XIX

Formes modulaires (de poids un)

1. Sous-groupes de congruences du groupe modulaire

Le groupe modulaire est SLa(Z). Soit N un entier > 1. On pose

F(N):{(? Z) eSLQ(Z)](i Z) = (é (1)) modN'}.

C’est le sous-groupe de congruence principal de niveau N. Soit I un sous-groupe de SLy(Z).
Il est dit de congruence s’il contient un sous-groupe de congruence principal. Il est alors

d’indice fini dans SLo(Z).

Remarque . — Le groupe SLo(Z) contient des sous-groupes d’indices finis qui ne sont pas
de congruence.

On pose de plus

On a des isomorphisme de SLy(Z)-ensembles :
[(N)\SLs(Z) ~ SLo(Z/NZ),

I (N)\SLy(Z) ~ (Z/NZ)*,
ot (Z/NZ)?" est I'ensemble des éléments d’ordre N de (Z/NZ)? et Iisomorphisme est

donné par I'; (V) (CCL Z) — (¢,d) (mod N), et enfin

[o(N)\SLy(Z) ~ P*(Z/NZ)

a b

. d) — (¢,d) (mod N) (en coordonnées

ou l'isomorphisme est donné par I'y(N) (

homogenes).
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Le groupe modulaire admet une description combinatoire. Posons S = <(1) 0 )

et U = (0 _1) . Elles sont d’ordre 4 et 6 respectivement. La paire {S,U} engendre

1 -1
SLy(Z). Ces matrices vérifient S = U3 = _01 _01> Ce sont les "seules” relations

entre S et U. Tout cela est résumé dans le théoréme suivant.

THEOREME 1. — Le groupe modulaire est ainsi isomorphe au produit libre amalgamé d’un
groupe cyclique d’ordre 4 et d’un groupe cyclique d’ordre 6 au dessus d’un groupe cyclique
d’ordre 2.

On peut en déduire une description combinatoire des sous-groupes de congruence
I'(N), T'o(N) et I'1 (V). De plus cette description permet de calculer la cohomologie du
groupe SLy(Z).

2. Formes modulaires

Posons H = {z € C|S(z) > 0} le demi-plan supérieur (on dit souvent demi-plan de
Poincaré en France). Le groupe GL2(R)™ (formé des matrices de GLy(R) de déterminant
> () opere sur H par homographies.

Soit I' C SLy(Z) un sous-groupe de congruence. Soit f : H — C. Soit g € GL2(Q)™.
Soit k un entier > 1. On pose pour z € ‘H

az+b
cz+d

firg(2) = (ad = be)*?(cz +d) " f( )-
Comme nous sommes spécialement intéressés par le cas k = 1, on pose de plus f; = f},4-
On a ainsi une action du groupe GLy(Q)™ sur les fonctions H — C.

On dit que f est une forme modulaire holomorphe de poids k pour I' si les trois
conditions suivantes sont vérifiées.

() Pour tout y € I', on a fj,, = f.

() Pour tout g € GL2(Q)T et tous z € R, y € Ry, fj, 4(x + iy) tend vers une limite
indépendante de x lorsque y tend vers +oc.

(cee) La fonction f est holomorphe sur .

L’ensemble de telles fonctions constitue un C-espace vectoriel noté My (I"), qui est nul
si (_01 _01) €T et k est impair. Sion a I'(N) C T, on a My(T") C Mi(T'(N)).

. N 0 .

Posons, pour N entier > 1, éy = 0 1) Si f € Mp(I'(N)), on a f,5y €

I' € Mp(T'1(N?)), et méme f,5, € T € Mp(T1(N) NTo(N?)). En effet, cela résulte
immédiatement de 1'identité matricielle :

GDEDE N ()
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Ainsi le groupe I'1(N) N To(N?) est conjugué du groupe I'(N) dans GL2(Q)T. Clest
pourquoi I’étude des formes modulaires se ramene a 1’étude des formes modulaires pour
I’y (V). On pose My, (N) = Mi(I'1(N)). Si f € My(N), on dit que le niveau de f divise N.

Soit M un entier > 1 divisible par N. Soit d un diviseur de M/N. Soit f € My(N).
On suppose N < M. On a alors une application C-linéaire 644 : My (N) — My (M) donnée
par

= 0a(f) = flosa

Soit I un sous-groupe d’indice fini de I". On a une application trace de I a T' : M (T") —
My (T) donnée par f — Trrrf = > cpnr fly. Lorsque f € My(I), on a la formule
TrF’/Ff = |F/F/|f
Cela permet de définir une application duale de dg. ainsi. On a §4T'y(M)5; ' C T'1(N).
On a donc, pour f € My(I'1(M)), f, ;-1 € My (8401 (M)6; 1) et done
d

0q4(f) = Tradrl(M)(s;l/rl(N)(f|k5;1) € My(T'1(IV)).

