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Motifs d’Artin de dimension 2

1. Déterminant et parité

Soit K un corps de nombres. Soit ρ : Gal(K̄/K) → GL2(C) une représentation. Le
déterminant det(ρ) de ρ est alors un caractère

Gal(K̄/K)→ C×.

C’est une représentation de dimension 1, qui est donc décrite par la théorie du corps de
classe.

Soit v une place finie de K telle que l’image par ρ d’un sous-groupe d’inertie en v est
triviale. Le facteur d’Euler en v de L(ρ, s) est alors

Lv(ρ, s) =
1

1− Tr(ρ(Frobv))|Pv|−s + det(ρ(Frobv))|Pv|−2s
,

où Tr est la trace.
Soit v une place réelle de K. Soit cv ∈ Gal(K̄/K) une conjugaison complexe (bien

définie à conjugaison près). Comme ρ(cv) est une involution, ses valeurs propres sont 1
ou −1. On dit que ρ est impaire en v si det(ρ)(cv) = −1, et qu’elle est paire en v sinon.
Si K = Q, il n’y a qu’une seule place à l’infini, si bien qu’il n’est pas nécessaire de la
mentionner.

2. Représentations de dimension 2 réductibles

Soit ρ : Gal(K̄/K) → GL2(C) une représentation galoisienne réductible. Comme
toute représentation complexe d’un groupe fini est semi-simple, il existe deux caractères
χ1, χ2 de Gal(K̄/K) tel que ρ soit isomorphe à χ1 ⊕ χ2. Il existe deux caractères du
groupe des classes d’idèles A×K/K

× correspondant à χ1 et χ2. On a alors

Λ(ρ, s) = Λ(χ1, s)Λ(χ2, s).

Le conducteur Nρ de ρ est égal au produit des conducteurs de χ1 et χ2. Pour toute place
réelle v de K, on a n+

v (ρ) = n+
v (χ1) +n+

v (χ2). L’équation fonctionnelle de Λ(ρ, .) se réduit
au produit des équations fonctionnelles de Λ(χ1, .) et Λ(χ2, .).

Si K = Q, χ1 et χ2 sont associés à des caractères de Dirichlet, encore noté χ1 et χ2

par abus de notations, si bien que L(ρ, s) est un produit de fonctions L de Dirichlet. On
a alors en développant le produit eulérien

L(χ1 ⊕ χ2, s) =
∑
n≥1

∑
d|n χ1(d)χ2(n/d)

ns
.
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3. Sous-groupes finis de GL2(C)

Soit G un sous-groupe fini de GL2(C). Notons PG son image dans PGL2(C) =
GL2(C)/Z, où Z est le centre de GL2(C) formé par les homothéties.

Théorème 1. — Le groupe PG est de l’un des types suivants :
(1) cyclique,
(2) isomorphe à un groupe diédral (cas diédral),
(3) isomorphe au groupe alterné A4 (cas tétraédral),
(4) isomorphe au groupe symétrique S4 (cas octaédral),
(5i) isomorphe au groupe alterné A5 (cas icosaédral.)

Démonstration. — Notons que les groupes PGL2(C) et PSL2(C) sont isomorphes.
L’espace vectoriel C2 est muni d’un produit hermitien canonique [., .]. Notons SU(2)

le sous-groupe de GL2(C) préservant ce produit hermitien. On a

SU(2) = {
(
a −b̄
b ā

)
∈ GL2(C)| |a|2 + |b|2 = 1}.

Posons

V = {
(
x ȳ
y −x

)
∈ M2(C)|(x, y) ∈ R×C}.

C’est un espace euclidien pour la norme h =

(
x ȳ
y −x

)
7→ −det(h) = x2 + |y|2. On a

alors un morphisme de groupes τ : SU(2) ' SO(V ) donné par g 7→ (h 7→ ghg−1). En effet
l’application (h 7→ ghg−1) préserve la norme de V , puisque c’est un déterminant.

Lemme 1. — Le morphisme de groupes τ est surjectif de noyau {±I2}.

Démonstration. — En effet, pour t ∈ R, l’image de

(
e−it/2 0

0 eit/2

)
∈ SU(2) est, en

identifiant V à R×C, donnée par (x, y) 7→ (x, eity), qui est une rotation d’angle t et d’axe
R(1, 0). Après conjugaison par g ∈ SU(2), qui agit transitivement sur les droites de C2,
on en déduit que toutes les rotations sont dans l’image τ .

Par ailleurs, le noyau de τ est le normalisateur de SO(V ) dans SU(2). Soit g ∈ Ker(τ).
Alors g laisse fixe tout axe de rotation et donc toute droite de V . C’est donc une
homothétie. On a donc g ∈ {±I2}. Cela prouve le lemme.

