
XVIII

Tordues, relèvements, exemples

1. Torsion par un caractère

Soit K un corps de nombres. Soit K̄ une clôture algébrique de K. Soit ρ :
Gal(K̄/K) → GL(E) un motif d’Artin, avec E espace vectoriel complexe de dimension
finie n. Soit χ : Gal(K̄/K)→ C× un caractère.

On a ρ ⊗ χ : Gal(K̄/K) → GL(E) donnée par σ 7→ ρ(σ)χ(σ). C’est la tordue de ρ
par le caractère χ.

Notons Pρ la représentation projective associée à ρ. C’est le morphisme de groupe
Gal(K̄/K) → PGL(E) déduit de ρ. Les représentations projectives Pρ et P (ρ ⊗ χ) sont
identiques.

Soit v une place réelle de K. Notons n+
v = n+

v (ρ) la dimension de la partie invariante
de E par une conjugaison complexe en v. Posons n−v = n−v (ρ) = n − n+

v . On a
alors n+

v (ρ ⊗ χ) = n+
v (ρ) si l’image par χ d’une conjugaison complexe en v est 1 et

n+
v (ρ⊗ χ) = n−v (ρ) si l’image par χ d’une conjugaison complexe en v est −1.

Si v est une place finie non ramifiée pour χ, i.e. le noyau de χ contient un sous-groupe
d’inertie Iv en v, on ρ(Iv) = ρ⊗ χ(Iv). On a alors

Lv(ρ⊗ χ, s) = det(1− ρ(Frobv)χ(Frobv)|Pv|−s|V Iv )−1.

Si v est une place finie non ramifiée pour ρ, mais ramifiée pour χ, on a

Lv(ρ⊗ χ, s) = 1.

En effet ρ ⊗ χ(Iv) est composé de matrices diagonales, non toutes triviales, si bien que
V ρ⊗χ(Iv) = 1.

Proposition 1. — Si les conducteurs Nρ de ρ et Nχ de χ sont premiers entre eux, on a

Nρ⊗χ = NρN
n
χ .

Démonstration. — On le vérifie place par place. C’est vrai pour les places finies étrangères
à Nρ et Nχ.

Si v est une place finie telle que Pv|Nρ et Pv 6 |Nχ, les groupes de ramification de ρ⊗χ
sont ceux de ρ. Les valuations Pv-adiques de Nρ⊗χ et Nρ sont égales.

Si v est une place finie telle que Pv 6 |Nρ et Pv|Nχ, on a (ρ⊗ χ)|Iv = (1⊗ χ)|Iv ' χn,
si bien que la valuation Pv-adique de Nρ⊗χ est la valuation Pv-adique de Nχ multipliée
par n.
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Remarque . — Si v est une place ramifiée pour ρ et χ, on ne peut pas prédire Lv(ρ⊗χ, s)
simplement. Pour en prendre conscience, considérer le cas où ρ′ est une représentation non
ramifiée en v et où on a ρ = ρ′ ⊗ χ̄. On a alors Lv(ρ, s) = 1 et Lv(ρ⊗ χ, s) = Lv(ρ

′, s).

La représentation contragrédiente de ρ ⊗ χ est ρ∗ ⊗ χ̄. L’équation fonctionnelle de
Λ(ρ⊗ χ) prend alors la forme

Λ(ρ⊗ χ, 1− s) = wρ⊗χΛ(ρ∗ ⊗ χ̄, s).

On peut donner une recette pour wρ⊗χ si les conducteurs de ρ et de χ sont premiers entre
eux.

On a immédiatement l’égalité des caractères

det(ρ⊗ χ) = det(ρ)χn.

Proposition 2. — Si n = 2, la représentation contragrédiente de ρ est isomorphe à
ρ⊗ det(ρ)−1. On a alors l’équation fonctionnelle

Λ(ρ, 1− s) = wρ⊗χΛ(ρ⊗ det(ρ)−1, s).

Démonstration. — C’est une conséquence de l’identité matricielle

t

(
a b
c d

)−1

=
1

ad− bc

(
d −c
−b a

)
=

1

ad− bc

(
0 −1
1 0

)(
a b
c d

)(
0 −1
1 0

)−1

.

Si n = 2, et v est une place réelle de ρ est impaire en v si et seulement si n+
v (ρ) = 1 et

n−v (ρ) = 1, c’est-à-dire si et seulement si n+
v (ρ⊗ χ) = 1 et n−v (ρ⊗ χ) = 1, si et seulement

si ρ⊗ χ est impaire en v.