On a donc défini 6} : My (M) — My(N) qui est la trace Trp, (ar)/r, vy si d = 1.

Alors on a ¢} 0 044 est la multiplication par |I'y(N)/T'1(M)].

Alors le sous-espace de My (M) engendré par les images des applications d4. lorsque
N parcourt les diviseurs stricts de M et d parcourt les diviseurs de M/N est la partie
ancienne. L’intersection des noyaux des 0 lorsque N parcourt les diviseurs stricts de M
et d parcourt les diviseurs de M/N est la partie nouvelle de My (M ). Le théoréme suivant
n’est pas particulierement profond, mais tres utile.

THEOREME 1. — L’espace vectoriel complexe My (N) est la somme directe de ses parties
nouvelles et anciennes.

Soit f € My(N). Si f appartient a la partie nouvelle de My (), elle est dite de niveau
N.

3. Développement aux pointes

Revenons aux conditions qui définissent les formes modulaires. Posons H = HUP!(Q).
Il est muni d’une topologie qui prolonge la topologie de H. Une base de voisinages de
x € P1(Q) est donnée, si  # oo par les disques de H tangents a la droite réelle en x, et, si
x = 00, par un demi-plan bordé par une droite horizontale de H. Alors H est muni d’une
action continue de GL2(Q)™" qui prolonge 'action par homographie.

Soit f € My(N). La condition sur la limite [ de fi,(x + iy) lorsque y — oo pour
tout g € GL2(Q)™ nécessite seulement d’étre vérifiée pour g € SLa(Z). En effet, SLo(Z)
opere transitivement sur P*(Q). Le stabilisateur de oo € P1(Q) dans SLy(Z) est < T >=
{x é %)} On a donc PY(Q) ~ SLy(Z)/ < T >. Ainsi la limite [ ne dépend que
de la classe de g dans I'1(N)\SL2(Z)/ < T >. L’ensemble I'1(N)\SLy(Z)/ < T >=
['1(N)PY(Q) est 'ensemble des pointes pour I'1(N).
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On peut décrire ’ensemble des pointes pour I'; (V) par la bijection

D1 (N\PY(Q) = Uyn (Z/tZ)* /{£1}
qui a I'1(N)u/v associe +u  (mod (N, v)).

Remarque . — Lorsque I' est un sous-groupe d’indice fini de SLy(Z), 'espace-quotient
I'\H est une surface de Riemann compacte et connexe obtenue en ajoutant a la surface
de Riemann I'\'H les points I'\P*(Q), qui sont en nombre fini et qu’on appelle les pointes.
Lorsque I' = T';(IV), on la note Y;(N) la surface I'1(N)\H et X1(N) la surface obtenue
en ajoutant les pointes. Alors X; (V) est une courbe algébrique définie sur Q, dite courbe
modulaire. 1l est avantageux de voir la courbe Y7(/N) comme parameétrant les courbes
elliptiques sur C munies d’un point d’ordre N, ce point de vue se prolonge a d’autres
corps que C.

Soit g € SLy(Z). Si m € N est tel que T)} € g 'I'1(N)g, la forme modulaire

1
0
J1,g €st m-périodique. On peut alors poser, par la théorie de Fourier,

f‘kg(z) = qag,y + Z anyue%WZ/m.

n>1

C’est le développement de Fourier de f en la pointe u = I'1 (V) goo.

Pour g = ((1) (1]>, on a (é 1) € I'1(IN). On pose alors g = 2™ et

f(z) = a0+ Z anq" = ao(f) + Z an(f)q"-

n>1 n>1

C’est le g-développement de f en la pointe co.
Par la théorie de Fourier, on a

+
o l Form —2i7rz/md
An oy = f\kg(z)e Z,
m J,,

pour 2y € ‘H quelconque.

Si pour toute pointe u, on a ag, = 0, on dit que f est parabolique (Spitzenform en
allemand, cusp form, en anglais).

On note Si(N) le sous-espace vectoriel de My (V) formé par les formes modulaires
paraboliques. Comme c’est l'intersection des noyaux d’un nombre fini de formes linéaires,
c’est un sous-espace de codimension finie.

Un supplémentaire & Si(N) dans M (N) est fourni par les séries d’Eisenstein.

Il n’est pas clair a priori que My(N) soit de dimension finie. C’est pourtant le cas.

Remarque . — 1l existe des formules pour la dimension de cet espace vectoriel lorsque
k > 2. Elles reposent, par exemple, sur la cohomologie d’Fichler—Shimura. Le groupe
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GL2(Q) opere sur C[X,Y],_2, qui est l'espace formé par les polynomes homogenes de
degré k — 2 & coefficients complexes. L’action provient de 'action linéaire de GL2(Q)
sur Iespace vectoriel de base (X,Y). On a alors un isomorphisme d’espaces vectoriels
complexes

M (N) @ Si(N) ~ H(I'1(N), C[X, Y]r_2).