Revenons à la démonstration du théorème. On a donc montré que les groupes SU(2)/±
1 et SO(V ) sont isomorphes. Munissons C2 du produit hermitien

(u, v) 7→ [u, v]G =
1

|G̃|

∑
g∈G̃

[gu, gv],

où G̃ = G∩SL2(C). On vérifie qu’il s’agit bien d’un produit hermitien. Alors G̃ est formé
de matrices spéciales unitaires pour ce produit. Tous les produits hermitiens se déduisent
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les uns des autres par action d’une matrice de GL2(C) : il existe g0 ∈ GL2(C) tel que
pour tout (u, v) ∈ C2, on ait

[u, v]G = [g0u, g0v].

Cela prouve qu’on a G̃ ⊂ g0SU(2)g−1
0 . On s’est ramené à rechercher les sous-groupes finis

de SO3(R) puisqu’on a PG ⊂ g0SU(2)g−1
0 / ± 1 ' SU(2)/ ± 1 ' SO(V ). On a montré

que PG agit sur S2 la sphère unité de R3. Comme les images des éléments de PG sont
de déterminant 1 dans SO(V ), il agissent comme des rotations ou comme l’identité. En
dehors du cas de l’identité, leurs points fixes sont situés sur l’axe de rotation.

Considérons l’ensemble de tous les points fixes sur la sphère S2. Posons X =
∪g∈PG,g/∈{±1}(S

2)g. Cet ensemble est constitué de paires de points antipodaux : les inter-
sections des axes de rotation avec S2. L’ensemble X est fini puisque c’est la réunion finie
d’ensembles Xg qui ont chacun deux éléments.

Lemme 2. — On a

2− 2

|PG|
=

∑
ω∈PG\X

(1− |ω|
|PG|

).

Démonstration. — Par la formule de Burnside pour les points fixe d’un groupe agissant
sur un ensemble, on a

∑
g∈PG

|Xg| = |{(g, x) ∈ PG×X|gx = x}| =
∑
x∈X
|{g ∈ PG|gx = x}| =

∑
x∈X

|PG|
|PG.x|

.

Cette dernière quantité est |PG| multipliée par le nombre d’orbites. On en déduit

|PG\X| = 1

|PG|
∑
g∈PG

|Xg|.

Séparons le cas où g = 1, on obtient

|PG\X| = 1

|PG|
(|X1|+

∑
g∈PG,g 6=1

|Xg|) =
1

|PG|
(|X|+ 2(|PG| − 1)).

Comme on a |X| =
∑
ω∈PG\X |ω| et |PG\X| =

∑
ω∈PG\X |1|, on a

2(1− 1

|PG|
) =

∑
ω∈PG\X

(1− |ω|
|PG|

).

Cela prouve le lemme.

Revenons au théorème. On a donc |PG\X| = 2 ou 3 puisqu’on a les inégalités

2 > 2(1− 1

|PG|
) =

∑
ω∈PG\X

(1− |ω|
|PG|

) ≥ |PG\X| × 1/2.
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Lemme 3. — Si |PG\X| = 2, le groupe PG est cyclique.
Démonstration. — Posons PG\X = {ω1, ω2}. On a

2(1− 1

|PG|
) = 1− |ω1|

|PG|
+ 1− |ω2|

|PG|
,

et donc |ω1|+ |ω2| = 2. On a alors |ω1| = |ω2| = 1. Donc PG est formé de rotations d’axe
NS, avec N et S points antipodaux, ω1 = {N}, ω2 = {S}. Un groupe de rotations qui
fixent un axe est cyclique. Cela prouve le lemme.

Revenons au théorème. Il reste étudier le cas |PG\X| = 3. Posons X = α ∪ β ∪ γ
(union disjointe d’orbites sous PG) et a = |PG|/|α|, b = |PG|/|β| et c = |PG|/|γ|. Ce
sont des nombres entiers ≥ 1 qui vérifient :

2(1− 1

|PG|
) = 1− 1

a
+ 1− 1

b
+ 1− 1

c

et donc
1

a
+

1

b
+

1

c
= 1 +

2

|PG|
.

Si a = 1, on a 1
b + 1

c = 2
|PG| et donc |γ|+ |β| = 2. On trouve alors |γ| = |β| = 1 et PG

est cyclique comme ci-dessus. En effet, γ et β sont des singletons de points antipodaux de
S2 et

Supposons maintenant que a > 1, b > 1 et c > 1.

Lemme 4. — Supposons |PG\X| = 3 et |c| ≥ |b| ≥ |a| > 1. On est alors dans l’une des
situations suivantes :

(2) (a, b, c) = (2, 2, c) avec |PG| = 2c
(3) (a, b, c) = (2, 3, 3) avec |PG| = 12
(4) (a, b, c) = (2, 3, 4) avec |PG| = 24
(5) (a, b, c) = (2, 3, 5) avec |PG| = 60.

