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Théorèmes de multiplicité un

1. Les opérateurs d’Atkin–Lehner

Soit N un entier ≥ 1. Soit k un entier ≥ 1. Soit D un diviseur de N tel que D et

N/D sont premiers entre eux. Soit W =

(
a b
c d

)
∈ M2(Z) tel que ad− bc = D, N |c, D|a,

D|d, D|(b− 1), (N/D)|(a− 1). Alors

(
a b
c d

)
normalise Γ1(N).

Pour f ∈Mk(N), on pose
WD(f) = f|kW ,

qui ne dépend pas du choix de W , puisque plusieurs choix diffèrent par multiplication à
gauche par un élément de Γ1(N). L’opérateur WD est dit d’Atkin–Lehner, ou de Fricke
dans certains cas.

Le cas le plus important est N = D. On a alors W =

(
0 1
−N 0

)
.

Proposition 1. — Soit m un entier ≥ 1 premier à N . On a dans End(Mk(N)) :
1) W 2

N = (−1)k,
2) WN 〈m〉 = 〈m〉−1WN et
3) WNTm = 〈m〉−1TmWN .

Démonstration. — La propriété 1) résulte de

(
0 1
−N 0

)2

=

(
−N 0

0 −N

)
qui agit

comme (−1)k sur Mk(N). La propriété 2) résulte, pour

(
a b
c d

)
∈ Γ0(N) de l’identité(

0 1
−N 0

)(
a b
c d

)(
0 1
−N 0

)−1

=

(
d −c/N
−bN a

)
. Si d ≡ m (mod N), on a a ≡

m−1 (mod N). Pour démontrer 3), on utilise une formule analogue pour

(
a b
c d

)
∈

∆m(N).

Lorsque k est pair, WN est donc une involution. Les opérateurs WN et les opérateurs
diamants engendrent un groupe diédral qui agit sur Mk(N). Les opérateurs WD laissent
stables les parties anciennes et nouvelles de Mk(N). Pour N = D, cela résulte du fait que

W =

(
0 1
−N 0

)
commute à δd.

Corollaire 1. — Soit χ un caractère de Dirichlet modulo N . On a WNMk(N,χ) =
Mk(N, χ̄).
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Corollaire 2. — Si χ = 1, WN est une involution qui laisse stable Mk(N,χ) (qui est
nul si k est impair) et ses valeurs propres sont égales à 1 ou −1.

Soit f ∈Mk(N). Si on a Tm(f) = amf , on a

TmWN (f) = 〈m〉WNTm(f) = am〈m〉WN (f) = amWN 〈m〉−1(f).

Si f ∈ Mk(N,χ), avec χ caractère de Dirichlet, on a WN (f) ∈ M1(N, χ̄) et TmWN (f) =
amχ̄(m)WN (f). Donc WN (f) est propre pour Tm. Mais WN ne préserve pas Mk(N,χ),
sauf si χ = χ̄, ce qui est impossible en poids 1.

Les opérateurs WD satisfont des propriétés analogues à celles de la proposition 1. On
peut en particulier factoriser WN comme WN = WDWN/D et plus généralement, en posant
N =

∏
p p

ep ,

WN =
∏
p

Wpep .

2. Le produit hermitien de Petersson

Soit Γ un sous-groupe d’indice fini de SL2(Z).
Soient (f, g) ∈ Sk(Γ)× Sk(Γ). On pose

〈f, g〉Γ =
1

vol(Γ\H)

∫
Γ\H

f(z)g(z)=(z)k
dx dy

y2
,

où z = x+iy, et la mesure dx dy
y2 est la forme volume hyperbolique, invariante par GL2(R)+.

Ici vol(Γ\H) =
∫

Γ\H
dx dy
y2 , dont la valeur est |Γ\SL2(Z)|π/3. La forme différentielle

f(z)g(z)=(z)k dx dyy2 est Γ-invariante. La convergence de l’intégrale résulte du fait que f
ou g est parabolique si bien qu’on a décroissance rapide au voisinage des pointes. On
a un accouplement hermitien défini positif, qui s’étend à Mk(Γ) × Sk(Γ), mais pas à a
priori Mk(Γ) ×Mk(Γ) puisque l’intégrale ne converge pas. Le produit scalaire 〈f, g〉Γ ne
change pas si on remplace Γ par un sous-groupe Γ′ d’indice fini, puisque le numérateur et
le dénominateur sont changé par l’indice de Γ′ dans Γ.