2. Exemples diédraux

Revenons sur la représentation ρ : Gal(M/Q)→ S3 ⊂ GL2(C), où M est le corps de
décomposition du polynôme irréductible X3−X−1 sur Q. Le groupe de Galois Gal(M/Q)
est d’ordre 6.

Ce polynôme est de discriminant −23, si bien que le seul nombre premier ramifié dans
M est 23.

Le corps quadratique Q(
√
−23) est l’unique corps quadratique contenu dans M . Le

groupe Gal(M/Q(
√
−23)) est cyclique d’ordre 3.

L’extension M |Q(
√
−23) est non ramifiée en dehors de 23. Montrons qu’elle est non

ramifiée en l’unique idéal au dessus de 23. Comme le polynôme X3 − X − 1 est congru
à (X − 3)(X − 10)2 modulo 23, l’extension M |Q n’est pas totalement ramifiée en 23.
L’indice de ramification en 23 deM |Q n’est donc pas 6. Comme l’extension Q(

√
−23)|Q est

totalement ramifiée en 23, et donc d’indice de ramification égal à 2, l’indice de ramification

XVIII — 2



en 23 de M |Q est un diviseur pair de 6 qui n’est pas 6. C’est donc 2. Donc tout groupe
d’inertie en 23 de Gal(M/Q) est d’ordre 2. L’indice de ramfication en l’unique idéal premier
au dessus de 23 de l’extension Gal(M/Q(

√
−23)) est donc 2/2 = 1, si bien que l’extension

M |Q(
√
−23) est non ramifiée en 23.

Comme c’est une extension abélienne partout non ramifiée et telle que toute place
réelle de Q(

√
−23) (il n’y en a pas, puisque c’est un corps quadratique imaginaire) reste

réelle dans M , M est contenu dans le corps de classe de Hilbert H de Q(
√
−23). On a donc

un morphisme surjectif Gal(H/Q(
√
−23)) → Gal(M/Q(

√
−23)). Or, la loi de réciprocité

d’Artin affirme que le groupe Gal(H/Q(
√
−23)) est isomorphe à C`(Q(

√
−23)), qui se

trouve être cyclique d’ordre 3. Il en résulte que H = M . De plus, pour Q place finie de
Q(
√
−23), l’isomorphisme Gal(H/Q(

√
−23)) ' C`(Q(

√
−23)) associe à FrobQ la classe de

Q dans C`(Q(
√
−23)).

Soit χ : Gal(M/Q(
√
−23))→ C×. Alors ρ est isomorphe à l’induite IndQ(

√
−23)/Qχ.

Elle est impaire, puisque Q(
√
−23) est imaginaire. Le conducteur de ρ est donné par

la formule
Nρ = DQ(

√
−23) ×N2

χ.

Or on a Nχ = 1, car χ est non ramifié. De plus DQ(
√
−23) = 23Z. De plus, on a χσ = χ̄,

car ρ est diédrale et irréductible.
On peut examiner de plus près les groupes de ramification en une place finie q. Si

q 6= 23, on a I23 = G0 = {1}. Si q = 23, on sait que G1 est le 23-sous-groupe de Sylow
de G0. Mais G0 est le sous-groupe d’inertie en 23, qui est d’ordre 2. Donc G1 = {1}.
Notons h0 l’élément non trivial de G0. Il est d’ordre 2. Déterminer les invariants de V
sous G0 revient à déterminer les invariants sous h0. Alors ρ(h0) est une involution ayant
pour valeurs propres 1 et −1. La dimension des invariants sous G0 est donc 1. On retrouve
bien que le conducteur de ρ en 23 est 23n, où n est donné par la recette du conducteur,
c’est-à-dire

n =
∞∑
i=0

|Gi|
|G0|

(dim(E)− dim(EGi)) = 1.

Écrivons maintenant la fonction L complétée de ρ. L’image d’une conjugaison com-
plexe par ρ est une involution de valeurs propres 1 et −1. On a donc en la place infinie v,
n+
v = 1 et n−v = 1. Le facteur à l’infini est

ΓR(s)n
+
v ΓR(s+ 1)n

−
v = ΓR(s)ΓR(s+ 1) = ΓC(s).

On obtient donc
Λ(ρ, s) = Λ(χ, s) = 23−s2(2π)−sΓ(s)L(ρ, s).

La représentation contragrédiente ρ∗ de ρ est IndQ(
√
−23)/Qχ

∗, car la contragrédience
commute à l’induction.

Le déterminant de ρ est le caractère quadratique δ : Gal(Q(
√
−23)/Q)→ {−1, 1} qui

à Frobq associe le symbole de Legendre
(
−23
q

)
. On a donc

ρ∗ ' ρ⊗ δ.
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La représentation ρ que nous venons de décrire est la représentation irréductible de
Gal(Q̄/Q) de conducteur minimal 23.

