
XIX

Formes modulaires (de poids un)

1. Sous-groupes de congruences du groupe modulaire

Le groupe modulaire est SL2(Z). Soit N un entier ≥ 1. On pose

Γ(N) = {
(
a b
c d

)
∈ SL2(Z)|

(
a b
c d

)
≡
(

1 0
0 1

)
modN}.

C’est le sous-groupe de congruence principal de niveau N . Soit Γ un sous-groupe de SL2(Z).
Il est dit de congruence s’il contient un sous-groupe de congruence principal. Il est alors
d’indice fini dans SL2(Z).

Remarque . — Le groupe SL2(Z) contient des sous-groupes d’indices finis qui ne sont pas
de congruence.

On pose de plus

Γ1(N) = {
(
a b
c d

)
∈ SL2(Z)|

(
a b
c d

)
≡
(

1 ∗
0 1

)
modN}.

et

Γ9(N) = {
(
a b
c d

)
∈ SL2(Z)|

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
modN}.

On a des isomorphisme de SL2(Z)-ensembles :

Γ(N)\SL2(Z) ' SL2(Z/NZ),

Γ1(N)\SL2(Z) ' (Z/NZ)2′,

où (Z/NZ)2′ est l’ensemble des éléments d’ordre N de (Z/NZ)2 et l’isomorphisme est

donné par Γ1(N)

(
a b
c d

)
7→ (c, d) (mod N), et enfin

Γ0(N)\SL2(Z) ' P1(Z/NZ)

où l’isomorphisme est donné par Γ1(N)

(
a b
c d

)
7→ (c, d) (mod N) (en coordonnées

homogènes).
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Le groupe modulaire admet une description combinatoire. Posons S =

(
0 −1
1 0

)
et U =

(
0 −1
1 −1

)
. Elles sont d’ordre 4 et 6 respectivement. La paire {S,U} engendre

SL2(Z). Ces matrices vérifient S2 = U3 =

(
−1 0
0 −1

)
. Ce sont les ”seules” relations

entre S et U . Tout cela est résumé dans le théorème suivant.

Théorème 1. — Le groupe modulaire est ainsi isomorphe au produit libre amalgamé d’un
groupe cyclique d’ordre 4 et d’un groupe cyclique d’ordre 6 au dessus d’un groupe cyclique
d’ordre 2.

On peut en déduire une description combinatoire des sous-groupes de congruence
Γ(N), Γ0(N) et Γ1(N). De plus cette description permet de calculer la cohomologie du
groupe SL2(Z).

2. Formes modulaires

Posons H = {z ∈ C|=(z) > 0} le demi-plan supérieur (on dit souvent demi-plan de
Poincaré en France). Le groupe GL2(R)+ (formé des matrices de GL2(R) de déterminant
> 0) opère sur H par homographies.

Soit Γ ⊂ SL2(Z) un sous-groupe de congruence. Soit f : H → C. Soit g ∈ GL2(Q)+.
Soit k un entier ≥ 1. On pose pour z ∈ H

f|kg(z) = (ad− bc)k/2(cz + d)−kf(
az + b

cz + d
).

Comme nous sommes spécialement intéressés par le cas k = 1, on pose de plus f|g = f|1g.
On a ainsi une action du groupe GL2(Q)+ sur les fonctions H → C.

On dit que f est une forme modulaire holomorphe de poids k pour Γ si les trois
conditions suivantes sont vérifiées.

(ι) Pour tout γ ∈ Γ, on a f|kγ = f .
(ιι) Pour tout g ∈ GL2(Q)+ et tous x ∈ R, y ∈ R+, f|kg(x+ iy) tend vers une limite

indépendante de x lorsque y tend vers +∞.
(ιιι) La fonction f est holomorphe sur H.

L’ensemble de telles fonctions constitue un C-espace vectoriel noté Mk(Γ), qui est nul

si

(
−1 0
0 −1

)
∈ Γ et k est impair. Si on a Γ(N) ⊂ Γ, on a Mk(Γ) ⊂Mk(Γ(N)).

