gives an HCa(G, J)-
module structure on Ca⊗E En. Let us prove that the two HCa(G; J)-modules Ca⊗E En and
(πa)J are isomorphic, which shows that (πa)J is defined over E. Indeed for h ∈ HL(G, J),
the characteristic polynomial of τ(h) is the image in E[T ] of the characteristic polynomial of
τ(h) which is the characteristic polynomial of h acting on (πa)J and has coefficients in L. By
([5] §20, No 6, Corollary 1 of Theorem 2), the two HCa(G, J)-modules (Ca)n and (πa)J have
isomorphic semisimplifications, but the second one is simple already, so (Ca)n and (πa)J are
isomorphic. �

Corollary 4.20. Base change from Ca0 to Ca yields a bijection between isomorphism classes
of irreducible cuspidal Ca0 -representations of G, with central character of finite order, and
isomorphism classes of irreducible cuspidal Ca-representations of G, with central character of
finite order.

That bijection is clearly compatible with the action of finite order smooth characters, which
have values in Ca0 . We will remove (in Corollary 4.26 (iii)) the restriction in Corollary 4.20.

If C ′ is another algebraically closed field of characteristic c then its prime field C ′0 is
isomorphic to C0, and so are the algebraic closures Ca0 in Ca and (C ′0)a in C ′a. Consequently,
any isomorphism Ca0 → (C ′0)a will yield a bijection between isomorphism classes of irreducible
cuspidal Ca-representations of G, with central character of finite order and isomorphism
classes of irreducible cuspidal C ′a-representations of G, with central character of finite order.

A character of G is said to be unramified if it is trivial on the subgroup G0 generated by
the compact subgroups of G. We will remove the restriction that the central character has
finite order by twisting by unramified Ca-characters of G.
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We choose a subgroup Z] of Z isomorphic to ZnZ such that Z is the product of Z] and of
its maximal compact subgroup Z0.

Proposition 4.21. Let ω : Z → (Ca)∗ be a smooth character. Then there is an unramified
character χ : G→ (Ca)∗ such χ|Z ω is trivial on Z], so has finite order.

Proof. Since Z/Z0 ⊂ G/G0 has finite index, ω|Z] can be extended to a Ca-character of G
trivial on G0. Calling χ the inverse of that character, χ|Z ω : Z → (Ca)∗ is trivial on Z] and
coincides with ω on Z0, so has finite order as Z/Z0Z] is finite. �

Corollary 4.22. Let π be an irreducible smooth Ca-representation of G. There is an unram-
ified Ca-character χ of G such that the central character of χπ has finite order.

Remark 4.23. If π already has a central character of finite order and χ is an unramified
character such that the central character of χπ has finite order, then χ|Z has finite order,
and so has χ because Z/Z0 has finite index in G/G0. So in the corollary, the character χ is
well-defined up to finite order unramified characters.

Note that twisting by unramified characters preserves irreducibility, intertwining and cus-
pidality. Stability under twisting by unramified characters is easy to verify in all the known
explicit constructions of types.

Proposition 4.24. Any irreducible smooth Ca-representation πa of G is defined over a finite
extension of C.

Proof. a) There exists an unramified Ca-character χa of G such that the central character of
πaχa has finite order (Corollary 4.22). If πaχa is defined over a finite extension of C, then πa
has the same property as the values of χa generate a finite extension of C as G/G0 is finitely
generated.

b) There is a parabolic subgroup P = MN ofG and an irreducible cuspidal C-representation
ρa of M such that πa is a subquotient of IndGP ρa. We show that any irreducible subquotient
of IndGP ρa is defined over a finite extension of C.

b1) If P = M = G, πa is cuspidal this is clear by a) and Theorem 4.19.
b2) In general, ρa descends to a finite extension of C by b1). Applying the decomposition

theorem 2.1 there exists a finite extension C ′/C in Ca and an absolutely irreducible C ′-
representation ρ′ of M such that ρa = Ca ⊗C′ ρ′ (Proposition 4.10 (v)). If C ′′/C ′ is an
extension in Ca, the length `(C ′′) of IndGP (C ′′ ⊗C′ ρ′) is finite bounded (Proposition 4.12 and
[31] Corollary I.2). We have `(C ′′1 ) ≤ `(C ′′2 ) for any finite extensions C ′′1 ⊂ C ′′2 of C ′ in Ca.
As an increasing bounded sequence of integers stabilize, there exists a finite extension C ′′1 /C ′
such that `(C ′′1 ) = `(C ′′2 ) for all finite extensions C ′′2 /C ′′1 in Ca. The irreducible subquotients
of IndGP (C ′′1 ⊗C′ ρ′) are admissible and remain irreducible by any finite scalar extension. By
Lemma 2.2 (ii), we deduce that any irreducible subquotient of IndGP ρa is defined over C ′′1 . �

We can now remove the conditions dimC EndC[G](π) < ∞ and πa absolutely irreducible
and defined over a finite extension of C in ([31] Theorem III.4) as c 6= p. We get:

Corollary 4.25. The map sending π to the set of irreducible subquotients of Ca⊗C π induces
a bijection from the set of isomorphism classes of irreducible smooth C-representations π
of G to the set of orbits under AutC(Ca) of isomorphism classes of irreducible smooth Ca-
representations πa of G.
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Let us now apply those considerations to cuspidal types. Let Za denote the set of isomor-
phism classes of cuspidal irreducible Ca-representations of G with central character of finite
order. Similarly Za0 for the field Ca0 .

Corollary 4.26. (i) The base change from Ca0 to Ca yields a bijection from
{Xa0, Xa0 is a set of cuspidal Ca0 -types in G satisfying Za0 -exhaustion} onto
{Xa, Xa is a set of cuspidal Ca-types in G satisfying Za-exhaustion}.
(ii) Let Xa0 as in (i) and Xa its base change. Then
Xa satisfies unicity if and only if Xa0 does,
Xa is Aut(Ca)-stable if and only if Xa0 is Aut(Ca0 )-stable,
Xa satisfies Aut(Ca)-unicity if and only if Xa0 satisfies Aut(Ca0 )-unicity,
Xa is stable under twisting by unramified characters of G with finite order if and only if Xa0

does.
(iii) If Xa as in (i) satisfies unicity and stability under unramified characters with finite

order of G, then the set Ya of cuspidal Ca-types in G obtained from Xa by twisting by all
unramified characters of G, satisfies exhaustion for the isomorphism classes of all cuspidal
π ∈ IrrCa(G), and unicity; it satisfies Aut(Ca)-stability, resp. Aut(Ca)-unicity, if and only if
Xa does.

Proof. (i) Base change from Ca0 to Ca of a set Xa0 of cuspidal Ca0 -types in G satisfying Za0 -
exhaustion yields a set Xa of cuspidal Ca-types in G that satisfies Za-exhaustion because of
the theorem. That works also in the reverse direction. Let Xa be a set of cuspidal Ca-types
in G satisfying Za-exhaustion and (J, V ) ∈ Xa. Because indGJ V has central character of finite
order, so has V , and as remarked above V is the base change to Ca of a Ca0 -representation V a

0
of J , then indGJ V is the base change to Ca of indGJ V a

0 , and consequently (J, V a
0 ) is a cuspidal

Ca0 -type in G. Note that (J, V a
0 ) is uniquely determined by (J, V ). If we let Xa0 be the set of

types obtained from Xa in that manner, then Xa0 satisfies Za0 -exhaustion. If we base change
again to Ca we get back the set Xa of Ca-types.

(ii) Because base changing types from Ca0 to Ca is compatible with G-conjugation, Xa

satisfies unicity if and only if Xa0 does.
Note also that Za is Aut(Ca)-stable and Za0 is Aut(Ca0 )-stable. All isomorphism classes

of Ca-representations obtained by base change from Ca0 are obviously AutCa
0
(Ca)-invariant,

so that AutCa
0
(Ca) acts trivially on Za and Xa, and the action of Aut(Ca) on Za and Xa

factorizes through the quotient Aut(Ca0 ). The other properties of (ii) are clear.
(iii) is clear. �

4.4. Level 0 cuspidal types. In this subsection, to conform to current usage in the relevant
literature we write now the types (J, λ) instead of (J, V ). It is natural to conjecture that all
irreducible cuspidal C-representations of G are compactly induced from a cuspidal C-type
(J, λ) because all explicit examples have that form.

Of course, when G has semisimple rank 0 5 , then G/Z is compact, and all irreducible
smooth C-representations are cuspidal of finite dimension, so the conjecture is trivially true
with J = G. Even so, it is interesting to have inducing types (J, λ) where J 6= G. The
example of the multiplicative group of a finite dimensional central division algebra over F is
examined in [60], [6].

5The rank of G is the F -rank of G
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When G has semisimple rank 1, M. Weissman recently proved the conjecture, using that
the building B of Gad is a tree. If π is an irreducible cuspidal C-representation of G, there is
a C-type (J, λ) of G such that π ' indGJ λ where J is either the G-stabilizer of a vertex or of
of an edge, of B. See [58] Corollary 2.6 when C = C and the note following it for general C.

The other known cases assume C algebraically closed (initially C = C) and also make
assumptions on G or on the representations considered. But those cases include more precise
information, in the guise of an explicit list of C-types inducing to those representations. Very
often, that list satisfies exhaustion for the kind of representations considered, and unicity. We
will verify stability by the group of automorphisms of C and apply Theorem 4.17 to extend
the result to a general coefficient field C, no longer assumed algebraically closed.

The case of level 0 representations requires no assumption on G and does not assume C
algebraically closed. For any point x in the Bruhat-Tits building B of the adjoint group
Gad, we denote by Gx the G-stabilizer of x, Gx.0 the parahoric subgroup fixing x and Gx,0+
the pro-p unipotent radical of Gx.0. The G-normalizer of Gx,0 is Gx if x is a vertex ([59]
Lemma 3.3 (i)) and Gx,0/Gx,0+ is the group of points of a connected reductive group over the
residue field kF . When x is a vertex, it is known that Gx determines x (the proof uses that
two vertices x 6= y are contained in the same apartment, there is an affine root containing
x and not y implying that the corresponding unipotent subgroup of G does not have the
same intersection with Gx and with Gy); this implies that Gx is its own G-normalizer (as
gGxg

−1 = Ggx for g ∈ G).
A C-representation π of G has level 0 if π =

∑
x π

Gx,0+ , where x runs through the vertices
in B, in particular it is smooth. For π irreducible, this means that πGx,0+ 6= 0 for some vertex
x ∈ B. The category of level 0 C-representations of G is a direct factor of ModC(G) and the
parabolic induction respects level 0.

Let Z(0) denote the set of isomorphism classes of level 0 irreducible cuspidal C-representations
of G. Clearly, Z(0) is stable under Aut(C).

Lemma 4.27. Let x, y ∈ B be two different vertices and λ ∈ IrrC(Gx). If Gx,0+ acts trivially
on λ and λ is cuspidal as a representation of Gx,0/Gx,0+, then Gx ∩ Gy,0+ has no non-zero
fixed vector in λ.

