XVII
Motifs d’Artin de dimension 2

1. Déterminant et parité

Soit K un corps de nombres. Soit p : Gal(K/K) — GLo(C) une représentation. Le
déterminant det(p) de p est alors un caractere

Gal(K /K) — C*.

C’est une représentation de dimension 1, qui est donc décrite par la théorie du corps de
classe.

Soit v une place finie de K telle que I'image par p d’un sous-groupe d’inertie en v est
triviale. Le facteur d’Euler en v de L(p, s) est alors

1
~ 1 —Tr(p(Frob,))|P,| =% + det(p(Frob,))|P,| =2’

Lv(pa S)

ou Tr est la trace.

Soit v une place réelle de K. Soit ¢, € Gal(K/K) une conjugaison complexe (bien
définie a conjugaison pres). Comme p(c,) est une involution, ses valeurs propres sont 1
ou —1. On dit que p est impaire en v si det(p)(c,) = —1, et qu’elle est paire en v sinon.
Si K = Q, il n'y a qu’une seule place a l'infini, si bien qu’il n’est pas nécessaire de la
mentionner.

2. Représentations de dimension 2 réductibles

Soit p : Gal(K/K) — GLy(C) une représentation galoisienne réductible. Comme
toute représentation complexe d’'un groupe fini est semi-simple, il existe deux caracteres
X1, X2 de Gal(K/K) tel que p soit isomorphe & x1 @ x2. Il existe deux caractéres du
groupe des classes d’ideles A /K* correspondant & xi et x2. On a alors

A(p, S) = A(Xb S)A(X27 8)‘

Le conducteur N, de p est égal au produit des conducteurs de x; et x2. Pour toute place
réelle v de K, on a n (p) = nf (x1) +n; (x2). L’équation fonctionnelle de A(p,.) se réduit
au produit des équations fonctionnelles de A(x1,.) et A(x2,.).

Si K = Q, x1 et x2 sont associés a des caracteres de Dirichlet, encore noté y; et xo
par abus de notations, si bien que L(p, s) est un produit de fonctions L de Dirichlet. On
a alors en développant le produit eulérien

> X1(d)x2(n/d)

ns

L(x1 ® x2,5) = Z

n>1
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3. Sous-groupes finis de GL2(C)

Soit G un sous-groupe fini de GL3(C). Notons PG son image dans PGLy(C) =
GL2(C)/Z, ou Z est le centre de GL2(C) formé par les homothéties.

THEOREME 1. — Le groupe PG est de l'un des types suivants :
(1) cyclique,
(2) isomorphe a un groupe diédral (cas diédral),
(3) isomorphe au groupe alterné Ay (cas tétraédral),
(4) isomorphe au groupe symétrique Sy (cas octaédral),
(5i) isomorphe au groupe alterné As (cas icosaédral.)
Démonstration. — Notons que les groupes PGL2(C) et PSLo(C) sont isomorphes.
L’espace vectoriel C? est muni d’un produit hermitien canonique |.,.]. Notons SU(2)
le sous-groupe de GL2(C) préservant ce produit hermitien. On a

sue) = {(§ ) € GLalO) I + 1bP = 1)

Posons
V= {(fy“ yx) € My(C)|(z,y) € R x C}.

C’est un espace euclidien pour la norme h = (z —yx) — —det(h) = z% + |y/*>. On a
alors un morphisme de groupes 7 : SU(2) ~ SO(V) donné par g ~ (h + ghg™!). En effet
'application (h + ghg~!) préserve la norme de V, puisque c’est un déterminant.

Lemme 1. — Le morphisme de groupes T est surjectif de noyau {£I5}.
—it/2
Démonstration. — En effet, pour ¢ € R, I'image de c 0 ei9/2) € SU(2) est, en

identifiant V &4 R x C, donnée par (x,y) — (z,ey), qui est une rotation d’angle ¢ et d’axe
R(1,0). Apres conjugaison par g € SU(2), qui agit transitivement sur les droites de C?,
on en déduit que toutes les rotations sont dans I'image .