Le groupe de cohomologie H(I'; (N), C[X, Y]i_2) peut étre déterminé en utilisant le lemme
de Shapiro, qui permet de se ramener au calcul de la cohomologie de SLy(Z), laquelle a
son tour peut étre explicitée grace a la description de SLy(Z) avec les matrices S et U.
Une explicitation concrete de cette approche réside dans la théorie des périodes des formes
modulaires.

Lorsque k = 1, il n’existe pas de formule fermée pour la dimension de M;(NN). C’est
le premier signe de la nature particuliere des formes modulaires de poids 1. Toutefois,
on a un plongement M;(N) — S13(N) donné par f — fA, ou A € S13(1) est donné par
A(z) = ¢, ,(1—¢™)** (forme modulaire de Ramanujan). Le produit fA est parabolique
car Ainsi, la finitude de la dimension de S;3(/N) entraine la finitude de la dimension de
M;(N).

Remarque . — On a une algebre graduée &2, My, (N), puisque le produit ff’ de deux
formes f € My(N) et f' € My (N) est dans My (N) (et méme dans Skyx/ (V) si f ou
f' est parabolique).

4. Opérateurs de Hecke

Le groupe T'1(N) est normal dans I'g(N), car c’est le noyau de I'o(N) — (Z/NZ)*

d
Pour § € (Z/NZ)*, on a un opérateur My(N) — My(N) qui a f associe f,, ou

donné par (CCL b> —d (mod N).

T = (CCL Z) € I'o(N) vérifie d = § (mod N). Cet opérateur est souvent noté (J)

et appelé opérateur diamant. On en déduit une action de (Z/NZ)* sur My(N). Soit
X : (Z/NZ)* — C* un caractere de Dirichlet. Soit f € My(N) telle que pour tout
d € (Z/NZ)*, on a (§) = x(9)f. On dit alors que f est de caractére ou Nebentypus
X- On note My (N, x) le sous-espace de My (N) formé par les éléments de caractere x.

-1 0
0 _1> donne

Si x(—1) = —(—=1)*, cet espace est nul, car Paction de la matrice (
X(=1)f = (=1)*f.

On a alors My(N) = &, Mi(N, x).

Sim € Z, on pose Ty = (m) si (m,N)=1et Ty, =0si (m,N) # 1.

Soit m un entier > 1. Posons

Am(N):{(CCL Z)GMQ(Z)/ad—bc:m,(CCL Z)z(é :) (mod N1,

qui est un ensemble de double classes, et donc muni d’actions a gauche et a droite de
'y (N). Le nombre d’orbites pour cette action est 3_;,, 4 n)=1 d; c’est-a-dire la somme
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des diviseur de m si m est premier a N. On peut vérifier que

Ap(N) =T (N) (é T%) Ty (V).

Soit f € Mi(N). On pose

Ty (f) = mH/21 > fev-

’Yerl(N)\Am(N)

En raison de la propriété de double classe, cette formule fait sens et on a T),(f) € My(N).
L’opérateur T,, est linéaire et appelé m-éme opérateur de Hecke. Les propriétés
élémentaires de ces opérateurs sont résumées comme suit.

THEOREME 2. — On a les propriétés suivantes.
1) Soit m et m' des entiers premiers entre eur. On a

Tl = Tom: .
2) Soit m et m’ des entiers quelconques. On a
Tme’,m’ - Tm’,m’Tm

et
Tondm =TT

3) Soient p un nombre premier et r un entier > 1. On a
Ty Ty = Tyrir + p" M Tpra T, .

4) Soit M un multiple de N. Soient m un entier premier a M et d un diviseur > 0 de
M/N. On a
Ty, 0 6d* = 6d* ol

et
Tm,m o 5d* = 5d* o Tm,m'

Pour démontrer ces propriétés (ce que nous ne ferons pas ici) il est commode de
voir les formes modulaires de la fagon suivante. Supposons que N = 1 pour simplifier.
Notons £ I’ensemble des réseaux de C (c’est-a-dire des sous-groupes discrets cocompacts,
qui sont donc de la forme Zz, 4+ Zzs, avec z1, zo € C non R-colinéaires). Soit f € My(1).
L’application F' : £ — C qui a L = Zz + Zzy associe Zl_kf(ZQ/Zl) est bien définie et
homogene de degré —k en L, c’est-a-dire F(AL) = A\~*F(L) pour tout A € C* et tout
L € L. Réciproquement, une application F' : £ — C homogene de degré k et telle que
z +— F(Z + Zz) est holomorphe et une condition de croissance a 'infini définit une forme
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modulaire de poids k par z +— F(Z+Zz). La notion d’opérateur de Hecke T, se transpose
sur les fonctions £ — C par

L'el

ou L’ parcourt les sous-réseaux de L d’indice m.

