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Fonctions L d’Artin

1. Applications globales de la théorie de la ramification

Soit K un corps de nombres. Soit L|K une extension galoisienne finie. Soit Q un
premier de OK . Soit P un premier de L au dessus de K. Notons DP le groupe de
décomposition en P de Gal(L/K). Il est muni d’une filtration

DP = G−1,Q ⊃ G0,Q ⊃ G1,Q ⊃ ... ⊃ Gn,Q = {1}.

Le groupe Gi,Q ne dépend que de Q à conjugaison près. On a G0,Q = 1 pour presque tout
Q.

Soit ρ : Gal(L/K)→ GL(V ) une motif d’Artin. On s’intéresse à la filtration

ρ(G−1,Q) ⊃ ρ(G0,Q) ⊃ ρ(G1,Q) ⊃ ... ⊃ ρ(Gn,Q) = {1}

comme mesure de la complexité de ρ en Q.

Corollaire 1. — On a

DL/K =
∏

Q∈ΩK−ΩK,∞

Q
∑∞

i=0
(|Gi,Q|−1)

Démonstration. — On utilise la formule

DL/K =
∏
Q
DLP/KQ ∩ OK

et on applique la formule du discriminant local.

Il en résulte un théorème de finitude global qui complète la théorie de Minkowski.

Corollaire 2. — Soit S un ensemble fini de places de K. Soit d un entier ≥ 1. Il
n’existe qu’un nombre fini (à isomorphisme près) d’extensions de K de degré d qui sont
non ramifiées en dehors de S.
Démonstration. — Comme toute extension de degré d est contenue dans une extension
galoisienne de degré ≤ d!, on peut se limiter aux extensions galoisiennes. D’après la théorie
de Minkowski, il n’existe qu’un nombre fini d’extensions de K de discriminant donné. Il
reste à montrer que pour toutQ ∈ S, la valuation vQ(DL/K) ne peut prendre qu’un nombre
fini de valeurs lorsque [L : K] est borné.
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Pour i entier ≥ 1, le i-ème groupe de ramification Gi d’un groupe de décomposition
en Q est trivial pour i > vP(i)/(p − 1), et donc pour i > [L : K]/(p − 1) et donc pour
i > [L : K]. Comme |Gi| ≤ [L : K], on a

vQ(DLP/KQ) =

[L:K]∑
i=0

(|Gi| − 1) ≤ [L : K]× [K : Q].

On a donc ∏
Q∈S
Q[L:K]×[K:Q] ⊂ DL/K .

On en déduit la finitude cherchée.

2. Application à la théorie du corps de classe local

La première application est le théorème de Hasse–Arf (sans démonstration). Soit KQ
une extension finie de Qp.

Théorème 1 (Hasse–Arf). — Soit LP |KQ une extension abélienne finie. Les sauts dans
la filtration (Gi)i≥−1 de Gal(LP/KQ) sont concentrés en les nombres entiers (i.e. si
Gi+1 6= Gi, on a ρLP/KQ(i) ∈ Z).

La deuxième application concerne une forme plus précise de la théorie du corps de
classe local.

Théorème 2. — L’isomorphisme de la théorie du corps de classe local

K×Q/NLP/KQ(L×P) ' Gal(LP/KQ)

induit un isomorphisme de groupes

U
(n)
KQ

/NLP/KQ(L×P) ∩ U (n)
KQ
' Gn ⊂ Gal(LP/KQ),

where Gn est le n-ème groupe de ramification de Gal(LP/KQ) en numérotation supérieure.

Le plus petit entier n ≥ 0 tel que U
(n)
KQ
⊂ NLP/KQ(L×P) est le conducteur d’Artin

(local) de LP |KQ. C’est aussi le plus petit entier n tel que Gn = {1}. On l’écrit aussi Qn
(notation multiplicative) comme un idéal de OQ. Il est nul si et seulement LP |KQ est non
ramifiée.

Lorsqu’on a une extension abélienne de corps de nombres L|K, on lui associe un
conducteur d’Artin global qui est le produit des conducteur locaux QnQ pour Q parcourant
les places finies. On a nQ = 1 pour presque tout Q. Le conducteur global est la partie
finie du cycle arithmétique associé à l’extension L|K.
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3. Le conducteur d’un motif d’Artin

Soit K un corps de nombres. Soit L|K une extension galoisienne finie. Soit ρ :
Gal(L/K)→ GL(V ) un motif d’Artin. Notons d la dimension de V . Supposons ρ injective.

