XVIII
Tordues, relevements, exemples

1. Torsion par un caractere

Soit K un corps de nombres. Soit K une cloture algébrique de K. Soit p :
Gal(K/K) — GL(E) un motif d’Artin, avec E espace vectoriel complexe de dimension
finie n. Soit x : Gal(K/K) — C* un caractere.

Onap®y: Gal(K/K) — GL(E) donnée par o +— p(c)x(c). Cest la tordue de p
par le caractere x.

Notons Pp la représentation projective associée a p. C’est le morphisme de groupe
Gal(K/K) — PGL(E) déduit de p. Les représentations projectives Pp et P(p ® x) sont
identiques.

Soit v une place réelle de K. Notons n;” = n;f(p) la dimension de la partie invariante
de E par une conjugaison complexe en v. Posons n, = n,(p) = n—nf. On a
alors nt(p ® x) = nt(p) si 'image par x d’une conjugaison complexe en v est 1 et
nt (p®x) =n, (p) si 'image par x d’une conjugaison complexe en v est —1.

Si v est une place finie non ramifiée pour Yy, i.e. le noyau de x contient un sous-groupe
d’inertie I, en v, on p(I,) = p ® x(I,). On a alors

Ly(p ® x,8) = det(1 — p(Frob,)x(Frob,)|P,| V)~
Si v est une place finie non ramifiée pour p, mais ramifiée pour y, on a
Ly(p®x,s) =1.

En effet p ® x(I,) est composé de matrices diagonales, non toutes triviales, si bien que
Vrex(ly) — 1.

PROPOSITION 1. — Si les conducteurs N, de p et N, de x sont premiers entre euzx, on a
Npgy = NpNy.

Démonstration. — On le vérifie place par place. C’est vrai pour les places finies étrangeres

a N, et N,.

Si v est une place finie telle que P,|N, et P, [Ny, les groupes de ramification de p®x
sont ceux de p. Les valuations P,-adiques de N,g, et N, sont égales.

Si v est une place finie telle que P, [N, et Py|Ny, on a (p @ x);r, = (1 ® x)jr, =~ X",
si bien que la valuation P,-adique de N,g, est la valuation P,-adique de N, multipliée
par n.
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Remarque . — Si v est une place ramifiée pour p et y, on ne peut pas prédire L,(p ® x, )
simplement. Pour en prendre conscience, considérer le cas ou p’ est une représentation non
ramifiée en v et ot on a p = p’ ® x. On a alors L,(p,s) =1 et L,(p® x,s) = L, (o, s).

La représentation contragrédiente de p ® x est p* ® x¥. L’équation fonctionnelle de
A(p ® x) prend alors la forme

A(p X X 1- S) = wP@XA(p* ® >_<7 8)'

On peut donner une recette pour w,g, si les conducteurs de p et de x sont premiers entre
eux.
On a immédiatement 1’égalité des caracteres

det(p ® x) = det(p)x".

PROPOSITION 2. — Sin = 2, la représentation contragrédiente de p est isomorphe a
p@det(p)~t. On a alors I’équation fonctionnelle

A(p, 1- 5) = wP®XA(p ® det(p>_17 S)'

Démonstration. — C’est une conséquence de 'identité matricielle
—1 —1
+(a b 1 d —c\ 1 0 -1 a b 0 -1
c d ad—bc \-b a ad—bc\1 O c d 1 0 ’

Sin =2, et v est une place réelle de p est impaire en v si et seulement si n,f (p) =1 et
n, (p) = 1, c’est-a-dire si et seulement si nf (p®@ x) =1 et n, (p® x) = 1, si et seulement
si p ® x est impaire en v.

2. Exemples diédraux

Revenons sur la représentation p : Gal(M/Q) — S35 C GL2(C), ou M est le corps de
décomposition du polynéme irréductible X2 — X —1 sur Q. Le groupe de Galois Gal(M/Q)
est d’ordre 6.

Ce polynome est de discriminant —23, si bien que le seul nombre premier ramifié dans
M est 23.

Le corps quadratique Q(v/—23) est I'unique corps quadratique contenu dans M. Le
groupe Gal(M/Q(v/—23)) est cyclique d’ordre 3.