Proof. By ([56], lemma 5.2), the image of Gx,0 ∩ Gy in Gx,0/Gx,0+ is a parabolic subgroup
with unipotent radical the image of Gx,0 ∩Gy,0+; because x and y are two disctinct vertices,
that parabolic is not Gx,0/Gx,0+ and the result comes from the cuspidal assumption. �

Proposition 4.28. If Gx,0+ acts trivially on λ ∈ IrrC(Gx) and λ is cuspidal as a represen-
tation of Gx,0/Gx,0+, then the space of vectors fixed by Gx,0+ in indGGx

λ is made out of the
functions with support in Gx; in particular it affords the representation λ of Gx.

Proof. Put J = Gx, J
0 = Gx,0, J

1 = Gx,0+. As in section 3.4, the restriction of indGJ λ to J1

splits as a direct sum ⊕JgJ1 indJgJ
1

J λ over the double cosets JgJ1 of the subspaces indJgJ
1

J λ

consisting of functions with support in JgJ1. The subspace of functions with support in J ,
as a representation of J , is isomorphic to λ and λ is trivial on J1. It is enough to show that
for g ∈ G \ J , a function in indGJ λ with support in JgJ1 and right invariant under J1 is 0.
Putting x = gy, this follows from Lemma 4.27 as y 6= x for g ∈ G\Gx (and the isomorphisms
(3.3) and (3.4)). �

Proposition 6.5 will be a generalization of this proposition.
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Corollary 4.29. If Gx,0+ acts trivially on λ ∈ IrrC(Gx) and λ is cuspidal as a representation
of Gx,0/Gx,0+, then indGGx

λ is irreducible and EndC[G](indGGx
λ) = EndC[Gx](λ).

Proof. As before, put J = Gx, J
0 = Gx,0, J

1 = Gx,0+. A quotient of indGJ λ contains a
representation of J isomorphic to λ by Frobenius reciprocity for compact induction indGJ ,
and a subrepresentation of indGJ λ as a representation of J has a quotient isomorphic to λ,
by Frobenius reciprocity for smooth induction IndGJ and the inclusion of indGJ λ in IndGJ λ.
But the restriction of indGJ λ to the pro-p group J1 is semi-simple, and by the proposition
indGJ λ, as a representation of J , contains λ as a subquotient only once. Hence indGJ λ is
irreducible. Similarly one infers that EndC[G](indGJ λ) = EndC[J ](λ). Indeed, as in section
3.4, this means that HomC[J∩g−1Jg](λ, gλ) = 0 for all double cosets JgJ 6= J . Putting x = gy

we have g−1Jg = Gy with x 6= y when JgJ 6= J . In this case Gy ∩ Gx,0+ has no non-zero
fixed vector in gλ by Lemma 4.27, but any vector in λ is fixed by Gy ∩Gx,0+. �

When C is algebraically closed, the irreducibility of indGGx
λ is proved in [56] with another

proof - the result for C = C goes back to [42] and [43].

Corollary 4.30. Assume that indGGx
λ ' indGGy

µ for a vertex y ∈ B and µ ∈ IrrC(Gy) and
that λ and µ as representations of Gx,0 and Gy,0 are the inflations of cuspidal representations
of Gx,0/Gx,0+ and Gy,0/Gy,0+ respectively. Then y = gx and µ = λg for some g ∈ G.

Proof. If y = gx for some g ∈ G, we may conjugate (Gy, µ) to reduce to y = x in which
case the proposition implies µ ' λ. If y is not of the form gx, then by the reasoning of
the proposition, Gy,0+ ∩Gx fixes no non-zero vector in λ, which yields a contradiction. This
argument rose out of conversations with R. Deseine. �

Definition 4.31. A level 0 cuspidal C-type in G is a pair (J, λ) where J = Gx for some
vertex x of B, and λ is the isomorphism class of an irreducible C-representation of J trivial
on Gx,0+ and cuspidal as a representation of Gx,0/Gx,0+. If moreover λ is supercuspidal as a
representation of Gx,0/Gx,0+, then we say that (J, λ) is supercuspidal.

By Corollary 4.29, a level 0 cuspidal C-type (J, λ) in G is a cuspidal C-type (Definition
4.14) since indGJ λ is irreducible.

Lemma 4.32. Let x be a vertex of B, λ ∈ IrrC(Gx) and π ∈ IrrC(G). Let C ′/C be a field
extension, λ′ ∈ IrrC′(Gx) a subquotient of C ′⊗Cλ, and π′ ∈ IrrC′(G) a subquotient of C ′⊗C π.

(i) π has level 0 if and only if π′ has level 0.
(ii) (Gx, λ) is a level 0 cuspidal (resp. supercuspidal) C-type in G if and only if (Gx, λ′) is

a level 0 cuspidal (resp. supercuspidal) Ca-type in G.

Proof. (i) πGx,0+ 6= 0 if and only if (π′)Gx,0+ 6= 0 ([31], III.1).
(ii) As C-representations, λ′ is a direct sum of representations isomorphic to λ (because

C ′ ⊗C λ is). So λ is trivial on Gx,0+ if and only if λ′ does. In §4.1 which is valid for
finite reductive groups, we saw that π is cuspidal if and only if π′ is cuspidal, similarly
for supercuspidal (Proposition 4.11). We deduce that λ is the inflation of a cuspidal (resp.
supercuspidal) representation of Gx,0/Gx,0+ if and only if λ′ does. �

Theorem 4.33. The set X(0) of level 0 cuspidal C-types in G satisfies intertwining, unicity,
Z(0)-exhaustion, and Aut(C)-stability.
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Proof. The set X(0) satisfies intertwining by Corollary 4.29 and unicity by Corollary 4.30; it
is Aut(C)-stable as cuspidality is preserved under the action of Aut(C) on C-representations
of a finite reductive group.

When C is algebraically closed, Z(0)-exhaustion (and unicity) is in [42] and [43] when
C = C and the arguments of [43] carry over to C; exhaustivity was implicit in [56], and is
established by Fintzen at the end of [26] (the hypothesis on G of [26] plays no rôle for level 0
representations).

When C is not algebraically closed, Z(0)-exhaustion follows from Z(0)-exhaustion over Ca
by Theorem 4.17 noting that the group J = Gx is its own G-normalizer. �

Corollary 4.34. Any irreducible cuspidal C-representation π of G of level 0 is compactly
induced from a level 0 cuspidal C-type (J, λ) in G unique modulo G-conjugation; it satisfies
intertwining EndC[G] π ' EndC[J ] λ.

5. Supercuspidality in level 0

Let (J, λ) be a level 0 cuspidal C-type of G inducing a level 0 cuspidal irreducible repre-
sentation π = indGJ λ of G. Our goal is to prove:

Theorem 5.1. (J, λ) is supercuspidal if and only if π is supercuspidal.

The equivalence will be a consequence of Theorems 5.10 (for only if) and 5.11 (for if) below
in §5.3. We use injective hulls as our main tool.

5.1. Injectives in the category of representations with a fixed action of the center.
Only in this subsection, C is a field of any characteristic. We fix a closed subgroup Z[ of
the center Z. The abelian group Z[ is almost finitely generated (Definition 3.1). Let ω be
an irreducible smooth C-representation of Z[. The dimension of ω is finite (Proposition 3.6
applied to V = ω,G = Z = Z[). The dimension of ω is 1 if and only if ω is absolutely
irreducible if and only if EndC[Z[] ω = C.

Remark 5.2. The C-algebra C[Z[] acts on ω via a quotient field C ′ which is a finite extension
of C, and EndC[Z[] ω = C ′ (as Z[ is abelian).

For τ ∈ ModC(G), the ω-isotypic part τω of τ is the sum of the subrepresentations of τ |Z[

isomorphic to ω. Because Z[ is central in G, τω is a subrepresentation of τ . The representation
τ is called ω-isotypic if τ = τω. Any irreducible C-representation π of G is ω-isotypic for
some ω ∈ IrrC(Z[). Let ModC(G,ω) denote the category of ω-isotypic representations in
ModC(G) and IrrC(G,ω) = IrrC(G) ∩ ModR(G,ω). For a parabolic subgroup P = MN
of G, the parabolic induction IndGP and its adjoints give functors between ModC(G,ω) and
ModC(M,ω).

Lemma 5.3. ModC(G) and ModC(G,ω) are Grothendieck abelian categories.

Proof. The proof for ModC(G) ([57] Lemma 3.2) extends to ModC(G,ω). �

Recall that a Grothendieck category admits sufficiently many injectives (any object embeds
in an injective object) and that every object has an injective hull (an essential extension which
is injective) ([38] §3D).

Notation 5.4. For τ ∈ ModC(G,ω), we denote by Iτ an injective hull of τ in ModC(G) and
by Iτ,ω an injective hull in ModC(G,ω).



26 GUY HENNIART, MARIE-FRANCE VIGNÉRAS

Lemma 5.5. Let τ ∈ ModC(G,ω). The ω-isotypic part of an injective hull of τ in ModC(G)
is an injective hull of τ in ModC(G,ω).

Proof. If π ∈ ModC(G) is injective, its ω-isotypic part πω is injective in ModC(G,ω), as
HomC[G](τ, π) = HomC[G](τ, πω) for any τ ∈ ModC(G,ω). As a consequence Iτ,ω is isomorphic
to a direct summand of the ω-isotypic part of Iτ . A supplement I ′ has a trivial intersection
with τ . As Iτ is an essential extension of τ containing I ′ we have I ′ = 0, hence the result. �

5.2. Supercuspidality and injective hulls. Let us revert to our running hypothesis that
C has characteristic different from p. Supercuspidality can be seen on the injective hull; this
was proved by Hiss for finite reductive groups ([32] Proposition2.3):

Lemma 5.6. When G is a finite reductive group in characteristic p, an irreducible C-
representation π of G is supercuspidal if and only if an injective hull Iπ of π ∈ ModC(G)
is cuspidal.

Hiss formulates this result in terms of projective cover, but in that case Iπ is a projective
cover. We imitate the proof of Hiss to show:

Proposition 5.7. Let π ∈ IrrC(G,ω). Then π is supercuspidal if and only if Iπ is right
cuspidal. If the second adjunction holds for (G,C) or if π has level 0, then π is supercuspidal
if and only if Iπ,ω is cuspidal.

Proof. By Definition 4.5, π is supercuspidal if and only if π is not a subquotient of IndGP ρ.
for all proper parabolic subgroups P = MN of G and ρ ∈ ModC(M). We have
(5.1) π ∈ IrrC(G) is a subquotient of τ ∈ ModC(G) if and only if HomC[G](τ, Iπ) 6= 0.
Indeed, if f ∈ HomC[G](τ, Iπ) is non-zero then π ⊂ f(τ) hence π is a subquotient of τ ;
conversely if π is a subquotient ot τ , then π is a subrepresentation of a quotient τ ′ of τ . The
inclusion of π in Iπ extends to a R[G]-map τ ′ → Iπ inflating to a R[G]-map τ → Iπ.

By adjunction, π is supercuspidal if and only if RGP (Iπ) = 0 for all proper parabolic sub-
groups P of G, which means by definition that Iπ is right cuspidal. Right cuspidality passes
to subrepresentations because RGP is left exact, so Iπ right cuspidal implies Iπ,ω right cuspidal.