Pour H sous-groupe de Gal(L/K), on pose V H = {v ∈ V/σ.v = v(σ ∈ H)}. C’est le
sous-espace de V formé par les invariants sous H. Pour Q premier de K, et P premier de
L au dessus de Q, on note Gi le groupe de ramification en notation inférieure du groupe
de décomposition en P de Gal(L/K).

On pose

nQ = n =
∞∑
i=0

|Gi|
|G0|

(dim(V )− dim(V Gi)).

C’est le conducteur d’Artin (local en Q) de ρ. C’est a priori un nombre rationnel, ce que
Artin a précisé dans le théorème suivant.

Théorème 3 (Artin). — On a nQ ∈ Z.

La démonstration de ce théorème repose sur le théorème de Hasse–Arf et sur la
représentation d’Artin de Gal(LP/KQ). Pour tout σ ∈ Gal(LP/KQ), on pose, si σ 6= 1,

aG(σ) = −fP iLP/KQ (σ)

et
aG(1) = fP

∑
σ∈G,σ 6=1

iLP/KQ (σ),

où fP est le degré résiduel de l’extension LP |KQ. La fonction aG est une fonction centrale
(i.e. invariante par conjugaison) sur G. C’est donc une combinaison linéaire de caractère
de représentations. Mais on a mieux que cela.

Théorème 4 (Artin). — La fonction aG est le caractère d’une représentation de G.

La représentation en question s’appelle la représentation d’Artin.
Tout cela permet de voir le conducteur d’Artin comme un idéal de KQ. C’est-à-dire

Qn (notation multiplicative).
Le conducteur d’Artin global de ρ est l’idéal de OK donné par la formule

N = Nρ =
∏

Q∈ΩK−ΩK,∞

QnQ .

Il provient seulement des places finies de K. En les places infinies, la seule donnée
concerne places réelles v et est contenue dans la dimension des sous-espaces invariants
par la conjugaison complexe en v.

La formule du conducteur-discriminant (Führerdiskriminantenproduktformel) due à
Hasse et Artin est la suivante.
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Théorème 5 (Hasse, Artin). — Notons DL|K le discriminant relatif de l’extension L|K.
On a

DL|K =
∏
ρ

Ndρ
ρ ,

où ρ parcourt les représentations irréductibles (à isomorphisme près) de G et dρ désigne
la dimension de ρ.

Lorsque l’extension L|K est abélienne, le produit porte sur les caractères de dimension
1 de l’extension abélienne L|K et les exposants sont tous égaux à 1.

4. Fonction L et induction de représentations

Proposition 6. — Soient L|K une extension galoisienne finie de groupe de Galois G.
Soit M un sous-corps de L contenant K. Notons H le groupe de Galois de l’extension
L|M . Soit τ une représentation de H. Notons ρ la représentation de G induite de τ . On
a

L(ρ, s) = L(τ, s).

Démonstration. — Notons F l’espace sous-jacent à τ . Posons E = F ⊗C[H] C[G] ' ⊕ββF ,
où β parcourt un système de représentants de G/H, l’espace sous-jacent à ρ.

La formule se démontre facteur par facteur.
Soit Q un idéal premier de OK . Pour R idéal premier de OM au-dessus de Q, on

choisit un idéal premier PR de OL au-dessus de R. Notons DP (resp. IP) le groupe de
décomposition en P de G et EP = DP∩H (resp. JP = IP∩H) le groupe de décomposition
(resp. d’inertie) en P de H. Notons fR le degré résiduel en R de l’extension M |K. La
substitution de Frobenius dans DP ∩ H est la puissance fR-ème de la substitution de
Frobenius FrobP de DP/IP . Ainsi, c’est FrobfPP .

On choisit l’un des idéaux P0 de OL au dessus de Q. Pour chaque idéal PR, on choisit
νR ∈ G tel que PR = νR(P0). On a alors ν−1

R DPνR = DP0
.

On montre l’identité annoncée dans la proposition facteur par facteur. Il faut montrer
dans C[X] :

det(1−Xρ(FrobP0
);EIP0 ) =

∏
R|Q

det(1−Xτ(FrobfRPR);F JPR ),

où R parcourt les idéaux premiers de OL au-dessus de Q (i.e. PR parcourt les conjugués
de P au dessus de Q).

Écrivons explicitement E. Pour chaqueR, soit (αR,j)j un système de représentants de
DP0

/(DP0
∩ ν−1
R HνR). Les αR,jνR forment un système de représentants de G/H lorsque

R et j varient. L’écriture concrète de E donne

E = ⊕j,RαR,jνRF.
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On pose ER = ⊕jαR,jνRF . On obtient une décomposition E = ⊕RER. On a donc

det(1−Xρ(FrobP0);EIP0 ) =
∏
R|Q

det(1−Xτ(FrobfRPR);E
IP0

R ).