L’extension M|Q(y/—23) est non ramifiée en dehors de 23. Montrons qu’elle est non
ramifiée en I'unique idéal au dessus de 23. Comme le polynéme X3 — X — 1 est congru
a (X — 3)(X — 10)? modulo 23, l'extension M|Q n’est pas totalement ramifiée en 23.
L’indice de ramification en 23 de M |Q n’est donc pas 6. Comme I'extension Q(v/—23)|Q est
totalement ramifiée en 23, et donc d’indice de ramification égal a 2, I'indice de ramification
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en 23 de M|Q est un diviseur pair de 6 qui n’est pas 6. C’est donc 2. Donc tout groupe
d’inertie en 23 de Gal(M/Q) est d’ordre 2. L’indice de ramfication en I'unique idéal premier
au dessus de 23 de I'extension Gal(M/Q(+v/—23)) est donc 2/2 = 1, si bien que Iextension
M|Q(+/—23) est non ramifiée en 23.

Comme c’est une extension abélienne partout non ramifiée et telle que toute place
réelle de Q(+/—23) (il n’y en a pas, puisque c’est un corps quadratique imaginaire) reste
réelle dans M, M est contenu dans le corps de classe de Hilbert H de Q(v/—23). On a donc
un morphisme surjectif Gal(H/Q(v/—23)) — Gal(M/Q(v/—23)). Or, la loi de réciprocité
d’Artin affirme que le groupe Gal(H/Q(v/—23)) est isomorphe a C¢(Q(v/—23)), qui se
trouve étre cyclique d’ordre 3. Il en résulte que H = M. De plus, pour Q place finie de
Q(+v/—23), I'isomorphisme Gal(H/Q(v/—23)) ~ C¢(Q(+/—23)) associe a Frobg la classe de
Q dans C£(Q(v/—23)).

Soit x : Gal(M/Q(v/—23)) — C*. Alors p est isomorphe a l'induite Indg/=23)/QX

Elle est impaire, puisque Q(1/—23) est imaginaire. Le conducteur de p est donné par

la formule
Ny = Do(y=mm) * Ny

Or on a N, =1, car x est non ramifié. De plus DQ(\/T%) = 23Z. De plus, on a x, = X,
car p est diédrale et irréductible.

On peut examiner de plus pres les groupes de ramification en une place finie ¢q. Si
q # 23, on a I3 = Go = {1}. Si ¢ = 23, on sait que G est le 23-sous-groupe de Sylow
de Go. Mais Gy est le sous-groupe d’inertie en 23, qui est d’ordre 2. Donc G; = {1}.
Notons hg I’élément non trivial de Gy. Il est d’ordre 2. Déterminer les invariants de V
sous G revient a déterminer les invariants sous hg. Alors p(ho) est une involution ayant
pour valeurs propres 1 et —1. La dimension des invariants sous Gg est donc 1. On retrouve
bien que le conducteur de p en 23 est 23™, ou n est donné par la recette du conducteur,
c’est-a-dire

n=>3y_ ||g;'|| (dim(E) — dim(E®)) = 1.
1=0

Ecrivons maintenant la fonction L complétée de p. L’image d'une conjugaison com-
plexe par p est une involution de valeurs propres 1 et —1. On a donc en la place infinie v,
ni =1et n;, =1. Le facteur a U'infini est

Tr(s)™ Tr(s+1)™ =Tr(s)Tr(s+1) = Lc(s).

On obtient donc
Alp, s) = Alxs 5) = 237°2(27) T(s)L(p, s).

La représentation contragrédiente p* de p est Indg( /=23 /Qx*, car la contragrédience
commute a 'induction.
Le déterminant de p est le caractere quadratique d : Gal(Q(v/—23)/Q) — {—1,1} qui

a Frob, associe le symbole de Legendre (‘TQ?’> On a donc

P~ p®6.
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La représentation p que nous venons de décrire est la représentation irréductible de
Gal(Q/Q) de conducteur minimal 23.