Posons, pour N entier ≥ 1, δN =

(
N 0
0 1

)
. Si f ∈ Mk(Γ(N)), on a f|kδN ∈

Γ ∈ Mk(Γ1(N2)), et même f|kδN ∈ Γ ∈ Mk(Γ1(N) ∩ Γ0(N2)). En effet, cela résulte
immédiatement de l’identité matricielle :(

N 0
0 1

)(
a b
c d

)(
1 0
0 N

)−1

=

(
a bN
c/N d

)
.
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Ainsi le groupe Γ1(N) ∩ Γ0(N2) est conjugué du groupe Γ(N) dans GL2(Q)+. C’est
pourquoi l’étude des formes modulaires se ramène à l’étude des formes modulaires pour
Γ1(N). On pose Mk(N) = Mk(Γ1(N)). Si f ∈Mk(N), on dit que le niveau de f divise N .

Soit M un entier ≥ 1 divisible par N . Soit d un diviseur de M/N . Soit f ∈ Mk(N).
On suppose N < M . On a alors une application C-linéaire δd∗ : Mk(N)→Mk(M) donnée
par

f 7→ δd∗(f) = f|kδd .

Soit Γ′ un sous-groupe d’indice fini de Γ. On a une application trace de Γ′ à Γ : Mk(Γ′)→
Mk(Γ) donnée par f 7→ TrΓ′/Γf =

∑
γ∈Γ′\Γ f|kγ . Lorsque f ∈ Mk(Γ), on a la formule

TrΓ′/Γf = |Γ/Γ′|f .

Cela permet de définir une application duale de δd∗ ainsi. On a δdΓ1(M)δ−1
d ⊂ Γ1(N).

On a donc, pour f ∈Mk(Γ1(M)), f|kδ−1
d
∈Mk(δdΓ1(M)δ−1

d ) et donc

δ∗d(f) = TrδdΓ1(M)δ−1
d
/Γ1(N)(f|kδ−1

d
) ∈Mk(Γ1(N)).

On a donc défini δ∗d : Mk(M)→Mk(N) qui est la trace TrΓ1(M)/Γ1(N) si d = 1.
Alors on a δ∗d ◦ δd∗ est la multiplication par |Γ1(N)/Γ1(M)|.
Alors le sous-espace de Mk(M) engendré par les images des applications δd∗ lorsque

N parcourt les diviseurs stricts de M et d parcourt les diviseurs de M/N est la partie
ancienne. L’intersection des noyaux des δ∗d lorsque N parcourt les diviseurs stricts de M
et d parcourt les diviseurs de M/N est la partie nouvelle de Mk(M). Le théorème suivant
n’est pas particulièrement profond, mais très utile.

Théorème 1. — L’espace vectoriel complexe Mk(N) est la somme directe de ses parties
nouvelles et anciennes.

Soit f ∈Mk(N). Si f appartient à la partie nouvelle de Mk(N), elle est dite de niveau
N .

3. Développement aux pointes

Revenons aux conditions qui définissent les formes modulaires. Posons H̄ = H∪P1(Q).
Il est muni d’une topologie qui prolonge la topologie de H. Une base de voisinages de
x ∈ P1(Q) est donnée, si x 6=∞ par les disques de H tangents à la droite réelle en x, et, si
x =∞, par un demi-plan bordé par une droite horizontale de H. Alors H̄ est muni d’une
action continue de GL2(Q)+ qui prolonge l’action par homographie.

Soit f ∈ Mk(N). La condition sur la limite l de f|g(x + iy) lorsque y → ∞ pour
tout g ∈ GL2(Q)+ nécessite seulement d’être vérifiée pour g ∈ SL2(Z). En effet, SL2(Z)
opère transitivement sur P1(Q). Le stabilisateur de ∞ ∈ P1(Q) dans SL2(Z) est < T >=

{±
(

1 Z
0 1

)
}. On a donc P1(Q) ' SL2(Z)/ < T >. Ainsi la limite l ne dépend que

de la classe de g dans Γ1(N)\SL2(Z)/ < T >. L’ensemble Γ1(N)\SL2(Z)/ < T >=
Γ1(N)P1(Q) est l’ensemble des pointes pour Γ1(N).
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On peut décrire l’ensemble des pointes pour Γ1(N) par la bijection

Γ1(N)\P1(Q) ' tt|N (Z/tZ)×/{±1}

qui à Γ1(N)u/v associe ±u (mod (N, v)).

