XVI
Fonctions L d’Artin

1. Applications globales de la théorie de la ramification
Soit K un corps de nombres. Soit L|K une extension galoisienne finie. Soit Q un
premier de Og. Soit P un premier de L au dessus de K. Notons Dp le groupe de
décomposition en P de Gal(L/K). 1l est muni d’une filtration
Dp = G*LQ D) GO’Q D) GLQ O...D Gn,g = {1}
Le groupe G; g ne dépend que de Q a conjugaison pres. On a Gy,o = 1 pour presque tout

Q.
Soit p : Gal(L/K) — GL(V) une motif d’Artin. On s’intéresse a la filtration

p(G-1,0) D p(Go,g) D p(G1,0) D ... D p(Gn,o) = {1}

comme mesure de la complexité de p en Q.

COROLLAIRE 1. — On a
Dr/k = H QZZOUGi,Ql—l)
QN K —0OK, oo
Démonstration. — On utilise la formule

Dr/x = HDLP/KQ NOk
Q

et on applique la formule du discriminant local.
Il en résulte un théoreme de finitude global qui complete la théorie de Minkowski.

COROLLAIRE 2. — Soit S un ensemble fini de places de K. Soit d un entier > 1. 1l
n’existe qu’un nombre fini (a isomorphisme prés) d’extensions de K de degré d qui sont
non ramifices en dehors de S.

Démonstration. — Comme toute extension de degré d est contenue dans une extension
galoisienne de degré < d!, on peut se limiter aux extensions galoisiennes. D’apres la théorie
de Minkowski, il n’existe qu'un nombre fini d’extensions de K de discriminant donné. Il
reste a montrer que pour tout Q € .5, la valuation vg(Dr, k) ne peut prendre qu’un nombre
fini de valeurs lorsque [L : K| est borné.
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Pour i entier > 1, le i-eme groupe de ramification G; d’'un groupe de décomposition
en Q est trivial pour i > vp(i)/(p — 1), et donc pour ¢ > [L : K|/(p — 1) et donc pour
i>[L: K]. Comme |G;| <[L: K], ona

[L:K]

vo(PLp/ko) = Z (IGi] = 1) < [L: K] x [K : Q].

On a donc
H Q[L:K]X[K:Q] C DL/K
Qes

On en déduit la finitude cherchée.
2. Application a la théorie du corps de classe local

La premiere application est le théoreme de Hasse—Arf (sans démonstration). Soit K¢
une extension finie de Q,,.

THEOREME 1 (Hasse-Arf). — Soit Lp|Kg une extension abélienne finie. Les sauts dans
la filtration (G;)i>—1 de Gal(Lp/Kg) sont concentrés en les nombres entiers (i.e. si

Gig1 # Gy, onapr, k(1) €Z).

La deuxieme application concerne une forme plus précise de la théorie du corps de
classe local.

THEOREME 2. — L’isomorphisme de la théorie du corps de classe local
K3/Nip/ko(Lp) = Gal(Lp/Ko)
induit un isomorphisme de groupes
UL INLp io (LF) MUY = G™ © Gal(Lp/Ko),

where G™ est le n-éme groupe de ramification de Gal(Lp/Kg) en numérotation supérieure.

Le plus petit entier n > 0 tel que Ul(;g C Nip,/ko(Lp) est le conducteur d’Artin
(local) de Lp|Kg. C’est aussi le plus petit entier n tel que G™ = {1}. On I’écrit aussi Q"
(notation multiplicative) comme un idéal de Og. Il est nul si et seulement Lp|Kg est non
ramifiée.

Lorsqu’on a une extension abélienne de corps de nombres L|K, on lui associe un
conducteur d’Artin global qui est le produit des conducteur locaux Q™2 pour Q parcourant
les places finies. On a ng = 1 pour presque tout Q. Le conducteur global est la partie
finie du cycle arithmétique associé a l'extension L|K.
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3. Le conducteur d’un motif d’Artin

Soit K un corps de nombres. Soit L|K une extension galoisienne finie. Soit p :
Gal(L/K) — GL(V) un motif d’Artin. Notons d la dimension de V. Supposons p injective.

Pour H sous-groupe de Gal(L/K), on pose VHZ = {v € V/o.w =v(oc € H)}. Clest le
sous-espace de V' formé par les invariants sous H. Pour Q premier de K, et P premier de
L au dessus de Q, on note G; le groupe de ramification en notation inférieure du groupe
de décomposition en P de Gal(L/K).