Ainsi, il suffit de prouver qu’on a

det(1−Xτ(FrobfRPR);F JPR ) = det(1−Xτ(FrobfRPR);E
IP0

R ).

En conjuguant par νP , on obtient

det(1−Xτ(FrobfRPR);F JPR ) = det(1−Xτ(FrobfRPR); (νRF )IP0
∩νRHν−1

R ).

Il faut donc montrer

det(1−Xτ(FrobfRPR);E
IP0

R ) = det(1−Xτ(FrobfRPR); (νRF )IP0
∩νRHν−1

R ).

Comme on a Ind
DP0

D
P0∩νRHν

−1
R

νRF = ER, on s’est ramené au cas où G = DP0 et au cas où il

n’y a qu’un seul idéal premier de OM au dessus de Q. C’est ce que l’on suppose désormais.

On a de plus Ind
DP0

D
P0∩νRHν

−1
R

(νRF )IP0
∩νRHν−1

R = E
IP0

R , ce qui nous permet de nous

ramener au cas où IP0
= {1}, ce que nous supposerons désormais.

Il reste à montrer l’identité suivante

det(1−Xτ(FrobP);E) = det(1−XfP τ(FrobP)fP ;F ).

Comme τ(FrobP
fP ) agissant sur F est diagonalisable, quitte à découper F en sous-espaces

propres, on peut supposer que F est de dimension 1 et donc que τ(FrobP
fP ) est la

multiplication par λ. Quitte à changer X en X/λ, on peut supposer que τ(FrobP
fP )

est l’identité. On s’est alors ramené à la situation de la séance précédente.

On peut généraliser la proposition 6 pour tenir compte des places infinies. On obtient
alors la formule

Λnr(ρ, s) = Λnr(τ, s).

5. Le théorème de Brauer et ses conséquences

Le théorème suivant, dû à Brauer, relève purement de la théorie des représentations
de groupes finis. La démonstration en est élémentaire mais est trop longue pour figurer
dans ces notes.

Théorème 7 (Brauer). — Soit G un groupe fini. Toute fonction centrale G → C est
combinaison C-linéaire de caractères d’induites de représentations de dimension 1 de sous-
groupes de G. De plus, si ρ est une représentation de G, son caractère est une combinaison
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Z-linéaire de caractères d’induites de représentations de dimension 1 de sous-groupes de
G.

Noter que si H1, H2,..., Hn sont des sous-groupes de G, et m1, m2,...,mn sont des en-
tiers, ⊕i(IndGHiτi)

ni n’est pas une représentation de G. Mais on parle d’une représentation
virtuelle. Le théorème 2 se traduit par un isomorphisme de représentations

ρ⊕⊕i,ni<0(IndGHiτi)
−ni ' ⊕i,ni>0(IndGHiτi)

ni .

Noter que si ρ est isomorphe à ⊕i(IndGHiτi)
ni , la représentation ρ̄ conjuguée de ρ est

isomorphe à ⊕i(IndGHi τ̄i)
ni . C’est en particulier le cas si les τi sont de dimension 1.

Corollaire 1. — Soient L|K une extension galoisienne finie de groupe de Galois G.
Soit ρ une représentation galoisienne de G. Il existe des sous-corps M1, M2,..., Mn de L
contenant K et tels que les extensions L|M1, L|M2,..., L|Mn sont abéliennes, des entiers
m1,...,mn ∈ Z, des caractères de Hecke χ1,..., χn pour M1, M2,..., Mn respectivement tels
que

L(ρ, s) =

n∏
i=1

L(χi, s)
mi .

En particulier, s 7→ L(ρ, s) admet un prolongement méromorphe à C . Démonstration.
— Il suffit de combiner le théorème de Brauer avec la formule pour la fonction L des
représentations induites.

On peut déjà en déduire une équation fonctionnelle, à quelques facteurs près, grâce
aux équations fonctionnelles des fonctions L de Hecke. Mais une équation fonctionnelle
précise va être énoncée ci-dessous.

6. Le conducteur d’Artin et l’équation fonctionnelle

Soient L|K une extension galoisienne finie de groupe de Galois G. Soit ρ un motif
d’Artin Gal(L/K)→ GLV , avec V de dimension n.

Dans notre définition de Λnr(ρ, s), il manque à ce produit eulérien des facteurs corre-
spondant aux places ramifiées.