Démonstration. — On considère l’équation

1

a
+

1

b
+

1

c
= 1 +

2

|PG|
.

Si a ≥ 3, on a 1/a+ 1/b+ 1/c ≤ 3× 1/3 = 1. C’est absurde, donc on a a = 2.
Si b ≥ 4, on a 1/a+ 1/b+ 1/c ≤ 1/2 + 1/4 + 1/4 = 1. C’est absurde, donc on a b ≤ 3.
Si a = 2 et b = 3, on a 1/a+ 1/b+ 1/c ≤ 1/2 + 1/3 + 1/c et donc c ≤ 5.
On retrouve les cas annoncés. Cela prouve le lemme.

Revenons au théorème. Tous les cas annoncés dans le lemme se produisent.
Le cas (2, 2, c) est celui des isométries d’un polygone régulier à c sommets situés sur

l’équateur de S2.
Le cas (2, 2, 3) est celui des isométries d’un tétraèdre régulier inscrit dans S2.
Le cas (2, 3, 3) est celui des isométries d’un octaèdre régulier inscrit dans S2.
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Le cas (2, 3, 5) est celui des isométries d’un icosaèdre régulier inscrit dans S2.
Il reste à voir pourquoi dans le type (a, b, c), γ est l’ensemble des sommets d’un

polyèdre régulier, β est l’ensemble des centres des faces, α est l’ensemble des milieux des
arêtes.

Les divers isomorphismes avec le groupe diédral Dc, le groupe alterné A4, le groupe
symétrique S4 et le groupe alterné A5 sont classiques. Cela achève de prouver le théorème.

Remarque 1. — 1) Parmi ces groupes, seul le cas icosaédral donne lieu au cas d’un groupe
G non résoluble.

2) On peut envisager de trouver des extensions galoisiennes ayant pour groupe de
Galois le groupe trouvé.

3) Si PG est cyclique, le groupe G est abélien. Alors C2 est un G-module réductible.
4) Si PG n’est pas cyclique, G n’est pas abélien et C2 est un G-module irréductible.
5) Le premier cas à étudier est le cas diédral. Soit G tel que PG est isomorphe au

groupe diédral Dn. Alors G admet un sous-groupe d’indice 2 dont l’image dans PG est
Cn ⊂ Dn cyclique d’ordre n.

4. Induites de caractères

Soit K un corps de nombres. Soit K̄ une clôture algébrique de K. Soit L une extension
quadratique de K contenue dans K̄, qui est une clôture algébrique de K.

Soit χ : Gal(K̄/L)→ C× un caractère d’ordre fini. Alors on pose

ρ = Ind
Gal(K̄/K)

Gal(K̄/L)
χ = IndL/Kχ.

Rappelons qu’on a

Λ(ρ, s) = Λ(χ, s).

Soit σ l’élément non trivial de Gal(L/K). Soit σ̃ un prolongement à Gal(K̄/K). Alors χ
admet un caractère conjugué χσ : Gal(K̄/L)→ C× donné par

χσ(τ) = χ(σ̃τ σ̃−1)

qui est bien défini car Gal(K̄/L) est d’indice 2 dans Gal(K̄/K) et donc normal.

Lemme 5. — Le caractère χσ est indépendant du choix de σ̃.
Démonstration. — Soit σ̃′ un prolongement de σ à Gal(K̄/K). On a

χ(σ̃τ σ̃−1)/χ(σ̃′τ σ̃′−1) = χ(σ̃τ σ̃−1σ̃′τ−1σ̃′−1).

On écrit

σ̃τ σ̃−1σ̃′τ−1σ̃′−1 = (σ̃τ σ̃−1)(σ̃′σ̃−1)(σ̃τ−1σ̃−1)(σ̃σ̃′−1)

où les quatre facteurs entre parenthèses sont dans Gal(K̄/L), et sont deux paires d’inverses,
si bien que le produit de leurs images par χ vaut 1. Cela prouve le lemme.
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Soit G un groupe. Soit H un sous-groupe. Rappelons que l’induite ρ de H à G d’un
caractère χ d’un sous-groupe H d’un groupe G peut être décrite ainsi. Soit (gs)s∈S un
système de représentants de G/H. Considérons l’espace vectoriel de base (gs)s∈S . Soit τ ∈
G. Posons ρ(τ)gs = χ(g−1

r τgs)gr, avec r ∈ S uniquement déterminé tel que g−1
r τgs ∈ H.