On pose

ng=n=3y_ Gl (dim (V) — dim(V ).

C’est le conducteur d’Artin (local en Q) de p. C’est a priori un nombre rationnel, ce que
Artin a précisé dans le théoréme suivant.

THEOREME 3 (Artin). — On a ng € Z.

La démonstration de ce théoreme repose sur le théoreme de Hasse-Arf et sur la
représentation d’Artin de Gal(Lp/Kg). Pour tout o € Gal(Lp/Kg), on pose, si o # 1,

ag(0) = = fPiLp,x, (0)

et

ac(l) = fp Z iLp, gy (0);

ceG,0#1

ou fp est le degré résiduel de l'extension Lp|Kg. La fonction ag est une fonction centrale
(i.e. invariante par conjugaison) sur G. C’est donc une combinaison linéaire de caractere
de représentations. Mais on a mieux que cela.

THEOREME 4 (Artin). — La fonction ag est le caractére d’une représentation de G.

La représentation en question s’appelle la représentation d’Artin.

Tout cela permet de voir le conducteur d’Artin comme un idéal de Kg. C’est-a-dire
Q" (notation multiplicative).

Le conducteur d’Artin global de p est I'idéal de Ok donné par la formule

N=N,= [ o

QeNK—OK, 00

Il provient seulement des places finies de K. En les places infinies, la seule donnée
concerne places réelles v et est contenue dans la dimension des sous-espaces invariants
par la conjugaison complexe en v.

La formule du conducteur-discriminant (Fithrerdiskriminantenproduktformel) due &
Hasse et Artin est la suivante.
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THEOREME 5 (Hasse, Artin). — Notons Dy i le discriminant relatif de lextension L|K.
On a

Dk =[N,
)

ot p parcourt les représentations irréductibles (a isomorphisme prés) de G et d, désigne
la dimension de p.

Lorsque l'extension L|K est abélienne, le produit porte sur les caracteres de dimension
1 de I'extension abélienne L|K et les exposants sont tous égaux a 1.

4. Fonction L et induction de représentations

PROPOSITION 6. — Soient L|K une extension galoisienne finie de groupe de Galois G.
Soit M un sous-corps de L contenant K. Notons H le groupe de Galois de l’extension
L|M. Soit 7 une représentation de H. Notons p la représentation de G induite de 7. On
a

L(p,s) = L(7,s).

Démonstration. — Notons F I'espace sous-jacent a 7. Posons E = F ®@cg) C[G] ~ ©pBF,
ou (8 parcourt un systéme de représentants de G/H, I’espace sous-jacent a p.

La formule se démontre facteur par facteur.

Soit Q un idéal premier de Ok. Pour R idéal premier de Oy, au-dessus de Q, on
choisit un idéal premier Pr de Of, au-dessus de R. Notons Dp (resp. Ip) le groupe de
décomposition en P de G et Ep = DpNH (resp. Jp = IpNH) le groupe de décomposition
(resp. d’inertie) en P de H. Notons fr le degré résiduel en R de l'extension M|K. La
substitution de Frobenius dans Dp N H est la puissance fr-éme de la substitution de
Frobenius Frobp de Dp/Ip. Ainsi, c’est Frob{f.

On choisit I'un des idéaux Py de O, au dessus de Q. Pour chaque idéal Pr, on choisit
vr € G tel que Pr = vr(Py). On a alors u&leyR = Dp,.

On montre 'identité annoncée dans la proposition facteur par facteur. Il faut montrer
dans C[X] :

det(1 — X p(Frobp,); E'70) = J[ det(1 — X7(Frobf ); F/7=),
R|Q

ou R parcourt les idéaux premiers de Oy, au-dessus de Q (i.e. Pr parcourt les conjugués
de P au dessus de Q).