Conversely, Iπ,ω right cuspidal implies π is supercuspidal when the second adjunction holds
for (G,C) or π has level 0 because in this case π is supercuspidal if and only if π is not a
subquotient of IndGP ρ for all proper parabolic subgroups P = MN of G and ρ ∈ IrrC(M)
(Remark 4.8). As ρ ∈ IrrC(M) is ωρ-isotypic for some ωρ ∈ IrrC(Zb), the representation
IndGP ρ is also ωρ-isotypic. If π is a subquotient of IndGP ρ with ρ ∈ IrrC(M), then ω =
ωρ, and HomC[G](IndGP ρ, Iπ) = HomC[G](IndGP ρ, Iπ,ω). By adjunction, we deduce that π is
supercuspidal if and only if Iπ,ω is right cuspidal. Our assumption implies that Iπ,ω right
cuspidal is equivalent to Iπ,ω cuspidal (Remark 4.4, recalling that level zero representations
form a direct factor in ModC(G)). �

Recall that a functor between abelian categories having an exact left adjoint respects in-
jectives, similarly a functor having an exact right adjoint respects projectives ([33] II.10).

Example 5.8. a) IndGP and RGP respect injectives (the left adjoint functors (−)N and IndGP are
exact), and (−)N respects projectives (its right adjoint IndGP is exact).

b) Let C → C ′ a field homomorphism. The scalar extension C ′ ⊗C − : ModC(G) →
ModC′(G) respects projectives and the restriction (right adjoint of the extension) respects
injectives (they are both exact).
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c) Let J be an open subgroup of G containing Z and ω ∈ IrrC(Zb). The restriction
ResGJ : ModC(G,ω) → ModC(J, ω) has a right adjoint the smooth induction IndGJ and a
left adjoint the compact induction indGJ ([55] I.5.7; to see that indGJ and IndGJ preserve ω-
isotypic representations, use Remark 5.2). The three functors are exact ([55] I.5.9, I.5.10).
The restriction ResGJ respects injectives and projectives, the compact induction indGJ respects
projectives and the smooth induction IndGJ respects injectives.

Let J1 be a normal subgroup of J such that ω inflates a representation ω0 of Z[/(Z[∩J1).
The J1-invariant functor ModC(J, ω) → ModC(J/J1, ω0) is right adjoint to the inflation.
The inflation is exact, preserves injectives, and identifies ModC(J/J1, ω0) to the category
ModC(J, ω)J1 of representations in ModC(J, ω) trivial on J1.

If moreover the pro-order of J1 is invertible in C, the J1-invariant functor is exact and
ModC(J, ω)J1 is a direct factor of ModC(J, ω). So the inflation and the J1-invariant preserve
injectives and projectives, and the inflation preserves injective hulls.
5.3. Supercuspidality and types. In the remaining of Section 5 we assume that Z[ = Z].
Let (J, λ) be a level 0 cuspidal C-type of G where λ is ω-isotypic for ω ∈ IrrC(Z]), Iλ,ω an
injective hull of λ in ModC(J, ω), and J0 and J1 as in the proof of Proposition 4.28. Put
π = indGJ λ.

Since J1 is a pro-p normal subgroup of J , Iλ,ω is trivial on J1 and indGJ Iλ,ω is injective
in ModC(G,ω) (Example 5.8 c). Since indGJ Iλ,ω contains π, the injective hull Iπ,ω of π in
ModC(G,ω) is a direct factor of indGJ Iλ,ω. The compact induction indGJ induces an injec-
tive inclusion preserving map from the lattice of subrepresentations of Iλ,ω to the lattice of
subrepresentations of indGJ Iλ,ω.
Proposition 5.9. Iλ,ω is finite dimensional, projective, indecomposable with socle and cosocle
isomorphic to λ.

(J, λ) is supercuspidal if and only if Iλ,ω is cuspidal as a representation of J0/J1.
The proof will be given in §5.4. Let us assume the proposition and prove:

Theorem 5.10. Assume (J, λ) supercuspidal. Then π = indGJ λ is supercuspidal.
Moreover indGJ Iλ,ω is an injective hull Iπ,ω of π in ModC(G,ω). It is cuspidal projective

indecomposable with socle and cosocle isomorphic to π. The lattices of subrepresentations of
Iλ,ω and of Iπ,ω are isomorphic by the map W 7→ indGJ W (which is equal to IndGJ W ), with
inverse V 7→ V J1.
Proof. By Proposition 5.9, Iλ,ω has finite length and is cuspidal as a representation of J0/J1.
Any irreducible subquotient µ of Iλ,ω is cuspidal as a representation of J0/J1. By Proposition
4.28, indGJ µ = IndGJ µ is cuspidal and µ = (indGJ µ)J1 . By induction on the length, this is
also true for any subquotient of Iλ,ω. This gives the last assertion of the theorem, and that
indGJ Iλ,ω has finite length, is cuspidal and is projective (since indGJ preserves projectives and
indGJ Iλ,ω = IndGJ Iλ,ω). As the socle and the cosocle of Iλ,ω are both isomorphic to λ, the socle
and the cosocle of indGJ Iλ,ω are both isomorphic to π. As Iλ,ω is indecomposable, indGJ Iλ,ω
is indecomposable and is an injective hull Iπ,ω of π in ModC(G,ω). Since Iπ,ω is cuspidal, π
is supercuspidal (Proposition 5.7). �

In the reverse direction:
Theorem 5.11. Assume π = indGJ λ supercuspidal. Then (J, λ) is supercuspidal and IJ1

π,ω is
an injective hull Iλ,ω of λ in ModC(J, ω).
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Proof. Since π has level 0 and is supercuspidal, Iπ,ω is cuspidal and has level 0 (Proposition
5.7 and its proof). Let τ be an irreducible subquotient of Iπ,ω. Then τ is cuspidal of level 0,
and induced from a level 0 cuspidal type (Gy, µ) (Corollary 4.34). If Gy is not conjugate to
J in G then τJ1 = 0 (proof of Corollary 4.30). If Gy is conjugate to J we may take Gy = J

and then τJ1 = µ (Proposition 4.28). We deduce that IJ1
π,ω is cuspidal as a representation of

J0/J1, by the following lemma.

Lemma 5.12. Let τ ∈ ModC(G). If ρJ1 is cuspidal or 0 as a representation of J0/J1 for
each irreducible subquotient ρ of τ , then the same is true for τ .

Proof. Let P = MN a proper parabolic subgroup of J0/J1. Assume that there exists f ∈ τJ1

such that the average fN of f along N is not 0. Let ρ be an irreducible quotient of the
subrepresentation of τ generated by fN . The image of fN in ρ is not 0 and is fixed by J1.
Hence ρJ1 is not 0 and ρ is not cuspidal as a representation of J0/J1, a contradiction proving
the lemma. �

As IJ1
π,ω ∈ ModC(J, ω) is injective (Example 5.8 c) and contains λ = πJ

1 (Proposition 4.28),
Iλ,ω is a direct factor of IJ1

π,ω. As IJ1
π,ω is cuspidal as a representation of J0/J1, the same is

true for Iλ,ω hence (J, λ) is supercuspidal (Proposition 5.7). By Theorem 5.10, indGJ Iλ,ω is
an injective hull of π in ModC(G,ω) and (indGJ Iλ,ω)I1 = Iλ,ω. That proves the theorem. �

5.4. Proof of Proposition 5.9. With the notations of §5.3 we put H = J/J1. As Z]∩J1 is
trivial, Z] identifies with a subgroup Y of H, ω with ζ ∈ IrrC(Y ), λ inflates τ ∈ ModC(H, ζ)
and Iλ,ω inflates an injective hull Iτ,ζ of τ in ModC(H, ζ).

In general, let H be a group with a central subgroup Y of finite index, ζ ∈ IrrC(Y ),
τ ∈ IrrC(H, ζ) and Iτ,ζ an injective hull of τ in ModC(H, ζ).

By adjunction, indHY ζ is a generator of the abelian category ModC(H, ζ), or equivalently,
the functor Hom(indHY ζ,−) is faithful in ModC(H, ζ) ([34] Proposition 5.2.4). As Y has finite
index in H, indHY ζ is projective in ModC(H, ζ). By Morita theory, the category ModC(H, ζ) is
equivalent to the category of right modules over the C-algebra EndC[H](indHY ζ). The algebra
C[Y ] acts on ζ via a quotient field C ′ which is a finite extension of C and EndC[Y ] ζ = C ′

(Remark 5.2). The convolution C-algebra H of functions f : H → C ′ such that f(yh) =
ζ(y)f(h) for y ∈ Y, h ∈ H, is isomorphic to EndC[H](indHY ζ).

Recall ([38] (16.54)) that a finite dimensional C-algebra A is called symmetric, if there
exists a linear map λ on A satisfying λ(ab) = λ(ba) for a, b ∈ A, and Ker(λ) does not contain
a non-zero right ideal of A.

Lemma 5.13. H is a symmetric C-algebra.

Proof. We choose a C-linear map φ : C ′ → C with φ(1) 6= 0 and we consider the linear
map f 7→ λ(f) = φ(f(1)) on H. We have λ(f ∗ f ′) = λ(f ′ ∗ f) for f, f ′ ∈ H because
(f ∗ f ′)(1) = (f ′ ∗ f)(1). For g ∈ G and d ∈ C ′, d 6= 0, let eg,d ∈ H with support gZ such
that eg,d(g) = d. For any non-zero f ∈ H, there exists g ∈ G and d ∈ D, d 6= 0, such that
(f ∗ eg,d)(1) = 1. This shows that Ker(λ) does not contain a non-zero right ideal of H. �

Proposition 5.14. Iτ,ζ is finite dimensional, projective, indecomposable with τ as its socle
and cosocle.
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Proof. As H is a symmetric C-algebra, any simple H-module ρ has a finite dimensional pro-
jective cover which is also an injective hull ([38] Corollary 16.64); it is consequently indecom-
posable with ρ as its socle and cosocle. The proposition follows by Morita equivalence. �

We consider now only the example (H,Y, ζ, τ, Iτ,ζ) given in the beginning of this subsection
§5.4. Then the first assertion of the proposition 5.9 follows from Proposition 5.14. Put
H0 = J0/J1 with the notations of §5.3. Then H0 is a finite normal subgroup of H such that
Y ∩ H0 is trivial. Let ρ be an irreducible quotient of τ |H0 and Iρ an injective hull of ρ in
ModC(H0).

Proposition 5.15. The restriction of Iτ,ζ to H0 is a sum of H-conjugates of Iρ.

Proof. a) We restrict first to H0Y . Let ρ′ ∈ IrrC(H0Y ) be a quotient of τ |H0Y and Iρ′,ζ an
injective hull of ρ′ in ModC(H0Y, ζ). By Proposition 5.14, Iρ′,ζ is indecomposable, projective
with ρ′ as its socle and cosocle. By Mackey formula, the restriction of indHH0Y Iρ′,ζ to H0

is a finite direct sum of H-conjugates of Iρ′,ζ . The representation indHH0Y Iρ′,ζ is injective in
ModC(H, ζ) and contains indHH0Y ρ

′. By adjunction τ ⊂ indHH0Y ρ
′ hence Iτ,ζ is a direct factor

of indHH0Y Iρ′,ζ . Therefore the restriction of Iτ,ζ to H0Y is a direct sum of H-conjugates of
Iρ′,ζ .