Résumons ses principales propriétés.

Proposition 2. — Soit N un entier ≥ 1. Soit m un entier premier à N . L’opérateur
adjoint de Tm pour 〈., .〉Γ1(N) est 〈m〉−1Tm.
Démonstration. — On utilise la formule, pour γ ∈ GL2(Q)+, en exploitant l’invariance de
f(z)g(z)=(z)k dx dyy2 et en appliquant γ−1

f|kγg(z)=(z)k
dx dy

y2
= fg|kγ−1(z)=(z)k

dx dy

y2
.

En posant, γ̃ = det(γ)γ−1. L’opération γ 7→ γ̃ sur les matrices qui définissent Tm change
Tm en 〈m〉−1Tm.
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Remarque . — Au vu de l’identité 〈m〉−1Tm = WNTmW
−1
N , on peut vérifier que l’adjoint

de Tm est WNTmW
−1
N pour tout entier m ≥ 1.

Corollaire 1. — Les opérateurs Tm et Tm,m pour m parcourant les entiers premiers à
N , sont simultanément diagonalisables.

Corollaire 2. — Si am est une valeur propre pour Tm dans l’espace Mk(N,χ), pour m
entier premier à N , on a am = χ(m)am.

Corollaire 3. — Si am est une valeur propre réelle pour Tm dans l’espace Mk(N,χ),
pour m entier premier à N , on a χ(m) = 1 ou am = 0. En particulier, si f est propre
pour tous les opérateurs de Hecke Tm, avec m entier premier à m, avec des valeurs propres
réelles, on a χ = 1, ce qui est impossible en poids 1.

Corollaire 4. — Si χ = 1, en particulier si N = 1, les valeurs propres de Tm dans
l’espace Mk(N,χ), pour m entier premier à N , sont réelles.

Corollaire 5. — Soit m un entier ≥ 1. Soient f et g ∈ Sk(N) propres pour Tm dans
l’espace Mk(N,χ) avec des valeurs propres distinctes. On a 〈f, g〉Γ1(N) = 0.
Démonstration. — Posons Tm(f) = amf et Tm(g) = bmg, avec am, bm ∈ C. On a

am〈f, g〉Γ1(N) = 〈Tm(f), g〉Γ1(N) = 〈f, 〈m〉−1Tmg〉Γ1(N) = χ(m)bm〈f, 〈m〉−1g〉Γ1(N).

Il reste à utiliser l’identité χ(m)bm = bm, pour obtenir am〈f, g〉Γ1(N) = bm〈f, g〉Γ1(N).

Proposition 3. — L’opérateur WN est adjoint de 〈−1〉WN pour 〈., .〉Γ1(N).
Démonstration. — C’est similaire aux propriétés d’adjonction des opérateurs de Hecke.

3. Formes primitives

Soit f ∈Mk(N). Posons f(z) =
∑
n≥1 anq

n. Elle est dite primitive si elle est nouvelle,
propre pour tous les opérateurs de Hecke Tm, avec m entier ≥ 1, et normalisée, c’est-à-dire
a1 = 1. On a alors Tm(f) = amf et on dit que (am)m≥1 est un système de valeurs propres
pour T. Le q-développement de f est alors donné par

∑
n≥0 anq

n, en raison de la formule
an(f) = a1(Tn(f)) = a1(f)an = an.

On a alors un morphisme d’anneau T→ C qui à Tm associe am et qui à Tm,m associe
χ(m), où χ est un caractère de Dirichlet modulo N . On a f ∈Mk(N,χ).

On a alors les propriétés amm′ = amam′ si m et m′ sont premiers entre eux, et
apr+1 = apapr + apr−1χ(p)pk−1, si p est un nombre premier et r est un entier ≥ 1. On a
alors χ(p) = 0 si p|N .