Ecrivons explicitement E. Pour chaque R, soit (ag,;); un systeme de représentants de
Dp,/(Dp, N 1/7_11H vr). Les ar jygr forment un systeme de représentants de G/H lorsque
R et j varient. L’écriture concrete de E donne

E = @j,RaR,jVRF-
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On pose Er = @jar jyrF. On obtient une décomposition £ = @rEx. On a donc

det(1 — X p(Frobp,); E'70) = H det(1 — XT(Frobf,?;); E7127J0)
R|IQ

Ainsi, il suffit de prouver qu’on a
det(1 — X7(FrobfZ ); F/P= ) = det(1 — X7(FrobiZ ); Ex°).
En conjuguant par vp, on obtient
det(1 — X7(FrobfZ ); F/P= ) = det(1 — X7(FrobiR ); (v F)/Po vrtive’y,
Il faut donc montrer

det(1 — X7(FrobiZ ); Eg®) = det(1 — X7(FrobiR ); (vg )P r vz,

Dp . . ..
Comme on a Ind,™° VrE' = ER, on s’est ramené au cas ou G = Dp, et au cas ou il
'POHVRHV_

n’y a qu'un seul idéal premier de Oj; au dessus de Q. C’est ce que 'on suppose désormais.

D —1 I :
On a de plus Ind,"™ ) (vr F)PorHVR — F2F0 ce qui nous permet de nous
”PONVRHV%

ramener au cas o Ip, = {1}, ce que nous supposerons désormais.
Il reste a montrer I'identité suivante

det(1 — X7(Frobp); E) = det(1 — X/? 7 (Frobp)’?; F).

Comme 7(Frobp / 7) agissant sur F' est diagonalisable, quitte a découper F' en sous-espaces
propres, on peut supposer que F' est de dimension 1 et donc que T(FI'ObeP) est la
multiplication par A. Quitte a changer X en X/\, on peut supposer que T(FI'Ob’pf 7
est l'identité. On s’est alors ramené a la situation de la séance précédente.

On peut généraliser la proposition 6 pour tenir compte des places infinies. On obtient
alors la formule

A™(p,s) = A™ (7, s).

5. Le théoreme de Brauer et ses conséquences

Le théoreme suivant, dii a Brauer, releve purement de la théorie des représentations
de groupes finis. La démonstration en est élémentaire mais est trop longue pour figurer
dans ces notes.

THEOREME 7 (Brauer). — Soit G un groupe fini. Toute fonction centrale G — C est
combinaison C-linéaire de caractéres d’induites de représentations de dimension 1 de sous-
groupes de G. De plus, si p est une représentation de G, son caractére est une combinaison
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Z-linéaire de caractéres d’induites de représentations de dimension 1 de sous-groupes de

G.

Noter que si Hy, Hs,..., H, sont des sous-groupes de G, et my, ms,...,m,, sont des en-
tiers, @i(Indgi 7;)™ n’est pas une représentation de G. Mais on parle d’une représentation
virtuelle. Le théoreme 2 se traduit par un isomorphisme de représentations

P D Bin;<o(Ind§y 7)™ = @ ny>0(Indf 7)™

Noter que si p est isomorphe a @Z-(Indgi 7;)™, la représentation p conjuguée de p est
isomorphe a @i(lndgiﬂ)”i. C’est en particulier le cas si les 7; sont de dimension 1.

COROLLAIRE 1. — Soient L|K une extension galoisienne finie de groupe de Galois G.
Soit p une représentation galoisienne de G. Il existe des sous-corps My, Ms,..., M, de L
contenant K et tels que les extensions LMy, L|Ms,..., L|M,, sont abéliennes, des entiers
mi,...,my € 4, des caracteres de Hecke x1,..., Xn pour My, Ms,..., M, respectivement tels

que
n

L(ﬂ? 8) = HL(Xi7 S)mi'

=1

En particulier, s — L(p,s) admet un prolongement méromorphe ¢ C . Démonstration.
— 11 suffit de combiner le théoreme de Brauer avec la formule pour la fonction L des
représentations induites.

On peut déja en déduire une équation fonctionnelle, a quelques facteurs pres, grace
aux équations fonctionnelles des fonctions L de Hecke. Mais une équation fonctionnelle
précise va étre énoncée ci-dessous.

6. Le conducteur d’Artin et I’équation fonctionnelle

Soient L|K une extension galoisienne finie de groupe de Galois G. Soit p un motif
d’Artin Gal(L/K) — GLy, avec V de dimension n.

Dans notre définition de A" (p, s), il manque a ce produit eulérien des facteurs corre-
spondant aux places ramifiées.