We consider now the restriction of Iρ′,ζ to H0. The functor

V 0 7→ V 0 ⊗C′ ζ : ModC′(H0)→ ModC(H0Y, ζ)
is an equivalence of categories which isH-equivariant. Write ρ′ = ρ′0⊗C′ζ with ρ′0 ∈ IrrC′(H0)
and I0 for an injective envelope of ρ′0 in ModC′(H0). Then Iρ′,ζ ' I0 ⊗C′ ζ, so Iρ′,ζ |H0 is
isomorphic to I0 seen as a C-representation by Krull-Remak-Schmidt’s theorem.

b) We assume, as we may, that ρ is a quotient of ρ′|H0 and we show that, seen as a
C-representation, I0 is a direct sum of copies of Iρ.

Seen as a C-representation ρ′0 is equal to ρ by our assumption. Extending scalars from C ′

to C preserves projectives (Example 5.8 b)); as Iρ is projective in ModC(H0), so is C ′ ⊗C Iρ
in ModC′(H0). But I0 is a projective cover of ρ′0 in ModC′(H0), so I0 is a direct factor
of C ′ ⊗C Iρ. As a C-representation, C ′ ⊗C Iρ is a direct sum of copies of Iρ, so is I0 by
Krull-Remak-Schmidt’s theorem. �

From that proposition, Iρ is cuspidal if and only if Iτ,ζ |H0 is cuspidal, or equivalently, Iλ,ω
is cuspidal as a representation of J0/J1. The second assertion of Proposition 5.9 follows, as
λ is supercuspidal if and only if Iρ is cuspidal.

6. Positive level cuspidal types

We use the notations of section 4.

6.1. Positive level. An irreducible smooth C-representation of G, or a cuspidal C-type in
G (Definition 4.14) which is not of level 0 (Definition 4.31), is said to be of positive level.
The known cases of cuspidal C-types require special assumptions on G, but give types for all
positive level irreducible cuspidal C-representations. Pioneer investigations were done in the
1970’s by Gérardin and Howe, but the main results originate either from Bushnell-Kutzko’s
approach [11] or from J.-K.Yu’s construction [59].

In both approaches, positive level cuspidal C-types (J, λ) are constructed - when C is alge-
braically closed - via an explicit but intricate procedure. Actually, there is a general procedure
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based on facts established in each case. We now explain that procedure for application to
Aut(C)-stability, and also to supercuspidality in §6.2. We shall give the references in each
case below in §6.3 and §6.4.

We assume that C is algebraically closed, only at the very end do we generalize to non
algebraically closed field.

The group J possesses a filtration by normal open subgroups J ⊃ J0 ⊃ J1 ⊃ H1 where
J0/J1 is the group of points of a connected reductive group over the residue field kF of F ,
J1 is a pro-p group, and J1/H1 is a finite Fp-vector space.

The starting datum for the representation λ ∈ IrrC(J) is a very special smooth C character
θ of H1 satisfying:
(i) The G-normalizer of θ is J ,
(ii) The G-intertwining of θ is JG′J where G′ ⊂ G is the group of F ′-points of a connected

reductive group defined over a finite extension F ′ of F , and there is a vertex y in the Bruhat-
Tits building B(G′ad) of the adjoint groupG′ad ofG′ such thatG′∩J = G′y, G′∩J0 = G′y,0, G

′∩
J1 = G′y,0+; in particular, the inclusion G′ ⊂ G induces isomorphisms J/J1 ' G′y/G′y,0+ and
J0/J1 ' G′y,0/G′y,0+.
(iii) There is a unique representation η = ηθ ∈ IrrC(J1) restricting on H1 to a multiple of

θ.
(iv) The G-intertwining of η is the G-intertwining of θ, and for any g ∈ G intertwining η

the C-dimension of the space I(g, η) of g-intertwiners of η is 1.
(v) There are preferred extensions of η to irreducible C-representations κ of J0; preferred

means that the G-intertwining of the restriction of κ to a pro-p Sylow subgroup of J0 contains
the G-intertwining of θ.
(vi) λ is any irreducible C-representation of J of restriction to J0 of the form ρ ⊗C κ

where κ is a preferred extension of η to J0, and ρ is a C-representation of J0 trivial on J1

inflated from a cuspidal C-representation ρ0 of the finite reductive group J0/J1.

Remark 6.1. Sometimes one knows that “intertwining implies conjugacy” in the sense that
two very special characters appearing in the same irreducible cuspidal C-representation of G
are in fact G-conjugate. Note that if intertwining implies conjugacy and π is induced from a
cuspidal type (J ′, λ′) which contains a very special character θ′, then if π contains the very
special character θ, the characters θ and θ′ are G-conjugate, so we may assume J = J ′, θ = θ′

and π is induced from (J, λ′) which is a cuspidal type as described in (i) to (vi).
Sometimes one knows a weaker condition:
(vii) If an irreducible cuspidal C-representation π of G contains a very special character

θ, then it is induced from a cuspidal type (J, λ) as described in (i) to (vi).

The level 0 case (Definition 4.31) enters that framework, if we decide that H1 = J1 = Gx,0+
and that θ is the trivial character of Gx,0+, so that η = θ, J = Gx is the G-normalizer of
θ; the trivial character of J0 = Gx,0 is a preferred extension extending to J . With these
definitions, a level 0 cuspidal C-type (J, λ) of G satisfies the properties (i) to (vii).

For later use, it is worth elaborating on conditions (v) and (vi). What means intertwining
was recalled in §3.4 before Remark 3.12. There are usually several preferred extensions κ of
η to J0. If κ is one and χ : J0 → C∗ a character trivial on J1 of order prime to p, then χκ is
also a preferred extension, because χ is trivial on the pro-p Sylow subgroups of J0. There is
a converse.
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Lemma 6.2. If κ is a preferred extension of η to J0, the other preferred extensions of η to
J0 are χκ where χ : J0 → C∗ is a character trivial on J1 and of order prime to p.

Proof. An arbitrary extension of η ∈ IrrC(J1) to J0 has the form χκ where χ : J0 → C∗ a
character trivial on J1, which we can identify with a character of the finite reductive group
G′y,0/G

′
0,y+ for y in (ii). If the order of χ is divisible by p, χ is not trivial on the pro-p

Sylow subgroups of J0, and we show that condition (ii) implies that χκ is not a preferred
extension of η. Indeed, the vertex y of B(G′ad) lies in the apartment associated to a maximal
split subtorus T ′ ⊂ G′ in B(G′ad). Let B′ ⊂ G′ be a minimal parabolic subgroup containing
T ′ with unipotent radical U ′. Then (U ′ ∩ G′y,0)/(U ′ ∩ G′y,0+) is a pro-p Sylow subgroup of
G′y,0/G

′
y,0+, S = (U ′∩G′y,0)G′y,0+ is a pro-p Sylow subgroup of G′y,0, and SJ1 is a pro-p Sylow

subgroup of J0. By condition (ii), J1∩G′ = G′y,0+ so SJ1∩G′ = S. There exists t′ ∈ T ′ such
that t′−1(U ′ ∩G′y,0)t′ ⊂ G′y,0+. By condition (ii), t′ intertwines θ.

These properties imply that, for any preferred extension κ1 of η, each t′-intertwiner Φ of
θ is also a t′-intertwiner of the restriction of κ1 to S. Indeed, Φ is a t′-intertwiner of the
restriction of κ1 to the pro-p Sylow subgroup SJ1 of J0. Since SJ1 ∩ G′ = S, Φ is also a
t′-intertwiner of the restriction of κ1 to S, so Φκ1(t′−1xt′) = κ1(x)Φ for all x ∈ t′St′−1 ∩ S.
In particular, for x ∈ (U ′ ∩G′y,0) ⊂ t′St′−1 ∩ S.

If χκ is a preferred extension, as χ is trivial on t′−1(U ′∩G′y,0)t′ ⊂ J1, we deduce Φκ(t′−1xt′) =
χ(x)κ(x)Φ for all x ∈ (U ′ ∩ G′y,0); as κ is a preferred extension, we have also Φκ(t′−1xt′) =
κ(x)Φ hence Φ = χ(x)Φ for all x ∈ (U ′ ∩ G′y,0). If the order of χ is divisible by p, then χ is
not trivial on U ′ ∩ G′y,0; we get Φ = 0, a contradiction because t′ interwines θ, which shows
that χκ cannot be a preferred extension. �

Remark 6.3. Most of the time all characters of G′y,0/G′y,0+ have order prime to p (see the
list in Digne-Michel [21]), but there are some exceptions, for example a non-trivial complex
character of SL(2,F2) has order 2 (the signature, after identifying SL(2,F2) with the group
of permutations on 3 elements), and the two non-trivial complex characters of SL(2,F3) have
order 3.

Remark 6.4. Applying Clifford theory to J and its normal subgroup J0, the restriction of λ
to J0 is semi-simple, by the condition (vi) its irreducible components are the J-conjugates of
τ ⊗C κ where τ ∈ IrrC(J0) is trivial on J1, and choosing one λ is obtained from the τ ⊗C κ-
isotypic component λτ of λ|J0 , by induction to J from the J-stabilizer Jτ of the isomorphism
class of τ ⊗C κ.

Let j ∈ J . The j-conjugate κj of κ is again a preferred extension of η, because J normalizes
J0 hence permutes its pro-p Sylow subgroups, and J normalizes θ and η by the conditions
(ii) and (iv). By Lemma 6.2, κj = χκ where χ : J0 → C∗ is a character trivial on J1 of
order prime to p. The j-conjugate of τ ⊗C κ is τ j ⊗C κj = χτ j ⊗C κ, and χτ j is, as ρ, an
irreducible representation of J0 trivial on J1 and cuspidal as a representation of J0/J1. We
conclude that (vi) is independent of the choice of the preferred extension, that all irreducible
components of λ|J0 have the form prescribed in (vi) with the same κ. The condition on λ|J0

in (vi) is equivalent to:
λ|J0 = ρ ⊗C κ where κ is a preferred extension of η to J0, and ρ is a C-representation of

J0 inflated from a cuspidal C-representation λ0 of J0/J1.
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Very often the construction of preferred extensions gives one which is normalized by J .
Often too, there is an extension κ̃ of κ to J and then λ = ρ̃ ⊗C κ̃ where ρ̃ is an irreducible
representation of J trivial on J1 containing ρ on restriction to J0 as in the level 0 case.

We generalise now Proposition 4.28 for level 0 cuspidal C-types to level > 0 cuspidal
C-types as above

Proposition 6.5. In the setting described with the conditions (i) to (vi), the space of vectors
in indGJ λ transforming by θ under right translation by H1 is made out of the functions with
support in J ; in particular it affords the representation λ of J .

Proof. The restriction of indGJ λ to H1 splits as a direct sum ⊕JgH1 indJgH
1

J λ. The subspace
of functions with support in J , as a representation of J , is isomorphic to λ. By (vi), the
restriction of λ to H1 is θ-isotypic. It is enough to show that for g ∈ G \ J , a function
in indGJ λ with support in JgH1 and transforming by θ under right translation by H1, is 0.
Saying that there exists a non-zero function in indGJ λ with support in JgH1 transforming by θ
under H1 is saying that g interwines λ with θ; since λ|H1 is θ-isotypic, if g interwines λ with θ
then g interwines θ so belongs to JG′J by (ii); because J normalizes θ we can assume g ∈ G′.
Since g interwines λ with θ, it intertwines λ|J0 with θ; it also intertwines κ as g−1Jg∩H1 is a
pro-p group and κ is a preferred extension by (v). Reasoning as in ([11] Proposition 5.3.2), we
see that g intertwines ρ with the trivial representation of J1. Restricting to G′∩J0 = G′y,0, we
get that g intertwines ρ, seen as a representation of G′y,0, with the trivial representation 1 of
G′y,0+. We are now in a level 0 situation. So g ∈ G′ must satisfy HomG′y,0∩g−1G′y,0+g

(ρ, 1) 6= 0,
which means that the irreducible cuspidal representation ρ of G′y,0 has a non-zero vector fixed
by G′y,0 ∩G′g−1y,0+. By Lemma 4.27, g′ has to be in the G′-stabilizer G′y of y, hence in J . �

Corollary 6.6. The conditions (i) to (vi) imply that indGJ λ is irreducible and EndC[G](π) =
EndC[J ](λ).