Remarque . — Lorsque Γ est un sous-groupe d’indice fini de SL2(Z), l’espace-quotient
Γ\H̄ est une surface de Riemann compacte et connexe obtenue en ajoutant à la surface
de Riemann Γ\H les points Γ\P1(Q), qui sont en nombre fini et qu’on appelle les pointes.
Lorsque Γ = Γ1(N), on la note Y1(N) la surface Γ1(N)\H et X1(N) la surface obtenue
en ajoutant les pointes. Alors X1(N) est une courbe algébrique définie sur Q, dite courbe
modulaire. Il est avantageux de voir la courbe Y1(N) comme paramètrant les courbes
elliptiques sur C munies d’un point d’ordre N , ce point de vue se prolonge à d’autres
corps que C.

Soit g ∈ SL2(Z). Si m ∈ N est tel que

(
1 m
0 1

)
} ∈ g−1Γ1(N)g, la forme modulaire

f|kg est m-périodique. On peut alors poser, par la théorie de Fourier,

f|kg(z) = a0,u +
∑
n≥1

an,ue
2iπz/m.

C’est le développement de Fourier de f en la pointe u = Γ1(N)g∞.

Pour g =

(
1 0
0 1

)
, on a

(
1 1
0 1

)
∈ Γ1(N). On pose alors q = e2iπz et

f(z) = a0 +
∑
n≥1

anq
n = a0(f) +

∑
n≥1

an(f)qn.

C’est le q-développement de f en la pointe ∞.
Par la théorie de Fourier, on a

an,u =
1

m

∫ z0+m

z0

f|kg(z)e
−2iπz/mdz,

pour z0 ∈ H quelconque.
Si pour toute pointe u, on a a0,u = 0, on dit que f est parabolique (Spitzenform en

allemand, cusp form, en anglais).
On note Sk(N) le sous-espace vectoriel de Mk(N) formé par les formes modulaires

paraboliques. Comme c’est l’intersection des noyaux d’un nombre fini de formes linéaires,
c’est un sous-espace de codimension finie.

Un supplémentaire à Sk(N) dans Mk(N) est fourni par les séries d’Eisenstein.
Il n’est pas clair a priori que Mk(N) soit de dimension finie. C’est pourtant le cas.

Remarque . — Il existe des formules pour la dimension de cet espace vectoriel lorsque
k ≥ 2. Elles reposent, par exemple, sur la cohomologie d’Eichler–Shimura. Le groupe
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GL2(Q) opère sur C[X,Y ]k−2, qui est l’espace formé par les polynômes homogènes de
degré k − 2 à coefficients complexes. L’action provient de l’action linéaire de GL2(Q)
sur l’espace vectoriel de base (X,Y ). On a alors un isomorphisme d’espaces vectoriels
complexes

Mk(N)⊕ Sk(N) ' H1(Γ1(N),C[X,Y ]k−2).

Le groupe de cohomologie H1(Γ1(N),C[X,Y ]k−2) peut être déterminé en utilisant le lemme
de Shapiro, qui permet de se ramener au calcul de la cohomologie de SL2(Z), laquelle a
son tour peut être explicitée grace à la description de SL2(Z) avec les matrices S et U .
Une explicitation concrète de cette approche réside dans la théorie des périodes des formes
modulaires.

Lorsque k = 1, il n’existe pas de formule fermée pour la dimension de M1(N). C’est
le premier signe de la nature particulière des formes modulaires de poids 1. Toutefois,
on a un plongement M1(N) → S13(N) donné par f 7→ f∆, où ∆ ∈ S12(1) est donné par
∆(z) = q

∏∞
n=1(1−qn)24 (forme modulaire de Ramanujan). Le produit f∆ est parabolique

car Ainsi, la finitude de la dimension de S13(N) entrâıne la finitude de la dimension de
M1(N).

Remarque . — On a une algèbre graduée ⊕∞k=1Mk(N), puisque le produit ff ′ de deux
formes f ∈ Mk(N) et f ′ ∈ Mk′(N) est dans Mk+k′(N) (et même dans Sk+k′(N) si f ou
f ′ est parabolique).

4. Opérateurs de Hecke

Le groupe Γ1(N) est normal dans Γ0(N), car c’est le noyau de Γ0(N) → (Z/NZ)×

donné par

(
a b
c d

)
7→ d (mod N).