Par ailleurs, le noyau de 7 est le normalisateur de SO(V') dans SU(2). Soit g € Ker(7).
Alors g laisse fixe tout axe de rotation et donc toute droite de V. C’est donc une
homothétie. On a donc g € {£+1>}. Cela prouve le lemme.

Revenons a la démonstration du théoreme. On a donc montré que les groupes SU(2) /£
1 et SO(V) sont isomorphes. Munissons C? du produit hermitien

1
(U,U) = [UJU]G - @ gezé[gu’gv]’

ott G = GNSLy(C). On vérifie qu’il s’agit bien d’un produit hermitien. Alors G est formé
de matrices spéciales unitaires pour ce produit. Tous les produits hermitiens se déduisent
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les uns des autres par action d’une matrice de GL2(C) : il existe go € GL2(C) tel que
pour tout (u,v) € C2, on ait
[u, v]a = [gou, gov].

Cela prouve qu'on a G C 90SU(2)g, 1. On s’est ramené & rechercher les sous-groupes finis
de SO3(R) puisqu’on a PG C goSU(2)gy '/ £ 1 ~ SU(2)/ + 1 ~ SO(V). On a montré
que PG agit sur S? la spheére unité de R3. Comme les images des éléments de PG sont
de déterminant 1 dans SO(V), il agissent comme des rotations ou comme l’identité. En
dehors du cas de I'identité, leurs points fixes sont situés sur I’axe de rotation.

Considérons l’ensemble de tous les points fixes sur la sphére S2. Posons X =
Uge pG’gg{il}(Sz)g . Cet ensemble est constitué de paires de points antipodaux : les inter-
sections des axes de rotation avec S?. L’ensemble X est fini puisque c’est la réunion finie
d’ensembles X9 qui ont chacun deux éléments.

Lemme 2. — On a 5 ]
w
2 = 1— 1,
Pal -2 " ra)
wePG\X
Démonstration. — Par la formule de Burnside pour les points fixe d’'un groupe agissant

sur un ensemble, on a

| PG|
|PG.x|'

> X9 ={(g,2) € PG x X[gz =2} = Y [{g € PGlgx = z}| = Z

gePG zeX

Cette derniere quantité est | PG| multipliée par le nombre d’orbites. On en déduit

e = X

gePG

[PG\X| =

Séparons le cas ou g = 1, on obtient

POX| = (X! + 30 1X7]) = 7 (1] +2(PG] - D).

geEPG,g#1
Comme on a |X| =} cpa y lw] et [PG\X| =3 cpc x[1], on a
2(1_L): 3 (1_ﬂ)
| PG| |PG|"
wePG\X

Cela prouve le lemme.

Revenons au théoreme. On a donc |PG\X| = 2 ou 3 puisqu’on a les inégalités

2>2(1—ﬁ)— S - |1|DC|;|)>\PG\X\><1/2

wEPG\X
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Lemme 3. — Si |PG\X| = 2, le groupe PG est cyclique.
Démonstration. — Posons PG\ X = {wy,ws2}. On a

1 || |wa|
T y=1_ 1_
e L) e ek

2(1 —

et donc |wi| + |wz| = 2. On a alors |wi| = |ws| = 1. Donc PG est formé de rotations d’axe
NS, avec N et S points antipodaux, w; = {N}, wa = {S}. Un groupe de rotations qui
fixent un axe est cyclique. Cela prouve le lemme.

Revenons au théoreme. Il reste étudier le cas |[PG\X| = 3. Posons X = aU B U~y
(union disjointe d’orbites sous PG) et a = |PG|/|a|, b = |PG|/|B| et ¢ = |PG|/|y|. Ce
sont des nombres entiers > 1 qui vérifient :

1 1 1 1
20l —-—)=1—-——-—4+1—=-4+1— =
( |PG|) a+ b+ c
et donc
1+1+1_1+ 2
b |PG|

Sia=1,onaj++ |PG| et donc ||+ |5] = 2. On trouve alors |y| = || = 1 et PG
est cyclique comme ci- dessus En effet, v et 5 sont des singletons de points antipodaux de
S? et

Supposons maintenant que a > 1, b > 1 et ¢ > 1.