Proof. Apply the proposition as in Corollary 4.29. �

Proposition 6.7. The conditions (i) to (v) imply that indGJ0(ρ⊗C κ) is cuspidal when κ is a
preferred extension of η to J0, and ρ is a C-representation of J0 trivial on J1 inflated from
a cuspidal C-representation ρ0 of the finite reductive group J0/J1.

Proof. Put V = ρ ⊗C κ and V ] for the inflation of V of J0Z] (as J0 ∩ Z] is trivial). The
representation indGJ0Z] V ] has finite length and its irreducible subquotients are of the form
indGJ λ where λ satisfies the condition (vi), and indGJ λ is irreducible (Corollary 6.6) and cus-
pidal (a coefficient of λ is a coefficient of indGJ λ with Z-compact support). Hence indGJ0Z] V ]

is cuspidal.
To show the cuspidality of indGJ0 V , we use the criterion (Remark 4.3): for any f ∈ indGJ0 V

and any arbitrary proper parabolic subgroup P = MN of G, there exists a compact open
subgroup Nf of N such that eNf

(f) = 0 where eNf
is the projection on the Nf -invariants.

We have indGJ0 V = indGJ0Z](V ⊗C C[Z]]) and the linear map C[Z]])→ C sending z ∈ Z] to
1, induces a surjective C[G]-map indGJ0Z](V ⊗CC[Z]])→ indGJ0 V ] sending f to f ] =

∑
z∈Z] zf

as (zf)(g) = z(f(g)) for g ∈ G. By the criterium of cuspidality recalled above, there exists
a compact open subgroup Nf of N such that eNf

(f ]) = 0. As the intersection J0Z] ∩ N is
trivial we have also eNf

(f) = 0. �



REPRESENTATIONS OF A REDUCTIVE p-ADIC GROUP IN CHARACTERISTIC DISTINCT FROM p 33

Corollary 6.8. The conditions (i) to (v) imply that indGJ λ is cuspidal when λ satisfies the
condition (vi) without the irreducibility.

Proof. By adjunction λ embeds in indJJ0(λ|J0) and by exactness indGJ λ embeds in indGJ0(λ|J0).
By Proposition 6.7, indGJ0(λ|J0) is cuspidal. A subrepresentation of a cuspidal representation
is cuspidal hence indGJ λ is cuspidal. �

In that setting, Aut(C)-stability can be established as follows. Let (J, λ) be a cuspidal
C-type as above and let σ ∈ Aut(C). To prove that (J, σ(λ)) is also a cuspidal C-type as
above, there are two issues.

(a) If θ is a very special character, then σ(θ) is also very special.
If (a) is true, certainly σ(η) is an irreducible representation of J1 restricting on H1 to a

multiple of σ(θ), and we need:
(b) if κ is a preferred extension to J0 of η, then σ(κ) is a preferred extension to J0 of σ(η).
Clearly σ(ρ⊗C κ) ' σ(ρ)⊗C σ(κ) and σ(ρ) is, as ρ, an irreducible C-representation of J0

trivial on J1 with restriction to J0 inflated from a cuspidal C-representation σ(λ0) of J0/J1.
If (a) and (b) are true, (J, σ(λ)) is a cuspidal C-type as desired. Assuming (a), let us prove
(b): indeed σ(κ) extends σ(η) and since σ preserves intertwining, (b) comes from condition
(v). Our task in the examples of §6.3 and §6.4 below will be to verify property (a).

Note that underlying the construction of the very special characters θ is the choice of an
additive character ψ : F → C∗, assumed to be trivial on PF but not on OF . Applying
σ ∈ Aut(C) transforms ψ to the character ψξ : x 7→ ψ(ξx) for some ξ = ξσ ∈ O∗F . Actually, if
a is the characteristic of F , then ξσ is in Z∗p ⊂ O∗F if a = 0 and in F∗p ⊂ O∗F if a = p. In fact,
as we shall see, changing ψ to ψξ for ξ ∈ O∗F does not change the set of types constructed
inducing cuspidal irreducible representations, and property (a) holds.

6.2. Supercuspidality and types. Let (J, λ) be a cuspidal C-type in G as in §6.1 satisfying
the properties (i) to (vi). Put π = indGJ λ.

We are in the situation where C is algebraically closed, λ|J1 is η-isotypic for a representation
η ∈ IrrC(J1) which is normalized by J and extends to a representation κ ∈ IrrC(J0); moreover
for any h ∈ J , the conjugate of κ by h is isomorphic to χhκ where χh is a C-character of
J0 trivial on J1 of order prime to p. We choose a preferred extension κ of η (Remark 6.4,
Lemma 6.2). We have

(6.1) λ|J0 = ρ⊗C κ where ρ is cuspidal as a representation of J0/J1.

The definition of ρ depends on the choice of the preferred extension κ of η. The other preferred
extensions have the form χκ where χ is a character of J0 trivial on J1 of order prime to p by
the discussion in §6.1 before Lemma 6.2, so that ρ ⊗C κ = χ−1ρ ⊗C χκ. Therefore, another
choice of κ gives ρ twisted by a character of order prime to p. By Clifford’s theory, λ|J0 is
semi-simple of finite length. The irreducible components are J-conjugate of the form σ ⊗ κ
where σ is an irreducible component of ρ. Let Iρ be the injective hull of ρ in ModC(J0). The
following properties are equivalent:

(i) Some irreducible component of ρ is supercuspidal as a representation of J0/J1.
(ii) Iρ is cuspidal as a representation of J0/J1 (Lemma 5.6).

Definition 6.9. (J, λ) is called supercuspidal if the properties (i), (ii) are satisfied.



34 GUY HENNIART, MARIE-FRANCE VIGNÉRAS

The definition does not depend on the choice of the preferred extension κ in of η. In level
0 where η and κ are trivial, it coincides with Definition 4.31, and (J, λ) is supercuspidal if
and only if π is supercuspidal (Theorem 5.1). In positive level, our goal is to prove:

Theorem 6.10. If (J, λ) is supercuspidal then π is supercuspidal. The converse is true if
(G,C) satisfies the second adjunction and (J, λ) satisfies the property (vii) of §6.1.

The proof is parallel to the previous ones in level 0 if (G,C) satisfies the second adjunction,
with one extra complication coming from η, and a slight simplification due to the fact that
C being algebraically closed, λ and π are ω-isotypic for some ω ∈ IrrC(Z]) of dimension 1,
which can be considered as a C-character of Z].

The category ModC(J0, η) of C-representations of J0 which are η-isotypic on restriction to
J1, is a direct factor of ModC(J0). When η = 1J1 is trivial, ModC(J0, 1J1) is equivalent to
ModC(J0/J1). We have similar results when J0 is replaced by a subgroup of G containing
J1 as a normal subgroup. Since κ is an extension of η to J0, the functor

(6.2) W 7→W ⊗C κ : ModC(J0, 1J1)→ ModC(J0, η)

is an equivalence (depending on the choice of κ), a reverse equivalence being given by
HomC[J1](κ,−) with the natural action of J0. The functor V 7→ Vη : ModC(G)→ ModC(J, η)
sending a representation to its η-isotypic part on restriction to J1, with the natural action of
J , is exact and respects injectives and projectives. And also the functor

eκ : ModC(J, ω)→ ModC(J0, 1J1) V 7→ HomJ1(κ, Vη),

where ω is the C-character of Z] such that λ is ω-isotypic. In level 0 where η and κ are trivial,
Vη = eκ(V ) = V J1 . We have πη = λ (Proposition 6.5) and eκ(π) = ρ (formula (6.1)). Let
Iλ,ω be an injective hull of λ in ModC(J, ω).

Proposition 6.11. Iλ,ω is finite dimensional, projective, indecomposable with socle and coso-
cle isomorphic to λ.

(J, λ) is supercuspidal if and only if eκ(Iλ,ω) is cuspidal as a representation of J0/J1.

That corresponds to Proposition 5.9 in level 0.

Proof. The kernel Ker θ of the very special character θ of H1 is a normal open pro-p subgroup
of J and η is trivial on Ker θ, by the properties (i) and (iii) in §6.1. We put H = J/Ker θ.
As Z] ∩ Ker θ is trivial, Z] identifies with a subgroup Y of H, ω with ζ ∈ IrrC(Y ), λ
inflates τ ∈ ModC(H, ζ) and Iλ,ω inflates an injective hull Iτ,ζ of τ in ModC(H, ζ) (see the
example 5.8 c)). The first assertion of the proposition follows from Proposition 5.14 applied
to (H,Y, ζ, τ, Iτ,ζ). By the equivalence (6.2), ρ⊗C κ where ρ = eκ(π) is an irreducible quotient
of λ|J0 . By Proposition 5.15 applied to H0 = J0/Ker θ, the restriction of Iλ,ω to J0 is a sum
of J-conjugates of Iρ⊗C κ where Iρ is an injective hull of ρ in ModC(J0, 1J1). A J-conjugate
of Iρ⊗C κ is of the form χI ′ρ⊗C κ for a J-conjugate I ′ρ of Iρ and a character χ of J0 trivial on
J1 (Remark 6.4). Hence eκ(Iλ,ω) is a sum of χI ′ρ. It is cuspidal as a representation of J0/J1

if and only if Iρ if and only if (J, λ) is supercuspidal (Definition 6.9). �

Theorem 6.12. 1) Assume (J, λ) supercuspidal. Then π = indGJ λ is supercuspidal.
Moreover indGJ Iλ,ω is an injective hull Iπ,ω of π in ModC(G,ω). It is cuspidal projective

indecomposable with socle and cosocle isomorphic to π. The lattices of subrepresentations of
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Iλ,ω and of Iπ,ω are isomorphic by the map W 7→ indGJ W (which is equal to IndGJ ν), with
inverse V 7→ Vη.

2) Assume π supercuspidal. Then (J, λ) is supercuspidal if (G,C) satisfies the second
adjunction and (J, λ) satisfies the property (vii) of §6.1.

That is a stronger form of Theorem 5.1 which corresponds to Theorems 5.10 and 5.11 in
level 0.

Proof. The proof of second part of 1) is the same as in Theorem 5.10. So Iπ,ω is cuspidal of
finite length, hence is admissible and consequently right cuspidal (Proposition 4.10). When
the second adjunction holds true, the proposition 5.7 implies that π is supercuspidal. The
proof of 2) which assumes the second adjunction follows the same method as for Theorem
5.11 replacing Corollary 4.34 by the property (vii).

