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Théoremes de multiplicité un

1. Les opérateurs d’Atkin—Lehner

Soit N un entier > 1. Soit k£ un entier > 1. Soit D un diviseur de N tel que D et

N/D sont premiers entre eux. Soit W = (CCL Z) € My(Z) tel que ad —bc = D, N|e, D|a,

D|d, D|(b — 1), (N/D)|(a - 1). Alors (‘C‘ Z) normalise Ty (V).
Pour f € My (N), on pose
Wpn(f) = fi.w,
qui ne dépend pas du choix de W, puisque plusieurs choix different par multiplication a

gauche par un élément de I'; (V). L’opérateur Wp est dit d’Atkin—Lehner, ou de Fricke
dans certains cas.
Le cas le plus important est N = D. On a alors W = (_ON (1))

PROPOSITION 1. — Soit m un entier > 1 premier ¢ N. On a dans End(My(N)) :
1) W]%f = (_1)k7
2) Wi (m) = (m) ='Wy et
3) WnTy = (m) YT, Wy

0o 1\ ~N 0
Démonstration. — La propriété 1) résulte de <_ N O) = ( 0 _ N) qui agit

comme (—1)¥ sur M (N). La propriété 2) résulte, pour (CCL Z) € I'o(N) de l'identité

(_(}\, (1)) (CCL Z)(_@V é)_lz(_ZN _CC{N). Sid=m (modN), onaa=

m~! (mod N). Pour démontrer 3), on utilise une formule analogue pour (Z b) €

d
A, (N).
Lorsque k est pair, Wy est donc une involution. Les opérateurs Wy et les opérateurs

diamants engendrent un groupe diédral qui agit sur My (N). Les opérateurs Wp laissent
stables les parties anciennes et nouvelles de My (N). Pour N = D, cela résulte du fait que

0 1 .
W = (—N 0) commute a d4.

COROLLAIRE 1. — Soit x un caractére de Dirichlet modulo N. On a WyMy(N,x) =
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COROLLAIRE 2. — Si x = 1, Wi est une involution qui laisse stable My (N, x) (qui est
nul si k est impair) et ses valeurs propres sont égales a 1 ou —1.

Soit f € My(N). Sion a T,,(f) = amf, on a

T Wi (f) = (m)WNT (f) = am(m)Wn (f) = amWn{m) ' (f).

Si f € Mi(N, ), avec x caractere de Dirichlet, on a Wy (f) € M1(N,x) et T,, Wn(f) =
amX(Mm)Wx(f). Donc Wy (f) est propre pour T,,. Mais Wy ne préserve pas My(N, x),
sauf si y = ¥, ce qui est impossible en poids 1.

Les opérateurs Wp satisfont des propriétés analogues a celles de la proposition 1. On
peut en particulier factoriser W comme Wy = WpW iy, p et plus généralement, en posant

N =TI, p,
Wy =[] Wper.

p

2. Le produit hermitien de Petersson

Soit I" un sous-groupe d’indice fini de SLy(Z).
Soient (f,g) € Sk(I') x Sk(T). On pose

1

(f,9r = m /F\H f(z)@%(z)k

dx dy
y?

ou z = x+iy, et la mesure % est la forme volume hyperbolique, invariante par GLa(R)™.
Ici vol(T\H) = fF\H %, dont la valeur est |[['\SLy(Z)|r/3. La forme différentielle

f (z)ﬁ%(z)kdz# est [-invariante. La convergence de l'intégrale résulte du fait que f
ou g est parabolique si bien qu’on a décroissance rapide au voisinage des pointes. On
a un accouplement hermitien défini positif, qui s’étend a My (I") x Si(I'), mais pas a a
priori My (T') x My(T') puisque l'intégrale ne converge pas. Le produit scalaire (f, g)r ne
change pas si on remplace I' par un sous-groupe I'" d’indice fini, puisque le numérateur et
le dénominateur sont changé par 'indice de IV dans T'.

Résumons ses principales propriétés.

PROPOSITION 2. — Soit N un entier > 1. Soit m un entier premier a N. L’opérateur
adjoint de T, pour (., .)p,(n) est (m) ™ Tp,.
Démonstration. — On utilise la formule, pour v € GL2(Q)™, en exploitant I'invariance de

f(z)g(Z)%(z)kdz# et en appliquant y~—1

— dx d -
Fiind(2)S(2)" yzy = foa ()9 () =

pdx dy
—

En posant, 7 = det(y)y~!. L’opération « + 7 sur les matrices qui définissent T},, change
Ty, en (m)~1T,,.
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Remarque . — Au vu de lidentité (m) 1T, = WnT,,,Wx', on peut vérifier que I’adjoint
de T,, est WNT,, Wy ! pour tout entier m > 1.