En raison de ces propriétés, la connaissance de (am)m≥1 se déduit de la connaissance
des ap pour p premier, qui suffisent donc pour caractériser le système de valeurs propres.

Il est vrai, mais pas évident, qu’il existe alors un corps de nombres Kf qui contient
tout le système de valeurs propres, qui sont même des entiers algébriques de Kf .
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Si f est nouvelle et propre pour Tm pour tout entier m ≥ 1, sans être nécessairement
normalisée, on a a1 6= 0. On peut toujours diviser par a1 pour normaliser f .

On a, pour d entier ≥ 1, δd,∗(f) ∈ Mk(M) pour tout M multiple de dN . On a alors
δd,∗(f) propre pour Tm avec la valeur propre am.

Ainsi les systèmes de valeurs propres (au moins pour les Tm avec m premier à d)
sont essentiellement répétés de multiples fois dans les sous-espaces anciens des espaces de
formes modulaires.

Proposition 4. — Soit f ∈ Mk(N) de q-développement
∑
n≥0 anq

n. Soit f∗ la fonction
donnée par f∗(z) =

∑
n≥0 anq

n. Si f est primitive, alors f∗ est primitive.
Démonstration. — Considérons l’involution ι : z 7→ −z̄ de H. Elle transforme l’action

homographique de g ∈ GL2(R)+ en l’action de g conjugué par la matrice

(
−1 0
0 1

)
. La

conjugaison par

(
−1 0
0 1

)
laisse stable le groupe Γ1(N). On a f(ι(z)) = f∗(z), si bien

que f∗ est une forme modulaire.
L’involution ι commute à δd, si bien que f 7→ f∗ laisse stable les parties anciennes et

nouvelles. Donc f∗ est nouvelle et normalisée.
Montrons que Tm(f∗) = amf

∗, pour tout m ≥ 1. Pour cela vérifions que le n-ème
coefficient des q-développements cöıncident. Remarquons d’abord qu’on a

a1(Tm(f∗)) = am(f∗) = am = ama1(f) = a1(Tmf).

On en déduit que pour tout t ∈ T, on a

a1(t(f∗)) = a1(t(f)).

On a donc
an(Tm(f∗)) = a1(TmTn(f∗)) = a1(TnTm(f∗)).

En utilisant a1(t(f∗)) = a1(t(f)), pour t = TnTm, on obtient

an(Tm(f∗)) = a1(TnTm(f)) = an(Tm(f)) = aman(f) = aman(f∗).

Cela prouve que Tm(f∗) = amf
∗. Donc f∗ est primitive.

Corollaire . — Si f ∈Mk(N,χ) est primitive et χ = 1 (ce qui entrâıne que k est pair),
on a f = f∗, et les valeurs propres de WN sont égales à 1 ou −1.
Démonstration. — Alors les opérateurs de Hecke sont auto-adjoints pour le produit de
Petersson. Ainsi leurs valeurs propres sont des nombres réels, si bien que les coefficients
de f sont réels.

Remarque . — Soit σ un automorphisme de C, non nécessairement la conjugaison com-
plexe. On peut considérer la forme fσ de q-développement

∑
n≥0 σ(an)qn. C’est aussi une

forme primitive, appelée compagne de f . En effet, les formes primitives cöıncident avec
les morphismes d’anneaux T→ C. Il suffit de composer le morphisme associé à f avec σ.
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Comme les coefficients de f vivent dans une extension finie de Q (ce que nous n’avons pas
démontré), il n’y a qu’un nombre fini de compagnes de f .

Lorsque D est un diviseur de N tel que D et N/D sont premier entre eux, on peut
considérer WD(f). C’est encore une forme primitive, qui n’est pas en général f ou f∗. On
verra grâce aux opérateurs de torsion ce qu’est cette forme primitive.

4. Le théorème de multiplicité un

C’est l’énoncé suivant.