We show now that (J, λ) supercuspidal implies π supercuspidal without assuming the sec-
ond adjunction. We recall the injective hull Iλ|J0 of λ|J0 in ModC(J0) and we consider the
representation V = indJJ0 Iλ|J0 of J . The restriction of V to J0 is τ ⊗C κ where τ is a finite
sum of χI ′ρ where χ is a character of J0 trivial on J1 and I ′ρ a J-conjugate of Iρ (Remark
6.4). The representation indGJ V = indGJ0 Iλ|J0 of G is projective with quotient π = indGJ λ,
as Iλ|J0 is projective of quotient λ|J0 and λ is a quotient of V = indJJ0 λ|J0 by adjunction.
If (J, λ) is supercuspidal, then Iρ is cuspidal as a representation of J0/J1, hence also τ , and
Proposition 6.7 tells us that indGJ V is cuspidal - so π is the quotient of the projective cuspidal
representation indGJ V , hence is supercuspidal (Lemma 4.6). �

In the setting of §6.1, the field C is algebraically closed. When C is not algebraically closed,
a cuspidal Ca-type (J, λa) of G defines by restriction to C a cuspidal C-type (J, λ) of G such
that λa seen as a C-representation is λ-isotypic.

Definition 6.13. A cuspidal C-type (J, λ) of G arising by restriction to C of a cuspidal
Ca-type (J, λa) of G in the setting of §6.1 with the properties (i) to (vi) satisfied, is called
supercuspidal if (J, λa) is supercuspidal (Definition 6.9).

That definition ensures via Theorem 5.1 and Proposition 4.11 that π = indGJ λ is super-
cuspidal if (J, λ) is supercuspidal, and that the converse is true if (G,C) satisfies the second
adjunction and (J, λa) satisfies also the property (vii) of §6.1.

Remark 6.14. The definition is compatible in level 0 with Definition 4.5 which does not
suppose C algebraically closed (Lemma 4.32).

The definition does not depend on the choice of λa because another irreducible component
is a conjugate σ(λa) of λa by some σ ∈ AutC(Ca). We have λa|J0 = ρa ⊗ κa, σ(ρa ⊗C κa) =
σ(ρa)⊗C σ(κa), σ(κa) is a preferred extension of σ(ηa), and an irreducible component of σ(ρa)
is supercuspidal if and only if an irreducible component of ρa is.

6.3. Types à la Bushnell-Kutzko. Let us review the types constructed with the techniques
of Bushnell-Kutzko. The reader needs familiarity with the references, as we only indicate why
properties (i) to (vii) are true and how to establish Aut(C)-stability.

6.3.1. GL(N,F ). We start with GL(N,F ) and C = C treated in [11].
The basic concepts are those of simple stratum and simple character; the maximal simple

characters in [11] are the very special characters here.
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We let V be an F -vector space of dimension N (e.g. V = FN ) so that G = AutF (V ) is
isomorphic to GL(N,F ). A simple stratum (A, n, r, β) is made out of an hereditary OF -order
A in EndF (V ), integers n ≥ r ≥ 0, and an element β ∈ G normalizing A such that E = F (β)
is a field and satisfying the conditions of ([11],1.5.5). Those conditions involve only the
conjugation of β on EndF (V ) and on A, so it is straightforward that for a ∈ O∗F , (A, n, r, aβ)
is again a simple stratum, moreover the groups J, J0, J1, H1 attached to the two strata are
the same ([11], 3.1.14) : we write J0, J1, H1 for Bushnell-Kutzko’s J(β,A), J1(β,A), H1(β,A),
G′ = B∗ where B is the centralizer of β in EndF (V ). The OE-hereditary order B = A∩B in
B corresponds to a point in the Bruhat-Tits building B(G′) of G′. Write y for the image of
this point in B(G′ad). We have ([17] 7.1 p.313) G′y,0 = B∗ and G′y is the normalizer of B in B.
We put J = G′yJ

1 and we have J0 = Gy,0J
1 ([11], 3.1.15) so that the inclusion B ⊂ EndF (V )

induces an isomorphism G′y/G
′
y,0 → J/J1, as demanded by property (ii).

To the simple stratum (A, n, r, β) is attached the set C(A, r, β, ψ) of simple characters
([11],3.2.1 and 3.2.3) – we add the underlying character ψ in the notation of [11].

Following the definitions, one gets that C(A, r, β, ψ) = C(A, r, aβ, ψ) for a ∈ O∗F , and that
for σ ∈ Aut(C), the map θ 7→ σ(θ) yields a bijection C(A, r, β, ψ) → C(A, r, β, σ(ψ)) =
C(A, r, ξσβ, π). In particular property (a) of §6.1 is satisfied. Only r = 0 is used in the
sequel, so we suppress it from the notation. The simple characters occuring in the cuspidal
representations are the maximal ones, meaning that B is a maximal OE-order in B ([11] 6.2.1,
[10] Corollary 1), corresponding to the case where y is a vertex to B(G′ad).

If θ ∈ C(A, β, ψ) is a simple character, its G-normalizer is J ([11] 3.3.17) and its G-
intertwining is JG′J ([11] 3.3.2). The non-degenerate alternating bilinear form on J1/H1 is
in ([11] 3.4.1), the existence and uniqueness of η are in ([11] 5.1.1) and the G-intertwining of
η is in ([11] 5.1.8). The conditions (i), (ii), (iii), (iv) of §6.1 are satisfied.

There are β-extensions of η to J0 ([11] 5.2.1). A β-extension is an extension which is
intertwined by G′, or equivalently by J0G′J0, or equivalently with the same G-intertwining
than η because J0G′J0 = JG′J . In particular it is a preferred extension and is normalized
by J , giving property (v) of §6.1. For a maximal simple character θ, J/J0 is cyclic, so a
β-extension even extends to J . In any case if κ is a β-extension and σ ∈ Aut(C), then σ(κ)
is also a β-extension.

The cuspidal types (J, λ) of Bushnell-Kutzko ([11] 6.2) are obtained by the procedure of
6.1, property (v), starting from a maximal simple character θ and a β-extension κ of η = ηθ; in
fact they are such that λ = ρ⊗C κ̃ where κ̃ is an extension of κ to J and ρ is a representation
of J = G′yJ

1 trivial on J1 = G′y,0+ with restriction of J0 inflated from an irreducible cuspidal
representation of J0/J1 ' G′y,0/G

′
y,0+. The discussion in 6.1 shows that if one uses instead

any preferred extension in lieu of κ, we get the same set of cuspidal types.
Following the procedure indicated after Corollary 6.6, we deduce that the set of types thus

obtained satisfies Aut(C)-stability.
Exhaustion and unicity for the set of cuspidal types obtained by varying the maximal

simple characters, and including level 0, are given by ([11] 8.4.1). Finally, intertwining implies
conjugacy is true for maximal simple characters [10], giving property (vii).

The second adjointness holds for (G,C) [17].

6.3.2. GL(m,D). The case of inner forms of GLN (of course it includes the split case, but
uses [11] as a basis) is due to Minguez, Sécherre and Stevens [49], [41]. In their setting, D
is a central division algebra over F of finite reduced degree d, V is a right D-vector space
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of finite dimension m, and G = AutD(V ) is an inner form of GLN (F ), N = md. When
m = 1, G = D∗ has semisimple rank 0.

Cuspidal complex types were known before ([60], [6]). Minguez, Sécherre and Stevens,
for a general algebraically closed field C of characteristic c 6= p construct a set of "cuspidal
simple C-types", using simple strata and simple characters for non-level 0 types, and they
show exhaustion and unicity ([41] Theorem 3.11). Let us now give detail enough to verify
Aut(C)-stability and properties (i) to (vii) of §6.1.

There is a notion ([47] Definition 2.3) of simple stratum (A, n, r, β) made out of an hered-
itary OD-order A in EndD(V ), where OD is the ring of integers of D, corresponding to a
chain Λ of OD-lattices in V . We write indifferently A or Λ in the notation of the simple stra-
tum. To such a stratum is associated the centralizer B of β in EndD(V ) and open subgroups
J, J0, J1, H1 all normal in J , see ([47] formula (65)) for J0, J1, H1 whereas Sécherre writes
J for J0. We write J for the group written (K(A) ∩ B)J0 in [47]; the normality property
is Proposition 3.43 there, which also says that J1/H1 is a finite p-group. The chain Λ is
stable under E∗ where E = F (β) and defines a point y in B(G′ad) where G′ = B∗. We have
J = G′yJ

1 and J0 = G′y,0J
1. To get cuspidal types we have to restrict ot maximal simple

strata ([41] Proposition 3.6) which means that y is a vertex.
As in 6.3.1 we restrict to r = 0 and suppress it from the notation. To a simple stratum

(Λ, n, β) in G is attached a set C(Λ, β, ψ) of simple characters θ : H1 → C∗ ([47] Definition
3.45), obtained by a restriction process from simple characters constructed in [11]. Following
the definition, it is straightforward that for a ∈ O∗F (Λ, n, aβ) is again a simple stratum
with the same attached groups and C(Λ, β, ψa) = C(Λ, aβ, ψ). As in 6.3.1, we verify that
σ ∈ Aut(C) induces a bijection θ 7→ σ(θ) : C(Λ, β, ψ) → C(Λ, β, σ(ψ)) = C(Λ, ξσβ, ψ). The
G-normalizer of θ ∈ C(Λ, β, ψ) is J and its G-intertwining is JG′J = J1G′J1 ([47] Theorem
3.50 and Rem. 3.51) giving properties (i) and (ii).

Existence and uniqueness of η = ηθ come from ([47] Theorem 3.52) yielding property (iii).
The intertwining property (iv) of η is ([48] Proposition 2.10).

An extension of η to J0 is a β-extension if it is normalized by B∗ = G′([48] §2.4). As the G-
centralizers of β and ξσβ coincide for any σ ∈ Aut(C) we get σ-stability for the β-extensions.
The β-extensions are preferred extensions in our sense (property (v)). As in 6.3.1, the other
preferred extensions are obtained by twisting by a character of order prime to p, and can
equally be used to construct the cuspidal types.

If κ is a β-extension and ρ as in property (vi), one can form (J0, ρ⊗C κ) and consider the
G-normalizer J̃ of (J0, ρ⊗C κ) which is included in J (as ρ⊗C κ is θ-isotypic). The “extended
maximal cuspidal simple types” of [41] are the (J̃ , λ̃) where λ̃ is any extension of ρ ⊗C κ to
J̃ (such extensions exist as J/J0 is cyclic (as before)). For such a pair indG

J̃
λ̃ is irreducible,

and it is for that set of pairs (J̃ , λ̃), including the level 0 ones, that ([41] Theorem 3.11)
gives exhaustion and unicity. From Proposition 3.18, we deduce that the set of pairs (J, λ)
where λ = indJ

J̃
λ̃, also satisfies exhaustion and unicity, and property (vi) is valid by Clifford’s

theory. That set of cuspidal types is verified to be Aut(C)-stable as in 6.3.1, starting from
the analysis above of the action of Aut(C) on simple characters and β-extensions.

Finally, we mention that property (vii) comes from ([41] Lemma 3.9 and 3.10).