On peut construire une représentation de type diédrale paire de façon analogue. Soit
M un corps de décomposition sur Q du polynôme X3−4X−1 de discriminant 229 (nombre
premier). Le corps M contient le corps quadratique réel Q(

√
229), le fait que le corps est

réel est la seule différence avec le cas précédent.
Le corps M est totalement réel (car toutes les racines complexes de X3 − 4X − 1

sont réelles). L’extension M |Q(
√

229) est partout non ramifiée. Ainsi le groupe de Galois
Gal(M/Q(

√
229)) est un quotient de Gal(H/Q(

√
229)) où H est le corps de classe de

Hilbert de Q(
√

229)).
Comme le groupe de classe C`(Q(

√
229)) est cyclique d’ordre 3, et que ce groupe est

isomorphe à Gal(H/Q(
√

229)), il en résulte que M = H.
La loi de réciprocité d’Artin affirme que, pour Q place finie de Q(

√
229), l’image de

FrobQ ∈ Gal(H/Q(
√

229)) dans C`(Q(
√

229)) est la classe de Q.
On a un caractère χ : Gal(H/Q(

√
229))→ C× d’ordre 3. Posons ρ = IndQ(

√
229)/Qχ.

C’est une représentation paire puisque M est totalement réel.
Comme M est totalement réel, l’image par ρ d’une conjugaison complexe en l’unique

place à l’infini v est triviale. On a n+
v = 2 et n−v = 0 Ainsi le facteur à l’infini de Λ(ρ, s)

est ΓR(s)2. On a donc
Λ(ρ, s) = 229−sπ−sΓ(s/2)2L(ρ, s).

Il n’est pas difficile de systématiser ces constructions d’exemples diédraux. Il suffit
de choisir une extension quadratique K(

√
a) de K. On peut considérer un caractère χ

d’un groupe des classes, ou plus généralement de classe de rayon, de K(
√
a). L’induite de

K(
√
a) à K de χ fournit alors une représentation diédrale.

3. Relèvement de représentations projectives

Soit ρ̃ : Gal(K̄/K) → PGL(E) une représentation projective de Gal(K̄/K). Existe-
t-il ρ : Gal(K̄/K)→ GL(E) telle que Pρ = ρ̃ ?

On dit alors que ρ est un relèvement de ρ̃.

Proposition 3. — Soient ρ1 et ρ2 des relèvements de ρ̃. Il existe un caractère χ :
Gal(K̄/K)→ C× tel que ρ2 = ρ1 ⊗ χ.
Démonstration. — Il résulte de la suite exacte

1→ C× → GL(E)→ PGL(E)→ 1,

que ρ1 et ρ2 sont en rapport un morphisme à valeurs dans C×.

Comme on a la suite exacte

1→ C× → GL(E)→ PGL(E)→ 1,
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la question du relèvement d’une représentation projective d’un groupe G résulte de la
nullité du groupe H2(G,C×), où G opère trivialement sur C×.

Théorème 4 (Tate). — Si k est un corps p-adique ou R ou un corps de nombres, de
clôture algébrique k̄, on a

H2(Gal(k̄/k),C×) = 0.

La démonstration de Tate est nullement évidente et repose sur la théorie du corps de
classe.

Corollaire . — La représentation projective ρ̃ admet un relèvement.

Mais cela ne donne par une construction pour le relèvement ρ. On souhaite que ρ soit
non ramifiée en dehors d’un nombre fini de places.

Alternativement, on peut prescrire une collection de relèvements locaux (ρv|Dv
)v∈ΩK

et chercher un relèvement global ρ tel que pour toute place finie v, on ait

ρ|Iv = ρv|Iv ,

où Dv est un groupe de décomposition en v, et Iv le sous-groupe d’inertie de Dv.

Théorème 5 (Tate). — Soit (ρv|Dv
)v∈ΩK

tel que ρv soit une représentation Dv → GL(V )
qui soit un relèvement de ρ̃|Dv

. Supposons que ρv(Iv) = {1} pour presque toute place finie
v. Alors il existe un relèvement ρ de ρ̃ tel que pour toute place finie v de K on ait

ρ|Iv = ρv|Iv ,

où Dv est un groupe de décomposition en v, et Iv le sous-groupe d’inertie de Dv.
Si de plus K = Q, ρ est unique à isomorphisme près.