On peut construire une représentation de type diédrale paire de fagon analogue. Soit
M un corps de décomposition sur Q du polynéme X3 —4X —1 de discriminant 229 (nombre
premier). Le corps M contient le corps quadratique réel Q(\/@), le fait que le corps est
réel est la seule différence avec le cas précédent.

Le corps M est totalement réel (car toutes les racines complexes de X3 — 4X — 1
sont réelles). L’extension M|Q(1/229) est partout non ramifiée. Ainsi le groupe de Galois
Gal(M/Q(1/229)) est un quotient de Gal(H/Q(v/229)) ou H est le corps de classe de
Hilbert de Q(v/229)).

Comme le groupe de classe C/(Q(+/229)) est cyclique d’ordre 3, et que ce groupe est
isomorphe & Gal(H/Q(+/229)), il en résulte que M = H.

La loi de réciprocité d’Artin affirme que, pour Q place finie de Q(\/@), I'image de
Frobg € Gal(H/Q(v/229)) dans C/(Q(1/229)) est la classe de Q.

On a un caractere x : Gal(H/Q(v/229)) — C* d’ordre 3. Posons p = Indg /335)/X-
C’est une représentation paire puisque M est totalement réel.

Comme M est totalement réel, I'image par p d’une conjugaison complexe en 1'unique
place a l'infini v est triviale. On a n7 = 2 et n; = 0 Ainsi le facteur a U'infini de A(p, s)
est 'r(s)2. On a donc

A(p,s) =229 577°T(s/2)*L(p, s).

Il n’est pas difficile de systématiser ces constructions d’exemples diédraux. Il suffit
de choisir une extension quadratique K(y/a) de K. On peut considérer un caractére y
d’un groupe des classes, ou plus généralement de classe de rayon, de K (y/a). L’induite de
K(y/a) & K de x fournit alors une représentation diédrale.

3. Relevement de représentations projectives
Soit p : Gal(K/K) — PGL(FE) une représentation projective de Gal(K/K). Existe-

t-il p: Gal(K/K) — GL(E) telle que Pp = p?
On dit alors que p est un relevement de p.

PROPOSITION 3. — Soient p1 et pa des relévements de p. Il existe un caractére x :
Gal(K/K) — C* tel que p2 = p1 ® X.
Démonstration. — 1l résulte de la suite exacte

1 - C* - GL(E) — PGL(E) — 1,

que py et ps sont en rapport un morphisme a valeurs dans C*.
Comme on a la suite exacte

1 - C* = GL(FE) - PGL(E) — 1,
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la question du relevement d’une représentation projective d’'un groupe G résulte de la
nullité du groupe H?(G, C*), ot G opere trivialement sur C*.

THEOREME 4 (Tate). — Si k est un corps p-adique ou R ou un corps de nombres, de
cloture algébrique k, on a

H?(Gal(k/k),C*) = 0.

La démonstration de Tate est nullement évidente et repose sur la théorie du corps de
classe.

COROLLAIRE . — La représentation projective p admet un relévement.

Mais cela ne donne par une construction pour le relevement p. On souhaite que p soit
non ramifiée en dehors d’un nombre fini de places.

Alternativement, on peut prescrire une collection de relevements locaux (p,|p, )ven
et chercher un relevement global p tel que pour toute place finie v, on ait

P|IU = pv\[va
ou D, est un groupe de décomposition en v, et I, le sous-groupe d’inertie de D,,.

THEOREME 5 (Tate). — Soit (py|p, Jveqs tel que p, soit une représentation D, — GL(V)
qui soit un reléevement de p|p, . Supposons que p,(I,) = {1} pour presque toute place finie
v. Alors il existe un relevement p de p tel que pour toute place finie v de K on ait

P\, = Pu|l,s

ou D, est un groupe de décomposition en v, et I, le sous-groupe d’inertie de D.,,.

Si de plus K = Q, p est unique a isomorphisme pres.
Démonstration. — Soit pg : Gal(K/K) — GL(E) telle que Ppy = p. Soit v une place
finie de K. Il existe x, : D, — C* tel que p, = pg|p, @ Xv- On a x, non ramifié, i.e.
Xv(Iy) = 1, pour presque tout v.