Lemme 4. — Supposons |PG\X| = 3 et |c| > |b| > |a|] > 1. On est alors dans l'une des
situations sutvantes :
(2) (a,b,c) = (2,2,¢) avec |PG| = 2¢
(3) (a,b,c) = (2,3,3) avec |PG| = 12
(4) (a,b,c) = (2,3,4) avec |PG| = 24
)=1(2,3,5

(5) (a,b,c ,3,5) avec |PG| = 60.
Démonstration. — On considere I’équation
1 n 1 n 1 " 2
a b ¢ |PG|

Sia>3,onal/a+1/b+1/c<3x1/3=1. Cest absurde, donc on a a = 2.
Sib>4,onal/a+1/b+1/c<1/2+1/441/4=1. C’est absurde, donc on a b < 3.
Sia=2etb=3,onal/a+1/b+1/c<1/2+1/3+41/cet donc c <5.

On retrouve les cas annoncés. Cela prouve le lemme.

Revenons au théoreme. Tous les cas annoncés dans le lemme se produisent.

Le cas (2,2, ¢) est celui des isométries d’un polygone régulier & ¢ sommets situés sur
I'équateur de S2.

Le cas (2,2, 3) est celui des isométries d’'un tétracdre régulier inscrit dans S2.

Le cas (2,3,3) est celui des isométries d’un octaedre régulier inscrit dans S2.
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Le cas (2,3,5) est celui des isométries d'un icosacdre régulier inscrit dans S2.

Il reste & voir pourquoi dans le type (a,b,c), v est I’ensemble des sommets d’un
polyedre régulier, B est I’ensemble des centres des faces, a est ’ensemble des milieux des
aretes.

Les divers isomorphismes avec le groupe diédral D., le groupe alterné Ay, le groupe
symétrique Sy et le groupe alterné As; sont classiques. Cela achéve de prouver le théoreme.

Remarque 1. — 1) Parmi ces groupes, seul le cas icosaédral donne lieu au cas d’un groupe
G non résoluble.
2) On peut envisager de trouver des extensions galoisiennes ayant pour groupe de
Galois le groupe trouvé.
3) Si PG est cyclique, le groupe G est abélien. Alors C? est un G-module réductible.
4) Si PG n’est pas cyclique, G n’est pas abélien et C? est un G-module irréductible.
5) Le premier cas a étudier est le cas diédral. Soit G tel que PG est isomorphe au
groupe diédral D,,. Alors G admet un sous-groupe d’indice 2 dont I'image dans PG est
C, C D, cyclique d’ordre n.

4. Induites de caracteres

Soit K un corps de nombres. Soit K une cloture algébrique de K. Soit L une extension
quadratique de K contenue dans K, qui est une cloture algébrique de K.
Soit x : Gal(K /L) — C* un caractere d’ordre fini. Alors on pose

_ T qCalK/K)
p= IndGal(K/L) X =Indz, g x.

Rappelons qu’on a
A(p,s) = Ax, s).

Soit ¢ I'élément non trivial de Gal(L/K). Soit ¢ un prolongement & Gal(K/K). Alors x
admet un caractére conjugué x, : Gal(K/L) — C* donné par

Xo(T) = x(6767")

qui est bien défini car Gal(K /L) est d’indice 2 dans Gal(K /K) et donc normal.

Lemme 5. — Le caractére x, est indépendant du choiz de o.
Démonstration. — Soit ¢’ un prolongement de o & Gal(K/K). On a
x(Gr6 Y /x(6' 16 = x(6r6 e e ).