6.3.3. SLN . Next we turn to SLN treated in [13] for complex representations, and extended
recently to positive characteristic coefficients by Cui [15], [16]. She also treats Levi subgroups
of SLN . To keep with her notation, we let M be a Levi subgroup of GLN , and add the
exponent ′ to indicate the intersection with G′ = SLN .
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To get cuspidal simple types for M ′, one starts from such types for M ; as M is a product
of GLri , one can take those obtained in 6.3.1. If (J, λ) is a cuspidal simple type for M , one
defines ([15] 3.44) its projective normalizer J̃ ; it contains J as a finite index subgroup; the
induced representation λ̃ = indJ̃J λ is irreducible, its restriction to J̃ ′ is semisimple. Let µ
be any irreducible component of λ̃|J̃ ′ and H = NM ′(µ) its M ′-normalizer. In fact, H is the
M ′-intertwining of µ and any irreducible representation υ of H containing µ on restriction to
J̃ ′, induces irreducibly to a cuspidal irreducible representation indM ′H (υ) ofM ′; moreover each
cuspidal irreducible representation ofM ′ has this form for some choice of (J, λ) and υ. A pair
(H, υ) obtained in this way is a cuspidal type in M ′, and the set X′ of such types satisfies
exhaustion and is stable under conjugation by M ′ ([15] Theorem 3.5.1); unicity is obtained
for C in ([13], 5.3 Theorem), and in general in ([15] 3.5.6).

Let us verify that X′ is Aut(C)-stable. Start with a cuspidal simple type (J, λ) in M and
choose µ and υ as above. Let σ ∈ Aut(C). By ([15] 3.44), the projective normalizer J̃ of
(J, λ) is the same for σ(λ) and clearly σ̃(λ) = σ(λ̃). Then σ(µ) is an irreducible component
of σ(λ̃)|J̃ ′ , and NM ′(µ) = NM ′(σ(µ)); furthermore σ(υ) is an irreducible representation of
H = NM ′(σ(µ)) containing σ(µ) on restriction to J̃ ′. This shows that (H,σ(υ)) belongs to
X′, as desired.

Remark 6.15. That case of SLN does not immediately conform to the common pattern de-
scribed before. That question needs further study.

6.3.4. Classical groups. The case of classical groups, for any C but only when p is odd is due
to Kurinczuk and Stevens [36] (for C = C [54]). In this context, F/F0 is an extension of
degree 1 or 2, V is a finite dimensional F -vector space, ε ∈ {1,−1} and h is a non-degenerate
ε-hermitian form on V with respect to F0. The group G+ = {g ∈ AutF (V ) : h(gv, gw) =
h(v, w) for all v, w ∈ V } is the group of F0-points of a unitary, symplectic or orthogonal
group G+ and U(V, h) the F0-points of the connected component G of G+. In the unitary
and symplectic case U(V, h) = G+, in the orthogonal case F = F0 and ε = 1, U(V, h) is
the special orthogonal group. One needs semisimple strata (Λ, n, β) in EndF (V ) where Λ
this time is a sequence of OF -lattices in V ([54] Definition 2.4, again only r = 0 is used and
suppressed from the notation) and the corresponding sets C(Λ, β, ψ) of semisimple characters
in AutF (V ) ([54] §3.1).

Now assume that ψ = ψ0 ◦ trF/F0 for some character ψ0 : F0 → C∗, and write x 7→ x

for the involution on EndF (V ) associated to h, ι for the involution x 7→ x−1 on AutF (V ),
and Λ[ is the lattice sequence in EndF (V ) dual to Λ with respect to h. Then ι induces a
bijection θ 7→ θ ◦ ι : C(Λ, β, ψ) → C(Λ[,−β, ψ). Clearly σ(θ ◦ ι) = σ(θ) ◦ ι for σ ∈ Aut(C)
and θ ∈ C(Λ, β, ψ). When the stratum (Λ, n, β) is self-dual (that is when Λ[ is Λ up to a
translation in indices, and −β = β), the subgroups of AutF (V ) attached to that stratum
by Bushnell-Kutzko are invariant under ι, and intersecting them with G gives subgroups
H1 = H1(β,A) ∩G, J1 = J1(β,A) ∩G, J = J0(β,A) ∩G. Then J/J1 is the group of points
of a possibly non-connected reductive group over kF and we define J0 of the subgroup of
J such that J0/J1 is the connected component of J/J1. The set C(Λ, β, ψ) of semisimple
characters of G is obtained by restricting to H1 the ι-invariant semisimple characters of
AutF (V ) corresponding to (Λ, β, ψ). It is clear that the semisimple characters of G satisfy:
for a ∈ O∗F , C(Λ, β, ψa) = C(Λ, aβ, ψ) and σ ∈ Aut(C) induces a bijection θ 7→ σ(θ) :
C(Λ, β, ψ)→ C(Λ, β, σ(ψ)) = C(Λ, ξσβ, π). Our very special characters are those semi-simple
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characters satisfying some maximality condition, and a procedure parallel to the previous
ones gives a set of cuspidal C-types in G ([36] Theorem A (i)).

Let us verify properties (i) to (vii). First property (ii) is a special case of ([36] Theorem
3.10), and property (i) is an easy consequence. Property (iii) is ([36] Theorem 2.6) while (iv)
is a special case of ([36] Theorem 4.1). In their §5, Kurinczuk and Stevens define β-extensions
of η = ηθ for a semisimple character θ in C(Λ, β, ψ). A β-extension in [36] is a representation
of J+ = J(Λ, β) ∩ G+, and for property (v) we need to verify that its restriction to J0

(which [36] also calls a β-extension) deserves to be called a preferred extension, at least when
the maximality condition is satisfied. This comes from ([54] §4.1). Indeed the very special
characters (that is the semisimple characters occurring in cuspidal representations) are those
attached to a skew semisimple stratum such that the associated order in B is maximal. In
that case Theorem 4.1 in [54] defines β-extensions to J+, and their construction and Corollary
3.11 in [54] show that they are exactly our preferred extensions. (Note that [54] works over
the complex numbers, but the constructions of §3 and §4 are valid over our field C). Now
the cuspidal types of [36] have the form ρ ⊗ κ, where κ is a β-extension of η to J and ρ an
irreducible representation of J with restriction to J0 inflated from a cuspidal representation
of J0/J1, and condition (vi) is satisfied. Property (vii) comes along the proof of exhaustion
in ([36], see the proof of Theorem 11.2). (See [37] for general results about "intertwining
implies conjugacy" for semisimple characters). Adding as before the level 0 cuspidal C-types,
one gets the set of cuspidal simple C-types in G, which satisfies exhaustion ([36], TheoremA
(ii)) and unicity ([37] Main Theorem). Using the action of Aut(C) on semisimple characters
analysed above, verifying Aut(C)-stability for cuspidal simple types follows as before.

The second adjointness holds for (G,C) [17].

6.3.5. Quaternionic form. Finally the case of a quaternionic form G of a classical group for
odd p is obtained by Skodlerak [50] for C = C, (citeSk20 Theorem1.1) in the modular case.
That case is a mix of the previous two and Skodlerak constucts a set of C-types satisfying
irreducibility, exhaustion and unicity ([51] Theorem 1.1). The procedure to define semisimple
characters is the same as for classical groups but starting with AutD V where V is a right
vector space of dimension m over a central quaternion division F -algebra D equipped with
an anti-involution d 7→ d (it is necessarily of the first kind), and a non-degenerate ε-hermitian
form h on V with ε ∈ {1,−1}. The group G is the group of isometries of h; it is connected
reductive, indeed over a quadratic unramified extension of F it gives a unitary group ([50],
Proposition 2.2). Starting with a semisimple stratum (Λ, n, β) ∈ EndD(V ) (again r = 0 is
omitted), one defines dual stratum (Λ[, n,−β)([50] Definition 4.1) as in 6.3.4, and, for a self-
dual stratum, the set C(Λ, β, ψ) of semisimple characters in G. The intertwining of semisimple
characters in G computed in ([50] 4.4) is the same in the modular case. For the very special
semisimple characters θ (that is those giving rise to a cuspidal C-type), it has indeed the form
JG′J ([50], proof of Proposition 4.3), which gives property (ii), and (i) follows. Properties
(iii) and (iv) come from ([50] Lemma 4.2 and Proposition 4.3 ). We have already said why (v)
is true, and (vi) comes from ([50] Definition 6.2 ), (vii) from ([50] Theorem 8.1). The action
of Aut(C) follows the same pattern as 6.3.4, and adding the level 0 C-types one gets the set
of simple cuspidal C-types in G, which satisfies Aut(C)-stability.

6.4. Yu types. We now turn to the representations constructed by Yu when G is a connected
reductive group which splits over a tamely ramified field extension of F [59]. We refer to the
papers of Fintzen [25],[26], [27] because she corrects an error in the proof of irreducibility
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in [59], and also because she proves in [26] that, when p does not divide the order of the
absolute Weyl group of G, and for any algebraically closed field C with c 6= p, the set of
C-types constructed by Yu satisfies irreducibility and exhaustion. Hakim and Murnaghan
([30], Theorem 6.3), go a long way towards proving unicity when C = C, but their result is
not expressed in terms of a list of types; the translation and the extension to C algebraically
closed of characteristic c 6= p is done in the Ph.D. thesis of R. Deseine [20].

6.4.1. We follow the account and notation of ([26], 2.1,2.4, 5.1). The input for the construction
comprises a sequence G = G1 ⊃ G2 ) . . . ) Gn+1 of twisted Levi subgroups of G splitting over
a tamely ramified extension of F and such that Z(Gn+1)/Z(G) is anisotropic, a sequence r1 >
. . . > rn > 0 of real numbers (n = 0 is allowed and gives the level 0 cuspidal representations
of G), and an element x in the extended building B(Gn+1) ⊂ B(G) with image [x] ∈ B(Gadn+1)
a vertex. On the representation side, the input consists of:

- an irreducible representation ρ of (Gn+1)[x] trivial on (Gn+1)x,0+ of restriction to the
parahoric subgroup (Gn+1)x,0 ⊂ Gn+1 inflated from a cuspidal representation of the finite
connected reductive group (Gn+1)x,0/(Gn+1)x,0+.

- if n > 0, a sequence of characters ϕi of Gi+1, assumed of depth ri with respect to x
(meaning trivial on (Gi+1)x,ri+ and not trivial on (Gi+1)x,ri), and Gi-generic with respect to
x (in the sense of [59] §9, p.59, a condition on ϕi restricted to (Gi+1)x,ri) if Gi 6= Gi+1.

Remark 6.16. Recall that the Bruhat-Tits building B(G) of G is the direct product of the
Bruhat-Tits building B(Gad) of the adjoint group Gad, by a real affine space. For any point
x ∈ B(G) we denote by [x] its projection in B(Gad), and by Gx and G[x] the G-stabilizers of
x and [x]. The parahoric subgroup Gx,0 of G fixing x and its pro-p unipotent radical depend
only on [x] and we put G[x],0 = Gx,0, G[x],0+ = Gx,0+.