Par la théorie du corps de classe local, x, s’identifie a un caractere ¢, de K, qui
s’annule sur O lorsque X, est non ramifié. Lorsque Y, est ramifié, x,,;, s’identifie & la

restriction a O)f de ¢,. Il existe n, > 0 tel que ¢, s’annule sur U,™). Considérons le
cycle arithmétique M = [], P;'», avec n, = 0 si v est une place infinie. On a la suite
exacte de groupes finis

1= [0y /ufm)) = co(K)M — co(K) — 1.

Le produit [], x. définit un caractere de [[,(O5/U;*), que l'on peut étendre en un
caractere du groupe des classes de rayon C/(K)™. Comme on a morphisme surjectif
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de groupes Ay — CU(K )M, on obtient un caractére ¢ du groupe des classes d’ideles A%,
dont la restriction a O coicide avec ¢,.

Par la théorie du corps de classe global, il existe un caractére x : Gal(K/K) — C*
tel que x|p, = Xv. Considérons pg ® x. C’est un relevement de . On a bien (pg ® X)|7, =
Po|1, @ Xo|L, = Pu|I,-

Supposons K = Q. Montrons I'unicité de p. On peut reprendre I'argument ci-dessus
et utiliser la trivialité du groupe des classes de Q, ou, de facon alternative, raisonner
directement comme suit. Soit p’ un autre relevement de p satisfaisant les conditions
prescrites. Il existe un caractere x de Gal(Q/Q) tel que p’ est isomorphe & p ® x. Comme
p et p’ coincident sur I, pour toute place finie v, on a x(I,) = {1} pour toute place finie
v. Ainsi x est partout non ramifié. Mais comme Q n’admet pas d’extension non ramifiée,
on a x = 1. Donc p et p’ sont isomorphes.

4. Exemples polyédraux

Les exemples de motifs d’Artin de dimension 2 non diédraux ne se laissent pas
construire aussi simplement que les exemples diédraux.

Exemple trouvé par Tate sans ordinateur. Soit M le corps de décomposition du
polynéome X% + 3X?2 — 7X + 3, qui est irréductible, sur Q. L’extension M|Q est non
ramifiée en dehors de {7,19}. Son groupe de Galois est isomorphe au groupe alterné Ay.
On a donc une représentation projective p : Gal(Q/Q) — Gal(M/Q) — A, C PGLy(C).
Alors p admet un relevement & GL2(C) de conducteur 133 de type tétraédral.

Soit M le corps de décomposition du polynéome X4 — X3 4+ 5X2 — 7X + 12, qui est
irréductible, sur Q. L’extension M|Q est non ramifiée en dehors de {2,37}. Son groupe de
Galois est isomorphe au groupe symétrique S4. On a donc une représentation projective
p: Gal(Q/Q) — Gal(M/Q) — S, C PGLy(C). Alors p admet un relévement & GLo(C)
de conducteur 148 = 22 x 37 de type octaédral.

Exemple trouvé par Buhler. Soit M le corps de décomposition du corps X° +10X3 —
10X2 + 35X — 18. L’extension M|Q est non ramifiée en dehors de {2,5}. Son groupe
de Galois est isomorphe au groupe alterné As. p : Gal(Q/Q) — Gal(M/Q) — As C
PGL3(C). Alors p admet un relevement a GLg(C) de conducteur 800 = 2° x 52 de type
icosaédral. Cette représentation a donné lieu a la premiere vérification de la conjecture
d’Artin pour une représentation qui ne se factorise pas par le groupe de Galois d’'une
extension résoluble.