L’information en les places ramifiées est précisément contenue dans le conducteur.
Rappelons que DK désigne le discriminant absolu de K. Ainsi on pose

Λ(ρ, s) = (|DK |dim(V )|Nρ|)s/2Λnr(ρ, s) = (|DK |dim(V )|Nρ|)s/2(
∏

v∈ΩK,∞

Lv(ρ, s))L(ρ, s),

où v parcourt les places infinies de K, pour compléter L(ρ, s) et tenir compte de toutes les
places de K. C’est la fonction L complétée de ρ. C’est une fonction méromorphe sur C
puisque tous les facteurs sont méromorphes sur C.

On peut vérifier que cette fonction vérifie les propriétés analogues à celles de L(ρ, s) :
additivité pour les sommes de représentations, invariance par inflation, et surtout formule
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pour l’induction. Il s’agit de vérifications locales. Ces propriétés sont faciles à établir pour
les facteurs aux places archimédiennes. Aux places de K ramifiées dans L, il faut étudier de
plus près le conducteur d’Artin et faire intervenir la formule du conducteur-discriminant.

Cela nous amène au théorème qui justifie la définition du conducteur d’Artin.

Théorème 8 (Artin). — On a l’équation fonctionnelle

Λ(ρ, s) = WρΛ(ρ∗, 1− s),

où Wρ est un nombre complexe de module 1.

Ce théorème se déduit immédiatement de la formule pour l’induction et de l’équation
fonctionnelle des fonctions L (complétées) de Hecke. On utilise que le passage à la
contragrédiente commute à l’induction, si bien que l’induite du conjugué d’un caractère τ
de dimension 1 est la contragrédiente de l’induite de τ .

Prédire Wρ à partir de la donnée de ρ n’est pas facile. Lorsque ρ est isomorphe à
sa contragrédiente, ce qui est le cas lorsque le caractère de ρ est à valeurs réelles, on a
Wρ ∈ {−1, 1}.

L’équation fonctionnelle entrâıne immédiatement la formule du conducteur discrimi-
nant. En effet, il suffit de comparer l’équation fonctionnelle de ΛL, qui s’écrit comme un
produit de fonctions Λ d’Artin, à l’équation fonctionnelle de chacun des facteurs.

L’équation fonctionnelle permet de montrer des théorèmes algébriques. Mentionnons
celui-ci. Considérons la différente absolue de K, c’est-à-dire l’inverse de l’idéal fractionnaire
{x ∈ K|TrK/Q(xy) ∈ Z, pour tout y ∈ OK}. Sa norme via NK/Q est le discriminant absolu
DK de K.

Théorème 9 (Hecke). — La différente absolue de K est un carré dans le groupe des
classes C`(K).

On peut rapprocher cet énoncé des énoncé de parité des caractéristiques d’Euler–
Poincaré en topologie. La question la plus importante sur les fonctions L d’Artin est la
conjecture d’Artin, qui concerne les pôles des fonctions L.

Conjecture (Artin). — Supposons que V G = {0}. La fonction s 7→ L(ρ, s) admet un
prolongement holomorphe au plan complexe.

C’est une question profonde qui n’est résolue que dans quelques cas très particuliers,
notamment le cas où G est abélien, par la théorie de Hecke, Tate, Iwasawa etc et quelques
cas où ρ est de dimension 2 par la théorie des formes automorphes, en suivant la philosophie
de Langlands. Les méthodes qui permettent de relier une représentation d’Artin à une
forme automorphe fournissent une démonstration directe du prolongement analytique et
de l’équation fonctionnelle sans utiliser le théorème de Brauer et l’équation fonctionnelle
des fonctions L de Hecke.

En raison de la formule pour l’induction, la conjecture d’Artin est vraie si ρ est induite
d’une représentation de dimension 1 : on se ramène aux fonctions L abéliennes.
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L’hypothèse V G = {0} est nécessaire puisque si V est une droite avec action triviale
de G, on a L(ρ, s) = ζK(s), qui a un pôle en s = 1. Une formulation équivalente de
la conjecture d’Artin, sans faire aucune hypothèse sur V , est que s 7→ Λ(ρ, s) est une
fonction méromorphe sur C avec pour seuls pôles s = 0 et s = 1, qui sont tous deux
d’ordre dim(V Gal(L/K)).

La conjecture d’Artin a démontrée par Weil si on remplace les corps de nombres par
des corps de fonctions d’une courbe sur un corps fini.

La conjecture d’Artin entrâıne la conjecture de Dedekind (existence d’un prolongement
holomorphe sur C pour le rapport de fonction ζM (s)/ζK(s) même lorsque l’extension finie
M |K n’est pas galoisienne).
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