COROLLAIRE 1. — Les opérateurs Ty, et Ty, ., pour m parcourant les entiers premiers a
N, sont simultanément diagonalisables.

COROLLAIRE 2. — Si a,, est une valeur propre pour T,, dans l’espace My(N,x), pour m
entier premier & N, on a Gy, = x(M)an, .

COROLLAIRE 3. — Si a,, est une valeur propre réelle pour T,, dans l’espace My (N, x),
pour m entier premier ¢ N, on a x(m) =1 ou a,, = 0. En particulier, si f est propre
pour tous les opérateurs de Hecke T, avec m entier premier a m, avec des valeurs propres
réelles, on a x = 1, ce qui est impossible en poids 1.

COROLLAIRE 4. — St x = 1, en particulier si N = 1, les valeurs propres de T,, dans
Uespace My (N, x), pour m entier premier a N, sont réelles.

COROLLAIRE 5. — Soit m un entier > 1. Soient f et g € Si(N) propres pour T,, dans
I’espace My (N, x) avec des valeurs propres distinctes. On a (f, g)r,(n) = 0.
Démonstration. — Posons Ty, (f) = am f et T (g) = bmg, avec any, by € C. On a

am (S, 9)ro vy = (T (f), 9)rs vy = (2 (m) T Tongdr, (v) = X(M)bin (f, (M) )1, ().
Il reste & utiliser Iidentité x(m)b,, = by,, pour obtenir a,,(f, 9)r.(N) = b f, 91, (V)

PROPOSITION 3. — L’opérateur Wy est adjoint de (—=1)Wx pour (.,.)r,(n)-
Démonstration. — C’est similaire aux propriétés d’adjonction des opérateurs de Hecke.

3. Formes primitives

Soit f € M(N). Posons f(z) =), <, anq™. Elle est dite primitive si elle est nouvelle,
propre pour tous les opérateurs de Hecke T}, avec m entier > 1, et normalisée, c’est-a-dire
a; = 1. On a alors T, (f) = an f et on dit que (@, )m>1 est un systéme de valeurs propres
pour T. Le g-développement de f est alors donné par ) -, a,q", en raison de la formule
an(f) :al(Tn(f)):al(f)an:an- -

On a alors un morphisme d’anneau T — C qui a T, associe a,, et qui a T}, ., associe
x(m), ou x est un caractere de Dirichlet modulo N. On a f € Mg (N, x).

On a alors les propriétés a,,m' = Gman, si m et m’ sont premiers entre eux, et
Apr+1 = ApQpr + aprflx(p)pk_l, si p est un nombre premier et r est un entier > 1. On a
alors x(p) = 0 si p|N.

En raison de ces propriétés, la connaissance de (@, )m>1 se déduit de la connaissance
des a, pour p premier, qui suffisent donc pour caractériser le systeme de valeurs propres.

Il est vrai, mais pas évident, qu’il existe alors un corps de nombres Ky qui contient
tout le systeme de valeurs propres, qui sont méme des entiers algébriques de K.
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Si f est nouvelle et propre pour 7}, pour tout entier m > 1, sans étre nécessairement
normalisée, on a a; # 0. On peut toujours diviser par a; pour normaliser f.

On a, pour d entier > 1, §4..(f) € My (M) pour tout M multiple de dN. On a alors
da.(f) propre pour T, avec la valeur propre a,.

Ainsi les systemes de valeurs propres (au moins pour les T, avec m premier a d)
sont essentiellement répétés de multiples fois dans les sous-espaces anciens des espaces de
formes modulaires.

PROPOSITION 4. — Soit f € My(N) de q-développement Y -, anq™. Soit f* la fonction
donnée par f*(z) =Y, <oanq™. Si [ est primitive, alors f* est primitive.
Démonstration. — Considérons I'involution ¢ : z — —Z de H. Elle transforme ’action

homographique de g € GL2(R)™ en l'action de g conjugué par la matrice <_01 (1)) La

conjugaison par _O 1
que f* est une forme modulaire.

L’involution ¢ commute a dg4, si bien que f — f* laisse stable les parties anciennes et
nouvelles. Donc f* est nouvelle et normalisée.

Montrons que Ty, (f*) = @, f*, pour tout m > 1. Pour cela vérifions que le n-éme

coefficient des g-développements coincident. Remarquons d’abord qu’on a

O) laisse stable le groupe I'1(N). On a f(i«(z)) = f*(2), si bien

ar(Tim(f7)) = am(f*) = @ = @nai(f) = a1 (T f).