L’information en les places ramifiées est précisément contenue dans le conducteur.
Rappelons que Dg désigne le discriminant absolu de K. Ainsi on pose

Ap, s) = (IDx| ™ VIIN,)2A™ (p,s) = (IDx| M VN2 ] Lu(ps ) Lips ),

VEQK oo

ou v parcourt les places infinies de K, pour compléter L(p, s) et tenir compte de toutes les
places de K. C’est la fonction L complétée de p. C’est une fonction méromorphe sur C
puisque tous les facteurs sont méromorphes sur C.

On peut vérifier que cette fonction vérifie les propriétés analogues a celles de L(p, s) :
additivité pour les sommes de représentations, invariance par inflation, et surtout formule
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pour l'induction. Il s’agit de vérifications locales. Ces propriétés sont faciles a établir pour

les facteurs aux places archimédiennes. Aux places de K ramifiées dans L, il faut étudier de

plus pres le conducteur d’Artin et faire intervenir la formule du conducteur-discriminant.
Cela nous amene au théoreme qui justifie la définition du conducteur d’Artin.

THEOREME 8 (Artin). — On a l’équation fonctionnelle

A(,O, 3) = WpA(p*v 1- 8)7

ou W, est un nombre complexe de module 1.

Ce théoreme se déduit immédiatement de la formule pour I'induction et de I’équation
fonctionnelle des fonctions L (complétées) de Hecke. On utilise que le passage a la
contragrédiente commute a l'induction, si bien que I'induite du conjugué d’un caractere 7
de dimension 1 est la contragrédiente de I'induite de 7.

Prédire W, a partir de la donnée de p n’est pas facile. Lorsque p est isomorphe a
sa contragrédiente, ce qui est le cas lorsque le caractere de p est a valeurs réelles, on a
W, e{-1,1}.

L’équation fonctionnelle entraine immédiatement la formule du conducteur discrimi-
nant. En effet, il suffit de comparer I’équation fonctionnelle de Ay, qui s’écrit comme un
produit de fonctions A d’Artin, & I’équation fonctionnelle de chacun des facteurs.

L’équation fonctionnelle permet de montrer des théoremes algébriques. Mentionnons
celui-ci. Considérons la différente absolue de K, c’est-a-dire 'inverse de I'idéal fractionnaire
{z € K|Trg,q(xy) € Z, pour tout y € Ok }. Sanorme via N ,q est le discriminant absolu
D K de K.

THEOREME 9 (Hecke). — La différente absolue de K est un carré dans le groupe des
classes CU(K).

On peut rapprocher cet énoncé des énoncé de parité des caractéristiques d’Euler—
Poincaré en topologie. La question la plus importante sur les fonctions L d’Artin est la
congjecture d’Artin, qui concerne les poles des fonctions L.

CONJECTURE (Artin). — Supposons que VY = {0}. La fonction s — L(p,s) admet un
prolongement holomorphe au plan compleze.

C’est une question profonde qui n’est résolue que dans quelques cas tres particuliers,
notamment le cas ou G est abélien, par la théorie de Hecke, Tate, Iwasawa etc et quelques
cas ou p est de dimension 2 par la théorie des formes automorphes, en suivant la philosophie
de Langlands. Les méthodes qui permettent de relier une représentation d’Artin a une
forme automorphe fournissent une démonstration directe du prolongement analytique et
de I’équation fonctionnelle sans utiliser le théoreme de Brauer et I’équation fonctionnelle
des fonctions L de Hecke.

En raison de la formule pour I'induction, la conjecture d’Artin est vraie si p est induite
d’une représentation de dimension 1 : on se ramene aux fonctions L abéliennes.
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L’hypotheése V& = {0} est nécessaire puisque si V est une droite avec action triviale
de G, on a L(p,s) = (k(s), qui a un pole en s = 1. Une formulation équivalente de
la conjecture d’Artin, sans faire aucune hypothese sur V, est que s — A(p,s) est une
fonction méromorphe sur C avec pour seuls poles s = 0 et s = 1, qui sont tous deux
d’ordre dim(VGal(L/K)),

La conjecture d’Artin a démontrée par Weil si on remplace les corps de nombres par
des corps de fonctions d’une courbe sur un corps fini.

La conjecture d’Artin entraine la conjecture de Dedekind (existence d’un prolongement
holomorphe sur C pour le rapport de fonction (ys(s)/(k (s) méme lorsque I'extension finie
M| K n’est pas galoisienne).
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