When n > 0, we call ((G)i)1≤i≤n+1, (ri)1≤i≤n, x, (ϕi)1≤i≤n, λ0) a Yu datum. The associated
cuspidal C-type of G is (J, λ = λ0 ⊗C κ), where 6:

(6.3) J = (G1)x,r1/2 . . . (Gn)x,rn/2(Gn+1)[x] = (G1)x,r1,r1/2 . . . (Gn)x,rn,rn/2(Gn+1)[x],

and λ0 is the representation of J trivial on (G1)x,r1/2 . . . (Gn)x,rn/2(Gn+1)x,0+ inflating the
representation ρ of (Gn+1)[x]. In ([26], §2.4), J is denoted by K̃ and λ0 is still denoted by ρ.
To describe the representation κ of K̃ we introduce more notations following ([26] 2.5). For
1 ≤ i ≤ n, there exists a unique C-character

ϕ̂i : (Gn+1)[x](Gi+1)x,0Gx,(ri/2)+ → C∗

given on (Gn+1)[x](Gi+1)x,0 by the restriction of ϕi, and on Gx,(ri/2)+ factorizing through a
natural homomorphism from Gx,(ri/2)+/Gx,ri+ to (Gi+1)x,(ri/2)+/(Gi+1)x,ri+ on which it is
induced by ϕi. That homomorphism is described in ([27], §2.5 after second bullet), after

6(Gi)x,ri,ri/2 ⊂ Gi is the open compact subgroup denoted, (Gi+1, Gi)(F )x,ri,ri/2 in [59] p.585-586. As that
last notation underlies, the group depends on both Gi and Gi+1.

(Gn+1)[x] ⊂ Gn+1 is the Gn+1-stabiliser of the image [x] of x in the building of Gad
n+1; it normalizes Gx,ri,ri/2

and Gx,ri,(ri/2)+; it is an open subgroup containing the center Z(Gn+1) of Gn+1 and (Gn+1)[x]/Z(Gn+1) is
compact.

The second equality in (6.3) follows from (Gi)x,ri/2 = (Gi)x,ri,ri/2(Gi+1)x,ri/2.
We have also (Gi)x,(ri/2)+ = (Gi)x,ri,(ri/2)+(Gi+1)x,(ri/2)+.
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([59], §4). Let µ denote the group of p-roots of 1 in C. By ([59], Proposition 11.4), Vi =
Gx,ri,ri/2/Gx,ri,(ri/2)+ admits the symplectic form

(x, y) 7→ 〈x, y〉ϕ̂i = ϕ̂i(xyx−1y−1) : Vi × Vi → µ,

and a canonical special isomorphism

jϕ̂i : Gx,ri,ri/2/(Gx,ri,(ri/2)+ ∩Ker ϕ̂i)→ V ]
ϕ̂i
,

where V ]
ϕ̂i

is the finite Heisenberg p-group with underlying set Vi × µ and law given by
(v, ε)(v′, ε′) = (v + v′, ε+ ε′ + (1/2)〈v, v′〉ϕ̂i) (we use an additive notation for both Vi and µ).
The special isomorphism jϕ̂i identifies the centres Gx,ri,(ri/2)+/(Gx,ri,(ri/2)+∩Ker ϕ̂i) and µ of
the two groups. The conjugation action of (Gn+1)[x] on Gx,ri,ri/2/Gx,ri,(ri/2)+ preserves ϕ̂i so
gives a group morphism (Gn+1)[x] → Sp(Vi, 〈 , 〉ϕ̂i) which is trivial on (Gn+1)x,0+, and with
jϕ̂i , gives a group morphism

j̃ϕ̂i : (Gn+1)[x](Gx,ri,ri/2/(Gx,ri,(ri/2)+ ∩Ker ϕ̂i))→ Sp(Vi, 〈 , 〉ϕ̂i) n V ]
ϕ̂i
.

The Heisenberg C-representation (ηi, Vηi) of V ]
ϕ̂i

with restriction to µ a multiple of the char-
acter given by the inclusion of µ into C∗, extends canonically to an irreducible representation
ωi of Sp(Vi, 〈 , 〉ϕ̂i)V

]
ϕ̂i

(the Weil representation [28] Theorem 2.4), hence a representation
ωi ◦ j̃ϕ̂i of (Gn+1)[x](Gx,ri,ri/2/(Gx,ri,(ri/2)+ ∩ Ker ϕ̂i)) on Vηi , which inflates to an action of
(Gn+1)[x]Gx,ri,ri/2 on Vηi .

There is a unique representation κ of J on the tensor product ⊗ni=1Vηi such that (Gn+1)[x]
acts on Vηi as above for 1 ≤ i ≤ n, and (Gi)x,ri,(ri/2) acts by ηi on Vηi and by multiplication
by the character ϕ̂j |(Gi)x,ri,(ri/2) on Vηj for 1 ≤ i 6= j ≤ n 7.

6.4.2. To the above data we attach groups H1 ⊂ J1 ⊂ J0 ⊂ J and representations θ, η, κ
satisfy the properties (i) to (vii) of our setting of §6.1 as follows:

J is the group (6.3).
Replacing (Gn+1)[x] with (Gn+1)x,0 in J we get

(6.4) J0 = (G1)x,r1/2 . . . (Gn)x,rn/2(Gn+1)x,0 = (G1)x,r1,r1/2 . . . (Gn)x,rn,rn/2(Gn+1)x,0.

Replacing (Gn+1)x,0 with (Gn+1)x,0+ in J0 we get

(6.5) J1 = (G1)x,r1/2 . . . (Gn)x,rn/2(Gn+1)x,0+ = (G1)x,r1,r1/2 . . . (Gn)x,rn,rn/2(Gn+1)x,0+,

The quotient J0/J1 ' (Gn+1)x,0/(Gn+1)x,0+ is the finite connected reductive quotient of the
parahoric subgroup (Gn+1)x,0 of Gn+1. Replacing r1/2, . . . , rn/2 by (r1/2)+, . . . , (rn/2)+ for
i = 1, . . . , n in J1, we get
(6.6)
H1 = (G1)x,(r1/2)+ . . . (Gn)x,(rn/2)+(Gn+1)x,0+ = (G1)x,r1,(r1/2)+ . . . (Gn)x,rn,(rn/2)+(Gn+1)x,0+.

θ is the unique character of H1 trivial on (Gn+1)x,0+, and equal to ϕ̂i on (Gi)x,ri,(ri/2)+ for
1 ≤ i ≤ n.
η = ηθ is the unique representation of J1 on⊗ni=1Vηi trivial on (Gn+1)x,0+, where (Gi)x,ri,(ri/2)

acts by ηi on Vηi and by multiplication by the character ϕ̂j |(Gi)x,ri,(ri/2) on Vηj for 1 ≤ i 6= j ≤
n.

7The group (Gn+1)[x](Gi+1)x,0Gx,(ri/2)+ contains (Gi)x,ri,ri/2 for 1 ≤ i ≤ n.
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A preferred extension of η is κ.

Let us say why properties (i) to (vii) are true. The intertwining of θ was determined by
Yu ([59] Theorem 9.4) giving (i) and (ii). Properties (iii) and (iv) come from ([59] Theorem
11.5 and Proposition 12.3) (note that Yu works over complex numbers, but his reasoning
for properties (i) to (iv) is valid here (see [25])). The fact that the construction above gives
a preferred extension is essentially due to Fintzen; it is somewhat hidden in ([25] proof of
Lemma 3.5), it would much more space to give detail, so we omit them. Thus we have (v)
and (vi). Finally (vii) comes in the proof of exhaustion by Fintzen ([25] proof of Theorem
7.1). Once again giving detail would take us much more space.

Dat proved the second adjointness holds for (G,C) [17], [19]. Deseine [20] proves unicity
for the types constructed above.

6.4.3. We verify now that the list of Yu types is Aut(C)-stable. Let σ ∈ Aut(C). We
show that if ((G)i)1≤i≤n+1, x, (ϕi)1≤i≤n, ρ) is a Yu datum of associated type (K̃, λ), then
((G)i)1≤i≤n+1, x, (σ(ϕi))1≤i≤n, σ(ρ)) is a Yu datum of associated type (K̃, σ(λ)).

As in the other cases, σ(ρ) is trivial on (Gn+1)x,0+ and restricts on (Gn+1)x,0 to a cuspidal
representation of (Gn+1)x,0/(Gn+1)x,0+, because ρ does.

We explain now why σ(ϕi) has depth ri and is Gi-generic (if Gi 6= Gi+1) with respect to x
because ϕi does.

Underlying the notion of genericity, is the choice of an additive character ψ : F → C∗ as
before, giving an identification of the group ĝ of smooth characters of g = Lie(G), with the
dual g∗ = HomF (g, F ). Explicitly, each element f ∈ g∗ identifies with the smooth character
φψ,f (u) = ψ(f(u)) of the additive group g. For r ∈ R, the orthogonal of gr is g∗x,−r+, and
that of gx,r+ is g∗x,−r. Our choice of ψ yields an isomorphism ι : (gx,r/gx,r+)̂ → g∗x,−r/g

∗
x,−r+.

Changing ψ to ψa for a ∈ O∗F multiplies ι by a−1 as φψ,f = φψa,a−1f . For r > 0, Gx,r/Gx,r+
identifies canonically with gx,r/gx,r+, because G splits on a tamely ramified extension [24]
Rem.3.2.4.

Those considerations apply to Gi+1 as well, and changing ψ to ψa for a ∈ O∗F does not
change the depth of the smooth characters of Gi+1 with respect to x or the Gi-genericity of
the elements of ̂(Gi+1)x,ri/(Gi+1)x,ri+ (by [59] §9, p.59, that genericity is expressed in terms
of the element of gx,−ri/gx,−ri+ corresponding to it, and multiplication by a ∈ O∗F does not
affect it). Consequently if ϕi is of depth ri, and Gi-generic (if Gi 6= Gi+1), with respect to x,
then so is σ(ϕi).

We proved that ((G)i)1≤i≤n+1, x, (σ(ϕi))1≤i≤n, σ(ρ)) is a Yu datum. It remains to show
that (K̃, σ(λ)) is the associated type. We have σ(λ) = σ(κ)⊗ σ(ρ̃), and clearly σ(ρ̃) = ˜σ(ρ).
We explain now why σ(κ) is the representation of K̃ associated to (σ(ϕi))1≤i≤n.

It is clear that σ(ϕ̂i) = σ̂(ϕi). We have an isomorphism σ̃ : V ]
ϕ̂i
→ V ]

σ̂(ϕi)
given by

identity on Vi and x 7→ σ(x) on µ; it extends to an isomorphism σ̃ : Sp(Vi, 〈 , 〉ϕ̂i)V
]
ϕ̂i
→

Sp(Vi, 〈 , 〉σ̂(ϕi)
)V ]

σ̂(ϕi)
. One checks from the construction ([59] §11) that the special isomor-

phisms satisfy j
σ̂(φi)

= σ̃ ◦ jϕ̂i , and also j̃
σ̂(φi)

= σ̃ ◦ j̃ϕ̂i .

The representation σ(ηi, Vηi) of V ]
ϕ̂i

is the Heisenberg representation of V ]
ϕ̂i

where µ acts
by multiplication by σ(ϕ̂i) ◦ j−1

ϕ̂i
, and the associated Weil representation of Sp(Vi, 〈 , 〉ϕ̂i)V

]
ϕ̂i

is σ(ωi). Composing with σ̃−1, we get an action of V ]

σ̂(ϕi)
on σ(Vηi) = C ⊗σ,C Vηi which is the
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Heisenberg representation given by σ̂(ϕi)◦ j−1
σ̂(ϕi)

on µ, and the associated Weil representation

of Sp(Vi, 〈 , 〉σ̂(ϕi)
)V ]

σ̂(ϕi)
is σ(ωi). Following the action of σ through the rest of the construction

of κ is straightforward and we get that σ(κ) is the representation of K̃ associated with
(σ(ϕi))1≤i≤n.
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