On en déduit que pour tout ¢t € T, on a

On a donc
an (T (f*)) = a1(TTo(f7)) = a1 (T Ton (f7))-

En utilisant a1 (¢t(f*)) = a1(¢t(f)), pour t = T,,T,,, on obtient

an(Tn(f*)) = a1 (T T (f)) = an(Tin(f)) = aman(f) = aman(f).

Cela prouve que T,,(f*) = @, f*. Donc f* est primitive.

COROLLAIRE . — Si f € My (N, x) est primitive et x = 1 (ce qui entraine que k est pair),
on a f = f*, et les valeurs propres de Wy sont égales a 1 ou —1.
Démonstration. — Alors les opérateurs de Hecke sont auto-adjoints pour le produit de

Petersson. Ainsi leurs valeurs propres sont des nombres réels, si bien que les coefficients
de f sont réels.

Remarque . — Soit ¢ un automorphisme de C, non nécessairement la conjugaison com-
plexe. On peut considérer la forme f, de g-développement ) -, o(a,)q". C’est aussi une
forme primitive, appelée compagne de f. En effet, les formes primitives coincident avec
les morphismes d’anneaux T — C. Il suffit de composer le morphisme associé a f avec o.
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Comme les coefficients de f vivent dans une extension finie de Q (ce que nous n’avons pas
démontré), il n’y a qu'un nombre fini de compagnes de f.

Lorsque D est un diviseur de N tel que D et N/D sont premier entre eux, on peut
considérer Wp(f). C’est encore une forme primitive, qui n’est pas en général f ou f*. On
verra grace aux opérateurs de torsion ce qu’est cette forme primitive.

4. Le théoréme de multiplicité un
C’est ’énoncé suivant.

THEOREME 4. — Soit f € Un>1Mi(N) propre pour les opérateurs de Hecke T, pour
presque tout nombre premier p (c’est-a-dire qu’il existe S C Qq fini tel que T,(f) = ap(f)
pour tout nombre premier p ¢ S). Alors il existe un unique Ny entier > 1 et une unique
forme primitive fo € My(No) qui compléte ce systeme de valeurs propres, c’est-a-dire
T, (fo) = apfo pour tout p ¢ S.

La démonstration se formule et se comprend mieux dans le langage des adeles, plus

exactement dans le langage des représentations du groupe GLy(A) ou A est 'anneau des
adeles de Q.

COROLLAIRE 1. — Soit f € My (N) nouvelle, normalisée et propre pour T,, pour presque
tout nombre premier p. Alors f est primitive.

COROLLAIRE 2. — Soit f € Mp(N). Alors il existe un entier j > 1, des entiers My, ...,
M; qui divisent N, des entiers di,..., d; avec d; diwisant N/M; pour tout i, et des formes
primitives fi,..., f; avec f; € My (M;) pour tout i, des scalaires A1,..., \; et tels que

J
F= " Aibaufi.

i=1

Démonstration. — Les opérateurs T,, sont simultanément diagonalisables lorsque m est
premier a N. Alors f est combinaison linéaire de forme simultanément propres pour ces
opérateurs de Hecke. Chacun de ces vecteurs propres provient d’une unique forme primitive
d’apres le théoreme 4.

COROLLAIRE 3. — Soit f une forme primitive de niveau N. Alors on a Wx(f) = wn f*,
avec wy nombre compleze de module 1. On a de plus Wy (f*) = (—=1)*wn f.
Démonstration. — On a vu que Wx(f) est propre pour l'opérateur T,, avec la valeur

propre x(m)a,, si m et N sont premiers entre eux. Donc W (f) est propre pour 7, pour
presque tout p. De plus W (f) est nouvelle mais pas nécessairement normalisée. Donc
Wi (f) ales mémes valeurs propres que f*. D’apres le théoréeme de multiplicité un, W (f)
et f* sont proportionnelles. On a donc Wi (f) = wn(f)f avec wy(f) € C.

On a alors

f=CEDMWES) = (D un (Hun (F)f.
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On a donc wx (f)wn (f*) = (=1)*. Par ailleurs, on a wy(f*) = (—1)*wy(f). Donc on a

jwn ()] = 1.

On dit que wy(f) est une pseudo-valeur propre. Les valeurs propres de Wy ne sont
pas a priori intéressantes, excepté lorsque x = 1. Dans ce dernier cas, elles sont égales a
lou-—1,etona f*=f.