Pour δ ∈ (Z/NZ)×, on a un opérateur Mk(N) 7→ Mk(N) qui à f associe f|kγ où

γ =

(
a b
c d

)
∈ Γ0(N) vérifie d ≡ δ (mod N). Cet opérateur est souvent noté 〈δ〉

et appelé opérateur diamant. On en déduit une action de (Z/NZ)× sur Mk(N). Soit
χ : (Z/NZ)× → C× un caractère de Dirichlet. Soit f ∈ Mk(N) telle que pour tout
δ ∈ (Z/NZ)×, on a 〈δ〉 = χ(δ)f . On dit alors que f est de caractère ou Nebentypus
χ. On note Mk(N,χ) le sous-espace de Mk(N) formé par les éléments de caractère χ.

Si χ(−1) = −(−1)k, cet espace est nul, car l’action de la matrice

(
−1 0
0 −1

)
donne

χ(−1)f = (−1)kf .
On a alors Mk(N) = ⊕χMk(N,χ).
Si m ∈ Z, on pose Tm,m = 〈m〉 si (m,N) = 1 et Tm,m = 0 si (m,N) 6= 1.
Soit m un entier ≥ 1. Posons

∆m(N) = {
(
a b
c d

)
∈ M2(Z)/ad− bc = m,

(
a b
c d

)
≡
(

1 ∗
0 ∗

)
(mod N)},

qui est un ensemble de double classes, et donc muni d’actions à gauche et à droite de
Γ1(N). Le nombre d’orbites pour cette action est

∑
d|m,(d,N)=1 d, c’est-à-dire la somme
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des diviseur de m si m est premier à N . On peut vérifier que

∆m(N) = Γ1(N)

(
1 0
0 m

)
Γ1(N).

Soit f ∈Mk(N). On pose

Tm(f) = mk/2−1
∑

γ∈Γ1(N)\∆m(N)

f|kγ .

En raison de la propriété de double classe, cette formule fait sens et on a Tm(f) ∈Mk(N).
L’opérateur Tm est linéaire et appelé m-ème opérateur de Hecke. Les propriétés

élémentaires de ces opérateurs sont résumées comme suit.

Théorème 2. — On a les propriétés suivantes.
1) Soit m et m′ des entiers premiers entre eux. On a

TmTm′ = Tmm′ .

2) Soit m et m′ des entiers quelconques. On a

TmTm′,m′ = Tm′,m′Tm

et
TmTm′ = Tm′Tm.

3) Soient p un nombre premier et r un entier ≥ 1. On a

TprTp = Tpr+1 + pk−1Tpr−1Tp,p.

4) Soit M un multiple de N . Soient m un entier premier à M et d un diviseur > 0 de
M/N . On a

Tm ◦ δd∗ = δd∗ ◦ Tm
et

Tm,m ◦ δd∗ = δd∗ ◦ Tm,m.

Pour démontrer ces propriétés (ce que nous ne ferons pas ici) il est commode de
voir les formes modulaires de la façon suivante. Supposons que N = 1 pour simplifier.
Notons L l’ensemble des réseaux de C (c’est-à-dire des sous-groupes discrets cocompacts,
qui sont donc de la forme Zz1 + Zz2, avec z1, z2 ∈ C non R-colinéaires). Soit f ∈Mk(1).
L’application F : L → C qui à L = Zz1 + Zz2 associe z−k1 f(z2/z1) est bien définie et
homogène de degré −k en L, c’est-à-dire F (λL) = λ−kF (L) pour tout λ ∈ C× et tout
L ∈ L. Réciproquement, une application F : L → C homogène de degré k et telle que
z 7→ F (Z + Zz) est holomorphe et une condition de croissance à l’infini définit une forme
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modulaire de poids k par z 7→ F (Z+Zz). La notion d’opérateur de Hecke Tm se transpose
sur les fonctions L → C par

Tm(F )(L) =
∑
L′∈L

F (L′),

où L′ parcourt les sous-réseaux de L d’indice m.

Remarque . — Soit T le sous-anneau de End(Mk(N)) engendré par tous les opérateurs
Tm et Tm,m. C’est un anneau commutatif. On a, au moins formellement,

∑
m≥1

Tm
ms

=
∏
p

(

∞∑
r=0

Tpr

prs
) =

∏
p

1

1− Tpp−s + Tp,ppk−1−2s
,

où p parcourt les nombres premiers. Pour k = 1, on retrouve la forme des produits eulériens
issus de certaines fonctions L d’Artin en dimension 2.

Proposition 3. — On a, pour m entier ≥ 1 et f ∈Mk(N)

am(f) = a1(Tm(f)).

Démonstration. — On a

a1(Tm(f)) =

∫ z0+1

z0

Tm(f)e−2iπzdz = mk/2−1

∫ z0+1

z0

∑
γ

f|kγe
−2iπzdz.