5. Retour sur X — X — 1

L’anneau des entiers du corps quadratique Q(v/—23) est OQ( v=3) =L+ Z =23 V2_23

Soit x : CL(Q(v—23)) — C* d’ordre 3. Il lui correspond un caractere, encore noté x
par abus, du groupe de Gal(Q/Q(v/—23)) par la théorie du corps de classe. Considérons
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encore la représentation induite p = IndQ( /=23)/QX- Cette représentation se factorise par
le groupe de Galois du corps de décomposition L du polynéome X2 — X —1. On a

_ _ 1 _ v xd)
L(P;S)—L(Xﬁ)—gm— ) Vit

ou Q parcourt les idéaux premiers de Q(v/—23) et I les idéaux entiers de Q(1/—23).
Pour p nombre premier, notons N, le nombre de racines de X3 — X — 1 dans le corps
fini F),. Sip=23,onalN,=2.
On a N, =1 si et seulement si p est inerte dans Q(v/—23) c’est-a-dire si et seulement
si le symbole de Legendre <_723> vaut —1.

On a N, = 0 ou 3 sinon et alors p est décomposé dans Q(1/—23). Posons alors

pOq(y=33) = QQ.

On a N, = 3 si et seulement si Frob, = 1 dans Gal(L/Q), c’est-a-dire si et seulement
si Frobg = 1 dans Gal(L/Q(+/—23)), c’est-a-dire si et seulement si la classe de Q dans
Cl(Q(+/—23) est triviale c’est-a-dire si et seulement si I'idéal Q est principal. C’est le cas

si et seulement si il existe n, m € Z tels que Q@ = (n + m1+v2*23)(9Q(\/_—23), c’est-a-dire

p=(n+mPEE)(n+mi=022) = n? + nm + 6m2.
Un calcul analogue montre que NV, = 0 si et seulement si il existe n, m € Z tels que
p = 2n% + nm + 3m2.

Remarque . — Cela peut étre exprimé dans le langage des formes quadratiques di a Gauss.
Notons @ l'ensemble des formes quadratiques (z,y) — ax? + bxy + cy? de discriminant
A = b? — dac = —23. On définit une relation d’équivalence ~ sur @Q par ¢ ~ ¢’ si et
seulement ¢’ ((z,y)) = q((x,y) M) avec M € SLo(Z). Alors @/ ~ s’identifie a C£(Q(+/—23))
par az? + bry + cy® = a(x — 7y)(x — Ty) > la classe de I = Z + Z7. Un systeme de
représentants de @/ ~ est formé de 22 + zy + 692, 222 + 2y + 3y? et 222 — 2y + 9.

Rappelons qu’on a

1 1 1 1
L(p,s) = — ] [ ] :
(p7 5) 23—s H 1— p—2s 1 +p—s +p—23 D N3 1 — 2p—s _|_p—2s
’ p—

Posons alors

L(p,s) = i anpn”*®
n=1

avec, pour p premier # 23, a, =0si N, =1, a, =1si N, =0, ap, = =2 si N, = 3. Ainsi,
si p est premier, a, est le p-eme coefficient de la série

1 m2—|—nm+6n2 2m? +nm+3n2
5 q - q )-
mneZ m,neZ
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Cette formule pour a, est vraie si p n’est pas seulement un nombre premier mais tout
entier > 1.

On a par ailleurs la constatation numérique (voir ci-dessous)

oo

ang” =g [] (1= g™ —¢*™) = n(z)n(232),

n=

ol g = e*™ et n(z) = ¢!/ T, (1 —¢™).

On a n(z)** = ¢ 0_;(1 — ¢™)**, qui est une forme modulaire de poids 12, notée A
et auquel le nom de Ramanujan est souvent associé.

Donc 71 est une forme modulaire de poids 1/2 (& une racine 12-éme pres). De méme
z — 1(232) est une forme modulaire de poids 1/2 pour le groupe de congruence I';1(23) (a
une racine 12-éme pres).

Donc z — n(2)n(232) 3" anq™ est une forme modulaire de poids 1 pour le groupe
I'1(23).

Ce lien entre motifs d’Artin et formes modulaires n’est pas un accident numérique
mais l'illustration d’'un phénomene général.

Remarque . — La démonstration de la constatation numérique suit le schéma suivant.
Il faut savoir qu’a un scalaire pres il n'y a qu’une seule forme modulaire parabolique de
poids 1 pour I'1(23), ce qui n’est pas évident. On peut montrer que les deux membres de
la constatation numériques sont de telles formes modulaires. Comme leurs coefficients de
degré 1 sont égaux, elles sont égales.
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