Remarque . — Soit T le sous-anneau de End(My(IV)) engendré par tous les opérateurs
T et Ty, . Cest un anneau commutatif. On a, au moins formellement,

oo

T Ty 1
Z msS - H(Z pfs) - H 1— Tpp—s + Tp}ppk—l—Zs’

m>1 p r=0 D

ou p parcourt les nombres premiers. Pour £ = 1, on retrouve la forme des produits eulériens
issus de certaines fonctions L d’Artin en dimension 2.

PROPOSITION 3. — On a, pour m entier > 1 et f € My (N)

Démonstration. — On a

o 2t k/2—1 ot 24
al(Tm(f)) :/ Tm(f)e_ TZdz =m /2— / thg’Ye_ iz ]
zZ0 ~

20

Un systeme de représentants de I'1 (N)\A,,(N) est donné par

{<6l mj/d) 0<j<m/d—1,dm,d=1 (mod N)}.

Pour v = (g m]/d>’ on a

d .
fior = s P& + dj) fm).

On a donc

zo+1
a1(Tm(f)) = mk/Q—l/ + def((dQZ + dj)/m)e—Qiﬂde.
7,d

zo
Remplacons f par son g-développement. On obtient
T = S5 [ E e gz = 3 e
J.d 0 n>0 J.d
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En effet, f;OOH e2in(ndz/m=2)q, — g nd?/m # 1. On ne retient que les termes pour
n =m/d?. Or on a > 2/ = (0 sid#1et > e?3/4 = m si d = 1. Finalement on
obtient

a1 (T (f)) = am.

Considérons 1’ensemble Hom(T, C) des morphismes de groupes T — C.

COROLLAIRE . — On a un isomorphisme d’espaces vectoriels complexes
Hom(T,C) ~ My(N)

qui @ v associe la forme modulaire de q-développement . . q".
Démonstration. — On a défini un accouplement T x My(N) — C donné par (¢, f) —
ay(tf). Montrons qu’il est non dégénéré. Soit t € T tel que ai(t(f)) = 0 pour tout
f € My(N). On a alors ay(tT,,(f)) = 0 pour tout m > 1 et donc ay(7T,,t(f)) = 0 pour
tout m > 1. On a donc a,,(t(f)) = 0 pour tout m > 1 et donc ¢(f) = 0 pour tout f. Donc
t=0.

Réciproquement, si f € My(N) est telle que a1(t(f)) = 0 pour tout ¢t € T, on a
0=a1(Tn(f)) = an(f) pour tout m > 1 et donc f = 0.

Remarque . — L’identification Hom(T, C) ~ My (N) ouvre la possibilité de considérer
Hom(T, A) pour A anneau quelconque. Cela pointe vers une définition algébrique des
formes modulaires. On peut par exemple considérer le cas ou A est un corps fini. Tout
cela suggere que la nature analytique complexe des formes modulaires est un leurre. Les
objets essentiels sont les systemes de valeurs propres pour les opérateurs de Hecke. Ils
correspondent essentiellement aux morphismes d’anneaux T — C. Il est possible de définir
I’anneau T sans utiliser les formes modulaires, ni aucun objet de nature analytique. Il y
a deux voies pour cela : utiliser la structure algébrique des courbes modulaires X3 (V) ou
(en poids > 2) utiliser la cohomologie d’Eichler—Shimura.
L’anneau T laisse stable S (V) ainsi que les parties anciennes et nouvelles de My (V).
Soient M un multiple de N et d un diviseur de M/N. Soit f une forme propre pour
l'opérateur de Hecke T,,,, avec m premier a M, alors d1.(f) et d4.(f) sont propres pour T,,
avec la méme valeur propre que f. Ainsi un systeéme de valeurs propres pour les opérateurs
de Hecke en niveau N se réalise avec plusieurs copies dans la partie ancienne de niveau M.
Les valeurs propres de T;,, sont des entiers algébriques. La preuve repose sur I’existence
d’une structure entiere stable par les opérateurs de Hecke dans My(IN). On peut le
démontrer en poids k > 2 par la théorie d’Eichler—Shimura. C’est plus difficile en poids 1.
On a la conjecture de Ramanujan (démontrée par Eichler, Shimura en poids 2, par
Deligne en poids > 2, par Deligne-Serre en poids 1). Si A\, est une valeur propre de T},
opérant sur Si(N) avec p premier, on a

‘)‘p‘ < 2pk_1-

En poids 2, on a |\,| < 2,/p c’est analogue au théoreme de Hasse pour les courbes
elliptiques sur les corps finis.
En particulier, pour £k =1, on a

Aol <2
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