Un système de représentants de Γ1(N)\∆m(N) est donné par

{
(
d j
0 m/d

)
|0 ≤ j ≤ m/d− 1, d|m, d ≡ 1 (mod N)}.

Pour γ =

(
d j
0 m/d

)
, on a

f|kγ =
dk

mk/2
f((d2z + dj)/m).

On a donc

a1(Tm(f)) = mk/2−1

∫ z0+1

z0

∑
j,d

dkf((d2z + dj)/m)e−2iπzdz.

Remplaçons f par son q-développement. On obtient

a1(Tm(f)) =
∑
j,d

dk

m

∫ z0+1

z0

∑
n≥0

ane
2iπ(nd2z+ndj)/m−z)dz =

∑
j,d

am/d2e
2iπj/d.
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En effet,
∫ z0+1

z0
e2iπ(nd2z/m−z)dz = 0 si nd2/m 6= 1. On ne retient que les termes pour

n = m/d2. Or on a
∑
j e

2iπj/d = 0 si d 6= 1 et
∑
j e

2iπj/d = m si d = 1. Finalement on
obtient

a1(Tm(f)) = am.

Considérons l’ensemble Hom(T,C) des morphismes de groupes T→ C.

Corollaire . — On a un isomorphisme d’espaces vectoriels complexes

Hom(T,C) 'Mk(N)

qui à ψ associe la forme modulaire de q-développement
∑
n≥0 q

n.
Démonstration. — On a défini un accouplement T ×Mk(N) → C donné par (t, f) 7→
a1(tf). Montrons qu’il est non dégénéré. Soit t ∈ T tel que a1(t(f)) = 0 pour tout
f ∈ Mk(N). On a alors a1(tTm(f)) = 0 pour tout m ≥ 1 et donc a1(Tmt(f)) = 0 pour
tout m ≥ 1. On a donc am(t(f)) = 0 pour tout m ≥ 1 et donc t(f) = 0 pour tout f . Donc
t = 0.

Réciproquement, si f ∈ Mk(N) est telle que a1(t(f)) = 0 pour tout t ∈ T, on a
0 = a1(Tm(f)) = am(f) pour tout m ≥ 1 et donc f = 0.

Remarque . — L’identification Hom(T,C) ' Mk(N) ouvre la possibilité de considérer
Hom(T, A) pour A anneau quelconque. Cela pointe vers une définition algébrique des
formes modulaires. On peut par exemple considérer le cas où A est un corps fini. Tout
cela suggère que la nature analytique complexe des formes modulaires est un leurre. Les
objets essentiels sont les systèmes de valeurs propres pour les opérateurs de Hecke. Ils
correspondent essentiellement aux morphismes d’anneaux T→ C. Il est possible de définir
l’anneau T sans utiliser les formes modulaires, ni aucun objet de nature analytique. Il y
a deux voies pour cela : utiliser la structure algébrique des courbes modulaires X1(N) ou
(en poids ≥ 2) utiliser la cohomologie d’Eichler–Shimura.

L’anneau T laisse stable Sk(N) ainsi que les parties anciennes et nouvelles de Mk(N).
Soient M un multiple de N et d un diviseur de M/N . Soit f une forme propre pour

l’opérateur de Hecke Tm, avec m premier à M , alors δ1∗(f) et δd∗(f) sont propres pour Tm
avec la même valeur propre que f . Ainsi un système de valeurs propres pour les opérateurs
de Hecke en niveau N se réalise avec plusieurs copies dans la partie ancienne de niveau M .

Les valeurs propres de Tm sont des entiers algébriques. La preuve repose sur l’existence
d’une structure entière stable par les opérateurs de Hecke dans Mk(N). On peut le
démontrer en poids k ≥ 2 par la théorie d’Eichler–Shimura. C’est plus difficile en poids 1.

On a la conjecture de Ramanujan (démontrée par Eichler, Shimura en poids 2, par
Deligne en poids ≥ 2, par Deligne–Serre en poids 1). Si λp est une valeur propre de Tp
opérant sur Sk(N) avec p premier, on a

|λp| ≤ 2pk−1.

En poids 2, on a |λp| ≤ 2
√
p c’est analogue au théorème de Hasse pour les courbes

elliptiques sur les corps finis.
En particulier, pour k = 1, on a

|λp| ≤ 2.
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