COROLLAIRE 4. — Soit x un caractére de Dirichlet modulo N. Soit f € Mi(N,x). On a
Démonstration. — Cela résulte du corollaire de la proposition 1, et du corollaire 3 du
théoreme 4.

5. Fonctions L

Soit f € Sk(NV). Posons f(z) =3, ang". Pour s € C, posons

00 an
L(f, S) = -
n
n=1
Remarque . — Cette définition est encore valable si f € Mi(N). On oublie le terme

constant ag. Mais la proposition 4 ci-dessous ne tient pas. La proposition 5, son corollaire
et le théoreme 6 sont encore valables.

PROPOSITION 4. — La série de Dirichlet L(f,s) converge absolument sur le demi-plan
{s € C|R(s) > (k+1)/2}.
Démonstration. — Montrons que a,, = O(m"*/ 2) quand m — co. On utilise pour cela la

formule de Cauchy :

1

d 1 . . 1 ‘
Ay = —— f(Q)q_m_q — / f(x_l_iy)e—21ﬂ'm($+ly)dx — 6277/ f(a:—l—i/m)e_Qmmmdz,
A% lql=r q 0 0

oty = 1/m. Le membre de droite de la derniere égalité est dominé par m*/? quand m tend
vers U'infini. En effet, la fonction z — (2)*/2|f(2)| est T'y(IN)-invariante et donc bornée
sur H (en tenant compte du fait que fj, ,(z +iy) tend vers 0 uniformément en 2 pour tout
g € SLy(Z) puisque f est parabolique). C’est pourquoi on a (z +i/m)*/?|f(x +i/m)| =
O(1) et donc f(z +i/m) = O(m*/?) (uniformément en z).

Remarque . — L’inégalité de Ramanujan-Petersson n (|a,| < 2p*~1/2 pour p nombre

premier) entraine que a,, est dominée par mF/2+€ pour tout € > 0. Il s’ensuit que la série
de Dirichlet » -, a,n™° converge absolument pour f(s) > k/2 + 1.

Posons
A(f,s) = (2m)"*T(s)N*/2L(f, s).
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C’est la fonction L complétée de f . Cette fonction est donc définie et holomorphe sur le
demi-plan {s € C|R(s) > k/2 + 1}.

PROPOSITION 5. — La fonction s — A(f,s) admet un prolongement holomorphe a C. De
plus on a

AW (f),s) = i"A(f, k — s).

Démonstration. — Considérons 'intégrale

Amf@wy——

qui est une transformée de Mellin. Comme on a l'estimation f(iy) = O(e~2™¥) lorsque y
tend vers I'infini, on a convergence uniforme sur tout compact de H de la série qui donne
f, car a, = O(n*/?). On peut donc inverser la somme et l'intégrale et la transformée de
Mellin est holomorphe en s.

On a alors
/ f zy Z /oo e—2wnyy3@ _ i an, /Oo e—ny@ _ F(S)(QTF)_SL(f S)
0 y = (2mn)° o Y ,
et donc

X sdy —s
/fww—zN/MM$
0 Y
On a, en posant z = 7y,

1 -1 ik i

NkZ 1
k 152 = wrg (e
) )

e . sdy - Zk > i s—kdy
/0 W (f)(iy)y o W/o f(N_y)y R

En posant u = 1/(Ny), on a

sdy du > du
-5 — 'k’Nk/Z—S / . k—s )
[T W™ = s [ vt 2 =i [ a2

En utilisant

W (f)(z) = (1)

)

et donc

MWM&Q=NWAMWWNMy%

on obtient

du

MwwﬁxgzﬁN”%W{/wﬂmwhﬁ—Z#ﬂq¢—@,
0 U
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ce qui est la formule annoncée.
COROLLAIRE . — Supposons f primitive, avec Wn(f) =wnf*. On a

iTFwNA(f*,8) = A(f, k —s).

THEOREME 6. — Soit f € Si(N,x) primitive de g-développement Y - anq™. On a
(décomposition de L(f,s) en produit eulérien) B
1 1
Lif,9)= 1] 11
) 1— —s k—1—2s 1— —s’
oo F P T x(@)p v LT P
ot p parcourt les nombres premiers.
Démonstration. — Cela résulte formellement des relations satisfaites par les coefficients

Q.

La forme de la fonction A(f,s) pour £ = 1, en raison du produit eulérien, rappelle
les fonctions L complétées des motifs d’Artin de dimension 2 sur le corps Q qui sont
impaires (en raison du facteur a linfini) et de conducteur N (en raison du facteur en
N/ 2). Contrairement aux fonctions L des motifs d’Artin, on sait établir un prolongement
holomorphe et prouver facilement une équation fonctionnelle.
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