On écrit

sro o't 16" = (6re 1) (6'a ) (e e ) (667

ot les quatre facteurs entre parentheéses sont dans Gal(K /L), et sont deux paires d’inverses,
si bien que le produit de leurs images par y vaut 1. Cela prouve le lemme.
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Soit G un groupe. Soit H un sous-groupe. Rappelons que l'induite p de H a G d’'un
caractere x d'un sous-groupe H d’un groupe G peut étre décrite ainsi. Soit (gs)ses un
systeme de représentants de G/H. Considérons 'espace vectoriel de base (gs)ses. Soit T €
G. Posons p(7)gs = x(g,179s)gr, avec r € S uniquement déterminé tel que g, ‘79, € H.
On peut vérifier qu’il s’agit d’une représentation, i.e. que p(77’) = p(7)p(7'). En effet, on a
pour tout s € S et r,t € S appropriés : p(77')gs = x (97 '77'9:)9r = X (97 Tg9; 7' 95)gr =
X(g7 g0 x (g 7' 95)9r = x(95 "' 95)p(T)ge = p(T)x(9; T 95) 91 = p(T)p(T)gs-

Soit S = {1,4} un systeme de représentants de Gal(K /K)/Gal(K/L). On peut noter
1, 6 la base de la représentation induite.

Soit E le C-espace vectoriel de base (1,5). Soit 7 € Gal(K/K).

Si 7€ Gal(K/L), on a p(1)1 = x(7)1, p(1)d = x(6-175)5. On a donc

p(r) = <X(OT) XU(ET) ) :

Si T ¢ Gal(K/L), on a 7 = 5(617) avec (6717) € Gal(K/L). On a p(1)1 =
x(6717)5 et p(1).6 = x(75)1. On a donc

PROPOSITION 2. — Les assertions suivantes sont équivalentes.

(i) p est irréductible.

(ii) p est diédrale.

(i) On a X # Xo-
Démonstration. — On a vu que p est réductible si et seulement si PIm(p) est cyclique.
Alors Im(p) est cyclique ou diédrale. Les deux premieres conditions sont donc équivalentes.

La représentation est irréductible si et seulement si p est produit d’'une homothétie et
d’une symétrie. Il faut pour cela que x(67'7) = x(75), c’est-a-dire x = x,. Cela prouve
la proposition.

Notons Ny le conducteur de y. Alors le conducteur de p est
N, =DrNr K (Ny).

Soit v une place réelle de K. Soit ¢, € Gal(K/K) une conjugaison complexe corre-
spondante (bien définie a conjugaison pres). S’il y a une seule place w de L au dessus de
v,on a L, = C.

Sinon, il y a deux places w et w’, qui sont réelles, de L au dessus de v. Notons f,, et
fur des conjugaisons complexes correspondantes de Gal(K /L.

PROPOSITION 3. — La représentation induite p est impaire en v si et seulement si ['une
des conditions suivantes est vérifiée :
(i) Il y a une place complere w de L au dessus de v.
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(i) 1l y a deux places w et w', qui sont réelles, de L au dessus de v, et on a

X(fw)X(fw) = —1 (on dit que x est de signature (—1,1)).
Démonstration. — Au vu de la description de I'induite donnée ci-dessus, on a, dans le cas

(i), on a ¢, ¢ Gal(K/L) et donc

qui a pour déterminant —1.
Dans le cas (i), on a f, = & f,0 ' et donc

pley) = <X<gw) X(J?w')) ,

qui a pour déterminant x(fu)x(fw ), d’ou la condition annoncée.

PROPOSITION 4. — Si limage de p dans PGLo(C) est le groupe diédral D,,, alors n est
Uordre de x ' xo.
Démonstration. — Dans ce cas le sous-groupe cyclique C,, d’ordre n de D,, est I'image de

p(Gal(K /L)) dans PGLy(C). Mais dans PGL2(C), on a, pour 7 € Gal(K /L),

plr) = (X%T) X;@) - ((1) (Xaxgl)(T)) |

Donc n est l'ordre de x " 'x,-.

Remarque . — Soit € : Gal(L/K) — {£1} le caractére quadratique. Si 7 € Gal(K /L), on
a

det(p)(1) = (xxo)(7)-
Si T ¢ Gal(K /L), on a
det(p)(r) = =x(7)x0 (07).

Donc si x, = X, on a det(p) = e. C’est toujours le cas si x est d’ordre 3, x # 1 et p
irréductible.
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