Théorème 4. — Soit f ∈ ∪N≥1Mk(N) propre pour les opérateurs de Hecke Tp pour
presque tout nombre premier p (c’est-à-dire qu’il existe S ⊂ ΩQ fini tel que Tp(f) = ap(f)
pour tout nombre premier p /∈ S). Alors il existe un unique N0 entier ≥ 1 et une unique
forme primitive f0 ∈ Mk(N0) qui complète ce système de valeurs propres, c’est-à-dire
Tp(f0) = apf0 pour tout p /∈ S.

La démonstration se formule et se comprend mieux dans le langage des adèles, plus
exactement dans le langage des représentations du groupe GL2(A) où A est l’anneau des
adèles de Q.

Corollaire 1. — Soit f ∈ Mk(N) nouvelle, normalisée et propre pour Tp pour presque
tout nombre premier p. Alors f est primitive.

Corollaire 2. — Soit f ∈ Mk(N). Alors il existe un entier j ≥ 1, des entiers M1, ...,
Mj qui divisent N , des entiers d1,..., dj avec di divisant N/Mi pour tout i, et des formes
primitives f1,..., fj avec fi ∈Mk(Mi) pour tout i, des scalaires λ1,..., λj et tels que

f =

j∑
i=1

λiδdi∗fi.

Démonstration. — Les opérateurs Tm sont simultanément diagonalisables lorsque m est
premier à N . Alors f est combinaison linéaire de forme simultanément propres pour ces
opérateurs de Hecke. Chacun de ces vecteurs propres provient d’une unique forme primitive
d’après le théorème 4.

Corollaire 3. — Soit f une forme primitive de niveau N . Alors on a WN (f) = wNf
∗,

avec wN nombre complexe de module 1. On a de plus WN (f∗) = (−1)kwNf .
Démonstration. — On a vu que WN (f) est propre pour l’opérateur Tm avec la valeur
propre χ(m)am si m et N sont premiers entre eux. Donc WN (f) est propre pour Tp pour
presque tout p. De plus WN (f) est nouvelle mais pas nécessairement normalisée. Donc
WN (f) a les mêmes valeurs propres que f∗. D’après le théorème de multiplicité un, WN (f)
et f∗ sont proportionnelles. On a donc WN (f) = wN (f)f avec wN (f) ∈ C.

On a alors
f = (−1)kW 2

N (f) = (−1)kwN (f)wN (f∗)f.

XX — 5



On a donc wN (f)wN (f∗) = (−1)k. Par ailleurs, on a wN (f∗) = (−1)kwN (f). Donc on a
|wN (f)| = 1.

On dit que wN (f) est une pseudo-valeur propre. Les valeurs propres de WN ne sont
pas a priori intéressantes, excepté lorsque χ = 1. Dans ce dernier cas, elles sont égales à
1 ou −1, et on a f∗ = f .

Corollaire 4. — Soit χ un caractère de Dirichlet modulo N . Soit f ∈Mk(N,χ). On a
f∗ ∈Mk(N, χ̄).
Démonstration. — Cela résulte du corollaire de la proposition 1, et du corollaire 3 du
théorème 4.

5. Fonctions L

Soit f ∈ Sk(N). Posons f(z) =
∑
n≥1 anq

n. Pour s ∈ C, posons

L(f, s) =
∞∑
n=1

an
ns
.

Remarque . — Cette définition est encore valable si f ∈ Mk(N). On oublie le terme
constant a0. Mais la proposition 4 ci-dessous ne tient pas. La proposition 5, son corollaire
et le théorème 6 sont encore valables.

Proposition 4. — La série de Dirichlet L(f, s) converge absolument sur le demi-plan
{s ∈ C|<(s) > (k + 1)/2}.
Démonstration. — Montrons que am = O(mk/2) quand m → ∞. On utilise pour cela la
formule de Cauchy :

am =
1

2iπ

∫
|q|=r

f(q)q−m
dq

q
=

∫ 1

0

f(x+iy)e−2iπm(x+iy)dx = e2π

∫ 1

0

f(x+i/m)e−2iπmxdz,

où y = 1/m. Le membre de droite de la dernière égalité est dominé par mk/2 quand m tend
vers l’infini. En effet, la fonction z 7→ =(z)k/2|f(z)| est Γ1(N)-invariante et donc bornée
sur H (en tenant compte du fait que f|kg(x+ iy) tend vers 0 uniformément en x pour tout

g ∈ SL2(Z) puisque f est parabolique). C’est pourquoi on a =(x+ i/m)k/2|f(x+ i/m)| =
O(1) et donc f(x+ i/m) = O(mk/2) (uniformément en x).