On peut vérifier qu’il s’agit d’une représentation, i.e. que ρ(ττ ′) = ρ(τ)ρ(τ ′). En effet, on a
pour tout s ∈ S et r, t ∈ S appropriés : ρ(ττ ′)gs = χ(g−1

r ττ ′gs)gr = χ(g−1
r τgtg

−1
t τ ′gs)gr =

χ(g−1
r τgt)χ(g−1

t τ ′gs)gr = χ(g−1
t τ ′gs)ρ(τ)gt = ρ(τ)χ(g−1

t τ ′gs)gt = ρ(τ)ρ(τ ′)gs.
Soit S = {1, σ̃} un système de représentants de Gal(K̄/K)/Gal(K̄/L). On peut noter

1, σ̃ la base de la représentation induite.
Soit E le C-espace vectoriel de base (1, σ̃). Soit τ ∈ Gal(K̄/K).
Si τ ∈ Gal(K̄/L), on a ρ(τ)1 = χ(τ)1, ρ(τ)σ̃ = χ(σ̃−1τ σ̃)σ̃. On a donc

ρ(τ) =

(
χ(τ) 0

0 χσ(τ)

)
.

Si τ /∈ Gal(K̄/L), on a τ = σ̃(σ̃−1τ) avec (σ̃−1τ) ∈ Gal(K̄/L). On a ρ(τ)1 =
χ(σ̃−1τ)σ̃ et ρ(τ).σ̃ = χ(τ σ̃)1. On a donc

ρ(τ) =

(
0 χ(τ σ̃)

χ(σ̃−1τ) 0

)
.

Proposition 2. — Les assertions suivantes sont équivalentes.
(i) ρ est irréductible.
(ii) ρ est diédrale.
(iii) On a χ 6= χσ.

Démonstration. — On a vu que ρ est réductible si et seulement si P Im(ρ) est cyclique.
Alors Im(ρ) est cyclique ou diédrale. Les deux premières conditions sont donc équivalentes.

La représentation est irréductible si et seulement si ρ est produit d’une homothétie et
d’une symétrie. Il faut pour cela que χ(σ̃−1τ) = χ(τ σ̃), c’est-à-dire χ = χσ. Cela prouve
la proposition.

Notons Nχ le conducteur de χ. Alors le conducteur de ρ est

Nρ = DLNL/K(Nχ).

Soit v une place réelle de K. Soit cv ∈ Gal(K̄/K) une conjugaison complexe corre-
spondante (bien définie à conjugaison près). S’il y a une seule place w de L au dessus de
v, on a Lw = C.

Sinon, il y a deux places w et w′, qui sont réelles, de L au dessus de v. Notons fw et
fw′ des conjugaisons complexes correspondantes de Gal(K̄/L.

Proposition 3. — La représentation induite ρ est impaire en v si et seulement si l’une
des conditions suivantes est vérifiée :

(i) Il y a une place complexe w de L au dessus de v.
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(ii) Il y a deux places w et w′, qui sont réelles, de L au dessus de v, et on a
χ(fw)χ(fw′) = −1 (on dit que χ est de signature (−1, 1)).
Démonstration. — Au vu de la description de l’induite donnée ci-dessus, on a, dans le cas
(i), on a cv /∈ Gal(K̄/L) et donc

ρ(τ) =

(
0 χ(cvσ̃)

χ(c−1
v σ̃) 0

)
,

qui a pour déterminant −1.
Dans le cas (ii), on a fw′ = σ̃fwσ̃

−1 et donc

ρ(cv) =

(
χ(fw) 0

0 χ(fw′)

)
,

qui a pour déterminant χ(fw)χ(fw′), d’où la condition annoncée.

Proposition 4. — Si l’image de ρ dans PGL2(C) est le groupe diédral Dn, alors n est
l’ordre de χ−1χσ.
Démonstration. — Dans ce cas le sous-groupe cyclique Cn d’ordre n de Dn est l’image de
ρ(Gal(K̄/L)) dans PGL2(C). Mais dans PGL2(C), on a, pour τ ∈ Gal(K̄/L),

ρ(τ) =

(
χ(τ) 0

0 χσ(τ)

)
=

(
1 0
0 (χσχ

−1)(τ)

)
.

Donc n est l’ordre de χ−1χσ.

Remarque . — Soit ε : Gal(L/K)→ {±1} le caractère quadratique. Si τ ∈ Gal(K̄/L), on
a

det(ρ)(τ) = (χχσ)(τ).

Si τ /∈ Gal(K̄/L), on a
det(ρ)(τ) = −χ(σ̃τ)χσ(σ̃τ).

Donc si χσ = χ̄, on a det(ρ) = ε. C’est toujours le cas si χ est d’ordre 3, χ 6= 1 et ρ
irréductible.

XVII — 7