Démonstration. — Soit ρ0 : Gal(K̄/K) → GL(E) telle que Pρ0 = ρ̃. Soit v une place
finie de K. Il existe χv : Dv → C× tel que ρv = ρ0|Dv

⊗ χv. On a χv non ramifié, i.e.
χv(Iv) = 1, pour presque tout v.

Par la théorie du corps de classe local, χv s’identifie à un caractère φv de K×v , qui
s’annule sur O×v lorsque χv est non ramifié. Lorsque χv est ramifié, χv|Iv s’identifie à la

restriction à O×v de φv. Il existe nv ≥ 0 tel que φv s’annule sur Uv
(nv). Considérons le

cycle arithmétique M =
∏
v Pnv

v , avec nv = 0 si v est une place infinie. On a la suite
exacte de groupes finis

1→
∏
v

(O×v /U (nv)
v )→ C`(K)M → C`(K)→ 1.

Le produit
∏
v χv définit un caractère de

∏
v(O×v /Unv

v ), que l’on peut étendre en un
caractère du groupe des classes de rayon C`(K)M. Comme on a morphisme surjectif
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de groupes A×K → C`(K)M, on obtient un caractère φ du groupe des classes d’idèles A×K ,
dont la restriction à O×v cöıcide avec φv.

Par la théorie du corps de classe global, il existe un caractère χ : Gal(K̄/K) → C×

tel que χ|Dv
= χv. Considérons ρ0⊗χ. C’est un relèvement de ρ̃. On a bien (ρ0⊗χ)|Iv =

ρ0|Iv ⊗ χv|Iv = ρv|Iv .

Supposons K = Q. Montrons l’unicité de ρ. On peut reprendre l’argument ci-dessus
et utiliser la trivialité du groupe des classes de Q, ou, de façon alternative, raisonner
directement comme suit. Soit ρ′ un autre relèvement de ρ̃ satisfaisant les conditions
prescrites. Il existe un caractère χ de Gal(Q̄/Q) tel que ρ′ est isomorphe à ρ⊗χ. Comme
ρ et ρ′ cöıncident sur Iv pour toute place finie v, on a χ(Iv) = {1} pour toute place finie
v. Ainsi χ est partout non ramifié. Mais comme Q n’admet pas d’extension non ramifiée,
on a χ = 1. Donc ρ et ρ′ sont isomorphes.

4. Exemples polyédraux

Les exemples de motifs d’Artin de dimension 2 non diédraux ne se laissent pas
construire aussi simplement que les exemples diédraux.

Exemple trouvé par Tate sans ordinateur. Soit M le corps de décomposition du
polynôme X4 + 3X2 − 7X + 3, qui est irréductible, sur Q. L’extension M |Q est non
ramifiée en dehors de {7, 19}. Son groupe de Galois est isomorphe au groupe alterné A4.
On a donc une représentation projective ρ̃ : Gal(Q̄/Q)→ Gal(M/Q)→ A4 ⊂ PGL2(C).
Alors ρ̃ admet un relèvement à GL2(C) de conducteur 133 de type tétraédral.

Soit M le corps de décomposition du polynôme X4 − X3 + 5X2 − 7X + 12, qui est
irréductible, sur Q. L’extension M |Q est non ramifiée en dehors de {2, 37}. Son groupe de
Galois est isomorphe au groupe symétrique S4. On a donc une représentation projective
ρ̃ : Gal(Q̄/Q) → Gal(M/Q) → S4 ⊂ PGL2(C). Alors ρ̃ admet un relèvement à GL2(C)
de conducteur 148 = 22 × 37 de type octaédral.

Exemple trouvé par Buhler. Soit M le corps de décomposition du corps X5 + 10X3−
10X2 + 35X − 18. L’extension M |Q est non ramifiée en dehors de {2, 5}. Son groupe
de Galois est isomorphe au groupe alterné A5. ρ̃ : Gal(Q̄/Q) → Gal(M/Q) → A5 ⊂
PGL2(C). Alors ρ̃ admet un relèvement à GL2(C) de conducteur 800 = 25 × 52 de type
icosaédral. Cette représentation a donné lieu à la première vérification de la conjecture
d’Artin pour une représentation qui ne se factorise pas par le groupe de Galois d’une
extension résoluble.

5. Retour sur X3 −X − 1

L’anneau des entiers du corps quadratique Q(
√
−23) est OQ(

√
−23) = Z + Z 1+

√
−23

2 .