Remarque . — L’inégalité de Ramanujan–Petersson n (|ap| < 2p(k−1)/2 pour p nombre
premier) entrâıne que am est dominée par mk/2+ε pour tout ε > 0. Il s’ensuit que la série
de Dirichlet

∑
n≥1 ann

−s converge absolument pour <(s) > k/2 + 1.

Posons
Λ(f, s) = (2π)−sΓ(s)Ns/2L(f, s).
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C’est la fonction L complétée de f . Cette fonction est donc définie et holomorphe sur le
demi-plan {s ∈ C|<(s) > k/2 + 1}.

Proposition 5. — La fonction s 7→ Λ(f, s) admet un prolongement holomorphe à C. De
plus on a

Λ(WN (f), s) = ikΛ(f, k − s).

Démonstration. — Considérons l’intégrale∫ ∞
0

f(iy)ys
dy

y

qui est une transformée de Mellin. Comme on a l’estimation f(iy) = O(e−2πy) lorsque y
tend vers l’infini, on a convergence uniforme sur tout compact de H de la série qui donne
f , car an = O(nk/2). On peut donc inverser la somme et l’intégrale et la transformée de
Mellin est holomorphe en s.

On a alors∫ ∞
0

f(iy)ys
dy

y
=
∞∑
n=1

∫ ∞
0

e−2πnyys
dy

y
=
∞∑
n=1

an
(2πn)s

∫ ∞
0

e−yys
dy

y
= Γ(s)(2π)−sL(f, s)

et donc ∫ ∞
0

f(iy)ys
dy

y
= N−s/2Λ(f, s)

On a, en posant z = iy,

WN (f)(z) = (−1)k
Nk/2

Nkzk
f(
−1

Nz
) = (−1)k

1

Nk/2zk
f(
−1

Nz
) =

ik

Nk/2yk
f(

i

Ny
)

et donc ∫ ∞
0

WN (f)(iy)ys
dy

y
=

ik

Nk/2

∫ ∞
0

f(
i

Ny
)ys−k

dy

y
.

En posant u = 1/(Ny), on a∫ ∞
0

WN (f)(iy)ys
dy

y
=

ik

Nk/2

∫ 0

∞
f(iu)(Nu)k−s − du

u
) = ikNk/2−s

∫ ∞
0

f(iu)uk−s
du

u
.

En utilisant

Λ(WN (f), s) = Ns/2

∫ ∞
0

WN (f)(iy)ys
dy

y
,

on obtient

Λ(WN (f), s) = ikNs/2−k/2
∫ ∞

0

f(iu)uk−s
du

u
= ikΛ(f, k − s),
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ce qui est la formule annoncée.

Corollaire . — Supposons f primitive, avec WN (f) = wNf
∗. On a

i−kwNΛ(f∗, s) = Λ(f, k − s).

Théorème 6. — Soit f ∈ Sk(N,χ) primitive de q-développement
∑
n≥1 anq

n. On a
(décomposition de L(f, s) en produit eulérien)

L(f, s) =
∏
p,p 6|N

1

1− app−s + χ(p)pk−1−2s

∏
p|N

1

1− app−s
,

où p parcourt les nombres premiers.
Démonstration. — Cela résulte formellement des relations satisfaites par les coefficients
am.

La forme de la fonction Λ(f, s) pour k = 1, en raison du produit eulérien, rappelle
les fonctions L complétées des motifs d’Artin de dimension 2 sur le corps Q qui sont
impaires (en raison du facteur à l’infini) et de conducteur N (en raison du facteur en
Ns/2). Contrairement aux fonctions L des motifs d’Artin, on sait établir un prolongement
holomorphe et prouver facilement une équation fonctionnelle.
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