Soit χ : C`(Q(
√
−23)) → C× d’ordre 3. Il lui correspond un caractère, encore noté χ

par abus, du groupe de Gal(Q̄/Q(
√
−23)) par la théorie du corps de classe. Considérons
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encore la représentation induite ρ = IndQ(
√
−23)/Qχ. Cette représentation se factorise par

le groupe de Galois du corps de décomposition L du polynôme X3 −X − 1. On a

L(ρ, s) = L(χ, s) =
∏
Q

1

χ(Q)|Q|−s
=
∑
I

χ(I)

|I|s
,

où Q parcourt les idéaux premiers de Q(
√
−23) et I les idéaux entiers de Q(

√
−23).

Pour p nombre premier, notons Np le nombre de racines de X3 −X − 1 dans le corps
fini Fp. Si p = 23, on a Np = 2.

On a Np = 1 si et seulement si p est inerte dans Q(
√
−23) c’est-à-dire si et seulement

si le symbole de Legendre
(
−23
p

)
vaut −1.

On a Np = 0 ou 3 sinon et alors p est décomposé dans Q(
√
−23). Posons alors

pOQ(
√
−23) = QQ̄.

On a Np = 3 si et seulement si Frobp = 1 dans Gal(L/Q), c’est-à-dire si et seulement
si FrobQ = 1 dans Gal(L/Q(

√
−23)), c’est-à-dire si et seulement si la classe de Q dans

C`(Q(
√
−23) est triviale c’est-à-dire si et seulement si l’idéal Q est principal. C’est le cas

si et seulement si il existe n, m ∈ Z tels que Q = (n + m 1+
√
−23

2 )OQ(
√
−23), c’est-à-dire

p = (n+m 1+
√
−23

2 )(n+m 1−
√
−23

2 ) = n2 + nm+ 6m2.
Un calcul analogue montre que Np = 0 si et seulement si il existe n, m ∈ Z tels que

p = 2n2 + nm+ 3m2.

Remarque . — Cela peut être exprimé dans le langage des formes quadratiques dû à Gauss.
Notons Q l’ensemble des formes quadratiques (x, y) 7→ ax2 + bxy + cy2 de discriminant
∆ = b2 − 4ac = −23. On définit une relation d’équivalence ' sur Q par q ' q′ si et
seulement q′((x, y)) = q((x, y)M) avec M ∈ SL2(Z). Alors Q/ ' s’identifie à C`(Q(

√
−23))

par ax2 + bxy + cy2 = a(x − τy)(x − τ̄ y) 7→ la classe de I = Z + Zτ . Un système de
représentants de Q/ ' est formé de x2 + xy + 6y2, 2x2 + xy + 3y2 et 2x2 − xy + y2.

Rappelons qu’on a

L(ρ, s) =
1

23−s

∏
p,Np=1

1

1− p−2s

∏
p,Np=0

1

1 + p−s + p−2s

∏
p,Np=3

1

1− 2p−s + p−2s
.

Posons alors

L(ρ, s) =

∞∑
n=1

ann
−s

avec, pour p premier 6= 23, ap = 0 si Np = 1, ap = 1 si Np = 0, ap = −2 si Np = 3. Ainsi,
si p est premier, ap est le p-ème coefficient de la série

1

2
(
∑

m,n∈Z

qm
2+nm+6n2

−
∑

m,n∈Z

q2m2+nm+3n2

).
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Cette formule pour ap est vraie si p n’est pas seulement un nombre premier mais tout
entier ≥ 1.

On a par ailleurs la constatation numérique (voir ci-dessous)

∞∑
n=1

anq
n = q

∞∏
m=1

(1− qm)(1− q23m) = η(z)η(23z),

où q = e2iπz et η(z) = q1/24
∏∞
m=1(1− qm).

On a η(z)24 = q
∏∞
m=1(1 − qm)24, qui est une forme modulaire de poids 12, notée ∆

et auquel le nom de Ramanujan est souvent associé.
Donc η est une forme modulaire de poids 1/2 (à une racine 12-ème près). De même

z 7→ η(23z) est une forme modulaire de poids 1/2 pour le groupe de congruence Γ1(23) (à
une racine 12-ème près).

Donc z 7→ η(z)η(23z)
∑∞
n=1 anq

n est une forme modulaire de poids 1 pour le groupe
Γ1(23).

Ce lien entre motifs d’Artin et formes modulaires n’est pas un accident numérique
mais l’illustration d’un phénomène général.

Remarque . — La démonstration de la constatation numérique suit le schéma suivant.
Il faut savoir qu’à un scalaire près il n’y a qu’une seule forme modulaire parabolique de
poids 1 pour Γ1(23), ce qui n’est pas évident. On peut montrer que les deux membres de
la constatation numériques sont de telles formes modulaires. Comme leurs coefficients de
degré 1 sont égaux, elles sont égales.
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